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ABSTRACT

In many practical situations, it is required to obtain
information froman array of conplex data. Sone exanpl es of
these situations are - conputer aided tonography, nmnedical
I magi ng, acoustic inagi ng, and synthetic aperture radar (SAR
techniques. In all these cases, data collected by an array of
recei ver elenents is used to derive the required infornation
The outputs vary according to the situation. The required
information may be an inage as in case of acoustic inmaging or
a set of paraneters characterizing the source as in SAR
appl i cati ons. Recovery of the required information nay
involve a straightforward transformation or a nore conpl ex
pr ocedur e.

There are certain practical issues conmmon to problens
of this nature. Some issues of interest are - (1) to overcormre
t he conplexity of neasurenents at the receiver array, (2) to
recover the information from a limted nunber of data
sanples, and (3) to overcome the effects of noise in the
dat a.

In this thesis, we address these issues for a certain
class of informati on recovery probl ens. W propose al gorithns
for information recovery fromavailable data and devel op
theoretical justification for these al gorithns.

W consider the reconstruction problemas a probl em of
information recovery frompartial data. W showthat it is
possi bl e to conbine partial information in various donmains to

recover the required information. The received data is



usually a set of conplex nunbers. W devel op algorithns for
signal reconstruction fromonly the full/quantized phase
information  of the received data. This reduces the
nmeasurenent conplexity at the receiver end. The phase

information represents partial information at the receiver

end. It is used alongwith sone apriori information (such as
finite support constraint) inthe signal domain, in an
iterative algorithmfor signal reconstruction. It was shown

that by neasuring data at several frequencies, the receiver
size can be reduced in terns of the nunber of receiver
elenents. W show in this thesis that by using phase
quantization with the multiple frequency data, both the
neasurenent and size conplexities of the receiver can be
reduced, but at the cost of significantly increased
conput at i on. Reconstruction from the quantized phase
information al so reduces the effects of noise in the neasured
dat a.

The algorithns proposed in this thesis can be applied
to a wde range of information recovery problens. In this
work, we address the problemwth special reference to
acousti c i nagi ng.

Acoustic inmaging is a technique of image formation
using acoustic waves. W consider the hol ographic acoustic
imaging mnmethod in our studies because it allows the use of
signal processing techni ques at the data processing stage.

Li ke other problens of this category, the nain issues

in acoustic inmaging are to find techniques to reduce the



circuit and neasurenent conplexity of the setup and to
inprove the image quality. W study the use of the al gorithms
pr oposed in this thesis to achieve these goals. The
experimental results showthat quanti zed phase nmeasurenents
at several frequencies help to trade the neasurenent and si ze

conplexity wth the conputational conplexity.



CHAPTER 1

PARTIAL DATA PROBLEMS

1.1 INTRODUCTION TO INFORMATION RECOVERY PROBLEMS

In many practical situations, it is required to obtain
information froman array of conplex data. Sonme exanpl es of
these situations are - conputer aided tonography, nedical
i magi ng, acoustic i magi ng, and synthetic aperture radar ( SAR
techniques. In all these cases, the data collected by an
array of receiver elenents is used to derive the required
informati on. The outputs vary accordi ng to the situation. The
required information nay be an inmage as in the case of
acoustic inmaging or a set of paraneters characterizing the
source as in SAR applications.

The data neasured in these problens is wusually a
transformation of the original signal. Therefore signal
reconstruction is done by conputing the inverse transformon
the received data. As we shall see later, the process of
i nverse transformmay be nore conpl ex than conputing just a
Fourier transform

There are certain practical issues conmon to problens
of this nature. Sone issues of interest are - (1) to overcone
t he conpl exity of measurenments at the receiver array, (2) to
recover the information from a limted nunber of data
sanples, and (3) to overcone the effects of noise in the
data. The data is neasured by an array of receiver el enents.

The nunber of elenents onthe receiver array is finite.



Generally the data is a set of conplex val ues and has both
phase and nagnitude conponents. But due to practica
problens, it may not be possible to nake nmeasurenent of both
t he phase and nagni tude accurately. Mreover, the signal at
the receiver end is usually noisy. In all these cases the
information nay be considered inconplete because of the
finite and di screte neasurenents, or because of sonme m ssing
phase/magnitude val ues. Noi se causes anbiguity in each data
value. Therefore we can consider the available data as
partial information. The aim of this work is to propose
t echni ques to sol ve these partial data probl ens.

The partial data problemis encountered in many real
life situations also. It is such an integral part of nature
t hat all  human beings nake inferences from partially
available information in nearly all aspects of life. This
I ncl udes conmon activities like listening, seeing, reading,
etc. Recovery frompartial data is possible because usually
the domain of interest has many redundancies. Sone aprior
information can be used to recover the conplete infornation
frompartial data. Human bei ngs use common intelligence, past
experience, and the accumul at ed know edge in such situations.
For exanple, while listening to unclear speech, such as on
tel ephone, we nake use of the recognizable words, the
context, etc., along with the sound and duration of the
unclear words to recognize themand understand the whole
sentence. In a simlar way we nake use of the context and

apriori  know edge to recogni ze objects when they are only



partly visible. Msprints or misspelt words are easily
over|l ooked while reading fast because we wusually read by
| ooking at the overall shape and neaning of the words and
word sequences and not their spellings. For exanple, inthe
fol | owi ng sent ence

There is a spelling mstake in this sentense.
one usual Iy overl ooks the fact that the | ast word shoul d have
been ’sentence’ and not ‘sentense’. In the same way if a word
of the text is partially rubbed off, or is not visible due to
some ot her reasons, it can be guessed nost of the tines.

Just as human bei ngs sol ve the partial data problens in
daily life, we want nachines to do so for sone of the cases
nmentioned in the beginning. In this work we  propose
t echni ques to overcone sone of the practical constraints for
such a class of partial data problens. W show that, wth
suitable algorithns, it 1is possible to conbine partial
information in various domains to recover the required
information. Wen the available data is partial, the m ssing
parts can generally be filled up in a variety of ways. This
defines a set of possible solutions. Mst of the nethods
avai l abl e to sol ve these problens use information in various
domains tolimt this set to a small size, and finally pick
out the nost probable solution fromit.

V¢ develop algorithns for signal reconstruction from
only the full/quantized phase infornmation of the received
data. This technique takes care of the situation when only
the phase data is available at the receiver end. The

nmeasurenent conplexity at the receiver end can also be



reduced wth this technique. Oly the full/quantized phase
information represents partial information at the receiver
end. It isusedinaniterative algorithm alongwith somne
apriori information in the signal domain(such as finite
support constraint), for signal reconstruction. It was shown
that by measuring data at several frequencies, the receiver
size can be reduced in terns of the nunber of receiver
elenents. In this thesis, we showthat by using phase
quantization with the multiple frequency data, both the
nmeasurenent and size conplexities of the receiver can be
r educed, but at the cost of significantly increased
conput at i on. Reconstruction from the quantized phase
information al so reduces the effects of noise in the measured
dat a.

Al gorithns have been developed in this thesis wth
speci al reference to sinulated acoustic inmagi ng systens. The
aim in acoustic imaging is to formimges fromthe acoustic
field data collected by an array of hydrophones. |n case of
I mage signals, edge information is very inportant for
understanding the picture or the scene. This is so because
objects are recognized fromtheir features. |In nost of the
cases, edges are enough to convey the information about the
features. Extensive work has been done to study the relative
inportance of the Fourier transformphase and the Fourier
transform nagnitude for reconstruction of the image signals.
It has been observed that the Fourier transform phase

preserves nost of the edge information of a picture. |In fact



Fourier transformphase information is sufficient to recover
the original signal in many cases. Ther ef or e, I mages
reconstructed from only their Fourier transform phase
information have been found to be better than those
reconstructed from only their Fourier transform nagnitude
information. W showthat in the class of probl ens addressed
in this thesis, reconstruction is possible from
full/quantized phase information. The phase is inportant for
recovery of edge information, and hence, for the recovery of
t he essential features for recognition of the object. W nake
use of this property to propose techniques for reducing the
circuit and neasurenent conplexity in an acoustic inaging
set up.
12 ACOUSTIC | MAG NG : AN EXAMPLE OF PARTI AL DATA PROBLEM
Acoustic imaging is the technique of napping objects
with acoustic radiation [1],[2]. Fig.1.1 shows a typical
acoustic imaging set up. Acoustic waves are transmtted from
one end. They hit the object which is to be imaged, and the
reflected acoustic field is neasured at the receiver end
This data is processed to formthe inage of the origina
object. Acoustic inmaging finds application in underwater
imaging, mnedical inmaging, etc., where other sources of
radiation, like |light, cannot penetrateto the required
distances. There are three main approaches to acoustic
I magi ng, namely (a) focussed acoustic imaging, (b)
beanf orm ng, and (c) acoustic hol ography [2]. V& restrict our
attention to the acoustic hol ographic approach, since it

enabl es us to use sophisticated signal processing techniques
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A typical acoustic imaging setup.

Acoustic waves are transmitted from one end. They
hit the target, and the reflected data is received
by an array of hydrophones. This data is converted
to electric signals, and processed to form an image
of the object. The coordlnates on the object plane
are referred to as x_, and z_, whereas those on
the object plane areorefe?red to 8s x, y, and z.



on the received data before image fornmation. This way, the
quality of the image can be inproved significantly.

In the acoustic hol ographic technique the receiver is
an array of hydrophones. The acoustic field data is received
at this hydrophone array. Both the magnitude and phase of the
field are neasured. These neasurenents are then converted to
el ectri cal signals using suitable transducers. These
electrical signals are nuneric representation of the data.
Their phase and nagni tude represent the phase and nagnitude
val ues of the received data. The circuits required to neasure
the data, its conversionto electrical signals, and the
subsequent processing to formthe inage, are all quite
conplex [2]. The data in acoustic imaging is partial because:
(1) The nunber of hydrophones on the receiver array is
limted. Therefore the neasured data is a finite array of
conpl ex nunbers.

(2) Both the phase and nmagnitude information may not be
avail abl e for reconstruction. In particular, therefore, we
consi der reconstruction from full or guanti zed phase
I nformation of the data.

(3) The data values are corrupted by channel or «circuit
noi se.

V¢ denonstrate that the algorithns proposed in this
thesi s may sol ve sone of the probl ens encountered in acoustic

| magi ng.



1.3 THEORY OF | MAGE FORMATI ON

The scalar diffraction theory of light forns the
heart of the theory of acoustic holography [8]-[10]. An
aperture, when illumnated by a plane wavefront, causes a
diffraction pattern to appear at a screen or receiver plane
kept at a certain distance fromit. The diffraction pattern
on the receiver plane can be found by solving the wave
equati on, | f we know the field distribution of t he
iIlumnating wave at the aperture plane. General solution to
the wave equationis difficult to obtain. However, when
subject to certain sinplifying assunptions, these equations
are nore easily sol ved.

| | oX 3=%
The relation between the received data/Land t he
. . ¥ F=¥ .

field on the object plane, i's given by the Rayleigh -

Sommerfield integral [3]

g(x,y,z) = A J( 9, (Xgr1¥gr2g) exp (-] k.r) dx, dyg

Xo Yo (1.1)
wher e
g, ( Xgr Yo ) : acoustic field on the object plane
g( %, Y) : acoustic field on the receiver plane
r : vector di stance between t he object and
t he recei ver el enents.
k > wavenunber
A : Aconstant. V& will omt this constant

t hr oughout simnul ati on studi es reported
in this work.

Wen the object is far fromthe receiver end, this



equation can be witten as (omtting the constant A).

9(x,y,2) =J]rgo(xo,yo,zo) £(x,%,,¥/¥5,2,2,) dxg dy

Xo Yo (1.2)

wher e

£(%X,%X_,¥,¥Y.,12,2_) = exp{-j2TWz[ (x-x )2+(y-y )2+(z-z )2]}
(o] o (o} _A— @] o (o]
VW can also wite

g(x,Y,2) = g (x,¥,2) * h(x,y,2) (1.3)

By taking the Fourier transformof both sides of (1.3)
we get

G(f,, £, 2) = G _(f

o £ ,2z) . H(f z) (1.4)

fy x'7y
wher e h(fx,f ,2) = exp{-Jj21T z[1+(1-Af )2+(1—P\f )2]}
Y P X Y

<’ Eyur

G, can be obtai ned from G by

G(f_,f. ,2) = G (f ., f ,2z) . H'l(f

, f
x'"y Yy x'7y

Now g_(x_,¥ ,2,) can be conput ed fr0n1Go(fX,fy,z) by

taking the inverse Fourier transform V¢ have followed this

,2) (1.5)

procedure in our sinmulation studies.

The work reported in this thesis has been done to
reduce the circuit and neasurenent conplexity in the probl ens
of signal reconstruction fromdata collected by an array of
receivers. V& report results on
(1) The inportance and wuse of the quantized phase
information to reduce the circuit conplexity.

(2) The wuse of quantized phase neasurenents nmade at
mul tiple frequencies to reduce the receiver array size.
(3) The use of quantized phase infornmationto reduce the

effects of noise in the neasured dat a.



V¢ have concentrated on signal reconstruction from the
phase of the received data. As the results developed in this
thesis wll show, the phase of the received data can be
mani pul ated to inprove the image clarity and to reduce the
recei ver array conplexity. The phase is one of t he
nmeasur enent s nade anyway, therefore we do not have to nodify
t he neasur enent procedure.

The thesis is organized as follows. In chapter 2 we
review the work reported in literature related to
reconstruction of signals fromthe phase infornation of their
Fourier transforns. W wll also study its applicability to
the class of signals under consideration in this work. In
chapter 3 we study the use of the quantized phase i nformation
for image reconstruction. Recently a technique of signal
reconstruction using nmultiple frequenci es has been proposed.
In chapter 4 we study the application of this technique to
t he reconstructi on of i mages fromquanti zed phase i nformation
of the received data. In chapter 5 we show that the quantized
phase informati on hel ps to reduce the effects of noise in the

nmeasur ed dat a.



CHAPTER 2

SI GNAL RECONSTRUCTI ON FROM PHASE OF RECEI VED DATA

2.1 SI GNAL RECONSTRUCTI ON AS A PARTI AL DATA PROBLEM

In all problens of signal reconstruction from array
data, the data collected is usually a set of conpl ex nunbers.
At each data point, we have a phase and a nagni tude val ue.
| deal |y, the phase and magni tude val ues of all the points are
required for image formation [(11],[12). But due to certain
factors |i ke nmeasurenment errors, noise, etc., only the phase
or only the nmagnitude information may be available. This
partially available information nust be used to recover the
original signal. It is simlar to other signal recovery
probl ens discussed in literature [13]-[15].

Significant work has been done on the possibility of
signal reconstructionfromonly the Fourier transform phase
or only the Fourier transformmagnitude information [16]-
(21). Conditions have been stated in literature under which
it is possibleto recover a signal fromonly one of the above
information or from a mxture of the tws. The signal
reconstruction fromacoustic field data is different fromthe
reconstruction from the Fourier transformin the standard
i mage processi ng.

In this chapter we concentrate on the conditions for
si gnal recovery from the phase of the received data.
Techni que of signal reconstruction fromphase is attractive

as it can be used to reduce the nmeasurenent conplexity also.



At each receiver elenent, only t he phase neasurenent woul d be
required, and therefore the nmagnitude neasurenent can be
avoi ded.

In section 2.2 we state the conditions under which a
signal can be recovered fromonly its Fourier transform phase
information. The results stated in literature place certain
constraints on the signal for its recovery from only the
Fourier transformphase information. 1|In section 2.3 we show
that sone additional information in the signal domain can
hel p to rel ax these constraints. In section 2.4 we present an
algorithmfor signal reconstruction fromphase data. Various
iterative and non-iterative al gorithns have been proposed for
signal recovery from partial data [22]-[25]. The PQCS
(Projections nto Convex Sets) algorithm [(26]-[29] has been
used inthis work. It is an iterative algorithmand we found
it suitable for our work.

22 TECHN QUES FOR SI GNAL RECOVERY FROM PHASE

Every signal has a unique Fourier transform Therefore
a signal is conpletely specified by its Fourier transform
Gven the conplete Fourier transform information, t he
original signal can be recovered uniquely. But when the
Fourier transforminformation is not known conpletely, it is
not al ways possible to recover the original signal. In this
section we study the probl emof signal recovery fromonly the
Fourier transform phase infornmation. A prinary result for
signal recovery from only the Fourier transform phase

i nformation can be stated as follows [16]:



Theorem 2.1 : Let x(n) be a real one-dimensional sequence
which is zero outside the interval 0 < n < N-1 with x[0] # O
such that its z-transform does not have any zeros in
reciprocal pairs. Let y(n) be another sequence which is zero
outside the interval 0 < n < N-1. Let 8 (f) and eY(f) be the
Fourier transform phase functions for x(n) and y(n)
respectively. If 8 (f) = eY(f) at N-1 distinct frequencies in
the interval 0 < f <77 , then y(n) = a x(n) for some positive
constant a. | f tane_(f) = tanOY(f) at N-1 distinct
frequencies in the interval o0 < f <TT, then y(n) = b x(n)
for some real constant b.

We will not repeat the proof of this theorem here. But
we show why there is a restriction on the presence of
reciprocal zeros in the z-transform of the signal. The zeros

in the z-transform of a real sequence x(n) occur in complex

conjugate pairs. Thus, if there is a zero at z_, there will
*
also be a zero at the complex conjugate z . In addition, Lf
there is a zero at /2, there will be another zero at 1/z.
Thus a part of the z-transform, X(z), of the signal will be
* -1 -1 *
(z-zo)(z—zo) (z -zo) (z -zo) (2.1)

These four terms together give a real quantity.
Therefore, this set of four zeros adds only zero or 7T ,
uniformly, to the overall phase of X(f) (Fourier transform of
x(n)). In either case, it is not possible to detect the
presence of these four zeros by the knowledge of the Fourier
transform phase alone. Therefore, 1t is not possible to
recover the original signal in such situations.

This theorem states that if the z-transform of a real

16



sequence does not have any zeros in reciprocal pairs, it is
possible to recover it fromits Fourier transform phase
i nformati on al one. G oup-delay functions can be used to
explain the sanme concept in an elegant way [30],[31].The

standard PQCS al gorithns can be used for this reconstruction

[27].

(1) Pick any real sequence as the initial estimate of x(n).

r epeat

(2) compute Xf) . [* the Fourier transformof x(n) */

(3) appl y phase correction at the points where Fouri er

transform phase values of X(f) are known. This
gives the next refined estinmate of X(f).
(4) Conpute the next estinmate of x(n) by taking the
inverse Fourier transformof x(f). Apply finite
support constraint on x(n).
until an acceptabl e sol ution is achi eved.
(5 Stop.

Agorithmz2.1 An algorithm for signal recovery from the

Fouri er transform phase infornation.

Fig.2.1(b) shows the signal recovered from only the
Fourier transform phase information for the original rea
sequence shown in Fig.2.1(a). Agorithm2. 1 was used for
signal recovery. Fig.2.2(b) shows the result obtained from
only the Fourier transformphase information for a real

sequence shown in Fig.2.2(a). The sequence in Fig.2.2(a) has
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Fig.2.1(a) A one-dinensional signal wused to study the

reconstruction from Fourier transform phase
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Fig.2.1(b) Signal recovered from only the
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Fourier transform of the signa
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g;ansforn1 phase of the signal
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In Fig.2.2(a).
t he z-transform of the original signal has
a pair of reciprocal zeros, it i s not
recover

_ [ ossibleto
it from the Fourier transtorm phase
information al one.



a pair of reciprocal zeros. It can be seen that in this case
only the Fourier transform phase information is not
sufficient to recover the original signal.

Theor em 21 states the conditions for t he
reconstruction of a one-dinensional signal from only the
Fouri er transform phase i nformati on. The correspondi ng resul t
for two-di nensional signals can be stated as follows [17):
Theorem 22 : Let x(n,m) and y(n,m) be two real two-
di mensi onal sequences wi th region of support which is zero
outside the intervals 0 <n<0N-12and 0 < m < M-1. 1If
X(z,,2,) and Y(z,,2,) have no non-trivial symetric factors,
and ex(fl,fz) = ey(fl’fz) for all frequencies, then x(n,m) =
a y(n,m) for some positive real nunber a. If tanfe_(f,,f,)] =
tan[ey(fl,fz)J for all frequencies, then x(n,m) = b y(n,m)
for sonme real constant b.

- o. MRguama &Q‘\\,*\L) (S N MN.&E\:-{
The z-transform id—said-to have symmetric-facters—if

ABWWMBNgj Ware O pSalie ;Arxzz k&L Aack That
1 172
Rz 2) = 22 e K

VW see that the conditions for the sequences to be
reconstructi bl e from their Fourier transform phase
information are simlar in both the one-di nensi onal and two-
di nensi onal cases. The nain constraint is that there should
be no non-trivial symetric factors in the z-transformof the
sequence. In the next section we showthat this constraint

can be relaxed if sone signal sanples are known.



2.3 RECONSTRUCTI ON FROM PHASE W TH ADDI Tl VE SI GNAL
I NFORMATI ON

In this section we showthat with the know edge of sone
signal domain information, it is possible to recover signals
from their Fourier transformphase information even when
their z-transforns have symretric factors. The result for
t he one-di nensi onal case can be stated as follows [32]:
Theorem 23 : Let x(n) be a real sequence which is zero
outside the interval 0 <n < N-1WwWth x[0o] # 0. Assune that
the z-transformof x(n) has one pair of reciprocal zeros. Let
y(n) be any real sequence which is zero outside the interva
0<n < N-1, |If e\(f) = 0_(f) at N5 di stinct frequencies in
the interval 0 < f <7, and y[n] = x[n] for the first three
val ues of n, then y(n) = x(n) .
Proof : If the z-transform of a real, finite-duration

sequence x(n), has a pair of reciprocal zeros, then it can be

witten as:
X(z) = Xl(z).xz(z) (2.2)
wher e X, (2) has no zeros in reciprocal pairs and
* *
X,(2) = (z_l—zo)(z_l—zo)(z—zo)(z-zo) (2.3)

| xz(f) is the Fourier transform corresponding to
X, (2), then, as mentioned earlier, X,(f) adds either o or 7T,
uniformy, to the phase of x(f). This is because X, (2) has
two zeros in reciprocal pairs and and two nore that are their
conjugates. Therefore, when the z-transformis eval uated on
the unit circle to get the Fourier transform of X,(n), we get
a real, even sequence. X, (n) is a 5-point real, even sequence

and x4 (n) is an (N-4)-point real sequence. For the tine being



| et us consi der the case when the phase added due to Xéf) i's
0. Later we will showthat the results hold even if the phase
added is TT. From(2.2) we notice that

x(n) = x,(n) * X, (n) (2.4)
where x,(n) < xﬂz) and x(n) <— X, (2)

Therefore x(n) is formed fromconvol ution of an (N-4)-
poi nt real sequence with a 5-point real, even sequence. X, (n)
can be determned to within a scale factor by knowing (N5)
di stinct phase values in the range 0<f<T (Theorem 2.1). Since
the Fourier transform phase of %, (n) is equal to that of
x(n), these (N-5) phase val ues can be obtai ned fromthe phase
of x(£). If required, the scale factor can al so be determ ned
by know edge of at | east one val ue of X, (n).

To prove the theorem we have to showthat if x(n) can
be conpletely recovered fromthe know edge of X, (n) and
X, (n), then it can also be fully determned with the
know edge of X, (n) and the first three sanples of x(n).

The convol ution equation (2.4) can be witten as:

x,[0].%,[0] = x[0]

x[0).%,[1] + x%;[1].%,[0] = x[1]

xl[O].x2[2] + xl[l].x [1] + x1[2].x2[0] = x!Z]

?

x,[N-6].x,[4] + xl[N-é].x2[3] = xEN-z]

x, [N=5].%,[4] = x[N-1] (2.5)

x, (n) can be determ ned by the use of Theorem2.1. x(n)
can be conputed with the know edge of x,(n) and X, (n) usi ng

the set of equations 2.5. Since xfn) is a 5-point real, even
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sequence, only three independent val ues of x,(n) are enough
to specify it uniquely. Suppose that x,(n) is not known but
the first three sanples of x(n), 1i.e, x[0], x[1], and x[2],
are available. Then, by using the first three equations in
(2.5), x,(n) can be determ ned. Now since both x, (n) and
x2(n) are avail able, the rest of x(n) can be conput ed.

Thus we have shown that if x,(n) can be conputed
i ndependently, the required additional information about
X, (n) is equivalent to knowing the first three sanples of
x(n). W have al ready shown t hat x, (n) can be determ ned from
the phase information of X(f). Furthernore, in this case,
even W thout knowi ng any val ues in the sequence xl(n), x(n)
wi |l be conputed to the correct scale factor. |f, by the use
of Theorem 2.1, x, (n) i s determ ned as, say ax, (n) for a
positive constant a, then when equation 2.5 is used, X, (n)
will be determ ned as (1/a)x, (n), since x[0], x[1], and X[2 ]
are known conpletely. Thus the rest of the x(n) val ues wll
al so be known to the correct scale factor. Now we consider
t he case when t he phase added due to X, (f) isTrT. Wen this
IS so, x, (n) will actually be determ ned as -axl(n) for sone
constant a Then x,(n) will be determned as -(1/a)x,(n) when
the set of equations 2.5 is used for reconstruction. Since
x(n) is a convolutionof thetwo, it wll be recovered
correctly. Hence the proof of the theoremis conplete.

In the proof of this theoremwe have assuned that the
first three values of x(n) are known. The know edge of three
arbitrarily chosen sanples nay not be sufficient. The known

sanmples of x(n) should be such that the corresponding



equations in the set (2.5) are independent. Randomy chosen
three sanples of x(n) may not gi ve i ndependent equations for
conpl ete recovery of x,(n).

W illustrate these results with the use of the signa
x(n) in Fig.2.3(a). The z-transformof this signal has a pair
of reci procal ZEer os. Fig.2.3(b) shows the signa
reconstructed from the Fourier transform phase information
al one. As expect ed, only the Fourier transform phase
information is not sufficient to recover x(n). Figs.2.3(a)
and 2.3(b) are identical to Figs.2.2(a) and 2.2(b),
respectively. They are reproduced for the convenience of
conparison wth the following results. Fig.2.3(c) shows the
signal recovered fromthe Fourier transform phase information
and the know edge of the first three signal sanples. This
signal bears a close resenblenceto the original signal.
Fig.2.3(d) shows the reconstructed signal when the three
known sanples do not give independent equations for the
recovery of x,(n). It is not possibleto reconstruct the
original signal fromthis information. This illustrates the
vari ous aspects of Theorem 2 3.

Theorem 2.3 states the conditions under which a
sequence whose z-transformhas one pair of reciprocal zeros
can be determned fromthe phase of its Fourier transform
The result can be extended t o sequences whose z-transforns
have nore pairs of reciprocal zeros. Theorem 2.4 states these

condi ti ons.



x(n) ¢

Fig.2.3(a)

A one-di nensi onal real sequence whose z-transform
has a pair of reciprocal zeros.

x(n) 1

'k | x H % A
o J T J

Fig.2.3(b) The signal recovered from onl the Fourier
transform phase of the signal In Fig.2.3(a).
Since the z-transformof the original signal has
a pair of reciprocal zeros, it is not

_ _ ossible to
recover it from the Fourier transform phase
i nformation al one.



x{n) ¢

Fig.2.3(c) The signal recovered fromthe Fourier transform
phase and the know edge of the first three
sanples of the signal in Fig.23(a). Conplete
recovery i s possible in this case.

x(n) ¢

Fig.2.3(4) The signal recovered fromthe Fourier

phase and three sanples of the signal in
Fig.2.3(a). These three sanples do not give

I ndependent equations for signal recovery
(Theorem 2.3). Therefore,

o ( it is not possibleto
recover the original signal

transform



Theorem 24 : Let x(n) be a real sequence which is zero
outside theinterval 0 < n < N-1 wWth x[(0] # 0. Let the z-
transformof x(n) have mpairs of reciprocal zeros. Let y(n)
be any real sequence which is zero outside the interva
0 < n < N-1. | f ey(f) = o, (f) at (N-(4m+l)) di sti nct
frequencies inthe interval o < f <17, and y[n] = x[n] for
first [ (am+1)/2"] (] x | stands for the smallest integer
greater than or equal to x) distinct values of n, then y(n) =
x(n) .

Proof : It is a straightforward extensi on of Theorem 2.3.

It nmay be noted here that if the nunber of known
sanples of x(n) is lessthan the mninum specified in
Theorens 2.3 and 2.4, t he sequence X, (n) cannot be
determned, no matter how nmany phase sanpl es we have in the
interval o0<f<T. Then it wll not be possible to reconstruct
the original sequence. Although this result has been
devel oped only for a one-di nmensi onal sequence here, we can
show that two-dinmensional sequences which have a few
symmetric factors can be recovered from their Fouri er
transform phase information and know edge of a few signal
sanpl es.

In sections 221 and 2.2 we have listed the conditions
under which a real one-dinensional sequence can be
reconstructed fromthe phase of its Fourier transform The
signal s considered in these sections were real -valued. In the
next section we study the applicability of these results for
conpl ex-val ued si gnal s because these are the kind of signals

we deal with in our applications.



24 | MAGE RECONSTRUCTI ON FROM PHASE DATA

It is.possibleto recover a conpl ex-val ued signal from
only the phase of its Fourier transform This result can be
devel oped quite easily for two-dinensional signals. W state
a well known theorem fromalgebrathat will be wused to
develop this result and will also be used in the next chapter
for developing the results on signal reconstruction from
qguanti zed Fouri er transform phase information.
Theorem 2.5 : [33]) |If X(z,,2,) and Y(z,,2z,) are t wo-
di mensi onal polynomals of degreesr and s with no common
factors of degree > o0, thenthere are at nost =r*s (r
multiplied by s) distinct pairs (z1,2,) wher e

X(Zl’zz) = 0

and

Y(zl,zz) = 0.

The degree of a polynomal of two variables, X(u,v), is
defined as t he max(power (u)+power(v)) in the polynomal. For

exanple, the degree of the polynomal P(u,v) = uv + TR
u3v3, IS 7 because of the tern1u2v5, and inthis termthe sum
of the degrees of uand v is 7. The sumof the degrees of u
and v in all other terns is |less than 7.

The zero-crossing poi nts of two-di nensional polynomals
fall on sone contours on the (u,v) plane. This theorem states
that if two two-di nensional polynomals of degreer and s do
not have any comon factors, then their zero-crossing
contours cannot intersect in nore than r*s points. This can

be used for devel opi ng sone inportant results. According to



this theorem it is not possible for two distinct two-
di nensi onal pol ynom als, each of degree r, to have nore than
r2 commmon zero-crossing points. Therefore if it i s known that
two irreduci bl e two-di mensi onal pol ynom al s of degree at nost

4 comon zero-crossing points, then the

r, have nore than r
two can differ only by a scale factor. Qherw se Theorem 2.5
will be contradicted. This theoremcan be used to prove the
followng result which will be of use to us.
Theorem 2.6 : Let x(n,,n,) and y(n,,n,) be two-di nensi onal
sequences which are zero outside the rectangl e bounded by
0 <n;,n, <N If the z-transforns of the even and odd parts
of both x(n,,n,) and y(n,,n,) are i rreduci bl e, rRe(x[0,0]) #
0 and Im(x[0,0]) # 0, and phase(Y(f,,f,)) = phase{X(fl,fz)}
at all frequencies, and if y[(o,0] = x{0,0], then x(nl,nz)
y(nl,nz).
Proof - A conpl ex two-di mensi onal sequence can be witten as
a sumof an even and an odd two-di nensional sequences. Let
x(n,,n,) be a conpl ex two-di mensi onal sequence. Then

x(nl,nz) = xe(nl,nz) + xo(nl,nz)
Taki ng the Fourier transformof both side we have

X(£,,£,) = X (£,,£,) + X (f,,£,)
V¢ al so know t hat

X (£, £ Re(X(£,,£,))

2) =
and

X (£1,£,) = J.Im(X(£,,£,))
wher e Xe(fl’fZ) and X (f,,£,) are the Fourier transforns of
Xo(ny,n,) and X (n,,n,), respectively.

I'f the phase of X(f,,f,) is known at all frequencies,



then the zero crossings of thé“Re(X(fl,fz)) and Im(X(fl,Ez))
are also known. Re (X(f,,£,)) has zero-crossing points
whenever the phase crossesthe 8 = (2n+1) 7T /2 lines and
Im(X(£f,,£,)) has zer o-crossi ng poi nts when t he phase crosses
the ¢ =Tn lines. Wsing Theorem2. 5 we see that if the z-

transformof a two-di mensi onal sequence is irreducible, then
t he two-di mensi onal sequence is conpletely determned from
the zero crossings of the z-transform Therefore, if the z-

transfornms of Xg(ny,n,) and xC;nl,nz) are irreduci ble, then
they can al so be recovered fromthe zero crossings of their

z-transforns. Fourier transformof a two-di nensional sequence
is obtained by evaluating the z-transformal ong the contours
|z,/=1 and |z,|=1. Therefore the sequence can be deterni ned
if a sufficient nunber of zero-crossing points can be found
inits Fourier transform The nunber of zero-crossing points
required isrelated to the degree of the z-transform and
hence, to the extent of the finite support the signal is
known to have. Thi s neans t hat X (£1,£,) and X (£,,£,) can be
determned fromthe zero-crossing points of the real and the
i magi nary part of the Fourier transform Fourier transform
being a one-to-one rel ati on between time and frequency donai n
signal s, X (£, £,) and X _(f,,f,) specify x_(n,,n,) and

X, (n,,n,) respectively. But the even and odd conponents of

the reconstructed signal nay differ fromthe even and odd

conponents of the actual signal by sone scal e factors, which
nmay be different for both of them The know edge of x[0,0]

and the constraint that both Re(x[0,0]1) and Im(x[0,0]) are



nonzero, causes these scale factors to be equal. Then these
two conponents specify x(ny,n,) conpl etely.

Theorem 2.6 states that if the z-transforns of the even
and odd parts of a conpl ex-val ued two-di nensi onal signal are
irreducible, it can be recovered from only its Fourier
transform phase information. The steps involved for inage
formation in acoustic inmaging are outlined in Section 1. 3.
Two Fourier transforns have to be conputed in the process,
and it also involves multiplication by a conplex-valued
factor. Therefore, the technique of inage formation is not a
sinple Fourier transformng in our case. But as the data in
acoustic imaging is conplex-valued, if the conditions laid
down in Theorem26 are satisfied, we expect to reconstruct
images from the phase of the received data in acoustic
imaging. W have found experinentally that a wi de range of
signals are reconstructible in this nanner.

Fig. 24(a) shows an object chosen for study in this
wor K. Ohly two-dinensional objects are considered in
sinmul ation studies, because it isdifficult to sinmulate the
acoustic field data at the object end for general three-
di nensi onal objects. Fi gs.24(b) and 2.4(c) showthe inages
formed fromonly the phase informati on of the received data
after 5 and 20 iterations, respectively, of the POCS
algorithm This illustrates that in acoustic inmaging also,
signals can be recovered fromonly phase informati on of the
recei ved dat a.

The possibility of image formati on from phase of the

received data can help to reduce the nmeasurenent conplexity
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Image formation from the phase data in acoustic

imaging.

(a) Original object 128x128 points (Receiver array
128x128 points).

(b) Image reconstructed from the full phase data
after 5 iterations of the ROCS algorithm.
(c) Image reconstructed from the full phase data

after 20 iterations.



in an acoustic imaging set up. Usually both the phase and
magni tude conponents are nmeasured at the hydrophone array.
Thi s nmethod suggests that the nagnitude neasurenent need not
be made at all. The phase neasurenment alone is sufficient for
si gnal recovery.
2.5 SUWARY

Wien the z-transformof a one-dinensional or a two-
di nensi onal real valued signal does not contain any synmetric
factors, the original signal can be specifiedto within a
scale factor from only the Fourier transform phase
information. The scale factor can be determined from the
know edge of one signal sanple. 1In the presence of a few
symmetric factors, the know edge of a few signal sanpl es can
help in the signal recovery, as it is not possible to recover
the signal fromonly the Fourier transformphase infornmnation.
Wien the signal is conplex valued, it can be recovered from
the Fourier transformphase information if the z-transforns
of its even and odd conponents are irreduci ble. These results
can be wused for signal reconstruction from conplex-val ued
data collected at a receiver array. Since the signals are
conplex valued, nore data sanples are required for inage
formation. But the neasurenent conplexity on the receiver
array is decreased as the nmagnitude neasurenments need not be
made in this case. Even the full phase information is not
required for recovery of the original signal. The know edge
of zero-crossing points of the real and the imaginary parts

of the received data is sufficient for this purpose. This



suggests a phase quantization scheme which we discuss in the

next chapter.



CHAPTER 3

SI GNAL RECONSTRUCTI ON FROM QUANTI ZED PHASE DATA

3.1 MEASUREMENT COMPLEXI TY AND QUANTI ZED PHASE DATA

he of the issues inthe class of inaging problens
under consideration is.to reduce the neasurenent conplexity
of the system The data at each el enent consists of a phase
and a magni tude conponent. In Chapter 2 we showed that if the
nunber of data sanples is large, it is not necessary to make
nmagni t ude neasurenents. The phase information of the received
data alone is sufficient for signal recovery. In this chapter
we develop this schene further and showthat it is not
necessary for the phase infornmation to be very accurate. VW
show that the quantized phase information of the received
data is sufficient for signal recovery. Sonme results on this
topi c have already been reported in literature (34). W study
the application of these results for our case. As we wl
show, since at each receiver elenent, only the quantized
phase information is required, the phase neasurenent need not
be very accurate. Therefore the neasurenent conplexity can be
r educed.

If it were possible to reconstruct a signal from the
Fourier transformphase information alone, it would nean that
the rest of the information in the Fourier transform domain
Is redundant. It is not so. |In general both the phase and
magni tude of the Fourier transformare required for signal

reconstructi on. Oy when the signal satisfies certain



constraints, it 1is possibleto recover it fromits Fourier
transform phase information. In such situations, we require a
| arger nunber of sanples as conpared to the case when
reconstruction is done fromboth the phase and nagnitude
[16]. In situations where the phase-only reconstruction is
possi ble, the lack of nmagnitude information at all sanples is
conpensated by a | arger nunber of phase sanples. Therefore,
while these schenes help to reduce the neasurenent
conplexity, the nunber of elenents (hydrophones) on the
receiver array nust be increased. This is also not desirable
as it increases the cost of the imaging setup. There are
techniques to overcome this difficulty and they wll be
discussed in Chapter 4. Here we present the results about
si gnal reconstruction from quantized phase information
assumng that there are renedi es for any si de-effects caused
by t his schene.
32 RECONSTRUCTI ON  FROM QUANTI ZED FOURI ER  TRANSFORM PHASE
I NFORVATI ON

In this section we study the probl emof signal recovery
fromthe quantized Fourier transformphase informati on. Sone
results available in literature are presented first. Before
stating the results, we explain a fewinportant terns.
(1) A sequence is said to have t he regi on of support as R(N)
if the sequence is zero outside the regi on -N<n

,N <N [34].

1’72
(2) A two-dinensional signal has a region of support over a
non-symmetric hal f-plane (NSHP), if (n;,n,) is in the region

of support inplies that (-n,,-ny) is not inthe region of
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support .

(3) sign{Re[X(f,,f,)]1} and Sign{Im[X(f,,£,)]} represent t he
signs of the real and inmaginary parts, respectively, of the
Fouri er transformof a sequence x(n,,n,).

Now we state the first result:

Theorem 3.1 : Let x(n,,n,) and y(n,,n,) be real two-
di nensi onal sequences wth region of support over a
nonsymmetric hal f - pl ane wth Sign{Re[X(f,,f,)]} -
sign{Re[y(f,,£,)1}. | f Re(X(f,,£,)) t akes on both positive
and negative values and Xo(29,2,) and Y (z,,2,) are non-
factorabl e, then x(n,,n,) =C y(n,;,n,). for some positive
const ant c.

The conplete proof of this theoremcan be found in
[34],([35]. Here we give a brief outline of the proof to help
in the devel opnent of a fewnore results

Wen a real two-dinensional sequence x(n,,n,) has its
regi on of support over an NSHP, it can be specified uniquely
by its even conponent. Since the Fourier transformof the
even conponent of a sequence corresponds to the real part of
its Fourier transform the sequence can be recovered fromthe
real part of its Fourier transform The sign of the real part
of the Fourier transformis known at all (f,,f,) pairs. This
inplies that we knowthe zero-crossing points of the real
part of the Fourier transformof the sequence. Suppose that
there are two two-di nmensional sequences such that the =z-
transfornms of their even and odd components are irreducibl e,
and have degrees of at nost s. |If the real parts of their

Fourier transforms have nore than s® common zero-crossing
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points, then the two sequences can differ only by a scale
factor. This follows directly fromTheorem2.5. Therefore if
the sign of the real part of the Fourier transformof a two-
di mensi onal sequence is known at all the frequencies, then
the sequence can be specifiedtoa wthin scale factor,
provi ded the nunber of zero-crossing points is nore than a
certain nunber. This nunber is a function of the degree of
the z-transformof the sequence [34].

This theoremstates the conditions under which certain
real val ued two-di mensional sequences can be recovered from
the sign of the phase of real part of their Fourier
transfornms. The result is easily extendable to conplex
signals that have their region of support over an NSHP or
signal s that are symretric around the origin. This is because
such sequences are conpletely specified by their even
conponents, and therefore, by the real part of their Fourier
transforns. Therefore conpl ex val ued sequences with regi on of
support over an NSHP, or signals symetric around the origin,
can be recovered fromonly the sign information of the rea
parts of their Fourier transforns, provided the z-transforns
of the even conponents of these sequences are irreducible.
Theorem 3.1 can be stated now in this form
Theorem 32 : Let x(n;,n,) and y(n ,n,) be two-dinensiona
sequences, of the type nentioned above, wth region of
support over a nonsymetric hal f - pl ane with
Sign{Re[X(fl,fz)]} = Sign{Re[Y(fl,f2)]}. If Re{X(fl,fz)}

takes on both positive and negative val ues and Xo(27,2,) and



Y (z,,2,) are non-factorable, then X(“l'nz) = c y(n,n,) for
some positive constant c.

If the original signal is a general conplex valued
signal, it does not conform to the types specified in
Theorens 3.1 and 3.2. W want to establish whether such a
signal can be recovered fromthe quanti zed phase information
as nmentioned above. |If the signal has a finite support,
extending to all the four quadrants, in general it cannot be
recovered fromthe real part of its Fourier transform But
the signal can be broken into an even and an odd conponent.
The Fourier transformof the even conponent is the real part
of the Fourier transformof the original signal, and the
Fourier transformof the odd conponent is the inaginary part
of the Fourier transformof the original signal. Keeping this
in mnd, we state the follow ng theorem
Theorem 3.3 : Let x(n,,n,) and y(n,,n,) be two-di nensi onal
sequences wth a finite region of support . Let
sign{Re[X(f,,f,)]}) be identical to sign{Re[Y(fl,fz)]} and
sign{Im[X(f,,f,)]) be identical to sign{Im[¥(£f ,£,)]}. Assune
that Re{X(f,,f,)} and Im{X(f,,f,)} take on both positive and
negati ve val ues and X (29:2,) 0 X (20,25), Y _(2,,2,) and
Y (z,,2,) are non-factorable. |f Re{x[0,0]} and Im{x[0,0])
are non-zero and if y[0,0] = x[0,0] then x(n,,n,) = y(n,,n,).

Proof - A conpl ex two-dimensional sequence x(n,,n can be

5)
witten as the sumof a two-di mensional even sequence and a
t wo- di mensi onal odd sequence. The Fourier transform of

is equal to the real part of the Fourier transform

xe(nl,nz)

of x(n,,n,) and t he Fourier transform of x (n,,n,) is equal
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to the imaginary part of the Fourier transform of x(n ,n,).
Therefore, if Re(X(f;,f,)} and Im{X(f,,f,)} can be conputed
i ndependent |y, the original signal can be recovered uni quely.
If the signs of Re{X(f,,f,)} and Im{X(f,,f,)} are known at
al | f requenci es, and if X (2,2,) and X, (2,,2,) are
i rreduci bl e, then by Theorem 3. 2, Xo(ny,n,) and X,(n;,n,) can
be determined to within sonme scale factors. The know edge
that Re(x[0,0]) and Im(x[0,0]) are non-zero, and that x[0,0]

= y[0,0] causes these scale factors to be equal. x(n yn,) can

1
now be wuniquely determned because its even and odd
conponents are known. This conpletes the proof of this
t heorem

Retaining the sign of the real part of the Fourier
transform is equivalent to quantizing the phase to two
| evel s. The phase is quantized according to the follow ng

schene:

0 if =TT/2 < @ < T7/2

d TT if T/2 < g < 37T/2

As shown above the phase is quantized to two |evels.
Since one bit is sufficient to represent two | evels, we cal
it 1-bit phase infornation.

Smlarly, knowng the signs of the real and the
imaginary points of the Fourier transform of a two-
di nensi onal sequence is equival ent to quantizing the phase to
four levels (we shall refer to it as 2-bit phase, as two bits

are sufficient to represent four |evels of quantization). The
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2-bit quantization is done according to the follow ng schene:

T /4 if 0<g < Tr/2
37T/4 if TM/2<g < TT

Pq = 5TT/4 if T < ¢ < 3T0/2
77T /4 if 3TT/2 < ¢ < 27T

N

Fig.3.1 shows the geonetrical interpretation of the 1-
bit phase quantization scheme. 1-bit phase information refers
to the situation when, for each conplex vector in the Fourier
transformdomain, we retain the informati on of the hal f-plane
in which it lies. Simlarly 2-bit phase neans, for each
conpl ex vector, we renenber the quadrant in which it lies.

So far we have seen that certain class of signals can
be specified from1l-bit or 2-bit phase information of their
Fourier transforns. The condition laid down in the theorens
was that this quantized phase informati on should be known at
all frequencies, though only a finite nunber of zero-crossing
points are required to recover a signal from its quantized
Fourier transformphase infornmation. |In practice, we deal
with discrete signals and discrete Fourier transforns.
Therefore it is not possibleto compute the Fourier transform
phase at all frequencies. The sanpled points thensel ves do
not cover all the zero-crossing points. In such situations we
can look for sign changes in values at adjacent points. A
change of sign indicates the existence of a zero-crossing
poi nt between the two points. The nunber of sign changes or
equi val ently, the nunber of zero-crossing points required to

reconstruct a discrete, finite-support sequence from its
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Fig.3.1 Geometric interpretation of the 1-bit phase
quanti zation schene. 1-bit phase nmeans retaining the
sign of the real part of the conplex vector.



quanti zed Fourier transformphase informationis related to
the extent of the finite support of the sequence. If there is
a two-di nensional sequence with finite support of 4N points
(at nost 2N in each dimension) then anot her sequence of the
sanme finite support can have at nost (4N)2 = 16N° zero-
crossing points in coomon with this sequence. But if we know

nore than 16N2

zero-crossing points of this sequence, then
any other sequence with the same finite support and having
the same zero-crossing points can differ fromit only by a
scale factor (Theorem 2.5). Therefore a discrete two-
di mensi onal sequence with a region of support over R(N) IS

uniquely defined if there are nore than 16N>

sign changes in
the real part of its Fourier transform

In this section we have seen that two-dinmensional rea
signals or two-dimensional conplex signals with region of
support over an NSHP can be determned from one-bit phase
information of their Fourier transforns. General conplex
signals with a finite region of support can be determned
fromtwo-bit phase of their Fourier transforns. W are now in
a position to study the applicability of these results to
sone practical problens.
33 ALGORI THM FOR SI GNAL RECOVERY FROM 2-BI T PHASE DATA

In section 3.2 we stated the conditions under which a
two-di mensi onal signal can be recovered from 2-bit phase of
the received data. In this section we devel op an algorithmto

achieve this. The algorithmis based on the POCS technique.

The algorithm is presented as applicable for acoustic
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I maging. The required input is the 2-bit phase information of
the received data, the know edge of the propagation factor
h(x,y) and apriori know edge of the region of support of the
original signal. The algorithmis as foll ows:
(1) Let X be any any two-di mensional signal. X serves as the
initial estimate of the original signal
r epeat
(2) Inpose finite support constraint on X. The
resultant signal is the next estimate of the
original object. Use this signal to sinulate the
data at the receiver plane.
(3) Make the 2-bit phase correction in accordance with

t he POCS al gorithm

(4) Conput e t he Fourier transformof the sequence.
(5) Miltiply the result by the factor H'l(fl,fz)
(6) Take the inverse Fourier transform of this

sequence. The resultant signal X is an estinate of
t he origi nal object.
until an acceptabl e solution is obtained
(7) Stop.

Algorithm3.1 An iterative algorithm based on the POCS

technique for inmage formation fromthe 2-bit

phase data in acoustic inaging.
The algorithm given above is based on the PCCS
technique. It can be proved that if there is a unique

solution satisfying the given constraints, then the algorithm
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converges to it. |If the solution set consists of nore than
one signal, then the algorithmconverges to one el ement of
t he set.

To prove the convergence, we make the follow ng
obser vat i ons:

(1) Signals that have specified 2-bit phase information form
a convex set (see Appendix). Therefore the specification of
2-bit phase informati on of the received data defines a convex
set. The step (3) of the algorithmtakes the projection of
the sinulated data onto the convex set defined by the 2-bit
phase nmeasured at the hydrophone array.

(2) Signals that have a specified finite support constraint
forma convex set (see Appendix). Therefore knowl edge of the
finite support of the original signal also defines a convex
set. After step (3), we have sinulated data which has the
correct 2-bit phase information. This is used to reconstruct
the signal in steps(4) , (5 , and (6) of the algorithmgiven
above. | n accordance with the known information, the finite
support constraint is applied to the signal in step(2). This
is equivalent to taking the projection onto the convex set
defined by the known finite support constraint.

The al gorithmworks by taking projections onto the two
convex sets alternately. |If the solution is wunique, the
algorithm outlined earlier converges to this solution.
QG herwise it converges to one of the solutions in the set of
al | possible solutions, provided this set is not enpty. This

proves t he convergence of the algorithm(see Appendix).



The results developed in this chapter state the
condi ti ons under which a signal can be recovered fromonly 2-
bit phase information of the received data in acoustic
i magi ng. W have seen that a signal is uniquely determned by
the know edge of a certain nunber of zero-crossing points in
the Fourier transformdomain. But the algorithm used for
reconstruction, as given above, does not use the zero-
crossing points. W just nmeasure the 2-bit phase at a certain
nunber of points and then replace this neasured 2-bit phase
at the appropriate points during each iteration. The
know edge of the 2-bit phase does not inply the know edge of
the zero-crossing points also. But if there is a sign change
bet ween two adj acent points, it inplies that there is a zero-
crossing point between the two. If the sanpling rate is high,
then the adjacent points wll be close to each other.
Therefore, if it is know that thereis a zero-crossing
bet ween the two points, due to the sanpl ed points being cl ose
to each other, the location of such a zero-crossingwll be
known wi th reasonabl e accuracy. |f the nunber of such sign
changes is nore than the nunber of zero-crossing points
required for reconstruction, we can expect a good result. The
solution set forns a continuous space. Therefore any
I naccuracy in the determnation of the zero-crossing points
causes the solution set to expand. But if the inaccuracy 1is
small, the solution set will also be snall. Wen one of the
elements of this set is picked as the probabl e solution, we
can expect it to resenble the original solution in the basic

f eat ures. Since we deal wth inage signals, inportant



features |like the edge information, uniformregions in the
i mage, etc., are sufficient for recognition of the object.
The inages formed fromthe 2-bit phase data reproduce these
f eat ures. This statenent is justified through the
experinmental results.

3.4 SI MULATI ON STUDI ES

V¢ have seen that the quantized phase information is
sufficient for reconstruction of the original signal. In this
section, we give experinental results corresponding to the
theory developed in this chapter. The results have been
obtai ned for a sinulated acoustic inagi ng setup.

FHg.3.2 shows the two-dinensional object used for our
study. Figs.3.3(a) and 3.3(b) showthe inages reconstructed
from2-bit phase and 1-bit phase data, respectively. These
images were obtained after one iteration of the PQOCS
al gorithm The corresponding inmages obtained after 25
iterations of the algorithmare shown in Figs.3.3(c) and
3.3(d). These images were obtained fromonly the quantized
phase infornmation. | n other words, the initial estimate was
formed from the quantized phase information and a uniform
magni tude value. The object and the inmage size is 128x128
points. If the correct magnitude val ues are used, we expect a
faster convergence of the algorithm Figs.3.4(a) and 3.4(b)
show the images obtained from2-bit phase and 1-bit phase
data, respectively, after one iteration of the algorithm In
this case, the actual nmagnitude infornmati on was used to form

the initial estimate. But in the subsequent iterations, only
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Fig.3.2 The two-di mensional object used to study the inmage
formati on from quanti zed phase dat a.
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| mmges reconstructed fromaquantized (2-bit and 1-
bit) phase data.
Original object 128x128 points.
Nunber of receiver el ements 128x128.
Uniform magnitude information used for I mage
reconstruction.
ag Fromonly the 2-bit phase data (1 iteration).
b) Fromonly the 1-bit phase data (1 iteration
c; Fromonly the 2-bit phase data (25 iterations
d) Fromonly the 1-bit phase data (25 iterations
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(c) (d)

| mages reconstructed fromquantized (2-bit and 1-
bit) phase data.
Qiginal object 128x128 points.
Nunber of receiver el ements 128x128.
Uniform nmagnitude infornmation used for I rage
reconstruction.

a) Fromonly the 2-bit phase data (1 iteration).

b) Fromonly the 1-bit phase data (1 iteration).

c) Fromonly the 2-bit phase data (25 iterations).
(d) Fromonly the 1-bit phase data (25 iterations).
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(a) From the 2-bit phase data (1 iteration).
(b) From the 1-bit phase data (diteration).
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(d) From the 1-bit phase data (25 iterations).
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| mages reconstructed
bit) phase data.
Qiginal object 128x128 poi nts.

Nunber of receiver elenments 128x128.

Act ual magni tude information wused to
initial estinmate for image reconstruction.
a) Fromthe 2-bit phase data (1 iteration).
b) Fromthe 1-bit phase data (1 iteration
c) Fromthe 2-bit phase data (25 iterations).
(d) Fromthe 1-bit phase data (25 iterations).
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the quantized phase information was used for the data
correction. The corresponding inaged obtained after 25
iterations are shown in Figs.3.4(c) and 3.4(d) . W observe
that retaining the magnitude information helps in a faster
convergence to the solution. The convergence of the algorithm
to the solution depends on the initial estimate of the
signal. Retaining the magnitude of the received data inplies
that we start with a point closer to the solution than when a
uniform nagnitude value is assumed for the nagnitude.

Ther ef ore convergence is faster in the forner case.

Though the application of Theorem 3.3 requires the
know edge of x[o0,0], we did not use this information for
i mage reconstruction. Experinentally we have found that the
finite support constrai nt is sufficient for I mage
reconstruction.

35 SUWARY

A  two-di nensi onal r eal val ued signal can be
reconstructed fromthe 1-bit phase information of its Fourier
transform 1-bit phase information refers to the quantization
of phase to two levels. Conplex valued signals with a finite
support over an NSHP or even signals can also be recovered
from the 1-bit phase infornation. But this result does not
hold for the conplex valued signals in general. GCenera
"complex Vvalued signals can be recovered from the 2-bit
information of the Fourier transformphase. This refers to
the phase quantized to four |evels. The 2-bit phase
informati on contains the know edge of the signs of both the

real and imaginary parts of the Fourier transform In



acoustic imaging, an i mage can be fornmed fromthe 2-bit phase
informati on of the received data, since we deal w th conpl ex
valued signals. VWe have seen fromthe experinmental results
that the 1-bit phase and mnmagnitude information of the
received data can also be used to form good imnages. These
techni ques require a | arge nunber of sanples to be avail abl e.
An algorithm based on the POCS technique can be wused for
signal recovery fromthe 2-bit phase information and the
knowl edge of the finite support of the signal. Phase
quanti zation schenmes can be used to reduce the neasurenent

conpl exity, as the neasurenents need not be very accurate.



CHAPTER 4

SI GNAL RECONSTRUCTI ON FROM QUANTI ZED PHASE AT
MULTI PLE FREQUENCI ES

4.1 RECONSTRUCTI ON FROM MULTI PLE FREQUENCY DATA

Phase quantization technique helps in the reduction of
"t he neasurenent conplexity for the class of imaging problens
under consideration in this work. But the nunber of data
sanpl es required to reconstruct the signal fromthe quantized
phase information is nore as conpared to the case of signa
reconstruction fromfull phase information. To collect the
required nunber of data sanples, the receiver array should
have a | arge nunber of receiver elenments. W had started with
the aimof reducing the overall conplexity, but the need of a
| arge nunber of receiver elenents increases the conplexity of
the receiver size. Therefore, we nust find sone way to
overcome this difficulty.

Earlier attenpts to reduce the receiver array size used
synt hetic aperture techniques [(36]-(38]. But these techni ques
do not exploit the advantages of iterative algorithns for
signal reconstruction frompartial information. Qur inmage
formation technique is based on the POCS algorithm In the
POCS algorithm convex sets are forned from the known
information about the signal and the collected data. The
algorithm converges to one of the elenments in the
intersection of these convex sets. If this intersection set

Is small, the solution obtained by using the POCS al gorithm



is closetothe original signal. |If this set is large, then
the solution nay differ fromthe original signal. But the
algorithmensures that the solutionto which it converges is
one anong the class of signals that satisfy the given
constraints. Convergence of the PCCS al gorithm depends upon
the initial estimate of the original signal.

Fig.4.1 illustrates this point. The solution obtained
with point aasthe initial estimate is different from that
obtained with point b as the initial estimate. If the
intersection set is small in size, the signal to which the
al gorithmconverges will be close to the original signal. |If
the available informationis accurate, and the anount of
information is large, the solution set will be small. But it
is not always possible to get nore accurate information.
Another way to reduce the size of this set isto forma few
nore convex sets. The solution set will be the intersection
of all these sets. As the nunber of sets increases, the
solution set fornms a non-increasing sequence in ternms of the
nunber of elenents. Fig.4.2(a) shows the solution set with
only two convex sets. Fig.4.2(b) shows that wth the
availability of another set, the solution set decreases in
size, i.e. the nunber of elements in the solution set
decr eases.

Recently a new techni que has been proposed for signal
reconstruction using data collected at different frequencies
[39]-[43]. This technique reduces the size of t he
intersection of various convex sets, and then nmakes use of

the POCS algorithmto obtain the solution. 1In section 4.2 we
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The solutions obtained fromtwo different initial
estimates may be different. This figure shows two
convex sets - set | and set 1. The hatched region
is the solution set. It can be seen that the
solution obtained by choosing point (a) as the
initial estimate is different fromthat obtai ned by
choosing point (b) as the initial estimnate.
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Fig.4.2(a) The solution set (hatched region) formed fromtwo
convex sets.

Fig.4.2(b) The solution set (hatched region) when one nore
convex set is added. It can be seen that this set

is smaller than (and is a proper subset of) the
solution set in Fig.4.2(a).



state this algorithmand outline the main idea behind the
techni que. The sane procedure can be extended to form i nages
with quantized phase data collected at receiver arrays
consisting of a small nunber of receiver elenents. The
experimental results are discussed in section 4.3.

4.2 | TERATIVE ALGCORITHM FOR | NMAGE RECONSTRUCTION  FROM
MULTI PLE FREQUENCY DATA

In this section we reviewthe technique of signal
reconstruction with the use of multiple frequencies. W state
the algorithm used for inmage reconstruction in acoustic
imaging. This algorithmis al so based on t he POCS t echni que.
W also briefly describe the theoretical aspects of this
t echni que.

It has been proposed that the data collected at
mul tipl e frequenci es can be used for signal reconstructionin
acoustic imaging [43]. Assune that frequencies £, Eyreees
fy-, are the N frequencies used for data collection. The data
is collected by transmtting the wave of each frequency
separately and then neasuring the field induced at the
recei ver end due to each of them This data can then be used
in the follow ng algorithm adapted from [43], to reconstruct
t he i nage:

(1) Take the data collected at frequency £, as the starting
point. Usethis data to formthe first estimate of the

object. Set a variable i to o.



r epeat
(2) Increnent i by 1. Use the estimate of the original
signal formed at this stage to sinulate the
quanti zed .phase data at the receiver end for
frequency £ mod N
(3) In accordance with the POCS algorithm correct
this sinmulated quantized phase data wth the
actually known data sanples at the frequency
5 mod N°
(4) Formthe next estinmate of the original signal from
this corrected dat a.
until an acceptable inmage is formed. »

(5) Stop. \

Algorithm4.1 An algorithmfor inage reconstruction fromthe

quanti zed phase data &ollected at several
frequenci es.

D scussion of the theory behiag signal reconstruction
from phase and magni tude information at nultiple frequencies
can be found in [43]. Here we discuss it briefly because it
Is useful to develop the results for inmage fornmation fromthe
quanti zed phase information of nultiple frequency data.

Equation (§.3) shows that in acoustic imaging the
recei ved data can be witten as

9e (X,¥) = g (%,¥) * he(x,y) (4-1)
wher e 9, (X, ¥) is the field on the object plane and hf(x,y) IS
a factor that arises due to propagation of the acoustic field

from the object to the receiver array. This factor is a
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function of the frequency (f).

For a discrete case it can be witten as

Je(n,m) = g_(n,m) * he(n,m) (4.2)
or
ge(n,m) =p > g_(n’,m’).h (n-n’,m-n’) (4.3)
n’ m’

The partial data collected at each frequency forns a
convex set. Each point in the set represents a possible
solution for the data collected at that frequency and al
such solutions for the data collected at a particular
frequency are contained in the correspondi ng convex set. The
intersection of the various convex sets defines the set of
all possible solutions for the data collected at various
frequencies. If all the convex sets have only one commobn
point, then this point wll correspond to the original
signal. In that case, the algorithm4.1 will convergeto it.

The idea behind using several frequencies for signal
recovery is that the data collected at each frequency forns a
convex set. The set of solutions is the intersection of all
such convex sets. By increasing the nunber of frequencies, we
i ncrease the nunber of convex sets. The intersectionof N
sets will be a subset of the intersection of a smaller nunber
of these sets. An exanple will clarify this argunment. Let set

A be the solution set of the convex sets C C

17 Coreves Cyq- | f
sone nore information is available, and it forns another

convex set, the solution set will be the intersection of the

sets ¢, Cyr--+s Cy_q and c. It is equal to the intersection

of the previous solution set A and the newset G;. Therefore



the newsolution set is at nost as |large as the ol der set A.
The solution set is non-enpty since we know that the origina
signal (as yet unknown) satisfies the constraints represented
by C,, Cyrever Cy_q and Cy- If the additional information is
i ndependent of that avail able previously, the new solution
set wll be a proper subset of A. The PQCS algorithm wl|
converge to an elenent of this newsolution set and it can be
expected that the solution thus obtained will be closer to
the original solution. For the inmage signals we are nore
interested in the object features |ike edges and wuniform
regions in the object. |Inages reconstructed from multiple
frequency data reproduce nost of these features. Therefore
this technique is of practical inportance.

The nunber of frequencies required to nake the
nmeasurenents i s dependent on the anmount of known data at each
frequency. |If a snall nunber of sanples are known for each
frequency, then the nunber of frequenciesrequired for a
conplete recovery of the original signal will be larger as
conpared to the situation when we have conparatively nore
infornmation at each frequency.

V¢ have seen the basic idea behind the reconstruction
of acoustic imaging signals frommnultiple frequency data for
the situation when both nagnitude and phase infornation are
available. Simlarly, we can expect the inmages reconstructed
from the quantized phase data at nultiple frequenciesto be
better than those reconstructed fromthe data at a single

frequency.



4.3 SI MULATI ON STUDIES

In this section we present the results of experinenta
studies on acoustic image reconstruction from nmultiple
frequency quantized phase dat a.

The  object shown in Fig.32 is used for t he
experimental studies. Figs.4.3(a) to 4.3(d) showthe inmages
formed from the full phase data collected by receiver
arrays contai ning 128x128, 64x64, 32x32, and 16x16 recei ver
el enents. The correspondi ng i nages reconstructed fromthe 2-
bit phase data are shown in Figs.4.3(e) to 4.3(h). Those
reconstructed from the 1-bit phase data are shown in
Figs.4.3 (i) to 4.3(1). W see that the image quality
decreases if the nunber of receiver el enents on the receiver
plane is reduced. The following table gives the Ilist of
experiments performed wth nultiple frequency data and the
figures showi ng the correspondi ng results.

Table 4.1 describes the studies with full phase
information. Tables 4.2 and 4.3 describe the studies with 2-

bit phase and 1-bit phase data, respectively.

TABLE 4.1

Results of inage reconstruction fromthe full phase data

collected at multiple frequencies.

| MAGE SI ZE RECElI VER ARRAY NUVBER COF RESULT IN
Sl ZE FREQUENCI ES FI GURE
128x128 64X64 1 4.4(b)
a..iéé).(iéé ........... é:l)o(é; ............. é ........... ;.;.((.:;....

128X128 64X64 4 4.4(d)



128X128 64X64 16 4.4 (f)
...iéékiéé ........... éékéé ............. i ............. éiéi....
...iééiiéé ........... Séiéé ............. é ........... i.é(é) .....
...iéékiéé ........... éé%éé ............. ; ........... i.éié;....
.'.iéékiéé ........... éékéé ............. é ........... ;.éiéj....
...iéékiéé ........... éékéé ............ ié ........... ;.éiéi....

Figs.4.4(a) and 4.5 a) showthe original object.

TABILE 4 2
Results of image reconstruction fromthe 2-bit phase data

collected at nultiple frequenci es.

| MACE SI ZE RECElI VER ARRAY NUMBER CF RESULT I N

Sl ZE FREQUENCI ES FI GURE
" 128x128  eaxea 1 s.6(b)
s e e JETICE
R e RRRRRREE e i
R RRREEe e s fieee
e S Ceeee RTINS
e R RRRReS. S JESTTIE
R RNREEE e e S
T RETIS RN TRRRRE e ETHIRS
R R RRIEes e S
s e fee S

Figs.4.6(a) and 4.7(a) show the original object.
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TABLE 4.3
Results of image reconstructionfromthe 1-bit phase data

col l ected at multiple frequenci es.

IMAGE SIZE ~ RECEI VER ARRAY ~ NUVBER CF RESWLT IN
SI ZE FREQUENC! ES FI GURE

128x128 eaxes 1 a.8(b)
PR S TRRRRPRE e TRt
e PR R PR e EPTTTE
e S R RRRRRREE P
R Trr N RRRRRRE e EPPSEINRE
s s e JIOTY
O R ITIREE P RITRTRREE PERTTRRTRREE JUete
e s greeeeneees RTIO
TR TTRREeS TR e STt
RN RRRE R TTRRRRES SEPPNRRRREE S

Figs.4.8(a) and 4.9(a) showthe original object.

From the experinental results we nake the follow ng
observati ons:
(1) Decreasing the nunber of receiver elenents causes
degradation in inmage quality. This is because the quantized
phase data available for reconstruction decreases Wwth
decr easi ng nunber of receiver el enents.
(2) Reductionin the anobunt of quantized phase data because
of the reduced receiver array size can be conpensated by
I ncreasi ng t he nunber of frequencies for reconstruction. It
can be noticed that as the nunber of available data points

per frequency decreases, a |arger nunber of frequencies are
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_ respectively.
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| mges reconstructed from the full phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
recei ver array of 64x64 hydrophones

Nunmber of iterations: 50.

D OOT
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Original object 128x128 points.
Si ngl e frequency.

Two frequencies.

Four frequencies.

Ei ght frequencies.

Si xt een frequenci es.



Fig.4.4 | mages reconstructed from the full phase data
collected using 1, 2, 4, 8 and 16 frequencies by a
receiver array of 64x64 hydrophones.

Nurmber of iterations: 50.
(a) Oiginal object 128x128 points.

Si ngl e frequency.

Two frequenci es.

Four frequencies.

Ei ght frequenci es.

Si xt een frequenci es.
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Fig.4.5

Images reconstructed from the full phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
receiver array of 32x32 hydrophones.

Number of iterations: 50.

(a) Original object 128x128 points.

(b) Single frequency.

(c) Two frequencies.

(d) Four frequencies.

(e) Eight frequencies.

(f) Sixteen frequencies.

66



Fig.4.5 | mges reconstructed from the full phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
receiver array of 32x32 hydrophones.

Nunmber of iterations: 50.
(a) Oiginal object 128x128 points.

( Si ngl e frequency.

( Two frequencies.

( Four frequenci es.

( Ei ght frequenci es.

Si xt een frequenci es.
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Il mmges reconstructed from the 2-bit
collected using 1, 2, 4, 8, and 16 frequencies by a

recei ver array of 64x64 hydrophones.
Nunmber of iterations: 50.

D O
——

Original object 128x128 points.
Si ngl e frequency.

Two frequenci es.

Four frequenci es.

Ei ght frequenci es.

Si xt een frequenci es.
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(f)

Fig.4.6 | rages reconstructed from the 2-bit phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
recei ver array of 64x64 hydrophones.

Nunber of iterations: 50.
(a) Original object 128x128 points.

b) Si ngl e frequency.

c) Two frequencies.

d) Four frequencies.

e) Ei ght frequencies.

) Sixteen frequencies.
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Fig.4.7 | mges reconstructed from the 2-bit phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
receiver array of 32x32 hydrophones.

Nunmber of iterations: 50.
(a) Oiginal object 128x128 points.

Si ngl e frequency.

Two frequenci es.

Four frequencies.

Ei ght frequenci es.

Si xt een frequenci es.
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Images reconstructed from the 2-Dbit phase data

collected using 1, 2, 4, 8, and 16 frequencies by a
receiver array of 32x32 hydrophones.

Number of iterations: 50.

(a) Original object 128x128 points.

(b) Single frequency.

(c) Two frequencies.

(d) Four frequencies.

(e) Eight frequencies.

(f) Sixteen frequencies.



(d) (e) (f)

Fig.4.8 | mges reconstructed from the 1-bit phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
receiver array of 64x64 hydrophones.

Number of iterations: 50.

(a) Oiginal object 128x128 points.
(b) Single frequency.

(c) Two frequenci es.

(d) Four frequencies.

(e) Eight frequencies.

(f) Sixteen frequencies.
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(d) (e) (f)

Fig.4.8 |Imges reconstructed from the 1-bit phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
recei ver array of 64x64 hydrophones.

Nunmber of iterations: 50.
(a) Original object 128x128 points.

Singl e frequency.

Two frequenci es.

Four frequencies.

Ei ght frequenci es.

Sixteen frequencies.
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Fig.4.9 | mmges reconstructed from the 1-bit phase data
collected using 1, 2, 4, 8, and 16 frequencies by a
recei ver array of 32x32 hydrophones.

Nunber of iterations: 50.
(a) Origi nal object 128x128 points.

(b) Single frequency.
(c) Two frequenci es.

(d) Four frequencies.
(e) Eight frequencies.
(f) Sixteen frequencies.
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required to produce good results.
4.4  SUWARY

Signal reconstruction fromthe quantized phase data
reduces the nmeasurenent conplexity at the receiver end. But
this technique requires a | arge nunber of data points for
good reconstruction. Wsually the receiver arrays contain
snmall nunber of receiver elenments. Quantized phase data
col l ected fromsuch receiver arrays is not sufficient to form
hi gh resol ution i mages. Usual |y synthetic aperture techni ques
are used for signal interpolationto inprove the resolution
of the image. Ve have used a recently proposed nethod for
signal interpolation for inage formation from quantized phase
dat a. This nmethod uses the data collected at various
frequencies to form convex sets. Then a suitable PCCS
algorithmis used for signal reconstruction fromthese sets.
The data collected at multipl e frequencies hel ps t o decrease
the size of the intersection of the convex sets forned from
the avail able informati on. Therefore the solution formed from
this data is closer to the original signal. A simlar
algorithm can be applied for signal reconstruction from the
quant i zed phase data neasured at a snall receiver array using
mul tiple frequencies. This technique reduces the measuremnent
as well as the size conplexity of the receiver array. W
shall see in the next chapter that the effects of noise in
the received data are alsoreduced by using the phase

quanti zati on schenes for inage reconstruction.



CHAPTER 5

NO SE REDUCTI ON USI NG QUANTI ZED PHASE | NFORMATI ON

5.1 NO SE REDUCTI ON I N | MAGE FORMATI ON PROBLEMS

In nost array processing problens, the data to be
processed to form an image is noisy. |If the signal is
digital, and the additive noise nagnitude is snmall as
conpared to the magnitude differences between the various
digitization levels, the effect of noise can be reduced
easily. For exanple, consider a binary signal and assune t hat
the two levels of digitization are represented by anplitudes
of 1 and 2 units respectively. Then noise upto a naxinmm
magnitude level of 0.5 unitsis tolerable as a sinple
t hreshol ding scheme can be usedto elimnate the noise
conpl etely. But when the noise magnitude is |arge, the signa
can be corrupted. |n case of analog signals, any anmount of
noi se corrupts the signal values. This effect is not easily
reduced even when the noise magnitude is small. In acoustic
I magi ng where image resolution is usually poor, the addition
of noi se nakes the object recognition nore difficult.
Therefore study of the effects of noise assunes great
si gni fi cance. In the course of this work, i mage
reconstruction refers to the reproduction of certain object
features |ike edge information, regions of wuniform gray-
| evel s, etc. These features are inportant as they are
sufficient for a hunman observer to recognize the object

unanbi guously, in nost cases. Noise will nean an unwanted



additive signal that makes it difficult to recognize the
obj ect features nentioned above.

The problem of noisein signals has been studied
extensively (44]1-(46]. W can nodel the problemof noise in
the following way. Let g, be the original signal. The
propagation of the signal over the channel can be nodell ed as
a transformation of the original signal. Using an array of
hydr ophones, this transforned data is neasured at the
receiver end. The received data g can, therefore, be witten
as

g = Hg, (5.1)
where H represents the transformation operator. |If ! s
conputabl e, then g  can be recovered fromg by using

g9, = v lg (5.2)

Equation 5.1 holds only in ideal situations. In the
presence of noi se, the received data can be witten as

g=Hg, +n (5.3)
where n nay be the channel and circuit noise. Now the
recovery of the original signal depends on the know edge of
Nn. nis a random process, therefore one cannot determne its
val ue at each sanple. W can at nost have an estimate of the
noi se statistics. But we cannot sinul ate noise using those
statistics and subtract it fromthe neasured data, as this
may increase the noise effects. Therefore, sone other
t echni ques are required for noi se cl eani ng.

A nunber of inage processing techniques have been

devel oped for noise cleaning in the inmage domain. A variety



of filters have been designed for this purpose [47],[48].
These al gorithns do the processing on the inmage fornmed after
the signal processing stage. |If the resolution of the inage
reconstructed at the output of the the signal processing
stage is poor, then the noi se reduction techni ques nay not be
appl i cabl e.

Keeping this in mnd, we have tried to investigate
whet her noise reduction is possible during the signal
processing stage itself. In Chapter 3 we explained that it is
possible to recover the original infornation from the
quanti zed phase information of the received data. An
iterative algorithm based on the POCS technique was also
given for the signal reconstruction fromthis quantized phase
information. In this chapter we show how t he quanti zed phase
information helps to reduce the effects of noise in the
reconstructed i mage.

5.2 RECONSTRUCTI ON FROM QUANTI ZED NO SY PHASE DATA

In this section we showthat the phase quantization
schenes proposed in Chapter 3 can be used for noi se reduction
in acoustic inaging. VW had stated that 2-bit phase
information is equivalent to quantizing the phase of the
received data to four levels. The quantization schene is
given in section 3.2. The phase is quantized to T1/4, 371/4,
51/4, and 777/4, when the conpl ex vectors fall in the first,
second, third or the fourth quadrants, respectively.

Theorem 3.3 states the conditions under whi ch a signal
can be recovered fromthe 2-bit phase of the received data.

Let the noise-free received data be represented by u(r,s).



Let the noi se signal be represented by a two-di nensional real
array n(r,s). Then the noisy received data val ues are gi ven
by:
v(r,s) = u(r,s) + n(r,s) (5.4)
The noisy siqgnal v differs fromthe noise-free signal u
in magnitude as well as phase. This can be seen by taking a

sanple point, say u(r,,s.), in the received data.

i775

Correspondi ng noi se value is n(ri,sj) (ny . f or conveni ence).

J
Let u(ri,sj) = acose + j b sine. Then the received

data value will be

v(ri,sj) =(a cose * nij) + ] b sine (5.5)

The rmagnitude of v(ri,sj) is ((a + nij)2 + b2)1/2 and
its phase value is tan (b sine / a cose + njs) - Therefore at
the point (r,;,s;), the noisy signal value differs from the
original signal value in both phase and magnitude. F g.5.1
shows graphically that due to addition of a real quantity,
both the nmagnitude and phase conponents of the origina
conpl ex vector a can change. Therefore if the received data
I's noisy, and only the phase is nmeasured at the receiver end,
t he nmeasured values will be different fromthe actual val ues.

In Chapter 2 we have given an iterative algorithm for
signal recovery fromonly the phase of the received data for
acoustic imaging applications. During each iteration, the
phase of the sinmulated data is corrected by taking the
projection onto the convex set consisting of all signals with
a given set of phase values. This convex set is forned from

t he phase of the received data. |[|f the phase of the received
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data is incorrect, due to the presence of noise, the origi nal
signal will not be a nenber of this set. The intersection of
the convex sets forned fromthe phase of the received data
and fromthe finite support constraint will also not contain

the original signal. Therefore the iterative al gorithm cannot

converge to the original signal. This point is illustrated in
FHg.5.2 It shows the two convex sets and that the origina
signal lies outside the intersection of the two. The

algorithm converges to a point in the intersection set but
not to the actual solution

VW will nowshowthat a two-di nensional real signal can
be recovered fromonly the 1-bit Fourier transform phase
i nformation even in the presence of noise, if the noise |evel
Is not very high. Then we will showthat a simlar argunent
can be applied for inage reconstruction fromnoisy received
dat a.

V¢ have seen earlier that the addition of noise alters
both the phase and nmagnitude of the received data sanples.
Let us assune that the noise signal is of |ow energy. Then it
Is likely that nost of the Fourier transform sanples wll
have the sanme 1-bit phase as the noise-free data would have
had. This is illustrated in Fig.5 3. One of the data sanpl es
wth value aexp(je) is changed to bexp(jg) (for sone
constants a and b) dueto the addition of a real noise
conponent n. But we see that both aexp(je) and bexp(jg) lie
in the sane half-plane and therefore have the sanme 1-bit
phase as the original signal. The hal f-planes of interest are

t hose denarcated by the inaginary axis.
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FHgb5.2

convex art 1 ,///

o — actual solution

/

solution obtained

convex set 11

This figure shows two conplex sets - set | and
set 1I. The desired solution point does not lie in
the intersection of the two sets. Therefore,

irrespective of the initial estimate chosen, the
pocs algorithm cannot converge to the required
solution. Such situations can arise due to the
addi tion of noise in the data.
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This figure shows the case when a conplex vector
a.exp(je8) is chan?ed t 0 anot her vector b.exp(jg) due
to the addition of a real noise vector (n). But both
the original and the resultant vectors lie in the
sanme hal f-plane, and therefore, have the sane 1-bit
phase value. |If +the additive noise vectors have
smal | magni tudes, the 1-bit phase val ues of nost of
t he data sanpl es may be unaff ect ed.
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Thi s concept can be explained nunerically al so. Let the
phase at each sanple be represented as a binary nunber
Quantizing the phase of the data to two [ evels is equival ent
to retaining the nost significant bit (MSB) of the phase
value. Assunme that a particular sanpl e has a phase gi ven by
10010111 (this represents an 8-bit precision in phase
neasurenment). In this case the quantized phase value is 1
(MSB of the binary nunber). Let the addition of noise add a
smal | amount of phase to the original value. Say the additive
phase is 00001100. Then the resultant phase val ue at that
sanpl e becones 10100011. The quanti zed phase (MsB) of the
resultant value is still 1. The addition of a snall anmount of
noi se has not caused any change in the quanti zed phase val ue
for that sanple. Thus the 1-bit phase information for that
particul ar sanple is the same with or without the presence of
noise. |If the noise level is less, nost of the sanples nay
not be affected by it when their phase is quantized. But
whenever the nagnitude of a sanple is small or when the
conplex vector lies very near the inmaginary axis, a small
amount of noi se can change t he quantized phase informationto
t he wong val ue.

A conpl ex-val ued si gnal can be recovered fromthe zero-
crossing information of the real and imaginary parts of its
Fourier transform |f additive noise is real, only real part
of the data values are affected. The odd conponent of the
t wo- di nensi onal conplex signal 1is recovered from the

i magi nary part of the received data. Since the real additive



noi se does not affect the imaginary part of the received
data, the odd conponent of the signal can be recovered as it
woul d have been in t he absence of noise. The even conponent
of the signal is recovered fromzero-crossing points of the
real part of the received data. Noise affects the real part
of the data. The points where the signal went to zero nay not
be the zero-crossing points after addition of noi se.
Therefore there will be sone uncertainty in the determnation
of the zero-crossing points. This inplies that the iterative
algorithmnmay not converge to the original signal. But as we
have seen, the addition of small noi se val ues may not have
much effect on the quantized phase values of the sanpled
signal. Therefore, during each iteration, the correct sign
wll be substituted at nost of the points. This may be
conpared wth the reconstruction using full phase
information. The neasured phase val ues are incorrect at al

the points where the noise is non-zero. During each
Iteration, these incorrect values are used for phase
correction. It is evident that the error in the nmeasured data
Is propagated further. Therefore we can expect the inages
obtained fromthe quantized phase informationto be better
than those obtained fromthe full phase infornation. The
experinmental results in the next section will showthat in
fact the inmages obtained fromthe quantized phase of the
noi sy data reproduce the essential features of the original
signal, whereas those obtained fromfull phase data do not.
Since images are recognized fromtheir features, a technique

that reproduces these is acceptabl e even though it does not



guar ant ee exact convergence to the original.

The main idea in using the quantized phase information
for image formation in the presence of noise isto use a
smal | anmount of right information rather than a | arge anount
of incorrect information. Even if the full phase neasurenent
is available, it is better to use quanti zed phase information
during iterations. The full phase infornation of the data can
be used to forman initial estimate of the signal.

In the case of quantized phase infornation, we can use
sone heuristics to inprove the performance. A quantized phase
val ue of 1T surrounded by the quantized phase val ues of 0 can
be substituted by o, assumng that it is an error point.
Smlarly a quantized phase value of o surrounded by the
quanti zed phase values of 7T can be substituted by 177,
assumng that it is also an error point. Simlar heuristic
approach may not be possible when the full phase information
I s used.

The phase quantization technique can be used wth

cxdo—‘h-d
anot her variation. W state the follow ng reSLntxfron1[34]u$nii=0-

Theorem 5.1 Let x(ny,n,) and y(n ,n,) be real two-di nensi onal
sequences with support over a finite nonsymmetric hal f - pl ane,
with Sign{Re(X(f,,f,)]} = Sign{Re[Y(f,,f,)]} for any o such
t hat Re(X(f,,f,)- o ) takes on both positive and negative

val ues. Al so | et
*
x(nl,nz) = x(nl_,_nz) w;x (-nl,-nz)_ - °<8(n1,n2)

*
y(n,,n,) = my_nz)_;y_(-_nll_-nzl - & §(n ,n,)



1 if (nl,nz) = (0,0)

where §(ngy,n,) = :
0 ot herwi se

If'§(z1,z2) and f}zl,zz) are nonfactorabl e, then Q}nl,nz) =C

?(nl,nz) for (ny,n,) # O, and %[0,0]1-% = c [y(0,0)- ] for

sone positive constant c.

This theoremstates that if the phase quantization is
done after subtracting a constant &« fromall the sanples, the
si gnal can be recovered from this quantized phase
i nformati on. In effect, the crossing of an arbitrary
threshold o¢ , and not necessarily zero can be considered for
phase quantization. This result can be used for phase
guanti zation of noisy signals. If there is a particul ar val ue
around which the signal rises or falls steeply, it can be
used as the threshold for quantization. This way, even when
the signal sanples are very close to each other, the effect
of noi se on the sanples around that threshold will be smaller
as conpared to the effect around the actual zero-crossing
contour. Therefore, the contour where the signal crosses the
threshold oo wll be known nore accurately than the region
where the real part of the signal crosses zero. Hence the
reconstructed image fromthe phase quantized in this manner
can be expected to be better.

In Chapter 4 it was shown that signal reconstructionis
better if data is collected by transmtting waves of several
frequencies. |In this chapter we have seen that the quantized
phase i nformati on can be used to reduce the effects of noise

in the data on the reconstructed i mrage. W have studied the



use of the quantized phase information collected at several
frequenci es for noi se reduction. The experinental results are
di scussed in the next section.

5.3 | LLUSTRATI ON OF NO SE REDUCTI ON

In this chapter we have proposed that noise effects can
be reduced by using quanti zed phase of the received data. In
this section we give the results of experinental studies on
the image reconstruction fromthe quantized phase of noisy
recei ved dat a.

The object shown in Fg.3.2 was used for t he
experinental studies. Figs.5.4(a) to 5.4(c) showthe inages
reconstructed fromfull phase, 2-bit phase, and 1-bit phase
i nformati on, respectively. These i mages were obtained after 1
iteration of the POCS algorithmfor the data collected at
ei ght frequencies by a receiver array of 64x64 points. This
data was noi se-free. The correspondi ng i mrages obtai ned after
25 iterations are shown in Figs.5.4(d) to 5.4(f). |t can be
seen that the images formed from full phase information
converge faster towards the original as conpared to the i nmage
obtai ned from 2-bit phase data. Reconstruction fromthe 1-bit
phase data is shown just for conparison. In general we do not
expect to get good images fromnoisy 1-bit phase data.

Hg.5.5 shows the inmages obtained when the data was
corrupted with nornally distributed noise with SNR of 12db.
Figs.5.5(a) to 5.5(c) showthe inmages forned fromfull phase,
2-bit phase, and 1-bit phase data, respectively, after 1
iteration of the POCS al gorithm The images obtai ned after 25



Iterations are shown in Figs.5.5(d) to 55(f). W see from
these figures that the inmages forned from 2-bit phase
information are as good as those forned from full phase
I nf or mat i on.

The use of quantized phase information is nore evident
for higher noise levels. Fg.5.6 illustrates this point. In
this case the SNR was -2db. The order of inmages in
Figs.5.6(a) to 5.6(f) is as in Figs.54 and 55 W see that
the image formed from2-bit phase data shows convergence
towards the original. The inage forned from full phase
i nformati on does not show any such convergence. Fig.5 7 shows
t he correspondi ng i mages reconstructed with SNR = -10db.

The noise levels for inmages in Figs.5.6 and 5.7 were
hi gher than that for the images in Fig.5.5. The 2-bit phase
data perforns better than the full phase data only for
noderate noise levels. Wen the noise inthe data is very
hi gh, reconstruction is not possible fromboth the full and
2-bit phase data. Figs.5.8(a) to 58(c) show the inages
obtai ned fromfull phase data, 2-bit phase, and 1-bit phase
data, respectively, when the SNR was -30db. These i nages were
obtained after 1 iteration of the POCS algorithm The
correspondi ng 1imnages obtained after 25 iterations are given
in Figs.5.8(d) to 5.8(f). W see that at hi gh noise | evels,
It is not possible to reconstruct the inage from both the

full phase and 2-bit phase data.
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The images reconstructed from full phase,
phase, and 1-bit phase data with NR = -2db.
Original object 128x128 points.

Number of receiver elements 64x64.

Number of frequencies used: 8.

(a) From full phase after A iteration.

(b) From 2-bit phase after 1 iteration.

(c) From 1-Dbit phase after 1 iteration.

(d) From full phase after 25 iterations.

(e) From 2- bit phase after 25 iterations.
(f) From 1-bit phase after 25 iterations.

2-bit
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Fig.5.7 The images reconstructed from full phase, 2-bit
phase, and 1-bit phase data with SNR = -10db.
Original object 128x128 points.

Number of receiver elements 64x64.
Number of frequencies used: 8.

(a) From full phase after 1 iteration.
(b) From 2-Dbit phase after 1 iteration.
(c) From 1-bit phase after 1 iteration.
(d) From full phase after 25 iterations.
(e) From 2-bit phase after 25 iterations.
(f) From 1-bit phase after 25 iterations.
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FHg.5.8 The inmages reconstructed from full phase, 2-bit
phase, and 1-bit phase data with SNR = -30db.
Original object 128x128 points.
Nunber of receiver el enents 64x64.
Nunmber of frequenci es used: 8.
a) Fromfull phase after 1 iteration
From 2-bit phase after 1 iteration.
From 1- bi t ﬁhase after 1 iteration
) Fromfull phase after 25 iterations.
From 2-bit phase after 25 iterations.
From 1-bit phase after 25 iterations.



Fig.5.8

The
phase, and 1-bit phase data with SNR = -30db.
Original object 128x128 points.

Number of receiver elements 64x64.

Number of frequencies used: 8.

(a)
(b)
C
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(c)

images reconstructed from full phase,

From
From
From
From
From
From

full phase after 1 iteration.
2-bit phase after 1 iteration.
1-bit phase after 1 iteration.
full phase after 25 iterations.
2-bit phase after 25 iterations.
1-bit phase after 25 iterations.

2-Dbit



5.4 SUMMARY

The techni que of signal reconstruction from quantized
phase informati on can be used for noi se reduction. Since the
signal is conplex valued, the signs of both the real and
Imagi nary parts of the received data are required for
reconstruction. Real additive noise affects only the real
part of the received data. Therefore the odd conponent of the
original signal can be recovered fromthe inaginary part of
the received data as it would have been in the absence of
noi se. Presence of noise causes nore uncertainty in the
determ nation of the zero-crossing points of the real part of
recei ved data. This causes sone error in determnation of the
even conponent of the signal. But if the noise energy is | ow,
the 2-bit phase at nost of the data points wll not be
affected, whereas the actual phase measurenent at these
points will be incorrect. Though by quantizing the phase we
retain |esser anount of information at each point, inmages
reconstructed fromthis are better than those reconstructed

fromthe full phase infornation
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RESULTS AND CONCLUSI ONS

In this thesis, we have addressed t he problem of signal
reconstruction fromsensor array data. This problem arises in
many practical situations. The data available in such
situations is finite and discrete due to Iimted nunber of
receiver elements on the array used for neasurenments. The
data is wusually a set of conplex nunbers. Sonetimes, the
phase or the magnitude information may not be available, or
these quantities may not be neasured accurately. These
conditions, and the presence of noise in the received data
makes the problem of signal recovery as that of
reconstruction frompartial data. In this thesis, we have
proposed techniques for solving some of these problems. The
techniques proposed in this work use the POCS algorithm to
recover the original signal fromthe partial information in
vari ous domains.

oondan calaim GRsmeAGTntn |, wst do wak-

We have shown that sd
Toqpuare L0 phane Gl rnalion 48 Aol Tacouey |
4Ahephase—of-the received-data. Under certain conditions, it
is possible to recover two-dinensional conpl ex-val ued signals
fromthe phase data. For signal recovery, we do not require
full phase information. Phase data quantized to two |I|evels
(1-bit phase) or to four levels (2-bit phase) is sufficient
for signal recovery in nost of the cases. The possibility of
signal recovery from full/quantized phase information is
useful because the nmeasurenent conplexity can be reduced if

magni tude information is not required. But nore nunmber of

data sanples are required for reconstruction fromthe phase
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data. This inplies that the receiver array should contain a
| arger nunber of receiver elenents. This difficulty can be
overcomne by using a signal interpol ation schene that uses the
data col l ected at several frequencies in the POCS algorithm
Wth this nethod it is possible to reconstruct signals from
data collected at arrays with a small nunber of receiver
el ement s.

Signal reconstruction fromthe quantized phase data
collected at several frequencies al so reduces the effects of
noi se in the received data. Noi se changes both t he nmagnitude
and t he phase of the data sanples. By quantizing t he phase we
discard the | ower order bits of the phase values. Therefore
the effect of noiseis reduced. The nainidea is to use a
small anount of correct information rather than a large
amount of incorrect information.

The techniques proposed in this thesis can be applied
for a wide variety of signal reconstruction problens. Inthis
work, we have illustrated their use for a sinul ated acoustic
I maging system From these studies we see that both the
nmeasur ement and the size conplexity of the receiver array can
be reduced by wusing quantized phase data for I mage
reconstruction. But since these algorithns have been tested
only for sinmulated situations, nany practical problens that
one maght face in real situations have been overl ooked. The
acoustic field data at the receiver end is nornmally due to
t hr ee- di mensi onal obj ect s. The field neasurenents are

subjected to errors and distortion due to nediumeffects. It
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is difficult to predict the effects of these factors on the
reconstructed i mages.

The nost interesting result of this study is the trade-
of f between the conputational and t he neasurenent conplexity.
| t is quite possible that solutions for problens of
information recovery frompartial data may be viewed from
this angle. Since conputationis easier to realize than
physi cal neasurenent, it nay be possible to recover the
desired information fromthe data collected with a relatively

sinpl e setup
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APPENDI X

THEORY OF PROJECTI ONS ONTO CONVEX SETS

In this appendix we give the basic theory of
projections onto convex sets and show how sone of the
avai lable information forns convex sets. The standard PQCCS
al gorithmhas been used to i nplenent the results devel oped in
this thesis. Mst of theresultsrelatedto fornation of
convex sets and the nmethods to take projections onto these
convex sets are simlar tothe work reported in [26]-[29].
The PQOCS algorithmworks by alternate projections onto the
various convex sets. Statenents of the theorens related to
convergence of this algorithmare al so given here for sake of
conpl et eness.

Definition 1 [471,[48) :- A norned linear space is a |inear

space s, in which to each vector x there corresponds a real
nunber, denoted by ||x|| and called the normof X, in such a

manner t hat

(1) ||x||] =0, and ||x]|| = 0 <=> X =0
(2) [y | o< D=l ] o [yl
(3) | lax|| = |a] ||x]|| for a constant a

Definition 2:- A conplete nornmed |linear space is called a

Banach space.

Definition 3:- A Hlbert space is a conplex Banach space

whose normarises froman inner product, that is, in which
there is defined a conplex function (x,y) of vectors x and vy

with the foll owi ng properti es:
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(1) (ax+by,z) = a(x,z) + b(y,z)
(2)  (%,¥) = (Y,%)"

(3)  (x,x) = ||x]|]?

Definition 4- The projection of a point x onto a set Rof a

normed space E is the point Po(x) such t hat

| |x-Pp(x) || = inf ||x-y|| (A.1)

£
YER

Definition 5:- Aset Cof a normed space Ris called a convex

set if

ax t+ (1-a)y € Cfor all o <a<1and x,y €C (A.2)

Definition s:- A sequence X ina HIlbert space His said to
converge strongly to a point q e Hif

lim ||a=x_ || =0 (A.3)
n-> 0

The convergence is said to be weak if

lim (x,Y) = (q,y) for all y e H (A.4)
n->oo

Lemma 1:- Let C be any convex set in a Hilbert space H and
let Px represent the projection of x € Honto C Then
Re(x-Px,y-Px) < 0 for all y eCand x ¢ C
Llemma 2:- Let C be any convex set in a Hilbert space H and
let Px represent the projection of x e Honto ¢, If x 2 C and
Qe ¢, then
|le-Px||? < ||e-x]||?

Lenma 3:- Let c, and c, be two convex sets in a H | bert space

H, such that they have Qas the only common point. Let the

projection operators onto c, and c, be p;, and P,

respectively. If x g c,, then

2!
2 2
| 1Q-P,Pyx| |7 < []Q-x]|]



Lemma 4:- Let c, and c, be two convex sets in a Hlbert space
H, such that they have Q as the only common point. Let the
projection operators onto c, and C, be P, and P,
respectively. Then starting at any arbitrary point x € H, we
have

nfirgollQ(Plpz)“xll = 0.

Qur work is related to processing of signals. The set
of all signals forns a Hlbert space. The signals are conpl ex
valued, in general. For any two signals x(n) and y(n), we
define an inner product as

(x,y) = 2 x[i].y"[i]

Therefore the normof a vector (signal) x(n) wll be

| | x| |2 = Zx[i].x*[i]

These def;nitions and lemmas state the inportant
results related to the convergence of the POCS al gorithm The
algorithm is used to take projections onto various convex
sets. Now we showthat various types of constraints used in
our work form convex sets.

Statenent 1:- Know edge of the finite support of a signal
fornms a.convex set.

Proof:- Let A represent the set of points contained in the
region of finite support known for the signal. Let B
represent the region where the signal values are zero (the
region outside the finite support). Let x and y be two
signals with A as their region of support. Then the val ues of
both x and y are zero inthe region B Consider the signal z
=ax * (1-a)y for 0 <a <1 Intheregion B z is also zero.

Therefore =z also has A as the region of support. Hence the



information of the finite support of a signal forns a convex
set .
Statement 2 - Know edge of the phase of a signal at a given
set of points forns a convex set.
Proof:- Let the set of points where the phase values are
known be called set A Let the set of all signals that have
t he specified phase values at points in A be called set C If
X andy are any two signals in C, then they have the sane
phase values at the points in set A Consider a signal z =
ax *t (1-a)y for 0 <a <1 Then the phase of z will be sane
as the phase of x or y at the pointsin the set A. The
nmagni tude val ues may differ. The magnitude of the sanples in
z will be equal to a tinmes the nmagnitude of sanples of x plus
(1-a) times the nagni tude of the corresponding sanples in .
This is because a exp(je) T b exp(je) = (atb) exp(je).
Therefore, z is also an elenent of C Thus C forns a convex
set.

This statenent is a general one. If phase val ues of al
t he signal sanples are known, it al so defines a convex set.
Statement 3:- The set of all signals that have specific
val ues at a set of points forns a convex set.
Proof:- Let the set of points where the signal values are
known be called set A° Let C denote the set of all signals
t hat have the known val ues at the points in A. Take any x,y €
C (onsider asignal z = ax t+ (1-a)y for 0 <a < 1. Since X
and y have equal values at the points in A, z also wll have

t he sane val ues at those points. Therefore the know edge of a
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few signal samples defines a convex set.
Statement 4:- The set of all signals that have specific 1- bit
phase at a given set of points is convex.
Proof:- Two signal samples are said to have equal 1-bit phase
values if they both lie on the same side of the imaginary

axis. Let x and y be two such vectors (signal samples). Then

if z =ax t (1-a)y for 0 <a<1, it isthe vector sum of
scaled versions of x and y. If xand y lie on the same side
of the imaginary axis, then z will also lie on the same side,
and will have the same 1-bit phase as x or y. This is
illustrated by Fig.A.l. A signal is formed of a number of

such complex vectors. Let x and y be two signals whose 1- bit
phase is known at a set of pointsA. If and z = ax + (1-a)y,
the 1-Dbit phase values of the samples in z will be equal to
the 1-Dbit phase values in corresponding samples of X or y at
the points in A. Therefore the knowledge of 1-bit phase of a
signal defines a convex set.

As a special case of this statement, the knowledge of
1-bit phase at all the points in a signal also forms a convex
set. On the same lines we have
Statement 5:- The set of all signals that have specific 2-bit
phase at a given set of points is convex.

Nov we show how to take projections onto the convex
sets defined above. Projections onto the convex sets are used
in the ROCS algorithm used in this work.

(1) Projection onto the convex set formed from the finite
support constraint.

Let a signal be known to be zero outside the region R.



Hg Al

IMABINARY axis
complex vector X

\

\
\

lex vector y

REAL axis

The solid lines showtwo conplex vectors X and vy
that have the sane 1-bit phase values. Any other
vector z defined as z = a X + (1-a)y for 0 <a <1,
will lie along the dotted line. Since it is-alsoin
t he sane half-plane as X or y, it has the sane 1-bit
phase value as x or y. Therefore, the know edge of
1-bit phase defines a convex set.
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If x is asignal which is non-zero outside R, then it does
not satisfy the finite support constraint. |If Ce is the
convex set containing all the signals that have R as their
finite support, then x is not an elenment of Ce- The
projection of x onto Ris an el enent X of R such that
|X - x| is mnimum For a one-dinensional case, it 1is
equivalent to mnimzing ||z[i]|| where

z[i] = x[i]-xr[i] (A.5)
It is known that X has zero val ues outside the region R To
mnimze the expression we have the freedomto choose the
val ues of X intheregion R It can be verified that the
expression is mnimzed if xr[i] = x[i] in the region of
finite support. Therefore, to take the projection of a signal
X onto a convex set defined by the know edge of a finite
support R, we nust set the values outside Rto zero and
retain all other val ues.
(2) Projection onto a convex set (Cp) defined by the
known phase val ues.

Let x be a signal that is not an el enent of the set Cﬁ.
To take the projection of x onto Cb, we nust choose Xp in Cb
SO as to mnimze

> (x[41=x (4]« (x[41=%[i])" (A.6)

Assumng that the signal sanples are independent of
each other, each termin the summati on nust be mnimzed

I ndependent | y. Let a typical term be x[jl-x.[J]. Let

P
Xp[j] = A exp(je) and x[j] = B exp(jg). The corresponding

termin the sumation wll be



|A.exp(je)-B.exp(jg)| = exp(je) |A-Bexp(]($-9)) |

= exp(j6) [(A-B.cos($-8))2+(B.sin($-8))2]

It is mnimzed by taking A = B.cos(g-9).

Therefore to take the projection of a signal x onto C@,
multiply the magnitude values at all the sanples by cos(g-6)
and repl ace their phase by the known phase values. Here g is
the phase value of one of the signal sanples and 8 is the
known phase val ue for that sanple.

(3) Projection onto the convex set Cq defined by the
know edge of signal sanples.

Let A denote the set of points where the signal sanpl es
are known and B denote the conplenent of A Let x be a signa
not in c,. Ve have t o choose an X, € Cg such that (A6) is
mnimzed. W are free to chose the values of x_ over the set
of points B only as the values for the points in A are
constrained to be the known values. |t can be proved that
(A6) is mnimzed if we retain the values of x at the points
in the set B and replace the known values at the set of
points inthe set A This is, therefore the procedure to take
t he projection onto the set C,-

(4) Proj ection onto the convex set c, defined by know edge
of 1-bit phase.

Let A denote the set of points where the 1-bit phase of
the signal is known. Let B denote the conpl ement of A Assune

that x is a signal that is not an el enent of the set ¢ and

1I
therefore, its 1-bit phase over the set Ais not as it should

have been. This nmeans that at sone points in A the sign of



the real part of the signal sanple is opposite of the known
sign. We have to choose an X1 2 ¢ such that (A 6) is
mnimzed. Each term in the sunmation has to be mnimzed
I ndependently. The terns corresponding to the points in the

set Bcan be mnimzed if the values of the sanples of x, are

1
equal to the values of the correspondi ng sanples of x. That
| eaves us with the points inset A Assune that the 1-bit
phase val ue of a particular sanple x,[3] differs fromthat of
x[(j] for sone j in A. Let x{j] =a * j.b. It is known that
the sign of the real part should have been negative. |f the
value ¢ + j.d for Xl[j] mnimzes the tern1|x[j]—x1[j]|, It
i nplies that (a-c)2 + (b—d)2 is mnimzed. Sincec is not
greater than zero, the termis mnimzed by taking c¢c=0 and
b=d. Therefore the follow ng procedure nust be followed to
take the projection onto the set c,.- I f the sign of the real
part of a sanple in the signal is not equal to the known sign
of that sanple, then we nust set the real part for that
sanple to zero and retain the value of the inaginary part.
(5) Proj ection onto the convex set C defined by know edge
of 2-bit phase.

Fol | owi ng t he way the projection was taken onto the set
c,. it can be verified that the projection can be taken onto
c, by setting the real part of a signal sanple to zero if the
sign of the real part is not equal to the known sign for the
real part and by setting the inmaginary part to zero if the

sign of the imaginary part is not equal to the known sign of

the imaginary part for that sanple.
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The procedures for projections onto convex sets
presented in this Appendix are independent of the dinension
of the signal and can be used for two-dinensional signals

al so.
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