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ABSTRACT 

In many practical situations, it is required to obtain 

information from an array of complex data. Some examples of 

these situations are - computer aided tomography, medical 

imaging, acoustic imaging, and synthetic aperture radar (SAR) 

techniques. In all these cases, data collected by an array of 

receiver elements is used to derive the required information. 

The outputs vary according to the situation. The required 

information may be an image as in case of acoustic imaging or 

a set of parameters characterizing the source as in SAR 

applications. Recovery of the required information may 

involve a straightforward transformation or a more complex 

procedure. 

There are certain practical issues common to problems 

of this nature. Some issues of interest are - (1) to overcome 

the complexity of measurements at the receiver array, (2) to 

recover the information from a limited number of data 

samples, and (3) to overcome the effects of noise in the 

data. 

In this thesis, we address these issues for a certain 

class of information recovery problems. We propose algorithms 

for information recovery from available data and develop 

theoretical justification for these algorithms. 

We consider the reconstruction problem as a problem of 

information recovery from partial data. We show that it is 

possible to combine partial information in various domains to 

recover the required information. The received data is 



usually a set of complex numbers. We develop algorithms for 

signal reconstruction from only the full/quantized phase 

information of the received data. This reduces the 

measurement complexity at the receiver end. The phase 

information represents partial information at the receiver 

end. It is used alongwith some apriori information (such as 

finite support constraint) in the signal domain, in an 

iterative algorithm for signal reconstruction. It was shown 

that by measuring data at several frequencies, the receiver 

size can be reduced in terms of the number of receiver 

elements. We show in this thesis that by using phase 

quantization with the multiple frequency data, both the 

measurement and size complexities of the receiver can be 

reduced, but at the cost of significantly increased 

computation. Reconstruction from the quantized phase 

information also reduces the effects of noise in the measured 

data. 

The algorithms proposed in this thesis can be applied 

to a wide range of information recovery problems. In this 

work, we address the problem with special reference to 

acoustic imaging. 

Acoustic imaging is a technique of image formation 

using acoustic waves. We consider the holographic acoustic 

imaging method in our studies because it allows the use of 

signal processing techniques at the data processing stage. 

Like other problems of this category, the main issues 

in acoustic imaging are to find techniques to reduce the 



circuit and measurement complexity of the setup and to 

improve the image quality. We study the use of the algorithms 

proposed in this thesis to achieve these goals. The 

experimental results show that quantized phase measurements 

at several frequencies help to trade the measurement and size 

complexity with the computational complexity. 



CHAPTER 1 

PARTIAL DATA PROBLEMS 

1.1 INTRODUCTION TO INFORMATION RECOVERY PROBLEMS 

In many practical situations, it is required to obtain 

information from an array of complex data. Some examples of 

these situations are - computer aided tomography, medical 

imaging, acoustic imaging, and synthetic aperture radar (SAR) 

techniques. In all these cases, the data collected by an 

array of receiver elements is used to derive the required 

information. The outputs vary according to,the situation. The 

required information may be an image as in the case of 

acoustic imaging or a set of parameters characterizing the 

source as in SAR applications. 

The data measured in these problems is usually a 

transformation of the original signal. Therefore signal 

reconstruction is done by computing the inverse transform on 

the received data. As we shall see later, the process of 

inverse transform may be more complex than computing just a 

Fourier transf orm. 

There are certain practical issues common to problems 

of this nature. Some issues of interest are - (1) to overcome 

the complexity of measurements at the receiver array, (2) to 

recover the information from a limited number of data 

samples, and (3) to overcome the effects of noise in the 

data. The data is measured by an array of receiver elements. 

The number of elements on the receiver array is finite. 



Generally the data is a set of complex values and has both 

phase and magnitude components. But due to practical 

problems, it may not be possible to make measurement of both 

the phase and magnitude accurately. Moreover, the signal at 

the receiver end is usually noisy. In all these cases the 

information may be considered incomplete because of the 

finite and discrete measurements, or because of some missing 

phase/magnitude values. Noise causes ambiguity in each data 

value. Therefore we can consider the available data as 

partial information. The aim of this work is to propose 

techniques to solve these partial data problems. 

The partial data problem is encountered in many real 

life situations also. It is such an integral part of nature 

that all human beings make inferences from partially 

available information in nearly all aspects of life. This 

includes common activities like listening, seeing, reading, 

etc. Recovery from partial data is possible because usually 

the domain of interest has many redundancies. Some apriori 

information can be used to recover the complete information 

from partial data. Human beings use common intelligence, past 

experience, and the accumulated knowledge in such situations. 

For example, while listening to unclear speech, such as on 

telephone, we make use of the recognizable words, the 

context, etc., along with the sound and duration of the 

unclear words to recognize them and understand the whole 

sentence. In a similar way we make use of the context and 

apriori knowledge to recognize objects when they are only 



partly visible. Misprints or misspelt words are easily 

overlooked while reading fast because we usually read by 

looking at the overall shape and meaning of the words and 

word sequences and not their spellings. For example, in the 

following sentence 

There is a spelling mistake in this sentense. 

one usually overlooks the fact that the last word should have 

been 'sentence' and not 'sentense'. In the same way if a word 

of the text is partially rubbed off, or is not visible due to 

some other reasons, it can be guessed most of the times. 

Just as human beings solve the partial data problems in 

daily life, we want machines to do so for some of the cases 

mentioned in the beginning. In this work we propose 

techniques to overcome some of the practical constraints for 

such a class of partial data problems. We show that, with 

suitable algorithms, it is possible to combine partial 

information in various domains to recover the required 

information. When the available data is partial, the missing 

parts can generally be filled up in a variety of ways. This 

defines a set of possible solutions. Most of the methods 

available to solve these problems use information in various 

domains to limit this set to a small size, and finally pick 

out the most probable solution from it. 

We develop algorithms for signal reconstruction from 

only the full/quantized phase information of the received 

data. This technique takes care of the situation when only 

the phase data is available at the receiver end. The 

measurement complexity at the receiver end can also be 



reduced with this technique. Only the full/quantized phase 

information represents partial information at the receiver 

end. It is used in an iterative algorithm, alongwith some 

apriori information in the signal domain (such as finite 

support constraint), for signal reconstruction. It was shown 

that by measuring data at several frequencies, the receiver 

size can be reduced in terms of the number of receiver 

elements. In this thesis, we show that by using phase 

quantization with the multiple frequency data, both the 

measurement and size complexities of the receiver can be 

reduced, but at the cost of significantly increased 

computation. Reconstruction from the quantized phase 

information also reduces the effects of noise in the measured 

data. 

Algorithms have been developed in this thesis with 

special reference to simulated acoustic imaging systems. The 

aim in acoustic imaging is to form images from the acoustic 

field data collected by an array of hydrophones. In case of 

image signals, edge information is very important for 

understanding the picture or the scene.  his is so because 

objects are recognized from their features. In most of the 

cases, edges are enough to convey the information about the 

features. Extensive work has been done to study the relative 

importance of the Fourier transform phase and the Fourier 

transform magnitude for reconstruction of the image signals. 

It has been observed that the Fourier transform phase 

preserves most of the edge information of a picture. In fact 



Fourier transform phase information is sufficient to recover 

the original signal in many cases. Therefore, images 

reconstructed from only their Fourier transform phase 

information have been found to be better than those 

reconstructed from only their Fourier transform magnitude 

information. We show that in the class of problems addressed 

in this thesis, reconstruction is possible from 

full/quantized phase information. The phase is important for 

recovery of edge information, and hence, for the recovery of 

the essential features for recognition of the object. We make 

use of this property to propose techniques for reducing the 

circuit and measurement complexity in an acoustic imaging 

setup. 

1.2 ACOUSTIC IMAGING : AN EXAMPLE OF PARTIAL DATA PROBLEM 

Acoustic imaging is the technique of mapping objects 

with acoustic radiation [1],[2]. Fig.l.1 shows a typical 

acoustic imaging set up. Acoustic waves are transmitted from 

one end. They hit the object which is to be imaged, and the 

reflected acoustic field is measured at the receiver end. 

This data is processed to form the image of the original 

object. A C O U S ~ ~ C  imaging finds application in underwater 

imaging, medical imaging, etc., where other sources of 

radiation, like light, cannot penetrate to the required 

distances. There are three main approaches to acoustic 

imaging, namely (a) focussed acoustic imaging, (b) 

beamforming, and (c) acoustic holography [2]. We restrict our 

attention to the acoustic holographic approach, since it 

enables us to use sophisticated signal processing techniques 
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Fig.l.1 A t yp i ca l  acous t ic  imaging setup.  

Acoustic waves a r e  t ransmit ted  from one end. They 
h i t  t h e  t a r g e t ,  and t h e  r e f l ec t ed  da ta  is received 
by an a r ray  of hydrophones. This da ta  is converted 
t o  electric s igna l s ,  and processed t o  form an image 
of t h e  object .  The coordinates on t h e  ob jec t  plane 
a r e  re fe r red  t o  a s  xOI yo, and z , whereas those  on 
t h e  object  plane a r e  r e f e r r ed  t o  %s x, y, and z .  



on the received data before image formation. This way, the 

quality of the image can be improved significantly. 

In the acoustic holographic technique the receiver is 

an array of hydrophones. The acoustic field data is received 

at this hydrophone array. Both the magnitude and phase of the 

field are measured. These measurements are then converted to 

electrical signals using suitable transducers. These 

electrical signals are numeric representation of the data. 

 heir phase and magnitude represent the phase and magnitude 

values of the received data. The circuits required to measure 

the data, its conversion to electrical signals, and the 

subsequent processing to form the image, are all quite 

complex [2]. The data in acoustic imaging is partial because: 

(1) The number of hydrophones on the receiver array is 

limited. Therefore the measured data is a finite array of 

complex numbers. 

(2) Both the phase and magnitude information may not be 

available for reconstruction. In particular, therefore, we 

consider reconstruction from full or quantized phase 

information of the data. 

(3) The data values are corrupted by channel or circuit 

noise. 

We demonstrate that the algorithms proposed in this 

thesis may solve some of the problems encountered in acoustic 

imaging. 



1.3 THEORY OF IMAGE FORMATION 

The scalar diffraction theory of light forms the 

heart of the theory of acoustic holography [8]-[lo]. An 

aperture, when illuminated by a plane wavefront, causes a 

diffraction pattern to appear at a screen or receiver plane 

kept at a certain distance from it. The diffraction pattern 

on the receiver plane can be found by solving the wave 

equation, if we know the field distribution of the 

illuminating wave at the aperture plane. General solution to 

the wave equation is difficult to obtain. However, when 

subject to certain simplifying assumptions, these equations 

are more easily solved. 
o-t b=* 

The relation between the received dataXand the 
%=%, 

field on the object plane is glven by the Rayleigh - A 

Sommerfield integral [3] 

where 

go( Xo, Yo 1 : acoustic field on the object plane 

9( X, Y 1 : acoustic field on the receiver plane 

r : vector distance between the object and 

the receiver elements. 

: wavenumber 

: A constant. We will omit this constant 

throughout simulation studies reported 

in this work. 

When the object is far from the receiver end, this 



equation can be written as (omitting the constant A ) .  

where 

We can also write 

By taking the Fourier transform of both sides of (1.3) 

we get 

G(fxtfytz) = Go(fxtfytZ) . H(fxif,,tz) (1.4) 
2 2 where h(fxtfytz) = eXp{-j2T~ z[l+(l- hfx) +(l- h f ) 1 )  

A Y 
Go can be obtained from G by 

-1 
G(fxtfytz) = Go(fxtfytz) H (fxtfytz) (1.5) 

NOW go(xotyotzo) can be computed from Go(fxtfytz) by 

taking the inverse Fourier transform. We have followed this 

procedure in our simulation studies. 

The work reported in this thesis has been done to 

reduce the circuit and measurement complexity in the problems 

of signal reconstruction from data collected by an array of 

receivers. We report results on 

(1) The importance and use of the quantized phase 

information to reduce the circuit complexity. 

(2) The use of quantized phase measurements made at 

multiple frequencies to reduce the receiver array size. 

(3) The use of quantized phase information to reduce the 

effects of noise in the measured data. 



We have concentrated on signal reconstruction from the 

phase of the received data. As the results developed in this 

thesis will show, the phase of the received data can be 

manipulated to improve the image clarity and to reduce the 

receiver array complexity. The phase is one of the 

measurements made anyway, therefore we do not have to modify 

the measurement procedure. 

The thesis is organized as follows. In chapter 2 we 

review the work reported in literature related to 

reconstruction of signals from the phase information of their 

Fourier transforms. We will also study its applicability to 

the class of signals under consideration in this work. In 

chapter 3 we study the use of the quantized phase information 

for image reconstruction. Recently a technique of signal 

reconstruction using multiple frequencies has been proposed. 

In chapter 4 we study the application of this technique to 

the reconstruction of images from quantized phase information 

of the received data. In chapter 5 we show that the quantized 

phase information helps to reduce the effects of noise in the 

measured data. 



CHAPTER 2 

SIGNAL RECONSTRUCTION FROM PHASE OF RECEIVED DATA 

2.1 SIGNAL RECONSTRUCTION AS A PARTIAL DATA PROBLEM 

In all problems of signal reconstruction from array 

data, the data collected is usually a set of complex numbers. 

~t each data point, we have a phase and a magnitude value. 

Ideally, the phase and magnitude values of all the points are 

required for image formation [11],[12]. But due to certain 

factors like measurement errors, noise, etc., only the phase 

or only the magnitude information may be available. This 

partially available information must be used to recover the 

original signal. It is similar to other signal recovery 

problems discussed in literature [13]-[15]. 

Significant work has been done on the possibility of 

signal reconstruction from only the Fourier transform phase 

or only the Fourier transform magnitude information [16]- 

[21]. Conditions have been stated in literature under which 

it is possible to recover a signal from only one of the above 

information or from a mixture of the two. The signal 

reconstruction from acoustic field data is different from the 

reconstruction from the Fourier transform in the standard 

image processing. 

In this chapter we concentrate on the conditions for 

signal recovery from the phase of the received data. 

Technique of signal reconstruction from phase is attractive 

as it can be used to reduce the measurement complexity also. 



At each receiver element, only the phase measurement would be 

required, and therefore the magnitude measurement can be 

avoided. 

In section 2.2 we state the conditions under which a 

signal can be recovered from only its Fourier transform phase 

information. The results stated in literature place certain 

constraints on the signal for its recovery from only the 

Fourier transform phase information. In section 2.3 we show 

that some additional information in the signal domain can 

help to relax these constraints. In section 2.4 we present an 

algorithm for signal reconstruction from phase data. Various 

iterative and non-iterative algorithms have been proposed for 

signal recovery from partial data [22]-[25]. The POCS 

(Projections Onto Convex Sets) algorithm [26]-[29] has been 

used in this work. It is an iterative algorithm and we found 

it suitable for our work. 

2.2 TECHNIQUES FOR SIGNAL RECOVERY FROM PHASE 

Every signal has a unique Fourier transform. Therefore 

a signal is completely specified by its Fourier transform. 

Given the complete Fourier transform information, the 

original signal can be recovered uniquely. But when the 

Fourier transform information is not known completely, it is 

not always possible to recover the original signal. In this 

section we study the problem of signal recovery from only the 

Fourier transform phase information. A primary result for 

signal recovery from only the Fourier transform phase 

information can be stated as follows [16]: 



Theorem 2 . 1  : L e t  x ( n )  be a  r e a l  one-dimensional sequence 

which is zero  o u t s i d e  t h e  i n t e r v a l  0  ( n  ( N - 1  w i th  x[O] # o 

such t h a t  i ts  z- transform does  n o t  have any ze ros  i n  

r e c i p r o c a l  p a i r s .  L e t  y ( n )  be a n o t h e r  sequence which is ze ro  

o u t s i d e  t h e  i n t e r v a l  0  5 n  5 N-1 .  Le t  Bx(f)  and 0  ( f )  be  t h e  
Y 

Four i e r  t rans form phase f u n c t i o n s  f o r  x ( n )  and y ( n )  

r e s p e c t i v e l y .  I f  Bx(f)  = 0  ( f )  a t  N - 1  d i s t i n c t  f r e q u e n c i e s  i n  
Y 

t h e  i n t e r v a l  0  < f  < TT , t hen  y  (n )  = a  x  ( n )  f o r  some p o s i t i v e  

c o n s t a n t  a .  I f  t a n e x ( f )  = t a n 0  ( f )  a t  N - 1  d i s t i n c t  
Y 

f r equenc ie s  i n  t h e  i n t e r v a l  0 < f  < TT , t hen  y ( n )  = b  x ( n )  

f o r  some r e a l  c o n s t a n t  b.  

W e  w i l l  n o t  r e p e a t  t h e  proof of  t h i s  theorem he re .  But 

w e  show why t h e r e  is a  r e s t r i c t i o n  on t h e  presence  of 

r e c i p r o c a l  ze ros  i n  t h e  z- transform of  t h e  s i g n a l .  The z e r o s  

i n  t h e  z- transform of  a  r e a l  sequence x ( n )  occur  i n  complex 

conjuga te  p a i r s .  Thus, i f  t h e r e  is a  z e r o  a t  zo, t h e r e  w i l l  
* 

a l s o  be  a  ze ro  a t  t h e  complex con juga te  zo. I n  a d d i t i o n ,  i f  
* 

t h e r e  is a  zero  a t  l / zo ,  t h e r e  w i l l  be ano the r  z e r o  a t  l / zo .  

Thus a  p a r t  of t h e  z- transform, X ( z ) ,  of t h e  s i g n a l  w i l l  b e  

These f o u r  terms t o g e t h e r  g i v e  a  r e a l  q u a n t i t y .  

Therefore ,  t h i s  set of f o u r  z e r o s  adds on ly  z e r o  o r  , 

uniformly,  t o  t h e  o v e r a l l  phase of X( f )  ( F o u r i e r  t r ans fo rm of 

x ( n ) ) .  I n  e i t h e r  c a s e ,  it is n o t  p o s s i b l e  t o  d e t e c t  t h e  

presence  of  t h e s e  f o u r  ze ros  by t h e  knowledge of t h e  Four i e r  

t rans form phase a lone .  Therefore ,  it is n o t  p o s s i b l e  t o  

recover  t h e  o r i g i n a l  s i g n a l  i n  such s i t u a t i o n s .  

Th i s  theorem s t a t e s  t h a t  i f  t h e  z- transform of a  r e a l  



sequence does not have any zeros in reciprocal pairs, it is 

possible to recover it from its Fourier transform phase 

information alone. Group-delay functions can be used to 

explain the same concept in an elegant way [30],[31].The 

standard POCS algorithms can be used for this reconstruction 

[271 

............................................................. 

(1) Pick any real sequence as the initial estimate of x(n). 

repeat 

( 2 compute X (f) . / *  the Fourier transform of x (n) */ 
(3 apply phase correction at the points where Fourier 

transform phase values of X(f) are known. This 

gives the next refined estimate of X(f). 

Compute the next estimate of x(n) by taking the 

inverse Fourier transform of X(f). Apply finite 

support constraint on x(n). 

u n t i l  an acceptable solution is achieved. 

(5) Stop. 

Algorithm 2.1 An algorithm for signal recovery from the 

Fourier transform phase information. 

Fig.2.l(b) shows the signal recovered from only the 

Fourier transform phase information for the original real 

sequence shown in Fig.2.l(a). Algorithm 2.1 was used for 

signal recovery. Fig.2.2(b) shows the result obtained from 

only the Fourier transform phase information for a real 

sequence shown in Fig.2.2(a). The sequence in Fig.2.2(a) has 



Fig.P.l(a) A one-dimensional signal used to study the 
reconstruction from Fourier transform phase 
information. 
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Fig.P.l(b) Signal recovered from only the phase of the 
Fourier transform of the signal in Fig.2.l(a). 



Fig,2,2(a) A one-dimensional real sequence whose z-transform 
has a pair of reciprocal zeros. 

Fig02.2(b) The signal recovered from only the Fourier 
transform phase of the signal in Fig.2.2(a). 
Since the z-transform of the original signal has 
a pair of reciprocal zeros, it is not possible to 
recover it from the Fourier transform phase 
infomation alone. 



a pair of reciprocal zeros. It can be seen that in this case 

only the Fourier transform phase information is not 

sufficient to recover the original signal. 

Theorem 2.1 states the conditions for the 

reconstruction of a one-dimensional signal from only the 

Fourier transform phase information. The corresponding result 

for two-dimensional signals can be stated as follows [17]: 

Theorem 2.2 : Let x(n,m) and y(n,m) be two real two- 

dimensional sequences with region of support which is zero 

outside the intervals 0 - < n - < N-1 and 0 - < m - < M-1. ~f 

X(zl,z2) and Y(zl,z2) have no non-trivial symmetric factors, 

and Bx(flff2) = 8y(fl,f2) for all frequencies, then x(n,m) = 

a y(n,m) for some positive real number a. If tan[Bx(flff2)] = 

tan[By(flf f2) ] for all frequencies, then x(n,m) = b y(n,m) 

for some real constant b. 

The z-transform 

We see that the conditions for the sequences to be 

reconstructible from their Fourier transform phase 

information are similar in both the one-dimensional and two- 

dimensional cases. The main constraint is that there should 

be no non-trivial symmetric factors in the z-transform of the 

sequence. In the next section we show that this constraint 

can be relaxed if some signal samples are known. 



2.3 RECONSTRUCTION FROM PHASE WITH ADDITIVE SIGNAL 

INFORMATION 

In this section we show that with the knowledge of some 

signal domain information, it is possible to recover signals 

from their Fourier transform phase information even when 

their z-transforms have symmetric factors. The result for 

the one-dimensional case can be stated as follows [32]: 

Theorem 2.3 : Let x(n) be a real sequence which is zero 

outside the interval 0 5 n ( N-1 with x[O] # 0. Assume that 

the z-transform of x(n) has one pair of reciprocal zeros. Let 

y(n) be any real sequence which is zero outside the interval 

0 - < n - < N-1. If 9 (f) = Bx(f) at N-5 distinct frequencies in 
Y 

the interval 0 < f <lT, and y[n] = x[n] for the first three 

values of n, then y (n) = x (n) . 
Proof : If the z-transform of a real, finite-duration 

sequence x(n), has a pair of reciprocal zeros, then it can be 

written as: 

X(z) = X1(z) .X2(z) (2.2) 

where Xl(z) has no zeros in reciprocal pairs and 

-1 -1 * * x2 (2) = (2 -2,) (2 -zo) (z-zo) (z-zo) (2.3) 

If X2(f) is the Fourier transform corresponding to 

X2(z), then, as mentioned earlier, X2(f) adds either 0 or TT ,  

uniformly, to the phase of X(f). This is because X2(z) has 

two zeros in reciprocal pairs and and two more that are their 

conjugates. Therefore, when the z-transform is evaluated on 

the unit circle to get the Fourier transform of x2(n), we get 

a real, even sequence. x2(n) is a 5-point real, even sequence 

and xl(n) is an (N-4)-point real sequence. For the time being 



let us consider the case when the phase added due to X (f) is 2 

0. Later we will show that the results hold even if the phase 

added is . From (2.2) we notice that 

where xl(n) -- Xl (z) and x2 (n) -- X2 (2) 
Therefore x(n) is formed from convolution of an (N-4)- 

point real sequence with a 5-point real, even sequence. xl(n) 

can be determined to within a scale factor by knowing (N-5) 

distinct phase values in the range O<f<TT(Theorem 2.1). Since 

the Fourier transform phase of xl(n) is equal to that of 

x(n), these (N-5) phase values can be obtained from the phase 

of Xjf). If required, the scale factor can also be determined 

by knowledge of at least one value of xl(n). 

To prove the theorem, we have to show that if x(n) can 

be completely recovered from the knowledge of xl(n) and 

x2(n), then it can also be fully determined with the 

knowledge of xl(n) and the first three samples of x(n). 

The convolution equation (2.4) can be written as: 

xl(n) can be determined by the use of Theorem 2.1. x(n) 

can be computed with the knowledge of xl(n) and x2(n) using 

the set of equations 2.5. Since x (n) is a 5-point real, even 2 



sequence, only three independent values of x2(n) are enough 

to specify it uniquely. Suppose that x2(n) is not known but 

the first three samples of x(n), i.e, x[O], x[l], and x[2], 

are available. Then, by using the first three equations in 

(2.5). x2(n) can be determined. Now since both xl(n) and 

x (n) are available, the rest of x(n) can be computed. 2 

Thus we have shown that if xl(n) can be computed 

independently, the required additional information about 

x2(n) is equivalent to knowing the first three samples of 

x(n). We have already shown that xl(n) can be determined from 

the phase information of X(f). Furthermore, in this case, 

even without knowing any values in the sequence x (n), x(n) 
1 

will be computed to the correct scale factor. If, by the use 

of Theorem 2.1, xl(n) is determined as, say axl(n) for a 

positive constant a, then when equation 2.5 is used, x2(n) 

will be determined as (l/a) x2 (n) , since x[O] , x[l] , and x[2 ] 

are known completely. Thus the rest of the x(n) values will 

also be known to the correct scale factor. Now we consider 

the case when the phase added due to X2(f) is n. When this 

is so, xl(n) will actually be determined as -ax (n) for some 1 

constant a. Then x2(n) will be determined as -(l/a)x2(n) when 

the set of equations 2.5 is used for reconstruction. Since 

x(n) is a convolution of the two, it will be recovered 

correctly. Hence the proof of the theorem is complete. 

In the proof of this theorem we have assumed that the 

first three values of x(n) are known. The knowledge of three 

arbitrarily chosen samples may not be sufficient. The known 

samples of x(n) should be such that the corresponding 



equations in the set (2.5) are independent. Randomly chosen 

three samples of x(n) may not give independent equations for 

complete recovery of x2 (n) . 
We illustrate these results with the use of the signal 

x(n) in Fig.2.3(a). The z-transform of this signal has a pair 

of reciprocal zeros. Fig.2.3(b) shows the signal 

reconstructed from the Fourier transform phase information 

alone. As expected, only the Fourier transform phase 

information is not sufficient to recover x(n). Figs.2.3(a) 

and 2.3(b) are identical to Figs.2.2(a) and 2.2(b), 

respectively. They are reproduced for the convenience of 

comparison with the following results. Fig.2.3(c) shows the 

signal recovered from the Fourier transform phase information 

and the knowledge of the first three signal samples. This 

signal bears a close resemblence to the original signal. 

Fig.2.3(d) shows the reconstructed signal when the three 

known samples do not give independent equations for the 

recovery of x2(n). It is not possible to reconstruct the 

original signal from this information. This illustrates the 

various aspects of Theorem 2.3. 

Theorem 2.3 states the conditions under which a 

sequence whose z-transform has one pair of reciprocal zeros 

can be determined from the phase of its Fourier transform. 

The result can be extended to sequences whose z-transforms 

have more pairs of reciprocal zeros. Theorem 2.4 states these 

conditions. 



Fig.2.3(a) A one-dimensional real sequence whose z-transform 
has a pair of reciprocal zeros. 

Fig.2.3(b) The signal recovered from only the Fourier 
transform phase of the signal in Fig.2.3(a). 
Since the z-transform of the original signal has 
a pair of reciprocal zeros, it is not possible to 
recover it from the Fourier transform phase 
information alone. 



~ig.2.3(c) The signal recovered from the Fourier transform 
phase and the knowledge of the first three 
samples of the signal in Fig. 2.3 (a) . Complete 
recovery is possible in this case. 

Fig.2.3(d) The signal recovered from the Fourier transform 
phase and three samples of the signal in 
Fig.2.3(a). These three samples do not give 
independent equations for signal recovery 
(Theorem 2.3). Therefore, it is not possible to 
recover the original signal. 



Theorem 2.4 : Let x(n) be a real sequence which is zero 

outside the interval 0 - < n - < N-1 with x[O] # 0. Let the z -  

transform of x(n) have m pairs of reciprocal zeros. Let y(n) 

be any real sequence which is zero outside the interval 

0 - < n 5 N-1. If By(f) = Bx(f) at (N-(4m+l)) distinct 

frequencies in the interval 0 < f < TT, and y[n] = x[n] for 

first r(4m+1)/21 ( r x l  stands for the smallest integer 

greater than or equal to x) distinct values of n, then y(n) = 

x(n) 

Proof : It is a straightforward extension of Theorem 2.3. 

It may be noted here that if the number of known 

samples of x(n) is less than the minimum specified in 

Theorems 2.3 and 2.4, the sequence x2(n) cannot be 

determined, no matter how many phase samples we have in the 

interval O<f<lT. Then it will not be possible to reconstruct 

the original sequence. Although this result has been 

developed only for a one-dimensional sequence here, we can 

show that two-dimensional sequences which have a few 

symmetric factors can be recovered from their Fourier 

transform phase information and knowledge of a few signal 

samples. 

In sections 2.1 and 2.2 we have listed the conditions 

under which a real one-dimensional sequence can be 

reconstructed from the phase of its Fourier transform. The 

signals considered in these sections were real-valued. In the 

next section we study the applicability of these results for 

complex-valued signals because these are the kind of signals 

we deal with in our applications. 



2.4 IMAGE RECONSTRUCTION FROM PHASE DATA 

It is .possible to recover a complex-valued signal from 

only the phase of its Fourier transform. This result can be 

developed quite easily for two-dimensional signals. We state 

a well known theorem from algebra that will be used to 

develop this result and will also be used in the next chapter 

for developing the results on signal reconstruction from 

quantized Fourier transform phase information. 

Theorem 2.5  : [ 3 3 ]  If X(zl,z2) and Y(zl,z2) are two- 

dimensional polynomials of degrees r and s with no common 

factors of degree > 0, then there are at most r*s (r 

multiplied by s) distinct pairs (zl,z2) where 

and 

The degree of a polynomial of two variables, X(u,v), is 

defined as the max(power(u)+power(v)) in the polynomial. For 

example, the degree of the polynomial P(u,v) = uv + u2v5 + 
3 3 2 5 u v , is 7 because of the term u v , and in this term the sum 

of the degrees of u and v is 7. The sum of the degrees of u 

and v in all other terms is less than 7. 

The zero-crossing points of two-dimensional polynomials 

fall on some contours on the (u,v) plane. This theorem states 

that if two two-dimensional polynomials of degree r and s do 

not have any common factors, then their zero-crossing 

contours cannot intersect in more than r*s points. This can 

be used for developing some important results. According to 



this theorem, it is not possible for two distinct two- 

dimensional polynomials, each of degree r, to have more than 

r2 common zero-crossing points. Therefore if it is known that 

two irreducible two-dimensional polynomials of degree at most 

r, have more than r' common zero-crossing points, then the 

two can differ only by a scale factor. Otherwise Theorem 2.5 

will be contradicted. This theorem can be used to prove the 

following result which will be of use to us. 

Theorem 2 . 6  : Let x(nl,n2) and y(nlrn2) be two-dimensional 

sequences which are zero outside the rectangle bounded by 

0 5 n1,n2 5 N. If the z-transforms of the even and odd parts 

of both x(nl,n2) and y(nl,n2) are irreducible, Re(x[O,Oj) # 

0 and Im(x[O,O]) # 0, and phase{Y(fl,f2)) = phase{X(fl,f2)) 

at all frequencies, and if y[O,O] = x[O,O], then x(nl, n2) = 

P r o o f  : A complex two-dimensional sequence can be written as 

a sum of an even and an odd two-dimensional sequences. Let 

x(nl,n ) be a complex two-dimensional sequence. Then 2 

x(n1,n2) = xe(n1,n2) + Xo("11"2) 

Taking the Fourier transform of both side we have 

X(fl.f2) = Xe(fl,f2) + Xo(fl.f2) 

We also know that 

Xe(f11f2) = Re(X(f1,f2) 

and 

xo(f1.f2) = 1.Im(x(flIf2) 

where Xe(fl,f2) and Xo(fllf2) are the Fourier transforms of 

xe(n1,n2) and xo(nlIn2), respectively. 

If the phase of X(fl,f2) is known at all frequencies, 



). -- 
then the zero crossings of the-~e (~(f lt f2) ) and Im(X(f , f2) ) 

are also known. Re(X(fl,f2)) has zero-crossing points 

whenever the phase crosses the jd = (2n+l) lT/2 lines and 

In(X(flff2)) has zero-crossing points when the phase crosses 

the jd = TTn lines. Using Theorem 2.5, we see that if the z- 

transform of a two-dimensional sequence is irreducible, then 

the two-dimensional sequence is completely determined from 

the zero crossings of the z-transform. Therefore, if the z- 

transforms of xe(n1,n2) and x (n n ) are irreducible, then 
0 1' 2 

they can also be recovered from the zero crossings of their 

z-transforms. Fourier transform of a two-dimensional sequence 

is obtained by evaluating the z-transform along the contours 

lz )=1 and lz21=1. Therefore the sequence can be determined 
1 

if a sufficient number of zero-crossing points can be found 

in its Fourier transform. The number of zero-crossing points 

required is related to the degree of the z-transform, and 

hence, to the extent of the finite support the signal is 

known to have. This means that Xe(flff2) and Xo(flff2) can be 

determined from the zero-crossing points of the real and the 

imaginary part of the ~ourier transform. ~ourier transform 

being a one-to-one relation between time and frequency domain 

signals, Xe(fl, f2) and Xo(fl, f2) specify xe (nl,n2) and 

xo(nltn2) respectively. But the even and odd components of 

the reconstructed signal may differ from the even and odd 

components of the actual signal by some scale factors, which 

may be different for both of them. The knowledge of x[O,O] 

and the constraint that both Re(x[O,O]) and Im(x[O,O]) are 



nonzero, causes these scale factors to be equal. Then these 

two components specify x(nl,n2) completely. 

Theorem 2.6 states that if the z-transforms of the even 

and odd parts of a complex-valued two-dimensional signal are 

irreducible, it can be recovered from only its Fourier 

transform phase information. The steps involved for image 

formation in acoustic imaging are outlined in Section 1.3. 

Two Fourier transforms have to be computed in the process, 

and it also involves multiplication by a complex-valued 

factor. Therefore, the technique of image formation is not a 

simple Fourier transforming in our case. But as the data in 

acoustic imaging is complex-valued, if the conditions laid 

down in Theorem 2.6 are satisfied, we expect to reconstruct 

images from the phase of the received data in acoustic 

imaging. We have found experimentally that a wide range of 

signals are reconstructible in this manner. 

Fig. 2.4 (a) shows an object chosen for study in this 

work. Only two-dimensional objects are considered in 

simulation studies, because it is difficult to simulate the 

acoustic field data at the object end for general three- 

dimensional objects. Figs. 2.4 (b) and 2.4 (c) show the images 

formed from only the phase information of the received data 

after 5 and 20 iterations, respectively, of the POCS 

algorithm. This illustrates that in acoustic imaging also, 

signals can be recovered from only phase information of the 

received data. 

The possibility of image formation from phase of the 

received data can help to reduce the measurement complexity 
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Fig.2.4 Image formation from t h e  phase d a t a  i n  acous t i c  
imaging. 
( a )  Or ig ina l  o b j e c t  128x128 p o i n t s  (Receiver a r r a y  

128x128 p o i n t s ) .  
(b)  Image recons t ruc ted  from t h e  f u l l  phase d a t a  

a f t e r  5 i t e r a t i o n s  of t h e  POCS algorithm. 
(c) Image recons t ruc ted  from t h e  f u l l  phase da ta  

a f t e r  20 i t e r a t i o n s .  



in an acoustic imaging set up. Usually both the phase and 

magnitude components are measured at the hydrophone array. 

This method suggests that the magnitude measurement need not 

be made at all. The phase measurement alone is sufficient for 

signal recovery. 

2 . 5  SUMMARY 

When the z-transform of a one-dimensional or a two- 

dimensional real valued signal does not contain any symmetric 

factors, the original signal can be specified to within a 

scale factor from only the Fourier transform phase 

information. The scale factor can be determined from the 

knowledge of one signal sample. In the presence of a few 

symmetric factors, the knowledge of a few signal samples can 

help in the signal recovery, as it is not possible to recover 

the signal from only the Fourier transform phase information. 

When the signal is complex valued, it can be recovered from 

the Fourier transform phase information if the z-transforms 

of its even and odd components are irreducible. These results 

can be used for signal reconstruction from complex-valued 

data collected at a receiver array. Since the signals are 

complex valued, more data samples are required for image 

formation. But the measurement complexity on the receiver 

array is decreased as the magnitude measurements need not be 

made in this case. Even the full phase information is not 

required for recovery of the original signal. The knowledge 

of zero-crossing points of the real and the imaginary parts 

of the received data is sufficient for this purpose. This 



suggests a phase quantization scheme which we discuss in the 

next chapter. 



CHAPTER 3 

SIGNAL RECONSTRUCTION FROM QUANTIZED PHASE DATA 

3.1 MEASUREMENT COMPLEXITY AND QUANTIZED PHASE DATA 

One of the issues in the class of imaging problems 

under consideration is.to reduce the measurement complexity 

of the system. The data at each element consists of a phase 

and a magnitude component. In Chapter 2 we showed that if the 

number of data samples is large, it is not necessary to make 

magnitude measurements. The phase information of the received 

data alone is sufficient for signal recovery. In this chapter 

we develop this scheme further and show that it is not 

necessary for the phase information to be very accurate. We 

show that the quantized phase information of the received 

data is sufficient for signal recovery. Some results on this 

topic have already been reported in literature [ 3 4 ] .  We study 

the application of these results for our case. As we will 

show, since at each receiver element, only the quantized 

phase information is required, the phase measurement need not 

be very accurate. Therefore the measurement complexity can be 

reduced. 

If it were possible to reconstruct a signal from the 

Fourier transform phase information alone, it would mean that 

the rest of the information in the Fourier transform domain 

is redundant. It is not so. In general both the phase and 

magnitude of the Fourier transform are required for signal 

reconstruction. Only when the signal satisfies certain 



constraints, it is possible to recover it from its Fourier 

transform phase information. In such situations, we require a 

larger number of samples as compared to the case when 

reconstruction is done from both the phase and magnitude 

[16]. In situations where the phase-only reconstruction is 

possible, the lack of magnitude information at all samples is 

compensated by a larger number of phase samples. Therefore, 

while these schemes help to reduce the measurement 

complexity, the number of elements (hydrophones) on the 

receiver array must be increased. This is also not desirable 

as it increases the cost of the imaging setup. There are 

techniques to Gvercome this difficulty and they will be 

discussed in Chapter 4. Here we present the results about 

signal reconstruction from quantized phase information 

assuming that there are remedies for any side-effects caused 

by this scheme. 

3.2 RECONSTRUCTION FROM QUANTIZED FOURIER TRANSFORM PHASE 

INFORMATION 

In this section we study the problem of signal recovery 

from the quantized Fourier transform phase information. Some 

results available in literature are presented first. Before 

stating the results, we explain a few important terms. 

(1) A sequence is said to have the region of support as R(N) 

if the sequence is zero outside the region -N~nl,n2~N [34]. 

(2) A two-dimensional signal has a region of support over a 

non-symmetric half-plane (NSHP), if (n1,n2) is in the region 

of support implies that (-nl,-n ) is not in the region of 2 



support. 

(3) Sign{Re[X(fl,f2)]) and Sign{Im[X(fl,f2)]) represent the 

signs of the real and imaginary parts, respectively, of the 

Fourier transform of a sequence x(nl,n2). 

Now we state the first result: 

Theorem 3.1 : Let x(nl,n2) and y(nl,n2) be real two- 

dimensional sequences with region of support over a 

nonsymmetric half -plane with Sign{Re[X(fltf2)1) - - 

Sign{Re[y(fl,f2)]). If Re{X(fl,f2)) takes on both positive 

and negative values and Xe(zltz2) and Ye(zl,z2) are non- 

factorable, then x(nl,n2) = c y(nlrn2). for some positive 

constant c. 

The complete proof of this theorem can be found in 

[34],[35]. Here we give a brief outline of the proof to help 

in the development of a few more results. 

When a real two-dimensional sequence x(nl,n2) has its 

region of support over an NSHP, it can be specified uniquely 

by its even component. Since the Fourier transform of the 

even component of a sequence corresponds to the real part of 

its Fourier transform, the sequence can be recovered from the 

real part of its Fourier transform. The sign of the real part 

of the Fourier transform is known at all (fl,f2) pairs. This 

implies that we know the zero-crossing points of the real 

part of the Fourier transform of the sequence. Suppose that 

there are two two-dimensional sequences such that the z- 

transforms of their even and odd components are irreducible, 

and have degrees of at most s. If the real parts of their 

Fourier transforms have more than sL common zero-crossing 
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points, then the two sequences can differ only by a scale 

factor. This follows directly from Theorem 2.5. Therefore if 

the sign of the real part of the Fourier transform of a two- 

dimensional sequence is known at all the frequencies, then 

the sequence can be specified to a within scale factor, 

provided the number of zero-crossing points is more than a 

certain number. This number is a function of the degree of 

the z-transform of the sequence [34]. 

This theorem states the conditions under which certain 

real valued two-dimensional sequences can be recovered from 

the sign of the phase of real part of their Fourier 

transforms. The result is easily extendable to complex 

signals that have their region of support over an NSHP or 

signals that are symmetric around the origin. This is because 

such sequences are completely specified by their even 

components, and therefore, by the real part of their Fourier 

transforms. Therefore complex valued sequences with region of 

support over an NSHP, or signals symmetric around the origin, 

can be recovered from only the sign information of the real 

parts of their Fourier transforms, provided the z-transforms 

of the even components of these sequences are irreducible. 

Theorem 3.1 can be stated now in this form: 

Theorem 3.2 : Let x(nl,n2) and y(nlfn2) be two-dimensional 

sequences, of the type mentioned above, with region of 

support over a nonsymmetric half-plane with 

Sign(Re[X(fl,f2) 1) = Sign(Re[Y(fl,f2) I I .  ~f Re(X(fl,f2)) 

takes on both positive and negative values and Xe(zlfz2) and 



Ye(zl,z ) are non-factorable, then x(nl, 2 n2) = C y(n11n2) for 

some positive constant c. 

If the original signal is a general complex valued 

signal, it does not conform to the types specified in 

Theorems 3.1 and 3.2. We want to establish whether such a 

signal can be recovered from the quantized phase information 

as mentioned above. If the signal has a finite support, 

extending to all the four quadrants, in general it cannot be 

recovered from the real part of its Fourier transform. But 

the signal can be broken into an even and an odd component. 

The Fourier transform of the even component is the real part 

of the Fourier transform of the original signal, and the 

Fourier transform of the odd component is the imaginary part 

of the Fourier transform of the original signal. Keeping this 

in mind, we state the following theorem: 

Theorem 3.3 : Let x(nl,n2) and y(nlrn2) be two-dimensional 

sequences with a finite region of support. Let 

sign(Re[X(fl,f2)]) be identical to sign(Re[Y(fl,f2)]) and 

sign(Im[,~(f~,f~)]) be identical to sign(Im[Y(fl,f2)]). Assume 

that Re(X(fl,f2)) and Im(X(fl,f2)) take on both positive and 

negative values and Xe(z1,z2), Xo(~11~2)l Ye(zl,z2) and 

Yo(zl,z2) are non-factorable. If Re(x[O,O]) and Im(x[O,O]) 

are non-zero and if y[O,O] = x[O,O] then x(nl,n2) = y(nlln2). 

P r o o f  : A complex two-dimensional sequence x(nlln2) can be 

written as the sum of a two-dimensional even sequence and a 

two-dimensional odd sequence. The Fourier transform of 

xe(nl,n2) is equal to the real part of the Fourier transform 

of x(nl,n2) and the Fourier transform of xo(n1,n2) is equal 



to the imaginary part of the Fourier transform of x(nl,n2). 

Therefore, if Re{X(fl,f2)) and Im{X(fl,f2)} can be computed 

independently, the original signal can be recovered uniquely. 

If the signs of Re{X(fl,f2)) and Im{X(fl,f2) } are known at 

all frequencies, and if Xe(zl,z2) and Xo(zl,z2) are 

irreducible, then by Theorem 3.2, xe(nl,n2) and xo(n1,n2) can 

be determined to within some scale factors. The knowledge 

that Re(x[O,O]) and Im(x[O,O]) are non-zero, and that X[O,O] 

= y[O,O] causes these scale factors to be equal. x(nl,n2) can 

now be uniquely determined because its even and odd 

components are known. This completes the proof of this 

theorem. 

Retaining the sign of the real part of the Fourier 

transform is equivalent to quantizing the phase to two 

levels. The phase is quantized according to the following 

scheme : 

P, = 

As shown above the phase is quantized to two levels. 

Since one bit is sufficient to represent two levels, we call 

it 1-bit phase information. 

Similarly, knowing the signs of the real and the 

imaginary points of the Fourier transform of a two- 

dimensional sequence is equivalent to quantizing the phase to 

four levels (we shall refer to it as 2-bit phase, as two bits 

are sufficient to represent four levels of quantization). The 



2-bit quantization is done according to the following scheme: 

Fig.3.1 shows the geometrical interpretation of the 1- 

bit phase quantization scheme. 1-bit phase information refers 

to the situation when, for each complex vector in the Fourier 

transform domain, we retain the information of the half-plane 

in which it lies. Similarly 2-bit phase means, for each 

complex vector, we remember the quadrant in which it lies. 

So far we have seen that certain class of signals can 

be specified from 1-bit or 2-bit phase information of their 

Fourier transforms. The condition laid down in the theorems 

was that this quantized phase information should be known at 

all frequencies, though only a finite number of zero-crossing 

points are required to recover a signal from its quantized 

Fourier transform phase information. In practice, we deal 

with discrete signals and discrete Fourier transforms. 

Therefore it is not possible to compute the Fourier transform 

phase at all frequencies. The sampled points themselves do 

not cover all the zero-crossing points. In such situations we 

can look for sign changes in values at adjacent points. A 

change of sign indicates the existence of a zero-crossing 

point between the two points. The number of sign changes or 

equivalently, the number of zero-crossing points required to 

reconstruct a discrete, finite-support sequence from its 
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Fig.3.l ~eometric interpretation of the 1-bit phase 
quantization scheme. 1-bit phase means retaining the 
sign of the real part of the complex vector. 



quantized Fourier transform phase information is related to 

the extent of the finite support of the sequence. If there is 

a two-dimensional sequence with finite support of 4N points 

(at most 2N in each dimension) then another sequence of the 

same finite support can have at most ( 4 ~ ) ~  = 1 6 ~ ~  zero- 

crossing points in common with this sequence. But if we know 

more than 16N2 zero-crossing points of this sequence, then 

any other sequence with the same finite support and having 

the s a w  zero-crossing points can differ from it only by a 

scale factor (Theorem 2.5). Therefore a discrete two- 

dimensional sequence with a region of support over R(N) is 

uniquely defined if there are more than 1 6 ~ ~  sign changes in 

the real part of its Fourier transform. 

In this section we have seen that two-dimensional real 

signals or two-dimensional complex signals with region of 

support over an NSHP can be determined from one-bit phase 

information of their Fourier transforms. General complex 

signals with a finite region of support can be determined 

from two-bit phase of their Fourier transforms. We are now in 

a position to study the applicability of these results to 

some practical problems. 

3.3 ALGORITHM FOR SIGNAL RECOVERY FROM 2-BIT PHASE DATA 

In section 3.2 we stated the conditions under which a 

two-dimensional signal can be recovered from 2-bit phase of 

the received data. In this section we develop an algorithm to 

achieve this. The algorithm is based on the POCS technique. 

The algorithm is presented as applicable for acoustic 
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imaging. The required input is the 2-bit phase information of 

the received data, the knowledge of the propagation factor 

h(x,y) and apriori knowledge of the region of support of the 

original signal. The algorithm is as follows: 

(1) Let x be any any two-dimensional signal. x serves as the 

initial estimate of the original signal. 

repeat 

(2) Impose finite support constraint on x. The 

resultant signal is the next estimate of the 

original object. Use this signal to simulate the 

data at the receiver plane. 

Make the 2-bit phase correction in accordance with 

the POCS algorithm. 

Compute the Fourier transform of the sequence. 

Multiply the result by the factor H-I ( fl , f ) 

Take the inverse Fourier transform of this 

sequence. The resultant signal x is an estimate of 

the original object. 

until an acceptable solution is obtained 

(7) Stop. 

Algorithm 3.1 An iterative algorithm based on the POCS 

technique for image formation from the 2-bit 

phase data in acoustic imaging. 

The algorithm given above is based on the POCS 

technique. It can be proved that if there is a unique 

solution satisfying the given constraints, then the algorithm 

4 4  



converges to it. If the solution set consists of more than 

one signal, then the algorithm converges to one element of 

the set. 

To prove the convergence, we make the following 
\ 

observations: 

(1) Signals that have specified 2-bit phase information form 

a convex set (see Appendix). Therefore the specification of 

2-bit phase information of the received data defines a convex 

set. The step (3) of the algorithm takes the projection of 

the simulated data onto the convex set defined by the 2-bit 

phase measured at the hydrophone array. 

(2) Signals that have a specified finite support constraint 

form a convex set (see Appendix). Therefore knowledge of the 

finite support of the original signal also defines a convex 

set. After step (3), we have simulated data which has the 

correct 2-bit phase information. This is used to reconstruct 

the signal in steps (4) , (5) , and (6) of the algorithm given 

above. In accordance with the known information, the finite 

support constraint is applied to the signal in step (2). This 

is equivalent to taking the projection onto the convex set 

defined by the known finite support constraint. 

The algorithm works by taking projections onto the two 

convex sets alternately. If the solution is unique, the 

algorithm outlined earlier converges to this solution. 

Otherwise it converges to one of the solutions in the set of 

all possible solutions, provided this set is not empty. This 

proves the convergence of the algorithm (see Appendix). 



The results developed in this chapter state the 

conditions under which a signal can be recovered from only 2- 

bit phase information of the received data in acoustic 

imaging. We have seen that a signal is uniquely determined by 

the knowledge of a certain number of zero-crossing points in 

the Fourier transform domain. But the algorithm used for 

reconstruction, as given above, does not use the zero- 

crossing points. We just measure the 2-bit phase at a certain 

number of points and then replace this measured 2-bit phase 

at the appropriate points during each iteration. The 

knowledge of the 2-bit phase does not imply the knowledge of 

the zero-crossing points also. But if there is a sign change 

between two adjacent points, it implies that there is a zero- 

crossing point between the two. If the sampling rate is high, 

then the adjacent points will be close to each other. 

Therefore, if it is known that there is a zero-crossing 

between the two points, due to the sampled points being close 

to each other, the location of such a zero-crossing will be 

known with reasonable accuracy. If the number of such sign 

changes is more than the number of zero-crossing points 

required for reconstruction, we can expect a good result. The 

solution set forms a continuous space. Therefore any 

inaccuracy in the determination of the zero-crossing points 

causes the solution set to expand. But if the inaccuracy is 

small, the solution set will also be small. When one of the 

elements of this set is picked as the probable solution, we 

can expect it to resemble the original solution in the basic 

features. Since we deal with image signals, important 



features like the edge information, uniform regions in the 

image, etc., are sufficient for recbgnition of the object. 

The images formed from the 2-bit phase data reproduce these 

features. This statement is justified through the 

experimental results. 

3.4 SIMULATION STUDIES 

We have seen that the quantized phase information is 

sufficient for reconstruction of the original signal. In this 

section, we give experimental results corresponding to the 

theory developed in this chapter. The results have been 

obtained for a simulated acoustic imaging setup. 

Fig.3.2 shows the two-dimensional object used for our 

study. Figs.3.3(a) and 3.3(b) show the images reconstructed 

from 2-bit phase and 1-bit phase data, respectively. These 

images were obtained after one iteration of the POCS 

algorithm. The corresponding images obtained after 25 

iterations of the algorithm are shown in Figs.3.3(c) and 

3.3(d). These images were obtained from only the quantized 

phase information. In other words, the initial estimate was 

formed from the quantized phase information and a uniform 

magnitude value. The object and the image size is 128x128 

points. If the correct magnitude values are used, we expect a 

faster convergence of the algorithm. Figs.3.4(a) and 3.4(b) 

show the images obtained from 2-bit phase and 1-bit phase 

data, respectively, after one iteration of the algorithm. In 

this case, the actual magnitude information was used to form 

the initial estimate. But in the subsequent iterations, only 
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Fig.3.2 The two-dimensional object used to study the image 
formation from quantized phase data. 
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Images reconstructed from quantized (2-bit and 1- 
bit) phase data. 
Original object 128x128 poinfs. 
Number of receiver elements 128x128. 
Uniform magnitude information used for image 
reconstruction. 
(a) From only the 2-bit phase data (1 iteration). 
(b) From only the 1-bit phase data (1 iteration). 
(c) From only the 2-bit phase data (25 iterations). 
(d) From only the 1-bit phase data (25 iterations). 



Fig.3.3 Images reconstructed from quantized (2-bit and 1- 
bit) phase data. 
Original object 128x128 points. 
Number of receiver elements 128x128. 
Uniform magnitude information used for image 
reconstruction. 
(a) From only the 2-bit phase data (1 iteration). 
(b) From only the 1-bit phase data (1 iteration). 
(c) From only the 2-bit phase data (25 iterations). 
(d) From only the 1-bit phase data (25 iterations). 



Fig.  3 .4  Images r econs t ruc t ed  from quant ized  ( 2- b i t  and 1- 
b i t )  phase d a t a .  
O r i g i n a l  o b j e c t  128x128 p o i n t s .  
Number of  r e c e i v e r  e lements  128x128. 
Actual  magnitude in format ion  used t o  form t h e  
i n i t i a l  e s t i m a t e  f o r  image r e c o n s t r u c t i o n .  
( a )  From t h e  2- bit  phase d a t a  (1 i t e r a t i o n ) .  
( b )  From t h e  1- bi t  phase  d a t a  (1 i t e r a t i o n ) .  
(c)  From t h e  2- bit  phase d a t a  (25 i t e r a t i o n s ) .  
(d )  From t h e  1- b i t  phase d a t a  ( 2 5  i t e r a t i o n s ) .  
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Fig.3.4 Images reconstructed from quantized (2-bit and 1- 
bit) phase data. 
Original object 128x128 points. 
Number of receiver elements 128x128. 
Actual magnitude information used to form the 
initial estimate for image reconstruction. 
(a) From the 2-bit phase data (1 iteration). 
(b) From the 1-bit phase data (1 iteration). 
(c) From the 2-bit phase data (25 iterations). 
(d) From the 1-bit phase data (25 iterations). 



the quantized phase information was used for the data 

correction. The corresponding imaged obtained after 25 

iterations are shown in Figs. 3.4 (c) and 3.4 (d) . We observe 

that retaining the magnitude information helps in a faster 

convergence to the solution. The convergence of the algorithm 

to the solution depends on the initial estimate of the 

signal. Retaining the magnitude of the received data implies 

that we start with a point closer to the solution than when a 

uniform magnitude value is assumed for the magnitude. 

Therefore convergence is faster in the former case. 

Though the application of Theorem 3.3 requires the 

knowledge of x[O,O], we did not use this information for 

image reconstruction. Experimentally we have found that the 

finite support constraint is sufficient for image 

reconstruction. 

3.5 SUMMARY 

A two-dimensional real valued signal can be 

reconstructed from the 1-bit phase information of its Fourier 

transform. 1-bit phase information refers to the quantization 

of phase to two levels. Complex valued signals with a finite 

support over an NSHP or even signals can also be recovered 

from the 1-bit phase information. But this result does not 

hold for the complex valued signals in general. General 

-complex valued signals can be recovered from the 2-bit 

information of the Fourier transform phase. This refers to 

the phase quantized to four levels. The 2-bit phase 

information contains the knowledge of the signs of both the 

real and imaginary parts of the ~ourier transform. In 



acoustic imaging, an image can be formed from the 2-bit phase 

information of the received data, since we deal with complex 

valued signals. We have seen from the experimental results 

that the 1-bit phase and magnitude information of the 

received data can also be used to form good images. These 

techniques require a large number of samples to be available. 

An algorithm based on the POCS technique can be used for 

signal recovery from the 2-bit phase information and the 

knowledge of the finite support of the signal. Phase 

quantization schemes can be used to reduce the measurement 

complexity, as the measurements need not be very accurate. 



CHAPTER 4 

SIGNAL RECONSTRUCTION FROM QUANTIZED PHASE AT 
MULTIPLE FREQUENCIES 

4.1 RECONSTRUCTION FROM MULTIPLE FREQUENCY DATA 

Phase quantization technique helps in the reduction of 

'the measurement complexity for the class of imaging problems 

under consideration in this work. But the number of data 

samples required to reconstruct the signal from the quantized 

phase information is more as compared to the case of signal 

reconstruction from full phase information. To collect the 

required number of data samples, the receiver array should 

have a large number of receiver elements. We had started with 

the aim of reducing the overall complexity, but the need of a 

large number of receiver elements increases the complexity of 

the receiver size. Therefore, we must find some way to 

overcome this difficulty. 

Earlier attempts to reduce the receiver array size used 

synthetic aperture techniques [ 3 6 ] - [ 3 8 ] .  But these techniques 

do not exploit the advantages of iterative algorithms for 

signal reconstruction from partial information. Our image 

formation technique is based on the POCS algorithm. In the 

POCS algorithm, convex sets are formed from the known 

information about the signal and the collected data. The 

algorithm converges to one of the elements in the 

intersection of these convex sets. If this intersection set 

is small, the solution obtained by using the POCS algorithm 



is close to the original signal. If this set is large, then 

the solution may differ from the original signal. But the 

algorithm ensures that the solution to which it converges is 

one among the class of signals that satisfy the given 

constraints. Convergence of the POCS algorithm depends upon 

the initial estimate of the original signal. 

Fig.4.1 illustrates this point. The solution obtained 

with point a as the initial estimate is different from that 

obtained with point b as the initial estimate. If the 

intersection set is small in size, the signal to which the 

algorithm converges will be close to the original signal. If 

the available information is accurate, and the amount of 

information is large, the solution set will be small. But it 

is not always possible to get more accurate information. 

Another way to reduce the size of this set is to form a few 

more convex sets. The solution set will be the intersection 

of all these sets. As the number of sets increases, the 

solution set forms a non-increasing sequence in terms of the 

number of elements. Fig.4.2(a) shows the solution set with 

only two convex sets. Fig.4.2(b) shows that with the 

availability of another set, the solution set decreases in 

size, i.e. the number of elements in the solution set 

decreases. 

Recently a new technique has been proposed for signal 

reconstruction using data collected at different frequencies 

[39]-[43]. This technique reduces the size of the 

intersection of various convex sets, and then makes use of 

the POCS algorithm to obtain the solution. In section 4.2 we 
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Fig.4.1 The solutions obtained from two different initial 
estimates may be different. This figure shows two 
convex sets - set I and set 11. The hatched region 
is the solution set. It can be seen that the 
solution obtained by choosing point (a) as the 
initial estimate is different from that obtained by 
choosing point (b) as the initial estimate. 



Fig.4.2(a) The solution set (hatched region) formed from two 
convex sets. 

convox 
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Fig04.2(b) The solution set (hatched region) when one more 
convex set is added. It can be seen that this set 
is smaller than (and is a proper subset of) the 
solution set in Fig.4.2(a). 



state this algorithm and outline the main idea behind the 

technique. The same procedure can be extended to form images 

with quantized phase data collected at receiver arrays 

consisting of a small number of receiver elements. The 

experimental results are discussed in section 4.3. 

4 . 2  ITERATIVE ALGORITHM FOR IMAGE RECONSTRUCTION FROM 

MULTIPLE FREQUENCY DATA 

In this section we review the technique of signal 

reconstruction with the use of multiple frequencies. We state 

the algorithm used for image reconstruction in acoustic 

imaging. This algorithm is also based on the POCS technique. 

We also briefly describe the theoretical aspects of this 

technique. 

It has been proposed that the data collected at 

multiple frequencies can be used for signal reconstruction in 

acoustic imaging [43]. Assume that frequencies for fl,-., 

f ~ - l  are the N frequencies used for data collection. The data 

is collected by transmitting the wave of each frequency 

separately and then measuring the field induced at the 

receiver end due to each of them. This data can then be used 

in the following algorithm, adapted from [43], to reconstruct 

the image: 

(1) Take the data collected at frequency f,, as the starting 

point. Use this data to form the first estimate of the 

object. Set a variable i to 0. 



repeat 

Increment i by 1. Use the estimate of the original 

signal formed at this stage to simulate the 

quantized ,phase data at the receiver end for 

frequency fi mod N. 

In accordance with the POCS algorithm, correct 

this simulated quantized phase data with the 

actually known data samples at the frequency 

fi m o d N '  . 
Form the next estimate of the original signal from ' 

this corrected data. 
C 

until an acceptable image is formed. p 
, 

(5) Stop. 4 .  

Algorithm 4.1 An algorithm for image reconstruction from the 

quantized phase data ,kollected at several 

frequencies. 

............................................................. 

Discussion of the theory behiftP signal reconstruction 

from phase and magnitude information at multiple frequencies 

can be found in [ 4 3 ] .  Here we dieuss it briefly because it 

is useful to develop the results for image formation from the 

quantized phase information of multiple frequency data. 

Equation (t.8) shows that in acoustic imaging the 

received data can be written as 

gf(x'y) = go(x,y) * hf(x1~) ( 4  1) 

where go(x,y) is the field on the object plane and hf(x,y) is 

a factor that arises due to propagation of the acoustic field 

from the object to the receiver array. This factor is a 



function of the frequency (f). 

For a discrete case it can be written as 

The partial data collected at each frequency forms a 

convex set. Each point in the set represents a possible 

solution for the data collected at that frequency and all 

such solutions for the data collected at a particular 

frequency are contained in the corresponding convex set. The 

intersection of the various convex sets defines the set of 

all possible solutions for the data collected at various 

frequencies. If all the convex sets have only one common 

point, then this point will correspond to the original 

signal. In that case, the algorithm 4.1 will converge to it. 

The idea behind using several frequencies for signal 

recovery is that the data collected at each frequency forms a 

convex set. The set of solutions is the intersection of all 

such convex sets. By increasing the number of frequencies, we 

increase the number of convex sets. The intersection of N 

sets will be a subset of the intersection of a smaller number 

of these sets. An example will clarify this argument. Let set 

A be the solution set of the convex sets C1, C2,..., CNel. If 

some more information is available, and it forms another 

convex set, the solution set will be the intersection of the 

sets C1, C2t--.t cN-l and CN. It is equal to the intersection 

of the previous solution set A and the new set C N' Theref ore 



the new solution set is at most as large as the older set A .  

The solution set is non-empty since we know that the original 

signal (as yet unknown) satisfies the constraints represented 

C 2 ~ - * 1  CN-l and CN. If the additional information is 

independent of that available previously, the new solution 

set will be a proper subset of A.  The POCS algorithm will 

converge to an element of this new solution set and it can be 

expected that the solution thus obtained will be closer to 

the original solution. For the image signals we are more 

interested in the object features like edges and uniform 

regions in the object. Images reconstructed from multiple 

frequency data reproduce most of these features. Therefore 

this technique is of practical importance. 

The number of frequencies required to make the 

measurements is dependent on the amount of known data at each 

frequency. If a small number of samples are known for each 

frequency, then the number of frequencies required for a 

complete recovery of the original signal will be larger as 

compared to the situation when we have comparatively more 

information at each frequency. 

We have seen the basic idea behind the reconstruction 

of acoustic imaging signals from multiple frequency data for 

the situation when both magnitude and phase information are 

available. Similarly, we can expect the images reconstructed 

from the quantized phase data at multiple frequencies to be 

better than those reconstructed from the data at a single 

frequency . 



4.3 SIMULATION STUDIES 

In this section we present the results of experimental 

studies on acoustic image reconstruction from multiple 

frequency quantized phase data. 

The object shown in Fig. 3.2 is used for the 

experimental studies. Figs.4.3(a) to 4.3(d) show the images 

formed from the full phase data collected by receiver 

arrays containing 128x128, 64x64, 32x32, and 16x16 receiver 

elements. The corresponding images reconstructed from the 2- 

bit phase data are shown in Figs.4.3(e) to 4.3(h). Those 

reconstructed from the 1-bit phase data are shown in 

Figs.4.3 (i) to 4.3 (1). We see that the image quality 

decreases if the number of receiver elements on the receiver 

plane is reduced. The following table gives the list of 

experiments performed with multiple frequency data and the 

figures showing the corresponding results. 

Table 4.1 describes the studies with full phase 

information. Tables 4.2 and 4.3 describe the studies with 2- 

bit phase and 1-bit phase data, respectively. 

TABLE 4.1 

Results of image reconstruction from the full phase data 

collected at multiple frequencies. 

............................................................. 
IMAGE SIZE RECEIVER ARRAY NUMBER OF RESULT IN 

SIZE FREQUENCIES FIGURE ............................................................. 
128x128 64x64 1 4.4(b) 



............................................................. 
128x128 32x32 2 4.5 (c) 

Figs. 4.4 (a) and 4.5 (a) show the original object. 

TABLE 4.2 -- 

Results of image reconstruction from the 2-bit phase data 

collected at multiple frequencies. 

IMAGE SIZE RECEIVER ARRAY NUMBER OF RESULT IN 
SIZE FREQUENCIES FIGURE 

............................................................. 
128x128 64x64 2 4.6 (c) 

Figs. 4.6 (a) and 4.7 (a) show the original object. 



TABLE 4.3 

Results of image reconstruction from the 1-bit phase data 

collected at multiple frequencies. 

............................................................. 
IMAGE SIZE RECEIVER ARRAY NUMBER OF RESULT IN 

SIZE FREQUENCIES FIGURE ............................................................. 
128x128 64x64 1 4.8(b) 

............................................................. 
128x128 32x32 1 4.9 (b) ............................................................. 
128x128 32x32 2 4.9 (c) ............................................................. 
128x128 32x32 4 4.9 (d) 

Figs. 4.8 (a) and 4.9 (a) show the original object. 

From the experimental results we make the following 

observations: 

(1) Decreasing the number of receiver elements causes 

degradation in image quality. This is because the quantized 

phase data available for reconstruction decreases with 

decreasing number of receiver elements. 

(2) Reduction in the amount of quantized phase data because 

of the reduced receiver array size can be compensated by 

increasing the number of frequencies for reconstruction. It 

can be noticed that as the number of available data points 

per frequency decreases, a larger number of frequencies are 



Fig.4.3 Images reconstructed by varying the number of 
hydrophones on the receiver array. 
Original object 128x128 points. 
(a), (b) , (c) , (d) From the full phase data with number 

of receiver elements 128x128, 64x64, 
32x32, and 16x16, respectively. 

(e) , (f) , (g) , (h) From the 2-bit phase data with 
number of receiver elements 128x128, 
64x64, 32x32, and 16x16, 
respectively. 

(i), (j), (k), (1) From the 1-bit phase data with 
number of receiver elements 128x128, 
64x64, 32x32, and 16x16, 
respectively. 



Fig.4.3 Images reconstructed by varying the number of 
hydrophones on the receiver array. 
Original object 128x128 points. 
(a), (b), (c), (d) From the full phase data with number 

of receiver elements 128x128, 64x64, 
32x32, and 16x16, respectively. 

(e) , (f) , (g) , (h) From the 2-bit phase data with 
number of receiver elements 128x128, 
64x64, 32x32, and 16x16, 
respectively. 

(i) , (j) , (k) , (1) From the 1-bit phase data with 
number of receiver elements 128x128, 
64x64, 32x32, and 16x16, 
respectively. 
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Fig.4.4 Images reconstructed from the full phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 64x64 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies. 
(e) Eight frequencies. 
(f) Sixteen frequencies. 
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Fig.4.4 Images reconstructed from the full phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 64x64 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies . 
(e) Eight frequencies. 
(f) Sixteen frequencies. 
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Fig.4.5 Images r econs t ruc t ed  from t h e  f u l l  phase d a t a  
c o l l e c t e d  us ing  1, 2, 4 ,  8, and 16 f r equenc ie s  by a  
r e c e i v e r  a r r a y  of  32x32 hydrophones. 
Number of i t e r a t i o n s :  50. 
( a )  Or ig ina l  o b j e c t  128x128 p o i n t s .  
( b )  S i n g l e  frequency.  
(c) Two f r equenc ie s .  
(d)  Four f r equenc ie s  . 
(e)  Eight  f r equenc ie s .  
( f )  S ix t een  f r equenc ie s .  



Fig.4.5 Images reconstructed from the full phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 32x32 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies. 
(e) Eight frequencies. 
( f) Sixteen frequencies. 



Fig.4.6 Images reconstructed from the 2-bit phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 64x64 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies. 
(e) Eight frequencies. 
( f) Sixteen frequencies. 



1. 1.1: : , '  ,; g:;.,, $4;;' 
..; .;g. '.:g,.:;#;;;v, ..., . ..*:. :. <-.,. .. ,..4.' *,: <: 1.: ;, 

MAD . . ;:&&fgik:ii~ . .-+. ... . .2L:-.:!;.. ,!3r.. : L : ki.. ! ., :- . .; . 
Rtb5 ;~;2+,:~.?+ ;p ~ : & ; : h -  

: ,;a . &$,, ,$$ 
q". ,.A L 

7 !< 
, a ,  'F. , .' I 

' :  .,,. . . I .  . ... : '&a .. .. . 

Fig.4.6 Images reconstructed from the 2-bit phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 64x64 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies. 
(e) Eight frequencies. 
(f) Sixteen frequencies. 
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Fig.4.7 Images reconstructed from the 2-bit phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 32x32 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies . 
(e) Eight frequencies. 
(f) Sixteen frequencies. 



Fig.4.7 Images r econs t ruc t ed  from t h e  2- b i t  phase d a t a  
c o l l e c t e d  us ing  1, 2, 4 ,  8, and 16 f r e q u e n c i e s  by a  
r e c e i v e r  a r r a y  of  32x32 hydrophones. 
Number of i t e r a t i o n s :  50. 
( a )  O r i g i n a l  o b j e c t  128x128 p o i n t s .  
(b )  S i n g l e  frequency.  
(c)  Two f r equenc ie s .  
( d )  Four f r equenc ie s .  
(e) E igh t  f r equenc ie s .  
( f )  S i x t e e n  f r equenc ie s .  
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Fig.4.8 Images reconstructed from the 1-bit phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 64x64 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies. 
(e) Eight frequencies. 
(f) Sixteen frequencies. 
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Fig.4.8 Images reconstructed from the 1-bit phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 64x64 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies . 
(e) Eight frequencies. 
(f) sixteen frequencies. 



Fig.4.9 Images reconstructed from the 1-bit phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 32x32 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies . 
(e) Eight frequencies. 
(f) Sixteen frequencies. 



Fig.4.9 Images reconstructed from the 1-bit phase data 
collected using 1, 2, 4, 8, and 16 frequencies by a 
receiver array of 32x32 hydrophones. 
Number of iterations: 50. 
(a) Original object 128x128 points. 
(b) Single frequency. 
(c) Two frequencies. 
(d) Four frequencies. 
(e) Eight frequencies. 
( f) Sixteen frequencies. 



required to produce good results. 

4 . 4  SUMMARY 

Signal reconstruction from the quantized phase data 

reduces the measurement complexity at the receiver end. But 

this technique requires a large number of data points for 

good reconstruction. Usually the receiver arrays contain 

small number of receiver elements. Quantized phase data 

collected from such receiver arrays is not sufficient to form 

high resolution images. Usually synthetic aperture techniques 

are used for signal interpolation to improve the resolution 

of the image. We have used a recently proposed method for 

signal interpolation for image formation from quantized phase 

data. This method uses the data collected at various 

frequencies to form convex sets. Then a suitable POCS 

algorithm is used for signal reconstruction from these sets. 

The data collected at multiple frequencies helps to decrease 

the size of the intersection of the convex sets formed from 

the available information. Therefore the solution formed from 

this data is closer to the original signal. A similar 

algorithm can be applied for signal reconstruction from the 

quantized phase data measured at a small receiver array using 

multiple frequencies. This technique reduces the measurement 

as well as the size complexity of the receiver array. We 

shall see in the next chapter that the effects of noise in 

the received data are also reduced by using the phase 

quantization schemes for image reconstruction. 



CHAPTER 5 

NOISE REDUCTION USING QUANTIZED PHASE INFORMATION 

5.1 NOISE REDUCTION IN IMAGE FORMATION PROBLEMS 

In most array processing problems, the data to be 

processed to form an image is noisy. If the signal is 

digital, and the additive noise magnitude is small as 

compared to the magnitude differences between the various 

digitization levels, the effect of noise can be reduced 

easily. For example, consider a binary signal and assume that 

the two levels of digitization are represented by amplitudes 

of 1 and 2 units respectively. Then noise upto a maximum 

magnitude level of 0.5 units is tolerable as a simple 

thresholding scheme can be used to eliminate the noise 

completely. But when the noise magnitude is large, the signal 

can be corrupted. In case of analog signals, any amount of 

noise corrupts the signal values. This effect is not easily 

reduced even when the noise magnitude is small. In acoustic 

imaging where image resolution is usually poor, the addition 

of noise makes the object recognition more difficult. 

Therefore study of the effects of noise assumes great 

significance. In the course of this work, image 

reconstruction refers to the reproduction of certain object 

features like edge information, regions of uniform gray- 

levels, etc. These features are important as they are 

sufficient for a human observer to recognize the object 

unambiguously, in most cases. Noise will mean an unwanted 



additive signal that makes it difficult to recognize the 

object features mentioned above. 

The problem of noise in signals has been studied 

extensively [ 4 4 ] - [ 4 6 ] .  We can model the problem of noise in 

the following way. Let go be the original signal. The 

propagation of the signal over the channel can be modelled as 

a transformation of the original signal. Using an array of 

hydrophones, this transformed data is measured at the 

receiver end. The received data g can, therefore, be written 

as 

g = Hgo (5.1) 

where H represents the transformation operator. If 8-I is 

computable, then go can be recovered from g by using 

-1 
g 0 = H  g (5.2) 

Equation 5.1 holds only in ideal situations. In the 

presence of noise, the received data can be written as 

g = ~ g  + n  
0 (5.3) 

where n may be the channel and circuit noise. Now the 

recovery of the original signal depends on the knowledge of 

n. n is a random process, therefore one cannot determine its 

value at each sample. We can at most have an estimate of the 

noise statistics. But we cannot simulate noise using those 

statistics and subtract it from the measured data, as this 

may increase the noise effects. Therefore, some other 

techniques are required for noise cleaning. 

A number of image processing techniques have been 

developed for noise cleaning in the image domain. A variety 



of filters have been designed for this purpose [47],[48]. 

These algorithms do the processing on the image formed after 

the signal processing stage. If the resolution of the image 

reconstructed at the output of the the signal processing 

stage is poor, then the noise reduction techniques may not be 

applicable. 

Keeping this in mind, we have tried to investigate 

whether noise reduction is possible during the signal 

processing stage itself. In Chapter 3 we explained that it is 

possible to recover the original information from the 

quantized phase information of the received data. An 

iterative algorithm based on the POCS technique was also 

given for the signal reconstruction from this quantized phase 

information. In this chapter we show how the quantized phase 

information helps to reduce the effects of noise in the 

reconstructed image. 

5.2 RECONSTRUCTION FROM QUANTIZED NOISY PHASE DATA 

In this section we show that the phase quantization 

schemes proposed in Chapter 3 can be used for noise reduction 

in acoustic imaging. We had stated that 2-bit phase 

information is equivalent to quantizing the phase of the 

received data to four levels. The quantization scheme is 

given in section 3.2. The phase is quantized to TT/4, 3TT/4, 

5 TT/4, and 7TT/4, when the complex vectors fall in the first, 

second, third or the fourth quadrants, respectively. 

Theorem 3.3 states the conditions under which a signal 

can be recovered from the 2-bit phase of the received data. 

Let the noise-free received data be represented by u(r,s). 



Let the noise signal be represented by a two-dimensional real 

array n(r,s). Then the noisy received data values are given 

by: 

v(r,s) = u(r,s) + n(r,s) (5-4) 

The noisy siqnal v differs from the noise-free signal u 

in magnitude as well as phase. This can be seen by taking a 

sample point, say u (ri , sj ) , in the received data. 

Corresponding noise value is n(ri,sj) (nij for convenience). 

Let u(ri,sj) = a cose + j b sine. Then the received 

data value will be 

v(ri,sj) = (a C O S ~  + nij) + j b sine (5.5) 

The magnitude of v(ri,s.) is ((a + nij) + b ) I 
and 

its phase value is tan-'(b sine / a cose + nij). Therefore at 

the point (ri,si), the noisy signal value differs from the 

original signal value in both phase and magnitude. Fig.5.1 

shows graphically that due to addition of a real quantity, 

both the magnitude and phase components of the original 

complex vector a can change. Therefore if the received data 

is noisy, and only the phase is measured at the receiver end, 

the measured values will be different from the actual values. 

In Chapter 2 we have given an iterative algorithm for 

signal recovery from only the phase of the received data for 

acoustic imaging applications. During each iteration, the 

phase of the simulated data is corrected by taking the 

projection onto the convex set consisting of all signals with 

a given set of phase values. This convex set is formed from 

the phase of the received data. If the phase of the received 
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Fig.5.1 This figure shows that both the phase and the 
magnitude of a complex vector can change due to the 
addition of real noise. 



data is incorrect, due to the presence of noise, the original 

signal will not be a member of this set. The intersection of 

the convex sets formed from the phase of the received data 

and from the finite support constraint will also not contain 

the original signal. Therefore the iterative algorithm cannot 

converge to the original signal. This point is illustrated in 

Fig.5.2. It shows the two convex sets and that the original 

signal lies outside the intersection of the two. The 

algorithm converges to a point in the intersection set but 

not to the actual solution. 

We will now show that a two-dimensional real signal can 

be recovered from only the 1-bit Fourier transform phase 

information even in the presence of noise, if the noise level 

is not very high. Then we will show that a similar argument 

can be applied for image reconstruction from noisy received 

data. 

We have seen earlier that the addition of noise alters 

both the phase and magnitude of the received data samples. 

Let us assume that the noise signal is of low energy. Then it 

is likely that most of the Fourier transform samples will 

have the same 1-bit phase as the noise-free data would have 

had. This is illustrated in Fig.5.3. One of the data samples 

with value aexp(j0) is changed to bexp(j$) (for some 

constants a and b) due to the addition of a real noise 

component n. But we see that both aexp(j0) and bexp(j$) lie 

in the same half-plane and therefore have the same 1-bit 

phase as the original signal. The half-planes of interest are 

those demarcated by the imaginary axis. 
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Fig.5.2 This figure shows two complex sets - set I and 
set 11. The desired solution point does not lie in 
the intersection of the two sets. Therefore, 
irrespective of the initial estimate chosen, the 
POCS algorithm cannot converge to the required 
solution. Such situations can arise due to the 
addition of noise in the data. 
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Fig.5.3 This figure shows the case when a complex vector 
a.exp ( j e )  is changed to another vector b.exp ( j a )  due 
to the addition of a real noise vector (n). But both 
the original and the resultant vectors lie in the 
same half-plane, and therefore, have the same 1-bit 
phase value. If the additive noise vectors have 
small magnitudes, the 1-bit phase values of most of 
the data samples may be unaffected. 



This concept can be explained numerically also. Let the 

phase at each sample be represented as a binary number. 

Quantizing the phase of the data to two levels is equivalent 

to retaining the most significant bit (MSB) of the phase 

value. Assume that a particular sample has a phase given by 

10010111 (this represents an 8-bit precision in phase 

measurement). In this case the quantized phase value is 1 

(MSB of the binary number). Let the addition of noise add a 

small amount of phase to the original value. Say the additive 

phase is 00001100. Then the resultant phase value at that 

sample becomes 10100011. The quantized phase (MSB) of the 

resultant value is still 1. The addition of a small amount of 

noise has not caused any change in the quantized phase value 

for that sample. Thus the 1-bit phase information for that 

particular sample is the same with or without the presence of 

noise. If the noise level is less, most of the samples may 

not be affected by it when their phase is quantized. But 

whenever the magnitude of a sample is small or when the 

complex vector lies very near the imaginary axis, a small 

amount of noise can change the quantized phase information to 

the wrong value. 

A complex-valued signal can be recovered from the zero- 

crossing information of the real and imaginary parts of its 

Fourier transform. If additive noise is real, only real part 

of the data values are affected. The odd component of the 

two-dimensional complex signal is recovered from the 

imaginary part of the received data. Since the real additive 



noise does not affect the imaginary part of the received 

data, the odd component of the signal can be recovered as it 

would have been in the absence of noise. The even component 

of the signal is recovered from zero-crossing points of the 

real part of the received data. Noise affects the real part 

of the data. The points where the signal went to zero may not 

be the zero-crossing points after addition of noise. 

Therefore there will be some uncertainty in the determination 

of the zero-crossing points. This implies that the iterative 

algorithm may not converge to the original signal. But as we 

have seen, the addition of small noise values may not have 

much effect on the quantized phase values of the sampled 

signal. Therefore, during each iteration, the correct sign 

will be substituted at most of the points. This may be 

compared with the reconstruction using full phase 

information. The measured phase values are incorrect at all 

the points where the noise is non-zero. During each 

iteration, these incorrect values are used for phase 

correction. It is evident that the error in the measured data 

is propagated further. Therefore we can expect the images 

obtained from the quantized phase information to be better 

than those obtained from the full phase information. The 

experimental results in the next section will show that in 

fact the images obtained from the quantized phase of the 

noisy data reproduce the essential features of the original 

signal, whereas those obtained from full phase data do not. 

Since images are recognized from their features, a technique 

that reproduces these is acceptable even though it does not 



guarantee exact convergence to the original. 

The main idea in using the quantized phase information 

for image formation in the presence of noise is to use a 

small amount of right information rather than a large amount 

of incorrect information. Even if the full phase measurement 

is available, it is better to use quantized phase information 

during iterations. The full phase information of the data can 

be used to form an initial estimate of the signal. 

In the case of quantized phase information, we can use 

some heuristics to improve the performance. A quantized phase 

value of TT surrounded by the quantized phase values of 0 can 

be substituted by 0, assuming that it is an error point. 

Similarly a quantized phase value of 0 surrounded by the 

quantized phase values of TT can be substituted by TT,  

assuming that it is also an error point. Similar heuristic 

approach may not be possible when the full phase information 

is used. 

The phase quantization technique can be used with 
& 

another variation. We state the following result from [34]w'r\XdzO. 
X 

Theorem 5.1 Let x(nl,n2) and y(nlrn2) be real two-dimensional 

sequences with support over a finite nonsymmetric half-plane, 

with Sign(Re[X(fl,f2)]) = Sign{Re[Y(fl,f2)]) for any o( such 

that Re(X(fl,f2)- OC ) takes on both positive and negative 

values. Also let 



C 1 if (n1tn2) = (OtO) 
where 6 (nl,n2) = 

0 otherwise 

h h h 
If X(zl,z2) and Y(zl,z2) are nonfactorable, then x(nl,n2) = c 

h h 
y(nl,n2) for (n1,n2) # 0, and x[O,O]- oC = c [~(o,o)- OL ] for 

some positive constant c. 

This theorem states that if the phase quantization is 

done after subtracting a constant R from all the samples, the 

signal can be recovered from this quantized phase 

information. In effect, the crossing of an arbitrary 

threshold OC , and not necessarily zero can be considered for 

phase quantization. This result can be used for phase 

quantization of noisy signals. If there is a particular value 

around which the signal rises or falls steeply, it can be 

used as the threshold for quantization. This way, even when 

the signal samples are very close to each other, the effect 

of noise on the samples around that threshold will be smaller 

as compared to the effect around the actual zero-crossing 

contour. Therefore, the contour where the signal crosses the 

threshold M, will be known more accurately than the region 

where the real part of the signal crosses zero. Hence the 

reconstructed image from the phase quantized in this manner 

can be expected to be better. 

In Chapter 4 it was shown that signal reconstruction is 

better if data is collected by transmitting waves of several 

frequencies. In this chapter we have seen that the quantized 

phase information can be used to reduce the effects of noise 

in the data on the reconstructed image. We have studied the 



use of the quantized phase information collected at several 

frequencies for noise reduction. The experimental results are 

discussed in the next section. 

5.3 ILLUSTRATION OF NOISE REDUCTION 

In this chapter we have proposed that noise effects can 

be reduced by using quantized phase of the received data. In 

this section we.give the results of experimental studies on 

the image reconstruction from the quantized phase of noisy 

received data. 

The object shown in Fig. 3.2 was used for the 

experimental studies. Figs.5.4(a) to 5.4(c) show the images 

reconstructed from full phase, 2-bit phase, and 1-bit phase 

information, respectively. These images were obtained after 1 

iteration of the POCS algorithm for the data collected at 

eight frequencies by a receiver array of 64x64 points. This 

data was noise-free. The corresponding images obtained after 

25 iterations are shown in Figs.5.4(d) to 5.4(fj. It can be 

seen that the images formed from full phase information 

converge faster towards the original as compared to the image 

obtained from 2-bit phase data. Reconstruction from the 1-bit 

phase data is shown just for comparison. In general we do not 

expect to get good images from noisy 1-bit phase data. 

Fig.5.5 shows the images obtained when the data was 

corrupted with normally distributed noise with SNR of 12db. 

Figs.5.5(a) to 5.5(c) show the images formed from full phase, 

2-bit phase, and 1-bit phase data, respectively, after 1 

iteration of the POCS algorithm. The images obtained after 25 



iterations are shown in Figs. 5.5 (d) to 5.5 (f) . We see from 

these figures that the images formed from 2-bit phase 

information are as good as those formed from full phase 

information. 

The use of quantized phase information is more evident 

for higher noise levels. Fig.5.6 illustrates this point. In 

this case the SNR was -2db. The order of images in 

Figs.5.6(a) to 5.6(f) is as in Figs.5.4 and 5.5. We see that 

the image formed from 2-bit phase data shows convergence 

towards the original. The image formed from full phase 

information does not show any such convergence. Fig.5.7 shows 

the corresponding images reconstructed with SNR = -10db. 

The noise levels for images in Figs.5.6 and 5.7 were 

higher than that for the images in Fig.5.5. The 2-bit phase 

data performs better than the full phase data only for 

moderate noise levels. When the noise in the data is very 

high, reconstruction is not possible from both the full and 

2-bit phase data. Figs.5.8 (a) to 5.8 (c) show the images 

obtained from full phase data, 2-bit phase, and 1-bit phase 

data, respectively, when the SNR was -30db. These images were 

obtained after 1 iteration of the POCS algorithm. The 

corresponding images obtained after 25 iterations are given 

in Figs.5.8(d) to 5.8(f). We see that at high noise levels, 

it is not possible to reconstruct the image from both the 

full phase and 2-bit phase data. 



Fig.5.4 The images recons t ruc ted  from f u l l  phase,  2- bi t  
phase,  and 1- b i t  phase of no i se- f ree  d a t a .  
O r i g i n a l  o b j e c t  128x128 p o i g t s .  
Number of r e c e i v e r  elements 64x64. 
Number of f requencies  used: 8 .  
( a )  From f u l l  phase a f t e r  1 i t e r a t i o n .  
( b )  From 2- bi t  phase a f t e r  1 i t e r a t i o n .  
(c )  From 1- b i t  phase a f t e r  1 i t e r a t i o n .  
( d )  From f u l l  phase a f t e r  25 i t e r a t i o n s .  
(e) From 2- b i t  phase a f t e r  25 i t e r a t i o n s .  
( f )  From 1- b i t  phase a f t e r  25 i t e r a t i o n s .  



Fig.5.4 The images r econs t ruc t ed  from f u l l  phase ,  2- b i t  
phase ,  and 1 - b i t  phase of n o i s e- f r e e  d a t a .  
O r i g i n a l  o b j e c t  128x128 p o i n t s .  
Number of r e c e i v e r  e lements  64x64. 
Number of f r equenc ie s  used: 8 .  
( a )  From f u l l  phase a f t e r  1 i t e r a t i o n .  
( b )  From 2- bit  phase a f t e r  1 i t e r a t i o n .  
(c)  From 1- bi t  phase a f t e r  1 i t e r a t i o n .  
( d )  From f u l l  phase a f t e r  25 i t e r a t i o n s .  
(e)  From 2- bi t  phase a f t e r  25 i t e r a t i o n s .  
( f )  From 1-bit  phase a f t e r  25 i t e r a t i o n s .  



Fig.5.5 The images r e c o n s t r u c t e d  from f u l l  phase ,  2- bi t  
phase,  and 1 - b i t  phase  d a t a  w i th  SNR = 12db. 
O r i g i n a l  o b j e c t  128x128 p o i n t s .  
Number of  r e c e i v e r  e lements  64x64. 
Number o f  f r e q u e n c i e s  used: 8.  
( a )  From . f u l l  phase  a f t e r  1 i t e r a t i o n .  
( b )  From 2- bit  phase  a f t e r  1 i t e r a t i o n .  
(c) From 1- bi t  phase  a f t e r  1 i t e r a t i o n .  
( d )  From f u l l  phase  a f t e r  25 i t e r a t i o n s .  
(e)  From 2- b i t  phase  a f t e r  25 i t e r a t i o n s .  
( f )  From 1-bit  phase  a f t e r  25 i t e r a t i o n s .  



Fig.5.5 The images reconstructed from f u l l  phase, 2- bit  
phase, and 1- b i t  phase da ta  with SNR = 12db. 
Original  ob j ec t  128x128 points .  
Number of r ece iver  elements 64x64. 
Number of frequencies  used: 8.  
( a )  From . f u l l  phase a f t e r  1 i t e r a t i o n .  
(b )  From 2- bit  phase a f t e r  1 i t e r a t i o n .  
(c)  From 1- b i t  phase a f t e r  1 i t e r a t i o n .  
(d )  From f u l l  phase a f t e r  25 i t e r a t i o n s .  
( e )  From 2- bit  phase a f t e r  25 i t e r a t i o n s .  
( f )  From 1- b i t  phase a f t e r  25 i t e r a t i o n s .  



Fig.5.6 The images r e c o n s t r u c t e d  from f u l l  phase ,  2- b i t  
phase ,  and 1- b i t  phase d a t a  wi th  SNR = -2db. 
O r i g i n a l  o b j e c t  128x128 p o i n t s .  
Number of  r e c e i v e r  e lements  64x64. 
Number of f r e q u e n c i e s  used:  8 .  
( a )  From f u l l  phase a f t e r  1 i t e r a t i o n .  
( b )  From 2- b i t  phase a f t e r  1 i t e r a t i o n .  
(c)  From 1- b i t  phase  a f t e r  1 i t e r a t i o n .  
( d )  From f u l l  phase a f t e r  25 i t e r a t i o n s .  
(e)  From 2- b i t  phase a f t e r  25 i t e r a t i o n s .  
( f )  From 1- b i t  phase  a f t e r  25 i t e r a t i o n s .  



Fig.5.6 The images r e c o n s t r u c t e d  from f u l l  phase ,  2- b i t  
phase ,  and 1- b i t  phase  d a t a  w i th  SNR = -2db. 
O r i g i n a l  o b j e c t  128x128 p o i n t s .  
Number of  r e c e i v e r  e lements  64x64. 
Number of  f r e q u e n c i e s  used: 8 .  
( a )  From f u l l  phase a f t e r  1 i t e r a t i o n .  
( b )  From 2- bi t  phase a f t e r  1 i t e r a t i o n .  
(c)  From 1- b i t  phase a f t e r  1 i t e r a t i o n .  
(d) From f u l l  phase a f t e r  2 5  i t e r a t i o n s .  
(e)  From 2 - b i t  phase a f t e r  25 i t e r a t i o n s .  
( f )  From 1- bi t  phase a f t e r  25 i t e r a t i o n s .  



Fig. 5.7 The images rec ,ons t ruc ted  from f u l l  phase ,  2- b i t  
phase ,  and 1 - b i t  phase d a t a  w i th  SNR = -10db. 
O r i g i n a l  o b j e c t  128x128 p o i n t s .  
Number of r e c e i v e r  e lements  64x64. 
Number of f r equenc ie s  used: 8.  
( a )  From f u l l  phase a f t e r  1 i t e r a t i o n .  
( b )  From 2- b i t  phase a f t e r  1 i t e r a t i o n .  
(c)  From 1-bit  phase a f t e r  1 i t e r a t i o n .  
( d )  From f u l l  phase  a f t e r  25 i t e r a t i o n s .  
(e)  From 2- bit  phase a f t e r  25 i t e r a t i o n s .  
( f )  From 1-bit phase a f t e r  2 5  i t e r a t i o n s .  



Fig.5.8 The images reconstructed from full phase, 2-bit 
phase, and 1-bit phase data with SNR = -30db. 
Original object 128x128 points. 
Number of receiver elements 64x64. 
Number of frequencies used: 8. 
(a) From full phase after 1 iteration. 
(b) From 2-bit phase after 1 iteration. 
(c) From 1-bit phase after 1 iteration. 
(d) From full phase after 25 iterations. 
(e) From 2-bit phase after 25 iterations. 
(f) From 1-bit phase after 25 iterations. 
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Fig.5.8 The images r econs t ruc ted  from f u l l  phase,  2- b i t  
phase,  and 1- b i t  phase d a t a  wi th  SNR = -30db. 
O r i g i n a l  o b j e c t  128x128 p o i n t s .  
Number of r e c e i v e r  elements 64x64. 
Number of f requencies  used: 8. 
( a )  From f u l l  phase a f t e r  1 i t e r a t i o n .  
( b )  From 2- b i t  phase a f t e r  1 i t e r a t i o n .  
(c )  From 1- b i t  phase a f t e r  1 i t e r a t i o n .  
( d )  From f u l l  phase a f t e r  25 i t e r a t i o n s .  
(e)  From 2- b i t  phase a f t e r  25 i t e r a t i o n s .  
( f )  From 1- b i t  phase a f t e r  25 i t e r a t i o n s .  



5 . 4  BUKMARY 

The technique of signal reconstruction from quantized 

phase information can be used for noise reduction. Since the 

signal is complex valued, the signs of both the real and 

imaginary parts of the received data are required for 

reconstruction. Real additive noise affects only the real 

part of the received data. Therefore the odd component of the 

original signal can be recovered from the imaginary part of 

the received data as it would have been in the absence of 

noise. Presence of noise causes more uncertainty in the 

determination of the zero-crossing points of the real part of 

received data. This causes some error in determination of the 

even component of the signal. But if the noise energy is low, 

the 2-bit phase at most of the data points will not be 

affected, whereas the actual phase measurement at these 

points will be incorrect. Though by quantizing the phase we 

retain lesser amount of information at each point, images 

reconstructed from this are better than those reconstructed 

from the full phase information. 



RESULTS AND CONCLUSIONS 

In this thesis, we have addressed the problem of signal 

reconstruction from sensor array data. This problem arises in 

many practical situations. The data available in such 

situations is finite and discrete due to limited number of 

receiver elements on the array used for measurements. The 

data is usually a set of complex numbers. Sometimes, the 

phase or the magnitude information may not be available, or 

these quantities may not be measured accurately. These 

conditions, and the presence of noise in the received data 

makes the problem of signal recovery as that of 

reconstruction from partial data. In this thesis, we have 

proposed techniques for solving some of these problems. The 

techniques proposed in this work use the POCS algorithm to 

recover the original signal from the partial information in 

various domains. 
-*&as, -6, c ; - h d b ,  4- 

is possible to recover two-dimensional complex-valued signals 

from the phase data. For signal recovery, we do not require 

full phase information. Phase data quantized to two levels 

(1-bit phase) or to four levels (2-bit phase) is sufficient 

for signal recovery in most of the cases. The possibility of 

signal recovery from full/quantized phase information is 

useful because the measurement complexity can be reduced if 

magnitude information is not required. But more number of 

data samples are required for reconstruction from the phase 



data. This implies that the receiver array should contain a 

larger number of receiver elements. This difficulty can be 

overcome by using a signal interpolation scheme that uses the 

data collected at several frequencies in the POCS algorithm. 

With this method it is possible to reconstruct signals from 

data collected at arrays with a small number of receiver 

elements. 

Signal reconstruction from the quantized phase data 

collected at several frequencies also reduces the effects of 

noise in the received data. Noise changes both the magnitude 

and the phase of the data samples. By quantizing the phase we 

discard the lower order bits of the phase values. Therefore 

the effect of noise is reduced. The main idea is to use a 

small amount of correct information rather than a large 

amount of incorrect information. 

The techniques proposed in this thesis can be applied 

for a wide variety of signal reconstruction problems. In this 

work, we have illustrated their use for a simulated acoustic 

imaging system. From these studies we see that both the 

measurement and the size complexity of the receiver array can 

be reduced by using quantized phase data for image 

reconstruction. But since these algorithms have been tested 

only for simulated situations, many practical problems that 

one might face in real situations have been overlooked. The 

acoustic field data at the receiver end is normally due to 

three-dimensional objects. The field measurements are 

subjected to errors and distortion due to medium effects. It 



is difficult to predict the effects of these factors on the 

reconstructed images. 

The most interesting result of this study is the trade- 

off between the computational and the measurement complexity. 

It is quite possible that solutions for problems of 

information recovery from partial data may be viewed from 

this angle. Since computation is easier to realize than 

physical measurement, it may be possible to recover the 

desired information from the data collected with a relatively 

simple setup. 



APPENDIX 

THEORY OF PROJECTIONS ONTO CONVEX SETS 

In this appendix we give the basic theory of 

projections onto convex sets and show how some of the 

available information forms convex sets. The standard POCS 

algorithm has been used to implement the results developed in 

this thesis. Most of the results related to formation of 

convex sets and the methods to take projections onto these 

convex sets are similar to the work reported in [26]-[29]. 

The POCS algorithm works by alternate projections onto the 

various convex sets. Statements of the theorems related to 

convergence of this algorithm are also given here for sake of 

completeness. 

Definition 1 [47],[48] :- A normed linear space is a linear 

space Sf in which to each vector x there corresponds a real 

number, denoted by 11x1 I and called the norm of x, in such a 
manner that 

(1) 11x1 I ) 0, and 11x1 1 = 0 <=> x = 0 

( 2 ) I Ix+yl l 5 11x1 I + l lyl l 
( 3 )  J(axl1 = la1 I I x I I  for a constant a 

Definition 2: -  A complete normed linear space is called a 

Banach space. 

Definition 2:- A Hilbert space is a complex Banach space 

whose norm arises from an inner product, that is, in which 

there is defined a complex function (x,y) of vectors x and y 

with the following properties: 



Definition - 4:- The projection of a point x onto a set R of a 

normed space E is the point PR(x) such that 

Definition 5: -  A set C of a normed space R is called a convex 

set if 

ax + (1-a)y e C for all 0 ( a 5 1 and x,y e C (A-2) 

Definition 6 : -  A sequence xn in a Hilbert space H is said to 

converge strongly to a point q e H if 

lim 1 lq-xnl 1 = 0 
n-> MI 

The convergence is said to be weak if 

lim (xnIy) = (q,y) for all y e H. 
n-> 

Lemma - 1:- Let C be any convex set in a Hilbert space H and 

let Px represent the projection of x e H onto C. Then 

Re(x-Px,y-Px) - < 0 for all y e C and x $ C. 

Lemma 2:- Let C be any convex set in a ~ilbert space H and - -  

let Px represent the projection of x e H onto C. If x $ C and 

Q e C, then 

I IQ-pxl l 2  < I IQ-x~ l 2  
Lemma 2 : -  Let C1 and C2 be two convex sets in a Hilbert space 

H, such that they have Q as the only common point. Let the 

projection operators onto C1 and C2 be P1 and P2 

respectively. If x $ C2, then 

2 
IIQ-plP2xll < I I Q - X I I ~  



Lemma 4:- Let C1 and C2 be two convex sets in a Hilbert space 

HI such that they have Q as the only common point. Let the 

projection operators onto C1 and C2 be P1 and P2 

respectively. Then starting at any arbitrary point x e HI we 

have 

lim I 1 Q- ( P ~ P ~ )  nx 1 I = 0. 
n-> 00 

Our work is related to processing of signals. The set 

of all signals forms a Hilbert space. The signals are complex 

valued, in general. For any two signals x(n) and y(n), we 

define an inner product as 

I 

Therefore the norm of a vector (signal) x(n) will be 

These definitions and lemmas state the important 

results related to the convergence of the POCS algorithm. The 

algorithm is used to take projections onto various convex 

sets. Now we show that various types of constraints used in 

our work form convex sets. 

Statement 1:- Knowledge of the finite support of a signal 

forms a. convex set. 

Proof:- Let A represent the set of points contained in the 

region of finite support known for the signal. Let B 

represent the region where the signal values are zero (the 

region outside the finite support). Let x and y be two 

signals with A as their region of support. Then the values of 

both x and y are zero in the region B. Consider the signal z 

= ax + (1-a)y for 0 5 a 5 1. In the region B, z is also zero. 

Therefore z also has A as the region of support. Hence the 



information of the finite support of a signal forms a convex 

set. 

Statement - 2:- Knowledge of the phase of a signal at a given 

set of points forms a convex set. 

Proof:- Let the set of points where the phase values are 

known be called set A. Let the set of all signals that have 

the specified phase values at points in A be called set C. If 

x and y are any two signals in C, then they have the same 

phase values at the points in set A. Consider a signal z = 

ax + (1-a)y for 0 5 a 5 1. Then the phase of z will be same 

as the phase of x or y at the points in the set A. The 

magnitude values may differ. The magnitude of the samples in 

z will be equal to a times the magnitude of samples of x plus 

(1-a) times the magnitude of the corresponding samples in y. 

This is because a exp(j9) + b exp(j9) = (a+b) exp(j9). 

Therefore, z is also an element of C. Thus C forms a convex 

set. 

This statement is a general one. If phase values of all 

the signal samples are known, it also defines a convex set. 

Statement 3:- The set of all signals that have specific 

values at a set of points forms a convex set. 

Proof:- Let the set of points where the signal values are 

known be called set A. Let C denote the set of all signals 

that have the known values at the points in A .  Take any x,y e 

C. Consider a signal z = ax + (1-a)y for 0 5 a 5 1. Since x 

and y have equal values at the points in A, z also will have 

the same values at those points. Therefore the knowledge of a 



few s i g n a l  samples d e f i n e s  a  convex set .  

Statement  4:- The set  of a l l  s i g n a l s  t h a t  have s p e c i f i c  1- b i t  

phase a t  a  given set  of p o i n t s  is convex. 

Proof:-  Two s i g n a l  samples a r e  s a i d  t o  have equal  1- b i t  phase 

va lues  i f  t hey  both l i e  on t h e  same s i d e  of t h e  imaginary 

a x i s .  L e t  x  and y  be two such v e c t o r s  ( s i g n a l  samples) .  Then 

i f  z  = ax + (1-a)y  f o r  0 5 a  ( 1 ,  it is t h e  vec to r  sum of 

s c a l e d  v e r s i o n s  of x  and y. I f  x  and y  l i e  on t h e  same s i d e  

of t h e  imaginary a x i s ,  t hen  z  w i l l  a l s o  l i e  on t h e  same s i d e ,  

and w i l l  have t h e  same 1- b i t  phase a s  x  o r  y. This  is 

i l l u s t r a t e d  by Fig.A.l .  A s i g n a l  is formed of a number of 

such complex v e c t o r s .  L e t  x  and y  be two s i g n a l s  whose 1- b i t  

phase is known a t  a  set  of p o i n t s  A. I f  and z  = ax + (1-a)y ,  

t h e  1- b i t  phase va lues  of t h e  samples i n  z  w i l l  be equal  t o  

t h e  1- b i t  phase v a l u e s  i n  corresponding samples of x o r  y  a t  

t h e  p o i n t s  i n  A. Therefore  t h e  knowledge of 1- b i t  phase of a  

s i g n a l  d e f i n e s  a  convex set .  

A s  a  s p e c i a l  c a s e  of t h i s  s ta tement ,  t h e  knowledge of 

1- b i t  phase a t  a l l  t h e  p o i n t s  i n  a  s i g n a l  a l s o  forms a  convex 

set.  On t h e  same l i n e s  w e  have 

Statement - 5:- The set  of a l l  s i g n a l s  t h a t  have s p e c i f i c  2- bi t  

phase a t  a  given se t  of p o i n t s  is  convex. 

Now w e  show how t o  t a k e  p r o j e c t i o n s  onto t h e  convex 

sets def ined  above. P r o j e c t i o n s  onto t h e  convex sets a r e  used 

i n  t h e  POCS a lgor i thm used i n  t h i s  work. 

(1) P r o j e c t i o n  onto  t h e  convex s e t  formed from t h e  f i n i t e  

suppor t  c o n s t r a i n t .  

Let  a  s i g n a l  be known t o  be zero  o u t s i d e  t h e  reg ion  R. 



IMAGINAAY a x i s  
c o m l e x  vec tor  x 

Fig.A.l The solid lines show two complex vectors x and y 
that have the same 1-bit phase values. Any other 
vector z defined as z = a x + (1-a)y for 0 < a < 1, 
will lie along the dotted line. Since it is-also in 
the same half-plane as x or y, it has the same 1-bit 
phase value as x or y .  Therefore, the knowledge of 
1-bit phase defines a convex set. 



If x is a signal which is non-zero outside R, then it does 

not satisfy the finite support constraint. If Cf is the 

convex set containing all the signals that have R as their 

finite support, then x is not an element of Cf. The 

projection of x onto R is an element xr of R such that 

1 x - x  1 is minimum. For a one-dimensional case, it is 

equivalent to minimizing I (z[i]l 1 where 

It is known that xr has zero values outside the region R. To 

minimize the expression we have the freedom to choose the 

values of xr in the region R. It can be verified that the 

expression is minimized if x [i] = x[i] in the region of r 

finite support. Therefore, to take the projection of a signal 

x onto a convex set defined by the knowledge of a finite 

support R, we must set the values outside R to zero and 

retain all other values. 

(2) Projection onto a convex set (C ) defined by the P 
known phase values. 

Let x be a signal that is not an element of the set C . 
P 

To take the projection of x onto C 
P' 

we must choose x in C 
P P 

so as to minimize 

Assuming that the signal samples are independent of 

each other, each term in the summation must be minimized 

independently. Let a typical term be x[j]-x [j]. Let 
P 

xp [ j ] = A exp (je) and x[j ] = B exp (j@) . The corresponding 

term in the summation will be 



It is minimized by taking A = B.cos(@-8). 

Therefore to take the projection of a signal x onto C 
P' 

multiply the magnitude values at all the samples by cos(y.5-8) 

and replace their phase by the known phase values. Here y.5 is 

the phase value of one of the signal samples and 8 is the 

known phase value for that sample. 

( 3 )  Projection onto the convex set CS defined by the 

knowledge of signal samples. 

Let A denote the set of points where the signal samples 

are known and B denote the complement of A. Let x be a signal 

not in Cs. We have to choose an xs e Cs such that (A.6) is 

minimized. We are free to chose the values of xs over the set 

of points B only as the values for the points in A are 

constrained to be the known values. It can be proved that 

(A.6) is minimized if we retain the values of x at the points 

in the set B and replace the known values at the set of 

points in the set A. This is, therefore the procedure to take 

the projection onto the set Cs. 

( 4  Projection onto the convex set C1 defined by knowledge 

of 1-bit phase. 

Let A denote the set of points where the 1-bit phase of 

the signal is known. Let B denote the complement of A. Assume 

that x is a signal that is not an element of the set C1, and 

therefore, its 1-bit phase over the set A is not as it should 

have been. This means that at some points in A, the sign of 



the real part of the signal sample is opposite of the known 

sign. We have to choose an x 1 e Cl such that (A. 6) is 

minimized. Each term in the summation has to be minimized 

independently. The terms corresponding to the points in the 

set B can be minimized if the values of the samples of xl are 

equal to the values of the corresponding samples of x. That 

leaves us with the points in set A. Assume that the 1-bit 

phase value of a particular sample xl[j] differs from that of 

x[j] for some j in A. Let x[j] = a + j.b. It is known that 

the sign of the real part should have been negative. If the 

value c + j.d for xl[j] minimizes the term lx[j]-xl[j]l, it 

2 implies that (a-c) + (b-d) is minimized. Since c is not 

greater than zero, the term is minimized by taking c=O and 

b=d. Therefore the following procedure must be followed to 

take the projection onto the set C1. If the sign of the real 

part of a sample in the signal is not equal to the known sign 

of that sample, then we must set the real part for that 

sample to zero and retain the value of the imaginary part. 

(5) Projection onto the convex set C 2 defined by knowledge 

of 2-bit phase. 

Following the way the projection was taken onto the set 

C1, it can be verified that the projection can be taken onto 

C2 by setting the real part of a signal sample to zero if the 

sign of the real part is not equal to the known sign for the 

real part and by setting the imaginary part to zero if the 

sign of the imaginary part is not equal to the known sign of 

the imaginary part for that sample. 



The procedures for projections onto convex sets 

presented in this Appendix are independent of the dimension 

of the signal and can be used for two-dimensional signals 

also. 
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