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ABSTRACT

Keywords: Voice Conversion, Artificial Neural Networks, Spetral Mapping, Error Cor-

rection Network, Cross-Lingual Voice Conversion.

Voice conversion is a process of transforming an utterance of a source speaker so that

it is perceived as if spoken by a specified target speaker. Applications of voice conver-

sion include secured transmission, speech-to-speech translation and generating voices

for virtual characters/avatars. The process of voice conversion involves transforming

acoustic cues such as spectral parameters characterizing the vocal tract, fundamental

frequency, prosody etc., pertaining to the identity of a speaker. Spectral parameters

representing the vocal tract shape are known to contribute more to the speaker identity

and hence there have been efforts to find a better spectral mapping between the source

and the target speaker. In this dissertation, we propose an Artificial Neural Network

(ANN) based spectral mapping and compare its performance against the state-of-the-art

Gaussian Mixture Model (GMM) based mapping. We show that theANN based voice

conversion system performs better than that of GMM based voice conversion system.

A typical requirement for a voice conversion system is to have both the source and tar-

get speakers record a same set of utterances, referred to as parallel data. A mapping

function obtained on such parallel data can be used to transform spectral characteristics

from a source speaker to the target speaker. If either of the speakers change then a new

transformation function has to be estimated which requirescollection of parallel data.

However, it is not always feasible to find parallel utterances for training. The com-

plexity of building training data increases if the languageof the source speaker and the

target speaker is different, which occurs in the case of cross-lingual voice conversion.

To circumvent the need of parallel data and to reduce the complexity in building training
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data for a cross-lingual voice conversion system, we propose an algorithm which cap-

tures speaker specific characteristics (target speaker) sothat there is no need of training

data from the source speaker. Such an algorithm needs to be trained on only the target

speaker data and hence any arbitrary source speaker could betransformed to the speci-

fied target speaker. We show that the proposed algorithm could be used in intra-lingual

and cross-lingual voice conversion. Subjective and objective evaluation reveals that the

quality of the transformed speech using the proposed approach is intelligible and posses

the characteristics of the target speaker.

A set of transformed utterances corresponding to results discussed in this work is avail-

able for listening athttp://ravi.iiit.ac.in/ ˜ speech/uploads/taslp09_srinivas/
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CHAPTER 1

INTRODUCTION TO VOICE CONVERSION

1.1 What is voice conversion?

1.1.1 Definition

Speech is a natural medium of communication among human beings. A speech signal

carries information including the message that is meant to be conveyed, the identity of

a speaker and the background/environment. The characteristics of a speech signal cor-

responding to the identity of a speaker allow us to differentiate between speakers. An

ability to control the identity of a speaker is required in applications such as secured

speech transmission and speech-to-speech translation. Insecured speech transmission,

the identity of a speaker needs to be masked. In speech-to-speech translation, a spoken

sentence is translated from one language to another, say from English to French, where

it is important that the translated French utterance bears the identity of the English

speaker. Other applications with a requirement to control the identity of the speaker

include generating voices for virtual characters/ avatarsin games. The process of con-

trolling or morphing the identity of a speaker is often referred to as voice conversion.

The goal of a Voice Conversion (VC) system is to transform an utterance of a source

speaker so that it is perceived as if spoken by a specified target speaker.

1.1.2 Architecture of a voice conversion system

A typical architecture of a VC system is shown in Figure 1.1 and it consists of the

following components:

1. A feature extraction module



Extraction
Feature

Extraction
Feature

Alignment Mapping
Function

Feature
Extraction

Conversion Synthesis Speech
Converted

Speech
Speaker
Target

Speech
Speaker
Source

Speaker
Speech

Source

Training Mode

Transformation Mode

Figure 1.1:Block diagram of various modules involved in a voice conversion system

2. Training and transformation modules.

The process of feature extraction assumes a model which is a mathematical repre-

sentation of the speech production mechanism that makes theanalysis, manipulation

and transformation of speech signal possible. Gunnar Fant’s [1] acoustic theory of

speech production postulates that speech production can bemodeled by an excitation

source and an acoustic filter. Such a model is called as an excitation-filter model and is

most widely used in various areas of speech research such as speech synthesis, speech

recognition, speech coding, speech enhancement, etc. In this context of excitation-filter

modeling,speech is defined as the output of a time-varying vocal tract system excited

by a time-varying excitation signal[2]. The filter component can be visualized as an

acoustic tube with time-varying area function. The input tothis filter is an excitation

signal which is a mixture of a quasi periodic signal and a noise source. A block diagram

of an excitation-filter model is as shown in Figure 1.2.

Source

Time−Varying

Digital Filter

Speech

(Vocal Tract Parameters)
Digital Filter Coefficients

Signal

Source
Noise

periodic
Quasi−

Figure 1.2:The excitation-filter model of speech production
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Both the excitation and filter are represented by parameters which are usually ex-

tracted from the speech signal by performing frame-by-frame analysis, where the size

of a frame could vary from 5 ms to 30 ms. Spectral features suchas Linear Prediction

Coefficients (LPC) [3], Line Spectral Frequencies (LSF) [4], formant frequencies and

bandwidths [5], Mel-Frequency Cepstral Coefficients (MFCC) [6], etc., are some of the

features generally used to represent the vocal tract shape or the filter. Features such as

pitch, residual, glottal closure instants, etc., are used to represent the excitation signal.

Features representing the excitation and filter have cues representing the identity of

a speaker, but due to the ease of extraction of the filter features, much emphasis is laid

on getting a better spectral transformation. In training phase, standard machine learn-

ing techniques such as Vector Quantization (VQ) [7], HiddenMarkov Models (HMM)

[8] [9] [10], Gaussian Mixture Models (GMM) [11] [12] [13] [14], Artificial Neural

Networks (ANN) [15] [16] [17] Dynamic Frequency Warping (DFW) [18] and Unit

Selection [19], have been used for learning the transformation from the feature space of

the source speaker to that of the target speaker.

Finally, in transformation mode, given a new utterance fromthe source speaker, the

transformation function obtained in the training phase is used to predict the features

representing the target speaker. Speech synthesized from these predicted features is

perceived as if spoken by the target speaker.

A typical requirement for a VC system is a set of speech utterances recorded by both

the source and the target speaker. Depending on the languages in which the training data

is available, VC systems can be classified as:

• Intra-Lingual Voice Conversion (ILVC): The source speaker and the target speaker

recordings are in the same language.

• Cross-Lingual Voice Conversion (CLVC): The source speaker and the target speaker

recordings are in different languages.
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1.2 Issues in voice conversion

• Requirement of parallel data in an ILVC system: Voice conversion is a process

where a source speaker utterance is converted to be perceived as if spoken by a

target speaker. A typical requirement for such system is to have both the source

and target speakers record a matching set of utterances, referred to as parallel

data. A mapping function obtained on such parallel data can be used to transform

spectral characteristics from the source speaker to the target speaker [7] [11] [12]

[15] [17] [20] [21]. However the use of parallel data has limitations:

1. If either of the speakers change then a new transformationfunction has to

be estimated which requires collection of parallel data.

2. The performance of voice conversion is dependent on the match between

the source and the target speaker utterances. As the durations of the parallel

utterances will typically differ, alignment technique such as dynamic pro-

gramming is used to have a frame to frame mapping between the utterance

pairs. If there are differences between the utterances of source and target

speakers in terms of recording conditions, duration, prosody, etc., then it

introduces the alignment errors, which in turn leads to poorer estimation of

transformation function.

3. Availability of parallel data is not always feasible. To have a parallel set of

recordings from both the speakers and in a naturally time aligned fashion

[22] is a costly and time consuming task.

• Training data for a CLVC system: The parallel data used for an ILVC system

consists ofsame set of utterancesrecorded by the source and the target speakers.

Such parallel data enables us to arrive at a relationship between utterances of the

source and the target speakers at a phone/segment level. VC systems built on

such data learn a transformation from say phone /a/ of the source speaker to the
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phone /a/ of the target speaker. In a CLVC system, as the language of the source

and the target speaker is different, there is no possibilityof recording the same set

of utterances as used in an ILVC system. However, clusteringtechniques could

be used to derive a relationship between features of source and target utterances

at phone/segment level. For example, if the utterances of a target speaker could

be clustered into K clusters using VQ techniques, then theseK clusters could be

used to annotate the utterances of the source speaker to derive the relationship

between source and target speakers at the cluster level. Such data could be re-

ferred to as pseudo-parallel data which could be used to build a CLVC system.

There have been various works proposed to exploit the advantage of being able

to create pseudo-parallel data for a CLVC system using methods such as: us-

ing a speech recognizer [23], a unit selection algorithm [19], class mapping [24],

creating pseudo parallel corpus using TTS [10] and adaptation techniques [25].

However, all these methods still need both the speakers data(though not parallel

utterances). Hence, there is a need to design an algorithm that captures speaker

specific characteristics and uses only the target speaker data. Such an algorithm

which needs only the target speaker’s data can be used in bothILVC and CLVC

frameworks.

• Smoothing of spectral parameters: Spectral transformation has always been

a concern in this area of VC, hence we find many research works onmodeling

the conversion function from the source spectral features to the target spectral

features. Most state-of-the-art VC systems use GMMs for spectral transforma-

tion [11] [12] [13] [14] which needs Maximum Likelihood Parameter Generation

(MLPG) [26] to perform a parameter smoothing. However excessive smoothing

causes decreased similarity to the target speaker voice [27]. Hence, we intend to

find a transformation method that does not need this smoothing.

• Prosodic conversion:Prosodic conversion refers to the transformation of prosodic

characteristics such as mean fundamental frequency, phoneduration, loudness
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etc., of the source speaker to that of the target speaker. Most of the current VC

methods, use a normalized linear transformation of pitch/fundamental frequency

due to which the prosody of the source speaker is copied. i.e,the transformed

speech may bear the identity of the target speaker but possess the prosodic char-

acteristics of the source speaker.

• Quality vs. Similarity: There is generally a trade-off between the quality of a

transformed speech signal and similarity to the target speaker’s voice. For some

applications, distortion in the transformed speech signalmight be tolerated to in-

crease their similarity to the target voice. For example, insinging voice transfor-

mations, part of the distortion in the voice conversion output becomes inaudible

when mixed with music. Therefore, the similarity versus quality trade-off needs

to be maintained in voice conversion algorithm.

1.3 Issues addressed in this thesis

There are two issues in particular that we propose to addressin this thesis.

1. To find a better spectral transformation method with the use of parallel training

data and hence compare the proposed approach with the state-of-the-art GMM

based VC system.

2. To circumvent the requirement of parallel data in intra-lingual voice conversion

and to reduce the complexity in obtaining training data for across-lingual voice

conversion system, we propose an algorithm which captures speaker specific

characteristics of the target speaker. Such an algorithm needs to be trained on

only the target speaker data and hence any arbitrary source speaker’s speech could

be transformed to the specified target speaker.
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Vocal tract shape between two speakers is non linear and hence ANN based spec-

tral transformation was proposed as this can perform non-linear mapping [15]. Naren-

dranath et. al. [15] used ANNs to transform the source speaker formants to target

speaker formants. Results were provided showing that the formant contour of the tar-

get speaker can be obtained using ANN. A formant vocoder was used to synthesize

the transformed speech, however, no objective or subjective measures were given as to

how good the transformed speech was. The use of radial basis function neural network

for voice transformation was proposed in [16] [28]. All the above referred methods in

[15] [16] [28] need carefully prepared training data which involves manual selection of

vowels or syllable regions from both the source and the target speaker. This is a tedious

task to make sure that the source and the target features are aligned correctly. Hence,

there is a need for an algorithm that does not need any manual selection for training

data. The work in [29] also uses ANN for spectral and prosodicmapping, but it is not

clear how the proposed ANN based VC system compares with mostwidely used GMM

based VC systems.

We also propose the use of ANNs for spectral mapping and our work differs from

earlier approaches in the following ways:

• The proposed approach using ANNs makes use of the parallel set of utterances

provided from source and target speakers to automatically extract the relevant

training data for mapping of source speaker’s spectral features onto the target

speaker’s acoustic space. Thus our approach avoids any requirement of manual

or careful preparation of data.

• Subjective and objective measures are conducted to evaluate the usefulness of

ANNs for voice conversion.

• A comparative study between ANN and GMM based VC systems is performed

and we show that ANN based VC performs as good as that of GMM based con-

version.
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• We propose additional techniques that improve the transformation performance.

These techniques include use of delta features and use of 2-Dfeatures.

• To address the issue of obtaining training data from the source and the target

speaker for a CLVC system, we propose an algorithm that captures only the target

speaker characteristics and hence does not require the source speaker data at the

training stage. In this way, we will be able to transform any arbitrary source

speaker to a particular target speaker. The proposed approach is useful for both

ILVC and CLVC.

1.4 Contributions

The contributions of this study could be summarized as follows:

• Use of ANNs for VC on continuous speech data without any need for frame

selection either manually or computationally.

• Comparison of ANN and GMM for spectral transformation in VC.

• Development of a hybrid framework that combines both ANN andGMM for

spectral transformation in VC.

• Development of a novel framework for spectral transformation which captures

speaker specific characteristics and hence the training forVC could be done with-

out any need for recordings from a source speaker. i.e, the models are built on

only the target speaker data and hence we can transform any arbitrary source

speaker onto the trained target speaker’s acoustic space.

• Introduction of an error-correction module to improve the performance of the

voice conversion system

• Application of the proposed framework in CLVC.

8



1.5 Organization of thesis

The rest of the thesis is organized as follows.

In Chapter 2, a brief explanation is given on various techniques that were proposed

for ILVC and CLVC based systems are explained in brief. The issues that still remain

unresolved are noted.

Chapter 3 is devoted to the design of a baseline system which explains in detail, a

VC system trained on parallel data using both ANN and GMM. A comparison of these

two techniques is also done using different speaker pairs and on varying the amount of

training data to finally conclude that use of ANNs is better for spectral transformation.

Three techniques applied to enhance the performance of a VC system based on ANN

are also described in detail.

Chapter 4 proposes a new algorithm that captures speaker specific characteristics

and hence resolve the issue of using parallel data for VC training. In the process of de-

signing this algorithm, a new module called error-correction network is proposed which

improves the performance of the above mentioned algorithm.Finally, we conclude this

chapter with experiments and results of this algorithm whentested in a CLVC scenario.

Finally in Chapter 5, the conclusions that can be drawn from this thesis are outlines

and some possible research lines for the future are proposed.

A set of transformed utterances corresponding to results discussed in this work is

available for listening athttp://ravi.iiit.ac.in/ ˜ speech/uploads/taslp09_srinivas/

9
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CHAPTER 2

REVIEW ON VOICE CONVERSION METHODS

The objective of a Voice Conversion (VC) system is to transformthe identity of a source

speaker so that it is perceived as if spoken by a specified target speaker. Hence a VC

system should be capable of transforming cues representingthe identity of a speaker.

Studies concerning inter-speaker variations have revealed that there are several param-

eters in a speech signal, both at the linguistic and at the acoustic level, which contribute

to inter-speaker variability and identity of a speaker [30]. Linguistic cues include the

language of the speaker, the dialect, choice of lexical patterns, choice of syntactic con-

structs and the semantic context. The acoustic level features are divided into the seg-

mental and suprasegmental levels.

• Segmental cues depend on the physiological and physical properties of the speech

organs which describe the timbre of a speaker’s voice. When describing the hu-

man voice, people generally refer to the overall quality of avoice as its timbre

[10]. The timbre enables the listener to distinguish between different speakers,

even when they utter the same text. Timbre is a perceptual attribute, influenced

by multiple factors. Acoustic descriptors of timbre include pitch, glottal spectrum

and short-time spectrum of the speech signal.

• Suprasegmental cues, on the contrary, are influenced by psychological and so-

cial factors and describe the prosodic features related to the style of speaking.

They are mainly encoded in pitch, duration and energy contours. These cues are

generally obtained by analyzing segments of speech of duration more than 20 ms.

Research has been done in understanding the cues in a spoken utterance that best

represent speaker characteristics. Authors of [31] investigated the contribution ofF0,



formant frequencies, spectral envelope and other acoustics parameters towards speaker

individuality. They observed thatF0 was the most important feature followed byF0

intonation pattern and then the spectral tilt. However it was shown that spectral envelope

had the greatest influence on speaker individuality, followed byF0 in [32]. The work

in [33] concluded that “it could not be assumed that any single acoustic feature alone

could carry the entire individuality information, as a voice/speech is an amalgam of

many parameters and the degree or order of importance among the features differ from

speaker to speaker”.

Although a complete voice conversion system should transform all types of speaker-

dependent characteristics of speech, current voice conversion systems are focused only

on the acoustic features of voice i.e., fundamental frequency F0 and spectral character-

istics. A majority of them focus on the spectral transformation due to ease of extraction

of spectral features from the speech signal. Depending on the languages in which the

training data is available, voice conversion systems can beclassified as intra-lingual

voice conversion and cross-lingual voice conversion. In anintra-lingual voice conver-

sion system, the source speaker and the target speaker record the training utterances in

the same language. This system can be further divided into two types: 1) The source

and the target speakers record the same utterances (parallel data). 2) The source and the

target speaker record different utterances but in the same language (non-parallel data).

More information about this topic is given in Section 2.1.1 and 2.1.2 respectively. In

a cross-lingual voice conversion system, the source and thetarget speakers record ut-

terances in two different languages. Various approaches proposed in this context are

described in Section 2.1.3. Section 2.2 describes the various methods adopted to trans-

form excitation features and prosody. The subjective and objective evaluation methods

are explained in Section 2.3. The applications of voice conversion are discussed in

Section 2.4. Section 2.5 ends with a summary and issues whichare yet to be addressed.
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2.1 Spectral transformation

Referring to the state-of-the-art VC systems, we observe that spectral transformation

plays a vital role in VC. Hence, this section is dedicated to understanding various ap-

proaches designed to perform spectral transformation efficiently.

2.1.1 Intra-lingual voice conversion with parallel data

Codebook mapping for spectral transformation

An earlier attempt for Intra-Lingual Voice Conversion(ILVC)proposed the use of code-

book based transformation method [7]. The basic idea of thistechnique was to make

mapping codebooks which represent the correspondence between the source and the

target speaker pair. In order to generate a codebook, all utterances recorded by the two

speakers are vector quantized (also called hard clustering) frame-by-frame. As the du-

rations of the parallel utterances will typically differ, Dynamic Time Warping (DTW)

was used to align the utterances. Hence, a frame-to-frame correspondence between the

source and the target speaker codebook entries (i.e, codewords) were obtained. To en-

sure that the transformation was not biased due to an unequalnumber of vectors in each

cluster, a weighting function was estimated based on the count of the number of vectors

in each cluster. The mapping thus obtained was used to transform a source speaker’s

speech to be perceived as that of the target speaker. However, a vector quantizer clus-

ters data into discrete sets and hence it causes discontinuities and reduces the quality of

converted speech. To reduce these discontinuities, fuzzy vector quantization [34] and

weighted vector quantization [33] were proposed.

An algorithm called Speaker Transformation Algorithm using Segmental Code-

books (STASC) was proposed, which was a modification of the codebook based map-

ping technique [35]. In this approach, a left-to-right Hidden Markov Model (HMM)

with no skip state was trained for each utterance of the source speaker. The HMM was
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initialized using segmental K-means algorithm and trainedusing Baum-Welch algo-

rithm. For every 40 milliseconds, a new state was added to theHMM topology. Hence,

the number of states for each utterance was directly proportional to the duration of the

utterance. The utterances of the target speaker were force-aligned with corresponding

source utterance HMM using viterbi algorithm. The trainingof HMMs and alignment

was performed on MFCCs which represent spectral characteristics. This automatic

alignment procedure was called sentence-HMM method. Aftersentence-HMM based

alignment, LSF vectors, fundamental frequency values, durations and energy values

were calculated in the corresponding source and target HMM states. The state arith-

metic means of these acoustic features were computed and stored in source and target

speaker codebooks. The mapping thus obtained after the alignment was used for trans-

formation. However, a sentence-HMM based alignment was notfound to be robust

when there were differences in the prosody, accent or recording conditions. This was

because speaker dependent HMMs were built on the source speaker’s speech and were

used to segment the target speaker’s speech. Since the acoustic properties of the source

speaker and the target speaker may not be same, the above method would lead to align-

ment mismatches hence leading to distortion in the output speech.

Authors of [27] proposed a method using phonetic-HMM which gave better align-

ment than the sentence-HMM based method. The proposed idea was to force-align

the corresponding phoneme sequences, rather than between the whole sentences. The

phonetic context of each aligned acoustic feature pair was determined from the labels.

The acoustic features extracted were paired on a frame-by-frame basis using the align-

ment information. It was concluded that the proposed methodperformed better than the

sentence-HMM based method and that it could be slightly modified to fit the needs of a

cross-lingual voice conversion.

Two approaches for learning spectral conversion methods, namely Dynamic Fre-

quency Warping (DFW) and Linear Multivariate Regression (LMR)were proposed and

compared in [18]. In this method, the source and the target speakers recorded the same
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set of utterances which were aligned using DTW. The utterances of the source speaker

were partitioned intoQ non-overlapping classes (referred to as acoustic classes)by

means of vector quantization. LetCs,q denote a set of source spectral vectors belonging

to qth class whereq= 1,2, ...,Q and letMq denote the total number of vectors in theqth

class. The source spectral vectors and the target spectral vectors were aligned (mapped),

hence dividing the source spectral vectors intoQ classes also divides the target spectral

vectors automatically.

LMR maps each acoustic class of source speaker to the corresponding class of the

target speaker using a linear transformation. The linear regression transformation ma-

trix Pq that minimizes the mean-squared error between aligned source and target vectors

is obtained as a solution to the following minimization problem:

argmin
Pq

Mq

∑
k=1

||Ct,q
k −PqC

s,q
k ||2 (2.1)

LMR modifies the spectrum shape of a source speaker’s utterance to match the target

speakers utterance spectrum.

DFW represents the correspondence between the source frequency axis and the tar-

get frequency axis by a warping functionα(w) such that

Y(w) = X(α(w)) (2.2)

where Y(w) and X(w) denote the target and source utterance power spectrum re-

spectively. A warping function was determined for each acoustic class/cluster of source-

target spectrum pairs. The final warping function was definedas the median warping in

each class. In DFW only formant positions were moved but their amplitudes could not

be modified, which would not lead to an effective transformation of the speaker. Hence,

the authors concluded that LMR performs better than DFW withrespect to transforming

voice quality, but produces some audible distortions.
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GMMs for spectral transformation

It was the development of continuous probabilistic modeling and transformation that

lead to a considerable improvement in voice conversion performance. Use of GMMs

to model and transform the source and target features was proposed in [12]. Clustering

using GMMs was called soft clustering as they provide continuous models. Conver-

sion of spectral envelopes using GMMs have been demonstrated to be more robust and

efficient than the transformation based on VQ. However, another method that models

the joint distribution of source and target features using GMM was proposed in [36] to

improve the transformation performance. This method predicts the target spectral fea-

tures from the source spectral features. The authors were able to conclude that such a

method improves the speaker recognizability over the conventional GMM based method

proposed in [12]. A common problem shared by all spectral envelope conversion meth-

ods is the broadening of the spectral peaks, expansion of theformant bandwidths and

over-smoothing caused by the averaging effect of parameterinterpolation [37]. This

phenomenon makes the converted speech sound slightly muffled. As a solution to this,

Maximum Likelihood (ML) transformation approach was proposed in [38] [39], which

estimates ML taking into account the global variance of the converted spectra in each

utterance and reduces the over-smoothing problem. Anothertechnique proposed to

resolve the issue of degradation of spectral transformation was the use of Dynamic Fre-

quency Warping (DFW) [39]. However, used in a framework of a Text-to-Speech (TTS)

system where VC was treated as a post-processing block afterthe TTS to generate new

voices.

Sub-band processing for spectral transformation

The role of different factors on the perception of speaker identity was investigated in

[40]. Four acoustic features were considered for this study. It was observed that the fea-

tures representing the vocal tract system were more important followed by bothF0 and

duration. HoweverF0 was considered to be more important than duration, only when
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the transformation was of a cross-gender type such as a male-to-female speaker trans-

formation or a female-to-male speaker transformation. Theleast important feature was

found to be energy contour. These conclusions were the results of a subjective test con-

ducted in [40]. They also found that the range of 1 kHz to 2.7 kHz in speech spectrum

was the most important for speaker identity. Hence, they proposed two new methods

based on sub-band processing using discrete wavelet transforms. The proposed frame-

work had the flexibility to analyze different frequency bands using different amounts of

spectral resolution.

ANNs for spectral transformation

Models for VC based on Artificial Neural Networks (ANN) were proposed in [15] based

on the property that a multi layered feed-forward neural network using non-linear pro-

cessing elements could capture an arbitrary input-output mapping. This generalization

property of ANN helps in the faithful transformation of formants across speakers, avoid-

ing the use of large codebooks. The training scheme of the conversion system based on

ANN in [15] consisted of formant analysis, followed by a learning phase in which the

implicit formant conversion between the source and target speaker utterances for the

first three formants was captured by a neural network. In the transformation phase, the

three formants extracted from each frame of the source speaker’s speech were given

as input to the trained ANN to obtain converted formants. Theconverted formants,

together with the source pitch contour modified to suit the average pitch of the tar-

get speaker, were used in a formant vocoder to synthesize speech with the desired vocal

tract system characteristics. Radial Basis Function (RBF) networks with Gaussian basis

function was proposed in [16]. RBFs were introduced in the referred study to compen-

sate for the effect of training time and complexity in back-propagation algorithm.
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HMMs for spectral transformation

A conventional VQ based method uses only static informationto determine the clusters.

However, as the dynamic characteristics are also importantfor this, HMM based VC

was proposed in [8]. In this approach, the goal was to use delta parameters or transition

probabilities to improve the efficiency of transformation.In the training stage, given

an utterance and its equivalent transcript, a HMM was trained to find an optimal state

sequence on the source speaker data. Each state of the sourcespeaker data was quan-

tized and the output was called as recognition codebook. As the proposed HMM has

vector quantized states, it was called a Hidden Markov VQ Model (HMVQM). All the

target speaker data corresponding to each codeword of the source speaker data was col-

lected and their means were calculated. This set of means on the target speaker data was

called synthesis codebook. The obtained one-to-one mapping between the codewords

of each state was used for conversion. Since the proposed method performs mapping

at state level and models dynamic characteristics as transition probabilities, they were

able to conclude that such an approach was much better than the conventional VQ based

method.

A similar segmentation system based on HMM was proposed in [9], but the transfor-

mation function associated with each state was based on Maximum Likelihood Linear

Regression (MLLR). MLLR is a model adaptation technique that estimates a set of lin-

ear transformations for the mean and variance parameters ofa Gaussian mixture HMM

system. IfVt represents target vector sequence andVs represents the source vector se-

quence then

Vt = AVs+b (2.3)

The parametersA andb are to be determined such that the target data gives maxi-

mum likelihood. The effect of these transformations shiftsthe component means and

alter the variances in the initial system so that each state in the HMM system is more
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likely to generate the target data. During synthesis, the parametersA andb are used to

transform the source speech.

2.1.2 Intra-lingual voice conversion with non-parallel data

Most of the approaches described above, use parallel corpora for training i.e, the source

speaker and the target speaker record the same set of utterances. Since it is not always

feasible to find parallel utterances for training, there were methods that were proposed

with the goal of reducing the recordings from the source speaker. All such methods

use non-parallel training data, the goal of which is to find a one-to-one correspondence

between the frames of source and target speaker. The different kinds of methods that

work with the non-parallel data can be classified as follows:

• Class mapping

• Speech recognition

• Pseudo parallel corpora created for a TTS

• Unit selection

• Adaptation techniques

Class mapping

In this method, the source speaker data and the target speaker data were vector quan-

tized to obtainKs andKt number of clusters [24] respectively. For each centroid in

source class, a similar centroid in target class has to be estimated. Since the clusters ob-

tained were from two different speakers, a distance measureto estimate the similarity

measure between the clusters could not be used directly. Hence, Dynamic Frequency

Warping (DFW) was used to compensate for the speaker characteristics and hence bring
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the centroids to a common domain. Finally, the vectors inside each class were mean-

normalized and the frame-level alignment was performed by finding the nearest neigh-

bor for each source vector in the corresponding target class. This technique was evalu-

ated using objective measures and it was found that the performance of this method was

not as good as that which could be obtained using parallel data. However this method

was proposed as a starting point for further improvements that lead to the development

of unit selection based VC.

Speech recognition

In [23], a speech recognizer based on speaker-independent HMMs was used to label all

the source and target frames with a state index. Given the state sequence of one speaker,

the alignment procedure consists of finding the longest matching state sub-sequences

from the other speaker until all the frames were paired. The HMMs used for this task

was observed to be valid for intra-lingual alignment. However, the suitability of such

models for cross-lingual alignment tasks was not tested.

Pseudo-parallel corpus created by a TTS

In this technique, the utterances recorded by the source speaker were used to build a

TTS. All utterances recorded by the target speaker were synthesized using a TTS built

on source speaker data. The synthesized utterances together with the target data form

parallel data on which algorithms explained in Section 2.1.1 could be applied. However,

this solution could be put into practice only under certain conditions:

• The TTS system uses linguistic knowledge to generate artificial sentences, so the

language of the desired output sentence has to be the same as the language of the

recorded units. Therefore, this kind of technique was restricted to intra-lingual

context.

• The size of the training corpus has to be large enough to builda TTS system.
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If only a few minutes of audio were available for building theTTS for source

speaker, the resulting low-quality synthetic speech leadsto a distorted conversion

function that introduces artifacts into the converted speech.

Such a system was used in [10] where the spectral transformation performance us-

ing machine learning techniques such as GMM, HMM and CART werecompared. The

overall performance of the proposed intra-lingual system (using CART) was found to be

comparable with the performance of other intra-lingual systems (using GMM/HMM)

trained under parallel conditions. The evaluation resultsconfirm that using a TTS for

non-parallel alignment leads to satisfactory results. As the proposed algorithm per-

formed satisfactorily in case of ILVC, the validity of the algorithm was also tested in

CLVC framework. The similarity scores obtained by the cross-lingual system were

slightly lower than those of the intra-lingual system. Thiswas probably due to the fact

that Spanish and English used in [10] have different phonemesets. Consequently, the

transformation functions trained for one of these languages were not capable of con-

verting the phonemes of the other language with the same accuracy.

Unit selection paradigm

The proposed algorithm in [19] [41] [42] was to compare two different databases and

find frames in the source database that were nearest to any of the frames in the target

speaker database. The distance measure was computed by a cost function such as the

one used in TTS systems to concatenate two units. In a unit selection based TTS system,

there are two costs that are involved: target cost and concatenation cost. Minimizing

these costs ensures that the distance between the source andtarget features are mini-

mized and a maximum continuity is obtained between the selected units. However, a

disadvantage in this technique when using a large training database was that the vectors

that occur initially will most likely be repeated and hence,the vectors at the bottom may

never be selected. This may cause degradation in output quality. In order to achieve a

better performance, all the training vectors should take part in the alignment, so that no
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phonetic areas are left uncovered in the acoustic spaces of the speakers.

Therefore a new method for estimating pseudo-parallel datawas proposed in [30].

A nearest neighbor of each source vector in the target acoustic space and the nearest

neighbor of each target vector in the source acoustic space allowing one-to-many and

many-to-one alignments were mapped. When a VC system using GMM was trained on

such aligned data it was observed that an intermediate converted voice was obtained,

i.e, it was neither recognized as a source speaker’s voice nor as the target speaker’s

voice. However the proposed approach was applied on the transformed data and target

speaker data which resulted in an output closer to the targetspeaker than the previous

transformed sentences. If this procedure was followed iteratively, the final voice was

found to converge to the target speaker.

Adaptation techniques

The technique proposed in [43] for voice conversion was based on building a transfor-

mation module on the existing parallel data of an arbitrary source-target speaker pair

and adapt this model to the particular pair of speakers for which no parallel data was

available. Suppose A and B are the two speakers between whom we need to build a

transformation function, but the recorded utterances by these speakers are not paral-

lel. Suppose that we also have parallel recorded utterancesfrom speakers C and D.

We could then estimate a transformation function between speakers C and D and use

adaptation techniques to adapt the conversion model to the speakers A and B.

In [43], the spectral vectors that correspond to the source speaker of the parallel

corpus were considered as realizations of random vectorx, while y corresponds to the

target speaker of the parallel corpus. From the non-parallel corpus,x′ is considered as

realization of random vector for the source speaker andy′ for the target speaker. An

attempt was then made to relate the random variablesx andx′, as well asy andy′, in

order to derive a conversion function for the nonparallel corpus based on the parallel

corpus parameters. An assumption made is thatx is related tox′ by a probabilistic

21



linear transformation, as shown in the equation below.

x′ =





A1x+b1 with probability p(λ1|ωi)

A2x+b2 with probability p(λ2|ωi)

. .

. .

ANx+bN with probability p(λN|ωi)

(2.4)

where

N

∑
j=1

p(λ j |ωi) = 1, i = 1,2, ....M. (2.5)

In the above equationM is the number of mixtures of the GMM corresponding to

the joint vector sequence of the parallel data.y andy′ are also related to each other by

a probabilistic linear transformation as shown in the equation below.

y′ =





C1x+d1 with probability p(λ̂1|ωi)

C2x+d2 with probability p(λ̂2|ωi);

. .;

. .;

CNx+dN with probability p(λ̂N|ωi)

(2.6)

where

L

∑
p=1

p(λ̂p|ωi) = 1, i = 1,2, ....M. (2.7)

The unknown parameters i.e, the matricesA j ,Cp and the vectorsb j ,dp were esti-

mated from the non-parallel data by applying EM algorithm. Thereforex′ andy′ would
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be estimated as a linearly constrained maximum likelihood of the GMM parameters.

The issue with such an algorithm was that a parallel databasewas needed on which the

initial model could be estimated.

2.1.3 Cross-lingual voice conversion

Cross-Lingual Voice Conversion (CLVC) is the most extreme case of intra-lingual voice

conversion with no parallel data where both the training utterances and the the training

languages are different. Voice conversion systems dealingwith different languages have

some special requirements because the utterances available for training are character-

ized by different phoneme sets. The different categories ofapproaches for CLVC are:

• Class Mapping

• Unit selection

Class Mapping

This method of class mapping proposed in [27] was a modification of the STASC

method proposed in [35] described in Section 2.1.1. The training stage in [27] starts

with the extraction of acoustic parameters from the source and the target speaker train-

ing recordings. The vocal tract characteristics were represented in two forms: Mel

Frequency Cepstral Coefficients (MFCCs) for the alignment stageand line spectral

frequencies (LSFs) for the transformation stage. All the source and target recordings

were segmented using phonetic-HMM based segmentation. Thesegmentation could be

performed in two ways: text-independent and text-dependent. For non-parallel train-

ing databases, all parameters and information extracted ontheir phonetic context were

saved. The mapping of the source and the target acoustic spaces was performed in the

transformation stage by context matching. The advantage with this method over the
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STASC method was that it was designed to be independent of text and hence could be

trained on non-parallel training utterances. The vocal tract transformation function was

estimated directly from the speech frames in the source and target training database

instead of state averages as in STASC. This helps to perform more detailed vocal tract

transformation.

Unit selection

Given a set of source and target non-parallel speech utterances, the goal was to find

frames that phonetically correspond to each other. As the text of the spoken utterances

was not used, K-means algorithm was applied to divide the spectral space into clusters

to represent a set of artificial phonetic classes. Both the source and the target speaker

data was clustered and a mapping between the clusters had to be estimated. But as

the mapping was obtained between features of two different speakers, the training data

had to be normalized. This normalization was done by using VTLN [44] which was a

technique used to compensate for the effect of speaker-dependent vocal tract lengths.

For every target cluster, a nearest source cluster was estimated, i.e, a mapping between

the phonetic classes of source and target speech was estimated. This class mapping was

extended to find a frame-to-frame mapping in the source-target cluster pairs.

Authors in [30] proposed an iterative method of aligning speech frames which was

also explained in Section 2.1.2.4. It was observed that for aCLVC case they were able

to get an acceptable level of performance.

2.2 Source feature and prosody transformation

Though the residual signal is impulse-like for voiced frames and noise-like for unvoiced

frames, it contains the glottal characteristics that are not modeled by spectral features.

The excitation signal also contains information that couldhelp to achieve the required

conversion performance and quality.
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An approach towards ILVC [7] (explained in Section 2.1.1), assumes an excitation-

filter model of speech and hence to obtain a good performance on voice conversion,

features of both the excitation and filter were transformed.Pitch frequencies and power

values were quantized, similar to the technique used to quantize the spectral features.

A mapping function thus learned on this quantized data was used for transformation.

However, the use of a vector quantizer causes discontinuities and reduces the quality of

the transformed speech.

PSOLA was used to modify the source speaker’s excitation signal to match that of

the original target speaker’s excitation signal in [18]. This modification was done on

both the time and pitch scale, resulting in a better output. However, this experiment

was feasible only as a study to understand how well the spectral feature transformation

performs because we do not have access to the target speakersspeech and hence its

excitation in real time.

Based on the idea that a speech signal contains non-linearities mainly present in

the residual signal, residuals have been modeled by a long-delay nonlinear predictor

using a time-delay neural network [45]. Once the predictor was estimated, a mapping

codebook was built to transform the residual signal. It was reported that the naturalness

of the converted speech increases when introducing the residual mapping, but some

buzzy quality or click noises appear in regions with mixed voicing. STASC [35] deals

with residual signals too. An excitation transformation filter was formulated for each

codeword entry, using the excitation spectra of the source speaker and the target speaker,

in the same way that the vocal tract conversion filter was built.

A different approach from residual mapping was proposed in [11], where the resid-

ual signal was predicted from the vocal tract parameters, instead of transforming the

source speaker residual. The underlying assumption of the proposed approach was that

for a particular speaker and within some phonetically similar class of voiced speech,

the residuals were similar and predictable. For each class of phonetically similar units,

residual codebooks were stored. Use of such residual codebooks was to produce an
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output nearly indistinguishable from the original speech.Recently, the same prediction

strategy has been adopted by other researchers [46] [47].

The authors of [29] have also reported the use of residual prediction to transform

a source speaker’s speech. ANNs were used to train a mapping network between the

source speaker’s residual and the corresponding target speaker’s residual signal. The

authors have also reported experiments which include mapping of intonation, duration

and energy patterns. Two ANNs were trained for intonation mapping to capture (i) gross

level variations which depend on semantics of speech, (ii) finer level variations which

indicate prominence of individual words. Two ANNs were trained for duration mapping

to capture (i) duration patterns of a syllable, (ii) duration pattern of non-speech/pause.

Two ANNs were trained for energy pattern mapping to capture (i) energy at utterance

level and (ii) energy at syllable level. Finally the authorswere able to conclude that

using different ANNs to capture prosodic variations were helpful in transforming a

source speaker’s utterance to the target speaker.

A logarithm Gaussian normalized transformation [48] was used to transform the

source speakerF0 to target speakerF0 as indicated in the equation (1) below. The

assumption in this case was that the major cues of speaker identity lie in the spectral

features and hence just a linear transformation was sufficient to transform excitation

characteristics.

log(F0 conv) = µtgt +
σtgt

σsrc
(log(F0 src)−µsrc) (2.8)

whereµsrc andσsrc are the mean and variance of the fundamental frequencies in

logarithm for the source speaker,F0 src is the pitch of source speaker andF0 conv is the

converted pitch frequency.

Prosodic conversion refers to the transformation of the prosodic characteristic of a

source speaker (mean of the fundamental frequency, phonemeduration, loudness) to the

prosodic characteristics of a target speaker. Prosody transformation is beyond the scope
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of this thesis. However, some relevant works will be referred to in order to complete the

discussion on state-of-the-art VC systems. Prosodic conversion is the aspect less studied

in VC systems. On one hand, most approaches described for spectrum conversion only

scale the pitch of the source speaker to resemble that of the target one, without dealing

with phoneme durations. On the other hand, there are some approaches that construct

a prosodic conversion system similar to the spectrum mapping, such as STASC [35],

[49] or MLLR [50]. The method proposed in [51] consists of a stochastic system that

transforms pitch contours taking into account multiple pitch parameters, such as: pitch,

pitch declination and variances, according to the length ofthe utterances. The basic

idea of this system was to model pitch evolutions of a phrase by a declination line plus

a normal distribution to take into account the variation of the pitch around that line.

Recently, prosodic conversion has been studied in the framework of speech-to-

speech translation in order to improve the quality of the output prosody. The authors of

[52] proposed the use of the intonation of the speaker of the source language to improve

the quality of the intonation of the target language. To takeinto account the converted

prosody, the following speech generation process was proposed. First, the prosodic

features of the source speaker were estimated. Second, a prosodic mapping module

performed the transformation of the estimated features in order to enrich the output of

the translation module. Finally, the speech synthesis module produced the output wave-

form signal using prosody generated by the prosody generation module, which takes

advantage of the enriched text.

Whilst state-of-the-art implementations are capable of achieving reasonable conver-

sions between speakers with similar voice characteristicsand prosodic patterns, they

do not work as well in scenarios where the differences between the source and the

target speech are more extreme. This was mainly due to limitations in the modeling

and conversion of the voice source and prosody. Hence, in [37], a refined modeling and

transformation of the voice source and duration was proposed to increase the robustness

of voice conversion systems in extreme applications. In addition, the developed tech-
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niques were tested in a speech repair framework. Voice source modeling refinement

involved the use of Liljencrants-Fant model instead of the linear prediction residuals

employed by the existing implementations to represent the voice source. A speech

model was also developed which automatically estimates voice source and vocal tract

filter parameterizations. The use of this speech modeling technique for the analysis,

modification and synthesis of speech allows the applicationof linear transformations to

convert voice source parameters. The performance of the developed conversion system

has been shown to be comparable to that of state-of-the-art implementations in terms

of speaker identity, but to produce converted speech with a better quality. Regarding

duration, a decision tree approach was proposed to convert duration contours. Its appli-

cation has been shown to reduce the mean square error distance between the converted

and target duration patterns and to increase their correlation.

2.3 Evaluation

Transformation performance in voice conversion systems isgenerally evaluated using

both objective and subjective measures. Objective evaluations are indicative of conver-

sion performance and could be useful to compare different algorithms within a partic-

ular framework. However, objective measures on their own are not reliable, since they

may not be directly correlated with human perception. As a result, a meaningful evalua-

tion of voice conversion systems requires the use of subjective measures to perceptually

evaluate their conversion outputs.

2.3.1 Objective evaluation

Use of distance measures is most common for providing objective scores. One among

them is spectral distortion (SD) which has been widely used to quantify spectral enve-

lope conversions. For example, authors of [3] measured the ratio of spectral distortion
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between the transformed and target speech and the source andtarget speech as follows:

R=
SD(trans, tgt)
SD(src, tgt)

(2.9)

whereR is the normalized distanceSD(trans, tgt) is the spectral distortion between

the transformed and the target speaker utterance andSD(src, tgt) is the spectral distor-

tion between the source and the target speaker utterance.

A comparison of the performance of different types of conversion functions using a

warped root mean square (RMS) log-spectral distortion measure was reported in [12].

Similar spectral distortion measures have been reported byother researchers [11] [53].

In addition, excitation spectrum, RMS-energy,F0 and duration distances have also been

used to measure excitation, energy, fundamental frequencyand duration conversions

[35].

Mel Cepstral Distortion (MCD) is another objective error measure used, which

seems to have correlation with the subjective test results [54]. Thus MCD is used to

measure the quality of voice transformation [13]. MCD is related to vocal characteris-

tics and hence was an important measure to check the performance of mapping obtained

by ANN/GMM network. MCD is essentially a weighted Euclidean distance defined as

MCD = (10/ln10)∗

√√√√2∗
25

∑
i=1

(mcti −mce
i )

2 (2.10)

wheremcti andmce
i denote the target and the estimated Mel-cepstral coefficients,

respectively.

2.3.2 Subjective evaluation

The objective of a voice conversion system is to transform anutterance of a speaker to

sound as if spoken by the target speaker while maintaining the naturalness in speech.
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Hence, in order to evaluate a VC system on these two scales, generally three types of

subjective measures are used.

• ABX test

• Similarity test

• MOS score

• ABX test: In order to check if the converted speech is perceived as the target

speaker, ABX tests are most commonly used where participantslisten to source

(A), target (B) and transformed (X) utterances and are asked to determine whether

A or B is closer to X in terms of speaker identity. A score of 100% indicates that

all listeners find the transformed speech closer to the target.

• MOS score: In addition to recognizability, the transformed speech is also gen-

erally evaluated in terms of naturalness and intelligibility by mean opinion score

(MOS) tests. In this test, the participants are asked to rankthe transformed speech

in terms of its quality and/or intelligibility. This is similar to the similarity test,

but the major difference lies in the fact that we concentrateon the speaker char-

acteristics in similarity test and intelligibility in MOS score.

• Similarity test: The MOS score does not determine how similar the transformed

speech and the target speech are. Hence, similarity measureis used, where the

participants are asked to grade on a scale of 1 to 5 as to how close the transformed

speech is to the target speaker’s speech. A score of 5 means that the transformed

and the target speech sound as if spoken by the same speaker and a scale of 1

indicates that both the utterances are from totally different speakers.
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2.4 Applications

VC has mainly emerged as a technique to create new voices quickly for Text-To-Speech

(TTS) systems. However it has a number of other interesting applications such as voice

quality analysis, emotional speech synthesis and speech recognition. Fields such as

speech-to-speech translation, education, health and entertainment have also developed

applications using techniques involved in VC. Most commonlyused TTS systems are

based on unit selection. It is a technique which generates synthetic speech by selecting

the most appropriate sequence of units from a database. The quality of a TTS system

increases with the use of large databases [55] [56]. Howeverwith the use of VC tech-

niques it is possible to build a TTS in a new voice with typically 30-50 utterances (10-15

minutes) from a new speaker. Hence, it is advantageous to employ VC for creating new

TTS voice out of the existing ones [57], [58]. VC techniques have also emerged as a

method for building multilingual TTS [59]. In this framework units from multiple lan-

guages are recorded by one speaker per language which are combined to improve the

coverage of units. However TTS built on such a database has multiple speaker identi-

ties in the synthesized speech. Hence, a CLVC technique to transform the synthesized

utterance to a particular target speaker is applied.

TTS system techniques are built to generate speech in different emotional modes

such as excited, happy, sad or angry. The goal of these techniques is not only to generate

speech in a given emotional state but also to have control of the amount of emotion to

be generated. The techniques related to prosodic transformation are more appropriate

to change the emotional state of a synthesized speech.

The problem of a speech recognition system is defined as the conversion of a spoken

utterance into a textual sentence by machine. Such a system has to be sufficiently robust

to allow use by a variety of speakers. using it. Hence VC couldbe used as a method for

speaker normalization by converting all speaker’s data onto a single speaker.

The motivation for building a CLVC framework is to be able to build a speech-to-
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speech translation system [60] which involves transformation of speech spoken in one

language to some other language. As the speaker may not know the target language,

such a system is usually built to synthesize voice in some other speaker’s voice whose

utterances are recorded in the target language. VC techniques could be used in this case

to transform the synthesized speech in target language to sound as if the source speaker

is speaking it. Cross-lingual VC has also been applied to dubbing tasks in the film and

music industries [61].

In the field of education, VC could be used to build a computer aided pronunciation

training system. It is based on a study that for a second language learner it would be

ideal if he has a feedback from a system which imitates his ownvoice but with a native

speakers accent.

VC techniques could also be used to correct speech recorded by a speech-impaired/

disabled person leading to more natural and intelligible speech. Dysarthia [62] or la-

ryngectomy [63] are examples of speech impairment.

Singing voice transformation and generating voices for virtual characters in a game

are also some of the applications in which voice conversion techniques could be used.

Authors of [64] were able to show that voice conversion techniques could be used in

speaker de-identification, a case where we do not want to keepthe individuality of the

required speaker.

2.5 Summary

After a brief description of various methods of voice conversion and its applications, we

understand that most of the methods aimed to find a better spectral transformation tech-

nique. We also observe that the GMM based methods are more often used and hence,

we provide results of comparison of ANN and GMM based spectral transformation in

Chapter 3. We also find that in order to address the issue of non-availability of parallel

data, researchers have come up with methods that try to reduce the requirement of data
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from the source speaker. However, referring to the state-of-the-art techniques proposed

to address this issue, we infer that there is still a need for some data from the source

speaker which motivates us to design a system which trains ononly the target speaker

data. Such a system will be described in Chapter 4.

33



CHAPTER 3

VOICE CONVERSION USING ARTIFICIAL

NEURAL NETWORKS

From previous chapters, we understand that the very basic idea of voice conversion is

to transform both the source and the excitation features. Wehave also observed that

the focus in voice conversion is more on spectral transformation than the source feature

transformation. From among various VC techniques, GMMs have been the most often

used algorithm to build the transformation model. However,as we understand that the

transformation of vocal tract features between two speakers is non-linear from the work

reported in [15], we intend to use ANNs for voice conversion.We have exploited the

mapping abilities of ANN to perform mapping of spectral features of a source speaker

to that of a target speaker. A comparative study of voice conversion using ANN and the

state-of-the-art Gaussian Mixture Model (GMM) is conducted. This chapter describes

briefly the baseline framework for voice conversion and provides results comparing

ANN and GMM based spectral transformation. The experimentsin this chapter are

done assuming an intra-lingual voice conversion frameworkwith parallel training data

i.e, the source speaker and the target speaker record a matching set of utterances.

3.1 Intra-lingual voice conversion

3.1.1 Database

Current voice conversion techniques need a parallel database [11] [13] [54] where the

source and the target speakers record a matching set of utterances. The work presented

here is carried out on CMU ARCTIC database consisting of utterances recorded by



seven speakers. Each speaker has recorded a set of 1132 phonetically balanced utter-

ances [65]. The ARCTIC database includes utterances of SLT (USFemale), CLB (US

Female), BDL (US Male), RMS (US Male), JMK (Canadian Male), AWB (Scottish

Male), KSP (Indian Male). It should be noted that about 30-50parallel utterances are

needed to build a voice conversion model [13]. Thus, for eachspeaker we took around

40 utterances (approximately 2 minutes) as training data and a separate set of 59 utter-

ances (approximately 3 minutes) as testing data.

3.1.2 Feature extraction

To extract features from a speech signal, an excitation-filter model of speech is applied.

Mel-cepstral coefficients (MCEPs) are extracted as filter parameters and fundamental

frequency(F0) estimates are derived as excitation features for every 5 ms [66]. The

number of MCEPs extracted for every 5 ms is 25. Mean and standard deviation statistics

of log(F0) are calculated and recorded.

3.1.3 Alignment of parallel utterances

As the durations of the parallel utterances typically differ (as shown in Figure 3.1),

dynamic time warping (or dynamic programming) is used to align MCEP vectors of the

source and target speakers [12] [13]. Figure 3.1 is a plot of an utterance recorded by two

speakers. The utterance consists of 18 phones, the boundaries of which are indicated by

the vertical lines. It is very clear from this figure that the durations of phones in both the

recorded utterances are different even though the spoken sentence is the same. Figure

3.2 shows that the durations of the two utterances can be matched after applying DTW.

After alignment, letxt andyt denote the source and target feature vectors at framet

respectively.
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Figure 3.1:Plot of an utterance recorded by two speakers showing that their durations
differ even if the spoken sentence is the same. The spoken sentence is ”Will
we ever forget it” which has 18 phones ”pau w ih l w iy eh v er f er g eht
ih t pau pau” according to the US English phoneset.
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Figure 3.2:Plot of an utterance recorded by two speakers showing that their durations
match after applying DTW. The spoken sentence is ”Will we everforget it”
which has 18 phones ”pau w ih l w iy eh v er f er g eh t ih t pau pau”
according to the US English phoneset.

3.1.4 Process of training and testing/conversion

The training module of a voice conversion system to transform both the excitation and

the filter parameters from a source speaker’s acoustic spaceto a target speaker’s acoustic

space is as shown in Figure 3.3. Figure 3.4 shows the block diagram of various modules

involved in a voice conversion testing process. In testing or conversion, the transformed

MCEPs along withF0 can be used as input to Mel Log Spectral Approximation (MLSA)

[66] filter to synthesize the transformed utterance. For allthe experiments done in this

work, we have used pulse excitation for voiced sounds and random noise excitation for

unvoiced sounds.
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Figure 3.4:Testing module in voice conversion framework.

3.1.5 Spectral mapping using GMM

In GMM-based mapping [54] [67], the learning procedure aimsto fit a GMM model

to the augmented source and target feature vectors. Formally, a GMM allows the prob-

ability distribution of a random variablez to be modeled as the sum ofM Gaussian

components, also referred to as mixtures. Its probability density functionp(zt) can be

written as

p(zt) =
M

∑
m=1

αmN (zt ;µ
(z)
m ,Σ(z)

m )
M

∑
m=1

αm = 1, αm ≥ 0 (3.1)

wherezt is an augmented feature vector[xT
t yT

t ]T . The notationT denotes transposition

of a vector.N (zt ;µ
(z)
m ,Σ(z)

m ) denotes the parameters of a Gaussian distribution andαm

denotes the prior probability with which the vectorzt belongs to themth component.Σ(z)
m

denotes the covariance matrix andµ(z)
m denotes the mean vector of themth component

for the joint vectors. These parameters are represented as

Σ(z)
m =




Σ(xx)
m Σ(xy)

m

Σ(yx)
m Σ(yy)

m


 , µ(z)

m =




µ(x)
m

µ(y)
m


 , (3.2)
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whereµ(x)
m andµ(y)

m are the mean vectors of themth component for the source and the

target feature vectors respectively. The matricesΣ(xx)
m andΣ(yy)

m are the covariance ma-

trices, whileΣ(xy)
m andΣ(yx)

m are the cross-covariance matrices, of themth component for

the source and the target feature vectors respectively. Thecovariance matricesΣ(xx)
m ,

Σ(yy)
m , Σ(xy)

m andΣ(yx)
m are assumed to be diagonal in this thesis. The model parameters

(αm,µ(z)
m ,Σ(z)

m ) are estimated using Expectation Maximization (EM) algorithm.

The conversion process (also referred to as testing process) involves regression, i.e.,

given an input vector,xt , we need to predictyt using GMMs, which is calculated as

shown in the equation below.

H(xt) = E[yt |xt ] =
M

∑
m=1

hm(xt)[µ
(y)
m +Σ(yx)

m (Σ(xx)
m )−1(xt −µ(x)

m )] (3.3)

where

hm(xt) =
αmN (xt ;µ

(x)
m ,Σ(xx)

m )

∑M
n=1αn N (xt ;µ

(x)
n ,Σ(xx)

n )
(3.4)

is the posterior probability that a given input vectorxt belongs to themth component.

In this work we have conducted GMM based VC experiments on thevoice conver-

sion setup built in FestVox distribution [68]. This voice conversion setup is based on the

work done in [67], and supports the conversion considering 1) the feature correlation

between frames (referred to as MLPG) and 2) the the Global Variance (GV) of spectral

trajectory.

3.1.6 Spectral mapping using ANN

Artificial Neural Network (ANN) models consist of interconnected processing nodes,

where each node represents the model of an artificial neuron,and the interconnection

between two nodes has a weight associated with it. ANN modelswith different topolo-

gies perform different pattern recognition tasks. For example, a feed-forward neural
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network can be designed to perform the task of pattern mapping, whereas a feedback

network could be designed for the task of pattern association. A multi-layer feed for-

ward neural network is used in this work to obtain the mappingfunction between the

source and the target vectors.

Figure 3.5 shows the architecture of a four layer ANN used to capture the transfor-

mation function for mapping the acoustic features of a source speaker onto the acoustic

space of a target speaker. The ANN is trained to map the MCEPs ofa source speaker to

the MCEPs of a target speaker, i.e., ifG(xt) denotes the ANN mapping ofxt , then the

error of mapping is given byε = ∑t ||yt −G(xt)||
2. G(xt) is defined as

G(xt) = g̃(w(3)g(w(2)g(w(1)xt))), (3.5)

where

g̃(ϑ) = ϑ,g(ϑ) = a tanh(b ϑ). (3.6)

Here w(1),w(2),w(3) represents the weight matrices of first, second and third hidden

layers of ANN respectively. The values of the constantsa andb used in tanh function

are 1.7159 and 2/3 respectively. A generalized back propagation learning [15] is used

to adjust the weights of the neural network so as to minimizeε, i.e., the mean squared

error between the desired and the actual output values. Selection of initial weights,

architecture of ANN, learning rate, momentum and number of iterations are some of

the optimization parameters in training an ANN [2]. Once thetraining is complete, we

get a weight matrix that represents the mapping function between the spectral features

of a pair of source and target speakers. Such a weight matrix can be used to transform

a feature vector from the source speaker to a feature vector of the target speaker.

3.1.7 Mapping of excitation features

Our focus in this thesis is to get a better transformation of spectral features. Hence, we

use the traditional approach ofF0 transformation as used in a GMM based transforma-
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Figure 3.5:An architecture of a four layered ANN with N input and output nodes and
M nodes in the hidden layers.

tion. A logarithm Gaussian normalized transformation [48]is used to transform theF0

of a source speaker to theF0 of a target speaker as indicated in the equation below

log(F0 conv) = µtgt +
σtgt

σsrc
(log(F0 src)−µsrc) (3.7)

whereµsrc and σsrc are the mean and variance of the fundamental frequency in log-

arithm domain for the source speaker,µtgt andσtgt are the mean and variance of the

fundamental frequency in logarithm domain for the target speaker,F0 src is the pitch of

source speaker andF0 conv is the converted pitch frequency.

3.1.8 Evaluation criteria for voice conversion

Subjective evaluation

Subjective evaluation is based on collecting human opinions as they are directly related

to human perception, which is used to judge the quality of transformed speech. The

popular tests are ABX test, MOS test and similarity test.

• ABX Test:For the ABX test, we present the listeners with a GMM transformed

utterance and an ANN transformed utterance to be compared against X, which

will always be a natural utterance of the target speaker. To ensure that a listener

does not become biased, we shuffle the position of ANN/GMM transformed ut-

terances i.e., A and B, with X always constant at the end. The listeners would be
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asked to select either A or B, i.e., the one which they perceiveto be closer to the

target utterance.

• MOS Test: Mean Opinion Score (MOS) is another subjective evaluationwhere

listeners evaluate the speech quality of the converted voices using a 5-point scale

(5: excellent, 4: good, 3: fair, 2: poor, 1: bad).

• Similarity Test:In similarity test, we present the listeners with a transformed ut-

terance and a corresponding natural utterance of the targetspeaker. The listeners

would be asked to provide a score indicating how similar the two utterances are

in terms of speaker characteristics. The range of similarity test is also from 1 to

5 where a score of 5 indicates that both the recordings are from the same speaker

and a score of 1 indicates that the two utterances are spoken by two different

speakers.

Objective evaluation

Mel Cepstral Distortion (MCD) is an objective error measure known to have correla-

tion with the subjective test results [54]. Thus MCD is used tomeasure the quality

of voice transformation [13]. MCD is related to filter characteristics and hence is an

important measure to check the performance of mapping obtained by an ANN/GMM

model. MCD is computed as given in the equation below.

MCD = (10/ln10)∗

√√√√2∗
25

∑
d=1

(mctd−mce
d)

2 (3.8)

wheremctd andmce
d denotes thedth coefficient of the target and the transformed MCEP,

respectively.
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3.2 Experiments and results

3.2.1 Objective evaluation of a GMM based VC system

To build a GMM based VC system, we have considered two cases: 1) Transformation

of SLT (US female) to BDL (US male) and 2) Transformation of BDL (US male) to

SLT (US female). For both the experiments, the number of training utterances is 40

(approximately 2 minutes) and the testing is done on the testset of 59 utterances (ap-

proximately 3 minutes). The number of vectors for 40 training utterances in SLT and

BDL are 23,679 and 21,820 respectively.

Table 3.1: Objective evaluation of GMM based VC system for various training param-
eters where Set 1: SLT to BDL transformation; Set 2: BDL to SLT transfor-
mation

MCD [dB]
No. of No. of Without With With

mixtures params. MLPG MLPG MLPG
(with GV) (Without GV)

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
32 6176 6.367 6.102 6.547 6.072 6.152 5.823
64 12352 6.336 6.107 6.442 6.015 6.057 5.762
128 24704 6.348 6.068 6.389 5.907 6.017 5.682

Table 3.1 provides the MCD scores computed for SLT-to-BDL and BDL-to-SLT

respectively for increasing number of Gaussians. It could be observed that the MCD

scores decrease with the increase in the number of Gaussians, however, it should be

noted that the increase in the number of Gaussians also increases the number of param-

eters in the GMM. The number of parameters for a GMM based system with diagonal

covariance matrix is computed as follows:(((dimension of mean vector + dimension of

variance vector)*No. of Gaussians) + No. of Gaussians). With the use of diagonal

covariance matrix, the number of parameters in the GMM with 64 and 128 Gaussian

components is 12,352 and 24,704 respectively. We can also observe that the GMM

based conversion with MLPG performs better than that of the GMM based system
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without MLPG. However, the GMM based VC system with MLPG and without GV

produced lesser MCD scores than the GMM based VC system with MLPG and with

GV. While GV seemed to improve the quality of transformed speech based on human

listening tests, it is not clear from [67] whether it also improves the score according to

MCD computation. Considering the number of parameters used inGMM model, we

have used the GMM based VC system with 64 Gaussian components(with MLPG and

without GV) for further comparison with an ANN based VC system.

3.2.2 Objective evaluation of an ANN based VC system

To build an ANN based VC system, we have considered two cases 1) SLT-to-BDL

and 2) BDL-to-SLT. For both the experiments, the number of training utterances is

40 (approximately 2 minutes) and the testing is done on the test set of 59 utterances

(approximately 3 minutes).

Table 3.2 provide MCD scores for SLT-to-BDL and BDL-to-SLT respectively for

different architectures of ANN. In this work, we have experimented with 3-layer, 4-

layer and 5-layer ANNs. The architectures are provided withthe number of nodes in

each layer and the activation function used for that layer. For example, 25L 75N 25L

means that it is a 3-layer network with 25 input and output nodes and with 75 nodes

in the hidden layer. Here, L represents ”linear” activationfunction and N represents

”tangential (tanh(.))” activation function. Given an ANN architecture, the No. of pa-

rameters to be computed is calculated as follows: Suppose the ANN architecture is 25L

50N 50N 25L, the number of parameters is (25*50)+(50*50)+(50*25)+(50+50+25) =

5125. From Table 3.2, we see that the four layered architecture 25L 50N 50N 25L

(with 5125 parameters) provides better results when compared with other architectures.

Hence, for all the remaining experiments reported in this chapter, a four layer architec-

ture is used.

In order to determine the effect of number of parallel utterances used for training the

voice conversion models, we performed experiments by varying the training data from
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Table 3.2: MCD obtained on the test set for different architectures of an ANN model.
(No. of iterations: 200, Learning Rate: 0.01, Momentum: 0.3)Set 1: SLT to
BDL; Set 2: BDL to SLT

S.No ANN architecture No. of params. MCD [dB]
Set 1 Set 2

1 25L 75N 25L 3850 6.147 5.652
2 25L 50N 50N 25L 5125 6.048 5.504
3 25L 75N 75N 25L 9550 6.147 5.571
4 25L 75N 4L 75N 25L 4529 6.238 5.658
5 25L 75N 10L 75N 25L 5435 6.154 5.527
6 25L 75N 20L 75N 25L 6945 6.151 5.517
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Figure 3.6:MCD scores for ANN, GMM+MLPG and GMM (without MLPG) based VC
systems computed as a function of number of utterances used for training.
The results for GMM based VC systems are obtained using 64 mixture com-
ponents.

10 to 1073 parallel utterances. Please note that the number of test utterances was always

59. Figure 3.6 shows the MCD scores for ANN, GMM + MLPG and GMM (without

MLPG) based VC systems computed as a function of number of utterances used for

training. From Figure 3.6, we could observe that as the number of training utterances

increase, the MCD values obtained by both GMM and ANN models decrease.
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3.2.3 Subjective evaluation of GMM and ANN based VC systems

In this section we provide subjective evaluations for ANN and GMM based voice con-

version systems. For these tests, we have made use of voice conversion models built

from 40 parallel utterances, as it was shown that this modestset produces good enough

transformation quality in terms of objective measure. We conducted MOS, ABX and

similarity tests to evaluate the performance of the ANN based transformation against

the GMM based transformation. It has to be noted that all experiments with GMM use

static and delta features but the experiments with ANN use only the static features.

A total of 32 subjects were asked to participate in the four experiments listed below.

Each subject was asked to listen to 10 utterances corresponding to one of the experi-

ments. Figure 3.7(a) provides the MOS scores for 1) ANN, 2) GMM + MLPG and 3)

GMM (without MLPG) based VC systems. Figure 3.7(b) providesthe results of ABX

test for the following cases:

4) BDL to SLT using ANN + (GMM + MLPG)

5) SLT to BDL using ANN + (GMM + MLPG)

6) BDL to SLT using ANN + GMM

7) SLT to BDL using ANN + GMM

The MOS scores and ABX tests indicate that the ANN based VC system performs

as good as that of the GMM based VC system. The MOS scores also indicate that the

transformed output from the GMM based VC system with MLPG wasperceived to be

better than that of the GMM based VC system without MLPG.

A similarity test is also performed between the output of theANN/GMM based VC

system and the respective natural utterances of the target speaker. The results of this

similarity test are provided in Table 3.3, which indicate that the ANN based VC system

seems to perform better or as good as that of the GMM based VC system.
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Figure 3.7:(a) - MOS scores for 1: ANN, 2: GMM+MLPG, 3: GMM.(b) ABX re-
sults for 4: ANN, GMM+MLPG(M->F), 5: ANN, GMM+MLPG(F->M),
6: ANN, GMM(M->F), 7: ANN, GMM(F->M)

The significance of difference between the ANN and the GMM+MLPG based VC

systems for MOS and similarity scores was tested using hypothesis testing based on

Student t-test, and the level of confidence indicating the difference was found to be

greater than 95%.

Table 3.3: Average similarity scores between transformed utterances and the natural
utterances of the target speaker.

Transformation Method Avg. Similarity Score
SLT to BDL BDL to SLT

ANN 2.93 3.02
GMM + MLPG 1.99 2.56

3.2.4 Experiment on multiple speaker pairs

In order to show that the ANN based transformation can be generalized over different

databases, we have provided MOS and MCD scores for voice conversion performed
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for 10 different pairs of speakers as shown in Figure 3.8. While MCD values were

obtained over the test set of 59 utterances, the MOS scores were obtained from 16

subjects, each performing the listening tests on 10 utterances. An analysis drawn from

these results show that inter-gender voice transformation(ex: male to female) has an

average MCD and a MOS score of 5.79 and 3.06 respectively whilethe intra-gender (ex:

male to male) voice transformation has an average MCD and a MOSscore of 5.86 and

3.0 respectively. Another result drawn from the above experiments indicates that the

transformation performance between two speakers with the same accent is better than

that when compared with performance on speakers with different accent. For example,

the voice transformation from SLT (US accent) to BDL (US accent) obtained an MCD

value of 5.59 and a MOS score of 3.17, while the voice transformation from BDL (US

accent) to AWB (Scottish accent) obtained an MCD value of 6.04 and a MOS score of

2.8.

Figure 3.8:(a) MOS and(b) MCD scores for ANN based VC system on 10 different
pairs of speakers
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3.3 Enhancements to voice conversion using ANN

In order to enhance the performance of spectral mapping by ANNs, we investigated two

different methods. All the experiments in this section are designed based on the use of

parallel training data. The results of these experiments are provided on the test set of

59 utterances.

3.3.1 Appending deltas

The GMM based approach explained in Section 3.1.5 appends dynamic features to the

static features [54] [21] [20]. In section 3.2, we have compared the GMM based system

with deltas with the ANN based system without deltas and hence we wanted to find

out whether the use of deltas would further improve the performance of an ANN based

system.

In this context we performed an experiment on SLT (female) toBDL (male) trans-

formation where the model is trained with deltas and on varying number of parallel

training utterances. A set of three experiments were conducted and the architectures of

ANN used in these experiments are as follows:

1. 25L 50N 50N 25L: static features.

2. 50L 100N 100N 50L: static and delta features.

3. 75L 150N 150N 75L: static, delta and acceleration/delta-delta features.

The MCD scores obtained for these three experiments are provided in Table 3.4. It

can be observed that the ANN transformation with deltas is better than the ANN based

transformation without deltas. The results using delta-delta features are also provided

in Table 3.4. It could be observed that use of delta-delta features further reduces the

MCD score for ANN based spectral mapping. The set of 40 training utterances used in

this experiment is different than the one used in Section 3.2.2 and hence we find minor

differences in the MCD scores for static features.
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Table 3.4: Results of appending deltas and delta-deltas of MCEPs for (SLT(female) to
BDL(male) transformation)

No. of training static features deltas delta-delta
utterances MCD [dB] MCD [dB] MCD [dB]

40 6.118 6.117 6.088
100 6.018 5.995 5.905
200 5.858 5.854 5.836
400 5.755 5.750 5.695

3.3.2 A hybrid model

Even though the ANNs perform better spectral transformation than that of GMMs, it

would be interesting to find out if combining these approaches to build a hybrid conver-

sion model could improve the transformation performance. Hence, we came up with a

hybrid technique which combines the output of ANN and GMM techniques to predict

a new set of transformed vectors.

There are two phases in this hybrid model. In the first phase ANN and GMM are

trained as explained in Section 3. After the models are built, the transformed output

vectors are obtained for the training files. Letya
i andyg

i denote the transformed vectors

for input xi using ANN and GMM respectively. We experimented the use of ANNs

with context size of 3 as they performed best among all the conducted experiments, we

used GMM with deltas, MLPG, No GV and with 64 mixture components. Each of these

modules of phase 1 will predict output vector with 25 dimensions each. In second phase

these transformed vectors are appended to form a 50 dimensional input vector[ya
i ,y

g
i ]

which is given to train another neural network to map these 50dimensional vectors

to its original target speaker 25 dimensional MCEPsxi. However, contextual features

with context size of 3 was also used and hence the mapping was between features of

dimension 350 and 175. The ANN architecture chosen for this mapping was 350L 700N

700N 175L. The output is again scaled down to 25 dimensions before comparing with

the actual MCEP values for MCD computation.

The idea is that the second neural network model could perform a weighted combi-
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nation of[ya
i ,y

g
i ] to predict the transformed vector as close as possible toxi . Figure 3.9

shows the way in which a hybrid model of ANN-GMM is built.

Concatenate
mceps

ANN

models
ANN

GMM
models

mceps
source

source
mceps

predicted mceps

Feature
Extraction (Hybrid)

Source files

predicted mceps
y a

i

y g
i

x i

Figure 3.9:Block diagram for the hybrid approach

This experiment was trained on 40 utterances for transformation between SLT and

BDL transformation. Experiments were conducted with an increasing number of input

speech utterances. Figure 3.10 shows that the output from the ANN-GMM hybrid ap-

proach is better than using only the ANN based approach. It should be noted that the

training data set used in this experiment is different from that used in Section 3, and

hence MCDs values obtained in Section 3 and in this experimentdiffer for ANN and

GMM based systems. From the experiments done for enhancing the spectral mapping

using ANN, we could observe that use of enhancement methods provide better perfor-

mance than the base-line ANN based spectral mapping, although they add a little extra

computation time.
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Figure 3.10:MCD scores for the hybrid approach with increasing training data
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3.3.3 Transformation with use of contextual features

The use of deltas and delta-delta coefficients are computed over a context of 3 frames,

and provide slope and acceleration coefficients of MCEPs [69]. Instead of computing

slope and acceleration coefficients, we wanted to investigate the effect of augmented

feature vectors, i.e., append MCEPs from previous and next frames to the MCEPs of

current frame, and provide these augmented features as input to train the ANN model.

In this context, we performed an experiment on SLT (female) to BDL (male) trans-

formation, where the model is trained on varying context size and varying number of

parallel training utterances. A context size of one indicates that MCEPs from one left

and one right frame are appended to MCEPs of the current frame.The results of SLT to

BDL transformation are provided in Figure 3.11, where a plot showing the MCD score

with increasing number of training utterances and context size is provided.
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Figure 3.11:Graph of MCD as a function of context size for varying number oftrain-
ing utterances for SLT (female) to BDL (male). Context 0 indicates the
baseline performance.

Figure 3.11 shows that the MCD score decreases with the increase in context size

from 0 to 3 (i.e., 3 left and 3 right frames). The MCD score at thecontext size of 0 in

Figure 3.11 indicates the base line performance as explained in Section 3.2.2. The ANN

architectures used for context size of 1, 2 and 3 are 75L 225N 225N 75L, 125L 375N

375N 125L and 175L 525N 525N 175L, respectively. From Figure3.11, it could also

be observed that increase in the number of training utterances from 40 to 200 leads to a

decrease in MCD scores and thus improves the performance of the ANN based spectral

mapping.
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From the experiments conducted in Section 3.3.1 and 3.3.3, we could observe that

the use of deltas, acceleration coefficients and contextualfeatures improves the perfor-

mance of an ANN based VC system. However, an increase in the dimensionality of

feature vectors also increases the size of an ANN architecture and the computational

load in training and testing of a VC system.

3.4 Summary

In this chapter, we have exploited the mapping abilities of ANN and it was shown that

ANN can be used for spectral transformation in the voice conversion framework on a

continuous speech signal. The usefulness of ANN has been demonstrated on differ-

ent pairs of speakers. Comparison between ANN and GMM based transformation has

shown that the ANN based spectral transformation yields better or as good results as

GMM based system in both the objective and subjective evaluations. Hence, we con-

clude that no smoothing techniques are required when using ANNs for spectral transfor-

mation. We also discuss various possibilities of improvingthe spectral transformation

performance given that the ANN based spectral transformation is our baseline system.

Appending deltas to obtain better performance has been usedin various experiments

and is well known to improve the performance of a system when compared with a sys-

tem built on only the static features. The results obtained in our tests also conform to

this result. We propose the use of contextual features and a hybrid ANN-GMM ap-

proach whose results are also found to be much better when compared to the use of

only ANNs for spectral transformation.
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CHAPTER 4

FRAMEWORK FOR SOURCE-SPEAKER

INDEPENDENT VOICE CONVERSION

The methods described so far rely on availability of parallel data for training the mod-

els. Hence each time a new speaker wants to transform his/hervoice to a target speaker,

he/she will have to record all the utterances of the target speaker so that a parallel data

can be obtained. This is a costly and time consuming task. Hence, there is a need

to come up with an approach which will avoid the source speaker having to give any

speech samples for training the voice conversion model. There are a few approaches

which have tried to reduce the contribution from the source speaker. These methods

include using a speech recognizer [23], a unit selection algorithm [19] class mapping

[24], creating pseudo parallel corpus [10] and using adaptation techniques [25] as ex-

plained in Chapter 2. However, all these methods still need both the speakers data

(though not parallel utterances). Hence, there is a need to design an algorithm that

will capture speaker specific characteristics and hence useonly the target speaker data.

Such an algorithm which needs only target speaker data can beused in both ILVC and

CLVC frameworks. In this chapter, we propose a voice conversion method using ANN

which captures speaker-specific characteristics of a target speaker. Such a model avoids

the need for speech data from a source speaker and hence couldbe used to transform

arbitrary speaker including a cross-lingual speaker.

4.1 Many-to-one mapping

We propose an approach where multiple speakers acoustic space is mapped onto a sin-

gle target speaker acoustic space during training and the obtained model is used to



transform any arbitrary speakers speech. A similar approach was followed in [21],

where speaker adaptation technique was also used. However,we have not performed

any speaker adaptation techniques in this work.

Our goal is to come up with an approach where the need for a source speaker’s

training data is totally eliminated. ARCTIC database is a collection of multiple speakers

uttering the same sentences. The experiments in this section are undertaken with an

assumption that the source speaker is SLT and the target speaker is BDL. To start with,

we train an ANN model with the input and output training data as BDL MCEPs from

40 utterances. However, during testing, we check if SLT can be transformed to BDL.

The results are provided in Table 4.1.

Finally we train an ANN model to map 40 utterances from each ofBDL, AWB,

KSP, CLB, RMS, JMK to the target speaker BDL. This kind of conversion should work

reasonably well as it models transformation of multiple speakers to a particular target

speaker and hence capture the acoustic variations. During testing, SLT utterances are

given to this model to convert them onto BDL acoustic space. Wealso experimented

with training an ANN model to transform BDL MCEPs to BDL MCEPs withthe aim

of capturing target speaker-specific characteristics. However, we observed that an ANN

model trained to map multiple source speaker to a single target speaker performs better

than a self mapping network. Results of both these experiments are provided in Table

4.1.

Table 4.1: Many to one mapping

Trained model No. of training utterances Testing input MCD
speaker [dB]

BDL to BDL 40 SLT 8.763
(BDL, RMS, AWB, KSP, CLB, JMK) (6 speakers * 40 each) = 240 SLT 6.674

to BDL

From Table 4.1 we see that the MCD scores are better when the models are trained

to map multiple source speakers onto a single target speaker. Informal listening tests
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showed the transformed voice possesses the voice characteristics of the target speaker

and is intelligible.

4.2 Models capturing speaker-specific characteristics

So far we have discussed VC approaches which rely on existence of parallel data from

the source and the target speakers. There have been approaches proposed in [24], [44],

[19], [25], which avoid the need for parallel data, however still require speech data

(though non-parallel) from source speakersapriori to build a voice conversion model.

Such approaches cannot be applied in situations, where an arbitrary user intends to

have his/her voice transformed to a pre-defined target speaker, without recording any-

thing apriori. In this section, we propose a voice conversion approach using an ANN

model which captures speaker-specific characteristics of atarget speaker. Such an ap-

proach does not require speech data from a source speaker andhence could be used

to transform an arbitrary speaker including a cross-lingual speaker. The idea behind

capturing the speaker-specific characteristics using an ANN model is as follows. Let

lq andsq be two different representations of a speech signal from a target speakerq.

A mapping functionΩ(lq) could be built to transformlq to sq. Such a function would

be specific to the speakerq and could be considered as capturing the essential speaker-

specific characteristics. The choice of representation oflq andsq plays an important

role in building such mapping networks and in their interpretation. If we assume thatlq

represents linguistic information, andsq represents linguistic and speaker information,

then a mapping function fromlq to sq should capture speaker-specific information in

the process. The interpretation of order of Linear Prediction (LP) could be applied in

deriving lq andsq. A lower order(≤ 6) LP spectrum captures first few formants and

mostly characterizes the message (or linguistic) part of the signal, while a higher order

(≥ 12) LP spectrum captures more details in the spectrum and hence captures message

and speaker characteristics [70]. Thuslq being represented by a lower order LP spec-

trum of first few formants could be interpreted as speaker independent representation

55



of the speech signal, andsq represented by the MCEPs could be interpreted as carrying

message and speaker information. An ANN model could be trained to minimize the

error||s
′

q−sq||, wheres
′

q = Ω(lq).

In this work, lq is represented by six formants, their bandwidths and delta features.

The formants, bandwidths,F0 and probability of voicing are extracted using the ESPS

toolkit [71] . The formants also undergo a normalization technique such as vocal tract

length normalization explained in Section 4.2.1.sq is represented by traditional MCEP

features as it would allow us to synthesize using MLSA synthesis technique. The MLSA

synthesis technique generates a speech waveform from the transformed MCEPs and F0

values using pulse excitation or random noise excitation [66]. An ANN model is trained

to maplq to sq using backpropagation learning algorithm. Once the model is trained, it

could be used to convertlr to s
′

q wherelr could be from any arbitrary speakerr.

4.2.1 Vocal tract length normalization

VTLN is a speaker normalization technique that tries to compensate for the effect of

speaker-dependent vocal tract lengths by warping the frequency axis of the magnitude

spectrum. Apart from the use of VTLN in speech recognition, VTLN has also been

used in voice conversion [24] [44] [19].

Following the work in [72], we estimate the warp factors using pitch information

and modify both formants and bandwidths. A piece-wise linear warping function as

described in the equation 4.1 is used.

f ′t =





k ft : ft ≤ F0 t

kF0 t −
fN−kF0 t
fN−F0 t

: F0 t < ft < fN

(4.1)

wherek = 1−0.002(F0 t − fmean), ft is the formant / bandwidth frequency of framet to

be normalized ,F0 t is the pitch value of the framet and fN is the sampling frequency.

fmeanis the mean pitch of the target speaker.
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Figures 4.1 and 4.2 show the LPC spectrum of a phone /aa/ spoken by two male

and female speakers respectively. The plots on the left columns indicate the original

spectrum and the plots on the right columns indicate the transformation after VTLN.

It is clear from these figures that the spectrum is normalizedto a similar domain and

hence our objective is achieved.
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Figure 4.1:Plot of LPC spectrum of two male speakers with the original spectrum on
the left column and normalized spectrum on the right column.
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Figure 4.2:Plot of LPC spectrum of two female speakers with the original spectrum on
the left column and normalized spectrum on the right column.

4.2.2 Error correction network

We introduce a concept of error correction network which is essentially an additional

ANN network, used to map the predicted MCEPs to the target MCEPsso that the final

output obtained features represent the target speaker in a better way. The block diagram

for error correction network is shown in Figure 4.3. Onces
′

q are obtained, they are

given as input to second ANN and it is trained to reduced the error ||s
′

q− sq||. Such

a network acts as error correction network to correct any errors made by first ANN.

Let s
′′

q denote the output from error correction network. It is observed that while the
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MCD values ofs
′

q ands
′′

q do not vary much, the speech synthesized froms
′′

q was found

to be smoother than that of speech synthesized froms
′

q. To train the error correction

network, we use 2-D features i.e., feature vectors from 3 left frames, and 3 right frames

are added as context to the current frame. Thus the ANN model is trained with 175

dimensional vector (25 dimension MCEPs * (3+1+3)). The architecture of this error

correction network is 175L 525N 525N 175L.

ANNANN
(mapping) (error correction

network)

’ ’’q s q
s ql

Figure 4.3:A block diagram of an error correction network

4.2.3 Experiments with parallel data

As an initial experiment, we used parallel data of BDL and SLT.Features representing

lr were extracted from BDL speaker and were mapped ontosq of SLT. This experimen-

tation was done mainly to obtain a benchmark performance forthe experiments which

maplq to sq (as explained in Section 3.2.2).

The features representingl undergo a VTLN (as discussed in Section 4.2.1), to

normalize the speaker effect on the message (or linguistic)part of the signal. However,

in this experiment, the mapping is done between BDL’slr to SLT’s sq. The process

of training such a voice conversion model is similar to the process explained in Section

3.2. Hence, VTLN was not performed on the features representing lr in this experiment.
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Table 4.2: Results of source speaker (SLT-female) to target speaker (BDL-male) trans-
formation with training on 40 utterances of source formantsto target MCEPs
on a parallel database. HereF represents Formants,B represents Band-
widths, ∆ and ∆∆ represents delta and delta-delta features computed on
ESPSfeatures respectively.UVN represents unit variance normalization.

S.No Features ANN architecture MCD [dB]
1 4 F 4L 50N 12L 50N 25L 9.786
2 4 F + 4 B 8L 16N 4L 16N 25L 9.557
3 4 F + 4 B + UVN 8L 16N 4L 16N 25L 6.639
4 4 F + 4 B +∆ + ∆∆ + UVN 24L 50N 50N 25L 6.352
5 F0 + 4 F + 4 B + UVN 9L 18N 3L 18N 25L 6.713
6 F0 + 4 F + 4 B +∆ + ∆∆ + UVN 27L 50N 50N 25L 6.375
7 F0 + Prob. of Voicing + 4 F + 4 B +∆ + ∆∆ + UVN 30L 50N 50N 25L 6.105
8 F0 + Prob. of voicing + 6 F + 6 B +∆ + ∆∆ + UVN 42L 75N 75N 25L 5.992
9 (F0 + Prob. of voicing + 6 F + 6 B +∆ + ∆∆ + UVN) + (42L 75N 75N 25L)+ 5.615

(3L3R MCEP to MCEP error correction) (175L 525N 525N 175L)

Training was done to map BDL formants to SLT MCEPs with only 40 utterances.

Testing was done on a set of 59 utterances. Table 4.2 shows thedifferent representations

of lr and their effect on MCD values. These different representations include combi-

nation of different number of formants and their bandwidths, delta and acceleration

coefficients of formants and bandwidths, pitch and probability of voicing. From the re-

sults provided in Table 4.2 we can observe that experiment 9 (which uses six formants,

six bandwidths, probability of voicing, pitch along with their delta and acceleration

coefficients) employing an error correction network provided better results in terms of

MCD values. These results are comparable with the results of voice conversion with

BDL MCEPs to SLT MCEPs mapping as found in Section 3.2.2.

4.2.4 Experiments using target speaker’s data

In this work, we built an ANN model which mapslq features of SLT ontosq features

of SLT. Herelq extracted from SLT utterances is represented by six formants, six band-

widths,F0, probability of voicing and their delta and acceleration coefficients as shown

in feature set for experiment 9 in Table 4.2. The formants andbandwidths representing
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lq undergo VTLN to normalize speaker specific characteristics. sq is represented by

MCEPs extracted from SLT utterances. We use the concept of error correction network

to improve the smoothness of the converted voice.

Figure 4.4 provides the results for mappinglr (wherer = BDL, RMS, CLB, JMK

voices) onto the acoustic space of SLT. To perform this mapping the voice conversion

model is built to maplq to sq (whereq = SLT) is used. To perform VTLN, we have used

the mean pitch value of SLT. Hence all the formants of source speaker are normalized

with VTLN using mean of SLTF0 and then are given to ANN to predict the 25 dimen-

sional MCEPS. Similar results where the conversion model is built by capturing BDL

speaker-specific features are also provided in Figure 4.4.
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Figure 4.4:A plot of MCD scores obtained between multiple speaker pairs with SLT or
BDL as target speakers. The models are built from a training data of 24
minutes and tested on 59 utterances (approximately 3 min).

We also performed listening tests whose results are provided in Table 4.3 for MOS

scores and similarity tests. For the listening tests we chose 3 utterances randomly from

each of the transformation pairs. Table 4.3 provides a combined output of all speakers

transformed to target speaker (SLT or BDL). There were 10 listeners who participated

in the evaluations tests. The MOS scores and similarity testresults are averaged over

10 listeners.

The results shown in Figure 4.4 and Table 4.3 indicate that voice conversion models

built by capturing speaker-specific characteristics usingANN models are useful. As
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Table 4.3: Subjective evaluation of voice conversion models built by capturing speaker-
specific characteristics

Target Speaker MOS Similarity tests
BDL 2.926 2.715
SLT 2.731 2.47

this approach do not need any utterances from source speakerto train a voice conver-

sion model we can use this type of model to perform cross-lingual voice conversion.

Figure 4.5 shows the effect of amount of training data in building the ANN models cap-

turing speaker-specific characteristics. It could be observed that the MCD scores tend

to decrease with the increase in the amount of training data.
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Figure 4.5:A plot of MCD v/s Data size for different speaker pairs and with SLT or
BDL as the target speaker.

4.2.5 Experiments on multiple speakers database

To test the validity of the proposed method, we conducted experiments on other databases

from the ARCTIC set, such as RMS, CLB, JMK, AWB and KSP. The training for all

these experiments was conducted on 6 minutes of speech data form each of the database.

However, the testing was done on the standard set of 59 utterances. The MCD scores

provided in Table 4.4 indicate that the methodology of training an ANN model to cap-

ture speaker-specific characteristics for voice conversion could be generalized over dif-

ferent datasets.
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Table 4.4: Performance of voice conversion model built by capturing speaker-specific
features are provided with MCD scores. Entries in the first column represent
source speakers and the entries in the first row represent target speakers.
All the experiments are trained on 6 minutes of speech and tested on 59
utterances or approximately 3 minutes of speech.

X
X

X
X

X
X

X
X

X
X

X
X

Source
Target

RMS CLB AWB KSP

BDL 6.260 6.137 6.558 6.820
SLT 7.430 5.791 6.354 7.278
CLB 7.066 NA 6.297 7.166
JMK 6.617 6.616 6.224 6.878
RMS NA 6.716 6.251 6.891
AWB 6.847 6.517 NA 6.769
KSP 7.392 7.239 6.517 NA

4.2.6 Application to cross-lingual voice conversion

Table 4.5: Subjective results of cross-lingual transformation done using conversion
model built by capturing speaker-specific characteristics. 10 utterances from
each of Telugu (NK), Hindi (PRA) and Kannada (LV) speakers aretrans-
formed into BDL male speaker’s voice

Source Speaker Target Speaker MOS Similarity tests
NK (Telugu) BDL (English) 2.88 2.77
PRA (Hindi) BDL (English) 2.62 2.15

LV (Kannada) BDL English 2.77 2.22

Cross-lingual voice conversion is a task where the language of the source and the

target speakers is different. In the case of speech-to-speech translation system, a source

speaker may not know the target language. Hence, to convey information in his/her

voice in the target language, cross-lingual voice conversion assumes importance. The

availability of parallel data is difficult for cross-lingual voice conversion. One solution

is to perform a unit selection approach [24] [44] [19] to find units in target speaker

utterances that are close to the source speaker or use utterances recorded by a bi-lingual

speaker [43]. Our solution to cross-lingual voice conversion is to employ the ANN

model which captures speaker-specific characteristics.
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In this context, we performed an experiment to transform three female speakers

(NK, PRA, LV) speaking Telugu, Hindi and Kannada respectively into a male voice

speaking English (US male - BDL). Our goal here is transform NK, PRA and LV voices

to BDL voice and hence the output will be as if BDL were speaking in Telugu, Hindi

and Kannada respectively. We make use of BDL models built in Section 4.2.4 to cap-

ture speaker-specific characteristics. Ten utterances from NK, PRA, LV voices were

transformed into BDL voice and we performed MOS test and similarity test to evaluate

the performance of this transformation. Table 4.5 providesthe MOS and similarity test

results averaged over all listeners. There were 10 native listeners of Telugu, Hindi and

Kannada who participated in the evaluations tests. The MOS scores in Table 4.5 indicate

the transformed voice was intelligible. The similarity tests indicate that cross-lingual

transformation could be achieved using ANN models, and the output is intelligible and

possess the characteristics of BDL voice.

4.3 Summary

The focus in this chapter was to design a framework which doesnot use any of the

source speaker recordings. Use of a many-to-one approach does transform the source

speaker speech to the target speaker, however, its performance depends on the availabil-

ity of multiple pre-stored speakers. Our second approach which does not need any data

other than the target speakers data is a novel approach whichalso seems to perform well

in the case of both intra-lingual and cross-lingual voice conversion.
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CHAPTER 5

Conclusion and future work

5.1 Conclusion

Most of the current voice conversion systems need training data from a source speaker

and a target speaker. Such training data could be either parallel, where both the speakers

record the same set of utterances or non-parallel, where theutterances recorded by both

the speakers are different. It is known that the use of parallel training data provides

better results when compared to the systems using non-parallel training data. Machine

learning techniques such as VQ, GMM, HMM, ANN, etc., have been used to learn the

mapping from the source speaker’s acoustic space to the target speaker’s acoustic space.

However, referring to the state-of-the art techniques, we see that the GMM based voice

conversion techniques are most widely used. The goal of suchsystems is to incorporate

the target speaker characteristics in the transformed speech.

In this thesis, we have proposed ANN based technique for voice conversion and

have compared the ANN based voice conversion system with that of the GMM based

voice conversion system. We have shown that the ANN based voice conversion per-

forms as good as that of the GMM based system. We have also shown that a smoothing

technique such as MLPG is not needed with the use of ANN for voice conversion. To

further improve the spectral transformation quality of theANN based system we have

proposed three methods, namely, appending deltas, use of a hybrid model and use of

contextual features. However, as these techniques depend on the availability of the

parallel training data, use of such techniques may not always be feasible. A further

limitation to such technique is that the trained model can beused to transform from the

trained source speaker to the trained target speaker. Hence, if a new speaker wants to



transform his voice to the target speaker, the speaker has toprovide the recorded utter-

ances and train a system. To avoid the need for training data from both the speakers,

i.e, the source speaker and the target speaker, we have proposed a technique that cap-

tures speaker specific characteristics such that a model canbe trained only on the target

speaker data. Such a technique allows us to transform any arbitrary source speaker to

the target speaker. Incidentally, the proposed method alsofinds application in building

a cross-lingual voice conversion system, where the source speakers’ language and the

target speakers’ language are different.

5.2 Limitations

1. Our focus in this thesis was to improve the spectral transformation performance

and hence we have not laid much emphasis on source features transformation.

We have used a Gaussian normalized transformation to scale the source speaker

pitch frequency taking their mean and variance into account.

2. Assuming that parallel training data is available, typically 30-50 utterances are

used in voice conversion. In this thesis, we have designed anapproach that cap-

tures speaker-specific characteristics i.e, the target speaker. As 50 utterances will

not be sufficient to build such a model, we assume that we have alarge amount

of target speaker training data on which this model could be built.

3. We propose the use of formants in our approach for capturing speaker specific

characteristics. These formants were extracted from a wellknown tool ESPS.

Though the study of extracting formants in a robust manner isnot complete, we

consider the output of ESPS as standard and use them for our work.

4. Vocal Tract Length Normalization (VTLN) is a speaker normalization technique

that tries to compensate for the effect of speaker-dependent vocal tract lengths.

There are methods of implementing the same in a robust manner, however, for

our experimentation we use a simpler method.
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5. Our current approach for CLVC needs a large amount of speechdata which would

be equivalent to the one needed to build a TTS, however, we have not conducted

experiments to find out what could be the optimal size of the data needed to get

an acceptable level of performance.

5.3 Future work

• The transformation of spectral features and average pitch frequency is not enough

to obtain a good voice transformation. Duration and pitch contours are also a few

of the important features that affect the transformation performance.

• The quality of the current cross-lingual voice conversion depends on the accuracy

of formant prediction. Most of the current formant extraction techniques are not

robust. We are currently using a well known tool ESPS to extract the formants.

However as we have not validated the accuracy of it, we intendto do the same and

come up with an approach which would be more robust in extracting formants.

Theoretically speaking, the number of formants vary from phone to phone, how-

ever for our current experiments we use 6 formants for every phone. Hence, one

could design an algorithm by carefully considering the nature of the phone and

the number of formants.

• In our approach for cross-lingual voice conversion, as we did not use a bilingual

speaker, we did not find any means to perform an objective evaluation. Hence,

there is a need to come up with an algorithm that can be used to assess the quality

of transformation objectively.

66



REFERENCES

[1] G. Fant,Acoustic theory of speech production, Mouton De Gruyter, 1970.

[2] B. Yegnanarayana,Artificial Neural Networks, Prentice Hall of India, 2004.

[3] J. Makhoul, “Linear prediction: A tutorial review,” inProceedings of the IEEE,

1975, vol. 63, pp. 561–580.

[4] F. Itakura, “Minimum prediction residual principle applied to speech recognition,”

in IEEE Trans. Acoust., Speech, Signal Processing, 1975, vol. 23, pp. 67–72.

[5] W. Holmes, J. Holmes, and M. Judd, “Extension of the bandwidth of the jsru

parallel-formant synthesizer for high quality synthesis of male and female speech,”

in Proceedings of IEEE Int. Conf. Acoust., Speech, and Signal Processing, 1990,

vol. 1, pp. 313–316.

[6] S. Davis and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,” inIEEE Trans.

Acoust., Speech, Signal Processing, 1990, vol. 28, pp. 357–366.

[7] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conversion through

vector quantization,” inProceedings of IEEE Int. Conf. Acoust., Speech, and

Signal Processing, 1988, vol. 1, pp. 655–658.

[8] E. K. Kim, S. Lee, and Y. H. Oh, “Hidden markov model based voice conversion

using dynamic characteristics of speaker,” inEuropean Conference On Speech

Communication And Technology, 1997, pp. 1311–1314.

[9] H. Mori and H. Kasuya, “Speaker conversion in arx-based source-formant type

speech synthesis,” inEuropean Conference On Speech Communication And Tech-

nology, 2003, pp. 2421–2424.

67



[10] H. Duxans,Voice Conversion applied to Text-to-Speech systems, PhD dissertation,

Universitat Politecnica de Catalunya, Barcelona, 2006.

[11] A Kain and M. W. Macon, “Design and evaluation of a voice conversion algorithm

based on spectral envelop mapping and residual prediction,” in Proceedings of

IEEE Int. Conf. Acoust., Speech, and Signal Processing, 2001, vol. 2, pp. 813–

816.

[12] Y. Stylianou, O. Cappe, and E. Moulines, “Statistical methods for voice quality

transformation,” inEurospeech, 1995, pp. 447–450.

[13] A. R. Toth and A. W. Black, “Using articulatory position data in voice transfor-

mation,” inWorkshop on Speech Synthesis, 2007, pp. 182–187.

[14] T. Toda, A. W. Black, and K. Tokuda, “Acoustic-to-articulatory inversion mapping

with gaussian mixture model,,” inProceedings of Int. Conf. Spoken Language

Processing, 2004.

[15] M. Narendranath, H. A. Murthy, S. Rajendran, and B. Yegnanarayana, “Transfor-

mation of formants for voice conversion using artificial neural networks,,”Speech

Communication, vol. 16, pp. 207–216, 1995.

[16] T. Watanabe, T. Murakami, M. Namba, T. Hoya, and Y. Ishida, “Transformation

of spectral envelope for voice conversion based on radial basis function networks,”

in Proceedings of Int. Conf. Spoken Language Processing, 2002.

[17] S. Desai, E. V. Raghavendra, B. Yegnanarayana, A. W. Black,and K. Prahallad,

“Voice conversion using artificial neural networks,” inProceedings of IEEE Int.

Conf. Acoust., Speech, and Signal Processing, 2009.

[18] H. Valaree, E. Moulines, and J. P. Tubach, “Voice transformation using psola tech-

nique,” inProceedings of IEEE Int. Conf. Acoust., Speech, and Signal Processing,

1992.

68



[19] D. Sundermann, H. Hoge, A. Bonafonte, H. Ney, and S. Narayanan, “Text-

independent voice conversion based on unit selection,” .

[20] T. Toda, Y. Ohtani, and K. Shikano, “Eigenvoice conversion based on gaussian

mixture model,” inProceedings of INTERSPEECH, 2006.

[21] T. Toda, Y. Ohtani, and K. Shikano, “One-to-many and many-to-one voice con-

version based on eigenvoices,” inProceedings of IEEE Int. Conf. Acoust., Speech,

and Signal Processing, 2007.

[22] A. Kain, High resolution voice transformation, PhD dissertation, Oregon Health

and Science University, 2001.

[23] H. Ye and S. Young, “Voice conversion for unknown speakers,” in Proceedings of

Int. Conf. Spoken Language Processing.

[24] A. Sundermann, A. Bonafonte, H. Hoge, and H. Ney, “Voice conversion using

exclusively unaligned training data,” inACL/EMNLP.

[25] A. Mouchtaris, J. V. Spiegel, and P. Mueller, “Non-parallel training for voice

conversion by maximum likelihood constrained adaptation,” in Proceedings of

IEEE Int. Conf. Acoust., Speech, and Signal Processing.

[26] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T.Kitamura, “Speech

parameter generation algorithms for hmm based speech synthesis,” inProceedings

of IEEE Int. Conf. Acoust., Speech, and Signal Processing, 2000.

[27] O. Turk, Cross-lingual voice conversion, PhD dissertation, Bogazii University,

2007.

[28] G. Zuo, W. Liu, and X. Ruan, “Genetic neural networks based rbf neural network

for voice conversion,” inWorld congress on intelligent control and automation.

[29] K. Sreenivasa Rao, “Voice conversion by mapping the speaker-specific features

using pitch synchronous approach,”Elsevier Science, 2009.

69



[30] D. Erro, Intra-lingual and cross-lingual voice conversion using harmonic plus

stochastic models, PhD dissertation, Universitat Politcnica de Catalunya, 2008.

[31] H. Matsumoto, S. Hiki, T. Sone, and T. Nimura, “Multidimensional representation

of personal quality of vowels and its acoustical correlates,” IEEE Transactions AU,

pp. 428–436, 1973.

[32] K. Itoh and S. Saito, “Effects of acoustical feature parameters of speech on per-

ceptual identification of speaker,”IECE Transactions, pp. 101–108, 1982.

[33] H. Kuwabara and Y. Sagisaka, “Acoustic characteristics of speaker individuality:

Control and conversion,”Speech Communication, vol. 16, 1995.

[34] K. Shikano, S. Nakamura, and M. Abe, “Speaker adaptation and voice conver-

sion by codebook mapping,” inIEEE International Symposium on Circuits and

Systems,, vol. 1.

[35] L. M Arslan, “Speaker transformation algorithm using segmental codebooks

(stasc),”Speech Communication, vol. 28.

[36] A. Kain and M. W. Macon, “Spectral voice conversion for text-to-speech synthe-

sis,” in Proceedings of IEEE Int. Conf. Acoust., Speech, and Signal Processing,

1998, vol. 1, pp. 285–288.

[37] A. Pozo,Voice Source and Duration Modelling for Voice Conversion andSpeech,

PhD dissertation, University of Cambridge, 2008.

[38] T. Toda, A. Black, and K. Tokuda, “Spectral conversion based on maximum like-

lihood estimation considering global variance of converted parameter,” inPro-

ceedings of IEEE Int. Conf. Acoust., Speech, and Signal Processing, 2005, vol. 1,

pp. 9–12.

[39] T. Toda,High-Quality and Flexible Speech Synthesis with Segment Selection and

Voice Conversion, PhD dissertation, Nara Institute of Science and Technology,

2003.

70



[40] O. Turk, “New methods for voice conversion,” MS dissertation, Boazii University,

2003.

[41] D. Sundermann, H. Hoge, A. Bonafonte, H. Ney, and J. Hirschberg, “Text-

independent cross-language voice conversion,” inProceedings of Int. Conf. Spo-

ken Language Processing.

[42] A. Sundermann,Text-Independent Voice Conversion, PhD dissertation, Universi-

tat der Bundeswehr Munchen, 2007.

[43] A. Mouchtaris, J. V. Spiegel, and P. Mueller, “Nonparallel training for voice con-

version based on a parameter adaptation approach,”IEEE Transactions on Audio,

Speech and Language Processing, vol. 14, 2006.

[44] D. Sundermann, H. Ney, and H. Hoge, “Vtln based cross-language voice conver-

sion,” .

[45] K. S. Lee, D. H. Youn, and I. W. Cha, “A new voice transformation method based

on both linear and nonlinear prediction analysis,” inProceedings of Int. Conf.

Spoken Language Processing, pp. 1401–1404.

[46] H. Ye and S. Young, “High quality voice morphing,” inProceedings of IEEE Int.

Conf. Acoust., Speech, and Signal Processing.

[47] A. Sundermann, A. Bonafonte, H. Ney, and H. Hoge, “A studyon residual predic-

tion techniques for voice conversion,” inProceedings of IEEE Int. Conf. Acoust.,

Speech, and Signal Processing.

[48] K. Liu, J. Zhang, and Y. Yan, “High quality voice conversion through phoneme

based linear mapping functions with straight for mandarin,” in 4th International

Conference on Fuzzy Systems and Knowledge Discovery.

[49] O. Turk and L. M. Arslan, “Voice conversion methods for vocal tract and pitch

contour modification,” inEuropean Conference on Speech Communication and

Technology, pp. 2845–2848.

71



[50] M. Tamura, T. Masuko, K. Tokuda, and T. Kobayashi, “Text-to-speech synthesis

with arbitrary speaker’s voice from average voice,” inEuropean Conference On

Speech Communication And Technology, 2001.

[51] T. Ceyssens, W. Verhelst, and P. Wambacq, “On the construction of a pitch con-

version system,” inEuropen Signal Processing Conference, 2002.

[52] P. D. Auero, J. Adell, and A. Bonafonte, “Improving tts quality using pitch contour

information of source speaker in s2st framework,” inInternational Workshop

Advances in Speech Technology, 2002.

[53] H. Ye and S. Young, “Perceptually weighted linear transformations for voice

conversion,” inProceedings of EUROSPEECH.

[54] T. Toda, A. W. Black, and K. Tokuda, “Mapping from articulatory movements to

vocal tract spectrum with gaussian mixture model for articulatory speech synthe-

sis,” in Proceedings of 5th ISCA Speech Synthesis Workshop, Pittsburg, PA., June

2004, pp. 31–36.

[55] A. J. Hunt and A. W. Black, “Unit selection in a concatenative speech synthesis

system using a large speech database,” inProceedings of IEEE Int. Conf. Acoust.,

Speech, and Signal Processing.

[56] T. Dutoit, An introduction to text-to-speech synthesis, Kluwer Academic Publish-

ers, 1997.

[57] A Kain and M. W. Macon, “Personalizing a speech synthesizer by voice adapta-

tion,” in 3rd ECSA/COCOSDA International Speech Synthesis Workshop, 1998,

pp. 225–230.

[58] W. Zhang, L. Q. Shen, and D. Tang, “Voice conversion based on acoustic feature

transformation,” in6th national conference on Man-machine speech communica-

tions, 2001.

72



[59] E. V. Raghavendra, S. Desai, B. Yegnanarayana, A. W. Black,and K. Prahallad,

“Global syllable set for speech synthesis in indian languages,” in IEEE 2008

workshop on Spoken Language Technologies, Goa, India.

[60] H. Hoge, “Project proposal tc-star - make speech-to-speech translation real,” in

LREC, 2002.

[61] O. Turk and L. Arslan, “Subband based voice conversion,” in ICSLP, 2002.

[62] J. Hosom, A. Kain, T. Mishra, J. V. Santen, M. Fried-Oken, and J. Staehely, “Intel-

ligibility of modifications to dysarthic speech,” inProceedings of IEEE Int. Conf.

Acoust., Speech, and Signal Processing, 2003.

[63] K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano, “Speaking aid system for

total laryngectomees using voice conversion of body transmitted artificial speech,”

in Proceedings of INTERSPEECH, 2006.

[64] Q. Jin, A. Toth, T. Schultz, and A. W. Black, “Voice convergin: Speaker de-

identification by voice transformation,” inProceedings of IEEE Int. Conf. Acoust.,

Speech, and Signal Processing.

[65] J. Kominek and A. W. Black, “The CMU ARCTIC speech databases,” in 5th ISCA

Speech Synthesis Workshop.

[66] S. Imai, “Cepstral analysis synthesis on the mel frequency scale,” inProceedings

of IEEE Int. Conf. Acoust., Speech, and Signal Processing.

[67] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on maximum

likelihood estimation of spectral parameter trajectory,”IEEE Trans. Audio, Speech

and Language Processing, pp. 2222–2235, 2007.

[68] A. W. Black and K. Lenzo, “Building voices in the festival speech synthesis

system,” in http://festvox.org/bsv/.

[69] S. Furui, “Cepstral analysis for automatic speaker verification,” IEEE Trans. on

Audio Speech and Signal Proc, 1981.

73



[70] H. Misra, S. Ikbal, and B. Yegnanarayana, “Speaker-specific mapping for text-

independent speaker recognition,”Speech Communication, 2003.

[71] ESPS, “Esps source code from the esps/waves+ package,”in [Online].

[72] A. Faria, “Pitch based vocal tract length normalization,” in Tech. Rep. TR-03-001,

International Computer Science Institute.

74



LIST OF PUBLICATIONS

The work done during my masters has been disseminated to the following journal
and conferences.

Journal:

1. Srinivas Desai, B. Yagnanarayana, Alan W Black, Kishore Prahallad, ”Spectral

Mapping Using Artificial Neural Networks for Voice Conversion”, IEEE Trans-

actions on Audio, Speech and Language Processing, 2010.

Conferences:

1. Srinivas Desai, B. Yegnanarayana, Kishore Prahallad, ”A Framework for Cross-

Lingual Voice Conversion using Artificial Neural Networks”,in Proceedings of

International Conference on Natural Language Processing (ICON), Hyderabad,

India, December 2009.

2. Srinivas Desai, E. Veera Raghavendra, B. Yegnanarayana, Alan W Black, Kishore

Prahallad, ”Voice Conversion Using Artificial Neural Networks”, in Proceedings

of IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Taipei,

Taiwan, April 2009.

3. E. Veera Raghavendra, Srinivas Desai, B. Yegnanarayana, Alan W Black, Kishore

Prahallad, ”Blizzard 2008: Experiments on Unit Size for UnitSelection Speech

Synthesis”, inBlizzard Challenge 2008 workshop, Brisbane, Australia, Septem-

ber 2008.

4. E. Veera Raghavendra, Srinivas Desai, B. Yegnanarayana, Alan W Black, Kishore

Prahallad, ”Global Syllable Set for Building Speech Synthesis in Indian Lan-

guages”, in Proceedings ofIEEE 2008 workshop on Spoken Language Technolo-

gies, Goa, India, December 2008.

75



CURRICULUM VITAE

1. NAME: Srinivas Desai

2. DATE OF BIRTH: 06 April 1983

3. PERMANENT ADDRESS:

Srinivas Desai

S/O Hanumanth Rao Desai

Plot No: 101,

Sapthagiri Colony, Sainikpuri,

Secunderabad - 500094.

Andhra Pradesh,

India.

4. EDUCATIONAL QUALIFICATION:

• July 2005: Bachelor of Engineering (ECE), Poojya Doddappa Appa Col-

lege of Engineering, Gulbarga, Karnataka, India.

76



THESIS COMMITTEE

1. GUIDE: Mr. Kishore Prahallad

2. MEMBERS:

• Prof. Jayanthi Sivaswamy

• Dr. Garimella Rama Murthy

77


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION TO VOICE CONVERSION
	What is voice conversion?
	Definition
	Architecture of a voice conversion system

	Issues in voice conversion
	Issues addressed in this thesis
	Contributions
	Organization of thesis

	REVIEW ON VOICE CONVERSION METHODS
	Spectral transformation
	Intra-lingual voice conversion with parallel data
	Intra-lingual voice conversion with non-parallel data
	Cross-lingual voice conversion

	Source feature and prosody transformation
	Evaluation
	Objective evaluation
	Subjective evaluation

	Applications
	Summary

	VOICE CONVERSION USING ARTIFICIAL NEURAL NETWORKS
	Intra-lingual voice conversion
	Database
	Feature extraction
	Alignment of parallel utterances
	Process of training and testing/conversion
	Spectral mapping using GMM
	Spectral mapping using ANN
	Mapping of excitation features
	Evaluation criteria for voice conversion

	Experiments and results
	Objective evaluation of a GMM based VC system
	Objective evaluation of an ANN based VC system
	Subjective evaluation of GMM and ANN based VC systems
	Experiment on multiple speaker pairs

	Enhancements to voice conversion using ANN
	Appending deltas
	A hybrid model
	Transformation with use of contextual features

	Summary

	FRAMEWORK FOR SOURCE-SPEAKER INDEPENDENT VOICE CONVERSION
	Many-to-one mapping
	Models capturing speaker-specific characteristics
	Vocal tract length normalization
	Error correction network
	Experiments with parallel data
	Experiments using target speaker's data
	Experiments on multiple speakers database
	Application to cross-lingual voice conversion

	Summary

	Conclusion and future work
	Conclusion
	Limitations
	Future work


