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ABSTRACT

Keywords: Voice Conversion, Artificial Neural Networks, Spetral Mapgi Error Cor-

rection Network, Cross-Lingual Voice Conversion.

Voice conversion is a process of transforming an utterafe@esource speaker so that
it is perceived as if spoken by a specified target speakerliégtipns of voice conver-
sion include secured transmission, speech-to-speecsldteom and generating voices
for virtual characters/avatars. The process of voice amne involves transforming
acoustic cues such as spectral parameters charactefti@ngtal tract, fundamental
frequency, prosody etc., pertaining to the identity of aakee Spectral parameters
representing the vocal tract shape are known to contribote o the speaker identity
and hence there have been efforts to find a better spectradinggpetween the source
and the target speaker. In this dissertation, we proposertiicial Neural Network
(ANN) based spectral mapping and compare its performaraiastghe state-of-the-art
Gaussian Mixture Model (GMM) based mapping. We show tha#tN&l based voice

conversion system performs better than that of GMM basetevaonversion system.

A typical requirement for a voice conversion system is toehlaeth the source and tar-
get speakers record a same set of utterances, referred trakelpdata. A mapping
function obtained on such parallel data can be used to temspectral characteristics
from a source speaker to the target speaker. If either offbakers change then a new
transformation function has to be estimated which requicdiection of parallel data.
However, it is not always feasible to find parallel utteranéer training. The com-
plexity of building training data increases if the languadéhe source speaker and the
target speaker is different, which occurs in the case ofseliagual voice conversion.

To circumvent the need of parallel data and to reduce the Exitypin building training



data for a cross-lingual voice conversion system, we p@jposalgorithm which cap-

tures speaker specific characteristics (target speakénasthere is no need of training
data from the source speaker. Such an algorithm needs taihedron only the target
speaker data and hence any arbitrary source speaker couthséormed to the speci-
fied target speaker. We show that the proposed algorithnudmulised in intra-lingual

and cross-lingual voice conversion. Subjective and oleevaluation reveals that the
quality of the transformed speech using the proposed appiieantelligible and posses

the characteristics of the target speaker.

A set of transformed utterances corresponding to resudtsudsed in this work is avail-

able for listening atittp://ravi.iiit.ac.in/ ~ speech/uploads/taslp09_srinivas/


http://ravi.iiit.ac.in/~speech/uploads/taslp09_srinivas/
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CHAPTER 1

INTRODUCTION TO VOICE CONVERSION

1.1 Whatis voice conversion?

1.1.1 Definition

Speech is a natural medium of communication among humagse speech signal
carries information including the message that is meanetodmveyed, the identity of
a speaker and the background/environment. The chardicte$ a speech signal cor-
responding to the identity of a speaker allow us to diffeesgatbetween speakers. An
ability to control the identity of a speaker is required ipbgations such as secured
speech transmission and speech-to-speech translatiseclmed speech transmission,
the identity of a speaker needs to be masked. In speechetBranslation, a spoken
sentence is translated from one language to another, sayEnglish to French, where
it is important that the translated French utterance bdersdentity of the English
speaker. Other applications with a requirement to contrelitientity of the speaker
include generating voices for virtual characters/ avatagames. The process of con-
trolling or morphing the identity of a speaker is often reéerto as voice conversion.
The goal of a Voice Conversion (VC) system is to transform aerattce of a source

speaker so that it is perceived as if spoken by a specifiedttapgaker.

1.1.2 Architecture of a voice conversion system

A typical architecture of a VC system is shown in Figure| 1.4 énconsists of the

following components:

1. A feature extraction module



Training Mode

Source
Speaker__,| Feature
Speech Extraction .

L Alignment |« Mapping

Function

Target | Feature
Speaker Extraction
Speech
Source J Converted
Speaker— e Feature « Conversion « Synthesis—« Speech
Speech Extraction

Transformation Mode

Figure 1.1:Block diagram of various modules involved in a voice conearsystem

2. Training and transformation modules.

The process of feature extraction assumes a model which etlzematical repre-
sentation of the speech production mechanism that makesnggsis, manipulation
and transformation of speech signal possible. Gunnar $§hjt'acoustic theory of
speech production postulates that speech production cambeled by an excitation
source and an acoustic filter. Such a model is called as ataggoifilter model and is
most widely used in various areas of speech research sugeastssynthesis, speech
recognition, speech coding, speech enhancement, etds lcathtext of excitation-filter
modeling,speech is defined as the output of a time-varying vocal trggies excited
by a time-varying excitation sign§2]. The filter component can be visualized as an
acoustic tube with time-varying area function. The inputhis filter is an excitation
signal which is a mixture of a quasi periodic signal and a@eaurce. A block diagram

of an excitation-filter model is as shown in Figure 1.2.

Source Digital Filter Coefficients
Quasi- (Vocal Tract Parameters)
periodic ||
Signal .-
g \.‘\'\0— Time-Varying|  Speech
e Digital Filter
Noise 7/.
Source

Figure 1.2:The excitation-filter model of speech production



Both the excitation and filter are represented by parametbrshvare usually ex-
tracted from the speech signal by performing frame-by-&amalysis, where the size
of a frame could vary from 5 ms to 30 ms. Spectral features asdtinear Prediction
Coefficients (LPC) [3], Line Spectral Frequencies (LSF) [4fnfant frequencies and
bandwidths [5], Mel-Frequency Cepstral Coefficients (MFCC) ¢6¢., are some of the
features generally used to represent the vocal tract shape filter. Features such as

pitch, residual, glottal closure instants, etc., are usgépresent the excitation signal.

Features representing the excitation and filter have cyeesenting the identity of
a speaker, but due to the ease of extraction of the filter festunuch emphasis is laid
on getting a better spectral transformation. In trainingge) standard machine learn-
ing techniques such as Vector Quantization (VQ) [7], Hidtarkov Models (HMM)
[8] [9] [10], Gaussian Mixture Models (GMM) [11] [12] [13] A], Artificial Neural
Networks (ANN) [15] [16] [17] Dynamic Frequency Warping (BF [18] and Unit
Selection [19], have been used for learning the transfaam&tom the feature space of

the source speaker to that of the target speaker.

Finally, in transformation mode, given a new utterance fthensource speaker, the
transformation function obtained in the training phasessdito predict the features
representing the target speaker. Speech synthesized fiese predicted features is

perceived as if spoken by the target speaker.

A typical requirement for a VC system is a set of speech uttaarecorded by both
the source and the target speaker. Depending on the largumaghkich the training data

is available, VC systems can be classified as:

¢ Intra-Lingual Voice Conversion (ILVC): The source speakeat e target speaker

recordings are in the same language.

e Cross-Lingual Voice Conversion (CLVC): The source speakerlamthirget speaker

recordings are in different languages.



1.2 Issues in voice conversion

¢ Requirement of parallel data in an ILVC system: Voice conversion is a process
where a source speaker utterance is converted to be pat@svié spoken by a
target speaker. A typical requirement for such system isat@ lboth the source
and target speakers record a matching set of utterancesre@fto as parallel
data. A mapping function obtained on such parallel data eamskd to transform
spectral characteristics from the source speaker to tgettapeaker [7] [11] [12]

[15] [17] [20] [21]. However the use of parallel data has kations:

1. If either of the speakers change then a new transformétiaction has to

be estimated which requires collection of parallel data.

2. The performance of voice conversion is dependent on thehnmetween
the source and the target speaker utterances. As the digrafithe parallel
utterances will typically differ, alignment technique bugs dynamic pro-
gramming is used to have a frame to frame mapping betweerttéramnce
pairs. If there are differences between the utteranceswtseaand target
speakers in terms of recording conditions, duration, phgsetc., then it
introduces the alignment errors, which in turn leads to poestimation of

transformation function.

3. Availability of parallel data is not always feasible. Tave a parallel set of
recordings from both the speakers and in a naturally tingnatl fashion

[22] is a costly and time consuming task.

e Training data for a CLVC system: The parallel data used for an ILVC system
consists osame set of utterancescorded by the source and the target speakers.
Such parallel data enables us to arrive at a relationshypdest utterances of the
source and the target speakers at a phone/segment levelyst€rs built on

such data learn a transformation from say phone /a/ of thece@peaker to the



phone /a/ of the target speaker. In a CLVC system, as the |gegofahe source
and the target speaker is different, there is no possilafitgcording the same set
of utterances as used in an ILVC system. However, clusteaeadigniques could
be used to derive a relationship between features of somdtéaaget utterances
at phone/segment level. For example, if the utterances afget speaker could
be clustered into K clusters using VQ techniques, then tKedesters could be
used to annotate the utterances of the source speaker ve deei relationship
between source and target speakers at the cluster leveh data could be re-
ferred to as pseudo-parallel data which could be used td buTLVC system.
There have been various works proposed to exploit the aalgardf being able
to create pseudo-parallel data for a CLVC system using msetkadh as: us-
ing a speech recognizer [23], a unit selection algorithn, [di&ss mapping [24],
creating pseudo parallel corpus using TTS [10] and adaptaéichniques [25].
However, all these methods still need both the speakerqihatagh not parallel
utterances). Hence, there is a need to design an algorithincaiptures speaker
specific characteristics and uses only the target speakar 8ach an algorithm
which needs only the target speaker’s data can be used ifdlh4thand CLVC

frameworks.

Smoothing of spectral parameters: Spectral transformation has always been
a concern in this area of VC, hence we find many research worksanfeling
the conversion function from the source spectral featurebe target spectral
features. Most state-of-the-art VC systems use GMMs foctspletransforma-
tion [11] [12] [13] [14] which needs Maximum Likelihood Pan&ter Generation
(MLPG) [26] to perform a parameter smoothing. However egisessmoothing
causes decreased similarity to the target speaker voi¢eH2nce, we intend to

find a transformation method that does not need this smanthin

Prosodic conversion:Prosodic conversion refers to the transformation of prizsod

characteristics such as mean fundamental frequency, pthanagion, loudness



etc., of the source speaker to that of the target speakert dlidise current VC

methods, use a normalized linear transformation of pitcitdémental frequency
due to which the prosody of the source speaker is copiedthieetransformed
speech may bear the identity of the target speaker but pogsegrosodic char-

acteristics of the source speaker.

e Quality vs. Similarity: There is generally a trade-off between the quality of a
transformed speech signal and similarity to the targetlsgé&avoice. For some
applications, distortion in the transformed speech signght be tolerated to in-
crease their similarity to the target voice. For examplesinging voice transfor-
mations, part of the distortion in the voice conversion autpecomes inaudible
when mixed with music. Therefore, the similarity versusligyarade-off needs

to be maintained in voice conversion algorithm.

1.3 Issues addressed in this thesis

There are two issues in particular that we propose to addrésss thesis.

1. To find a better spectral transformation method with thee afsparallel training
data and hence compare the proposed approach with theote-art GMM

based VC system.

2. To circumvent the requirement of parallel data in intrapial voice conversion
and to reduce the complexity in obtaining training data fer@ss-lingual voice
conversion system, we propose an algorithm which captyseaker specific
characteristics of the target speaker. Such an algorithedse be trained on
only the target speaker data and hence any arbitrary sqoeedar’'s speech could

be transformed to the specified target speaker.



Vocal tract shape between two speakers is non linear anceAENBl based spec-
tral transformation was proposed as this can perform nuali mapping [15]. Naren-
dranath et. al. [15] used ANNSs to transform the source spe@kmants to target
speaker formants. Results were provided showing that tmeaiior contour of the tar-
get speaker can be obtained using ANN. A formant vocoder sad to synthesize
the transformed speech, however, no objective or subgpiwasures were given as to
how good the transformed speech was. The use of radial hemisdn neural network
for voice transformation was proposed in [16] [28]. All theose referred methods in
[15] [16] [28] need carefully prepared training data whiolialves manual selection of
vowels or syllable regions from both the source and the tageaker. This is a tedious
task to make sure that the source and the target featuretigarecacorrectly. Hence,
there is a need for an algorithm that does not need any maalggtion for training
data. The work in [29] also uses ANN for spectral and prosatipping, but it is not
clear how the proposed ANN based VC system compares withwidsty used GMM

based VC systems.

We also propose the use of ANNSs for spectral mapping and ouk differs from

earlier approaches in the following ways:

e The proposed approach using ANNs makes use of the parallef séterances
provided from source and target speakers to automaticathae the relevant
training data for mapping of source speaker’s spectraufeatonto the target
speaker’s acoustic space. Thus our approach avoids anyeegunt of manual

or careful preparation of data.

e Subjective and objective measures are conducted to egafi@atusefulness of

ANNSs for voice conversion.

e A comparative study between ANN and GMM based VC systemsriopeed
and we show that ANN based VC performs as good as that of GMMddesn-

version.



e We propose additional techniques that improve the transittion performance.

These techniques include use of delta features and use déatlres.

e To address the issue of obtaining training data from thecgand the target
speaker for a CLVC system, we propose an algorithm that capturly the target
speaker characteristics and hence does not require theesspeaker data at the
training stage. In this way, we will be able to transform amiteary source
speaker to a particular target speaker. The proposed agpreaseful for both

ILVC and CLVC.

1.4 Contributions

The contributions of this study could be summarized asVilo

e Use of ANNs for VC on continuous speech data without any needrbme

selection either manually or computationally.
e Comparison of ANN and GMM for spectral transformation in VC.

e Development of a hybrid framework that combines both ANN &1dM for

spectral transformation in VC.

e Development of a novel framework for spectral transfororativhich captures
speaker specific characteristics and hence the trainingGarould be done with-
out any need for recordings from a source speaker. i.e, trdelma@re built on
only the target speaker data and hence we can transform bityaey source

speaker onto the trained target speaker’s acoustic space.

e Introduction of an error-correction module to improve trerfprmance of the

voice conversion system

e Application of the proposed framework in CLVC.

8



1.5 Organization of thesis

The rest of the thesis is organized as follows.

In Chapter 2, a brief explanation is given on various techniques thatvpeoposed
for ILVC and CLVC based systems are explained in brief. Thaasghat still remain

unresolved are noted.

Chapter 3 is devoted to the design of a baseline system which explaidstail, a
VC system trained on parallel data using both ANN and GMM. Aparison of these
two techniques is also done using different speaker padarvarying the amount of
training data to finally conclude that use of ANNSs is betterdpectral transformation.
Three techniques applied to enhance the performance of ay$t€ms based on ANN

are also described in detail.

Chapter 4 proposes a new algorithm that captures speaker specifiaatbastics
and hence resolve the issue of using parallel data for V@itrgi In the process of de-
signing this algorithm, a new module called error-cor@ttietwork is proposed which
improves the performance of the above mentioned algoritinally, we conclude this

chapter with experiments and results of this algorithm wiested in a CLVC scenatrio.

Finally in Chapter 5, the conclusions that can be drawn from this thesis arenagtli

and some possible research lines for the future are proposed

A set of transformed utterances corresponding to resustsudsed in this work is

available for listening dittp://ravi.iiit.ac.in/ ~ speech/uploads/taslp09_srinivas/
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CHAPTER 2

REVIEW ON VOICE CONVERSION METHODS

The objective of a Voice Conversion (VC) system is to transftrendentity of a source
speaker so that it is perceived as if spoken by a specifiedttappaker. Hence a VC
system should be capable of transforming cues represethiinglentity of a speaker.
Studies concerning inter-speaker variations have resehl there are several param-
eters in a speech signal, both at the linguistic and at thesticdevel, which contribute
to inter-speaker variability and identity of a speaker [3Djnguistic cues include the
language of the speaker, the dialect, choice of lexicabpadt choice of syntactic con-
structs and the semantic context. The acoustic level feataire divided into the seg-

mental and suprasegmental levels.

e Segmental cues depend on the physiological and physiga¢pies of the speech
organs which describe the timbre of a speaker’s voice. Wheariteng the hu-
man voice, people generally refer to the overall quality ebae as its timbre
[10]. The timbre enables the listener to distinguish betwadferent speakers,
even when they utter the same text. Timbre is a perceptuddt, influenced
by multiple factors. Acoustic descriptors of timbre inatygitch, glottal spectrum

and short-time spectrum of the speech signal.

e Suprasegmental cues, on the contrary, are influenced byalsgical and so-
cial factors and describe the prosodic features relatetdcstyle of speaking.
They are mainly encoded in pitch, duration and energy caatolhese cues are

generally obtained by analyzing segments of speech ofidaratore than 20 ms.

Research has been done in understanding the cues in a sptk@mee that best

represent speaker characteristics. Authors of [31] inyattd the contribution offg,



formant frequencies, spectral envelope and other aceysti@meters towards speaker
individuality. They observed thd® was the most important feature followed By
intonation pattern and then the spectral tilt. However & slaown that spectral envelope
had the greatest influence on speaker individuality, foldwy Ry in [32]. The work

in [33] concluded that “it could not be assumed that any siregloustic feature alone
could carry the entire individuality information, as a weispeech is an amalgam of
many parameters and the degree or order of importance arherigdatures differ from

speaker to speaker”.

Although a complete voice conversion system should tramsédl types of speaker-
dependent characteristics of speech, current voice caiovesystems are focused only
on the acoustic features of voice i.e., fundamental frequég and spectral character-
istics. A majority of them focus on the spectral transforigatiue to ease of extraction
of spectral features from the speech signal. Depending@tatiguages in which the
training data is available, voice conversion systems canldssified as intra-lingual
voice conversion and cross-lingual voice conversion. Imém-lingual voice conver-
sion system, the source speaker and the target speaked thedraining utterances in
the same language. This system can be further divided iradytpes: 1) The source
and the target speakers record the same utterances (padasdle 2) The source and the
target speaker record different utterances but in the sangubhge (non-parallel data).
More information about this topic is given in Section 2.1rid&.1.2 respectively. In
a cross-lingual voice conversion system, the source anthtget speakers record ut-
terances in two different languages. Various approachgsoged in this context are
described in Section 2.1.3. Section 2.2 describes theusantethods adopted to trans-
form excitation features and prosody. The subjective anelctibe evaluation methods
are explained in Section 2.3. The applications of voice ewien are discussed in

Section 2.4. Section 2.5 ends with a summary and issues \ahecyet to be addressed.
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2.1 Spectral transformation

Referring to the state-of-the-art VC systems, we observesghectral transformation
plays a vital role in VC. Hence, this section is dedicated tdasstanding various ap-

proaches designed to perform spectral transformationexftig.

2.1.1 Intra-lingual voice conversion with parallel data
Codebook mapping for spectral transformation

An earlier attempt for Intra-Lingual Voice Conversion(ILV@Joposed the use of code-
book based transformation method [7]. The basic idea oftéuknique was to make
mapping codebooks which represent the correspondencedetiie source and the
target speaker pair. In order to generate a codebook, aftamtes recorded by the two
speakers are vector quantized (also called hard clusjdramge-by-frame. As the du-
rations of the parallel utterances will typically differyBamic Time Warping (DTW)
was used to align the utterances. Hence, a frame-to-framespmndence between the
source and the target speaker codebook entries (i.e, codeweere obtained. To en-
sure that the transformation was not biased due to an unegadier of vectors in each
cluster, a weighting function was estimated based on thetaduhe number of vectors
in each cluster. The mapping thus obtained was used to trensf source speaker’s
speech to be perceived as that of the target speaker. Hqveevector quantizer clus-
ters data into discrete sets and hence it causes discdm@sand reduces the quality of
converted speech. To reduce these discontinuities, fuegeiow quantization [34] and

weighted vector quantization [33] were proposed.

An algorithm called Speaker Transformation Algorithm gsiBegmental Code-
books (STASC) was proposed, which was a modification of thelvoodk based map-
ping technique [35]. In this approach, a left-to-right HehdMarkov Model (HMM)

with no skip state was trained for each utterance of the sogpeaker. The HMM was
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initialized using segmental K-means algorithm and trainsshg Baum-Welch algo-
rithm. For every 40 milliseconds, a new state was added teiNib1 topology. Hence,
the number of states for each utterance was directly priopaitto the duration of the
utterance. The utterances of the target speaker were &igieed with corresponding
source utterance HMM using viterbi algorithm. The trainofgtHMMs and alignment
was performed on MFCCs which represent spectral charaatsrisThis automatic
alignment procedure was called sentence-HMM method. Agetence-HMM based
alignment, LSF vectors, fundamental frequency valuesatthurs and energy values
were calculated in the corresponding source and target Hklés The state arith-
metic means of these acoustic features were computed amed stosource and target
speaker codebooks. The mapping thus obtained after thevadigt was used for trans-
formation. However, a sentence-HMM based alignment wadootd to be robust
when there were differences in the prosody, accent or rewpabnditions. This was
because speaker dependent HMMs were built on the sourckes{sespeech and were
used to segment the target speaker’s speech. Since thdiaqwaperties of the source
speaker and the target speaker may not be same, the abovemethld lead to align-

ment mismatches hence leading to distortion in the outpescp

Authors of [27] proposed a method using phonetic-HMM whielveybetter align-
ment than the sentence-HMM based method. The proposed idedonforce-align
the corresponding phoneme sequences, rather than betineeainole sentences. The
phonetic context of each aligned acoustic feature pair veésrohined from the labels.
The acoustic features extracted were paired on a frameaoyef basis using the align-
ment information. It was concluded that the proposed megleofbrmed better than the
sentence-HMM based method and that it could be slightly fremtiio fit the needs of a

cross-lingual voice conversion.

Two approaches for learning spectral conversion methoasiety Dynamic Fre-
guency Warping (DFW) and Linear Multivariate Regression (LMR)e proposed and

compared in [18]. In this method, the source and the targelsgys recorded the same
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set of utterances which were aligned using DTW. The uttesif the source speaker
were partitioned intdQ non-overlapping classes (referred to as acoustic clagses)
means of vector quantization. LE¥9 denote a set of source spectral vectors belonging
to g class wherg = 1,2,...,Qand letMq denote the total number of vectors in e
class. The source spectral vectors and the target speettaks were aligned (mapped),
hence dividing the source spectral vectors iQtolasses also divides the target spectral

vectors automatically.

LMR maps each acoustic class of source speaker to the conaisyg class of the
target speaker using a linear transformation. The linggression transformation ma-
trix Py that minimizes the mean-squared error between alignedsaind target vectors

is obtained as a solution to the following minimization desh:

Mq
argmin’y 1G9 — PCY| 12 (2.1)
(=]

LMR modifies the spectrum shape of a source speaker’s uttetarmatch the target

speakers utterance spectrum.

DFW represents the correspondence between the sourcem®gaxis and the tar-

get frequency axis by a warping functiorfw) such that

Y (W) = X(a(w)) (22)

where Y(w) and X(w) denote the target and source utteraneeipspectrum re-
spectively. A warping function was determined for each atiowlass/cluster of source-
target spectrum pairs. The final warping function was defasethe median warping in
each class. In DFW only formant positions were moved but @u@iplitudes could not
be modified, which would not lead to an effective transfororadf the speaker. Hence,
the authors concluded that LMR performs better than DFW wigipect to transforming

voice quality, but produces some audible distortions.
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GMMs for spectral transformation

It was the development of continuous probabilistic modgkmd transformation that
lead to a considerable improvement in voice conversionopednce. Use of GMMs
to model and transform the source and target features wasged in [12]. Clustering
using GMMs was called soft clustering as they provide carmtirs models. Conver-
sion of spectral envelopes using GMMs have been demordti@tze more robust and
efficient than the transformation based on VQ. However, l@ratnethod that models
the joint distribution of source and target features usifgMGwas proposed in [36] to
improve the transformation performance. This method ptedhe target spectral fea-
tures from the source spectral features. The authors wégd@bonclude that such a
method improves the speaker recognizability over the aurmeal GMM based method
proposed in [12]. A common problem shared by all spectratleme conversion meth-
ods is the broadening of the spectral peaks, expansion dbthent bandwidths and
over-smoothing caused by the averaging effect of paranetenpolation [37]. This
phenomenon makes the converted speech sound slightly chufftea solution to this,
Maximum Likelihood (ML) transformation approach was prepd in [38] [39], which
estimates ML taking into account the global variance of theverted spectra in each
utterance and reduces the over-smoothing problem. Anaéodinique proposed to
resolve the issue of degradation of spectral transformates the use of Dynamic Fre-
guency Warping (DFW) [39]. However, used in a framework of gte-Speech (TTS)
system where VC was treated as a post-processing blockladtdiTS to generate new

voices.

Sub-band processing for spectral transformation

The role of different factors on the perception of speakenidy was investigated in
[40]. Four acoustic features were considered for this stlidyas observed that the fea-

tures representing the vocal tract system were more impicidlowed by both and

duration. Howevefy was considered to be more important than duration, only when
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the transformation was of a cross-gender type such as atorééenale speaker trans-
formation or a female-to-male speaker transformation. [€ast important feature was
found to be energy contour. These conclusions were thetsesfld subjective test con-
ducted in [40]. They also found that the range of 1 kHz to 2.7 kiHspeech spectrum
was the most important for speaker identity. Hence, thepgsed two new methods
based on sub-band processing using discrete waveletdrarsf The proposed frame-
work had the flexibility to analyze different frequency banging different amounts of

spectral resolution.

ANNSs for spectral transformation

Models for VC based on Artificial Neural Networks (ANN) weneposed in [15] based
on the property that a multi layered feed-forward neuraloet using non-linear pro-
cessing elements could capture an arbitrary input-out@ydpimg. This generalization
property of ANN helps in the faithful transformation of foamts across speakers, avoid-
ing the use of large codebooks. The training scheme of theecsion system based on
ANN in [15] consisted of formant analysis, followed by a leisug phase in which the
implicit formant conversion between the source and targetiker utterances for the
first three formants was captured by a neural network. Inrtrestormation phase, the
three formants extracted from each frame of the source speapeech were given
as input to the trained ANN to obtain converted formants. Toeverted formants,
together with the source pitch contour modified to suit therage pitch of the tar-
get speaker, were used in a formant vocoder to synthesieelspath the desired vocal
tract system characteristics. Radial Basis Function (RBF)aréswith Gaussian basis
function was proposed in [16]. RBFs were introduced in therretestudy to compen-

sate for the effect of training time and complexity in backymgation algorithm.
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HMMs for spectral transformation

A conventional VQ based method uses only static informabatetermine the clusters.
However, as the dynamic characteristics are also impoftarthis, HMM based VC
was proposed in [8]. In this approach, the goal was to usa galtameters or transition
probabilities to improve the efficiency of transformatioim. the training stage, given
an utterance and its equivalent transcript, a HMM was tchioefind an optimal state
sequence on the source speaker data. Each state of the spaat@r data was quan-
tized and the output was called as recognition codebook.hAptoposed HMM has
vector quantized states, it was called a Hidden Markov VQ élgdMVQM). All the
target speaker data corresponding to each codeword of tineesspeaker data was col-
lected and their means were calculated. This set of mearedarget speaker data was
called synthesis codebook. The obtained one-to-one mgy@tween the codewords
of each state was used for conversion. Since the proposdtdperforms mapping
at state level and models dynamic characteristics as ti@mgirobabilities, they were
able to conclude that such an approach was much better thaotirentional VQ based

method.

A similar segmentation system based on HMM was proposed,ib{®the transfor-
mation function associated with each state was based onMiaxiLikelihood Linear
Regression (MLLR). MLLR is a model adaptation technique tiséingates a set of lin-
ear transformations for the mean and variance parametar&afissian mixture HMM
system. If\; represents target vector sequence @nkpresents the source vector se-

guence then

WVt = AVs+Db (2-3)

The parameteré andb are to be determined such that the target data gives maxi-
mum likelihood. The effect of these transformations shifis component means and

alter the variances in the initial system so that each statked HMM system is more
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likely to generate the target data. During synthesis, tharpatersA andb are used to

transform the source speech.

2.1.2 Intra-lingual voice conversion with non-parallel data

Most of the approaches described above, use parallel @fpotraining i.e, the source
speaker and the target speaker record the same set of aesra8ince it is not always
feasible to find parallel utterances for training, thereevaethods that were proposed
with the goal of reducing the recordings from the source lspeaAll such methods
use non-parallel training data, the goal of which is to fincha-to-one correspondence
between the frames of source and target speaker. The diffieireds of methods that

work with the non-parallel data can be classified as follows:

Class mapping

Speech recognition

Pseudo parallel corpora created fora TTS

Unit selection

Adaptation techniques

Class mapping

In this method, the source speaker data and the target spaatkewere vector quan-
tized to obtainKgs and K; number of clusters [24] respectively. For each centroid in
source class, a similar centroid in target class has to beast. Since the clusters ob-
tained were from two different speakers, a distance medsugstimate the similarity
measure between the clusters could not be used directlyceli®ynamic Frequency

Warping (DFW) was used to compensate for the speaker chessicteand hence bring
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the centroids to a common domain. Finally, the vectors snsidch class were mean-
normalized and the frame-level alignment was performedrimirig the nearest neigh-
bor for each source vector in the corresponding target.cldss technique was evalu-
ated using objective measures and it was found that therpeatfce of this method was
not as good as that which could be obtained using parallal ddédwever this method

was proposed as a starting point for further improvemerstsiéad to the development

of unit selection based VC.

Speech recognition

In [23], a speech recognizer based on speaker-independéishivas used to label all
the source and target frames with a state index. Given tteestguence of one speaker,
the alignment procedure consists of finding the longest hiragcstate sub-sequences
from the other speaker until all the frames were paired. T4 used for this task
was observed to be valid for intra-lingual alignment. Hoerethe suitability of such

models for cross-lingual alignment tasks was not tested.

Pseudo-parallel corpus created by a TTS

In this technique, the utterances recorded by the sourcekep&vere used to build a
TTS. All utterances recorded by the target speaker werdnegized using a TTS built
on source speaker data. The synthesized utterances togattn¢he target data form
parallel data on which algorithms explained in Section2cbuld be applied. However,

this solution could be put into practice only under certainditions:

e The TTS system uses linguistic knowledge to generate @tifentences, so the
language of the desired output sentence has to be the saheelasguage of the
recorded units. Therefore, this kind of technique was ictstt to intra-lingual

context.

e The size of the training corpus has to be large enough to lulldS system.
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If only a few minutes of audio were available for building th&S for source
speaker, the resulting low-quality synthetic speech léadslistorted conversion

function that introduces artifacts into the converted spee

Such a system was used in [10] where the spectral transfiomagrformance us-
ing machine learning techniques such as GMM, HMM and CART werapared. The
overall performance of the proposed intra-lingual systesing CART) was found to be
comparable with the performance of other intra-linguateys (using GMM/HMM)
trained under parallel conditions. The evaluation restdtsfirm that using a TTS for
non-parallel alignment leads to satisfactory results. e proposed algorithm per-
formed satisfactorily in case of ILVC, the validity of the alghm was also tested in
CLVC framework. The similarity scores obtained by the criasgual system were
slightly lower than those of the intra-lingual system. Tiwiss probably due to the fact
that Spanish and English used in [10] have different phonest® Consequently, the
transformation functions trained for one of these langaagere not capable of con-

verting the phonemes of the other language with the sameasycu

Unit selection paradigm

The proposed algorithm in [19] [41] [42] was to compare twiledent databases and
find frames in the source database that were nearest to ahg &faimes in the target
speaker database. The distance measure was computed hyf@nctisn such as the
one used in TTS systems to concatenate two units. In a uatttemh based TTS system,
there are two costs that are involved: target cost and cenatbn cost. Minimizing
these costs ensures that the distance between the sourtargetdfeatures are mini-
mized and a maximum continuity is obtained between the salamits. However, a
disadvantage in this technique when using a large trairaglsse was that the vectors
that occur initially will most likely be repeated and henites vectors at the bottom may
never be selected. This may cause degradation in outputyqualorder to achieve a

better performance, all the training vectors should takeipahe alignment, so that no
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phonetic areas are left uncovered in the acoustic spacks speakers.

Therefore a new method for estimating pseudo-parallel wataproposed in [30].
A nearest neighbor of each source vector in the target acostice and the nearest
neighbor of each target vector in the source acoustic sgheireg one-to-many and
many-to-one alignments were mapped. When a VC system using @kt trained on
such aligned data it was observed that an intermediate dexdveoice was obtained,
i.e, it was neither recognized as a source speaker’s voic@asithe target speaker’s
voice. However the proposed approach was applied on thsftrened data and target
speaker data which resulted in an output closer to the tapgstker than the previous
transformed sentences. If this procedure was followeatiterly, the final voice was

found to converge to the target speaker.

Adaptation techniques

The technique proposed in [43] for voice conversion was dhasebuilding a transfor-
mation module on the existing parallel data of an arbitranyrse-target speaker pair
and adapt this model to the particular pair of speakers fachvho parallel data was
available. Suppose A and B are the two speakers between wheoneed to build a
transformation function, but the recorded utterances kgdlspeakers are not paral-
lel. Suppose that we also have parallel recorded utteradnoesspeakers C and D.
We could then estimate a transformation function betweealsgrs C and D and use

adaptation techniques to adapt the conversion model tqekers A and B.

In [43], the spectral vectors that correspond to the soupealser of the parallel
corpus were considered as realizations of random vectohile y corresponds to the
target speaker of the parallel corpus. From the non-paaihpus,x’ is considered as
realization of random vector for the source speaker yrfdr the target speaker. An
attempt was then made to relate the random variablesdx’, as well asy andy, in
order to derive a conversion function for the nonparallepos based on the parallel

corpus parameters. An assumption made is xhiatrelated tox' by a probabilistic
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linear transformation, as shown in the equation below.

p

A1x+ by with probability p(A1]oy)

Aox—+by  with probability p(A2|owy)
X = . . (2.4)

AnX—+ by with probability p(An| o)
\

where

N
S PAjlen) =1,i=1,2,...M. (2.5)
=1

In the above equatiol is the number of mixtures of the GMM corresponding to
the joint vector sequence of the parallel datandy’ are also related to each other by

a probabilistic linear transformation as shown in the eiguaelow.

(

Cix+d;  with probability p()\A1|ooi)
Cox+dy  with probability p(Xz\(q);

y = . ; (2.6)

CaX+dy  with probability p(An|w)
\

where

L ~
S PAplor) =1,i=12,... M. (2.7)
p=1

The unknown parameters i.e, the matriegsC, and the vector®;,d, were esti-

mated from the non-parallel data by applying EM algorithrhefieforex' andy’ would
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be estimated as a linearly constrained maximum likelihcothe GMM parameters.
The issue with such an algorithm was that a parallel datavaseneeded on which the

initial model could be estimated.

2.1.3 Cross-lingual voice conversion

Cross-Lingual Voice Conversion (CLVC) is the most extreme cés#ra-lingual voice

conversion with no parallel data where both the trainingratices and the the training
languages are different. Voice conversion systems deaiitingdifferent languages have
some special requirements because the utterances agdibalttaining are character-

ized by different phoneme sets. The different categoriegppfoaches for CLVC are:

e Class Mapping

e Unit selection

Class Mapping

This method of class mapping proposed in [27] was a modifinatif the STASC
method proposed in [35] described in Section 2.1.1. Thaitrgistage in [27] starts
with the extraction of acoustic parameters from the sounckthe target speaker train-
ing recordings. The vocal tract characteristics were preed in two forms: Mel
Frequency Cepstral Coefficients (MFCCs) for the alignment stagkline spectral
frequencies (LSFs) for the transformation stage. All therese and target recordings
were segmented using phonetic-HMM based segmentations@drmaentation could be
performed in two ways: text-independent and text-dependeor non-parallel train-
ing databases, all parameters and information extractédesnphonetic context were
saved. The mapping of the source and the target acoustiespas performed in the

transformation stage by context matching. The advantagje timis method over the
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STASC method was that it was designed to be independentiohnekhence could be
trained on non-parallel training utterances. The vocatktirmnsformation function was
estimated directly from the speech frames in the source amgett training database
instead of state averages as in STASC. This helps to perfonra datailed vocal tract

transformation.

Unit selection

Given a set of source and target non-parallel speech uttesathe goal was to find
frames that phonetically correspond to each other. As ttteofehe spoken utterances
was not used, K-means algorithm was applied to divide thetsgdespace into clusters
to represent a set of artificial phonetic classes. Both thececand the target speaker
data was clustered and a mapping between the clusters haddstimated. But as
the mapping was obtained between features of two diffeqgedlsers, the training data
had to be normalized. This normalization was done by usingN/144] which was a
technique used to compensate for the effect of speakemndepévocal tract lengths.
For every target cluster, a nearest source cluster wasastim.e, a mapping between
the phonetic classes of source and target speech was estiriis class mapping was

extended to find a frame-to-frame mapping in the sourcestalgster pairs.

Authors in [30] proposed an iterative method of aligningesgfeframes which was
also explained in Section 2.1.2.4. It was observed that fOE\AC case they were able

to get an acceptable level of performance.

2.2 Source feature and prosody transformation

Though the residual signal is impulse-like for voiced fr@mad noise-like for unvoiced
frames, it contains the glottal characteristics that atenmadeled by spectral features.
The excitation signal also contains information that cdwétp to achieve the required

conversion performance and quality.
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An approach towards ILVC [7] (explained in Section 2.1.Bs@mes an excitation-
filter model of speech and hence to obtain a good performanosice conversion,
features of both the excitation and filter were transforni&tth frequencies and power
values were guantized, similar to the technique used totggathe spectral features.
A mapping function thus learned on this quantized data wasd f@ transformation.
However, the use of a vector quantizer causes discontsiaid reduces the quality of

the transformed speech.

PSOLA was used to modify the source speaker’s excitatiamasigp match that of
the original target speaker’s excitation signal in [18].isTmodification was done on
both the time and pitch scale, resulting in a better outputweéver, this experiment
was feasible only as a study to understand how well the sgidetiture transformation
performs because we do not have access to the target spspkexh and hence its

excitation in real time.

Based on the idea that a speech signal contains non-limsanitainly present in
the residual signal, residuals have been modeled by a letay-chonlinear predictor
using a time-delay neural network [45]. Once the predictas wstimated, a mapping
codebook was built to transform the residual signal. It vegmorted that the naturalness
of the converted speech increases when introducing thduasmapping, but some
buzzy quality or click noises appear in regions with mixectwgy. STASC [35] deals
with residual signals too. An excitation transformatiotefilwas formulated for each
codeword entry, using the excitation spectra of the soyrealer and the target speaker,

in the same way that the vocal tract conversion filter wag.buil

A different approach from residual mapping was proposed 1, [where the resid-
ual signal was predicted from the vocal tract parametestgau of transforming the
source speaker residual. The underlying assumption ofrtsioped approach was that
for a particular speaker and within some phonetically simalass of voiced speech,
the residuals were similar and predictable. For each cligganetically similar units,

residual codebooks were stored. Use of such residual codlebmas to produce an
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output nearly indistinguishable from the original spedgacently, the same prediction

strategy has been adopted by other researchers [46] [47].

The authors of [29] have also reported the use of residualigiien to transform
a source speaker’s speech. ANNs were used to train a mapeingnmk between the
source speaker’s residual and the corresponding targakepe residual signal. The
authors have also reported experiments which include mgpgfiintonation, duration
and energy patterns. Two ANNs were trained for intonatioppinag to capture (i) gross
level variations which depend on semantics of speech, ifigr fievel variations which
indicate prominence of individual words. Two ANNs were tiedl for duration mapping
to capture (i) duration patterns of a syllable, (ii) duratjwattern of non-speech/pause.
Two ANNSs were trained for energy pattern mapping to captirenergy at utterance
level and (ii) energy at syllable level. Finally the autharsre able to conclude that
using different ANNs to capture prosodic variations werépfug in transforming a

source speaker’s utterance to the target speaker.

A logarithm Gaussian normalized transformation [48] wasdu transform the
source speakédfy to target speakefy as indicated in the equation (1) below. The
assumption in this case was that the major cues of speakaitydie in the spectral
features and hence just a linear transformation was suftiteetransform excitation

characteristics.

(0]
log(Fo conv) = Mgt + ﬂ(Iog(FOsrc) — Wsrc) (2.8)

Osrc

wheresc and ogc are the mean and variance of the fundamental frequencies in
logarithm for the source speaké&g s c is the pitch of source speaker aRgkony is the

converted pitch frequency.

Prosodic conversion refers to the transformation of thequlec characteristic of a
source speaker (mean of the fundamental frequency, photi@ragon, loudness) to the

prosodic characteristics of a target speaker. Prosodgftramation is beyond the scope
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of this thesis. However, some relevant works will be reféteein order to complete the
discussion on state-of-the-art VC systems. Prosodic eeioreis the aspect less studied
in VC systems. On one hand, most approaches described fadrgpeconversion only
scale the pitch of the source speaker to resemble that cathettone, without dealing
with phoneme durations. On the other hand, there are someages that construct
a prosodic conversion system similar to the spectrum magppginch as STASC [35],
[49] or MLLR [50]. The method proposed in [51] consists of acttastic system that
transforms pitch contours taking into account multiplelpiparameters, such as: pitch,
pitch declination and variances, according to the lengtthefutterances. The basic
idea of this system was to model pitch evolutions of a phrgse declination line plus

a normal distribution to take into account the variationhef pitch around that line.

Recently, prosodic conversion has been studied in the framkeaf speech-to-
speech translation in order to improve the quality of thgoatiprosody. The authors of
[52] proposed the use of the intonation of the speaker ofdbece language to improve
the quality of the intonation of the target language. To take account the converted
prosody, the following speech generation process was peapoFirst, the prosodic
features of the source speaker were estimated. Secondsedpranapping module
performed the transformation of the estimated featuresderao enrich the output of
the translation module. Finally, the speech synthesis hequhoduced the output wave-
form signal using prosody generated by the prosody geoeratiodule, which takes

advantage of the enriched text.

Whilst state-of-the-art implementations are capable oiesiing reasonable conver-
sions between speakers with similar voice characteristicsprosodic patterns, they
do not work as well in scenarios where the differences betwhe source and the
target speech are more extreme. This was mainly due to tiontgin the modeling
and conversion of the voice source and prosody. Hence, [nd3@éfined modeling and
transformation of the voice source and duration was praptisecrease the robustness

of voice conversion systems in extreme applications. Irtehd the developed tech-
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nigues were tested in a speech repair framework. \Voice sauadeling refinement
involved the use of Liljencrants-Fant model instead of ithedr prediction residuals
employed by the existing implementations to represent thieevsource. A speech
model was also developed which automatically estimateseveource and vocal tract
filter parameterizations. The use of this speech modelionigue for the analysis,
modification and synthesis of speech allows the applicatfdimear transformations to
convert voice source parameters. The performance of treamd conversion system
has been shown to be comparable to that of state-of-theaptementations in terms
of speaker identity, but to produce converted speech withateebquality. Regarding
duration, a decision tree approach was proposed to convetion contours. Its appli-
cation has been shown to reduce the mean square error disgiatweeen the converted

and target duration patterns and to increase their coioelat

2.3 Evaluation

Transformation performance in voice conversion systengererally evaluated using
both objective and subjective measures. Objective evahmare indicative of conver-
sion performance and could be useful to compare differggarahms within a partic-

ular framework. However, objective measures on their ovemat reliable, since they
may not be directly correlated with human perception. Asaltga meaningful evalua-
tion of voice conversion systems requires the use of subgeeteasures to perceptually

evaluate their conversion outputs.

2.3.1 Objective evaluation

Use of distance measures is most common for providing abgestores. One among
them is spectral distortion (SD) which has been widely usegliantify spectral enve-

lope conversions. For example, authors of [3] measureddtie of spectral distortion
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between the transformed and target speech and the sourtargetspeech as follows:

_ SD(transtgt)

SD(src,tgt) (2.9)

whereR is the normalized distanc®D(trans tgt) is the spectral distortion between
the transformed and the target speaker utteranc&Saxstc, tgt) is the spectral distor-

tion between the source and the target speaker utterance.

A comparison of the performance of different types of cosi®T functions using a
warped root mean square (RMS) log-spectral distortion nreasas reported in [12].
Similar spectral distortion measures have been reportedh®r researchers [11] [53].
In addition, excitation spectrum, RMS-energy,and duration distances have also been
used to measure excitation, energy, fundamental frequandyduration conversions

[35].

Mel Cepstral Distortion (MCD) is another objective error mgasused, which
seems to have correlation with the subjective test resbitts [Thus MCD is used to
measure the quality of voice transformation [13]. MCD is reteto vocal characteris-
tics and hence was an important measure to check the perfoensdmapping obtained

by ANN/GMM network. MCD is essentially a weighted Euclidedstdnce defined as

MCD = (10/In10) * 2*_§(mq_mq€)2 (2.10)

wheremd andmc® denote the target and the estimated Mel-cepstral coeffigien

respectively.

2.3.2 Subjective evaluation

The objective of a voice conversion system is to transformtserance of a speaker to

sound as if spoken by the target speaker while maintainiagnttiuralness in speech.
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Hence, in order to evaluate a VC system on these two scalesraly three types of

subjective measures are used.

ABX test
Similarity test

MOS score

ABX test: In order to check if the converted speech is perceived asatigett
speaker, ABX tests are most commonly used where particifiates to source
(A), target (B) and transformed (X) utterances and are askddtermine whether
A or B is closer to X in terms of speaker identity. A score of ¥hdicates that

all listeners find the transformed speech closer to the targe

MOS score: In addition to recognizability, the transformed speechls® gen-
erally evaluated in terms of naturalness and intelligipily mean opinion score
(MOS) tests. In this test, the participants are asked tottamkansformed speech
in terms of its quality and/or intelligibility. This is sir@r to the similarity test,
but the major difference lies in the fact that we concentosi¢he speaker char-

acteristics in similarity test and intelligibility in MOSere.

Similarity test: The MOS score does not determine how similar the transformed
speech and the target speech are. Hence, similarity measused, where the
participants are asked to grade on a scale of 1 to 5 as to hee ttie transformed
speech is to the target speaker’s speech. A score of 5 meatrthehitransformed
and the target speech sound as if spoken by the same spedkarsaale of 1

indicates that both the utterances are from totally difiespeakers.
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2.4 Applications

VC has mainly emerged as a technique to create new voicedytoc Text-To-Speech
(TTS) systems. However it has a number of other interesppdj@ations such as voice
guality analysis, emotional speech synthesis and speedgméion. Fields such as
speech-to-speech translation, education, health anda&ntaeent have also developed
applications using techniques involved in VC. Most commardgd TTS systems are
based on unit selection. It is a technique which generatabsiic speech by selecting
the most appropriate sequence of units from a database. Uigycpf a TTS system
increases with the use of large databases [55] [56]. Howitarthe use of VC tech-
niques it is possible to build a TTS in a new voice with typlig&0-50 utterances (10-15
minutes) from a new speaker. Hence, it is advantageous tog for creating new
TTS voice out of the existing ones [57], [58]. VC techniquesdialso emerged as a
method for building multilingual TTS [59]. In this framewounits from multiple lan-
guages are recorded by one speaker per language which abéneoihto improve the
coverage of units. However TTS built on such a database h#gphawspeaker identi-
ties in the synthesized speech. Hence, a CLVC techniquerisftran the synthesized

utterance to a particular target speaker is applied.

TTS system techniques are built to generate speech in eliffesmotional modes
such as excited, happy, sad or angry. The goal of these tpegmis not only to generate
speech in a given emotional state but also to have contréleodmount of emotion to
be generated. The techniques related to prosodic tranafammare more appropriate

to change the emotional state of a synthesized speech.

The problem of a speech recognition system is defined as tiversion of a spoken
utterance into a textual sentence by machine. Such a sysieto be sufficiently robust
to allow use by a variety of speakers. using it. Hence VC cbeldsed as a method for

speaker normalization by converting all speaker’s data argingle speaker.

The motivation for building a CLVC framework is to be able taldwa speech-to-
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speech translation system [60] which involves transfoionabf speech spoken in one
language to some other language. As the speaker may not km®otarget language,
such a system is usually built to synthesize voice in somerapeaker’s voice whose
utterances are recorded in the target language. VC teatmimpuld be used in this case
to transform the synthesized speech in target languageitalsas if the source speaker
is speaking it. Cross-lingual VC has also been applied to itgitasks in the film and

music industries [61].

In the field of education, VC could be used to build a computedpronunciation
training system. It is based on a study that for a second kgeylearner it would be
ideal if he has a feedback from a system which imitates his\aice but with a native

speakers accent.

VC techniques could also be used to correct speech recoydedjreech-impaired/
disabled person leading to more natural and intelligibleesp. Dysarthia [62] or la-

ryngectomy [63] are examples of speech impairment.

Singing voice transformation and generating voices fdugircharacters in a game
are also some of the applications in which voice conversaghriques could be used.
Authors of [64] were able to show that voice conversion témphes could be used in
speaker de-identification, a case where we do not want to tkeejpdividuality of the

required speaker.

2.5 Summary

After a brief description of various methods of voice cosvan and its applications, we
understand that most of the methods aimed to find a bettetrapansformation tech-
nigue. We also observe that the GMM based methods are mae wsed and hence,
we provide results of comparison of ANN and GMM based spettmasformation in
Chapter 3. We also find that in order to address the issue ofwaitability of parallel

data, researchers have come up with methods that try toe¢dacequirement of data
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from the source speaker. However, referring to the statbefrt techniques proposed
to address this issue, we infer that there is still a needdoresdata from the source
speaker which motivates us to design a system which trairmbynthe target speaker

data. Such a system will be described in Chapter 4.
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CHAPTER 3

VOICE CONVERSION USING ARTIFICIAL

NEURAL NETWORKS

From previous chapters, we understand that the very basécativoice conversion is
to transform both the source and the excitation features.h&Ve also observed that
the focus in voice conversion is more on spectral transfaonahan the source feature
transformation. From among various VC techniques, GMMsH#een the most often
used algorithm to build the transformation model. Howeasrwe understand that the
transformation of vocal tract features between two spesdkaron-linear from the work
reported in [15], we intend to use ANNSs for voice conversite have exploited the
mapping abilities of ANN to perform mapping of spectral fgas of a source speaker
to that of a target speaker. A comparative study of voice emion using ANN and the
state-of-the-art Gaussian Mixture Model (GMM) is conddct&his chapter describes
briefly the baseline framework for voice conversion and ptes results comparing
ANN and GMM based spectral transformation. The experimanthis chapter are
done assuming an intra-lingual voice conversion framewatk parallel training data

i.e, the source speaker and the target speaker record ainggset of utterances.

3.1 Intra-lingual voice conversion

3.1.1 Database

Current voice conversion techniques need a parallel daggha$ [13] [54] where the
source and the target speakers record a matching set aindes. The work presented

here is carried out on CMU ARCTIC database consisting of utteammecorded by



seven speakers. Each speaker has recorded a set of 1132igdilynkbalanced utter-
ances [65]. The ARCTIC database includes utterances of SLTHg#ale), CLB (US
Female), BDL (US Male), RMS (US Male), JMK (Canadian Male), AWR:@¢8ish
Male), KSP (Indian Male). It should be noted that about 3(p&fallel utterances are
needed to build a voice conversion model [13]. Thus, for egpeaker we took around
40 utterances (approximately 2 minutes) as training daticasseparate set of 59 utter-

ances (approximately 3 minutes) as testing data.

3.1.2 Feature extraction

To extract features from a speech signal, an excitatiogrfittodel of speech is applied.
Mel-cepstral coefficients (MCEPS) are extracted as filteapaters and fundamental
frequency(Fy) estimates are derived as excitation features for every 56@is [The
number of MCEPs extracted for every 5 ms is 25. Mean and stdnidatation statistics

of log(Fp) are calculated and recorded.

3.1.3 Alignment of parallel utterances

As the durations of the parallel utterances typically diffas shown in Figure 3.1),
dynamic time warping (or dynamic programming) is used tgraMCEP vectors of the
source and target speakers [12] [13]. Figure 3.1 is a plat oftrance recorded by two
speakers. The utterance consists of 18 phones, the boesdarhich are indicated by
the vertical lines. Itis very clear from this figure that the-ations of phones in both the
recorded utterances are different even though the spokderse is the same. Figure

3.2 shows that the durations of the two utterances can behetafter applying DTW.

After alignment, let¢ andy; denote the source and target feature vectors at ftame

respectively.
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Figure 3.1:Plot of an utterance recorded by two speakers showing that theations
differ even if the spoken sentence is the same. The spokencers "Will
we ever forget it” which has 18 phones "pau w ih lw iy eh v er f er gteh
ih t pau pau” according to the US English phoneset.
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Figure 3.2:Plot of an utterance recorded by two speakers showing that theations
match after applying DTW. The spoken sentence is "Will we frget it
which has 18 phones "pau w ih | w iy eh v er fergehtihtpau pau”
according to the US English phoneset.

3.1.4 Process of training and testing/conversion

The training module of a voice conversion system to tramsfooth the excitation and
the filter parameters from a source speaker’s acoustic $padarget speaker’s acoustic
space is as shown in Figure 3.3. Figure 3.4 shows the blogkatiaof various modules
involved in a voice conversion testing process. In testingpoversion, the transformed
MCEPs along with can be used as input to Mel Log Spectral Approximation (MLSA)
[66] filter to synthesize the transformed utterance. Fothalexperiments done in this
work, we have used pulse excitation for voiced sounds amdbramoise excitation for

unvoiced sounds.
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Figure 3.3:Training module in voice conversion framework.
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Figure 3.4:Testing module in voice conversion framework.

3.1.5 Spectral mapping using GMM

In GMM-based mapping [54] [67], the learning procedure aim&it a GMM model
to the augmented source and target feature vectors. Fgrra&iMM allows the prob-
ability distribution of a random variableto be modeled as the sum bf Gaussian
components, also referred to as mixtures. Its probabibtysity functionp(z) can be

written as

M M
p@) = Y dm N(Z:Hd,ZH) Y Gm=1 an>0 (3.1)
m=1 m=1

wherez is an augmented feature vecfaf y{ |T. The notation” denotes transposition
of a vector. A\ (z; uﬁﬁ),z,ﬁ? ) denotes the parameters of a Gaussian distributioroand
denotes the prior probability with which the vectbelongs to theri" componentzﬁﬁ)

denotes the covariance matrix ap%) denotes the mean vector of thé" component

for the joint vectors. These parameters are represented as

(xx)  s(xy) (%)
== ey
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whereu(%() and M(%') are the mean vectors of tld" component for the source and the

target feature vectors respectively. The matrif:%%) and Zr(%’y) are the covariance ma-
trices, WhiIeZE,)fy) andzﬁ%'x) are the cross-covariance matrices, ofrii&component for
the source and the target feature vectors respectively. chhariance matriceﬁﬁfx),
s 509 ands¥ are assumed to be diagonal in this thesis. The model parsmete

(0m, u,(ﬁ),zﬁﬁ)) are estimated using Expectation Maximization (EM) aldonit

The conversion process (also referred to as testing proceséves regression, i.e.,
given an input vector, we need to predicy; using GMMs, which is calculated as

shown in the equation below.

H(x) = Elyx] = z () [+ 2807 (Z67) 2 (% — )] (3.3)
where

X
hm<xt): amN( IJ-m zm ())
SM 4 atn A S, Z5)

is the posterior probability that a given input veckpbelongs to theri” component.

(3.4)

In this work we have conducted GMM based VC experiments owdiee conver-
sion setup built in FestVox distribution [68]. This voiceversion setup is based on the
work done in [67], and supports the conversion considerintpé feature correlation
between frames (referred to as MLPG) and 2) the the Globanee (GV) of spectral

trajectory.

3.1.6 Spectral mapping using ANN

Artificial Neural Network (ANN) models consist of intercoected processing nodes,
where each node represents the model of an artificial near@hthe interconnection
between two nodes has a weight associated with it. ANN maud#isdifferent topolo-

gies perform different pattern recognition tasks. For epl@ma feed-forward neural
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network can be designed to perform the task of pattern mgppihereas a feedback
network could be designed for the task of pattern assoaiatomulti-layer feed for-
ward neural network is used in this work to obtain the mappimgtion between the

source and the target vectors.

Figure 3.5 shows the architecture of a four layer ANN usedhfuture the transfor-
mation function for mapping the acoustic features of a segspeaker onto the acoustic
space of a target speaker. The ANN is trained to map the MCE®&saiirce speaker to
the MCEPs of a target speaker, i.e.Gfx) denotes the ANN mapping of, then the
error of mapping is given by = 5, ||y; — G(x)|[2. G(x) is defined as

G(x) = gwgwPgwVx))), (3.5)

where

g(9) =9,9(9) =a tanhbd). (3.6)

Herew™® w® w® represents the weight matrices of first, second and thirdemid
layers of ANN respectively. The values of the constan#ndb used in tanh function
are 17159 and 23 respectively. A generalized back propagation learniig id used
to adjust the weights of the neural network so as to minirajzee., the mean squared
error between the desired and the actual output values.cteleof initial weights,
architecture of ANN, learning rate, momentum and numbeteshtions are some of
the optimization parameters in training an ANN [2]. Onceftifaéning is complete, we
get a weight matrix that represents the mapping functiowéen the spectral features
of a pair of source and target speakers. Such a weight matnixe used to transform

a feature vector from the source speaker to a feature vetctoe target speaker.

3.1.7 Mapping of excitation features

Our focus in this thesis is to get a better transformatiorpetsal features. Hence, we

use the traditional approach Bf transformation as used in a GMM based transforma-
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Figure 3.5:An architecture of a four layered ANN with N input and output ednd
M nodes in the hidden layers.
tion. A logarithm Gaussian normalized transformation [#8lsed to transform thig

of a source speaker to tltg of a target speaker as indicated in the equation below

(0]
log(Fo conv) = Mgt + ﬂ(log(FOsrc) — Wsrc) (3.7)

Osrc
where psc and ogc are the mean and variance of the fundamental frequency in log
arithm domain for the source speakgg: and oy are the mean and variance of the
fundamental frequency in logarithm domain for the targeiader,F sic is the pitch of

source speaker art@ cony is the converted pitch frequency.

3.1.8 Evaluation criteria for voice conversion

Subjective evaluation

Subijective evaluation is based on collecting human opsasthey are directly related
to human perception, which is used to judge the quality ofsf@@med speech. The

popular tests are ABX test, MOS test and similarity test.

e ABX Test:For the ABX test, we present the listeners with a GMM transfm
utterance and an ANN transformed utterance to be compa@dsagl, which
will always be a natural utterance of the target speaker.nfoi@ that a listener
does not become biased, we shuffle the position of ANN/GMMsfarmed ut-

terances i.e., A and B, with X always constant at the end. Bberlers would be
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asked to select either A or B, i.e., the one which they perdeile closer to the

target utterance.

e MOS Test Mean Opinion Score (MOS) is another subjective evaluatvbere
listeners evaluate the speech quality of the convertedesaising a 5-point scale

(5: excellent, 4: good, 3: fair, 2: poor, 1: bad).

e Similarity Test:In similarity test, we present the listeners with a transied ut-
terance and a corresponding natural utterance of the tspgeker. The listeners
would be asked to provide a score indicating how similar i wtterances are
in terms of speaker characteristics. The range of simyléett is also from 1 to
5 where a score of 5 indicates that both the recordings ane thhe same speaker
and a score of 1 indicates that the two utterances are spokéndodifferent

speakers.

Objective evaluation

Mel Cepstral Distortion (MCD) is an objective error measurewn to have correla-
tion with the subjective test results [54]. Thus MCD is usedn@asure the quality
of voice transformation [13]. MCD is related to filter chamxtstics and hence is an
important measure to check the performance of mappingraddaly an ANN/GMM

model. MCD is computed as given in the equation below.

MCD = (10/In10) x Z*E (md; —mc)? (3.8)
=1

wheremd, andmc; denotes thel'" coefficient of the target and the transformed MCEP,

respectively.
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3.2 Experiments and results

3.2.1 Objective evaluation of a GMM based VC system

To build a GMM based VC system, we have considered two cageahsformation
of SLT (US female) to BDL (US male) and 2) Transformation of BDUS male) to
SLT (US female). For both the experiments, the number ohimgi utterances is 40
(approximately 2 minutes) and the testing is done on thestgsof 59 utterances (ap-
proximately 3 minutes). The number of vectors for 40 tragniterances in SLT and

BDL are 23,679 and 21,820 respectively.

Table 3.1: Objective evaluation of GMM based VC system faiowss training param-
eters where Set 1: SLT to BDL transformation; Set 2: BDL to Slahsfor-

mation
MCD [dB]
No. of No. of Without With With
mixtures | params. MLPG MLPG MLPG

(with GV) | (Without GV)
Set1] Set2| Setl1| Set2| Set1] Set2
32 6176 |6.367| 6.102| 6.547| 6.072 6.152| 5.823
64 12352 | 6.336] 6.107| 6.442| 6.015| 6.057| 5.762
128 | 24704 | 6.348| 6.068| 6.389| 5.907| 6.017]| 5.682

Tablel 3.1 provides the MCD scores computed for SLT-to-BDL and B®SLT
respectively for increasing number of Gaussians. It coeldbserved that the MCD
scores decrease with the increase in the number of Gaushki@ansver, it should be
noted that the increase in the number of Gaussians als@asesehe number of param-
eters in the GMM. The number of parameters for a GMM baseasystith diagonal
covariance matrix is computed as follows:(((dimension efimvector + dimension of
variance vector)*No. of Gaussians) + No. of Gaussians).hWie use of diagonal
covariance matrix, the number of parameters in the GMM withafid 128 Gaussian
components is 12,352 and 24,704 respectively. We can alserad that the GMM

based conversion with MLPG performs better than that of théMGbased system
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without MLPG. However, the GMM based VC system with MLPG anithaut GV
produced lesser MCD scores than the GMM based VC system witR@1and with
GV. While GV seemed to improve the quality of transformed spdeased on human
listening tests, it is not clear from [67] whether it also moyes the score according to
MCD computation. Considering the number of parameters us&MM model, we
have used the GMM based VC system with 64 Gaussian compofwéatidMLPG and

without GV) for further comparison with an ANN based VC syste

3.2.2 Objective evaluation of an ANN based VC system

To build an ANN based VC system, we have considered two cas&t T-to-BDL
and 2) BDL-to-SLT. For both the experiments, the number ahiing utterances is
40 (approximately 2 minutes) and the testing is done on thiestet of 59 utterances

(approximately 3 minutes).

Tablel 3.2 provide MCD scores for SLT-to-BDL and BDL-to-SLT resfively for
different architectures of ANN. In this work, we have expeented with 3-layer, 4-
layer and 5-layer ANNs. The architectures are provided withnumber of nodes in
each layer and the activation function used for that layer. éxample, 25L 75N 25L
means that it is a 3-layer network with 25 input and outputesodnd with 75 nodes
in the hidden layer. Here, L represents "linear” activatianction and N represents
"tangential (tank.))” activation function. Given an ANN architecture, the Nd. pa-
rameters to be computed is calculated as follows: Suppes&NiN architecture is 25L
50N 50N 25L, the number of parameters is (25*50)+(50*50¢%)+(50+50+25) =
5125. From Table 3.2, we see that the four layered archie@GL 50N 50N 25L
(with 5125 parameters) provides better results when coeapaith other architectures.
Hence, for all the remaining experiments reported in thegtér, a four layer architec-

ture is used.

In order to determine the effect of number of parallel uttess used for training the

voice conversion models, we performed experiments by rgrihe training data from
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Table 3.2: MCD obtained on the test set for different architexs of an ANN model.
(No. of iterations: 200, Learning Rate: 0.01, Momentum: @&&) 1: SLT to
BDL; Set 2: BDL to SLT

S.No| ANN architecture No. of params.| MCD [dB]
Setl| Set?2
1 25L 75N 25L 3850 6.147| 5.652
2 25L 50N 50N 25L 5125 6.048| 5.504
3 25L 75N 75N 25L 9550 6.147| 5.571
4 25L 75N 4L 75N 25L 4529 6.238| 5.658
5 25L 75N 10L 75N 25L 5435 6.154| 5.527
6 25L 75N 20L 75N 25L 6945 6.151| 5.517
Female(SLT) to Male(BDL ) Male(BDL) to Female(SLT)
T i 6.8 T T - :
6.8/~ ::‘-‘gmmﬂwwe %l ~ ::‘-‘EMM+MLPG ]
—e— ANN

6.4f

o
o

Mel-cepstral Distortion [dB]

o
»

a
)

10 40 100 200 400 1100 10 40 100 200 400 1100
No. of Training Utterances No. of Training Utterances

Figure 3.6:MCD scores for ANN, GMM+MLPG and GMM (without MLPG) based VC
systems computed as a function of number of utterances oaisgdifing.
The results for GMM based VC systems are obtained using Gdneicom-
ponents.

10 to 1073 parallel utterances. Please note that the nurhtestaitterances was always

59. Figure 3.6 shows the MCD scores for ANN, GMM + MLPG and GMMtlout

MLPG) based VC systems computed as a function of number efanites used for

training. From Figure 3.6, we could observe that as the numbgaining utterances

increase, the MCD values obtained by both GMM and ANN modetseiese.
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3.2.3 Subjective evaluation of GMM and ANN based VC systems

In this section we provide subjective evaluations for ANNI &MM based voice con-
version systems. For these tests, we have made use of vaigersmn models built
from 40 parallel utterances, as it was shown that this maagiroduces good enough
transformation quality in terms of objective measure. Wedtwted MOS, ABX and
similarity tests to evaluate the performance of the ANN dasansformation against
the GMM based transformation. It has to be noted that all expats with GMM use

static and delta features but the experiments with ANN u$etbe static features.

A total of 32 subjects were asked to participate in the foyeexnents listed below.
Each subject was asked to listen to 10 utterances correggptadone of the experi-
ments. Figure 3.7(a) provides the MOS scores for 1) ANN, 2)NGMMLPG and 3)
GMM (without MLPG) based VC systems. Figure 3.7(b) provittesresults of ABX

test for the following cases:

4) BDL to SLT using ANN + (GMM + MLPG)
5) SLT to BDL using ANN + (GMM + MLPG)
6) BDL to SLT using ANN + GMM

7) SLT to BDL using ANN + GMM

The MOS scores and ABX tests indicate that the ANN based V@&sygerforms
as good as that of the GMM based VC system. The MOS scoresmalgaie that the
transformed output from the GMM based VC system with MLPG paxeived to be
better than that of the GMM based VC system without MLPG.

A similarity test is also performed between the output ofANN/GMM based VC
system and the respective natural utterances of the tgugaker. The results of this
similarity test are provided in Table 3.3, which indicatattthe ANN based VC system

seems to perform better or as good as that of the GMM based $t€my
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Figure 3.7:(a) - MOS scores for 1: ANN, 2. GMM+MLPG, 3: GMMb) ABX re-
sults for 4: ANN, GMM+MLPG(M>F), 5: ANN, GMM+MLPG(F=M),
6: ANN, GMM(M=>F), 7: ANN, GMM(F=M)
The significance of difference between the ANN and the GMM-#_based VC
systems for MOS and similarity scores was tested using hysa testing based on

Student t-test, and the level of confidence indicating tliterdince was found to be

greater than 95%.

Table 3.3: Average similarity scores between transformigrances and the natural
utterances of the target speaker.

Transformation Method Avg. Similarity Score
SLT to BDL | BDL to SLT
ANN 2.93 3.02

GMM + MLPG 1.99 2.56

3.2.4 Experiment on multiple speaker pairs

In order to show that the ANN based transformation can bergéned over different

databases, we have provided MOS and MCD scores for voice omeperformed
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for 10 different pairs of speakers as shown in Figure 3.8. ®NICD values were
obtained over the test set of 59 utterances, the MOS scores atained from 16
subjects, each performing the listening tests on 10 utteanAn analysis drawn from
these results show that inter-gender voice transformgégn male to female) has an
average MCD and a MOS score of 5.79 and 3.06 respectively Wialatra-gender (ex:
male to male) voice transformation has an average MCD and a 80:® of 5.86 and
3.0 respectively. Another result drawn from the above arpanmts indicates that the
transformation performance between two speakers withdheesaccent is better than
that when compared with performance on speakers with difteaiccent. For example,
the voice transformation from SLT (US accent) to BDL (US a¢ebtained an MCD
value of 5.59 and a MOS score of 3.17, while the voice tramsébion from BDL (US
accent) to AWB (Scottish accent) obtained an MCD value of 6r@taMOS score of

2.8.

SLT to RMS SLT to RMS
SLT to KSP SLT to KSP
SLT to JMK SLT to JMK
SLT to CLB SLTto CLB
SLT to AWE SLTto AWB
BDL to RMS BDL to RMS
BDL to KSP BDL to KSP
BDL to JMK BDL to JMK
BDL 1o CLBE BDL to CLBE
BDL to AWB BDL to AWB
0 2 o 2 4 6 8
(a) MOS (b) Mel-cepstral Distortion [dB]

Figure 3.8:(a) MOS and(b) MCD scores for ANN based VC system on 10 different
pairs of speakers
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3.3 Enhancements to voice conversion using ANN

In order to enhance the performance of spectral mapping Oy#Me investigated two
different methods. All the experiments in this section agsigned based on the use of
parallel training data. The results of these experimerdpeasvided on the test set of

59 utterances.

3.3.1 Appending deltas

The GMM based approach explained in Section 3.1.5 appenuandy features to the
static features [54] [21] [20]. In section 3.2, we have corepddhe GMM based system
with deltas with the ANN based system without deltas and éeme wanted to find

out whether the use of deltas would further improve the perémce of an ANN based

system.

In this context we performed an experiment on SLT (femald@Dd (male) trans-
formation where the model is trained with deltas and on vayyinumber of parallel
training utterances. A set of three experiments were cdeduand the architectures of

ANN used in these experiments are as follows:
1. 25L 50N 50N 25L.: static features.
2. 50L 100N 100N 50L: static and delta features.

3. 75L 150N 150N 75L: static, delta and acceleration/deéha features.

The MCD scores obtained for these three experiments aredqaavn Table 3.4. It
can be observed that the ANN transformation with deltas tebthan the ANN based
transformation without deltas. The results using delttéadeatures are also provided
in Table/ 3.4. It could be observed that use of delta-delttufea further reduces the
MCD score for ANN based spectral mapping. The set of 40 trginiterances used in
this experiment is different than the one used in SectiorP&Rd hence we find minor

differences in the MCD scores for static features.
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Table 3.4: Results of appending deltas and delta-deltas of R4G& (SLT(female) to
BDL(male) transformation)

No. of training | static features| deltas delta-delta
utterances MCD [dB] MCD [dB] | MCD [dB]

40 6.118 6.117 6.088
100 6.018 5.995 5.905
200 5.858 5.854 5.836
400 5.755 5.750 5.695

3.3.2 A hybrid model

Even though the ANNs perform better spectral transformatii@n that of GMMs, it
would be interesting to find out if combining these approadbéuild a hybrid conver-
sion model could improve the transformation performancend¢, we came up with a
hybrid technique which combines the output of ANN and GMMhitgiques to predict

a new set of transformed vectors.

There are two phases in this hybrid model. In the first phas&l ANd GMM are
trained as explained in Section 3. After the models are ,bihié transformed output
vectors are obtained for the training files. lytandy? denote the transformed vectors
for input x; using ANN and GMM respectively. We experimented the use oNaAN
with context size of 3 as they performed best among all thelected experiments, we
used GMM with deltas, MLPG, No GV and with 64 mixture compatseftach of these
modules of phase 1 will predict output vector with 25 dimensieach. In second phase
these transformed vectors are appended to form a 50 dinmethsingput vector{y?,y?]
which is given to train another neural network to map theseali&tensional vectors
to its original target speaker 25 dimensional MCERsHowever, contextual features
with context size of 3 was also used and hence the mapping etaeén features of
dimension 350 and 175. The ANN architecture chosen for thigping was 350L 700N
700N 175L. The output is again scaled down to 25 dimensiof@é&eomparing with

the actual MCEP values for MCD computation.
The idea is that the second neural network model could paréoweighted combi-
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nation ofy?, yig] to predict the transformed vector as close as possibte feigure 3.9

shows the way in which a hybrid model of ANN-GMM is built.

@
! predicted mceps

source
mce|

oo MCePS [ ANN
models

Source files Concatenate ___ ANN
mceps (Hybrid)

L]

Figure 3.9:Block diagram for the hybrid approach

This experiment was trained on 40 utterances for transfooméetween SLT and
BDL transformation. Experiments were conducted with angasing number of input
speech utterances. Figure 3.10 shows that the output frerANIN-GMM hybrid ap-
proach is better than using only the ANN based approach.oltldibe noted that the
training data set used in this experiment is different frévat tused in Section 3, and
hence MCDs values obtained in Section 3 and in this experiuliéet for ANN and
GMM based systems. From the experiments done for enhartegngpectral mapping
using ANN, we could observe that use of enhancement methodglp better perfor-
mance than the base-line ANN based spectral mapping, glththiey add a little extra

computation time.

o
)

v® GMM + MLPG
= =ANN

o o
© o o B

Mel-cepstral Distortion (MCD) dB

o
©

o
o

80 100 200
No. of utterances
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Figure 3.10:MCD scores for the hybrid approach with increasing trainingala
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3.3.3 Transformation with use of contextual features

The use of deltas and delta-delta coefficients are compwemdaocontext of 3 frames,
and provide slope and acceleration coefficients of MCEPs [B@ftead of computing
slope and acceleration coefficients, we wanted to investitiee effect of augmented
feature vectors, i.e., append MCEPs from previous and narids to the MCEPs of

current frame, and provide these augmented features astonppain the ANN model.

In this context, we performed an experiment on SLT (femadDL (male) trans-
formation, where the model is trained on varying contex¢ simd varying number of
parallel training utterances. A context size of one indisghat MCEPs from one left
and one right frame are appended to MCEPs of the current fraheeresults of SLT to
BDL transformation are provided in Figure 3.11, where a phavéing the MCD score

with increasing number of training utterances and contiegtis provided.

6.2

6.1 ~a 4 100 H

Mel-cepstral Distortion (MCD) in dB
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[¢]
Context Size

Figure 3.11:Graph of MCD as a function of context size for varying numberaih-
ing utterances for SLT (female) to BDL (male). Context O iatdis the
baseline performance.

Figure 3.11 shows that the MCD score decreases with the Beliaacontext size
from O to 3 (i.e., 3 left and 3 right frames). The MCD score atdbatext size of 0 in
Figure 3.11 indicates the base line performance as explairfeection 3.2.2. The ANN
architectures used for context size of 1, 2 and 3 are 75L 22ZBWNZ/5L, 125L 375N
375N 125L and 175L 525N 525N 175L, respectively. From Fighidel, it could also
be observed that increase in the number of training uttesafiom 40 to 200 leads to a

decrease in MCD scores and thus improves the performance 8NN based spectral
mapping.
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From the experiments conducted in Section 3.3.1 and|3.23;omld observe that

the use of deltas, acceleration coefficients and contef¢asdres improves the perfor-
mance of an ANN based VC system. However, an increase in therndiionality of
feature vectors also increases the size of an ANN archieemnd the computational

load in training and testing of a VC system.

3.4 Summary

In this chapter, we have exploited the mapping abilities BNiNAand it was shown that
ANN can be used for spectral transformation in the voice ewion framework on a
continuous speech signal. The usefulness of ANN has beeordgrated on differ-
ent pairs of speakers. Comparison between ANN and GMM baaadftrmation has
shown that the ANN based spectral transformation yieldtebetr as good results as
GMM based system in both the objective and subjective etial® Hence, we con-
clude that no smoothing techniques are required when ugiigsXor spectral transfor-
mation. We also discuss various possibilities of improwving spectral transformation
performance given that the ANN based spectral transfoamasi our baseline system.
Appending deltas to obtain better performance has beeninsettious experiments
and is well known to improve the performance of a system wimenpared with a sys-
tem built on only the static features. The results obtaimeolur tests also conform to
this result. We propose the use of contextual features andadhANN-GMM ap-
proach whose results are also found to be much better whepareh to the use of

only ANNSs for spectral transformation.
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CHAPTER 4

FRAMEWORK FOR SOURCE-SPEAKER

INDEPENDENT VOICE CONVERSION

The methods described so far rely on availability of paraléa for training the mod-
els. Hence each time a new speaker wants to transform higlloerto a target speaker,
he/she will have to record all the utterances of the targealsgr so that a parallel data
can be obtained. This is a costly and time consuming task.céjethere is a need
to come up with an approach which will avoid the source speh&eing to give any
speech samples for training the voice conversion modelreTaee a few approaches
which have tried to reduce the contribution from the soupeaker. These methods
include using a speech recognizer [23], a unit selectioardhlgn [19] class mapping
[24], creating pseudo parallel corpus [10] and using ad@ptdechniques [25] as ex-
plained in Chapter 2. However, all these methods still nedtl e speakers data
(though not parallel utterances). Hence, there is a nee@smnl an algorithm that
will capture speaker specific characteristics and hencenlyehe target speaker data.
Such an algorithm which needs only target speaker data casdukin both ILVC and
CLVC frameworks. In this chapter, we propose a voice congarsiethod using ANN
which captures speaker-specific characteristics of attapgaker. Such a model avoids
the need for speech data from a source speaker and hencebeousid to transform

arbitrary speaker including a cross-lingual speaker.

4.1 Many-to-one mapping

We propose an approach where multiple speakers acoustie spmapped onto a sin-

gle target speaker acoustic space during training and thenall model is used to



transform any arbitrary speakers speech. A similar approgas followed in [21],

where speaker adaptation technique was also used. Howewdrave not performed

any speaker adaptation techniques in this work.

Our goal is to come up with an approach where the need for as@peaker’s
training data is totally eliminated. ARCTIC database is asmiilbn of multiple speakers
uttering the same sentences. The experiments in this semtéoundertaken with an
assumption that the source speaker is SLT and the targekesged&DL. To start with,
we train an ANN model with the input and output training dasaB®L MCEPs from

40 utterances. However, during testing, we check if SLT catrénsformed to BDL.

The results are provided in Table 4.1.

Finally we train an ANN model to map 40 utterances from eacBDt, AWB,

KSP, CLB, RMS, JMK to the target speaker BDL. This kind of convarshould work

reasonably well as it models transformation of multipleadq@es to a particular target

speaker and hence capture the acoustic variations. Dwestipdg, SLT utterances are

given to this model to convert them onto BDL acoustic space.asle experimented
with training an ANN model to transform BDL MCEPs to BDL MCEPs witle aim

of capturing target speaker-specific characteristics. é¥aw we observed that an ANN

model trained to map multiple source speaker to a singletameaker performs better

than a self mapping network. Results of both these expersraetprovided in Table

4.1.
Table 4.1: Many to one mapping
Trained model No. of training utterances | Testing input | MCD
speaker [dB]
BDL to BDL 40 SLT 8.763
(BDL, RMS, AWB, KSP, CLB, JMK)| (6 speakers * 40 each) =240  SLT 6.674
to BDL

From Table 4.1 we see that the MCD scores are better when thelsra@ trained

to map multiple source speakers onto a single target speakermal listening tests
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showed the transformed voice possesses the voice chastacseof the target speaker

and is intelligible.

4.2 Models capturing speaker-specific characteristics

So far we have discussed VC approaches which rely on exestefgarallel data from
the source and the target speakers. There have been apgsqaioposed in [24], [44],
[19], [25], which avoid the need for parallel data, howevelt 2quire speech data
(though non-parallel) from source speakapsiori to build a voice conversion model.
Such approaches cannot be applied in situations, wherehdtnagy user intends to
have his/her voice transformed to a pre-defined target speakhout recording any-
thing apriori. In this section, we propose a voice conversion approacigusi ANN
model which captures speaker-specific characteristicstafget speaker. Such an ap-
proach does not require speech data from a source speaké&enod could be used
to transform an arbitrary speaker including a cross-lihngpaaker. The idea behind
capturing the speaker-specific characteristics using aN Aldbdel is as follows. Let

lqg andsq be two different representations of a speech signal fromgetaspeakeq.

A mapping functionQ(lg) could be built to transfornl, to s5. Such a function would
be specific to the speakgrand could be considered as capturing the essential speaker-
specific characteristics. The choice of representatioly ahd sy plays an important
role in building such mapping networks and in their intetatien. If we assume thag
represents linguistic information, asglrepresents linguistic and speaker information,
then a mapping function frorly to s4 should capture speaker-specific information in
the process. The interpretation of order of Linear Prealic{LP) could be applied in
derivinglq andsy. A lower order(< 6) LP spectrum captures first few formants and
mostly characterizes the message (or linguistic) part@stgnal, while a higher order
(> 12) LP spectrum captures more details in the spectrum and hepteres message
and speaker characteristics [70]. THgdeing represented by a lower order LP spec-

trum of first few formants could be interpreted as speakeepeddent representation
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of the speech signal, arsd represented by the MCEPs could be interpreted as carrying
message and speaker information. An ANN model could beddato minimize the

error||s; — Sql|, wheres, = Q(lg).

In this work, lq is represented by six formants, their bandwidths and deéitufes.
The formants, bandwidth&y and probability of voicing are extracted using the ESPS
toolkit [71] . The formants also undergo a normalizatiorht@que such as vocal tract
length normalization explained in Section 4.2 is represented by traditional MCEP
features as it would allow us to synthesize using MLSA sysigechnique. The MLSA
synthesis technique generates a speech waveform fromatiefdrmed MCEPs and FO
values using pulse excitation or random noise excitatiéih [&n ANN model is trained
to maplq to sq using backpropagation learning algorithm. Once the madighined, it

could be used to conveltto s:q wherel, could be from any arbitrary speaker

4.2.1 Vocal tract length normalization

VTLN is a speaker normalization technique that tries to cengate for the effect of
speaker-dependent vocal tract lengths by warping the éreguaxis of the magnitude
spectrum. Apart from the use of VTLN in speech recognitioLLM has also been

used in voice conversion [24] [44] [19].

Following the work in [72], we estimate the warp factors gspitch information
and modify both formants and bandwidths. A piece-wise lingarping function as

described in the equation 4.1 is used.

, k f; . i < Foy
- 4.1)

k%t—% . F0t<ft<fN
wherek = 1—0.002(Fyt — fmean), fi is the formant / bandwidth frequency of framt®
be normalized Fot is the pitch value of the framieand fy is the sampling frequency.

fmeaniS the mean pitch of the target speaker.
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Figures 4.1 and 4.2 show the LPC spectrum of a phone /aa/ spgnkévo male
and female speakers respectively. The plots on the lefinoaduindicate the original
spectrum and the plots on the right columns indicate thestommation after VTLN.
It is clear from these figures that the spectrum is normaltped similar domain and

hence our objective is achieved.
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Figure 4.1:Plot of LPC spectrum of two male speakers with the original spet on
the left column and normalized spectrum on the right column.
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Figure 4.2:Plot of LPC spectrum of two female speakers with the originatspm on
the left column and normalized spectrum on the right column.

4.2.2 Error correction network

We introduce a concept of error correction network whichsiseatially an additional
ANN network, used to map the predicted MCEPs to the target MGIBRkat the final
output obtained features represent the target speakeeitex vay. The block diagram
for error correction network is shown in Figure 4.3. Om/&eare obtained, they are
given as input to second ANN and it is trained to reduced tm:r¢||sa —S/|. Such
a network acts as error correction network to correct angrenmade by first ANN.

Let s;; denote the output from error correction network. It is okedrthat while the
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MCD values ofs, ands, do not vary much, the speech synthesized fegmwas found
to be smoother than that of speech synthesized Esimeo train the error correction
network, we use 2-D features i.e., feature vectors fromt3riames, and 3 right frames
are added as context to the current frame. Thus the ANN medehined with 175
dimensional vector (25 dimension MCEPs * (3+1+3)). The dedture of this error

correction network is 175L 525N 525N 175L.

7 11

g ANN | Sq ANN S
(mapping) [ *](error correction —®
network)

Figure 4.3:A block diagram of an error correction network

4.2.3 Experiments with parallel data

As an initial experiment, we used parallel data of BDL and Stdatures representing
I, were extracted from BDL speaker and were mapped spwd SLT. This experimen-
tation was done mainly to obtain a benchmark performancéhfexperiments which

maplq to ¢ (as explained in Section 3.2.2).

The features representingundergo a VTLN (as discussed in Section 4.2.1), to
normalize the speaker effect on the message (or lingujsic)of the signal. However,
in this experiment, the mapping is done between BDL'® SLT’s s5. The process
of training such a voice conversion model is similar to thecess explained in Section

3.2. Hence, VTLN was not performed on the features repraggiptin this experiment.
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Table 4.2: Results of source speaker (SLT-female) to tapgstlser (BDL-male) trans-
formation with training on 40 utterances of source formantarget MCEPS
on a parallel database. HeFerepresents Formant® represents Band-
widths, A and AA represents delta and delta-delta features computed on
ESPSfeatures respectivelYJVN represents unit variance normalization.

S.No Features ANN architecture MCD [dB]
1 |4F 4L 50N 12L 50N 25L 9.786
2 |4F+48B 8L 16N 4L 16N 25L 9.557
3 |4F+4B+UVN 8L 16N 4L 16N 25L 6.639
4 | 4F+4B+A+AA+UVN 24L 50N 50N 25L 6.352
5 Fo+4F+4B+ UVN 9L 18N 3L 18N 25L 6.713
6 Fo+4F+4B+A+AA+UVN 27L 50N 50N 25L 6.375
7 Fo + Prob. of Voicing + 4 F + 4 B A + AA + UVN 30L 50N 50N 25L 6.105
8 Fo + Prob. of voicing + 6 F + 6 B +A + AA + UVN 421 75N 75N 25L 5.992
9 | (Fo+Prob. ofvoicing+6F+6B+A+AA+UVN)+ | (42L 75N 75N 25L)+ 5.615

(3L3R MCEP to MCEP error correction) (175L 525N 525N 175L)

Training was done to map BDL formants to SLT MCEPs with only 4@natnces.
Testing was done on a set of 59 utterances. Table 4.2 show#férent representations
of I; and their effect on MCD values. These different represetatinclude combi-
nation of different number of formants and their bandwidttislta and acceleration
coefficients of formants and bandwidths, pitch and proldgitwf voicing. From the re-
sults provided in Table 4.2 we can observe that experimewh&ch uses six formants,
six bandwidths, probability of voicing, pitch along witheiih delta and acceleration
coefficients) employing an error correction network preddetter results in terms of
MCD values. These results are comparable with the result®ioéconversion with

BDL MCEPs to SLT MCEPs mapping as found in Section 3.2.2.

4.2.4 Experiments using target speaker’s data

In this work, we built an ANN model which magg features of SLT ontay features
of SLT. Herelq extracted from SLT utterances is represented by six forspant band-
widths, Fy, probability of voicing and their delta and acceleratioeficients as shown

in feature set for experiment 9 in Table 4.2. The formantskamtiwidths representing
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I undergo VTLN to normalize speaker specific characteristggsis represented by
MCEPs extracted from SLT utterances. We use the conceptamf@rrection network

to improve the smoothness of the converted voice.

Figure 4.4 provides the results for mappipdwherer = BDL, RMS, CLB, JMK
voices) onto the acoustic space of SLT. To perform this nrapgie voice conversion
model is built to mayq to sy (whereq = SLT) is used. To perform VTLN, we have used
the mean pitch value of SLT. Hence all the formants of soupealker are normalized
with VTLN using mean of SLTR and then are given to ANN to predict the 25 dimen-
sional MCEPS. Similar results where the conversion modetli$ by capturing BDL

speaker-specific features are also provided in Figure 4.4.

KSP to BDL
AWB to BDL
JMK to BDL
CLB to BDL
RMS to BDL
SLT to BDL
KSP to SLT
AWB to SLT
JMK to SLT
CLBtoSLT
RMS to SLT
BDL to SLT

7
MCD (dB)

Figure 4.4:A plot of MCD scores obtained between multiple speaker paiis SUfT or
BDL as target speakers. The models are built from a trainiatpdf 24
minutes and tested on 59 utterances (approximately 3 min).

We also performed listening tests whose results are pravid&able 4.3 for MOS
scores and similarity tests. For the listening tests weeBagtterances randomly from
each of the transformation pairs. Table 4.3 provides a coetboutput of all speakers
transformed to target speaker (SLT or BDL). There were 16dists who participated

in the evaluations tests. The MOS scores and similarityresstlts are averaged over

10 listeners.

The results shown in Figure 4.4 and Table 4.3 indicate thaevaonversion models

built by capturing speaker-specific characteristics ueihdN models are useful. As
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Table 4.3: Subjective evaluation of voice conversion mebeilt by capturing speaker-
specific characteristics

Target Speaker | MOS | Similarity tests
BDL 2.926 2.715
SLT 2.731 2.47

this approach do not need any utterances from source spakam a voice conver-
sion model we can use this type of model to perform crossihhgoice conversion.
Figure 4.5 shows the effect of amount of training data inddod the ANN models cap-
turing speaker-specific characteristics. It could be oleskthat the MCD scores tend

to decrease with the increase in the amount of training data.
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Figure 4.5:A plot of MCD v/s Data size for different speaker pairs and witi $r
BDL as the target speaker.

4.2.5 Experiments on multiple speakers database

To test the validity of the proposed method, we conducteeex@nts on other databases
from the ARCTIC set, such as RMS, CLB, JMK, AWB and KSP. The trainmgal
these experiments was conducted on 6 minutes of speeclodatadch of the database.
However, the testing was done on the standard set of 59 nttesa The MCD scores
provided in Table 4,/4 indicate that the methodology of iregran ANN model to cap-
ture speaker-specific characteristics for voice convarsauld be generalized over dif-

ferent datasets.



Table 4.4: Performance of voice conversion model built yt@ang speaker-specific
features are provided with MCD scores. Entries in the firatiwol represent
source speakers and the entries in the first row represeaydttapeakers.
All the experiments are trained on 6 minutes of speech arddem 59
utterances or approximately 3 minutes of speech.

Target| pvs | cLe | AWB | KSP
Source

BDL 6.260| 6.137| 6.558| 6.820
SLT 7.430| 5.791| 6.354| 7.278
CLB 7.066| NA | 6.297| 7.166
IMK 6.617| 6.616| 6.224| 6.878
RMS NA | 6.716| 6.251| 6.891
AWB 6.847| 6.517| NA | 6.769
KSP 7.392| 7.239| 6517| NA

4.2.6 Application to cross-lingual voice conversion

Table 4.5: Subjective results of cross-lingual transfdromdone using conversion
model built by capturing speaker-specific characteristi@sutterances from
each of Telugu (NK), Hindi (PRA) and Kannada (LV) speakers teaias-
formed into BDL male speaker’s voice

Source Speaker| Target Speaker| MOS | Similarity tests
NK (Telugu) BDL (English) | 2.88 2.77
PRA (Hindi) BDL (English) | 2.62 2.15

LV (Kannada) BDL English | 2.77 2.22

Cross-lingual voice conversion is a task where the languég¢jf@ecsource and the
target speakers is different. In the case of speech-tcebgesnslation system, a source
speaker may not know the target language. Hence, to confeymation in his/her
voice in the target language, cross-lingual voice coneerassumes importance. The
availability of parallel data is difficult for cross-linglreoice conversion. One solution
is to perform a unit selection approach [24] [44] [19] to findita in target speaker
utterances that are close to the source speaker or usengttsnaecorded by a bi-lingual
speaker [43]. Our solution to cross-lingual voice conrss to employ the ANN

model which captures speaker-specific characteristics.
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In this context, we performed an experiment to transforneg¢hiemale speakers
(NK, PRA, LV) speaking Telugu, Hindi and Kannada respecyivato a male voice
speaking English (US male - BDL). Our goal here is transform RRA and LV voices
to BDL voice and hence the output will be as if BDL were speakmdelugu, Hindi
and Kannada respectively. We make use of BDL models built ati@€4.2.4 to cap-
ture speaker-specific characteristics. Ten utterances K&, PRA, LV voices were
transformed into BDL voice and we performed MOS test and sintyl test to evaluate
the performance of this transformation. Table 4.5 provilesMOS and similarity test
results averaged over all listeners. There were 10 nastenlers of Telugu, Hindi and
Kannada who participated in the evaluations tests. The MOfs in Table 4/5 indicate
the transformed voice was intelligible. The similarityteesdicate that cross-lingual
transformation could be achieved using ANN models, and thput is intelligible and

possess the characteristics of BDL voice.

4.3 Summary

The focus in this chapter was to design a framework which damsise any of the
source speaker recordings. Use of a many-to-one approashtdmsform the source
speaker speech to the target speaker, however, its perioentizpends on the availabil-
ity of multiple pre-stored speakers. Our second approacbhndoes not need any data
other than the target speakers data is a novel approach alsicseems to perform well

in the case of both intra-lingual and cross-lingual voicevewsion.
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CHAPTER 5

Conclusion and future work

5.1 Conclusion

Most of the current voice conversion systems need trainatg ftom a source speaker
and a target speaker. Such training data could be eithdtgdandnere both the speakers
record the same set of utterances or non-parallel, whergtdv@ances recorded by both
the speakers are different. It is known that the use of pdratining data provides
better results when compared to the systems using nonlgddraining data. Machine
learning techniques such as VQ, GMM, HMM, ANN, etc., haverbesed to learn the
mapping from the source speaker’s acoustic space to thet sgygaker’s acoustic space.
However, referring to the state-of-the art techniques, e@getbat the GMM based voice
conversion techniques are most widely used. The goal of sygtems is to incorporate

the target speaker characteristics in the transformedhpee

In this thesis, we have proposed ANN based technique forevoaversion and
have compared the ANN based voice conversion system wittotithe GMM based
voice conversion system. We have shown that the ANN basex \amnversion per-
forms as good as that of the GMM based system. We have alsomghatva smoothing
technique such as MLPG is not needed with the use of ANN farevobnversion. To
further improve the spectral transformation quality of &N based system we have
proposed three methods, namely, appending deltas, useydira Imodel and use of
contextual features. However, as these techniques depetigecavailability of the
parallel training data, use of such techniques may not avieeyfeasible. A further
limitation to such technique is that the trained model candel to transform from the

trained source speaker to the trained target speaker. Hiéraceew speaker wants to



transform his voice to the target speaker, the speaker ha®wae the recorded utter-
ances and train a system. To avoid the need for training dama lboth the speakers,
i.e, the source speaker and the target speaker, we havespbpdechnique that cap-
tures speaker specific characteristics such that a modélecanined only on the target
speaker data. Such a technique allows us to transform aityaaylsource speaker to
the target speaker. Incidentally, the proposed methodfalds application in building

a cross-lingual voice conversion system, where the soyreakers’ language and the

target speakers’ language are different.

5.2 Limitations

1. Our focus in this thesis was to improve the spectral t@nsdtion performance
and hence we have not laid much emphasis on source feataresoimmation.
We have used a Gaussian normalized transformation to swakeotirce speaker

pitch frequency taking their mean and variance into account

2. Assuming that parallel training data is available, tgflic 30-50 utterances are
used in voice conversion. In this thesis, we have designexpproach that cap-
tures speaker-specific characteristics i.e, the targekspeAs 50 utterances will
not be sufficient to build such a model, we assume that we h#sga amount

of target speaker training data on which this model couldwbk. b

3. We propose the use of formants in our approach for cagfpeaker specific
characteristics. These formants were extracted from a kmeilvn tool ESPS.
Though the study of extracting formants in a robust mannaoiomplete, we

consider the output of ESPS as standard and use them for okir wo

4. Vocal Tract Length Normalization (VTLN) is a speaker natization technique
that tries to compensate for the effect of speaker-depénaeal tract lengths.
There are methods of implementing the same in a robust manowever, for

our experimentation we use a simpler method.
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5. Our current approach for CLVC needs a large amount of spssgelwhich would
be equivalent to the one needed to build a TTS, however, we hat/conducted
experiments to find out what could be the optimal size of tha daeded to get

an acceptable level of performance.

5.3 Future work

e The transformation of spectral features and average picjuéncy is not enough
to obtain a good voice transformation. Duration and pitafitcors are also a few

of the important features that affect the transformatioriggenance.

e The quality of the current cross-lingual voice conversiep&hds on the accuracy
of formant prediction. Most of the current formant extraottechniques are not
robust. We are currently using a well known tool ESPS to exiitze formants.
However as we have not validated the accuracy of it, we intedd the same and
come up with an approach which would be more robust in extrgdormants.
Theoretically speaking, the number of formants vary frorarghto phone, how-
ever for our current experiments we use 6 formants for eveonp. Hence, one
could design an algorithm by carefully considering the renf the phone and

the number of formants.

e In our approach for cross-lingual voice conversion, as wiendit use a bilingual
speaker, we did not find any means to perform an objectivaiatiah. Hence,
there is a need to come up with an algorithm that can be uses$ésathe quality

of transformation objectively.
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