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ABSTRACT 

This thesis deals with the application of Principal Component Neural Network (PCNN) 

in signal processing problems that arise in the areas of sonar and speech. Specifically, 

we address the application in signal separation and frequency estimation. The aim of 

the research work is to explore the role of neural networks in extracting the relevant 

features from an observed signal. 

PCNNs are neural networks which perform Principal Component Analysis (PCA). 

Basically, PCA is a transformation which represents a data set in more compact 

form. Principal components are the directions along which the data points in the 

data, set have maximum variance. PCNN can extract the principal  component.^ in its 

weights by learning from input data. PCA is widely applied in data compression and 

signal processing. This thesis focuses on signal processing applications. Introducing 

nonlinearity in PCNN brings the higher order statistics into computation and makes 

the network to  perform independent component analysis. This helps in the separation 

of independent source signals present in a received signal. The role of nonlinearity in 

a nonlinear PCNN for signal separation application is explored. 

This thesis addresses the signal processing problems such as signal separation and 

frequency estimation for which the PCNN can be applied. The applications related to 

these signal p

r

ocessing problems in the areas of sonar and speech are identified. The 

issues that arise in the case of real da ta  which makes the signal separation problem 

difficult are addressed. Most of the real signals like sonar and speech consist of 

multiple subsignals which are closely spaced in frequency. A single nonlinear PCNN 

cannot extract all the subsignals independently. A hierarchical approach is proposed 

in which the subsignals are extracted a t  different levels using more than one network. 

In the studies conducted for signal separation, the nonlinearity is introduced in the 

learning algorithm. From the experiments, it is observed that the extraction of a 



particular subsignal depends on the choice of nonlinearity. A combination learning 

algorithm is proposed which brings the combined effect of different nonlinearities. 

Most of the passive sonar and speech signals are nonstationary. PCNN can be used 

effectively for tracking the changes in the frequencies of a input nonstationary signal. 

This is done by estimating the frequencies with a frequency estimation method that 

uses the principal components computed by the network at different instants of time. 

The studies in signal separation and frequency tracking are performed with both 

synthetic and real data. The synthetic data is generated as the sum of sinusoids 

of different frequencies. The sinusoids are pure frequencies in the case of sonar and 

damped in the case of speech. The efficacy of the proposed methods is demonstrated. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

The real world data such as images, speech and sonar signals generally have redun- 

dant information in them. Principal Component Analysis (PCA) is a method which 

enables us to represent the data in a more compact form. Principal components 

are the orthogonal directions along which the variance of the data points is maxi- 

mum. So the PCA of a set of data points gives the knowledge about the spread of 

these data points in the data space. Mathematically, the principal components are 

the eigenvectors of the data covariance matrix arranged in the descending order of 

eigenvalues. Computation of the principal components is difficult when the data set 

is large, especially when it results in large covariance matrix. Neural networks that 

extract the principal components directly by learning from the input data are called 

Principal Component Neural Networks (PCNN). A PCNN is a single layer linear 

network whose weights are learnt by simple Hebbian learning rule. In signal process- 

ing applications, the PCNN can be used for frequency estimation. By introducing 

nonlinearity in the network, the weight vectors of the network converge to yield the 

independent components in the signal which need not be orthogonal. The network 

performing Independent Component Analysis (ICA) helps in the blind separation of 

independent source signals from their mixture. PCA has been widely used in data 

compression and signal processing applications. By projecting the data onto the first 

few principal components called the major components, we call achieve dimension- 



ality reduction, hence data compression. Many of the frequency estimation methods 

are based on the eigendecomposition of the signal autocorrelation matrix. The signal 

and the noise subspaces of the signal space are spanned by the major and the minor 

principal components. In signal processing, PCNN is also useful for noise removal. 

We shall study the application of the principal component neural network specif- 

ically in the areas of sonar and speech. Generally, the spectrogram of the passive 

sonar signal consists of line frequency components embedded in the background noise. 

PCNN can be used for the extraction and tracking of these line frequency features. In 

the case of speech, the PCNN can be applied for extracting the formant frequencies 

and tracking these formant frequencies and their bandwidths which give the informa- 

tion about the damping characteristics of the vocal tract. 

1.2 Scope of the Thesis 

In this thesis, we explore the role of neural network in extracting some features from 

an observed signal. The features are mainly the frequency components present in the 

signal. Priilcipal component neural network is a special kind of unsupervised learning 

neural network which has a wide scope in these signal processing applications. 

In the case of real data such as passive sonar and speech signals, the features 

are mainly the frequency information. Extraction of these frequency components 

is an important aspect in knowing the source characteristics. Tradking the changes 

in these frequencies gives the knowledge about the dynamics of the source. Our 

studies are concerned with specific signal processing problems like signal separation 

and frequency tracking problems that arise in the case of real data such as sonar and 

speech. In particular, the following issues are addressed in this research work: 

1. To extract the subsignals (pure or damped sinusoids) from a multicomponent 

signal with suitable neural network training. 



2. To make modifications in the neural network learning algorithm for efficient . 

signal separation in the case of real data. 

3. To track the frequency changes effectively using neural network. 

We explore the potential of artificial neural network models for signal processing 

applications due to the following advantages: 

1. In unsupervised learning, the neural network tries to self organize so that it 

detects some useful features from the input data. 

2. The nonlinearity in the neural network makes it capable of performing compu- 

tations which are analytically difficult. 

3. Due to its adaptive property, when the network is operating in a nonstationary 

environment (i.e., one whose statistics change with time), it can be designed to 

cha.nge its synaptic weights in real time. 

1.3 Organisation of the Thesis 

In Chapter 2, we review different principal component neural networks. The review 

involves the basics of principal component analysis and the evolution of PCNN with 

their learning algorithms. Some PCNNs for specific applications are also discussed. 

The applications of PCNN in general, and specifically to signal processing are 

presented. 

Chapter 3. discusses the signal processing problems in sonar and speech fields 

in which PCNN can be applied. The identified problems are signal separation and 

frequency estimation. Issues that arise in the case of real data in the computation 

of principal components are also discussed. The idea of independent component 

analysis for signal separation is described in detail. \Ve propose methods for applying 

the PCNN efficiently for signal separation. 



Chapters 4 and 5 are devoted to application of PCNN for sonar and speech signals. 

Experimental studies are described first for the synthetic data which simulate the 

real data, and then on the real data itself. The studies conducted using different 

PCNN learning algorithms for signal separation and the results are illustrated. We 

compare the performance of the proposed methods with the existing ones. Both sonar 

and speech signals are nonstationary. To determine the time varying behaviour, it 

is necessary to track the changes in the frequencies of the sinusoids. Studies are 

described on the application of PCNN for frequency tracking. 

In the final chapter, we summarize the work reported in this thesis highlighting 

the main contributions. 



Chapter 2 

PRINCIPAL COMPONENT NEURAL 

NETWORKS - AN OVERVIEW 

2.1 Introduction 

The process of organizing automatically a set of input patterns based on some signif- 

icant features is called self-organization. Neural networks can be trained to extract 

features for self-organization using unsupervised learning methods [1,2]. The principal 

component neural network is a self-organizing network which can perform principal 

component analysis [3]. Hebbian learning rule, which enhances the correlation 

between the input and the output of a neuron, can be applied for extracting the 

principal components. The updation of weights using the Hebbian rule may lead to 

unlimited growth of the weights, which can be overcome by the normalized Hebbian 

rule called Oja's learning rule. Oja's learning rule extracts the first principal compe  

nent only. This is extended by the generalized Hebbian algorithm to  extract multiple 

principal components. 

Section 2.2 gives the basics of PCA from statistical point of view. In statistics, 

PCA is a popular approach of representating maximum amount of information in 

the data with minimum number of dimensions. The evolution of PCNNs and their 

characteristics are discussed in Section 2.4. Applications of PCNN in various fields 

are described in Section 2.5. Finally, in Section 2.6 we present the problems identified 

in this research work. 



2.2 Basics of Principal Component Analysis (PCA) 

Principal component analysis [4, 51 is a method of representing the data points in a 

more compact form. Let us consider a data set D = {xJx E RN). This data set can 

be represented as points distributed in a N-dimensional space. The first principal 

component is the direction along which the points have maximum variance. The 

second component is the direction orthogonal to the first component along which the 

variance is maximum for the data points, and so on for the third, fourth, etc. Fig.2.1 

shows the principal components of the data points distributed in a 2-dimensional 

space. PC1 and PC2 are the first and second principal components. 

Figure 2.1: Principal components of the data points distributed in a 2- 
dimensional space 

It is possible to have a effective transformation x ---+ y ,  where x E R N , y  E RM 

and M < N, when there is redundancy in the data points. This is done by projecting 

the data points onto the principal subspace formed by the first M principal compo- 

nents, also called major components which capture the maximum variations among 

the points. This forms the basis for dimensionality reduction, and the method of data 

representation is commonly referred to as subspace decomposition. Approximation to 

the data point x reconstructed with minimum error from the projections y onto the 



M largest principal components qis is given by 

N 
The error vector e = x - xt = C yiq; is orthogonal to the approximating 

i=hl+l 
data vector xt, which is called the principle of orthogot~ality. PC.\ is similar to the 

I<a~.hunen-Loeve transfo~matiol~ [6] in communication theory. Unlike other transfor- 

mations, the principal component analysis is data dependent. 

Since PCA is a study related to the variance of the data points in space, 

the extraction of principal components is done using the covariance matrix, 

C = E[(xi  - %)(xi  - x)'], of the data set where x = E[x] is mean of the data 

set. The principal components are the eigenvectors of the data co\-ariance matrix C 

arranged in t.hc descending order of the eigenvalues [ I ,  7, S]. The derivation for the 

eigenstructure of PCA is given in the .Appendix .4. 

2.3 Need for Neural Networks in PCA 

Direct coinputation of tlie principal components hits the follo\r.ing dificult.ies: 

1. In practice we have only an estimate of the autocovariance matrix of a. da.ta. 

set using temporal averaging, whereas the true autocovariance matrix is the 

ensemble average of the st.ochastic process generating the data. 

2. The data points are only sa.mples of a stochastic process. The number of points 

in the da.ta set should be infinite in order to 'describe the stochastic process 

accurately. In practice, we estimate the covariance matrix with a finite set of 

data which makes the estinlation poor. 

3. For nonstationary da.ta, the principal conlponents vary with time. 



These difficulties can be overcome to  some extent by the application of neural 

networks for the compu ta.tion of the principal components. The  neural networks 

have the following advantages: 

1. The  size of the covariance matrix is large for large dimension of the input 

vector which can cause problem due to the limited computer memory. A neural 

network extracts the principal components directly from the input da ta  by 

incrementally adjusting its weights. The weights of the network coilverge to  

the principal components in a finite number of iterations. 

2. The  direct computation gives all the principal components even though only a 

few components are required in many applications. The number of principal 

components extracted can be restricted in the recursive computation of the 

neural network. In addition, it is possible to find more components later. 

3. The  ext,ra.ction of principal components by direct computation is done using a 

block of data. On the other hand, neural networks are adaptive, and hence the 

computation is done on line for each input data. 

4. For a nonstationary process, where the statistics of the process varies slowly, the 

principal components of the new data generated by the process is normally the 

perturbation of the previously extracted ones. So we can update the previously 

extracted principal components whenever a new data  is given as input. 

Hebbian Learning for Variance Maximization 

The Hebbian updation [9, 101 of the weight w connecting an  input x and an output 

y of a neuron is given by Aw cx xy. It increases the correlation between the input 

and the output.  A network composed of linear neurons can be trained to  perform 

PCA, if the  synaptic adaptation is Hebbian in a vertical sense (i.e., from inputs t o  



outputs), and anti-Hebbian for the inhibitory lateral connections between the output 

units. The simple unsupervised Hebbian law does variance maximization [I] as shown 

in Appendix B. Since the principal components give the directions of maximum 

variations of data points, the simple Hebbian learning can be made to perform PCA. 

Rela t ionship  between Hebbian  a n d  MSE Learning 

A relationship [ll] exists between a supervised network using Mean Squared Error 

(MSE) learning and the unsupervised network using the Hebbian and anti-Hebbian 

1ea.rning. In the linear supervised network, the MSE has the form: 

where yj(n) is the actual output of the learning system, and dj(n) is the corresponding 

desired output. The output of the network is 

where wj; is the weight connecting the input x; to the output yj. The weights are 

updated using the negative gradient of the error surface with respect to the weights. 

Assuming x;(n) and dj(n) are independent random sequences, then taking expectation 

on both sides, we get 

The first term on the right hand side corresponds to an anti-Hebbian learning and 

the second term to a Hebbian learning. Thus in a linear network, learning with MSE 

criterion is equivalent to learning with the combination of the forced Hebbian and the 

anti-Hebbian rule. When the desired output signal is a zero-mean random sequence 



independent of the input signal, then the MSE learning defaults to  an anti-Hebbian 

learning. 

It should be noted that the principal component learning is the best learning [12] 

for a linear feedforward neural network. The main feature of the linear network is that 

the energy landscape has a unique local and global minimum corresponding to  the 

orthogonal projection onto the subspace spanned by the first principal eigenvectors of 

the covariance matrix of the input training patterns. All the other critical points are 

saddle points. So, for the linear network, the principal component learning converges 

to  the global minimum. Both the gradient descent and the Newton's type methods 

[l, 131 may get stuck in the saddle points. 

2.4 Principal Conlponeilt Neural Networks (PCNN) 

2.4.1 Oja's Lea rn ing  

The drawback of the Hebbian learning in principal component analysis is that the 

weights may grow indefinitely with training or they may tend to zero. This is because 

the synaptic weight w; grows strong when the presynaptic signal xi and the postsy- 

naptic signal y coincide with each other (Fig.2.2). This can be solved by adding 

a stabilizing term. Oja modified the Hebbian learning rule which incorporates the 

normalization of weights. 

Initially Oja [14, 15, 161 proposed that a single linear neuron as shown in the 

Fig.2.2 can extract the first principal component of the input da ta  x. With the 

Hebbian postulate ot learning, the weight updation is given by 

where q is the learning rate parameter, y(rz) is the output of the linear neuron and 

s i ( n )  is the i ih  component of the input pattern vector a t  the nth iteration. After 



Figure 2.2: Single linear neuron model as a maximum eigenfilter 

incorporating the normalization term in the learning rule, the resulting equation 

leads to the Oja's learning rule, and is given by 

It has two feedback terms. 

1. Positive feedback for self amplification and therefore for the growth of the synap- 

tic weight wi(n) according to the external input xi(n). 

2. Negative feedback due to the term -y(n)w;(n) for controlling the growth, 

thereby resulting in the stabilization of the synaptic weight wi(n). 

The weights updated by this learning rule converge to the first principal component 

of the input distribution as shown below: 

Substituting y(n) = xT(n)w(n) = wT(n)x(n) yields 

Taking statistical expecta.tion on both sides and for large n, E[Aw] = 0. Therefore, 



where w(n) + qo as n + oo and R ='E[x(n)xT(n)]. qo is the eigenvector of the 

correlation matrix R corresponding to  the largest eigenvalue [I,  81. 

2.4.2 L e a r n i n g  Pr inc ipal  Subspace  

Oja [17] extended the single neuron case to  multiple neurons to  extract the principal 

subspace. The learning algorithm is given by 

where wj; is the weight connecting the i t h  input xi with the j th  neuron. Here the 

weights will not tend to  the eigenvectors but only to  a rotated basis vectors which 

spans the principal subspace corresponding to  M principal components. 

2.4.3 M u l t i p l e  Pr inc ipal  C o m p o n e n t  Ex t rac t ion  - Genera l ized  H e b b i a n  

A l g o r i t h m  

By combining the Oja's rule and the Gram-Schmidt orthonormalization process, 

Sanger [18] modified the subspace network learning algorithm to  compute the first Ad 

principal components of a stationary process simultaneously. A feedforward neural 

network with single layer of linear neurons (N inputs and M outputs) as shown in the 

Fig.2.3 performs principal component analysis of the input vector. The  Generalized 

Hebbian learning Algorithm (GHA) is given by 

j 

Awji(n) = qyj(n)[zi(n) - C wki(n)yk(n)], for i = 1,2,.  . , N 
k = l  

and j  = 1 , 2 , - . . ,  M 

and the output yj(n) of the j th  neuron is 

N 



The learning differs from the previous principal subspace learning algorithm in the 

upper limit of the summation present in the second term of the A w j i ( n ) .  The updation 

is hierarchical. 

5 1  5 2  5N 

Figure 2.3: Single layer of linear neurons for multiple principal component 
extraction 

In the GHA, the modified form of the input vector is given by 

1. For the first neuron, j = 1 and x t(n)  = x ( n ) .  The generalized Hebbian algo- 

ri thm reduces to Oja's learning rule. So it extracts the 1st principal component. 

2. For the second neuron, j = 2 and x t(n)  = x ( n )  - w l ( n ) y l ( n ) .  The second 

neuron sees an input vector xl(n)  in which the input component corresponding 

to the first eigenvector of the correlation matrix R has been removed. So the 

second neuron extracts the first principal component of x l ( n )  which is equivalent 

to the second principal component of x ( n ) .  

3. Proceeding in this fashion, the outputs of the neurons are the principal compo- 

nents of x ( n ) ,  ordered by decreasing eigenvalue. 



2.4.4 Adap t ive  Pr incipal  C o m p o n e n t  Ex t rac t ion  

Principal components can be extracted one by one recursively. By including anti- 

Hebbian feedback connections [19] in the network, the outputs of the neurons define a 

coordinate system in which there are no correlations even when the incoming signals 

have strong correlations. Foldiak [2CI] developed a procedure which uses anti-Hebbian 

connections between every pair of network outputs to orthogonalize the weight 

vectors. Kung [21, 221 developed an algorithm called Adaptive Principal Component 

Eztraction (APEX) for recursive computation of the principal components based on a 

sequential training scheme which uses anti-Hebbian weights from the already trained 

neurons to the neuron that is currently being trained. Using this scheme, one can 

adaptively increase the number of neurons needed for the principal component 

extraction. The architecture of the APEX network is shown in the Fig.2.4. There are 

two kinds of synaptic connections in the network: 

1 .  Feedforward connections from the input to each of the neurons which operate 

in accordance with a Hebbian learning rule. They are excitatory and therefore 

provide for self-amplification. 

2 .  Lateral connections to a neuron from the outputs of the neurons, which 

operate in accordance with an anti-Hebbian learning rule, which has the effect 

of making them inhibitory. 

The output of the jth neuron is given by 

where 

the feedforward weight vector w j  (n) = [wjl (n), . . . , W ~ , ~ ( ~ Z ) ] ,  

the feedback weight vector a j (n)  = [ajl(n), . . . , ~ j ~ - ~ ( n ) ]  and 

the feedback signal vector yj(n) = [ y l  (n), . . . , yj-,(n)]. 
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Figure 2.4: APEX network architecture for multiple principal component 
extractioii 

The feedforward and lateral connection weights are updated as follows: 

where the term yj(n)x(n) represents the Hebbian learning, whereas the term 

- y j ( n ) ~ , - ~ ( n )  represents the anti-Hebbian learning. The remaining terms are 

included for the stability of the algorithm. In the following sections, some PCNNs 

designed for specific situations are discussed: 

2.4.5 Crosscorrelat ion Neura l  Ne twork  M o d e l  

The neural network models discussed in the previous sections extract the principal 

components of the autocorrelation matrix of the input data. A crosscorrelation neural 

network model [23] performs Singular Value Decomposition (SVD) [8] of the crosscor- 

relation mati.ix of two signals generated by two different stochastic processes which 

are related to each other. The principal singular vectors of the crosscorrelation matrix 

encode the directions, in both the spaces of the stochastic processes, that support the 

major common features of both the signals. The learning rule is an extension of the 



Hebbian rule called the mutual or cross-coupled Hebbian rule, and it is considered to 

be c&sscomlation asymmetric PCA problem [24]. 

The SVD of the crosscorrelation matrix C = E [ y x T ]  of two stochastic signals, x 

and y is given by C = U C V T ,  where U is the matrix containing left singular vectors 

which span the column space of matrix C (eigenvectors of C C T)  and V contains the 

right singular vectors, spanning the row space of matrix C (eigenvectors of C T C ) .  

The mutual Hebbian rule extracts both the left and right singular subspaces. 

Consider two linear neuron units as shown in the Fig.2.5 with inputs x E Rn, 

y E Rm, and outputs 

The cross-coupled Hebbian rule that updates the weights of any one of the two units 

is based on the correlation between the input of this unit and the output of the other 

one a.nd hence the name of the rule. 

where q is the learning rate parameter. In order to maintain stability, the weights are 

normalized and the resultant updation rule becomes 

By maximizing the crosscorrelation cost 

where Ryx is the crosscorrelation matrix, the solution for the weight vectors converges 

to the principal singular vectors [8]. 



X 

Figure 2.5: Crosscorrelation neural network model for performing SVD of 
crosscorrelation matrix of two stochastic signals x and y 

2.4.6 Higher  O r d e r  Correlat ion Learning Network 

The Oja's neuron does not capture the higher order statistics of the input. A higher 

order neuron [25] with higher order connection weights is capable of accepting inputs 

from more than one channel and capture the higher order statistics of the input. 

Fig.2.6 shows a higher order neuron consisting of a set of higher order connection 

weights, w;, wi,, wijk,. . . , ~ i j b . . ~ ,  such that the output of the neuron is given by 

where 

yl ( n )  = C wi(n)x;. 



xi denotes the i ih  component of an N dimensional input vector x, I( is called the 

order of the neuron, q5 is a nonlinear function such as sigmoid. 
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Figure 2.6: Higher order neuron model for learning higher order statistics 
of the input 

For the second order neuron, the learning equation is given by [25] 

A n ( n )  = q [ C n ( n )  - [ n T ( n ) C n ( n ) ] n ( n ) ]  

where q  is the learning rate and 

n ( n )  =< [wo(n) w i ( n )  wij(n)IT > 

and 

where C, =< six, . . . x, > is a correlation tensor of rank m, which is symmetric under 

all combinations of m indices and < . > indicates the average over input distribution. 



2.4.7 Nonlinear P C N N  and  Independent Component  Analysis 

Normally, the PCNN is a linear single layer feedforward neural network. Nonlinearity 

is one of the essential features of a neural network. Introducing nonlinearity in the 

network includes higher order statistics into computation. The weight vectors become 

independent of each other and need not be orthogonal. The network thus performs 

Independent Component Analysis (ICA) [26, 27, 281 and helps in separating the 

independent subsignals from their mixture. 

The ICA of a random vector is a linear transformation that minimizes the statis- 

tical dependence between its components. It is the extension of the PCA, since PCA 

can only impose independence upto the second order and thus defines the directions 

that are orthogonal to each other. The coordinate axes of the ICA are independent 

of each other. ICA is mainly applied in source separation problem. The nonlinear 

learning algorithm of ICA may sometimes be caught more easily in local minima. 

Comparison of I C A  and  P C A  

ICA provides independence, whereas PCA provides only decorrelation [29]. PCA is 

used for data compression application by considering only the major principal com- 

ponents. Principal components are orthogonal. But ICA basis vectors may not be 

orthogonal. Principal components can be arranged in order according to the eigen- 

values corresponding to them. In the case of ICA, the coordinates are independent 

of each other. ICA involves higher order statistical moments while PCA considers 

only second order moments. Because of this, ICA needs nonlinear functions in the 

neural network learning algorithm. ICA is more advantageous than PCA in signal 

separation applications. The residual noise present in the signals can be eliminated. 

So, PCA is an effective method for data compression, while ICA is efficient for the 

extraction of the independent features. 



A simple illustration of the difference between PCA and ICA is given in Fig.2.7. 

Consider a 2-dimensional plane where the data points are distributed inside a par- 

allelogram [30]. PCA finds orthogonal coordinate axes (PC1 and PC2) where the 

maximum dispersion is obtained on the first axis. The coordinate axes of ICA (IC1 

and IC2) are fully independent. Knowledge of IC1 does not bring any information on 

the value of IC2. 

Figure 2.7: Principal component analysis and independent component anal- 
ysis 

A summary of different principal component neural networks is given in Fig.2.8. 

2.5 Applications of PCNN 

The applications are based on two kinds of data. 

1. Statistical data in which the data vector is considered as a point in an N- 

dimensional space. 

2. Temporal data in which the data vector is a segment of signal varying with 

time. 



1. A linear neuron' model as a maximum eigenfilter 

Oja's learning rule: a normalized Hebbian learning algorithm. 

Awi (n)  = ~ y ( n ) [ z i ( n )  - y(n)wi(n) ]  

extracts first Principal Component (PC). 

2. Principal subspace extraction with a layer of neurons 

Learning algorithm: 

M 

Awjt (n)  = q y j ( n ) [ ~ i ( n )  - C yk(n)wh(n)]  
k=l 

extracts M-dimensional subspace with M neurons. 

3. Multiple principal component extraction 

generalized Hebbian learning algorithm 

j 

Awj i (n)  = q ~ j ( n ) [ ~ i ( n )  - wki(n)yk(n)] 
k=1 

extracts first M PCs using a single layer linear feedforward neural network 
with M neurons. 

4. Adaptive principal component extraction 

computes PCs one by one recursively. 

anti-Hebbian lateral connections in the output. 

5. Crosscorrelation neural network model 

cross-coupled Hebbian rule. 

performs SVD of crosscorrelation matrix of two stochastic signals. 

.6.  Higher order  correlation learning network 

learns the higher order statistics of the input data. 

7. Nonlinear P C N N  

nonlinear learning algorithm. 

performs Independent Component Analysis. 

used for blind separation of independent source signals from their mixture 
in the received signal. 

Figure 2.8: Summary of different principal component neural networks 



2.5.1 G e n e r a l  Applicat ions 

These applications consider the statistical data. 

Data Compression:  The dimensionality reduction property of PCA forms the basis 

for data compression. Image coding is one of the applications of data compres- 

sion. The image is divided into many blocks. Some blocks are given to the 

PCNN for training. After convergence, the weight matrix is used to code the 

blocks of the entire image. The dimension of the code vector is much smaller 

than the size of the block. The image can be reconstructed effectively by de- 

coding the code vectors using the weight matrix. 

Compensa t ion  of Misalignment of a n  Image: The misalignment of image due 

to rotations and/or translations is compensated by finding the principal eigen- 

vector of the image and align it with the new coordinate system. This realigned 

image is given to the pattern classifier to recognize. 

PCA as a Preprocessor:  The projections of a data vector onto the principal com- 

ponents are uncorrelated to each other. When this is given as input to a neural 

network classifier, the convergence of the network will be improved. [31]. 

Evaluat ion of F e a t u r e  Ex t rac t ion  Techniques: If the data set is made up of 

aggregate of several clusters, the separability of the clusters can be seen from 

the projections of the clusters onto the principal axes. A feature extraction 

technique is considered to be better than others if the separability of features 

for different classes is high. 

Subspace  based Classification: Different classes of patterns have different sets of 

principal components. The patterns of a class tend to have larger projections 

on their own class components than any other class components. A new pattern 

belongs to the class where the reconstruction error is minimum. 



General iza t ion Measure :  Generalization here means how well a new pattern can 

be reconstructed [12]. The amount of distortion in the new pattern can be 

given as the distance of the point to the principal subspace. The distance 

is given by the reconstruction error. This helps in detecting outlier whose 

reconstruction error is high. The concept of generalization in PCA can be used 

for the generalization measure of any classifier. 

C u r v e  a n d  Surface  Fi t t ing:  Conventional methods of solving the curve fitting 

problems are 

1. Least Square (LS) fitting and 

2. Total Least Square (TLS) fitting methods. 

The TLS fitting method minimizes the sum of the squared lengths of the per- 

pendiculars from all the points to the estimated line. The TLS problem can be 

reduced to finding the minimum eigenvalue and its corresponding normalized 

eigenvector of the input covariance matrix, or in other words finding the first 

minor component of the input data set {x(x E R ~ )  [32]. 

In the case of hyperplane fitting, the hyperplane model can be expressed as 

A linear neural unit using anti-Hebbian learning rule is able to  optimally 

fit curves, surfaces and hypersurfaces by adaptively extracting the minor 

component. This minor component ultimately gives the coefficient vector 

a = [al, az, . . . ,a,]. The higher order neural networks can implement nonlinear 

decision boundaries. The higher order connection \+.eights may be used to 

replace the hidden units of feedforward neural network and can be trained using 

local learning rule such as Oja's rule [25] .  Here Taylor and Coombes extended 



the work of Xu [32] to higher order neurons which allows us to fit polynomial 

type hypersurjaces optimally by extracting the minor component of matrix C 

given in Section 2.4.6. The N dimensional hypersurface may be expressed as 

where the coefficients ao, a,, aij,. . . are the elements of the minor component. 

Noise Cancellat ion by Crosscorrelat ion Neural  Network: In some adaptive 

control applications, the crosscorrelation matrix C represents the unknown plant 

transfer junction from inputs to outputs. Also crosscorrelation neural network 

models can be potentially used for filtering applicaiions [23] if we have a priori 

knowledge of noise present in a signal. Consider the crosscorrelation network 

similar to the one shown in the Fig.2.5 with a layer of neurons instead of a 

single neuron. The neurons in the two layers are connected to their correspond- 

ing inputs. Let x = s + nl and y = n2, where s is some random signal to be 

enhanced and n l  and nz are white noise signals uncorrelated to s but correlated 

to each other, and whose correlation is difficult to compute analytically. The 

correlation can be captured using a crosscorrelation neural network. The out- 

-T 
put vectors of the layers are given by a = wTx and b = W y where W and 
- 
W are weight matrices. The weights are adjusted using cross-coupled Hebbian 

rule: The elements of the weight matrices after network convergence act as 

coefficients of two linear filters. The cross-coupled Hebbian updation of these 

weights minimizes the output error e = a - b. Since s and n2 are uncorrelated, 

only the difference between the output noise of the two filters is minimized. The 

resultant error e is the enhanced version of s after cancellation of noise. 



2.5.2 Applications Specific t o  Signal Processing 

In signal processing applications, the data is a temporal data. Many of the frequency 

estimation algorithms are based on the eigendecomposition of the signals [33, 341. 

PCNN finds its application in the problem of frequency estimation. The signal and 

noise subspaces of the observed signal space can be estimated by eigendecomposition 

of the autocorrelation matrix of observed signal [35, 361. In the eigendecomposition 

of the autocorrelation of a signal with M complex sinusoids, the first M eigenvectors 

corresponding to large eigenvalues span the signal subspace and the remaining span 

the noise subspace [37, 36, 35, 383. Methods for estimating the frequencies by signal 

subspace are called principal component frequency estimation. In the noise subspace 

frequency estimation, the property of the noise subspace perpendicular to the signal 

subspace is applied [33, 341. By reconstructing the signal from the projections of 

the signal onto the signal subspace eigenvectors, the amount of noise in the signal is 

considerably reduced. So PCNN can be applied for noise removal. 

We can estimate the principal components of the input signal using PCNN and 

these estimated components can then be used for frequency estimation algorithms 

such as MUSIC, Bartlett or Pisarenko harmonic decomposition [33, 34, 391. Recently, 

it was found that the PCNN can be made to perform independent component analysis, 

where the components need not be orthogonal, by introducing nonlinearity in the 

learning algorithm [40]. The resultant network can be used for blisd separation of 

independent sources from an observed signal. This application finds its importance in 

sonar and speech for extracting different frequency components present in the signal 

and hence tracking the changes in these frequencies. 



2.6 Studies in this Thesis 

In this thesis, we aim a t  the development of PCNN models for two tasks: (1) blind 

separation of independent subsignals from their mixture signal. (2) tracking of slowly 

varying frequency of a nonstationary signal. Studies in the literature for signal sepa- 

ration and tracking of sinusoidal frequencies using PCNN were made on the synthetic 

signals. But the real world signals like sonar and speech are noisy and have closely 

spaced multiple frequency components. Also speech signals consist of damped sinu- 

soids. Both sonar andspeech signals are also nonstationary which makes the tracking 

problem difficult. It is necessary to evolve techniques to apply PCNN to the real 

data. 

Chapter 3 describes the signal processing problems in the fields of sonar and 

speech for which PCNN can be used. In order to deal with the extraction of multiple 

sinusoids from their mixture, we propose a method which extracts hierarchically the 

component signals in different stages of network training. It is observed from the 

experiments that the choice of nonlinearity has a significant effect on the extraction 

of subsignals. We propose a learning algorithm which combines the effects of different 

nonlinearities. In Chapters 4 and 5, we present results of the application of PCNN for 

the signal processing problems such as signal separation and frequency estimation. 

The Chapter 4 is devoted to the study of sonar signals which consist of pure sinusoidal 

frequencies. In Chapter 5, we consider segments of a speech signal which is mixture 

of damped frequencies for illustrating the performance of PCNN. 



Chapter 3 

PCNN FOR SOME SIGNAL 

PROCESSING APPLICATIONS 

3.1 Introduction 

This chapter deals with the application of PCNN for signal processing problems specif- 

ically in the fields of sonar and speech. We also address issues that arise in dealing 

with real world data. The important features of sonar and speech signals are the 

discrete frequency components present in them. \Ire adopt PCNN for estimating the 

frequencies. It is interesting to note that,  by introducing nonlinearity in the learning 

algorithm of PCNN, the network performs independent component analysis which 

helps in the blind separation of independent source signals from their mixture. 

The organisation of this chapter is as follows: Section 3.2 describes the problems in 

sonar and speech in which PCNN can be applied. Section 3.3 explains the application 

of PCNN for frequency estimation and signal separation problems. In Section 3.4, we 

propose two methods for efficient signal separation in the case of multiple subsignals 

whose frequencies are closely spaced. Finally, a summary of this chapter is presented 

in Section 3.5. 



3.2 Description of the Problems in Sonar and Speech 

3.2.1 Problems in Sonar 

Generally, the passive sonar signals are the acoustic noises generated by a target 

or a vehicle. The principal sources of acoustic noises are the mechanical vibrations 

caused by rotating components, propeller noise and hydrodynamic noise caused by 

the flow of water around the hull in the case of underwater vessels. The spectrogram 

of this acoustic source consists of mainly discrete frequency lines. The characteristics 

of the targets are embedded in these line spectra. It is necessary to separate each of 

the source components from their mixture in the received signal in order to deter- 

mine the characteristics of the different acoustic sources present in the target. When 

the target is in motion, due to the doppler effect, these frequency lines vary with 

time. The dynamics of a moving target can be known by monitoring the changes 

in the frequencies of the sinusoids in the signal. Also the ocean is full of interfering 

sound sources which include machinery noise from shipping traffic, flow noise, wave 

noise, biologic noise, and even intentional jammer. This causes the line frequency 

components embedded in the backgrouild noise in the spectrogram of the signal. It 

is difficult to extract the frequency lines in the presence of the strong background 

noise. Fig.3.1 shows a segment of a passive sonar signal from an underwater vessel 

and its spectrogram. It is seen that most of the line frequency components are in 

the low frequency region and are closely spaced. In warfare, the enemy target can be 

identified by continuously monitoring the presence of the line features in the waterfall 

display of Time-Frequency Representation (TFR) [41] of the received signal. For clas- 

sification of targets and for capturing the dynamics of the targets, it is necessary to 

extract and track the line frequency features. PCNNs can be applied for these signal 

processing problems. Extraction of the independent acoustic noise sources present 

in the observed sonar signals helps in identifying a particular target in a multitarget 
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Figure 3.1: Nature of passive sonar signal. (a) Segment of the passive sonar 
signal from an underwater vessel. (b) The spectrogram of the signal (a) 
showing the line frequency features 



situation. The nonlinear PCA networks which perform ICA can be used to separate 

the independent sources from the observed signal. 
4 

3.2.2 Problems  in Speech 

Speech signals differ from sonar signals in that the sinusoids present in it are damped. 

The formants of the speech signals are the natural frequencies of the resonances of 

the vocal tract. Typically there are about three resonances of significance, for a 

human vocal tract, below about 3500Hz. Due to damping, the formants have specific 

bandwidths in the spectrum. The high frequency formants damp faster than the low 

frequency ones. Fig.3.2(a) shows the portion of the speech signal corresponding to 

vowel /a/ uttered by a male speaker. It is clearly seen in the figure that. within each 

pitch period, the signal is decaying. The pitch period is the duration between two 

successive instants of excitation. In the case of continuous speech, the formants vary 

abruptly. Fig.3.2(b) shows a speech waveform corresponding to a vowel sequence /ail. 

The plot of its formant frequencies computed using linear prediction analysis of the 

speech signal is shown in Fig.3.2(c). The transition of the formailts from one vowel 

to another is clearly seen in the plot. Extraction of these formants is an important 

aspect in speech analysis. Tracking the changes in the formant frequency gives the 

dynamic behaviour of the vocal tract. Principal component neural network can be 

applied for tracking the formant frequencies and their bandwidths. 

Issues in Processing Real D a t a  

Some of the issues that arise in extracting the principal components from real data 

are the following: 

1. In the case of real data like sonar and speech, noise of unknown statistics is 

present. It is difficult to separate the signal and noise eigenvectors. 
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Figure 3.2: Nature of speech signal. (a) Segment of speech signal corre- 
sponding to vowel /a/ of a male speaker showing the damped sinusoids in 
every pitch period. (b) Speech waveform corresponding to the transition 

. region of a vowel sequence /ai/ uttered by a male speaker. (c) The plot of 
first two formant frequencies of the signal (b) showing their transition from 
one vowel to another. 
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Figure 3.2: Nature of speech signal. (a) Segment of speech signal corre- 
sponding to vowel /a/ of a male speaker showing the damped sinusoids in 
every pitch period. (b) Speech waveform corresponding to the transition 
region of a vowel sequence /a;/ uttered by a male speaker. (c) The plot of 
first two formant frequencies of the signal (b) showing their transition from 
one vowel to  another. 



2. If the signal contains damped sinusoids, the eigenvalues of the autocorrelation 

matrix of the damped sinusoids are complex. 

3. The nonstationarity of the signal makes the extraction of the principal vectors 

difficult. 

Fig.3.3 lists the problems identified in sonar and speech cases for which the PCNN 

can be applied. In the following section, we shall describe the application of neural 

networks for frequency tracking and signal separation. 

Applications in sonar 

(a) line frequency extraction 

target classification 
target identification in multitarget situa- 
tion 

(b) line frequency tracking 

to know dynamics of moving target 

Applications in speech 

(a) damped sinusoids extraction 

formant extraction 

(b) frequency tracking of damped sinusoids 

formant tracking which helps to know 
the vocal tract behaviour 

Figure 3.3: Applications of PCNN for signal processing problems in sonar 
and speech areas 



. 3.3 Neural Networks for Frequency Estimation and Signal 

Separation Problems 

3.3.1 PCNN for Frequency Estimation and Tracking 

A single layer linear feedforward neural network trained with unsupervised generalized 

Hebbian learning algorithm can be used to  estimate the frequencies of sinusoids in 

a given signal. The inputs to the network are the segments of the signal starting 

a t  random phases. Usually the signal under consideration is the outcome of the 

zero mean random process. The weights of the network converge to  the principal 

components of the input signal space. These estimated basis vectors can be used 

in frequency estimation algorithms such as MUSIC, Bartlet t or Pisarenko harmonic 

decomposition [34,33] for extracting the information on sinusoidal frequencies present 

in the signal. 

Application of PCNN for frequency estimation of a signal generated by a statio- 

nary process is extended to  track the slowly varying frequencies of the signal generated 

by a nonstationary process. The network is trained with the segments taken from 

the initial portion of signal which is assumed t o  be stationary. In tracking the slowly 

varying sinusoidal frequencies [42], the network weights are updated with the succee- 

ding portion of the signal. The new estimate of the principal vectors is a perturbation 

of the already .converged weight vectors. Convergence of the  new estimates is fast 

because the  initial weights have the information already about the signal. 

3.3.2 Independent Component Analysis Neural Network for Signal 

Separation 

In many signal processing situations the observed signals are mixtures of many 

independent sources. Blind separation refers to  the separation of sources from the 



observed signals without having any a prior-i knowledge of the sources. The following 

section discusses how the Independent Component Analysis (ICA) is helpful for signal 

separation. 

Assuming that the source signals are statistically independent, the problem con- 

sists of recovering them from the observed signals. The solution given by the princi- 

pal component analysis of the input covariance matrix E{xxT) provides uncorrelated 

outputs y;, that may not be pairwise independent. These second order statistics can 

characterize only Gaussian data which is described by mean and iyariance, and all the 

higher order moments are zero. But most of the real world data does not fit into the 

Gaussian distribution. Also PCA is useful to separate orthogonal components in a 

signal. But most of the subsignals of the real world signals need not be harmonics, 

i.e., orthogonal. The  signals in a multitarget situation are usually a mixture of inde- 

pendent, not necessarily orthogonal, signal components. For these reasons, the PCA 

solution is not satisfactory. Thus there is a need for considering higher order statistics 

[27, 431. In the case of PCA, the transformation is such that the outputs are uncor- 

related which means the crosscorrelation of the any two outputs y, and y, is zero, 

i.e. E{yiyj) = 0. The crosscorrelation is a second order moment. For the problem of 

blind separation of independent source signals, the outputs should be independent. 

The outputs y; and yj are statistically independent if and only if all the crosscumu- 

lants are equal to zero, i.e. cum{y~,yj9) = 0 for the pair (p, q)  E A' (44, 45, 461 which 

involves higher order moments. Hence ICA is more powerful than the classical PCA 

for blind identification of independent sources [47]. Unlike the principal components 

which can be computed mathematically from the data covariance matrix, there is 

no mathematical computation for independent components which involve higher 

order statistics. Hence it is useful to consider neural networks which can extract the 

independent components from the data through its weight vectors. 



A nonlinear neural network is capable of performing ICA. Nonlinearity can be 

expanded in Taylor series which includes higher order terms into the computation. 

Introducing nonlinearity in the network thus includes higher order statistics, which 

makes the output of the network independent of each other. 

A single layer feedback neural network, which can be viewed as a recursive linear 

adaptive filter [47] and whose weights are learnt by nonlinear gradient descent method 

extracts the independent subsignals from their mixture signals received by the sensors. 

The network is trained with the samples of the mixture signals corresponding to 

different instants of time. The outputs of the network converge to the samples of 

independent source signals at those corresponding instants. The hypothesis is that 

the number of sensors is equal to the number of sources, which is equal to number of 

neurons. 

An MLP network with BP learning algorithm can estimate the independent source 

signals from the observed signals [30]. The cost function is defined on the basis of 

the statistics of the network outputs and not on the differences between the actual 

outputs and the desired outputs, since the desired outputs are unknown in the blind 

separation problem. The cost function is defined using a measure of dependence of 

the components of the estimated source signals. 

In the above neural networks it is assumed that the number of mixture signals 

equals the number of sources. In real situation, we mostly record the sonar or speech 

signals using a single sensor. The PCNN can be made to perform ICA by introducing 

nonlinearity in the network. A single layer of neurons with the connection weights 

to the inputs updated by a nonlinear PCA learning algorithm can extract the inde- 

pendent subsignals from their single mixture. The nonlinear PCA learning algorithm 

includes the higher order statistics into computation, apart from the second order 

moments (corre1a.tion.s). The algorithm is stable if the nonlinearity grows less. The 



outputs of the network become independent of each other. The weight vectors are no 

longer orthogonal and they form independent coordinate axes. 

The nonlinear PCA type learning algorithm is derived [40, 281 by minimizing a 
hi 

general statistical signal representation e m r  e = x - C f(xTwj)wj where x is the 
j = 1  

signal vector, w, is the weight vector associated with the j th  unit, f ( . )  is a properly 

chosen nonlinear function and M is the number of neurons. A single layer of neurons 

with the connection weights to the inputs trained with this modified version of the 

principal component learning algorithm can extract the subsignals from the mixture. 

The inputs to  the network for learning are segments taken from a continuous signal. 

The weight vectors of the signal converge to the independent basis signal components. 

After convergence, when an input signal is given in segments shifted sample by sample, 

the outputs form the projections of signal onto the u~eight vectors. The outputs 

trace the components of the signal corresponding to the weight vectors. It can be 

interpreted as the crosscorrelation of signal and weight vectors. 

The following are the network details and the learning algorithms of the principal 

component neural network for signal separation and tracking applications. 

Network Deta i l s  

The architecture of the network considered for our studies is a single layer of neurons 

as shown in the Fig.2.3. The details of the inputs and the outputs of the network 

are given below: 

Number of inputs : Number of samples in a segment of signal used for 

training, which is a t  least equal to one cycle of lowest 

frequency component present in the signal. 



Number of outputs : Number of principal components to be extracted which 

(or) is generally more than the number of individual signal 

Number of neurons components present in the signal under consideration. 

Learning Algorithms 

Linear network with GHA learning algorithm 

A single layer linear PCA network with GHA learning updates the weight connecting 

the j th neuron and the i th  element of input vector x as follows: 

h' 
where 7 is the learning rate parameter, the output of the neuron yj = f ( C wjkzk), 

k=l 

M is the number of neurons, N is the number of inputs and f(.) is the nonlinear 

function. 

Nonlinear learning algorithms 

The network trained using nonlinear learning algorithms extract independent signal 

components from the input signal. These algorithms are derived by minimizing the 

T .  mean square signal representation error e = E{Jlx - C f (x w,)wjl J2) and maxi- 
j=1 

M 
mizing the output variance J ( w )  = C E{ f (xTwj)lwj) [40, '281. The algorithms are 

j=1 

given as follows: 

where f (.) is the nonlinear output function of the network. The learning algorithm is 

said to be symmetric for I< = M and it is called hierarchical for I< = j .  The algorithm 



3.1 maximizes the output variance and the algorithms 3.2 and 3.3 minimizes the mean 

square representation error. 

In the following section, some modifications are suggested in the network learning 

to improve the performance of PCNN for multiple, noisy and damped sinusoids that 

are characteristics of the real data. 

3.4 Met hods for efficient signal separation 

3.4.1 Hierarchical Extraction of Subsignals 

For signals with more than two frequency components, the nonlinear learning algo- 

rithms mentioned in the previous section may not extract all the components. Sonar 

signals are multicomponent in nature and are sometimes closely spaced in frequency. 

These frequency components are due to the rotation of different machineries in the 

vehicle. We don't have an apriori knowledge on the number of frequency components 
I 

present in the signal. The number of outputs of the network is arbitrarily fixed. 

When experimented with the synthetic signal of multiple sinusoids, we have observed 

that the output of a single network trained with this signal is the sum of more than 

one subsignal. To extract all the independent subsignals separately, we propose a 

hierarchical extraction method where more than one network is used in which the 

output of one network is used for training another network. The schematic represen- 

tation of this hierarchical approach is shown in Fig.3.4. This method of decomposing 

the signal into subsignals can be continued by training different networks at different 

levels until all the individual subsignals are extracted. 

In Chapters 4 and 5, we describe our studies to illustrate the improved performance 

of the proposed method for real signals. 



Figure 3.4: Hierarchical approach of extracting the subsignals of a signal 
with multiple frequency components using more than one network 

3.4.2 Combination Learning Algorithm 

We have seen that the nonlinear learning algorithm is derived by minimizing the 

signal representation error. A particular nonlinearity enhances the convergence of a 

particular frequency component. This dependence of extraction of subsignal on the 

choice of nonlinearity is observed from our experimental studies. The log nonlinearity 

typically extracts the low frequency components well, while the tanh nonlinearity 

extracts the high frequency component. A combination leaking algorithm is proposed 

to take advantage of the different nonlinearities. The combination learning algorithm 

is given by 

where K = M for symmetric learning algorithm and K = j for hierarchid learning 

algorithm and fk(.) is the nonlinearity introduced in the kth output. Experiments 

reported in chapters 4 and 5 on both simulated and real signals demonstrate the 

improvement in the performance of separation. In these experiments, different non- 



linearities are introduced such that 

I Y j  for 1 = 1 

f j ( ~ j )  = tanh(yj) for 1 = 2 

. sgn(yj) 10g(l + lyjl) for 1 = 3 

where 1 = (j  mod 3) + 1. 

3.5 Summary 

In this chapter, we have discussed some signal processing problems for which the 

neural networks can be applied. We have described the application of PCNN for 

extracting the line frequency features of sonar signals and the formant frequencies 

of speech signals. The principal components extracted by the network are used for 

frequency estimation. So the PCNN is useful for tracking frequencies of sinusoids in 

the case of nonstationary signal. In many signal processing fields, the observed signals 

are mixtures of independent sources. The capability of a nonlinear neural network in 

extracting the independent subsignals has been discussed. Introducing nonlinearity in 

the PCNN learning algorithm performs ICA, where the weight vectors converge to the 

basis signal components. Normally, the sonar signals are multicomponent in nature. 

The existing nonlinear learning algorithms may not extract closely spaced frequency 

components of the signal. Our proposed method of extracting the subsignals using 

different networks in a hierarchical manner solves this problem. Also it was found 

that the nonlinearity influences the extraction of particular subsignals. We have 

proposed a modification of the learning algorithm-to achieve the combined effect of 

several noillinearities. We will illustrate the performance of the proposed methods in 

Chapters 4 and 5. The list of studies to be carried out in Chapters 4 and 5 are given 

in Table 3.1. 



Table 3.1: List of different studies with the type of data and the learning algorithm 
used. 

Study 

Undamped sinusoids 

1. Signal separation 

2. Frequency tracking 

Damped sinusoids 

1. Signal separation 

2. Frequency tracking 

Data type 

Siinillated 
Two sinusoids 

with noise 
Multiple sinusoids 

Simulated 
Single sinusoid 

with noise 

Simulated 
Two damped 
sinusoids with 
noise 

Multiple damped 
sinusoids with 
noise 

Speech signals 

Speech signals 

Learning Algorithm (LA) 

GHA, Nonlinear LA 

Combination LA 
(Hierarchical extraction) 

GHA 
(Frequency estimator: MUSIC) 

GHA, Nonlinear LA, 
Combination LA 

GHA, Nonlinear LA 
(Hierarchical extraction) 

Combination LA 

GHA 
(Frequency estimator: MUSIC) 



Chapter 4 

APPLICATION OF PCNN FOR SONAR 

SIGNALS 

4.1 Introduction 

We have performed studies using two types of data: (1) sonar signals whose com- 

ponents are pure sinusoids, and (2) speech signals whose components are damped 

sinusoids. This chapter describes our studies on sonar signals. As mentioned earlier, 

the sonar signals mainly consist of pure frequencies contaminated with background 

noise. Also when a target is in motion, due to doppler effect, these frequencies of 

the sinusoids change with time. In this chapter, we describe experiments on signal 

separation and frequency tracking problem using PCNN along with our proposed 

modifications. 

The organisation of this chapter is as follows: Section 4.2 describes studies made 

on the extraction of sinusoids using synthetic signals. In this section, we study the 

performance of the PCNN for noisy signals. In Section 4.3, we describe the application 

of PCNN for tracking the frequencies of slowly varying sinusoids. Finally, in Section 

4.4 we give some concluding remarks on the performance of the PCNN in these studies. 

4.2 Extraction of Siliusoids from their Mixture 

We describe our studies made on synthetic data, simulating the real sonar situations. 

The synthetic signals are represented as the sum of sinusoids added with a zero-mean 



unit variance Gaussian random noise. 

where P is the number of sinusoids and Nis are the periods of sinusoids in samples 

and e(n) is an independent white Gaussian noise. The signal is given as input to 

the network. The following are the typical choices of nonlinearities introduced in 

the learning algorithm of the PCNN to perform ICA for signal separation problem: 

shows the plots of these nonlinear functions. The nonlinearities (1) and (2) lead 

to saturation (-1 or +1) for higher values of y. The other two are monotonically 

increasing functions. 

Figure 4.1: Typical choices of nonlinear function f (y) used in the nonlinear 
learning algorithm of the network for performing ICA. 

4.2.1 Sum of Two Sinusoids 

The signal considered for this study is given by 

s ( n )  = sin(2nn/lO) + sin(2nn/30). 



The frequency of one subsignal is a multiple of the other. A single layer feedforward 

neural network is applied for extracting the two subsignals present in the mixture 

s(n). The details of the network and the learning algorithms used for training the 

network are given in Table 4.1. The network is trained with segments of size 30 

Table 4.1: Details of the network chosen for extracting two sinusoids from 
their mixture. 

samples taken randomly from the signal. These segments start a t  random phases. 

The training is continued for several iterations of the input segments until the cha.nge 

in weights is within some tolerable limit. After the training is complete, some of the 

weight vectors converge to the two subsignals. In the extraction phase, the segments 

Number of inputs 
Number of outputs 
Number of training patterns 
Learning algorithms 

shifted sample by sample, taken from the continuous signal s (n )  are given to the 

network. The outputs of the neurons whose weight vectors converge to the subsignals 

trace those subsignals present in the signal. 

The performance of the network is evaluated for different learning algorithms. 

The need for nonlinear learning algorithm in signal separation problems can be seen 

from the results shown in Fig.4.2. Fig.4.2(a) shows the signal s ( n )  which consists of 

subsignals sin(2rn/30) and sin(2rnllO) shown in Fig.4.2(b) and (c). The subsignals 

extracted by the network trained with G H A  are shown in Fig.4.2(d) and (e). From 

the figure, it is obvious that the lo\\' frequency subsignal is distorted slightly and the 

amplitude of the high frequency subsignal is modulated. Fig.4.2(f) and (g) shows the 

3 0 
10 
S 
1. GHA 
2. Nonlinear learning algorithm given by 

Eqn.3.3 with tanh and log nonlinearities 
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Figure 4.2: Performance of the network i n  extracting the subsignals of a 
synthetic signal consisting of two sinusoids. (a) Synthetic signal generated 
by sum of two sinusoids with periods N1=30,N2=10. (b)  and (c)  Sukignals 
used to generate (a). (d) and (e) Subsignals extracted by the network using 
GHA. ( f )  Subsignal extracted using symmetric nonlinear algorithm with log 
nonlinearity. (g) Subsignal extracted using hierarchic nonlinear algorithm 
with tanh nonlinearity. 



subsignals extracted using nonlinear learning algorithm with log and tanh nonlinear- 

ities. It can be observed that the type of the nonlinearity has the effect on extracting 

a particular frequency component. The study was conducted for different. input sizes. 

The extracted subsignals are distorted for smaller input sizes. It was found that the 

minimum size is 30, which equals one period of the low frequency component of the 

input signal. This input size is optimum as it achiet-es good extraction of subsignals 

from their mixture and reduces network complexity and training time. 

4.2.2 Mixture of Multiple Sinusoids 

The above approach fails when it is extended to a signal consisting of more than two 

sinusoids. A single network using GHA or any nonlinear algorithm does not separate 

all the subsignals independently. Each o"tput of the network will have more than one 

sinusoid. It is necessary to have more than one network to decompose the outputs 

of one network by another for the extraction of closely spaced subsignals. Consider a 

signal consisting of three sinusoids given by 

We have applied the proposed hierarchical approach in separating the three sinusoids. 

Tlle details of the network and the learning algorithm used for training it are given 

in Table 4.2. The training patterns are segments of 1.5 samples each, taken randomly 

Table 4.2: Details of the network chosen for extracting the subsignals from 
a signal consisting of multiple sinusoids 

Number of inputs 
Number .of outputs 
Number of training patterns 
Learning algorithms 

15 
10 
10 
Symmetric combination learning algorithm with 

hierarchical extraction of subsignals 



from the signal. The input signal is s(n)  for the first level. For higher levels, the 

output of the previous level network is used as input. Fig.4.3 shows the signal s (n)  

and its subsignals. The subsignals are  closely spaced in frequency. 
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Figure 4.3: Hierarchical approach for extraction of subsignals from their 
mixture. (a) Synthetic signal generated as sum of three sinusoids. (b),(c) 
and (d) Subsigna.1~ used t o  generate synthetic signal (a). (e),(f) and (g) 
Subsignals extracted hierarchically by four different networks trained with 
symmetric combination learning rule with log and tanh nonlinearities 

The  networks trained using GHA or the nonlinear learning algorithms failed in 

extracting all the three subsignals independently. The  proposed combination learning 

algorithm with both log and tanh nonlinearities help in extracting all the subsignals 

using hierarchical a.rrangement of four networks a t  three levels. The extracted sub- 



from the signal. The input signal is s (n)  for the first level. For higher levels, the 

output of the previous level network is used as input. Fig.4.3 shows the signal s (n )  

and its subsignals. The subsignals are closely spaced in frequency. 
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Figure 4.3: Hierarchical approach for extraction of subsignals from their 
mixture. (a) Synthetic signal generated as sum of three sinusoids. (b),(c) 
and (d) Subsignals used to  generate synthetic signal (a). (e),(f) and (g) 
Subsignals extracted hierarchically by four different networks trained with 
symmetric combination learning rule with log and tanh nonlinearities 

The networks trained using GHA or the nonlinear learning algorithms failed in 

extracting all the three subsignals independently. The proposed combination learning 

algorithm with both log and tanh nonlinearities help in extracting all the subsignals 

using hiera.rchica1 a.rrangement of four networks at three levels. The extracted sub- 



signals are shown in Fig.4.3(e)-(g). The amplitudes of these subsignals are slightly 

distorted. 

4.2.3 Extraction of Subsignals from a Noisy Signal 

M'e have conducted experiments using the simulated noisy mixture of sinusoids. Llre 

have experimented with different SNR values. The network trained with clean signal 

extracts all the subsignals from the noisy signal irrespective of the level of noise. 

LVhen the network is trained with noisy signal, it is difficult to  extract the subsignals 

a.t low SNR values. The performance for the signal consisting of two siilusoids with 

additive Gaussian noise was studied. The signal is given +s 

where e ( n )  is the computer generated additive Gaussian noise with 0 d B  SNR. 

The details of the network chosen for this study and the learning algorithms used 

for training are given in Table 4.3. The network was trained with the segments of size 

Table 4.3: Details of the network chosen for extracting the subsignals of a 
noisy signal. 

30 samples taken at random locations from the iloisy signal. The noisy signal and 

its subsignals extracted for different learning algorithlns are shown in Fig.4.4. It call 

be observed from the figure that the perfonna.nce of the network is similar for all the 

Number of inputs 
Number of outputs 
Number of training patterns 
Learning algorithms 

30 
10 
10 
1. GBA 
2. Hierarchic learning algorithms 3.1 and 3.3 

nonlinearities tanh and log. 
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Figure 4.4: Performance of the network separating subsignals of a noisy sig- 
nal. (a) Synthetic signal consisting of two sinusoids with additive Gaussian 
noise of 0 dB SNR. (b) and (c) Subsignals extracted by network trained 
using GHA. (d) and (e) Subsignals extracted using nonlinear hierarchical 
learning algorithm given by Eqn.3.3 with tanh nonlinearity. (f) and (g) 
Subsignals extracted using the same nonlinear algorithm with log nonlin- 
earity. 



learning algorithms. The amplitude of the high frequency component is modulated 

and there is distortion in the low frequency component due to the effect of noise. The 

performance degrades as the value of the SNR decreases. 

4.3 Tracking of Slowly Varying Sinusoid 

It was mentioned earlier that the target specific information is embedded in the line 

frequency features of the sonar signal and monitoring the changes in these frequencies 

is important to know the dynamics of the target. This can be done by tracing the 

peaks of the  spectrum of the data window shifted in time. But if the data is noisy, 

spurious peaks occur, which makes the frequency tracking difficult. The principal 

component frequency estimation methods perform well even for the case of noisy 

signal. Noise is removed by considering only the major principal components. 

In our experimental study, we ha\.e considered a sinusoidal signal whose frequency 

increases with time which is called an upchirp signal. The signal is divided into 

different frames and in each frame, the signal is assumed to be stationary. The aim of 

frequency tracking is to track the change in the frequency in different frames. PCNN 

can be effectively applied to estimate the frequency of a particular frame by training 

the network with that signal frame. The inputs to the network are overlapping 

segments of input size of the network taken from the particular frame of the signal. 

The details of the network for the frequency tracking study is given in Table 4.4. 

After the network converges (i.e.. when the reconstruction error is minimum), 

the weights are used in the MUSIC frequency estimation method to estimate the 

frequency of the current frame. For the next frame of the signal, it is enough to 

update the already converged weights since the signal frequency is assumed to vary 

slowly with time. It  was found that there was a significant reduction in the number 

of iterations taken by the network to converge to the new principal components com- 



Table 4.4: Details of the network chosen for tracking the change in the 
frequency of a synthetic signal. 

pared to the convergence with randomly chosen initial weights. The  neural network 

applied to  the frequency tracking problem makes use of the previous information 

Input da ta  

Number of inputs 
Number of outputs 
Number of training patterns 

Learning algorithms 

about the signal stored in its weights. The above experiment was also conducted for 

the same upchirp signal with additive Gaussian noise with SNR equal to  0 dB. 

Fig.4.5 shows a portion of the upchirp signal, its noisy version and the plot of the 

estimated frequencies for different frames. It is important to  note that the  track of 

the noisy signal follows the pure signal which is due to the noise removal property 

of the principal component frequency estimation methods. The only disadvantage of 

these frequency estimation methods is that it needs the a prion' knowledge of the 

A single sinusoidal signal whose frequency quadruples 
over 1000 samples (from a period of 20 samples 
to  a period of 5 samples). 

20 
10 
16 (segments of size 20 shifted by 5 samples 

taken from a frame of 100 samples) 
GHA 

number of frequency components present in the signal. 

4.4 Conclusion 

In this chapter, we have presented the application of PCNN for extracting the pure 

sinusoids from their mixture signal like sonar signal. The main aim was to  study the 

efficiency of the PCNN in signal separation and the frequency tracking problems by 

incorporating our proposed methods. It was found that the minimum input size of the 
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Figure 4.5: Performance of PCNN in tracking the change in the  frequency 
of a synthetic signal. ( a )  Segment of upchirp signal. (b)  Noisy version of 
(a )  with additive Gaussian noise of 0 d B  SNR. (c) Time frequency repre- 
sentation showing the frequency changes tracked by PCNN cum MUSIC 
frequency estimator. 
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Figure 4.5: Performance of PCNN in tracking the change in the frequency 
of a synthetic signal. (a )  Segment of upchirp signal. (b) Noisy version of 
(a) with additive Gaussian noise of 0 dB SNR. (c) Time frequency repre- 
sentation showing the frequency changes tracked by PCNN cum MUSIC 
frequency estimator. 



network for perfect extraction is equal to one period of the low frequency subsignal. 

In the case of more than two sinusoids, the existing nonlinear learning algorithms 

and GHA using a single PCNN failed to extract the individual components. We have 

shown that the combination learning rule extracts the subsignals by decomposing the 

signal using more than one network. When noise was introduced in the mixture, the 

network showed poor performance. This is due to the difficulty of the network in 

extracting the features from the input signal with low SNR value. It is necessary 

to derive a new learning algorithm that incorporates the noise removal property. In 

tracking the frequency of chirp signal, it was observed that the PCNN makes use of 

the past information stored in the already converged weights to  find the new principal 

components for the input data. The tracking is good even when the signal is noisy 

with low SNR. 



Chapter 5 

APPLICATION OF PCNN FOR 

SPEECH SIGNALS 

5.1 Introduction 

In the previous chapter, the problem of signal separation of sonar signals was con- 

sidered. In this chapter, we consider the problem of signal separation in case of 

speech-like synthetic signals and speech signals. Unlike sonar signals, which consist 

of pure sinusoids, speech signals consist of damped sinusoids whose damping factor 

varies with frequency. High frequency sinusoids decay faster than the low frequency 

ones. In this chapter, we discuss methods of extracting subsignals from signals con- 

taining damped sinusoids. The main problem with damped sinusoids is that, with 

additive noise different regions will have different SNRs. The choice of the segment in 

the analysis window will determine the ability of PCNN to extract the features from 

the signal. Thus the length of the high SNR segment will be smaller in the case of 

damped sinusoids. But PCNN can still extract the features from short data record. 

In Section 5.2, we consider the extraction of subsignals in the case of synthetic 

signals consisting of a mixture of damped sinusoids. M'e also demonstrate the 

importance of choosing the analysis segment for noisy data. In Section 5.3, extraction 

of damped sinusoids correspond to formants is considered. Performance of network 

learning algorithms on this data is examined. Section 5.4 describes the application 

of PCNN for tracking formant frequencies in continuous speech. 



5.2 Extraction of Damped Sinusoids fiom their Mixture 

In this section, we consider synthetic signals which simulates one pitch period of 

speech signal. The signal is given by 

where P is the number of damped Sinusoids, T; is the damping factor, Ni is the period 

of sinusoid in samples, 4; is the phase of the sinusoid and e ( n )  is the additive noise 

which determines the SNR. 

5.2.1 S u m  of Two Damped  Sinusoids 

The initial study was conducted on a synthetic mixture of two damped sinusoids 

differing in frequency and damping factor. The synthetic mixture is given by 

The details of the network and the learning algorithms used for this study are given in 

Table 5.1. The input segments for training are taken from successive nonoverlapping 

Table 5.1: Details of the network chosen for the subsignals of a signal con- 
sisting of two damped sinusoids. 

windows shifted by 13 samples. Each window consists of 10 samples. The shift is de- 

liberately chosen to be different from the period of the sinusoid with lowest frequency 

Number of inputs 
Number of outputs 
Number of training patterns 
Learning algorithms 

10 
10 
10 
1. GHA 
2. Nonlinear learning algorithms given by 

Eqns.3.1 and 3.3 with log and tanh nonlinearities. 
3. Combination learning algorithm 



so that  the segments of the signal start a t  arbitrary phases. 10 such segments were 

used for training. The trained network is given with the segments of size 10 samples of 

the signal s ( n )  shifted by one sample. Some of the outputs trace the subsignals. The 

performance of the network in separating the two damped sinusoids was evaluated 

for the network trained using different learning algorithms. 

Fig.S.l(a)-(c) shows the damped signal s(n) and its components used to generate 

it. The network trained using simple GHA separates the damped sinusoids. But 

the envelope of both the damped sinusoids is slightly smeared. The extracted sub- 

signals are shown in Figs. 5.l(d) and (e). A significantly better decomposition was 

achieved when using nonlinear learning algorithms, where the envelope are preserved. 

For different nonlinear learning algorithms, the results are illustrated in Fig.5.2. It 

is observed from these results that the choice of the nonlinearity has an effect on 

the extraction of the damped sinusoid. This brings the necessity of the proposed 

combination learning algorithm with both nonlinearities. The subsignals extracted 

by the networks trained with symmetric and hierarchical combination learning a l g e  

rithm are shown in Fig.5.3. The extraction is better compared to the results of GHA 

and nonlinear learning algorithms. 

5.2.2 Mixture of Multiple Damped Sinusoids with Different Damping 

Factors 

As in the case of pure sinusoids, the problem of signal separation is difficult with a 

single network, when more than two frequency components are present in the sig- 

nal. Speech signal usually has more than two significant formants. The hierarchical 

approach of extraction helps in extracting the individual subsignals with more than 

one network in different stages of network training. We present the experimental 

study for a damped signal which is the sum of three damped sinusoids with different 



Figure 5.1: Performance of network trained using GHA in separating the 
damped sinusoids from their mixture. (a) Synthetic signal generated by sum 
of two damped sinusoids with different frequencies and damping factors. (b)  
and (c) Damped sinusoids used to generate (a).  (d) and (e) Subsignals of 
(a) extracted by the network trained using GHA. 



Figure 5.2: Performance of nonlinear learning algorithms in separating the 
damped sinusoids from their synthetic mixture shown in Fig.5.l(a). (a) 
Subsignals extracted by hierarchical nonlinear learning algorithm given by 
Eqn.3.3 with log nonlinearity. (b)  Subsignal extracted by the  same algo- 
rithm with tanh nonlinearity. (c) and (d)  Subsignals extracted by symmet- 
ric nonlinear algorithm given by Eqn.3.3 with tanh nonlinearity. (e) and 
(f) Subsignals extracted by the same algorithm with log nonlinearity. (g) 
and (h) Subsignals extracted using hierarchical nonlinear algorithm given 
by Eqn.3.2 with tanh nonlinearity. 



Figure 5.3: Performance of network trained using combination learning al- 
gorithm in separating the damped sinusoids from their mixture. (a) and 
(b)  Subsignals extracted using hierarchical combination learning algorithm 
with both tanh and log nonlinearities. (c) and (d) Subsignals extracted 
using symmetric combination learning algorithm with both tanh and log 
nonlinearities. 



frequencies, damping factors and phases. The signal is given as follows: 

The signal and its independent subsignals are shown in Figs.5.4(a)-(d). The details of 

the network and the learning algorithms are given in Table 5.2. The input segments 

for training are taken from successive nonoverlapping windows shifted by 17 samples, 

each consisting of 15 samples. The segments start a t  arbitrary phases. 

Table 5.2: Details of the network chosen for extracting multiple damped 
sinusoids from their mixture. 

In the first level of training, the network was unable to extract the individual 

subsignals. Some of the outputs consisting of two subsignals were further decom- 

posed by the subsequent levels in the hierarchical arrangement of networks. With the 

GHA learning rule, four different networks were trained a t  three levels to  extract all 

the three subsignals separately. The nonlinear learning algorithm needs four levels 

of training for extracting all the subsignals. Fig.5.4 shows the extracted subsignals 

from a mixture of component signals. From the figure, we observe that the nonlinear 

learning algorithm extracts the signals better than GHA. The distortion in the enve- 

lope of the damped sinusoids extracted by the nonlinear learning algorithm is not as 

prominent as in the case of GHA. 

Number of inputs 
Number of outputs 
Number of training patterns 
Learning algorithms 

15 
10 
10 
Hierarchical extraction of subsignals using 
1. GHA 
2. Nonlinear symmetric learning algorithm 

given by Eqn.3.3 with log nonlinearity 



Figure 5.4: Performance of hierarchical approach in extracting the subsig- 
nals from the synthetic mixture of multiple damped sinusoids. (a) Synthetic 
signal generated as sum of three damped sinusoids with different frequen- 
ciis and damping factors. (b),(c) and (d) Subsignals used to generate (a). 
(e),(f) and (g) Subsignals of (a) extracted by networks trained using GHA. 
(h),(i) and (j) Subsignals of (a) extracted by networks trained using nonlin- 
ear symmetric learning rule given by Eqn.3.3 with log nonlinearity. 



5.2.3 Extraction of Damped Sinusoids from a Noisy Signal 

The environment in which the speech is recorded may be noisy. We considered a 

noisy signal consisting of sum of two damped sinusoids with additive noise. Unlike 

the undamped signals, the problem of separation of subsignals is difficult when the 

SNR is low (0 dB). The noisy signal is given as follows: 

where e(n) is computer generated white Gaussian noise. The noise variance is cho- 

sen such that the overall SNR is 10 dB. The network details and different learning 

algorithms are given in Table 5.3. 

Table 5.3: Details of the network chosen for the damped sinusoids from a 
noisy signal. 

The noisy signal and its spectrum are shown inmFigs.5.5(a) and (b). From the 

experiments with networks trained using different learning algorithms, we found that 

the performance was nearly the same for all the algorithms. The extracted subsignals 

and their spectra are shown in Fig.5.5. From the figure, it is clearly seen that there 

is loss of signal information in the low amplitude region of the extracted subsignals. 

This is due to low SNR in these regions. 

Number of inputs 
Number of outputs 
Number of training patterns 
Learning algorithms 

10 
10 
10 
1. GHA 
2. Hierarchic and symmetric nonlinear learning 

algorithms with log and tanh nonlinearities 
3. Combination learning algorithm 



Figure 5.5: Performanceof network in extracting the damped sinusoids from 
a noisy signal. (a) Noisy damped sinusoids signal. (b)  Log spectrum of (a). 
(c) and (e) Subsignals extracted by PCNN. (d) and (f) Log spectrum of (c) 
and (e). 



5.3 Forniant Extraction in Speech 

In the previous section, we considered the case of synthetic signals consisting of 

damped sinusoids. In this section, we consider the formant extraction of natural 

speech signals. We consider the decomposition of the speech signal in a pitch period 

into its subsignals corresponding to the formants by a PCNN. The data for this study 

was a segment of the vowel /a/ uttered by a male speaker as shown in the Fig.3.2(a). 

The signal is sampled at 10 kHz. The signal is preemphasized to strengthen the high 

frequency formants which are normally weak in the case of speech signal. Table 5.4 

gives the details of the network used for the formant extraction. 

Table 5.4: Details of the network chosen for formant extraction of a speech 
signal. 

The network was trained with segments of size 30 samples taken from similar 

locations in 10 consecutive pitch periods. The similar locations were identified by 

Number of inputs 
Number of outputs 
Number of training patterns 
Learning algorithms 

choosing the segments 5 samples away from the instants of significant excitation [4S] 

in different pitch periods. The segment was chosen slightly away from the significant 

instant in order to avoid the region immediately after the significant excitation, where 

the vocal tract is in a transient state. Selection of these segments pitch synchronously 

also ensures equal SNR. After convergence of the network, some of the weight vectors 

capture the formant information. 

30 
10 
10 
1. GHA 
2. Nonlinear learning algorithm given by 

Eqn.3.3 with log and tanh nonlinearities 
3. Symmetric combination learning algorithm 



For extracting subsignals corresponding to the formants, we took segments of 

length 30 samples of speech signal from pitch periods not used for training. The 

starting points of the segments were chosen pitch synchronously offset from the ins- 

tants by 5 samples. In each pitch period, the segment chosen was presented to the 

trained neural network for decomposition. The segment is then shifted by one sample 

for 35 times, and these segments are given to the network successively. So in all 65 

samples of the pitch period were used. The outputs of the neural network for these 

successive segments within a pitch period trace the subsignals of the speech signal. 

This was repeated for successive pitch periods. Fig.5.6 shows the speech signal given 

to the neural network in 3 successive pitch periods and the subsignals extracted by 

the network trained using combination learning algorithm. These subsignals corres- 

pond to the formants of the speech. Since there are only about SO samples in a pitch 

period, we get only about 35 segments in a pitch period and hence only 35 samples of 

each subsignal. These 35 samples are not enough for obtaining a spectrum with good 

frequency resolution. Hence we have performed a second order covariance analysis 

[49] on these short segments of the subsignals to identify the formants. The resulting 

LP spectra are shown for the two subsignals in each pitch period in Figs.5.6(k)-(m). 

To verify whether the peaks of the spectra obtained from the covariance analysis of 

the subsignals correspond to the formants, we performed a 12th order LP analysis 

by the autocorrelation method [49] on a segment of the signal consisting of the three 

pitch periods given in Fig.5.6(a)-(c). The duration used was 25 msec and the de- 

rived LP spectrum is shown in Fig.5.6(j). We observe that the peaks in the spectra 

of the subsignals in Figs.5.6(k)-(m) approximately correspond to the first two peaks 

in the LP spectrum of Fig.5.6(j). But the covariance analysis is known to be sen- 

sitive to window positioning. So, we also used the impulse response of the all-pole 

model [34, 331 derived from the previous LP analysis for decomposition to obtain a 
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Figure 5.6: Performance of network trained using combination learning al- : 

gorithm in extracting the subsignals corresponding to the formants of the 
speech signal. The speech signal corresponds to the vowel /a/ uttered by a 
male speaker. (a),(b) and (c) Segments of speech signal taken from consec- 
utive pitch periods. (d),(e) and (f) Subsignals of (a),(b) and (c) correspond 
to a low frequency formant extracted by the network. (g),(h) and (i) Subsig- 
nals of (a),(b) and (c) correspond to a high frequency formant extracted by 
the network. (j) LP spectrum computed from the segment of speech signal 
consisting of the consecutive pitch periods (a),(b) and (c). (k) Second order 
LP spectra of the subsignals (d)  and (g) computed by covariance analysis. 
The solid line is the spectrum corresponding to the subsignal in (d) and the 
dotted line is the spectrum of subsignal (g). (1) Same as (k) for subsignals 
(e) and (h). (m) Same as (k) for subsignals (f) and (i). 



signal of a longer duration. This was done since the impulse response of the all-pole 

model approximately reflects the characteristics of the vocal tract system in the region 

chosen for analysis. The results of the decomposition of the impulse response 

performed using the combination learning algorithm are shown in Fig.5.7. From 

the short-time spectra of the impulse response in Fig.5.7(b) and the subsignals in 

Fig.5.7(d) and (f), we observe that the extracted subsignals indeed correspond to the 

formants. The short-time spectra of the subsignals also show that the decomposition 

is not perfect and each subsignal has a small residual component of other subsignal. 

The network was trained with different learning algorithms to study their perfor- 

mance in extracting the formants. The networks traiied using GHA and the non- 

linear learning algorithms extracted the subsignal corresponding to only one formant 

frequency. The combination learning algorithm performs better by extracting two 

subsignals corresponding to the first two formants. 

5.4 Tracking of Formant Frequencies 

The previous section dealt with the extraction of subsignals corresponding to the 

formants in a pitch period. Speech signals are nonstationary. The formant frequen- 

cies vary from one pitch period to the other and more so in Consonant-Vowel (CV) 

transition. In this section, we consider the PCNN based tracking of the changes in 

the formants over different pitch periods in CV transition regions. In the case of 

speech signals, frequency tracking is difficult because of the damped nature of the 

speech signals. The formants of the speech signals have specific bandwidths in the 

frequency domain. Also in continuous speech, the formants vary abruptly. This 

requires analysis of short segments of the signal. The conventional spectral analysis 

methods provide poor frequency resolution when short segments are analysed. So we 

explore the possibility of using PCNN for tracking the formant changes. 
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Figure 5.7: Performance of network trained using combination learning al- 
gorithm in extracting the subsignals corresponding to the formants of the 
speech signal. (a) Impulse response of the all-pole model derived from LP 
'analysis of a segment of speech signal corresponding to vowel /a/ with an 
LP order of 12. (b) Log spectrum of the impulse response (a). (c) and (e) 
Subsignals of (a) extracted by the network trained using combination learn- 
ing algorithm. These correspond to the formant frequencies of the speech 
signal. (d) and (f) Log spectrum of the subsignals (c) and (e). 



The speech signal taken for this study was a stop consonant-vowel /ka/ uttered 

by a male speaker sampled at 10 kHz. The study was made on tracking the changes 

in formant frequencies over transition part of the voiced region of /ka/ using PCNN 

trained with the steady part. The speech waveform is shown in Fig.5.S(a). In this 

figure, the region after b is assumed to be the steady part. The region between a 

and b is assumed to be the transition part. The network was trained initially with 

the segments of speech signal taken from 5 consecutive pitch periods of the steady 

part of the voiced region. The segments of length 30 samples were taken pitch syn- 

chronously. They were taken 10 samples away from the significant instants [4S] of 

excitation in every pitch period in order to  avoid the transient effects of the vocal 

tract in this region. The PCNN network chosen had 30 input nodes and 10 output 

nodes for computing 10 principal components and the weights of the network were 

updated using generalized Hehbian learning rule. After convergence, the weights of 

the network were used in MUSIC frequency estimator, which gave the estimates of 

formant frequencies corresponding to the steady part. To determine the changes in 

formant frequencies over the transition part, backtracking of these changes in the for- 

mants was done for preceding pitch periods. The formant frequencies were estimated 

in every pitch period of the transition part by updating the already converged weights 

with the segment of signal taken from it. A significant reduction was achieved in the 

number of iterations taken by the network to  converge since the initial weights have 

approximately captured the signal characteristics in the previous updation. Fig.5.S(b) 

shows the plot of the formant frequencies estimated by the PCNN in different pitch 

periods. 
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Figure 5.S: Performance of PCNN in tracking the change in the formant fre- 
quencies of a speech signal. (a) Speech waveform of a stop-consonant vowel 
/ka/ uttered by a male speaker. (b) Tracks of formants of (a) estimated by 
PCNN in the voiced region of the speech waveform. 
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Figure 5.S: Performance of PCNN in tracking the change in the formant fre- 
quencies of a speech signal. (a) Speech waveform of a stopconsonant vowel : 

/ka/ uttered by a male speaker. (b) Tracks of formants of (a) estimated by 
PCNN in the voiced region of the speech waveform. 



5.5 Conclusion 

In this chapter, we have examined the application of PCNN for extracting information 

from damped sinusoids that occur in speech signals. For two damped sinusoids, the 

nonlinear learning algorithm with log nonlinearity extracts the low frequency compo- 

nent well, and the tanh nonlinearity extracts the high frequency component. Com- 

bination of both nonlinearities in the learning algorithm shows better performance. 

Extraction of individual subsignals from a mixture of several damped sinusoids was 

done in a hierarchical manner using different networks. Even for real speech data, 

the combination learning rule extracted the first two formants of the speech signal. 

We have shown that it is possible to  track the variations in the formant frequencies 

due to dynamics of the vocal tract system. 



Chapter 6 

SUMMARY AND CONCLUSIONS 

6.1 Sumnlary of the Thesis 

Principal Conlponent Analysis (PCA) is the study of separation of data points dis- 

tributed in a space. The principal components are the orthogonal directions along 

which the variation of the data points is maximum. Froin the projections onto the 

first few principal components, we can reconstruct the data with minimum error. 

Because of this dimensionality reduction property, PCA finds its application in data 

compression. In signal processing, it is mainly applied for noise removal and fre- 

quency estimation. We have considered some of the signal processing applications in 

this thesis. 

We have discussed the need for neural networks in PCA. A single neuron whose 

connection weights to its inputs are updated by Hebbian learning rule performs vari- 

ance maximization of the input distribution. We have discussed the development 

of Principal Component Neural Networks (PCNNs) from a single Oja neuron which 

extracts the dominant component to multiple neuron network for extracting several 

principal components. We have described PCNNs suitable for specific applications. 

PCNN is a linear network. But the introduction of nonlinearity provides some inte- 

resting features to the network. We have focussed on the applications of these nonlin- 

ear PCNNs in signal processing. Nonlinearity in the learning algorithm brings higher 

order statistics into computation which malces the network to perform Independent 

Component Analysis (ICA). 



We have considered the application of PCNN for specific signal processing prob- 

lems such as signal separation and frequency estimation. The nonlinear PCNN which 

performs ICA can separate the independent subsignals present in a signal. The PCNN 

trained with the signal given as input using a nonlinear principal component learning 

algorithm extracts the information about the suhsignal in its weights. The outputs of 

the trained network trace the subsignals, when the signal is input to the network. For 

estimating the frequencies of the sinusoids present in a signal, the PCNN is trained 

with the signal using Generalized Hebbian Algorithm (GHA). The  weight vectors con- 

verge to  the principal components of the space spanned by the input signal. These 

principa.1 components are used in frequency estimation algorithms. 

\Ve have identified the problems in the areas of sonar and speech for which the 

PCNN can be applied. Extraction of independent source signals present in a received 

passive sonar signal helps to  know the characteristics of the sources. Estimating the 

line frequencies of the passive sonar signals helps in the classification of sonar targets 

and in the identification of a target in a multitarget situation. Tracking the changes 

in the frequencies of the signals helps to know the dynamics of a moving target. In 

the case of speech, extracting the damped sinusoids gives the information about the 

formants. To know the variation in the formants of a continuous speech, the changes 

in the frequencies of the damped sinusoids can be tracked. 

We have suggested modifications in the network learning t o  improve the perfor- 

mance of PCNN when applied to  real data. Usually t h e  passive sonar and speech 

signals consist of multiple sinusoids closely spaced in frequency. A single network is 

unable to  separate all the subsignals present in the  input signal. So, we have proposed 

a hierarchical arrangement which decompose the signal using more than one network. 

Also, it was found that the extraction of a particular subsignal depends on the choice 

of nonlinear function in the nonlinear learning algorithm of PCNN. We ha.ve proposed 



a combination learning algorithm to take advantage of 'different nonlinearities. 

Studies were conducted on signal separation and frequency estimation using 

PCNN. We have used both simulated and real data of sonar and speech in our studies. 

The sonar signal is simulated as a mixture of pure sinusoids and the speech signa.1 

as a mixture of damped sinusoids. We have demonstrated the efficacy of the pro- 

posed methods. In the case of the mixture of more than two sinusoids, either pure 

or damped, a single network cannot extract these subsignals separately. Hierarchical 

extraction using more than one network was performed to extract all the individual 

subsignals. The performance of the combination learning algorithm have been proved 

better in extracting the damped sinusoids corresponding to the formants compared 

to the nonlinear learning algorithm with single nonlinearity. We have conducted 

experiments to demonstrate the performance of PCNN in tracking the changes in 

the frequencies of a signal by estimating the frequencies at different instants of time. 

In the case of pure sinusoids, the slow change in the frequency of a chirp signa.1 is 

tracked by the PCNN. The tracking is comparatively good even the signal is noisy 

with low SNR. Experiments were conducted to track the changes in the formants of 

the transition region of a consonant-vowel sound by estimating the formants in every 

pitch period. 

6.2 Directioi~s for Future Research 

In the presence of noise, the proposed methods did not provide significant improve- 

ment in extracting the subsignals. The extracted components are distorted due to the 

presence of noise. But real sonar signals are noisy due to background environment. It 

is necessary to develop better methods for signal separation for nois!. data. Attempts 

can be made to bring the noise removal property in the learning algorithm itself. 



In our studies, we have fixed the number of output neurons arbitrarily, since we do 

not have a priori knowledge of the number of subsignals. It is important to develop 

an algorithm so that the network extracts the subsignals one by one hierarchically. 

The weight vectors of the PCNN updated by nonlinear learning algorithm con- 

verge to independent subsignal components of the input signal mixture. Since the 

weight vectors have the information about the subsignals, it is good to investigate 

the estimation of parameters of the subsignals such as damping factor and frequency 

from the weights. 

In our experimental study for formant tracking, we have considered the tracking in 

the slowly varying voiced part of the vowel. But in continuous speech, the vocal tract 

shape may change abruptly. Formant tracking in coiltiiluous speech is an important 

and challenging problem. 



Appendix A 

EIGENSTRUCTURE OF PCA 

Consider a zero-mean stochastic process. Let q denotes a unit vector onto which the 

random data  vector x is t o  be projected. The projection is given by 

subject t o  the constraint 

Since the random data  vector x has zero mean, the mean value of projection y is 

also zero. The  variance of y is therefore 

The matrix R is the correlation matrix of the data  vector. The  variance $(q) has 

eztmrnal or s ta t ionary  values (local maxima or minima) a t  = 0. If q is a unit 

vector such that  $(q) has an extremal value, then for any small perturbation 6q  of 

the unit vector q, we find that, to  a first-order in 6q. 

$(q + 6q) = $(q) 

From the definition of variance given in Eqn.A.2, we have 

(q + W T R ( q  + 6q) = qTRq 



Simplifying this by neglecting the second order terms in 6q, we get 

Only those perturbations for which the Euclidean norm of the perturbed vector q+6q 

remains equal to unity is allowed. That is, 

Taking the constraint A.l into consideration, this is reduced to 

Combining the Eqns.A.3 and A.4 by introducing a scaling factor, we get 

It is recognized as  the eigenvalue problem. The eigenvectors of the correlation matrix 

R give the directions of maximum variance of the data points. They are the principal 

components of the data. 



Appendix B 

HEBBIAN LEARNING FOR 

VARIANCE MAXIMIZATION 

Consider a single neuron fed with the input x = [x l ,  xz, . . . , X N ] .  The output of the 

neuron is given by 

where wj is the synaptic weight associated with the input xj.  By Hebbian postulate 

of learning, the weight updation is given by 

where 7 is the'learning rate constant. The rate of change of synaptic weight can be 

written as the statistical expectation of discrete weight changes. That. is, 

dw; -- 
dt  

- E[Aw;] 

where E is the expectation operator. Applying Eqn. B.l in Eqn. B.2, we get 

where cj; = E[x ix j ]  is the ensemble averaged covariance of the inputs xi and xj for 

a zero-mean random process. ifre can define a cost function & such that the weight 

updation equals the negative gradient of the cost function. 



Taking integration on both sides, we get 

When the neuron reaches maturity, % = 0. The cost function reaches its local 

minimum. It is also found out that the quadratic form of & is just the variance a2 of 

the output y.  

So minimizing the cost function & is equivalent to maximizing the variance. 
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