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Abstract

Laughter is a nonverbal vocalization that occur often intcmous speech. It is produced
by the speech production mechanism using a highly variaiysiplogical process. The
vocalized expression of laughter varies across gendevjdhuls and context. Despite its

variability, laughter is perceived naturally by humans.

Since laughter is produced by the human speech productichanem, spectral fea-
tures were generally used for the study of laughter acaustithis work mainly aims
at showing the significance of excitation information foabsis of laugh signals. We
proposed acoustic features which are motivated from thdymtoon characteristics of
laughter. The features are based on pitch perigg, the strength of excitation derived

from zero-frequency filtered signal, amount of breathireestloudness measure.

It is observed that there will be sudden bursts of air flowulgiothe vocal tract in the
case of laughter. This will result in faster vibration of tecal folds, and hence reduc-
tion in the pitch period. Apart from decrease in the pitchigeérthere is also a raising
pattern in the pitch period contour. Similar observatiomsadso made in case of strength
of excitation. The strength of excitation rises sharply #meh falls almost at the same
rate. Since there will be more air flow, laughter is typicalbcompanied by some amount
of breathiness. It will be reflected perceptually as lessléouand more noisy. These
loudness and non-determenistic component (noise) in ¢imakare estimated using mea-
sures based on Hilbert envelope. A method is proposed usasg features for detecting
laughter in continuous speech. The method is tested on @ data (TV show data) and

a clean data (AMI Corpus) and the results are reported.

A method is also proposed for synthesizing isolated lauditenodifying the above



features. The perceptual significance of each of the feafarstudied using an analysis
by synthesis based approach. Tlieet of each of the features are studied by deempha-
sizing them from some original laugh signals, and perfogrperceptual evaluation on
the obtained signals. The study indicated that pitch pepatttern is the most significant

factor, followed by call-intercall duration, breathines®l strength of excitation.

Keywords: Laughter, epoch, pitch period, strength of excitation, breathiness, loudness,

zero-frequency resonator, synthesis.
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Chapter 1

Introduction

The phenomenon of laughter is common in human communicasaway of express-
ing the emotion of happiness. Itis produced by the speediustmn mechanism using a
highly variable physiological process. The vocalized espion of laughter varies across
gender, individuals and context. Despite its variabiliggghter is perceived naturally
by human listeners. In recent years much of the research idotihee area of speech
recognition has been mainly concentrated on natural daltés réquires data collected
in natural environment which contain many non-speech ehsréke laughter and other
non-linguistic sounds. Automatic detection of such eletmérlps in increasing the accu-
racy of recognition. There are also theories on laughteckvbay that we not only laugh
at humor but also at surprise, when embarrassed etc. Stingdatighter also helps us to
know the possible emotional states of the speaker which snageasy to converse with

them.

1.1 Laughter terminology

Laughs were analyzed at three levels: bout, call and segieeis [1]. The entire laugh
is referred to as an episode which consists of laughter libatsare produced during one
exhalation. Calls are the discrete acoustic events thatitote a bout, and each call of a

voiced laughter consists of a voiced part followed by an isaaglottal fricativgsilence
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Fig. 1.1: A bout of a typical voiced laughter showing the bout, call and inter-calls.

part. Segments are the audibly reflected changes in the grodwithin a call. It is
assumed that each laughter bout contains several callsassolated calls are not con-

sidered as laughter.

Fig.[L.] shows the bout, call and inter-call of a voiced laegh

1.2 Acoustics and Phonetics of Laughter

Laughter is not a very controlled natural non-verbal vazlon. While laughter has
very distinct perceivable pattern, its production is natgd by any rules of grammar as
in the case of speech. It is typically produced by series dfisn bursts (outflows) of
air, keeping the vocal tract in a neutral position. The maiffedence between speech and
laughter is that normal speech does not disrupt breath whéxaghter mayJ2]. In normal
speech most of the role is played by the articulators of tliaMwact system, whereas in
case of laughter major role is played by the lungs and thel Vol (source). Laughter

can be broadly divided into two types based on its glottaveygt a) voiced laughter and
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b) unvoiced laughter. In a voiced laughter the air burstsdlavestly through the mouth,
and in some cases it may even pass through the nose. Thebewilbre air pressure build
up in lungs, as a result of which the vocal folds may vibrata different way. Also, since

there is more air flow, there will be turbulence generatetiwithe vocal folds, and hence
the signal may be breathy when compared to normal speechi¢énl/laughter may also
have the same overall structure as that of a voiced laughtéthe major dierence is

that there is no voicing. The durations of the calls will bssleand there will be more

damping when compared to voiced laughter.

1.3 Types of Laughter

There were many attempts done on categorizing laughter penspective of production
mechanism. The primary division made by Grammer and Eib&&feldt [B] based on
the glottal activity as voiced and non-voiced laughter. Haowski and his groug]4]
gave a more clearer division based on the broad charaatsmgtoout. Bouts comprising
of voiced calls were called as 'song-like’, which are alsonooonly called as giggle or
chuckles. They further divided unvoiced laughter into types, 'snort-like’ having per-
ceptually salient nasal-cavity turbulence and 'unvoicaahttlike’ which are acoustically

noisy produced with turbulence arising in either the lasadgr oral cavity.

1.4 Thesis organization

The contents of the thesis are organized as follows:

Chapter[R gives an overview of the existing approaches fagHter detection and
laughter synthesis. The drawbacks of the existing appeseaind hence the need for

alternate approaches are discussed in the chapter.

In chapte B, we highlight the significance of excitationretegeristics for the analysis
of laugh signals. We proposed modified version of an alreadstieg epoch extraction

method [b] for capturing the rapid variationsféf in laughter. We also proposed features



based on excitation information for analyzing laugh sign&lsing the frequency distri-
butions we showed that these features can indeed be usesttordnate laughter from

speech.

In chaptef}4, we proposed a method for spotting laughterontsmeous speech using
the features described in chagdiler 3. The performance ofrdpoped method is evaluated

and compared with the previous works.

In chaptef[p, we showed the significance of the proposedrisahy conducting per-
ceptual evaluation tests on the synthesized laughter.ufesatvere modeled and their
modification was done using the methods explained. Isolateghter was synthesized

by incorporating the feature variations.

In chaptef]6, we summarize the contributions of the presenkvand discuss some

issues that are still to be addressed.



Chapter 2

Previous Studies on Laughter - A

Review

Although, it has been more than 100 years since attemptslveéng made to understand
the psychological theory behind laughter, the studies @lyars of laugh signals were
started no sooner than 10 years from now, due to the unaiyaif processing tools

and technigues. Previous studies on laughter can be cetedamto three a) on laughter

analysis b) automatic laughter spotting and c) laughteth®gis.

2.1 Studies on laughter analysis

Laughter has been studied irfidrent perspectives like studies in philosophy of laughter,
acoustics and phonetics of laughter, speech pathologg,aimd spectral domain analysis

etc.

Analysis of laughter has started with understanding théopbphy behind it. The
studies on philosophy of laughter try to explain why and whemans laugh. If we want
to synthesize laughter in spontaneous speech, we havettddiesmine where it should
come and hence there is a need for understanding the philpsmhind it. There were
many theories which tried to explain laughter completelyrimne of them were success-

ful in doing so. The oldest, and probably still the most wlesd theory of laughter
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is ‘superiority theory’ or ‘Hobbesian theory’, which saysat laughter is an expression
of a person’s feelings of superiority over others. This tlyegoes back at least as far
as Plato and Aristotl]6]]7]. Hobbes gave a revised versioih laughter expresses "a
sudden glory arising from some conception of some eminemoyiselves, by compar-
ison with the infirmity of others, or with our own formerly[][8 In our century many
have adopted versions of the superiority theory. AlbertdRéqr example, claims that all
laughter developed from one primitive behavior in early pi#me roar of triumph in an
ancient jungle duelT]9]. Konrad Lorenz and others treaglaer as a controlled form of
aggression []. Later somg J10] have responded to the ‘soppigriheory’ by denying the
reality of hostile and derisive laughter. The second papthi@ory ‘incongruity theory’,
given by Kant and Schopenhauer. The theory as defined by Kasit’bhaughter is an
affection arising from the sudden transformation of a straiquectation into nothing”
[[T] and as defined by Schopenhauer as "laughter is a misrbateleen our concepts
and the real things that are supposed to be instantiaticth®sé concepts[[12]. Like the
‘superiority theory’, the ‘incongruity theory’ is also nobmprehensive enough to cover
all the non-humorous cases. The laugh of the 5-month-olgl Babeing tickled involves
no incongruity as some examples. The next most popularyheas the ‘relief theory’
proposed by Herber Spencer. It says that "laughter occuessbme emotion has built
up but then is suddenly seen to be inappropridtg” [13]. Sgesitheory influenced many
subsequent theorists of laughter, including Dewey andd-{§4] [[5]. Freud’s theory
says that "in all laughter situations we save a certain dtyaot psychic energy, energy
that is usually employed for some psychic purpose but whichstout not to be needed
and hence discharges it in the form of laughtgr] [15]. Apeotrf some extra cases which
can be explained by ‘relief theory’, it is also proved to bé very general. There is a one
more theory given by John Morreall which says that "laugigeather the physical activ-
ity which is caused by, which expresses, the feeling prodibyea pleasant psychological
shift” [[6]. The author also says that the theory is the mestagalized theory given till

now.

There are also studies done in understanding the dynamite dfings, vocal tract,

vocal folds, larynx, tongue etc. while laughifg[17T[28BILUEQ] [ET]. Filippelli, in
his work [I7] has analyzed the volume and pressure dropsnigslbetween every call
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and between bout. He concluded that there is sudden andhstibstecrease in the lung
volume after every call. John Esling studied the possilatestof larynx in laughter. He

also described the states of larynx foffdient types of laughter.

Laughter was studied for its practical importance in spgeathology [IB] [IP] [2P].
Citardi et. al analyzed laughter of peoplédtsuing from hyperadductive dysphonias (the
patient has not much control on the vocal folds). They fourad this is not the case in

laughter and hence concluded that laughter can be usedexttirese kinds of problems.

There are many studies on understanding the charactsriti@ughter [[22], [[23],
[A], [24], [[]- The authors dfered in the extent to which they characterized laughteh wit
some claiming laughter has very specific attributes whiterst emphasized that laughter
is a variable signal[J4]. The fierences in how specific the characterization of laughter
was could be due to the vastlyfidirent number of subjects and laugh bouts studied in
each experiment. For example, there were 2 subjects anadidb kouts analyzed if [R3],
51 laugh bouts investigated in J24], and 97 subjects and 1&h bouts analyzed if][4].
Not surprisingly, due to the small sample size of some of thdiss, the conclusions of
these works varied and sometimes contradicted one anditary agreed that laughter
has a repetitive breathy consonant-vowel structure (aehdrha or ho-ho-ho) [23][ TR4],
[M]. One work went further and concluded that laughter igally a series of short syl-
lables repeated approximately every 210 n§ [24]. Yet, stfend laughter to be highly
variable [#] [1] particularly due to the numerous bout tyies. voiced song-like, un-
voiced snort-like, unvoiced grunt-like, etc.)] [4], and shdifficult to stereotype. These

conclusions led us to believe that automatic laughter tietets not a simple task.

Since laughter is produced by the human speech productiehanesm, the laugh-
ter signal is also analyzed like a speech signal in terms efattoustic features of the
speech production. Analysis of laughter could be done fottmsis, where perceptually
important characteristics need to be preserved, or folygigdhe acoustic features dur-
ing its production. Based on analysis of large databaseughtizer sounds, Bachorowski
and colleagues haveftirentiated three broad categories, namely, song-likes{stimg
primarily of voiced sounds), snort-like (consisting ldsgenvoiced calls with percep-

tually salient nasal-cavity turbulence) and grunt-liketfmturbulence from laryngeal or



oral cavities) [B]. Typically, the acoustic analysis of dgater is carried out using dura-
tion (between onset andfset of acoustic eventsl,, (fundamental frequency of voiced
excitation) and spectral features. All of these are usedstribe the temporal variabil-
ity, source variability and variability in production maif}]. Formants, pitch and voice
quality analysis are used to discriminate speech, speaaiht and laugH [R5]. Some
of these features were studied using conventional methioaisatysis forF, and voiced
quality, but using mostly spectrum-based features, likenloaics, spectral tilt and for-
mants [2b]. The diiculty in deriving the features of excitation source usingrshime
spectral analysis limits the analysis significantly, esgdcdue to the choice of the size,
shape and position of the segment in relation to the acoaséots in speech produc-
tion. The main problem is to extract the rapidly varying arganeou$-,. Moreover,
traditional short-time spectrum analysis masks severpbmant subsegmental (less than

pitch period) features of the glottal source that are uniguke production of laughter.

2.2 Studies on automatic laughter detection

Earlier work pertaining to automatic laughter detectioouged on identifying whether
a predetermined segment contained laughter using variaakime learning methods in-
cluding Hidden Markov Models (HMMs)]26], Gaussian Mixtustodels (GMMs) [2F],

and Support Vector Machines (SVM$) J28][29]. Note that thgeotives of these studies

differed as described below.

Cai et al. used HMMs trained with Mel Frequency Cepstral fEcents (MFCCs)
and perceptual features to model three soufetes: laughter, applause, and cheer. They
used data from TV shows and sports broadcasts to classifyohdevindows overlapped
by 0.5 seconds. They utilized the log-likelihoods to deiaamvhich classes the segments

belonged to and achieved a 92.7% recall rate and an 87.9%ipreate for laughtef]26].

Truong and van Leeuwen classified presegmented ICSI Me&euwprder data as
laughter or speech. The segments were determined pricaitortg and testing and had
variable time durations. The average duration of laughtdrspeech segments were 2.21

and 2.02 seconds, respectively. They used GMMs trainedpeitbeptual linear predic-
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tion (PLP), pitch and energy, pitch and voicing, and modafaspectrum features. They
built models for each type of feature. The model trained Wit features performed the
best at 7.1% EER for an equal-prior test $ef [27]. The EER uoiig and van Leeuwen.s
presegmented work was computed on the segment level, waelesegment (which had
variable duration) was weighted equally. Note that thishis only system that scored
EER on the segment level. All other systems reported EER erirdme level, where

each frame was weighted equally.

Kennedy and Ellis studied the detection of overlapped (iplelspeaker) laughter in
the ICSI Meetings domain. They split the data into non-asing one second segments,
which were then classified based on whether or not multipéalsgrs laughed. They
used SVMs trained on statistical features (usually meanvandnce) of the following:
MFCCs, delta MFCCs, modulation spectrum, and spatial cddsy achieved a true
positive rate of 87%[28].

More recently, automatic laughter recognition systemsrawgd upon the previous
systems by detecting laughter with higher precision as alidentifying the start and
end times of the segments. In particular, Truong and vanweeuwtilized GMMs trained
on PLP features with a Viterbi decoder to segment laughteeychieved an 8% EER,

where each frame was weighted equally, on an equal-pribsée$30].

2.3 Studies on laughter synthesis

Recently, there were also attempts done to synthesizeteuff], [321, [33], [34], [35].
Though the number is very small, they are all completeljedént. Laughter synthe-

sis was handled at the bout level [n][31]. Laughter is modalesvo levels, the overall
episode level and at the local call level. At episode leved,duthors attempts to capture
the overall temporal behavior of laughter with a parametradel based on the simple
harmonic motion of a mass-spring system. At the call le\xgytrelied on a standard lin-
ear prediction based analysis-synthesis mofl€]. [33] curates on synthesizing speech-
laughs i.e laughter occurring with spontaneous speecfiter®nt types of synthesized

laughter were combined with speech in a dialogical situediod then perceptually evalu-
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ated. They reported that intensity of the laughter alsog#egrucial role in the perception.
Lasarcyk et. al[[34] tried to synthesize isolated laughtng articulatory synthesis and
diphone synthesis. They modeled voigreah-voiced durations, vowel quality, pitch etc.
for synthesizing laughter. Trouvain et. al in one of theietastudies[[34] modeled laugh-
ter by the parameters spread of the lips, raise in the larpaxfandamental frequency.
They explored the relative contributions of each of theufezd by conducting a perceptual

evaluation test.

2.4 Issues with existing methods

While most of the previous studies on analysis was done oamstahding prosody (bout
and episode level) of laughter, very less number concetiat intra-call level variations.
For the same reason, the studies resulted in automatidrgpott laughter also relied
mostly on the structure (correlation between successil@eata.) of the bout in time and
spectral domains. So, the less the number of calls, the mfireutt the spotting would

be for such methods.

2.5 Issues analyzed in the thesis

The variability in laughter production is complex in the serthat it is not guided by the
production rules of speech. Hence it ishdiult to describe the phenomenon of laughter
precisely, although it can be perceived by the listeners.dfalysis and description is also
limited by the available tools for analysis of laughter sitgn The objective of this study is
to show that some important features of laughter acousdicde highlighted using some
new tools for analysis proposed in this paper. It is likelgttthese new features may help
to spot the laughter regions in continuous speech commitimncgsome of these features

are:

1. Rapid changes in the instantaneous fundamental fregu&gg within calls of a

laughter bout.

11



2. Strength of excitation within each glottal cycle and ékation toF.
3. Loudness of speech derived from the excitation inforomati
4. Breathiness in signal extracted from the hilbert envelop

5. Temporal variability ofq, strength and formants across calls within a bout.

12






Chapter 3

Source analysis of laughter

In this chapter, we present the study on analysis of laughatsg The analysis is mostly
focused on the variations of acoustic features related ¢tagion source, extracted in a
pitch synchronous manner. The features for the analysimat&ated from the produc-
tion mechanism of laughter. They are based on pitch pefigd $trength of excitation

and amount of breathiness.

In Section 3.1, we discuss about the zero-frequency basethegxtraction algorithm
which is a basis for the further analysis. In Section 3.2, na&\yze laugh signals at call
and bout level using the proposed features. Section 3.8ig8ss the variations of these

features across calls within a bout, and between laughtesp@ech using distributions.

3.1 Zero-frequency analysis

Most of the analysis on laugh signals in this work is done iftehpgsynchronous manner.
The discontinuities associated with windowing can be redu€the analysis is carried
out pitch synchronously. But finding the exact location ¢f #pochs is a very flicult
task, especially in the case of laughter where there are lagations in the vocal fold
vibration, while at the same time we need to have a epochtitmtedgorithm with a good
accuracy for doing such an analysis. Recently a new methpbjzosed for extraction

of the instantaneouB, [B4], for epoch extraction[]5] and for strength of excitatiat

14
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Fig. 3.1: lllustration of epoch extraction and their strengths from the zero-frequency filtered
signal. (a) A segment of speech signal. (b) Filtered signal (c) DEGG signal. (d) Epoch
locations. (e) Strength of excitation («). (f) Fundamental frequency (Fo).

epochs[[37]. The method uses the zero-frequency filterethbiderived from speech
to obtain the epochs (instants of significant excitationhef tocal tract system) and the
strength at the epochs. The following steps are involvedacgssing the speech signal

to derive the epochs and their strengths from the filtereaads37].

1. Difference the speech signgih] to remove any very low frequency component

introduced by the recording device.

x[n] = gn] — gn-1]. (3.1)
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2. Passthe flierenced speech signdh] through a cascade of two ideal zero-frequency

resonators. That is .
Yo[nl = = " ayoln — K] + X[, (3.2)
k=1

wherea; = -4, a, = 6,a3 = -4 anda, = 1.

3. Compute the average pitch period using the autocomelditinction for every 30

ms speech segments.

4. Remove the trend in[n] by subtracting the local mean computed over a window
obtained from (c) at each sample. The resulting sigfwdlis the zero-frequency

filtered signal, given by

N
Vi = yoln] - 5t > yoln-+ i, 33)
m=—N

Here 2N + 1 corresponds to the number of samples in the window used éanm
subtraction. The choice of the window size is not criticalosng as it is in the range

of one to two pitch periods.

5. The instants of positive zero crossings of the filteredaligive the locations of the

epochs.

6. The strength of the epoch (denotedagsis obtained by taking the slope of the
filtered signal around the epoch. The slope is measured liygtdke diference

between the positive and negative sample values arouncepacih.

Fig. 3.1 illustrates extraction of epochs and their streadtom the filtered signal
derived from the speech signal. The strength values are a@dpvith the amplitudes of
the peaks around the epochs in thatenced electro GlottoGraph (DEGG). While this
method works well for the variations &% in normal speech signals, it cannot capture the

rapid changes dfq that occur in the calls of a laughter episode or cycle.

The critical factor in the above method is the choice of thedeiv for trend removal
from the output of the zero-frequency resonator. If the wimgize is too small compared

to the average pitch period, then too many zero crossings atthe filtered signal. If it
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Fig. 3.2: (a) A segment of speech signal. (b) zero-frequency filtered signal with window length
of 3 ms for trend removal. (c) Voiced/non-voiced decision based on strength of excitation (@)
values at the epoch locations. (d) Filtered signal obtained with adaptive window length for
trend removal. (e) Strength of excitation («). (f) Pitch period obtained from epoch locations.

is too large, then the short pitch periods correspondinggio iy may be missed. In order
to capture the rapid variations iy between speech and laughter the following procedure

is adopted:

1. Pass the signal through the zero-frequency resonatbrwiitdow length of 3 ms
for trend removal. This window length has been chosen in sushy that it gives
high energy in the filtered signal in case of speech and langind low energy in

the non-voiced and silence regions.

2. Positive zero crossings of the filtered signal gives tleebocations, and the slope
calculated as the flerence of values of the samples after and before the epochs

gives the strength of excitation. Mean of the strength oftakon over a window

17



of 10 ms is calculated, and if this value is more that 30 pdroéthe maximum
strength value of the complete signal then that segmentrisidered as a voiced

segment, otherwise it is a non-voiced segment.

3. After finding the voiced segments, each voiced regionpaisgely passed through
a zero-frequency resonator with window length for trendaeahderived from that
segment. This is done by first computing the autocorrelaifdhe segment with a
frame size of 20 ms and a frame shift of 10 ms. Then the maxinzourong peak

in the autocorrelated signals is chosen as the window lefogthat region.

4. The positive zero crossings of the final filtered signaédhe epoch locations, and
the diference in the values of the samples after and before eacl gpazs the

strength of excitation.

Fig.[3.2 illustrates the epochs and strength of excitatimafsegment of speech signal

using the modified epoch extraction method.

Fig. 3.3 illustrates the improvement of epoch extractiomgighe modified epoch
extraction method. Because of the wide range of pitch periodhe signal, the same
window length cannot be used for all the segments which casidagly reflected in the

extracted pitch periods.

Some cases where there may be improvement due to the moditiett extraction

method are

1. when there are multiple speakers speaking in turns.
2. when there is laughter in the signal.

3. when there are large pitch period variations in the sigaated by the text or emo-

tional state of speaker.

There are also some drawbacks in the above method. The gstimawindow size
for trend removal may go wrong especially when the segmeateaay small (less than 5

pitch cycles). In such a case, we may use the informationecditijacent voiced segments.
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Fig. 3.3: (a) A segment of speech signal. (b) Zero-frequency filtered signal obtained with
adaptive window length for trend removal. (c) Filtered signal with window length for trend
removal obtained from the complete signal. (d) Pitch period obtained from modified epoch
extraction. (e) Pitch period obtained from original epoch extraction.

3.2 Acoustic features for analysis of laugh signals

We keep the vocal tract in the neutral position while laughiAlso during this process
we don’t vary our articulators much. Though the above twoatizristics are common to
speech vowels, we perceive laughter verfedent from normal speech. So, we hypothe-

size that most of the laughter characteristics occur duari@aions in the excitation.

A typical voiced laughter is shown in the Fig.]3.4. A voiceddater bout typically
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Fig. 3.4: A bout of a typical voiced laughter is showed in (b) and its spectrogram in (a).

contains about 4 to 6 calls, with each call duration rangnognf10 ms to 200 ms, and
some amount of silendfeication between two consecutive calls. The energy of tibsc
may fall as the laughter progresses. The production mesimaof laughter is dferent
from speech in many ways starting from the amount of air flowugh the vocal tract to
the shape of the vocal tract. This fact increased our intévemalyze the source features

of laughter signals more closely.

The laughter signals are analyzed at two levels (a) call Eve (b) bout level. Based
on this kind of analysis, the features can be categorizedw groups call level features
and bout level features. The call level features are usedptuce the call level patterns
(variations within a call) of laughter where as bout levelttees for capturing the high

level repetitive structure (patterns between calls) ofjkdar.

3.2.1 Calllevel analysis

The source and system characteristics of laugh signalslldeeal are analyzed using

features like pitch periodlp), strength of excitationa), amount of breathiness, call du-
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rations and some parameters derived from them which araiexgol below in detail.

Pitch period (Ty)

It is observed that pitch frequency for laughter is more tiham for normal speecii|[4]. For
normal speech the pitch frequency typically ranges betvd@eiHz and 200 Hz for male
speakers and 200 Hz to 400 Hz for female speakers, wherekmsifghter the mean pitch
frequency for males is above 250Hz, and for females it is @400 Hz [i#]. As mentioned
earlier, there will be more air flow through the vocal tracthie case of laughter. This will
result in faster vibration of the vocal folds, and hence otidu in the pitch period. Apart
from lower pitch period, there is also a raising pattern ia pitch period contour within
a call. In some cases the pitch period may even start with $arge value, decreases to
some minimum and then increases again. This may be becasi$egi pitch frequency
(Fo) is not normal for the vibration of the vocal folds to maimtahat frequency, and
hence it tends to decrease. The general pattern that isvellserthe pitch period within
a call is that it starts with some value, decreases sliglotlgadme minimum, and then
increases rapidly to a high value. Fg.]3.5 shows this gétrenad of Ty within a call for

6 different calls. We can clearly observe the pattern describedealAs a result of this
faster vibration of vocal folds, there will be more couplingfween the source and system

about which very less is known.

The main issue here is extracting the pitch period accwyraltel not easy as in case
of normal speech, since the pitch variation is large in laeghnd also there is a large
difference between pitch values of speech and laughter. Thé &mations and the pitch

period are extracted as explained in Secfioh 3.1.

Fig. [3-% shows the pitch period contours oftdient laughter calls. We can see that

the above described pitch period pattern is being followedlbof them.
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Fig. 3.5: Laughter calls of different laughs with the corresponding pitch period contours below.
Strength of excitation ()

Since there is large amount of air pressure build up in the cddaughter, (as large
amounts of air is exhaled), the closing phase of the vocdisfa very fast. This will
result in an increase in the strength of excitation. Stieo@excitation &) at every epoch
is computed as the filerence between two successive samples of the filtered sigtine

vicinity of the epoch. Fig[ 5]3(c) shows this general trefd @ the calls within a bout.
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Duration of the opening phase g)

Since the closing phase of the vocal folds is fast for lauglhite corresponding opening
phase will be larger in duration. So we have used the rgjiof(the strength to excitation
(o) at the epoch location and the pitch peridg)(as an approximate measure of the
relative duration of opening phase.

B=alTo (3.4)

Slope ofTy

Two different measures are used for capturing the intra-call v@mg&of pitch period
contour. First one for capturing the rate of variations itclpiperiod contour and the

second one for capturing the patterns in pitch period cantou

The pitch period contour of laughter has a unique patterimsofg rapidly at the end
of a call. So, we use the slope of the pitch period contour pduza this pattern. First the
pitch period contour is normalized between 0 and 1. At evpoch location the slope of
the pitch period contour is obtained using a window width aiuscessive epochs. The
slope is calculated by dividing theftBrence between the maximum and minimum of the
5 pitch period values within each window by the duration & wWindow. We denote this
slope bysT,. This value will almost be zero at the first half of the laughdall and a

value approximately corresponding the slope of the cordaung the rising phase.

For measuring the possible patterns in the pitch periodotwntin experiment has
been conducted. We observed that unlike normal speechhtietugalls can have only
specific configurations allowed in the pitch period contotithe pitch period contour
of the laughter call is divided into three equal segmepts > and p3). The slope of
the contour in each segment is determined by fitting them livitrar polynomials. The
segments are then categorized into three groups (a) rigihfat or (c) falling based on

the obtained slope values. The decision is done as showrbla[Bal

The slope of contour after decision is denotedgyyor 1st segmentp, for 2nd seg-

ment andp; for 3rd segment. So, the pitch period can have 2ydBferent configurations
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Table 3.1: Table showing the condition on slope values for grouping.
condition P’
slope> 0.15 1 (rising)
-0.15< slope< 0.15| O (flat)
slope< -0.15 -1 (falling)

as per the above grouping. An analysis is done on the numbaugliter calls falling in

each configuration. It is observed that only 5 of the 27 ardqrenant. Tabl¢ 3]2 gives
the frequency of occurrences in each configuration. We cafrgm the table that 93.6%
of the laughter calls have one of the 5 configurations whigerétst of the 6.4% calls are

occupied by 22 configurations.

Table 3.2: Frequency of occurrences of calls in each configuration.

Py 04 oA call frequency
-1 (falling) | 1 (rising) | 1 (rising) 26.4%
1 (rising) | 1 (rising) | 1 (rising) 21.6%
0 (flat) 0 (flat) | 1 (rising) 17.9%
0 (flat) | 1 (rising) | 1 (rising) 16.4%
-1 (falling) | O (flat) | 1 (rising) 11.3%
rest 6.4%

From the above analysis, we can say with a high confidenceatsagment cannot
be a laughter call if it has a pitch period contour which doetshelong to one of these
five configurations. Note that speech segments can also haitehgperiod contour be-
longing to one of the five configurations and so the valueg; pf, and p, together are
used for eliminating false alarms for laughter spottingsd@hote that the slope values
are greatly #ected by the wrong voiced non-voiced decision and spurigah period
values. Fig[3]6 demonstrates the pitch period contourstamdine fitted pitch period

contours f,,p;) for some laughter calls.

Slope ofa (6a)

As in the case of the pitch period, the strength of excitadittgpochs also changes rapidly.
It rises rapidly to some maximum value and again falls at Hmesrate. Hence the slope

of the normalized strengths is calculated by dividing thiéedénce between maximum
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and minimum of the normalized strength values within 5 epagimdow by the duration

of the window. We denote this slope by.
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Breathiness

Because of high amount of airflow, laughter is typically anpanied by some amount
of breathiness. Breathiness is produced with the vocakfludsely vibrating and as a
result more air escaping through the vocal tract than mgpdaliced sound[[38]. This

type of phonation is also called glottal frication and iseeféd as high frequency noise

(non-deterministic component) in the signal.

A breathy signal will typically have less loudness and marye-deterministic (noise)
component. Measures based on hilbert envelope (HE) arefasedlculating loudness
and proportion of non-deterministic component in the sighaudness is defined as the
rate of closure of vocal folds at the glottal closure inst@ui). This can be computed
from excitation signal (residual) obtained from inverseefihg the signal (LP analysis
[BY]). But, the detection from the LP residual idfdiult because of the amplitude values
with either polarity occurring around the instants of gdnigdifficulty can be overcome

by using the Hilbert envelope of the LP residyal|[40]. Theoidit envelope[n] of the LP

rin] = \/€4n] + €[nl, (3.5)

whereey[n] denotes the Hilbert transform efn]. The Hilbert transfornmey[n] is given

by

residuale[n] is given by

en[n] = IFT(En(w)), (3.6)

where IFT denotes the inverse Fourier transform, Bay) is given by (Oppenheim and

Schafer, 1975[[41]])

+jE(w), w<0
En(w) = { _ (3.7)
—-JE(w), w>0.

HereE(w) denotes the Fourier transform of the sigga].

The idea is that the non-deterministic component will renes noise in the residual
obtained after doing an LP (Linear Prediction) analysishmngignal. Fig[ 3]8 demon-
strates the feect of breathiness on LP residual and hilbert envelope. rtlma clearly

observed from the figure that the non-deterministic parhadxcitation is reflected as

27



30

0.8r

0.6

0.4r

0.2

0 5 10 15 20 25
Time (ms)

(a) Modal Vowel /a/

Fig. 3.8:

30

0.8r

0.6

0.4r

0.2

Speech signal

16 18 20

LPjresidual

Hilbert envelope

0 2 4 6 8 10 12 14

Time (ms)

(b) Breathy Vowel /a/

16 18 20

lllustration of effect of breathiness on LP residual and hilbert envelope. Speech

signal, LP residual and Hilbert envelope for (a) modal vowel /a/ and (b) breathy vowel /a/.

noise, and broader peaks in both the LP residual and hilbeel@pe of Fig[3]8(b).

We propose a quantitative measure for capturing thesetizarsa A measure of the
non-deterministic componeny) has been computed as the ratio of the energy of the
hilbert envelope in the open phase to the amplitude of th&.p&ae sharpness of the
Hilbert envelope of the LP residual is captured by the patamg which is computed
using a 2 ms segment of the Hilbert envelope around each eddehstrength of these
impulse-like excitation (also called the strength of extitn in [42]) is expressed by
n = %. Hereu denotes the mean of the samples of the Hilbert envelope (Htbed P
residual in a short interval around the instants of signifiexcitation, andr denotes the
standard deviation of the samples of the B [42]. ThEedénce can be observed better in
the ration/y. Fig.[3.9 shows the ffierence in the values @f y andeta/gamma between

laughter and speech. It can be observed that valyg(mieasure of loudness) is less and
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value ofy (measure of breathiness) is more for laughter than thateddp

3.2.2 Bout level analysis

The repetitive pattern in laughter bout is exploited usingtievel features. Durations of

calls and intercall intervals, correlation between calésused as bout level features.
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Fig. 3.10: Pattern of call and inter-call durations for different call numbers.

Call and Inter-call durations

As we have already seen, the laughter bout consists of voeléglin between silence or

unvoiced regions. An analysis is performed on the duratfdawghter calls. The mean

duration of the calls is observed to be 132 ms with a variafié®ans. Fig[3.7]2 shows

the distribution of calls of laughter. Bachorowski et. g] féported that there is also
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a specific pattern followed by the call durations and intikarations for diferent call
numbers based on their observations. [Fig.]3.10 shows therpdollowed by the call
and intercall durations for éierent call numbers. The durations of these voiced regions
(calls) and the non-voiced regions almost remain same gfirout the laughter bout. This
pattern which is unique to laughter cannot be seen in caserafial speech. Fid. 3.12
shows the distribution of the fiierenced call durations and intercall durations for laughte
and normal speech. The distribution shows théedence in the call durations is almost
zero for most of the calls. The same trend can also be obsertlee diferenced intercall

durations too.

Call level correlation

Because of the repetitive pattern of laughter, the laughlsids will repeat itself for some
number of times. So the signal (laughter syllables or calls) will almost repeat itself
for some number of times which is not the case in normal speddte features like
pitch period, strength of excitation etc between two lauglkables will match closely.
Correlation of these feature contours between two conisecubiced regions (will be
consecutive calls in case of laughter) is used as a featuree $he laughter calls are

almost similar, the correlation will be more in case of laigglthan normal speech.
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Fig. 3.12: lllustration of differences in the durations of voiced regions (calls in case of laugh-
ter) and unvoiced regions (intercall interval in case of laughter) between laughter and normal
speech using the distributions of the differenced call and intercall durations. (a) differenced
call durations (b) differenced inter-call durations.

3.3 Distributions of the features for laughter and speech

As mentioned earlier, the production of laughter and spaeeliterent in many aspects.
As a result, source features like pitch peridg)( strength of excitationaf), breathiness
differ. Distributions of the featureky, «, B, 6Ty, da, n andy for laughter and speech
samples of 5 male and 5 female speakers are shown in the ficshee of Fig.[3:13
and Fig.[3.T#. We can see from the distributions that thexeartain regions where the
laughter feature values are more concentrated, and thereegions where the speech
feature values are more concentrated. Thigedence in distribution of features show that

they could be used to discriminate between speech and kught

There is also a pattern observed in the variations of feataitees across calls within
a bout. The intensity of the feature values decreases asitlsgcogress. This is showed
using the distributions of first calls and last calls of lalmgiuts. The features extracted
from the last call will be more closer to speech when comperéabose extracted from the

first call. This hypothesis can be clearly observed from tis&ridutions showed in first
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Fig. 3.13: lllustration of differences in the excitation source features of Laughter and Normal
speech using frequency distributions (first column). It also shows the variations of features
across the calls within a laughter bout using the distributions of first and last calls (second and
third columns). In each plot the distributions of corresponding features of laughter and normal
speech are represented with solid and dashed lines respectively.

33



All calls First calls Last calls
06" oa 0.6 8a 0.6 da
\ \ \
0.4 \\ 0.4
\
02} 4 0.2
N
=~ ~
0 = 0
0 0.01 0.02 0 0.01 0.02 0 0.01 0.02

15

Fig. 3.14: lllustration of differences in the excitation source features of Laughter and Normal
speech using frequency distributions (first column). It also shows the variations of features
across the calls within a laughter bout using the distributions of first and last calls (second and
third columns). In each plot the distributions of corresponding features of laughter and normal
speech are represented with solid and dashed lines respectively.

call (2nd column) and last call (3rd column) of F[g. 3.13 angl. B.14. We can observe
from the figure that there is a clear discrimination betwdendistributions of features
of first calls of laughter and speech while the distributioh$ast calls of laughter and

speech are very close.

3.4 Summary

In this chapter, we presented the study on the analysis ghlaignals using features

which are motivated from its production mechanism. Theuest are based on pitch
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period, strength of excitation, amount of breathiness andiess. We showed using
the distributions that the features can discriminate bebtnspeech and laughter. We also
showed that this discrimination is more predominant in thigal calls and falls as the

calls progress.
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Chapter 4

Proposed method for detection of

laughter in continuous speech

This chapter describes the method for automatic spottinfaughter in spontaneous
speech using the features proposed in the previous chaptiéke conventional methods
where the decision is made on frames of fixed frame size, herddcision is made on
each voiced segment. Call level features are used for mala@aigion on voiced segment

and bout level features for detecting the final laughter ©out

Section 4.1 describes the components of the proposed mithtzdighter detection.
In Section 4.2, the two data sets used for evaluating th@peénce of the algorithm are
described. Section 4.3 explains the results and Sectiodeals about the error analysis

and further refinements.

4.1 Block diagram and algorithm of proposed method

The main blocks involved in the system are a) pre-proces&inpfeature extraction, c)

decision logic and d) post-processing. Each of them areagxgd in detail below.
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4.1.1 Pre-processing

The preprocessing step mainly involves the voiced nonedbgegmentation. The voiced
non-voiced segmentation is done based on the energy of thefreguency resonator.
The signal is first passed through zero-frequency resomatbra 3ms window for trend

removal. This window length has been chosen in such a wayittjates high energy

in the filtered signal in case of speech and laughter and l@tggnin the unvoiced and
silence regions. The slope of the filtered signal at posime-crossings, which is an
estimate of strength of excitation, is computed. This slopatour is smoothed using a
mean filter with a window size of 4 values. A threshold of 30ge@t of the maximum

value is put on the smoothed contour. The regions crossiagftteshold are considered
as voiced segments and the regions falling below this ttdsdre considered as non-

voiced segments.

The above method for voiced non-voiced segmentation haskdgm of segmenting
glottal fricatives (h/) (which is very common in laughter), as voiced segment. &hie-
cause of the reason that glottal fricative also has a dorloarfrequency component as
in case of voiced signal. We can see in [fig] 4.1 that the dlfoitative getting segmented

as voiced region after 1st level of decision.

To overcome this problem a second level of segmentationrfenpeed on the voiced
segments obtained from above the step. It exploits the aiityilbetween successive
pitch cycles in voiced region. A correlation valug @énd lag valuel] for each epoch
are obtained from correlation between the short segmentiseo$ignal in the vicinity
of the consecutive epoch locations. The lag valugare then divided by 40 to derive
normalized lag valued)( The values of will be close to 1 for epochs in voiced regions
and less (than 0.5) for epochs which belong to non-voicemnsg Similarly, the values
of I will be close to 0 for epochs in voiced regions and more forcasdbelonging to
non-voiced regions. The final decision is taken based onithierence betweehandc.

The voiced non-voiced algorithm can be summarized as faliow

1. The input signal is first passed through the zero-frequeesonator with a 3ms

window for trend removal.
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Fig. 4.1: (a) Voiced laugh signal containing glottal frication with voiced non-voiced decision (b)
zero-frequency filtered (zff) signal with 4ms trend removal window, (c) energy of the strength
of excitation contour derived from the slope of the zff signal.

2. The slope of the filtered signal at positive zero-crossinghich is an estimate of
strength of excitation, is computed and the obtained carntamoothed using a
mean filter with a window size of 4 values. A first level of vailcaon-voiced
segmentation is done by putting a threshold (30% of the maxinaalue) on the

smoothed contour.

3. For every voiced region obtained in the above step, airosl values ) and nor-
malized lag valuedY are extracted for all the epochs in that region. Theedénce

betweerc andi, which is denoted byc, is then computed for all the epochs.

4. Athreshold of 0.5 is put on the contour. The regions in the voiced segment falling
below this threshold are considered as voiced regions antktfions crossing the

threshold are considered as non-voiced.

FIG: showing the pitch period flicontour, st dif contour and correlation with new

v-uv decision.
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Fig. 4.2: (a) Voiced laugh signal containing glottal frication with corrected voiced non-voiced
decision, (b) correlation values (c), (c) lag values (1), (d) c —I.

4.1.2 Features

All the previous works in laughter spotting use conventldeatures like MFCC's, spec-
tral tilt etc. [26][27][28]. The features proposed in thi®omk are motivated from the

production mechanism of laughter.

As we have already seen, the features used for laughteirgpate divided into two
types a) call-level features and b) bout-level featuresll-l€eel features are used for
discriminating calls from other voiced segments of speeuwth l@out-level features for
capturing the intercall similarity within a bout. The cadvel features used aig, «, 3,

6 To, 6 @, n andy. The bout level features used areuration, non-voiced duration. The

extraction of each of these features are explained in dat@haptef]3.
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4.1.3 Decision Logic

After extracting the above features for every epoch locatzodecision has to be finally
made on the voiced segment based on these values. Noteishabtk concentrates only

on voiced laughter and unvoiced laughter are not considered

For every feature, a decision is first made on each epoch iseiipment. This is per-
formed by putting a threshold on the feature valuéfédent for each feature), which is
called as ‘value threshold\) for that feature. If the feature value of an epoch satis-
fies this ‘value threshold’, it means that the epoch belondaughter according to that
feature. A decision is then made on the segment by puttingeshbld called ‘fraction
threshold’ (ft), which determines the percentage of epochs that shoughstite ‘value
threshold’ for the segment to be a laughter segment. Aftplyapy the two thresholds,
separate binary decisions on the segment are obtained fioe &atures. Finally, the seg-
ment is considered as laughter if atleast 4 out of the 7 featgave a positive decision.
The estimation of ‘value threshold’ and ‘fraction thregtio$ explained in the following

subsection.

As we have already seen, a typical laughter bout will havengttaughter character-
istics initially but falls as the calls progress. So, it iglily probable that the last calls
may not get discriminated as laughter. To overcome thislpropa slightly modified
algorithm which takes the context information of the prexaall into consideration is
proposed. For this purpose, call duration and intercakhtiom are used as the bout level
features. The final decision on the segment depends on ajdaddcision of the segment
b) confidence of the feature values obtained for the pre\segsentq_;) c) percent dif-
ference in the durations between current and previous sagr¥e)) and d) time interval
between the two segments. It is performed by relaxing thiiévghreshold’ of the fea-
tures of a segment if the previous segment is identified aghtan This reduction in the

‘value threshold’ denoted byvt is different for all the features. The value &it of a
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feature is computed as follows:

ovt —1/2x c_3 x vt x exp(-dd),6d < 0.1

0, otherwise

wherec_; is a measure of feature confidence of previous segmentneitais the dier-
ence between mean of the maximanaalues and the value threshold of the segmant.
is determined from the ‘fraction threshold’ of the featufd.is the percentage filerence
between the duration of the current segment and the presegmaent.

Note that ¥2xc_, is the maximum attainable change in the feature threshomlfieature.

After obtaining the decisions on individual voiced segrsepitch slope values (p1,p2,p3)

are used for eliminating some false alarms.

Threshold estimation

The ‘value threshold’ and ‘fraction threshold’ introducedthe previous subsection are
estimated from the distributions of the feature values antthining data and the pro-
cess is explained below. Feature values are normalizedvag Bvel before deriving the
thresholds. For all possible combinations of feature v&@{m@inimum to maximum) and
fraction values (0 to 1), the percentage of laughter segeeéantified as laughted() and
non-laughter segments identified as laughter), are computed. For ideal thresholds,
the value ofdr should be equal to 1 and value 6&r should be equal to 0. Selecting
the best combination of thresholds is an optimization pwbivhich try to maximize the
difference dr — far) in the most generic case. There may also be some additional ¢
straints on the value afr (should not be lesser than a particular value, which bdgical
means that detection rate should not be too less) etc. Thshbids should be able to

satisfy all these constraints.

Fig. &.3 shows the values df, far and @r — far) for all the features. Red color in
the figure indicates the maximum value and black color indEthe minimum value and

the in between colors correspondingly mapping between maxi and minimum. The
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Fig. 4.3: lllustration of estimation of the value and fraction thresholds for all the features. (a)
To, (b) @, (c) B, (d) 6Ty, (e) da, (f) n and (g) . First column, second column and third column
shows the values of dr, far and (dr — far) respectively.

thresholds are selected by picking the maximum point indhe-(far) figures. Tabl¢ 4]1
gives the value thresholds, fraction thresholds and valui,of ar and @r — far) at the

points where the optimal thresholds are obtained, for eaatufe.
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Table 4.1: Value and fraction thresholds for each feature.

S.No | Feature| Value Threshold Fraction Threshold dr far | (dr — far)
1 To 3.6 0.3 0.6340| 0.0988| 0.5353
2 a 0.1548 0.05 0.7010| 0.1852| 0.5158
3 B 0.0059 0.05 0.5825| 0.0988| 0.4837
4 6 To 0.0005 0.18 0.9433| 0.2079| 0.7156
5 o« 0.0014 0.33 0.9072| 0.1728| 0.7344
6 n 0.0500 0.32 0.8170| 0.0864| 0.7306
7 Y 0.9750 0.33 0.8660| 0.0988| 0.7672

4.1.4 Post-processing

While the above decision logic gives a decision on the imlligl voiced segments, the
final goal is to detect the boundaries of the laughter boudsa®ost-processing block is

included to attain such requirements.

Post-processing involves including some missed laugh setgneliminating wrongly
identified segments (false alarms) and finally joining thiéscahich belong to single
laughter to form a complete bout. Non-laugh segments withtthn between 50 ms and
150 ms, which has laugh segments on either side with a timefgapmore than 100 ms
are included as laugh segments. Laugh segments with dutatieer than 50 ms, which
occur in isolation (a time gap of 3 sec with laugh segmentstheeside) are eliminated.
These two steps are performed in twéelient iterations. In the first iteration false alarms
are eliminated and in the second iteration missed laugheetgare included. Boundaries
of final laughter bouts are obtained by joining the adjacaughter segments along with

the intercalls.

The proposed method for laughter spotting can be summaaizéallows:

1. The signal is first segmented into voiced and non-voicgibns using a two level
segmentation. The first level of segmentation is performegdssing the signal
through the zero-frequency resonator using a window leafBms for trend re-
moval. For every voiced segment obtained in the first levek@nd level of seg-
mentation is performed by exploiting the similarity betweseiccessive pitch cycles

in voiced region.
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Fig. 4.4. Block diagram of proposed laughter spotting algorithm.

. For every voiced region, epochs are extracted using thefegquency filtering
method with a window size for trend removal derived adaptiveom the signal.

(Explained in detail in Sectign 3.1.)

. The call level and bout level features described in Sefi@ are extracted for every

epoch in the voiced region.

. If the previous segment is identified as laughter, theuwdhresholds’ of the fea-
tures of the segment are modified using a) feature confidenite @revious seg-
ment €_;), b) percent dierence in the durations between current and previous seg-

ments §d) and c) time interval between the two segments.

. If a voiced segment has more epochs satisfying the ‘madifdue threshold’ than
determined by the ‘fraction threshold’ for atleast 4 feasijrthen that segment is

considered as a laughter segment.
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6. Finally, the obtained laugh segments are passed thropg$tgrocessing block for

detecting the boundaries of complete laughter bouts.

4.2 Data

The proposed algorithm for laughter detection is testedvandifferent datasets a) AMI
Corpus which is a clean data and b) TV Show data which is a ruzity.

AMI Corpus: The AMI Meeting Corpus is a multi-modal data sehsisting of 100
hours of meeting recordingB[[43]]. The data is recordedQrdifferent meetings. The
system is tested on some part of the data which includes 1fingsen ES subset, 6
meetings in IS subset and 8 meetings in TS subset. The databloas 5485 laughter
bouts with an average of 3.96 calls per bout (21720 callgredt by 41 female and 55

male speakers.

TV Show data: The data is a TV broadcast data with each epiyqieally about
30 minutes of informal interview with one or more celebustidt contains spontaneous
laughter in between naturally occurring speech. The daalifi@rent kinds of noise like
low amplitude background music and noise, multi-speakrances etc. The data is
around 3 hours containing 106 laughter bouts with an avesédel 3 calls per bout (437

calls) uttered by 6 male and 3 female speakers.

4.3 Results

The laughter segments are manually labeled with start timdesad time by listening to
the data. The manually labeled laughter segments has tieestsamps of the complete
laughter bout, but not the individual calls. For obtainihg tMDR (Missed Detection
Rate) and FAR (False Alarm Rate) on voiced segments, theghtexr regions are au-
tomatically segmented into voiced and non-voiced regidiss gives the start and end
times of the voiced regions (calls) in a laughter. MDR and F&R calculated based on

these time stamps. If there is an intersection between tieddd time stamps and the
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hypothesized time stamps, then that segment is considsreaf@ct one.

The post-processing step is performed after obtainingabgh segments. This re-
sulted in a considerable reduction in the FAR as can be seem Teble[4R. Tabl¢ 4.2
shows the MDR and FAR at segment level and at bout level detect laughter before
and after post-processing. We can see from the results AhBs reduced by a signif-
icant amount after the post-processing step in both thescaBee best performance of
10.6% EER (Equal Error Rate) is obtained on the AMI corpusamdian EER of 16.5%
is obtained on the TV show data. The results are on par witlptéeious best of 8.9%

EER, but cannot be directly compared since they were evaluat a diferent dataset.

Table 4.2: Results of laughter spotting on AMI corpus and TV Show data.

AMI Corpus TV Show
MDR (%) | FAR (%) | MDR (%) | FAR (%)
Segment level 6.1 12.9 9.1 17.1
Segment level after Post-processing 6.1 7.2 9.2 10.2
Bout level 2.1 14.5 5.2 21.1
Bout level after Post-processing 2.1 8.5 5.4 11.1

4.4 Summary

This chapter describes the proposed method for detectuggptar in continuous speech.
Two databases (one of which is a clean corpus and the othesy aata) are used for
evaluating the method. The performance of the method onttbelatasets is discussed
but however could not be directly compared with the existexhniques because of dif-

ferent data sets used.
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Chapter 5

Synthesis of laughter

The ultimate goal of the speech synthesis systems is to esiathlong exchanges of
human-machine dialogues in more natural way. There are roamponents that play
key role in improving the naturalness. Some of them inclagesrting emotion to speech,
intonation variations, non-lexical cues (throat cleaytoggue clicks, lip smacks, laughter

etc.) etc.(Shrikanth Narayanan, 2006).

The goal of this chapter is to synthesize laughter by modedimd incorporating the
feature variations explained in previous chapters. Anyamabn the significance of each
of these features in improving the naturalness of the sgithd laughter is also done from

the results of the subjective perceptual evaluation peréaron the synthesized laughter.

Section 5.1 describes how the features are modeled. Ino8eg2, the modification
and incorporation of the features is explained. Sectionl&sgribes the laughter synthesis
procedure. In Section 5.4, the perceptual significance efféatures is discussed and

Section 5.5 discusses the results of the perceptual ei@iuat the synthesized laughter.

5.1 Modeling the features

The source and system characteristics of laughter sighatdldevel are analyzed using

features like pitch periodl(), strength of excitation), spectral energy and each of them
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is modeled separately as explained below.
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Fig. 5.1: (a) A segment of laughter signal. (b) Pitch period derived from the epoch locations.
(c) Strength of excitation at the epochs.

5.1.1 Pitch Period

As mentioned earlier, the general pattern that is observétki pitch period within a call

is that it starts with some value, decreases slightly to saiménum, and then increases
non-linearly to a high value. Many such pitch contours araly@ed and it is observed
that the polynomiak? is a best fit for majority of natural laugh signals. The higtrer
slope of this rise in the pitch contour), the more intense the laughter is. This slope of
pitch period contour typically falls as the calls progreske rate at which it fallst() is
assumed to be linear. The pitch period contour of a call isiobt from the following

equation

To[i] = to +t'[c] *i%, —pne<i<(l-p)ne (5.2)

[ =t,—t"+(n-c), l<c<n (5.2)
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where

cis the call number,

nis the total number of calls,

i is the epoch number within the call,

p is the point in the call where minimum pitch period occurs,

t’ is the slope of the pitch period contour,

to is the mean pitch period of speaker obtained from input $igna
Ne is the number of epochs in the call and

t” is the rate at whicly varies across calls.

Note thain, p, t’ are the user inputs and all others are either obtained fresetthree

values or fixed in the program.

5.1.2 Excitation Strength

The excitation strength at the epochs follows a similargeatas pitch period contour. As

in the case of the pitch period, the strength of excitatioapaichs also changes rapidly.
It increases non-linearly to some maximum value and theredses almost at the same
rate. The slope of strength of excitation contosij fypically falls as the calls progress.
The rate at which it fallsg’) is assumed to be linear as in case of pitch period. A similar
model as pitch period is used here. The pitch contour of aisalbtained from the

following equation

afi] = so+ S[c] #12,  —Ne/2< i < Ng/2 (5.3)

S[c]=g-5"«(h—-c), 1<c<n (5.4)

wherec is the call number,
nis the total number of calls,

i is the epoch number within the call,
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Fig. 5.2: lllustration on comparison of original and modeled pitch period contours. Two laugh
calls are shown in (a) and (b) with their corresponding pitch period contours in (c) and (d),
respectively. In (c) and (d), the actual pitch period contour is showed in thin dots (.) and
modeled one is shown in thick dots (*)

S is the slope of the pitch period contour,
S Is the mean pitch period of speaker obtained from input $jgna
Ne is the number of epochs in the call and

s’ is the rate at whicls' varies across calls.

Note thatn, s’ are the user inputs and all others are either obtained fresetthree

values or fixed in the program.
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5.1.3 Call and Inter-call Duration

As we have already seen, the laughter bout consists of vogléglin between silence or
non-voiced regions. Bachorowski and Owrgh [4] reported there is specific pattern
followed by the call durations and intercall durations foffelent call numbers based
on their observations. The durations of these voiced regoalls) and the non-voiced
regions almost remain same through out the laughter bous. pititern which is unique
to laughter cannot be seen in case of normal speech. Dutibe inter-call interval in

a laughter bout typically increases as the calls progrdsstelis no such pattern observed
in case of call duration. It is either increasing or decmegisiepending on the speaker and

type of laughter.

From the frequency distribution of the duration of the cail$ig. [3.I2, we can see
that mean is around 130 ms and the variance is 40 ms. So, thgatuof the first call §;)

is generated from a gaussian distribution with the obsemvean and variance as follows

d; = 130+ 40 randn(). (5.5)

The variation of duration of calls within a bout is assumebtddinear. So, the dura-

tions of rest of the calls are determined as follows

d=d.—d=+(n-i)2<i<n, (5.6)

whered; is the duration of they, call, n is the total number of calls antl is the rate at

which call duration varies across calls.

5.1.4 Frication

Because of high amount of airflow and constant glottal leak#gere will be turbulence
generated with vocal folds as a result of which glottal fikea/h/ is produced. In most
of the cases it is predominantly observed in the intercadiriral. The volume velocity

of air typically decreases as we go from left to right with ical as a result of which
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the amount of breathiness also fall down with in a call. Alse amount of breathiness

decreases as the calls progress.

5.2 Incorporating feature variation

The derived models have to be finally incorporated in a s\gistfeamework for synthesiz-
ing laughter. Modification or incorporation of each of thedeted features are explained

below.

5.2.1 Pitch period and Duration modification

Pitch period and duration modification is done in a pitch $yanous way. It involves the

following steps:

1. The signal is passed through zero-frequency resonatdefiving the epoch loca-

tions. Pitch period is obtained by taking théfdirence of the epoch locations.

2. 10th order pitch synchronous linear prediction analissgerformed on the signal
to separate it into source (residual) and system (LFhooents). So, there will be a

residual and Ip cdécients associated with every epoch location.

3. Desired pitch period contour is generated either fromolder contour or a com-

pletely diferent one can be taken (Pitch period modification).

4. New pitch period contour is generated by resampling tistiag one with duration

modification factor (Duration modification).
5. New epoch locations are derived from the obtained pitcilogeontour.

6. New set of residual and Ip cfieients are generated for obtained epoch sequence
from the nearest original epochs. The residual at each epdblen resampled by
pitch modification factor (obtained from original pitch pet and obtained pitch

period) at that epoch.
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7. Foreveryepoch inthe epoch sequence, residual is passedh the corresponding
LP filter to obtain the new signal. These signals are finallycadenated to obtain

the desired signal.

5.2.2 Strength of Excitation modification

Strength of excitation is an estimate of the excitationrgjtie at the epochs derived from
the zero-frequency filtered signal. Since the speech saralot be reconstructed back
from the zero-frequency filtered signal, modification oestyth of excitation cannot be
done on the filtered signal. So, we hypothesized that thagitieof excitation can be
modified in the residual signal. In order to find out the relatbetweerny and the am-
plitude of peaks in the residual signal, if there is any, albeaeriment has been con-
ducted. A sequence of impulses with varying durations betwsnsecutive ones (pitch
period) and dierent amplitudes are generated and passed through altgsaleator with
Ip codficients corresponding to fiierent vowels. The output signals are passed through
zero-frequency resonator and strength of excitation &dwe calculated. The obtained
values are compared with the amplitudes of the impulsesiwikithe approximate resid-
ual. It can be clearly observed in the figure that the impulsengths (residual) and the
strength of excitation obtained from zero-frequency fdtesignal have a linear relation

between them.

So, the amplitudes of the samples in the vicinity of the epdchthe residual are
modified according to the desired strength of excitatiort@onin an attempt to modify

the strength of excitation.

5.2.3 Frication Incorporation

Frication or breathiness is incorporated by modifying te&idual. 10th order linear pre-
diction analysis is performed on the input signal to segatatto residual and system (LP
codficients). Random white gaussian noise of length equal toethgth of the residual

signal and total energy equal to the one-fifth of the totatgyef the signal is generated.
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Fig. 5.3: Scatter plot demonstrating the correlation between impulse strength and strength of
excitation obtained from zero-frequency filtered signal.

It is then passed through a resonator with central frequahd®00 Hz and bandwidth of
1000 Hz. The resulting signal is first multiplied with a hampwindow of equal length
and then with a linearly falling line. The obtained signathen added to the original

residual and then passed through the LP filter for generétmfreathy voiced signal.

5.3 Laughter Synthesis Procedure

Laughter (ha-ha or hi-hi) is synthesized by modifying the\abfeatures of vowel/ or
/i/ uttered by a speaker. The process involves only modifyiegtiurce while the system

almost remains the same.

The proposed method for laughter synthesis consists obtlmning steps:

1. The input signal/§ or/i/) is first passed through a zero-frequency filter for deriving

the epoch locations. Obtained epoch locations are coderi@g hilbert envelope

55



based method and new epoch set of epoch locations are abtd®iteh period is

obtained by taking the tference of the epoch locations.

. The signal is resampled to 8000 Hz and a 10th order pitcbhsgnous linear pre-
diction analysis is performed on the signal to separateat$ource (residual) and
system (LP cofficients). This gives a residual and a 10 element Ipcc vectarcas

ated with each epoch.

. For every call in the laughter bout, the value®, t’, s are obtained as user given
inputs. The value ofy, 5 (derived from the pitch period contour and strength
of excitation contour of the original vowel respectivelif]c], S[c] (derived from
equation 5.2 and 5.4 respectively) are derived and pitclegpeontour, strength of
excitation contour, duration of the call, duration of thédwing inter-call interval

are calculated from the pre-assumed models.

. New residual is obtained after modifying the pitch per@od duration, strength of

excitation and incorporating breathinesteet as explained in the previous section.

. The obtained residual is then passed through the LP filteeosowel to synthesize
the call. The following intercall interval is also genehtand concatenated to the

call.

. Steps 3,4,5 are repeated for all the calls in the laughigfinally concatenated to

synthesize the laughter.

The complete laughter synthesis system described ifi Hdgs inplemented in MAT-

LAB (http:// www.mathworks.com).

The synthesis procedure is mostly concentrated on symthgsialls and not much

care is taken on synthesizing bouts. It is also importantote that the voiced calls of

real laughter are not truly speech vowel-like sounds, wivitieused the same (Ipcc’s of

system) for synthesizing laugh calls.
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Fig. 5.4: Block diagram of the synthesis system.

5.4 Perceptual significance of features

This study aims to analyze the perceptual significance ofd@htures described above.
An experiment based on analysis by synthesis approach ducted. As a part of the
experiment, some original laugh signals are taken and thygoged features are modified.
For each original clip, modifications are performed for apible feature combinations,
thus generating 15 £2- 1) different clips. These clips are played randomly to 20 subjects
who are told to score them for naturalness and acceptalfliyeptability is a measure of
how close the sample is sounding to laughter and naturaiiaessmeasure of how natural

it is. The features modified af, strength of excitation, amount of breathiness and call

and inter-call durations. The modification is performed iasmbelow:

The laugh signal is first segmented by making voiced nonegbaecision and calls
and intercalls are extracted. For every laugh syllabld idak inter-call), the following

changes are performed:
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Table 5.1: Perceptual evaluation scores obtained for the modified versions of an original laugh
signal.

Sample To « breathiness call, inter-call Naturalness Acceptability
durations mean variance mean variance

1 0 O 0 0 4.2 0.36 4.33 0.22
2 0 O 0 1 3.9 0.22 4.01 0.21
3 0 O 1 0 3.6 0.21 3.69 0.22
4 0 O 1 1 3.4 0.31 3.52 0.29
5 0 1 0 0 3.99 0.29 4.09 0.32
6 0 1 0 1 3.61 0.09 3.79 0.22
7 0 1 1 0 3.24 0.16 3.44 0.23
8 0 1 1 1 3.01 0.26 3.19 0.29
9 1 0 0 0 2.9 0.24 3.01 0.23
10 1 O 0 1 2.69 0.19 2.99 0.21
11 1 O 1 0 241 0.21 2.43 0.09
12 1 O 1 1 2.02 0.21 2.19 0.11
13 1 1 0 0 231 0.14 2.44 0.19
14 1 1 0 1 2.11 0.11 2.21 0.36
15 1 1 1 0 1.69 0.36 1.79 0.24
16 1 1 1 1 1.26 0.26 1.69 0.14

1. Rising pitch period contour is replaced with a flat contour
2. Strength of excitation has been reduced.

3. Breathiness is reduced by decreasing the relative ardpbtof the samples in the
non-epoch regions (samples which are more than 1 ms awaytfrerapoch) and

intercall intervals.

4. Desired call and inter-call durations have been gengratedomly from the distri-

bution of voiced unvoiced regions of normal speech.

Table[5.]L gives the results of the study. The table gives #teralness and accept-
ability scores of some laughter clips for all possible madifions (including the original
sample). In the Table , a ‘0’ in a feature column indicates tha feature is not modified
and a ‘1’ indicates that it is modified in the given sample. \&a see from the table that
samplel, which is the original version (all 0’s), has thehhaturalness and Acceptabil-

ity scores as expected and sample 16, in which all the featerenodified (all 1's) has a
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very less score (1.26), which means that these four featowdd characterize laughter to

a maximum extent.

Table 5.2: Results of the experiment on perceptual significance of features.

modified not-modified
Naturalness Acceptability | Naturalness Acceptability
(mean) (mean) (mean) (mean)
To 2.1 2.3 3.6 3.7
a 2.9 3.1 3.1 3.2
breathiness 2.4 2.5 3.3 3.4
call intercall durations 2.8 3.0 3.3 3.3

For finding the significance of each individual feature, theam of samples when a
particular feature is modified (1's) is compared with measarhples when it is not mod-
ified (0's). Table[5]2 shows these comparisons for all festuiThe more the fierence
between the two, the more significant the feature is. We carfreen that Table that
difference is maximum in case ®f and minimum in case af with breathiness taking
the second position and call, inter-call durations takhmgythird position. The reason for
a showing the minimum dierence may be attributed to the level of our understanding
on real excitation strength. It is also possible that doesn’t play major role in isolated
laughter, but becomes significant in laughter occurringeitwieen speech, because unlike

other features, it is a highly relative measure.

We can also see that variance of pitch period is less, whicdnsthat the decision is
less speaker specific and the variance of breathiness isghowng that its perception

is more speaker dependent.

5.5 Experiment for subjective evaluation

Subjective evaluation tests are performed on 28 naive wedus. The volunteers are pre-
sented with 25 laughter-only clips of which 17 clips are gsized éline using the tech-
nique presented here and the remaining 8 clips are isolatgghter taken from the AMI
Corpus. The number of calls in the synthesized laughtedutation, the FO changes,

the strength of excitation changes in each sample are givéable[5.B. The 25 clips
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are randomly played and not grouped in any particular ortlee tests are performed in
a typical quiet ffice environment on a computer terminal. Each volunteer hidtem
and score each sample for naturalness and acceptabilitydieg to their preference on

a scale of 1-5: 1-Very Poor, 2-Poor, 3-Average, 4-Good, beli&nt.
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Table 5.3: Results of the laughter synthesis system.

19

Sample slope ofy slope ofe breathiness No. calls Avg. Call Gender Naturalness Acbdita
Duration (ms) mean variance mean variance
1 0 0 0 4 124 M 1.21 0.24 1.24 0.21
2 0.1 0.1 0.1 4 101 M 1.69 0.16 1.87 0.24
3 0.2 0.1 0.1 4 115 F 2.41 0.09 2.59 0.11
4 0.3 0.1 0.1 5 86 M 3.23 0.31 3.62 0.24
5 0.4 0.1 0.1 3 81 M 3.11 0.34 3.31 0.21
6 0.4 0.2 0.1 4 96 F 3.33 0.21 3.46 0.23
7 0.4 0.3 0.1 5 75 M 3.49 0.26 3.64 0.31
8 0.4 0.4 0.1 4 130 F 3.41 0.09 3.63 0.16
9 0.4 0.4 0.2 6 125 F 3.55 0.11 3.61 0.19
10 0.4 0.4 0.3 5 117 M 3.69 0.15 3.74 0.19
11 0.4 0.4 0.4 6 90 F 3.61 0.29 3.76 0.31
12 0.4 0.4 0.3 7 95 M 3.59 0.25 3.79 0.24
13 0.4 0.4 0.3 8 125 F 3.22 0.12 3.31 0.39
14 0.4 0.4 0.3 5 89 F 3.49 0.22 3.56 0.21
15 0.4 0.4 0.3 5 121 M 3.61 0.16 3.69 0.11
16 0.4 0.4 0.3 6 88 M 3.53 0.22 3.63 0.16
17 0.4 0.4 0.3 4 98 M 3.66 0.21 3.77 0.17
18 — — — 5 121 M 4.26 0.12 4.61 0.11
19 — — — 4 84 M 4.44 0.16 4,72 0.06
20 - — - 6 55 F 4.39 0.21 4.77 0.09
21 - — - 4 96 M 4.42 0.09 4.54 0.13
22 - — - 5 30 F 4.09 0.14 451 0.19
23 - — - 5 145 F 4.21 0.11 4.64 0.09
24 - — - 4 89 F 4.54 0.10 4.61 0.11
25 - - - 6 134 M 4.39 0.19 4.59 0.07




5.6 Evaluation Results

For the analysis of the evaluations, we make the assumtaireaich laughter clip is an
independent encounter by an individual subject. ThusNfe25 subjects and 17 synthe-
sized samples, we have a total of 28425 samples ans for eight real laughter clips, we

have 25*8200 samples.

The 17 samples are synthesized by varying the input parasnéte slope of pitch
period contour, slope af contour, amount of breathiness, number of calls etc. Thexmea
and variance of the evaluation scores are listed in Tpb]e Bhi@ evaluation results are

summarized below:

We can see from the Table that the mean scores increasedmiiticr@ase in slope
of Ty, slope ofa and amount of breathiness. The increase is high in cadg,dbut
low in case ofa and amount of breathiness. But they are decreasing aftez pomt in
all the cases. This may be because of the unnaturalnesdungd by the modification
algorithm. Also notice that the scores decreased with aease in the number of calls.
This is because of the reason that we have used a simple tirebel for deriving the call
and intercall durations. The mean naturalness score @utéim the original samples (18
to 25) is 4.34 and the mean naturalness score obtained fdregtesynthesized samples
(11 to 17) is 3.55. Note that we have only accounted for tlkeiginces in the source
and not modified the system (used the systentfaoents of the speech vowels). Better

results may be obtained by modifying the system paramelsos a

5.7 Summary

In this chapter, a method for synthesizing laughter, by ringeand incorporating the
feature variations is described. Pitch peridg)( strength of excitationd), breathiness
and call intercall durations of speech vowels are modifiedymthesizing laughter calls.
An experiment was conducted for estimating the perceptgaifecance of features. The
experiment indicated that pitch period contour is the migticant factor, followed by

breathiness, call intercall duration and strength of eticih. Perceptual evaluation was
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also conducted on the synthesized laughter and the reseits discussed. The quality
of the synthesis can be improved further by also modifyirggsysstem ca@cients along

with the source.
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Chapter 6

Discussions and Conclusion

Laugh signals have been mostly analyzed in the literaturggusaditional spectral fea-
tures like formants, MFCC’s, LPCC'’s etc. The phonetics d&ddrosodic characteristics
of laughter has also been studied thoroughly. Howeverhypothesized in this work that
the source plays a significant role in the production of laeghnd hence the analysis is
focused on understanding the source variations durindhtaagThe source features used
for the analysis are (a) pitch period, (b) strength of etiditg (c) breathiness, (d) loud-
ness and their variants. Pitch period and strength of diaitat epoch are obtained from
adaptive zero-frequency analysis of the signal. Breatisia@d loudness are derived from

the Hilbert envelope of the linear prediction residual.

Distinct patterns are observed in the pitch period contoar strength of excitation
contours of laugh signals. The general pattern that is @bden the pitch period within
a call is that it starts with some value, decreases slightgoime minimum, and then in-
creases rapidly to a high value. Similarly, the strengthxaftation increases non-linearly
to some maximum value and then decreases almost at the steneAtao because of
high amount of air flow through the vocal tract, laugh sigraaiks typically accompanied
by some amount of breathiness. Breathiness is shown td regugh non-deterministic
component and less loudness in the signal. Using thesedésatmethod was proposed
for detecting laughter in spontaneous speech and the paafare was tested on two dif-

ferent data sets.
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A method was also proposed for automatically synthesizaughter by modeling
the features. An experiment was conducted for estimatiagpérceptual significance of
features. The experiment indicated that pitch period aomi@s the most significant fac-
tor, followed by breathiness, call intercall duration atr@isgth of excitation. Perceptual

evaluation was conducted on the synthesized laughter aneslts were discussed.

6.1 Contributions of the Work

1. Improved an already existing zero-frequency based epgtriaction method for
handling the cases of large pitch period variations, by aelp choosing the win-

dow for trend removal.

2. Proposed features based on pitch period, strength ofaéeci, breathiness and

loudness for analyzing laugh signals.

3. Proposed a new feature based on hilbert envelope fortaejdareathiness in a

signal.

4. An algorithm for detecting laughter in continuous spewels proposed and it was

tested on two dferent data sets.

5. Modeled the feature variations and synthesized laugbteg these developed mod-

els.

6. Performed an experiment for deriving the perceptualiagmce of features.

6.2 Scope for future Work

1. A more detailed study can be done by considering variqusstyf laughter.

2. The performance of the proposed laughter spotting dlgarcan be studied on data

with different noise levels and collected withifdrent channels.
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3. The performance of the system can be improved by takingptheprobability of

all the features instead of deciding on each feature indaligl.

4. During laughter synthesis, only the source was modifieitevifne system remained
same. A more natural synthesis can be obtained by modifyiagystem along

with the source.

5. It was showed earlier that the speaker has very less ¢amnttbe articulators while
producing laughter. So, it can be hypothesized that laugiatenot be mimicked
like normal speech. A study can be made on analyzing the spsgpkcific charac-

teristics of laughter which can be used for speaker verifinagtc.
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