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Abstract

Laughter is a nonverbal vocalization that occur often in continuous speech. It is produced

by the speech production mechanism using a highly variable physiological process. The

vocalized expression of laughter varies across gender, individuals and context. Despite its

variability, laughter is perceived naturally by humans.

Since laughter is produced by the human speech production mechanism, spectral fea-

tures were generally used for the study of laughter acoustics. This work mainly aims

at showing the significance of excitation information for analysis of laugh signals. We

proposed acoustic features which are motivated from the production characteristics of

laughter. The features are based on pitch period (T0), the strength of excitation derived

from zero-frequency filtered signal, amount of breathinessand loudness measure.

It is observed that there will be sudden bursts of air flow through the vocal tract in the

case of laughter. This will result in faster vibration of thevocal folds, and hence reduc-

tion in the pitch period. Apart from decrease in the pitch period, there is also a raising

pattern in the pitch period contour. Similar observations are also made in case of strength

of excitation. The strength of excitation rises sharply andthen falls almost at the same

rate. Since there will be more air flow, laughter is typicallyaccompanied by some amount

of breathiness. It will be reflected perceptually as less louder and more noisy. These

loudness and non-determenistic component (noise) in the signal are estimated using mea-

sures based on Hilbert envelope. A method is proposed using these features for detecting

laughter in continuous speech. The method is tested on a noisy data (TV show data) and

a clean data (AMI Corpus) and the results are reported.

A method is also proposed for synthesizing isolated laughter by modifying the above
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features. The perceptual significance of each of the features is studied using an analysis

by synthesis based approach. The affect of each of the features are studied by deempha-

sizing them from some original laugh signals, and performing perceptual evaluation on

the obtained signals. The study indicated that pitch periodpattern is the most significant

factor, followed by call-intercall duration, breathinessand strength of excitation.

Keywords: Laughter, epoch, pitch period, strength of excitation, breathiness, loudness,

zero-frequency resonator, synthesis.
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Chapter 1

Introduction

The phenomenon of laughter is common in human communicationas a way of express-

ing the emotion of happiness. It is produced by the speech production mechanism using a

highly variable physiological process. The vocalized expression of laughter varies across

gender, individuals and context. Despite its variability,laughter is perceived naturally

by human listeners. In recent years much of the research donein the area of speech

recognition has been mainly concentrated on natural data. This requires data collected

in natural environment which contain many non-speech elements like laughter and other

non-linguistic sounds. Automatic detection of such elements helps in increasing the accu-

racy of recognition. There are also theories on laughter which say that we not only laugh

at humor but also at surprise, when embarrassed etc. So, spotting laughter also helps us to

know the possible emotional states of the speaker which makes us easy to converse with

them.

1.1 Laughter terminology

Laughs were analyzed at three levels: bout, call and segmentlevels [1]. The entire laugh

is referred to as an episode which consists of laughter boutsthat are produced during one

exhalation. Calls are the discrete acoustic events that constitute a bout, and each call of a

voiced laughter consists of a voiced part followed by an unvoiced glottal fricative/silence
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Fig. 1.1: A bout of a typical voiced laughter showing the bout, call and inter-calls.

part. Segments are the audibly reflected changes in the production within a call. It is

assumed that each laughter bout contains several calls, so that isolated calls are not con-

sidered as laughter.

Fig. 1.1 shows the bout, call and inter-call of a voiced laughter.

1.2 Acoustics and Phonetics of Laughter

Laughter is not a very controlled natural non-verbal vocalization. While laughter has

very distinct perceivable pattern, its production is not guided by any rules of grammar as

in the case of speech. It is typically produced by series of sudden bursts (outflows) of

air, keeping the vocal tract in a neutral position. The main difference between speech and

laughter is that normal speech does not disrupt breath whereas laughter may [2]. In normal

speech most of the role is played by the articulators of the vocal tract system, whereas in

case of laughter major role is played by the lungs and the vocal folds (source). Laughter

can be broadly divided into two types based on its glottal activity: a) voiced laughter and
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b) unvoiced laughter. In a voiced laughter the air bursts flows mostly through the mouth,

and in some cases it may even pass through the nose. There willbe more air pressure build

up in lungs, as a result of which the vocal folds may vibrate ina different way. Also, since

there is more air flow, there will be turbulence generated within the vocal folds, and hence

the signal may be breathy when compared to normal speech. Unvoiced laughter may also

have the same overall structure as that of a voiced laughter,but the major difference is

that there is no voicing. The durations of the calls will be less, and there will be more

damping when compared to voiced laughter.

1.3 Types of Laughter

There were many attempts done on categorizing laughter fromperspective of production

mechanism. The primary division made by Grammer and Eibl-Eibesfeldt [3] based on

the glottal activity as voiced and non-voiced laughter. Bachorowski and his group [4]

gave a more clearer division based on the broad characteristics of bout. Bouts comprising

of voiced calls were called as ’song-like’, which are also commonly called as giggle or

chuckles. They further divided unvoiced laughter into two types, ’snort-like’ having per-

ceptually salient nasal-cavity turbulence and ’unvoiced grunt-like’ which are acoustically

noisy produced with turbulence arising in either the laryngeal or oral cavity.

1.4 Thesis organization

The contents of the thesis are organized as follows:

Chapter 2 gives an overview of the existing approaches for laughter detection and

laughter synthesis. The drawbacks of the existing approaches and hence the need for

alternate approaches are discussed in the chapter.

In chapter 3, we highlight the significance of excitation characteristics for the analysis

of laugh signals. We proposed modified version of an already existing epoch extraction

method [5] for capturing the rapid variations ofF0 in laughter. We also proposed features
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based on excitation information for analyzing laugh signals. Using the frequency distri-

butions we showed that these features can indeed be used to discriminate laughter from

speech.

In chapter 4, we proposed a method for spotting laughter in spontaneous speech using

the features described in chapter 3. The performance of the proposed method is evaluated

and compared with the previous works.

In chapter 5, we showed the significance of the proposed features by conducting per-

ceptual evaluation tests on the synthesized laughter. Features were modeled and their

modification was done using the methods explained. Isolatedlaughter was synthesized

by incorporating the feature variations.

In chapter 6, we summarize the contributions of the present work, and discuss some

issues that are still to be addressed.
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Chapter 2

Previous Studies on Laughter - A

Review

Although, it has been more than 100 years since attempts werebeing made to understand

the psychological theory behind laughter, the studies on analysis of laugh signals were

started no sooner than 10 years from now, due to the unavailability of processing tools

and techniques. Previous studies on laughter can be categorized into three a) on laughter

analysis b) automatic laughter spotting and c) laughter synthesis.

2.1 Studies on laughter analysis

Laughter has been studied in different perspectives like studies in philosophy of laughter,

acoustics and phonetics of laughter, speech pathology, time and spectral domain analysis

etc.

Analysis of laughter has started with understanding the philosophy behind it. The

studies on philosophy of laughter try to explain why and whenhumans laugh. If we want

to synthesize laughter in spontaneous speech, we have to first determine where it should

come and hence there is a need for understanding the philosophy behind it. There were

many theories which tried to explain laughter completely but none of them were success-

ful in doing so. The oldest, and probably still the most widespread theory of laughter
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is ‘superiority theory’ or ‘Hobbesian theory’, which says that laughter is an expression

of a person’s feelings of superiority over others. This theory goes back at least as far

as Plato and Aristotle [6] [7]. Hobbes gave a revised versionof it laughter expresses ”a

sudden glory arising from some conception of some eminency in ourselves, by compar-

ison with the infirmity of others, or with our own formerly” [8]. In our century many

have adopted versions of the superiority theory. Albert Rapp, for example, claims that all

laughter developed from one primitive behavior in early man, ”the roar of triumph in an

ancient jungle duel” [9]. Konrad Lorenz and others treat laughter as a controlled form of

aggression []. Later some [10] have responded to the ‘superiority theory’ by denying the

reality of hostile and derisive laughter. The second popular theory ‘incongruity theory’,

given by Kant and Schopenhauer. The theory as defined by Kant was ”Laughter is an

affection arising from the sudden transformation of a strainedexpectation into nothing”

[11] and as defined by Schopenhauer as ”laughter is a mismatchbetween our concepts

and the real things that are supposed to be instantiations ofthese concepts” [12]. Like the

‘superiority theory’, the ‘incongruity theory’ is also notcomprehensive enough to cover

all the non-humorous cases. The laugh of the 5-month-old baby at being tickled involves

no incongruity as some examples. The next most popular theory was the ‘relief theory’

proposed by Herber Spencer. It says that ”laughter occurs when some emotion has built

up but then is suddenly seen to be inappropriate” [13]. Spencer’s theory influenced many

subsequent theorists of laughter, including Dewey and Freud [14] [15]. Freud’s theory

says that ”in all laughter situations we save a certain quantity of psychic energy, energy

that is usually employed for some psychic purpose but which turns out not to be needed

and hence discharges it in the form of laughter” [15]. Apart from some extra cases which

can be explained by ‘relief theory’, it is also proved to be not very general. There is a one

more theory given by John Morreall which says that ”laughteris rather the physical activ-

ity which is caused by, which expresses, the feeling produced by a pleasant psychological

shift” [16]. The author also says that the theory is the most generalized theory given till

now.

There are also studies done in understanding the dynamics ofthe lungs, vocal tract,

vocal folds, larynx, tongue etc. while laughing [17] [18] [19] [20] [21]. Filippelli, in

his work [17] has analyzed the volume and pressure drops in lungs between every call
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and between bout. He concluded that there is sudden and substantial decrease in the lung

volume after every call. John Esling studied the possible states of larynx in laughter. He

also described the states of larynx for different types of laughter.

Laughter was studied for its practical importance in speechpathology [18] [19] [20].

Citardi et. al analyzed laughter of people suffering from hyperadductive dysphonias (the

patient has not much control on the vocal folds). They found that this is not the case in

laughter and hence concluded that laughter can be used to correct these kinds of problems.

There are many studies on understanding the characteristics of laughter [22], [23],

[4], [24], [1]. The authors differed in the extent to which they characterized laughter, with

some claiming laughter has very specific attributes while others emphasized that laughter

is a variable signal [4]. The differences in how specific the characterization of laughter

was could be due to the vastly different number of subjects and laugh bouts studied in

each experiment. For example, there were 2 subjects and 15 laugh bouts analyzed in [23],

51 laugh bouts investigated in [24], and 97 subjects and 1024laugh bouts analyzed in [4].

Not surprisingly, due to the small sample size of some of the studies, the conclusions of

these works varied and sometimes contradicted one another.Many agreed that laughter

has a repetitive breathy consonant-vowel structure (i.e. ha-ha-ha or ho-ho-ho) [23], [24],

[1]]. One work went further and concluded that laughter is usually a series of short syl-

lables repeated approximately every 210 ms [24]. Yet, others found laughter to be highly

variable [4] [1] particularly due to the numerous bout types(i.e. voiced song-like, un-

voiced snort-like, unvoiced grunt-like, etc.) [4], and thus difficult to stereotype. These

conclusions led us to believe that automatic laughter detection is not a simple task.

Since laughter is produced by the human speech production mechanism, the laugh-

ter signal is also analyzed like a speech signal in terms of the acoustic features of the

speech production. Analysis of laughter could be done for synthesis, where perceptually

important characteristics need to be preserved, or for studying the acoustic features dur-

ing its production. Based on analysis of large database of laughter sounds, Bachorowski

and colleagues have differentiated three broad categories, namely, song-like (consisting

primarily of voiced sounds), snort-like (consisting largely unvoiced calls with percep-

tually salient nasal-cavity turbulence) and grunt-like (with turbulence from laryngeal or
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oral cavities) [4]. Typically, the acoustic analysis of laughter is carried out using dura-

tion (between onset and offset of acoustic events),F0 (fundamental frequency of voiced

excitation) and spectral features. All of these are used to describe the temporal variabil-

ity, source variability and variability in production modes [4]. Formants, pitch and voice

quality analysis are used to discriminate speech, speech-laughs and laugh [25]. Some

of these features were studied using conventional methods of analysis forF0 and voiced

quality, but using mostly spectrum-based features, like harmonics, spectral tilt and for-

mants [25]. The difficulty in deriving the features of excitation source using short-time

spectral analysis limits the analysis significantly, especially due to the choice of the size,

shape and position of the segment in relation to the acousticevents in speech produc-

tion. The main problem is to extract the rapidly varying instantaneousF0. Moreover,

traditional short-time spectrum analysis masks several important subsegmental (less than

pitch period) features of the glottal source that are uniquein the production of laughter.

2.2 Studies on automatic laughter detection

Earlier work pertaining to automatic laughter detection focused on identifying whether

a predetermined segment contained laughter using various machine learning methods in-

cluding Hidden Markov Models (HMMs) [26], Gaussian MixtureModels (GMMs) [27],

and Support Vector Machines (SVMs) [28][29]. Note that the objectives of these studies

differed as described below.

Cai et al. used HMMs trained with Mel Frequency Cepstral Coefficients (MFCCs)

and perceptual features to model three sound effects: laughter, applause, and cheer. They

used data from TV shows and sports broadcasts to classify 1 second windows overlapped

by 0.5 seconds. They utilized the log-likelihoods to determine which classes the segments

belonged to and achieved a 92.7% recall rate and an 87.9% precision rate for laughter [26].

Truong and van Leeuwen classified presegmented ICSI MeetingRecorder data as

laughter or speech. The segments were determined prior to training and testing and had

variable time durations. The average duration of laughter and speech segments were 2.21

and 2.02 seconds, respectively. They used GMMs trained withperceptual linear predic-
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tion (PLP), pitch and energy, pitch and voicing, and modulation spectrum features. They

built models for each type of feature. The model trained withPLP features performed the

best at 7.1% EER for an equal-prior test set [27]. The EER in Truong and van Leeuwen.s

presegmented work was computed on the segment level, where each segment (which had

variable duration) was weighted equally. Note that this is the only system that scored

EER on the segment level. All other systems reported EER on the frame level, where

each frame was weighted equally.

Kennedy and Ellis studied the detection of overlapped (multiple speaker) laughter in

the ICSI Meetings domain. They split the data into non-overlapping one second segments,

which were then classified based on whether or not multiple speakers laughed. They

used SVMs trained on statistical features (usually mean andvariance) of the following:

MFCCs, delta MFCCs, modulation spectrum, and spatial cues.They achieved a true

positive rate of 87%[28].

More recently, automatic laughter recognition systems improved upon the previous

systems by detecting laughter with higher precision as wellas identifying the start and

end times of the segments. In particular, Truong and van Leeuwen utilized GMMs trained

on PLP features with a Viterbi decoder to segment laughter. They achieved an 8% EER,

where each frame was weighted equally, on an equal-prior test set [30].

2.3 Studies on laughter synthesis

Recently, there were also attempts done to synthesize laughter [31], [32], [33], [34], [35].

Though the number is very small, they are all completely different. Laughter synthe-

sis was handled at the bout level in [31]. Laughter is modeledat two levels, the overall

episode level and at the local call level. At episode level, the authors attempts to capture

the overall temporal behavior of laughter with a parametricmodel based on the simple

harmonic motion of a mass-spring system. At the call level, they relied on a standard lin-

ear prediction based analysis-synthesis model. [33] concentrates on synthesizing speech-

laughs i.e laughter occurring with spontaneous speech. Different types of synthesized

laughter were combined with speech in a dialogical situation and then perceptually evalu-
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ated. They reported that intensity of the laughter also plays a crucial role in the perception.

Lasarcyk et. al [34] tried to synthesize isolated laughter using articulatory synthesis and

diphone synthesis. They modeled voiced/non-voiced durations, vowel quality, pitch etc.

for synthesizing laughter. Trouvain et. al in one of their later studies [34] modeled laugh-

ter by the parameters spread of the lips, raise in the larynx and fundamental frequency.

They explored the relative contributions of each of the features by conducting a perceptual

evaluation test.

2.4 Issues with existing methods

While most of the previous studies on analysis was done on understanding prosody (bout

and episode level) of laughter, very less number concentrated on intra-call level variations.

For the same reason, the studies resulted in automatic spotting of laughter also relied

mostly on the structure (correlation between successive calls etc.) of the bout in time and

spectral domains. So, the less the number of calls, the more difficult the spotting would

be for such methods.

2.5 Issues analyzed in the thesis

The variability in laughter production is complex in the sense that it is not guided by the

production rules of speech. Hence it is difficult to describe the phenomenon of laughter

precisely, although it can be perceived by the listeners. The analysis and description is also

limited by the available tools for analysis of laughter signals. The objective of this study is

to show that some important features of laughter acoustics can be highlighted using some

new tools for analysis proposed in this paper. It is likely that these new features may help

to spot the laughter regions in continuous speech communication. Some of these features

are:

1. Rapid changes in the instantaneous fundamental frequency (F0) within calls of a

laughter bout.
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2. Strength of excitation within each glottal cycle and its relation toF0.

3. Loudness of speech derived from the excitation information.

4. Breathiness in signal extracted from the hilbert envelope.

5. Temporal variability ofF0, strength and formants across calls within a bout.
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Chapter 3

Source analysis of laughter

In this chapter, we present the study on analysis of laugh signals. The analysis is mostly

focused on the variations of acoustic features related to excitation source, extracted in a

pitch synchronous manner. The features for the analysis aremotivated from the produc-

tion mechanism of laughter. They are based on pitch period (T0), strength of excitation

and amount of breathiness.

In Section 3.1, we discuss about the zero-frequency based epoch extraction algorithm

which is a basis for the further analysis. In Section 3.2, we analyze laugh signals at call

and bout level using the proposed features. Section 3.3 discusses the variations of these

features across calls within a bout, and between laughter and speech using distributions.

3.1 Zero-frequency analysis

Most of the analysis on laugh signals in this work is done in a pitch synchronous manner.

The discontinuities associated with windowing can be reduced if the analysis is carried

out pitch synchronously. But finding the exact location of the epochs is a very difficult

task, especially in the case of laughter where there are large variations in the vocal fold

vibration, while at the same time we need to have a epoch detection algorithm with a good

accuracy for doing such an analysis. Recently a new method isproposed for extraction

of the instantaneousF0 [36], for epoch extraction [5] and for strength of excitation at

14
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Fig. 3.1: Illustration of epoch extraction and their strengths from the zero-frequency filtered
signal. (a) A segment of speech signal. (b) Filtered signal (c) DEGG signal. (d) Epoch
locations. (e) Strength of excitation (α). (f) Fundamental frequency (F0).

epochs [37]. The method uses the zero-frequency filtered signal derived from speech

to obtain the epochs (instants of significant excitation of the vocal tract system) and the

strength at the epochs. The following steps are involved in processing the speech signal

to derive the epochs and their strengths from the filtered signals [37].

1. Difference the speech signals[n] to remove any very low frequency component

introduced by the recording device.

x[n] = s[n] − s[n − 1]. (3.1)
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2. Pass the differenced speech signalx[n] through a cascade of two ideal zero-frequency

resonators. That is

y0[n] = −
4
∑

k=1

aky0[n − k] + x[n], (3.2)

wherea1 = −4, a2 = 6, a3 = −4 anda4 = 1.

3. Compute the average pitch period using the autocorrelation function for every 30

ms speech segments.

4. Remove the trend inyo[n] by subtracting the local mean computed over a window

obtained from (c) at each sample. The resulting signaly[n] is the zero-frequency

filtered signal, given by

y[n] = y0[n] −
1

2N + 1

N
∑

m=−N

y0[n + m]. (3.3)

Here 2N + 1 corresponds to the number of samples in the window used for mean

subtraction. The choice of the window size is not critical aslong as it is in the range

of one to two pitch periods.

5. The instants of positive zero crossings of the filtered signal give the locations of the

epochs.

6. The strength of the epoch (denoted asα) is obtained by taking the slope of the

filtered signal around the epoch. The slope is measured by taking the difference

between the positive and negative sample values around eachepoch.

Fig. 3.1 illustrates extraction of epochs and their strengths from the filtered signal

derived from the speech signal. The strength values are compared with the amplitudes of

the peaks around the epochs in the differenced electro GlottoGraph (DEGG). While this

method works well for the variations ofF0 in normal speech signals, it cannot capture the

rapid changes ofF0 that occur in the calls of a laughter episode or cycle.

The critical factor in the above method is the choice of the window for trend removal

from the output of the zero-frequency resonator. If the window size is too small compared

to the average pitch period, then too many zero crossings occur in the filtered signal. If it
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Fig. 3.2: (a) A segment of speech signal. (b) zero-frequency filtered signal with window length
of 3 ms for trend removal. (c) Voiced/non-voiced decision based on strength of excitation (α)
values at the epoch locations. (d) Filtered signal obtained with adaptive window length for
trend removal. (e) Strength of excitation (α). (f) Pitch period obtained from epoch locations.

is too large, then the short pitch periods corresponding to high F0 may be missed. In order

to capture the rapid variations inF0 between speech and laughter the following procedure

is adopted:

1. Pass the signal through the zero-frequency resonator with window length of 3 ms

for trend removal. This window length has been chosen in sucha way that it gives

high energy in the filtered signal in case of speech and laughter and low energy in

the non-voiced and silence regions.

2. Positive zero crossings of the filtered signal gives the epoch locations, and the slope

calculated as the difference of values of the samples after and before the epochs

gives the strength of excitation. Mean of the strength of excitation over a window
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of 10 ms is calculated, and if this value is more that 30 percent of the maximum

strength value of the complete signal then that segment is considered as a voiced

segment, otherwise it is a non-voiced segment.

3. After finding the voiced segments, each voiced region is separately passed through

a zero-frequency resonator with window length for trend removal derived from that

segment. This is done by first computing the autocorrelationof the segment with a

frame size of 20 ms and a frame shift of 10 ms. Then the maximum occurring peak

in the autocorrelated signals is chosen as the window lengthfor that region.

4. The positive zero crossings of the final filtered signal give the epoch locations, and

the difference in the values of the samples after and before each epoch gives the

strength of excitation.

Fig. 3.2 illustrates the epochs and strength of excitation for a segment of speech signal

using the modified epoch extraction method.

Fig. 3.3 illustrates the improvement of epoch extraction using the modified epoch

extraction method. Because of the wide range of pitch periods in the signal, the same

window length cannot be used for all the segments which can beclearly reflected in the

extracted pitch periods.

Some cases where there may be improvement due to the modified epoch extraction

method are

1. when there are multiple speakers speaking in turns.

2. when there is laughter in the signal.

3. when there are large pitch period variations in the signalcaused by the text or emo-

tional state of speaker.

There are also some drawbacks in the above method. The estimation of window size

for trend removal may go wrong especially when the segments are very small (less than 5

pitch cycles). In such a case, we may use the information of the adjacent voiced segments.
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Fig. 3.3: (a) A segment of speech signal. (b) Zero-frequency filtered signal obtained with
adaptive window length for trend removal. (c) Filtered signal with window length for trend
removal obtained from the complete signal. (d) Pitch period obtained from modified epoch
extraction. (e) Pitch period obtained from original epoch extraction.

3.2 Acoustic features for analysis of laugh signals

We keep the vocal tract in the neutral position while laughing. Also during this process

we don’t vary our articulators much. Though the above two characteristics are common to

speech vowels, we perceive laughter very different from normal speech. So, we hypothe-

size that most of the laughter characteristics occur due to variations in the excitation.

A typical voiced laughter is shown in the Fig. 3.4. A voiced laughter bout typically
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Fig. 3.4: A bout of a typical voiced laughter is showed in (b) and its spectrogram in (a).

contains about 4 to 6 calls, with each call duration ranging from 10 ms to 200 ms, and

some amount of silence/frication between two consecutive calls. The energy of the calls

may fall as the laughter progresses. The production mechanism of laughter is different

from speech in many ways starting from the amount of air flow through the vocal tract to

the shape of the vocal tract. This fact increased our interest to analyze the source features

of laughter signals more closely.

The laughter signals are analyzed at two levels (a) call level and (b) bout level. Based

on this kind of analysis, the features can be categorized into two groups call level features

and bout level features. The call level features are used to capture the call level patterns

(variations within a call) of laughter where as bout level features for capturing the high

level repetitive structure (patterns between calls) of laughter.

3.2.1 Call level analysis

The source and system characteristics of laugh signals at call level are analyzed using

features like pitch period (T0), strength of excitation (α), amount of breathiness, call du-
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rations and some parameters derived from them which are explained below in detail.

Pitch period (T0)

It is observed that pitch frequency for laughter is more thanthat for normal speech [4]. For

normal speech the pitch frequency typically ranges between80 Hz and 200 Hz for male

speakers and 200 Hz to 400 Hz for female speakers, whereas forlaughter the mean pitch

frequency for males is above 250Hz, and for females it is above 400 Hz [4]. As mentioned

earlier, there will be more air flow through the vocal tract inthe case of laughter. This will

result in faster vibration of the vocal folds, and hence reduction in the pitch period. Apart

from lower pitch period, there is also a raising pattern in the pitch period contour within

a call. In some cases the pitch period may even start with somelarge value, decreases to

some minimum and then increases again. This may be because this high pitch frequency

(F0) is not normal for the vibration of the vocal folds to maintain that frequency, and

hence it tends to decrease. The general pattern that is observed in the pitch period within

a call is that it starts with some value, decreases slightly to some minimum, and then

increases rapidly to a high value. Fig. 3.5 shows this general trend ofT0 within a call for

6 different calls. We can clearly observe the pattern described above. As a result of this

faster vibration of vocal folds, there will be more couplingbetween the source and system

about which very less is known.

The main issue here is extracting the pitch period accurately. It is not easy as in case

of normal speech, since the pitch variation is large in laughter and also there is a large

difference between pitch values of speech and laughter. The epoch locations and the pitch

period are extracted as explained in Section 3.1.

Fig. 3.5 shows the pitch period contours of different laughter calls. We can see that

the above described pitch period pattern is being followed by all of them.

21



0 0.02 0.04 0.06 0.08
−1

0

1 speech signal

0 0.02 0.04 0.06 0.08
3

4

5

(a)

T
0 (

m
s) pitch period

0 0.05 0.1 0.15 0.2 0.25
−1

0

1 speech signal

0 0.05 0.1 0.15 0.2 0.25

2

3

4

(b)

T
0 (

m
s) pitch period

0 0.02 0.04 0.06 0.08 0.1
−1

0

1 speech signal

0 0.02 0.04 0.06 0.08 0.1
2

2.5

3

3.5

(c)

T
0 (

m
s) pitch period

0 0.02 0.04 0.06 0.08
−1

0

1 speech signal

0 0.02 0.04 0.06 0.08
4

5

6

(d)

T
0 (

m
s) pitch period

0 0.02 0.04 0.06 0.08 0.1
−1

0

1 speech signal

0 0.02 0.04 0.06 0.08 0.1
5

6

7

(e)

T
0 (

m
s) pitch period

0 0.02 0.04 0.06 0.08 0.1
−1

0

1 speech signal

0 0.02 0.04 0.06 0.08 0.1
2

3

4

(f)

T
0 (

m
s) pitch period

Fig. 3.5: Laughter calls of different laughs with the corresponding pitch period contours below.

Strength of excitation (α)

Since there is large amount of air pressure build up in the case of laughter, (as large

amounts of air is exhaled), the closing phase of the vocal folds is very fast. This will

result in an increase in the strength of excitation. Strength of excitation (α) at every epoch

is computed as the difference between two successive samples of the filtered signalin the

vicinity of the epoch. Fig. 5.3(c) shows this general trend of α in the calls within a bout.
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Duration of the opening phase (β)

Since the closing phase of the vocal folds is fast for laughter, the corresponding opening

phase will be larger in duration. So we have used the ratio (β) of the strength to excitation

(α) at the epoch location and the pitch period (T0) as an approximate measure of the

relative duration of opening phase.

β = α/T0 (3.4)

Slope ofT0

Two different measures are used for capturing the intra-call variations of pitch period

contour. First one for capturing the rate of variations in pitch period contour and the

second one for capturing the patterns in pitch period contour.

The pitch period contour of laughter has a unique pattern of rising rapidly at the end

of a call. So, we use the slope of the pitch period contour to capture this pattern. First the

pitch period contour is normalized between 0 and 1. At every epoch location the slope of

the pitch period contour is obtained using a window width of 5successive epochs. The

slope is calculated by dividing the difference between the maximum and minimum of the

5 pitch period values within each window by the duration of the window. We denote this

slope byδT0. This value will almost be zero at the first half of the laughter call and a

value approximately corresponding the slope of the contourduring the rising phase.

For measuring the possible patterns in the pitch period contour, an experiment has

been conducted. We observed that unlike normal speech, laughter calls can have only

specific configurations allowed in the pitch period contour.The pitch period contour

of the laughter call is divided into three equal segments (p1, p2 and p3). The slope of

the contour in each segment is determined by fitting them withlinear polynomials. The

segments are then categorized into three groups (a) rising,(b) flat or (c) falling based on

the obtained slope values. The decision is done as shown in Table.3.1

The slope of contour after decision is denoted byp′1 for 1st segment,p′2 for 2nd seg-

ment andp′3 for 3rd segment. So, the pitch period can have 27 (33) different configurations
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Table 3.1: Table showing the condition on slope values for grouping.

condition p′

slope> 0.15 1 (rising)
-0.15< slope< 0.15 0 (flat)

slope< -0.15 -1 (falling)

as per the above grouping. An analysis is done on the number oflaughter calls falling in

each configuration. It is observed that only 5 of the 27 are predominant. Table 3.2 gives

the frequency of occurrences in each configuration. We can see from the table that 93.6%

of the laughter calls have one of the 5 configurations while the rest of the 6.4% calls are

occupied by 22 configurations.

Table 3.2: Frequency of occurrences of calls in each configuration.

p′1 p′2 p′3 call frequency
-1 (falling) 1 (rising) 1 (rising) 26.4%
1 (rising) 1 (rising) 1 (rising) 21.6%
0 (flat) 0 (flat) 1 (rising) 17.9%
0 (flat) 1 (rising) 1 (rising) 16.4%

-1 (falling) 0 (flat) 1 (rising) 11.3%
rest 6.4%

From the above analysis, we can say with a high confidence thata segment cannot

be a laughter call if it has a pitch period contour which does not belong to one of these

five configurations. Note that speech segments can also have apitch period contour be-

longing to one of the five configurations and so the values ofp′1, p′2 and p′3 together are

used for eliminating false alarms for laughter spotting. Also note that the slope values

are greatly affected by the wrong voiced non-voiced decision and spurious pitch period

values. Fig. 3.6 demonstrates the pitch period contours andthe line fitted pitch period

contours (p′1,p
′

2,p
′

3) for some laughter calls.

Slope ofα (δα)

As in the case of the pitch period, the strength of excitationat epochs also changes rapidly.

It rises rapidly to some maximum value and again falls at the same rate. Hence the slope

of the normalized strengths is calculated by dividing the difference between maximum
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Fig. 3.7: (a) A voiced laughter with epoch locations. (b) Pitch period contour derived from
epoch locations. (c) Strength of excitation derived from the zero-frequency filtered signal.
(d) Ratio of strength of excitation to pitch period. (e) Normalized slope of pitch period. (f)
Normalized slope of strength of excitation.

and minimum of the normalized strength values within 5 epochs window by the duration

of the window. We denote this slope byδα.
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Breathiness

Because of high amount of airflow, laughter is typically accompanied by some amount

of breathiness. Breathiness is produced with the vocal folds loosely vibrating and as a

result more air escaping through the vocal tract than modally voiced sound [38]. This

type of phonation is also called glottal frication and is reflected as high frequency noise

(non-deterministic component) in the signal.

A breathy signal will typically have less loudness and more non-deterministic (noise)

component. Measures based on hilbert envelope (HE) are usedfor calculating loudness

and proportion of non-deterministic component in the signal. Loudness is defined as the

rate of closure of vocal folds at the glottal closure instant(gci). This can be computed

from excitation signal (residual) obtained from inverse filtering the signal (LP analysis

[39]). But, the detection from the LP residual is difficult because of the amplitude values

with either polarity occurring around the instants of gci. This difficulty can be overcome

by using the Hilbert envelope of the LP residual [40]. The Hilbert enveloper[n] of the LP

residuale[n] is given by

r[n] =
√

e2[n] + e2
H[n], (3.5)

whereeH[n] denotes the Hilbert transform ofe[n]. The Hilbert transformeH[n] is given

by

eH[n] = IFT(EH(ω)), (3.6)

where IFT denotes the inverse Fourier transform, andEH(ω) is given by (Oppenheim and

Schafer, 1975[[41]])

EH(ω) =



















+ jE(ω), ω ≤ 0

− jE(ω), ω > 0.
(3.7)

HereE(ω) denotes the Fourier transform of the signale[n].

The idea is that the non-deterministic component will remain as noise in the residual

obtained after doing an LP (Linear Prediction) analysis on the signal. Fig. 3.8 demon-

strates the effect of breathiness on LP residual and hilbert envelope. It can be clearly

observed from the figure that the non-deterministic part in the excitation is reflected as
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Fig. 3.8: Illustration of effect of breathiness on LP residual and hilbert envelope. Speech
signal, LP residual and Hilbert envelope for (a) modal vowel /a/ and (b) breathy vowel /a/.

noise, and broader peaks in both the LP residual and hilbert envelope of Fig. 3.8(b).

We propose a quantitative measure for capturing these variations. A measure of the

non-deterministic component (γ) has been computed as the ratio of the energy of the

hilbert envelope in the open phase to the amplitude of the peak. The sharpness of the

Hilbert envelope of the LP residual is captured by the parameter η, which is computed

using a 2 ms segment of the Hilbert envelope around each epoch. The strength of these

impulse-like excitation (also called the strength of excitation in [42]) is expressed by

η = σ

µ
. Hereµ denotes the mean of the samples of the Hilbert envelope (HE) of the LP

residual in a short interval around the instants of significant excitation, andσ denotes the

standard deviation of the samples of the HE [42]. The difference can be observed better in

the ratioη/γ. Fig. 3.9 shows the difference in the values ofη, γ andeta/gamma between

laughter and speech. It can be observed that value ofη (measure of loudness) is less and
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Fig. 3.9: (a) Speech signal containing both laughter and speech, (b) Hilbert envelope, (c) η,
(d) γ, (e) η/γ.
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value ofγ (measure of breathiness) is more for laughter than that of speech.

3.2.2 Bout level analysis

The repetitive pattern in laughter bout is exploited using bout level features. Durations of

calls and intercall intervals, correlation between calls are used as bout level features.

Fig. 3.10: Pattern of call and inter-call durations for different call numbers.

Call and Inter-call durations

As we have already seen, the laughter bout consists of voicedcalls in between silence or

unvoiced regions. An analysis is performed on the duration of laughter calls. The mean

duration of the calls is observed to be 132 ms with a variance of 40 ms. Fig. 3.12 shows

the distribution of calls of laughter. Bachorowski et. al [4] reported that there is also
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Fig. 3.11: Distribution of duration of calls of laughter.

a specific pattern followed by the call durations and intercall durations for different call

numbers based on their observations. Fig. 3.10 shows the pattern followed by the call

and intercall durations for different call numbers. The durations of these voiced regions

(calls) and the non-voiced regions almost remain same through out the laughter bout. This

pattern which is unique to laughter cannot be seen in case of normal speech. Fig. 3.12

shows the distribution of the differenced call durations and intercall durations for laughter

and normal speech. The distribution shows that difference in the call durations is almost

zero for most of the calls. The same trend can also be observedin the differenced intercall

durations too.

Call level correlation

Because of the repetitive pattern of laughter, the laugh syllables will repeat itself for some

number of times. So the signal (laughter syllables or calls)also will almost repeat itself

for some number of times which is not the case in normal speech. The features like

pitch period, strength of excitation etc between two laugh syllables will match closely.

Correlation of these feature contours between two consecutive voiced regions (will be

consecutive calls in case of laughter) is used as a feature. Since the laughter calls are

almost similar, the correlation will be more in case of laughter than normal speech.
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Fig. 3.12: Illustration of differences in the durations of voiced regions (calls in case of laugh-
ter) and unvoiced regions (intercall interval in case of laughter) between laughter and normal
speech using the distributions of the differenced call and intercall durations. (a) differenced
call durations (b) differenced inter-call durations.

3.3 Distributions of the features for laughter and speech

As mentioned earlier, the production of laughter and speechare different in many aspects.

As a result, source features like pitch period (T0), strength of excitation (α), breathiness

differ. Distributions of the featuresT0, α, β, δT0, δα, η andγ for laughter and speech

samples of 5 male and 5 female speakers are shown in the first columns of Fig. 3.13

and Fig. 3.14. We can see from the distributions that there are certain regions where the

laughter feature values are more concentrated, and there are regions where the speech

feature values are more concentrated. This difference in distribution of features show that

they could be used to discriminate between speech and laughter.

There is also a pattern observed in the variations of featurevalues across calls within

a bout. The intensity of the feature values decreases as the calls progress. This is showed

using the distributions of first calls and last calls of laughbouts. The features extracted

from the last call will be more closer to speech when comparedto those extracted from the

first call. This hypothesis can be clearly observed from the distributions showed in first
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Fig. 3.13: Illustration of differences in the excitation source features of Laughter and Normal
speech using frequency distributions (first column). It also shows the variations of features
across the calls within a laughter bout using the distributions of first and last calls (second and
third columns). In each plot the distributions of corresponding features of laughter and normal
speech are represented with solid and dashed lines respectively.
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Fig. 3.14: Illustration of differences in the excitation source features of Laughter and Normal
speech using frequency distributions (first column). It also shows the variations of features
across the calls within a laughter bout using the distributions of first and last calls (second and
third columns). In each plot the distributions of corresponding features of laughter and normal
speech are represented with solid and dashed lines respectively.

call (2nd column) and last call (3rd column) of Fig. 3.13 and Fig. 3.14. We can observe

from the figure that there is a clear discrimination between the distributions of features

of first calls of laughter and speech while the distributionsof last calls of laughter and

speech are very close.

3.4 Summary

In this chapter, we presented the study on the analysis of laugh signals using features

which are motivated from its production mechanism. The features are based on pitch
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period, strength of excitation, amount of breathiness and loudness. We showed using

the distributions that the features can discriminate between speech and laughter. We also

showed that this discrimination is more predominant in the initial calls and falls as the

calls progress.
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Chapter 4

Proposed method for detection of

laughter in continuous speech

This chapter describes the method for automatic spotting oflaughter in spontaneous

speech using the features proposed in the previous chapter.Unlike conventional methods

where the decision is made on frames of fixed frame size, here the decision is made on

each voiced segment. Call level features are used for makingdecision on voiced segment

and bout level features for detecting the final laughter bouts.

Section 4.1 describes the components of the proposed methodfor laughter detection.

In Section 4.2, the two data sets used for evaluating the performance of the algorithm are

described. Section 4.3 explains the results and Section 4.4deals about the error analysis

and further refinements.

4.1 Block diagram and algorithm of proposed method

The main blocks involved in the system are a) pre-processing, b) feature extraction, c)

decision logic and d) post-processing. Each of them are explained in detail below.
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4.1.1 Pre-processing

The preprocessing step mainly involves the voiced non-voiced segmentation. The voiced

non-voiced segmentation is done based on the energy of the zero-frequency resonator.

The signal is first passed through zero-frequency resonatorwith a 3ms window for trend

removal. This window length has been chosen in such a way thatit gives high energy

in the filtered signal in case of speech and laughter and low energy in the unvoiced and

silence regions. The slope of the filtered signal at positivezero-crossings, which is an

estimate of strength of excitation, is computed. This slopecontour is smoothed using a

mean filter with a window size of 4 values. A threshold of 30 percent of the maximum

value is put on the smoothed contour. The regions crossing this threshold are considered

as voiced segments and the regions falling below this threshold are considered as non-

voiced segments.

The above method for voiced non-voiced segmentation has a problem of segmenting

glottal fricatives (/h/) (which is very common in laughter), as voiced segment. Thisis be-

cause of the reason that glottal fricative also has a dominant low frequency component as

in case of voiced signal. We can see in Fig. 4.1 that the glottal fricative getting segmented

as voiced region after 1st level of decision.

To overcome this problem a second level of segmentation is performed on the voiced

segments obtained from above the step. It exploits the similarity between successive

pitch cycles in voiced region. A correlation value (c) and lag value (l) for each epoch

are obtained from correlation between the short segments ofthe signal in the vicinity

of the consecutive epoch locations. The lag values (l) are then divided by 40 to derive

normalized lag values (l̂). The values ofc will be close to 1 for epochs in voiced regions

and less (than 0.5) for epochs which belong to non-voiced regions. Similarly, the values

of l̂ will be close to 0 for epochs in voiced regions and more for epochs belonging to

non-voiced regions. The final decision is taken based on the difference between̂l andc.

The voiced non-voiced algorithm can be summarized as follows:

1. The input signal is first passed through the zero-frequency resonator with a 3ms

window for trend removal.
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Fig. 4.1: (a) Voiced laugh signal containing glottal frication with voiced non-voiced decision (b)
zero-frequency filtered (zff) signal with 4ms trend removal window, (c) energy of the strength
of excitation contour derived from the slope of the zff signal.

2. The slope of the filtered signal at positive zero-crossings, which is an estimate of

strength of excitation, is computed and the obtained contour is smoothed using a

mean filter with a window size of 4 values. A first level of voiced non-voiced

segmentation is done by putting a threshold (30% of the maximum value) on the

smoothed contour.

3. For every voiced region obtained in the above step, correlation values (c) and nor-

malized lag values (l̂) are extracted for all the epochs in that region. The difference

betweenc andl̂, which is denoted byvc, is then computed for all the epochs.

4. A threshold of 0.5 is put on thevc contour. The regions in the voiced segment falling

below this threshold are considered as voiced regions and the regions crossing the

threshold are considered as non-voiced.

FIG: showing the pitch period diff contour, st diff contour and correlation with new

v-uv decision.
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Fig. 4.2: (a) Voiced laugh signal containing glottal frication with corrected voiced non-voiced
decision, (b) correlation values (c), (c) lag values (l), (d) c − l̂.

4.1.2 Features

All the previous works in laughter spotting use conventional features like MFCC’s, spec-

tral tilt etc. [26][27][28]. The features proposed in this work are motivated from the

production mechanism of laughter.

As we have already seen, the features used for laughter spotting are divided into two

types a) call-level features and b) bout-level features. Call-level features are used for

discriminating calls from other voiced segments of speech and bout-level features for

capturing the intercall similarity within a bout. The call level features used areT0, α, β,

δ T0, δ α, η andγ. The bout level features used areδ duration, non-voiced duration. The

extraction of each of these features are explained in detailin Chapter 3.
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4.1.3 Decision Logic

After extracting the above features for every epoch location, a decision has to be finally

made on the voiced segment based on these values. Note that this work concentrates only

on voiced laughter and unvoiced laughter are not considered.

For every feature, a decision is first made on each epoch in thesegment. This is per-

formed by putting a threshold on the feature value (different for each feature), which is

called as ‘value threshold’ (vt) for that feature. If the feature value of an epoch satis-

fies this ‘value threshold’, it means that the epoch belongs to laughter according to that

feature. A decision is then made on the segment by putting a threshold called ‘fraction

threshold’ (f t), which determines the percentage of epochs that should satisfy the ‘value

threshold’ for the segment to be a laughter segment. After applying the two thresholds,

separate binary decisions on the segment are obtained for all the features. Finally, the seg-

ment is considered as laughter if atleast 4 out of the 7 features gave a positive decision.

The estimation of ‘value threshold’ and ‘fraction threshold’ is explained in the following

subsection.

As we have already seen, a typical laughter bout will have strong laughter character-

istics initially but falls as the calls progress. So, it is highly probable that the last calls

may not get discriminated as laughter. To overcome this problem, a slightly modified

algorithm which takes the context information of the previous call into consideration is

proposed. For this purpose, call duration and intercall duration are used as the bout level

features. The final decision on the segment depends on a) feature decision of the segment

b) confidence of the feature values obtained for the previoussegment (c−1) c) percent dif-

ference in the durations between current and previous segments (δd) and d) time interval

between the two segments. It is performed by relaxing the ‘value threshold’ of the fea-

tures of a segment if the previous segment is identified as laughter. This reduction in the

‘value threshold’ denoted byδvt is different for all the features. The value ofδvt of a
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feature is computed as follows:

δvt = −1/2× c−1 × vt × exp(−δd), δd < 0.1

= 0, otherwise

wherec−1 is a measure of feature confidence of previous segment, obtained as the differ-

ence between mean of the maximumn values and the value threshold of the segment.n

is determined from the ‘fraction threshold’ of the feature.δd is the percentage difference

between the duration of the current segment and the previoussegment.

Note that 1/2×c−1 is the maximum attainable change in the feature threshold for a feature.

After obtaining the decisions on individual voiced segments, pitch slope values (p1,p2,p3)

are used for eliminating some false alarms.

Threshold estimation

The ‘value threshold’ and ‘fraction threshold’ introducedin the previous subsection are

estimated from the distributions of the feature values on the training data and the pro-

cess is explained below. Feature values are normalized at some level before deriving the

thresholds. For all possible combinations of feature values (minimum to maximum) and

fraction values (0 to 1), the percentage of laughter segments identified as laughter (dr) and

non-laughter segments identified as laughter (f ar), are computed. For ideal thresholds,

the value ofdr should be equal to 1 and value off ar should be equal to 0. Selecting

the best combination of thresholds is an optimization problem which try to maximize the

difference (dr − f ar) in the most generic case. There may also be some additional con-

straints on the value ofdr (should not be lesser than a particular value, which basically

means that detection rate should not be too less) etc. The thresholds should be able to

satisfy all these constraints.

Fig. 4.3 shows the values ofdr, f ar and (dr − f ar) for all the features. Red color in

the figure indicates the maximum value and black color indicates the minimum value and

the in between colors correspondingly mapping between maximum and minimum. The
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Fig. 4.3: Illustration of estimation of the value and fraction thresholds for all the features. (a)
T0, (b) α, (c) β, (d) δT0, (e) δα, (f) η and (g) γ. First column, second column and third column
shows the values of dr, f ar and (dr − f ar) respectively.

thresholds are selected by picking the maximum point in the (dr − f ar) figures. Table 4.1

gives the value thresholds, fraction thresholds and value of dr, f ar and (dr − f ar) at the

points where the optimal thresholds are obtained, for each feature.
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Table 4.1: Value and fraction thresholds for each feature.

S.No Feature Value Threshold Fraction Threshold dr f ar (dr − f ar)
1 T0 3.6 0.3 0.6340 0.0988 0.5353
2 α 0.1548 0.05 0.7010 0.1852 0.5158
3 β 0.0059 0.05 0.5825 0.0988 0.4837
4 δ T0 0.0005 0.18 0.9433 0.2079 0.7156
5 δ α 0.0014 0.33 0.9072 0.1728 0.7344
6 η 0.0500 0.32 0.8170 0.0864 0.7306
7 γ 0.9750 0.33 0.8660 0.0988 0.7672

4.1.4 Post-processing

While the above decision logic gives a decision on the individual voiced segments, the

final goal is to detect the boundaries of the laughter bouts. So, a post-processing block is

included to attain such requirements.

Post-processing involves including some missed laugh segments, eliminating wrongly

identified segments (false alarms) and finally joining the calls which belong to single

laughter to form a complete bout. Non-laugh segments with duration between 50 ms and

150 ms, which has laugh segments on either side with a time gapof no more than 100 ms

are included as laugh segments. Laugh segments with duration lesser than 50 ms, which

occur in isolation (a time gap of 3 sec with laugh segments on either side) are eliminated.

These two steps are performed in two different iterations. In the first iteration false alarms

are eliminated and in the second iteration missed laugh segments are included. Boundaries

of final laughter bouts are obtained by joining the adjacent laughter segments along with

the intercalls.

The proposed method for laughter spotting can be summarizedas follows:

1. The signal is first segmented into voiced and non-voiced regions using a two level

segmentation. The first level of segmentation is performed by passing the signal

through the zero-frequency resonator using a window lengthof 3 ms for trend re-

moval. For every voiced segment obtained in the first level, asecond level of seg-

mentation is performed by exploiting the similarity between successive pitch cycles

in voiced region.
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Fig. 4.4: Block diagram of proposed laughter spotting algorithm.

2. For every voiced region, epochs are extracted using the zero-frequency filtering

method with a window size for trend removal derived adaptively from the signal.

(Explained in detail in Section 3.1.)

3. The call level and bout level features described in Section 3.2 are extracted for every

epoch in the voiced region.

4. If the previous segment is identified as laughter, the ‘value thresholds’ of the fea-

tures of the segment are modified using a) feature confidence of the previous seg-

ment (c−1), b) percent difference in the durations between current and previous seg-

ments (δd) and c) time interval between the two segments.

5. If a voiced segment has more epochs satisfying the ‘modified value threshold’ than

determined by the ‘fraction threshold’ for atleast 4 features, then that segment is

considered as a laughter segment.
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6. Finally, the obtained laugh segments are passed through apost-processing block for

detecting the boundaries of complete laughter bouts.

4.2 Data

The proposed algorithm for laughter detection is tested on two different datasets a) AMI

Corpus which is a clean data and b) TV Show data which is a noisydata.

AMI Corpus: The AMI Meeting Corpus is a multi-modal data set consisting of 100

hours of meeting recordings[[43]]. The data is recorded in 70 different meetings. The

system is tested on some part of the data which includes 10 meetings in ES subset, 6

meetings in IS subset and 8 meetings in TS subset. The data hasabout 5485 laughter

bouts with an average of 3.96 calls per bout (21720 calls) uttered by 41 female and 55

male speakers.

TV Show data: The data is a TV broadcast data with each episodetypically about

30 minutes of informal interview with one or more celebrities. It contains spontaneous

laughter in between naturally occurring speech. The data has different kinds of noise like

low amplitude background music and noise, multi-speaker utterances etc. The data is

around 3 hours containing 106 laughter bouts with an averageof 4.13 calls per bout (437

calls) uttered by 6 male and 3 female speakers.

4.3 Results

The laughter segments are manually labeled with start time and end time by listening to

the data. The manually labeled laughter segments has the time stamps of the complete

laughter bout, but not the individual calls. For obtaining the MDR (Missed Detection

Rate) and FAR (False Alarm Rate) on voiced segments, these laughter regions are au-

tomatically segmented into voiced and non-voiced regions.This gives the start and end

times of the voiced regions (calls) in a laughter. MDR and FARare calculated based on

these time stamps. If there is an intersection between the labeled time stamps and the
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hypothesized time stamps, then that segment is considered as correct one.

The post-processing step is performed after obtaining the laugh segments. This re-

sulted in a considerable reduction in the FAR as can be seen from Table 4.2. Table 4.2

shows the MDR and FAR at segment level and at bout level detection of laughter before

and after post-processing. We can see from the results that FAR has reduced by a signif-

icant amount after the post-processing step in both the cases. The best performance of

10.6% EER (Equal Error Rate) is obtained on the AMI corpus andand an EER of 16.5%

is obtained on the TV show data. The results are on par with theprevious best of 8.9%

EER, but cannot be directly compared since they were evaluated on a different dataset.

Table 4.2: Results of laughter spotting on AMI corpus and TV Show data.

AMI Corpus TV Show
MDR (%) FAR (%) MDR (%) FAR (%)

Segment level 6.1 12.9 9.1 17.1
Segment level after Post-processing 6.1 7.2 9.2 10.2

Bout level 2.1 14.5 5.2 21.1
Bout level after Post-processing 2.1 8.5 5.4 11.1

4.4 Summary

This chapter describes the proposed method for detecting laughter in continuous speech.

Two databases (one of which is a clean corpus and the other a noisy data) are used for

evaluating the method. The performance of the method on the two datasets is discussed

but however could not be directly compared with the existingtechniques because of dif-

ferent data sets used.
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Chapter 5

Synthesis of laughter

The ultimate goal of the speech synthesis systems is to synthesize long exchanges of

human-machine dialogues in more natural way. There are manycomponents that play

key role in improving the naturalness. Some of them include imparting emotion to speech,

intonation variations, non-lexical cues (throat clearing, tongue clicks, lip smacks, laughter

etc.) etc.(Shrikanth Narayanan, 2006).

The goal of this chapter is to synthesize laughter by modeling and incorporating the

feature variations explained in previous chapters. An analysis on the significance of each

of these features in improving the naturalness of the synthesized laughter is also done from

the results of the subjective perceptual evaluation performed on the synthesized laughter.

Section 5.1 describes how the features are modeled. In Section 5.2, the modification

and incorporation of the features is explained. Section 5.3describes the laughter synthesis

procedure. In Section 5.4, the perceptual significance of the features is discussed and

Section 5.5 discusses the results of the perceptual evaluation on the synthesized laughter.

5.1 Modeling the features

The source and system characteristics of laughter signals at call level are analyzed using

features like pitch period (T0), strength of excitation (α), spectral energy and each of them
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is modeled separately as explained below.
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Fig. 5.1: (a) A segment of laughter signal. (b) Pitch period derived from the epoch locations.
(c) Strength of excitation at the epochs.

5.1.1 Pitch Period

As mentioned earlier, the general pattern that is observed in the pitch period within a call

is that it starts with some value, decreases slightly to someminimum, and then increases

non-linearly to a high value. Many such pitch contours are analyzed and it is observed

that the polynomialx2 is a best fit for majority of natural laugh signals. The higherthe

slope of this rise in the pitch contour (t′), the more intense the laughter is. This slope of

pitch period contour typically falls as the calls progress.The rate at which it falls (t′′) is

assumed to be linear. The pitch period contour of a call is obtained from the following

equation

T0[i] = t0 + t′[c] ∗ i2, −pne ≤ i ≤ (1− p)ne (5.1)

t′[c] = t′0 − t′′ ∗ (n − c), 1 ≤ c ≤ n (5.2)
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where

c is the call number,

n is the total number of calls,

i is the epoch number within the call,

p is the point in the call where minimum pitch period occurs,

t′ is the slope of the pitch period contour,

t0 is the mean pitch period of speaker obtained from input signal,

ne is the number of epochs in the call and

t′′ is the rate at whicht′ varies across calls.

Note thatn, p, t′ are the user inputs and all others are either obtained from these three

values or fixed in the program.

5.1.2 Excitation Strength

The excitation strength at the epochs follows a similar pattern as pitch period contour. As

in the case of the pitch period, the strength of excitation atepochs also changes rapidly.

It increases non-linearly to some maximum value and then decreases almost at the same

rate. The slope of strength of excitation contour (s′) typically falls as the calls progress.

The rate at which it falls (s′′) is assumed to be linear as in case of pitch period. A similar

model as pitch period is used here. The pitch contour of a callis obtained from the

following equation

α[i] = s0 + s′[c] ∗ i2, −ne/2 ≤ i ≤ ne/2 (5.3)

s′[c] = s′0 − s′′ ∗ (n − c), 1 ≤ c ≤ n (5.4)

wherec is the call number,

n is the total number of calls,

i is the epoch number within the call,
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Fig. 5.2: Illustration on comparison of original and modeled pitch period contours. Two laugh
calls are shown in (a) and (b) with their corresponding pitch period contours in (c) and (d),
respectively. In (c) and (d), the actual pitch period contour is showed in thin dots (.) and
modeled one is shown in thick dots (*)

s′ is the slope of the pitch period contour,

s0 is the mean pitch period of speaker obtained from input signal,

ne is the number of epochs in the call and

s′′ is the rate at whichs′ varies across calls.

Note thatn, s′ are the user inputs and all others are either obtained from these three

values or fixed in the program.
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5.1.3 Call and Inter-call Duration

As we have already seen, the laughter bout consists of voicedcalls in between silence or

non-voiced regions. Bachorowski and Owren [4] reported that there is specific pattern

followed by the call durations and intercall durations for different call numbers based

on their observations. The durations of these voiced regions (calls) and the non-voiced

regions almost remain same through out the laughter bout. This pattern which is unique

to laughter cannot be seen in case of normal speech. Durationof the inter-call interval in

a laughter bout typically increases as the calls progress. There is no such pattern observed

in case of call duration. It is either increasing or decreasing depending on the speaker and

type of laughter.

From the frequency distribution of the duration of the callsin Fig. 3.12, we can see

that mean is around 130 ms and the variance is 40 ms. So, the duration of the first call (d1)

is generated from a gaussian distribution with the observedmean and variance as follows

d1 = 130+ 40∗ randn(). (5.5)

The variation of duration of calls within a bout is assumed tobe linear. So, the dura-

tions of rest of the calls are determined as follows

di = di−1 − d′ ∗ (n − i), 2 ≤ i ≤ n, (5.6)

wheredi is the duration of theith call, n is the total number of calls andd′ is the rate at

which call duration varies across calls.

5.1.4 Frication

Because of high amount of airflow and constant glottal leakage, there will be turbulence

generated with vocal folds as a result of which glottal fricative /h/ is produced. In most

of the cases it is predominantly observed in the intercall interval. The volume velocity

of air typically decreases as we go from left to right with in acall as a result of which
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the amount of breathiness also fall down with in a call. Also the amount of breathiness

decreases as the calls progress.

5.2 Incorporating feature variation

The derived models have to be finally incorporated in a synthesis framework for synthesiz-

ing laughter. Modification or incorporation of each of the modeled features are explained

below.

5.2.1 Pitch period and Duration modification

Pitch period and duration modification is done in a pitch synchronous way. It involves the

following steps:

1. The signal is passed through zero-frequency resonator for deriving the epoch loca-

tions. Pitch period is obtained by taking the difference of the epoch locations.

2. 10th order pitch synchronous linear prediction analysisis performed on the signal

to separate it into source (residual) and system (LP coefficients). So, there will be a

residual and lp coefficients associated with every epoch location.

3. Desired pitch period contour is generated either from theolder contour or a com-

pletely different one can be taken (Pitch period modification).

4. New pitch period contour is generated by resampling the existing one with duration

modification factor (Duration modification).

5. New epoch locations are derived from the obtained pitch period contour.

6. New set of residual and lp coefficients are generated for obtained epoch sequence

from the nearest original epochs. The residual at each epochis then resampled by

pitch modification factor (obtained from original pitch period and obtained pitch

period) at that epoch.
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7. For every epoch in the epoch sequence, residual is passed through the corresponding

LP filter to obtain the new signal. These signals are finally concatenated to obtain

the desired signal.

5.2.2 Strength of Excitation modification

Strength of excitation is an estimate of the excitation strength at the epochs derived from

the zero-frequency filtered signal. Since the speech signalcannot be reconstructed back

from the zero-frequency filtered signal, modification of strength of excitation cannot be

done on the filtered signal. So, we hypothesized that the strength of excitation can be

modified in the residual signal. In order to find out the relation betweenα and the am-

plitude of peaks in the residual signal, if there is any, a small experiment has been con-

ducted. A sequence of impulses with varying durations between consecutive ones (pitch

period) and different amplitudes are generated and passed through all-poleresonator with

lp coefficients corresponding to different vowels. The output signals are passed through

zero-frequency resonator and strength of excitation values are calculated. The obtainedα

values are compared with the amplitudes of the impulses, which is the approximate resid-

ual. It can be clearly observed in the figure that the impulse strengths (residual) and the

strength of excitation obtained from zero-frequency filtered signal have a linear relation

between them.

So, the amplitudes of the samples in the vicinity of the epochs in the residual are

modified according to the desired strength of excitation contour in an attempt to modify

the strength of excitation.

5.2.3 Frication Incorporation

Frication or breathiness is incorporated by modifying the residual. 10th order linear pre-

diction analysis is performed on the input signal to separate it into residual and system (LP

coefficients). Random white gaussian noise of length equal to the length of the residual

signal and total energy equal to the one-fifth of the total energy of the signal is generated.
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Fig. 5.3: Scatter plot demonstrating the correlation between impulse strength and strength of
excitation obtained from zero-frequency filtered signal.

It is then passed through a resonator with central frequencyat 4000 Hz and bandwidth of

1000 Hz. The resulting signal is first multiplied with a hanning window of equal length

and then with a linearly falling line. The obtained signal isthen added to the original

residual and then passed through the LP filter for generatingthe breathy voiced signal.

5.3 Laughter Synthesis Procedure

Laughter (ha-ha or hi-hi) is synthesized by modifying the above features of vowel/a/ or

/i/ uttered by a speaker. The process involves only modifying the source while the system

almost remains the same.

The proposed method for laughter synthesis consists of the following steps:

1. The input signal (/a/ or /i/) is first passed through a zero-frequency filter for deriving

the epoch locations. Obtained epoch locations are corrected using hilbert envelope
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based method and new epoch set of epoch locations are obtained. Pitch period is

obtained by taking the difference of the epoch locations.

2. The signal is resampled to 8000 Hz and a 10th order pitch synchronous linear pre-

diction analysis is performed on the signal to separate it into source (residual) and

system (LP coefficients). This gives a residual and a 10 element lpcc vector associ-

ated with each epoch.

3. For every call in the laughter bout, the valuesn, p, t′, s′ are obtained as user given

inputs. The value oft0, s0 (derived from the pitch period contour and strength

of excitation contour of the original vowel respectively),t′[c], s′[c] (derived from

equation 5.2 and 5.4 respectively) are derived and pitch period contour, strength of

excitation contour, duration of the call, duration of the following inter-call interval

are calculated from the pre-assumed models.

4. New residual is obtained after modifying the pitch periodand duration, strength of

excitation and incorporating breathiness effect as explained in the previous section.

5. The obtained residual is then passed through the LP filter of the vowel to synthesize

the call. The following intercall interval is also generated and concatenated to the

call.

6. Steps 3,4,5 are repeated for all the calls in the laughter and finally concatenated to

synthesize the laughter.

The complete laughter synthesis system described in Fig. 5.4 is implemented in MAT-

LAB (http:// www.mathworks.com).

The synthesis procedure is mostly concentrated on synthesizing calls and not much

care is taken on synthesizing bouts. It is also important to note that the voiced calls of

real laughter are not truly speech vowel-like sounds, whilewe used the same (lpcc’s of

system) for synthesizing laugh calls.
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Fig. 5.4: Block diagram of the synthesis system.

5.4 Perceptual significance of features

This study aims to analyze the perceptual significance of thefeatures described above.

An experiment based on analysis by synthesis approach is conducted. As a part of the

experiment, some original laugh signals are taken and the proposed features are modified.

For each original clip, modifications are performed for all possible feature combinations,

thus generating 15 (24
− 1) different clips. These clips are played randomly to 20 subjects

who are told to score them for naturalness and acceptability. Acceptability is a measure of

how close the sample is sounding to laughter and naturalnessis a measure of how natural

it is. The features modified areT0, strength of excitation, amount of breathiness and call

and inter-call durations. The modification is performed as given below:

The laugh signal is first segmented by making voiced non-voiced decision and calls

and intercalls are extracted. For every laugh syllable (call plus inter-call), the following

changes are performed:
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Table 5.1: Perceptual evaluation scores obtained for the modified versions of an original laugh
signal.

Sample T0 α breathiness call, inter-call Naturalness Acceptability
durations mean variance mean variance

1 0 0 0 0 4.2 0.36 4.33 0.22
2 0 0 0 1 3.9 0.22 4.01 0.21
3 0 0 1 0 3.6 0.21 3.69 0.22
4 0 0 1 1 3.4 0.31 3.52 0.29
5 0 1 0 0 3.99 0.29 4.09 0.32
6 0 1 0 1 3.61 0.09 3.79 0.22
7 0 1 1 0 3.24 0.16 3.44 0.23
8 0 1 1 1 3.01 0.26 3.19 0.29
9 1 0 0 0 2.9 0.24 3.01 0.23
10 1 0 0 1 2.69 0.19 2.99 0.21
11 1 0 1 0 2.41 0.21 2.43 0.09
12 1 0 1 1 2.02 0.21 2.19 0.11
13 1 1 0 0 2.31 0.14 2.44 0.19
14 1 1 0 1 2.11 0.11 2.21 0.36
15 1 1 1 0 1.69 0.36 1.79 0.24
16 1 1 1 1 1.26 0.26 1.69 0.14

1. Rising pitch period contour is replaced with a flat contour.

2. Strength of excitation has been reduced.

3. Breathiness is reduced by decreasing the relative amplitudes of the samples in the

non-epoch regions (samples which are more than 1 ms away fromthe epoch) and

intercall intervals.

4. Desired call and inter-call durations have been generated randomly from the distri-

bution of voiced unvoiced regions of normal speech.

Table 5.1 gives the results of the study. The table gives the naturalness and accept-

ability scores of some laughter clips for all possible modifications (including the original

sample). In the Table , a ‘0’ in a feature column indicates that the feature is not modified

and a ‘1’ indicates that it is modified in the given sample. We can see from the table that

sample1, which is the original version (all 0’s), has the high Naturalness and Acceptabil-

ity scores as expected and sample 16, in which all the featureare modified (all 1’s) has a
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very less score (1.26), which means that these four featurescould characterize laughter to

a maximum extent.

Table 5.2: Results of the experiment on perceptual significance of features.

modified not-modified
Naturalness Acceptability Naturalness Acceptability

(mean) (mean) (mean) (mean)
T0 2.1 2.3 3.6 3.7
α 2.9 3.1 3.1 3.2

breathiness 2.4 2.5 3.3 3.4
call intercall durations 2.8 3.0 3.3 3.3

For finding the significance of each individual feature, the mean of samples when a

particular feature is modified (1’s) is compared with mean ofsamples when it is not mod-

ified (0’s). Table 5.2 shows these comparisons for all features. The more the difference

between the two, the more significant the feature is. We can see from that Table that

difference is maximum in case ofT0 and minimum in case ofα with breathiness taking

the second position and call, inter-call durations taking the third position. The reason for

α showing the minimum difference may be attributed to the level of our understanding

on real excitation strength. It is also possible that itα doesn’t play major role in isolated

laughter, but becomes significant in laughter occurring in between speech, because unlike

other features, it is a highly relative measure.

We can also see that variance of pitch period is less, which means that the decision is

less speaker specific and the variance of breathiness is moreshowing that its perception

is more speaker dependent.

5.5 Experiment for subjective evaluation

Subjective evaluation tests are performed on 28 naive volunteers. The volunteers are pre-

sented with 25 laughter-only clips of which 17 clips are synthesized offline using the tech-

nique presented here and the remaining 8 clips are isolated laughter taken from the AMI

Corpus. The number of calls in the synthesized laughter, itsduration, the F0 changes,

the strength of excitation changes in each sample are given in Table 5.3. The 25 clips
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are randomly played and not grouped in any particular order.The tests are performed in

a typical quiet office environment on a computer terminal. Each volunteer had tolisten

and score each sample for naturalness and acceptability according to their preference on

a scale of 1-5: 1-Very Poor, 2-Poor, 3-Average, 4-Good, 5-Excellent.
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Table 5.3: Results of the laughter synthesis system.

Sample slope ofT0 slope ofα breathiness No. calls Avg. Call Gender Naturalness Acceptability
Duration (ms) mean variance mean variance

1 0 0 0 4 124 M 1.21 0.24 1.24 0.21
2 0.1 0.1 0.1 4 101 M 1.69 0.16 1.87 0.24
3 0.2 0.1 0.1 4 115 F 2.41 0.09 2.59 0.11
4 0.3 0.1 0.1 5 86 M 3.23 0.31 3.62 0.24
5 0.4 0.1 0.1 3 81 M 3.11 0.34 3.31 0.21
6 0.4 0.2 0.1 4 96 F 3.33 0.21 3.46 0.23
7 0.4 0.3 0.1 5 75 M 3.49 0.26 3.64 0.31
8 0.4 0.4 0.1 4 130 F 3.41 0.09 3.63 0.16
9 0.4 0.4 0.2 6 125 F 3.55 0.11 3.61 0.19
10 0.4 0.4 0.3 5 117 M 3.69 0.15 3.74 0.19
11 0.4 0.4 0.4 6 90 F 3.61 0.29 3.76 0.31
12 0.4 0.4 0.3 7 95 M 3.59 0.25 3.79 0.24
13 0.4 0.4 0.3 8 125 F 3.22 0.12 3.31 0.39
14 0.4 0.4 0.3 5 89 F 3.49 0.22 3.56 0.21
15 0.4 0.4 0.3 5 121 M 3.61 0.16 3.69 0.11
16 0.4 0.4 0.3 6 88 M 3.53 0.22 3.63 0.16
17 0.4 0.4 0.3 4 98 M 3.66 0.21 3.77 0.17
18 – – – 5 121 M 4.26 0.12 4.61 0.11
19 – – – 4 84 M 4.44 0.16 4.72 0.06
20 – – – 6 55 F 4.39 0.21 4.77 0.09
21 – – – 4 96 M 4.42 0.09 4.54 0.13
22 – – – 5 30 F 4.09 0.14 4.51 0.19
23 – – – 5 145 F 4.21 0.11 4.64 0.09
24 – – – 4 89 F 4.54 0.10 4.61 0.11
25 – – – 6 134 M 4.39 0.19 4.59 0.07
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5.6 Evaluation Results

For the analysis of the evaluations, we make the assumption that each laughter clip is an

independent encounter by an individual subject. Thus, forN=25 subjects and 17 synthe-

sized samples, we have a total of 28*17=425 samples ans for eight real laughter clips, we

have 25*8=200 samples.

The 17 samples are synthesized by varying the input parameters like slope of pitch

period contour, slope ofα contour, amount of breathiness, number of calls etc. The mean

and variance of the evaluation scores are listed in Table 5.3. The evaluation results are

summarized below:

We can see from the Table that the mean scores increased with an increase in slope

of T0, slope ofα and amount of breathiness. The increase is high in case ofT0, but

low in case ofα and amount of breathiness. But they are decreasing after some point in

all the cases. This may be because of the unnaturalness introduced by the modification

algorithm. Also notice that the scores decreased with an increase in the number of calls.

This is because of the reason that we have used a simple linearmodel for deriving the call

and intercall durations. The mean naturalness score obtained for the original samples (18

to 25) is 4.34 and the mean naturalness score obtained for thebest synthesized samples

(11 to 17) is 3.55. Note that we have only accounted for the differences in the source

and not modified the system (used the system coefficients of the speech vowels). Better

results may be obtained by modifying the system parameters also.

5.7 Summary

In this chapter, a method for synthesizing laughter, by modeling and incorporating the

feature variations is described. Pitch period (T0), strength of excitation (α), breathiness

and call intercall durations of speech vowels are modified for synthesizing laughter calls.

An experiment was conducted for estimating the perceptual significance of features. The

experiment indicated that pitch period contour is the most significant factor, followed by

breathiness, call intercall duration and strength of excitation. Perceptual evaluation was
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also conducted on the synthesized laughter and the results were discussed. The quality

of the synthesis can be improved further by also modifying the system coefficients along

with the source.
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Chapter 6

Discussions and Conclusion

Laugh signals have been mostly analyzed in the literature using traditional spectral fea-

tures like formants, MFCC’s, LPCC’s etc. The phonetics and the prosodic characteristics

of laughter has also been studied thoroughly. However, it ishypothesized in this work that

the source plays a significant role in the production of laughter and hence the analysis is

focused on understanding the source variations during laughter. The source features used

for the analysis are (a) pitch period, (b) strength of excitation, (c) breathiness, (d) loud-

ness and their variants. Pitch period and strength of excitation at epoch are obtained from

adaptive zero-frequency analysis of the signal. Breathiness and loudness are derived from

the Hilbert envelope of the linear prediction residual.

Distinct patterns are observed in the pitch period contour and strength of excitation

contours of laugh signals. The general pattern that is observed in the pitch period within

a call is that it starts with some value, decreases slightly to some minimum, and then in-

creases rapidly to a high value. Similarly, the strength of excitation increases non-linearly

to some maximum value and then decreases almost at the same rate. Also because of

high amount of air flow through the vocal tract, laugh signalsare typically accompanied

by some amount of breathiness. Breathiness is shown to result in high non-deterministic

component and less loudness in the signal. Using these features, a method was proposed

for detecting laughter in spontaneous speech and the performance was tested on two dif-

ferent data sets.
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A method was also proposed for automatically synthesizing laughter by modeling

the features. An experiment was conducted for estimating the perceptual significance of

features. The experiment indicated that pitch period contour was the most significant fac-

tor, followed by breathiness, call intercall duration and strength of excitation. Perceptual

evaluation was conducted on the synthesized laughter and the results were discussed.

6.1 Contributions of the Work

1. Improved an already existing zero-frequency based epochextraction method for

handling the cases of large pitch period variations, by adaptively choosing the win-

dow for trend removal.

2. Proposed features based on pitch period, strength of excitation, breathiness and

loudness for analyzing laugh signals.

3. Proposed a new feature based on hilbert envelope for detecting breathiness in a

signal.

4. An algorithm for detecting laughter in continuous speechwas proposed and it was

tested on two different data sets.

5. Modeled the feature variations and synthesized laughterusing these developed mod-

els.

6. Performed an experiment for deriving the perceptual significance of features.

6.2 Scope for future Work

1. A more detailed study can be done by considering various types of laughter.

2. The performance of the proposed laughter spotting algorithm can be studied on data

with different noise levels and collected with different channels.
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3. The performance of the system can be improved by taking thejoint probability of

all the features instead of deciding on each feature individually.

4. During laughter synthesis, only the source was modified while the system remained

same. A more natural synthesis can be obtained by modifying the system along

with the source.

5. It was showed earlier that the speaker has very less control on the articulators while

producing laughter. So, it can be hypothesized that laughter cannot be mimicked

like normal speech. A study can be made on analyzing the speaker specific charac-

teristics of laughter which can be used for speaker verification etc.
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