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ABSTRACT

Keywords: face recognition, edge, smearing of edges, impulse, 1-Dgssing of images,

zero-frequency filter, Laplacian operation, zero-crogsianalytic image, Fourier transform.

In this thesis we consider four representations of an imagapture the edge information
of the image, and examine their utility in the context of faeeognition under variations of
pose and illumination. These representations are edgimegge (first derivative of an im-
age), second derivatifleaplacian of a smoothed image (filtered image), phase ofrthlyac
image and phase of the Fourier transform of the image. Thertaia issues that need to be
addressed in using edge-based representations are : 1ekitgetion, i.e., discrimination
of spurious and significant edges, anddgality problem i.e., slight shift in edges of similar
face images leading to poor matching. The proposed foueseptations do not involve the
task of edge extraction directly, but at the same time theggnve the edge information for
matching purpose. The locality issue is addressed by sngetire edge information to help
improve the matching of face images.

There is a tradefdbetween noise suppression and the smearing of edges inrtippieo
tation of the edge information using derivative operat&inge it is generally assumed that
edge and noise of an image correspond to the high frequemapawents in the spectrum.
On the contrary, processing of signals using zero-frequéitter illustrates that the edge
has characteristics of an impulse whose energy is disertbumiformly throughout the spec-
trum, including around the zero-frequency. This propestgxploited in the proposed two
methods of realizing the zero-frequency filter for imagesapture the edge information in
the filtered image representation. The edge informatiosgmein the Fourier phase and in
the phase of the analytic image are exploited using funstafrphase rather than the phase
directly. These representations avoid the problem of pohaseapping. Performance of
face recognition is further improved by exploiting the caimentary information present
in both the Fourier phase and the analytic phase using Bongiat t@sed approach. The
performance of the four representations is evaluated usiagtandard databases covering
pose and illumination variations. The representation dbaselaplacian of smoothed im-

ages performs better than the other representations. Phesentation derived using the



zero-frequency filtered signal seems to perform better gilaother representations under
illumination variation. It shows that the edges do not camtim only high frequency com-
ponents, and that the edge information for face recognisamt only important but also
depends how it is computed. The results of this thesis detredaghat representation, es-
pecially the edge information of an image, is crucial in &&ilons such as face recognition

using template matching. The major contributions of thaithare:

¢ A method for combining evidences using autoassociativeat@etwork.

Laplacian of a smoothed image for representing edge inftioma

Zero-frequency filter for deriving the smoothed image.

Functions of analytic phase and Fourier phase for repreggtite edge information

of images.

A method to exploit the complimentary information presenthie Fourier phase and

analytic phase using Borda count based approach.
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Chapter 1

Introduction

In many image processing applications, it is essentialgoasent the information in an im-
age in a form suitable for that application. Since the vabfgsxels acquired from sensors
are dfected by lighting conditions and noise, the relevant infation needs to be extracted
from the image to derive the suitable representation. regia suitable representation from
an image is governed by three factors, namely, applicapierception and processing. It is
difficult to derive a representation which is applicable fortedl applications. The represen-
tation should contain perceptually significant informataf the image, which is specific to
the given application. Processing of an image should notaatifidcts or enhance noise in
the resulting representation. In the context of face reitmgn(an application where a face
image is used to recognize a person), it ificlilt to define or articulate the perceptually
significant information in a given face image. The inforroatithat makes an individual
face unique must be found in the subtle variations of theafdeiatures (e.g., eyes, nose
and mouth), since all the faces share the same set of featrsegyed in roughly similar

configuration [1].

1.1 Psychophysics issues relevant for representing face

It has been estimated that a normal person knows about 7@0eggeersonally, and thousands
in general [2]. Humans are also capable of identifying adargmber of strange faces with

relatively brief exposures. Typically, one sees thousafifisces over one’s lifetime. Identi-



fication of known faces or faces of famous people occurs almetantaneously. However,
for both familiar and unfamiliar faces with unusual orididas (example, upside-down or
partial exposures) the time taken for identification is lilgdanger. Face identification by
humans is also robust in the sense that humans identify tawbs a wide range of trans-
formations.

It has been studied that for every known face there existstanuine brain that registers
its familiarity under all conditions [3]. More familiar fas need less evidence for identifi-
cation compared to the less familiar ones [4]. Consequeiathgiliar faces are less likely
to be falsely recognized. Bartlett postulated that all neve$shave the same (zero) level of
familiarity, and new typical faces produce a stronger inspren of familiarity than unusual
faces [4]. Increase in the degree of familiarity after a Erexposure is higher for unusual
faces than typical faces.

Despite the ability of humans to identify faces rath@oelessly, it is dificult to describe
a human face. Neuroscientists performed research on hwenagnition of faces and found
many reasons for correct recognition of faces by humansmHsychophysics point of
view, the face recognition system in humans utilizes a bggattrum of stimuli obtained
from many, if not all, of the senses (visual, auditory, oifayg (related to the sense of smell),
tactile (related to the sense of touch), etc) [5]. Theseudtiare used in either an individual
or collective manner for both storing and retrieval of faceges for the purpose of recog-
nition. There are many instances where contextual knowelésiglso applied, for example,

recognizing faces in relation to where they are supposed todated.

1.1.1 Face processing by humans

Evidence for the existence of a dedicated face processstgrayin human brain comes from

three sources:

(a) Faces are more easily remembered by humans than otlesthjhen presented in

an upright orientation [6].

(b) Prosopagnosia patients are unable to recognize piyitamiliar faces, but usually

have no other profound agnosia [7]. They recognize peopthdiyvoices, hair color,



dresses, etc. Although they can perceive eyes, nose, mmuaithetc., they are un-
able to put these features together for the purpose of fitaiton. It was found that
prosopagnosia patients can recognize whether the givesttoisja face or not, but

they have diiculty in identifying the face [7].

(c) ltisargued thatinfants come into the world pre-wiretiéattracted by faces. Neonates
(a child less than a month old) seem to prefer to look at mosiimguli that have face-

like patterns in comparison to those containing no pattemith jumbled features [8].

1.1.2 Distinctiveness

Studies show that distinctive faces are better retainedeimany, and are recognized better
and faster than typical faces [4]. For example, a persomiaaiscar on his face can be
easily identified than a person having no such distinctiaguiee. However, if a decision
has to be made as to whether an object is a face or not, it takgei time to recognize an

atypical face than a typical face.

1.1.3 Role of race and gender

Humans recognize the faces of person from their own racertbiin the faces of person
from another race [9]. This may be due to the fact that humaaglve coding an average
face with average attributes, the characteristics of wimiely be diferent for diferent races,
making the recognition of faces from dl@irent race harder. The gender of a person enables
quick recognition of a face than recognizing a person froh@ggraph without any gender

information [10].

1.2 Perceptual significance of edge information of face im-
age

Psychophysics studies suggest that human visual peroepsitils and encodes key features

or “formless invariants”, regardless of the point of viewstyle of representation of the



given face image [11]. Interestingly, these key featuresmesent in a caricature or a
sketch of a given face image drawn by an artist. Represensatb a face image using
edge map, sketch, and caricature are discussed belowdtralle the significance of unique

informationkey features present in the face image.

Edge map The edge of an image is defined as the discontinuity in thgefaight-
ness [12]. These discontinuities correspond to discoityimudepth, discontinuity in
surface and variations in illumination. There are sevelgbr&hms available in the
literature to compute the edges of an image [12-14]. Figb) dhows the edge map
of the face image (shown in Fig. 1.1(a)), computed using Capeyator [13].

Sketch A sketch consists of lines, and perhaps it is the simplesh fof drawing.

It is also known as line drawing. The sketch of a face showsomagntours, and
contrast edges plus finer details such as lines and wrinklbe dace [15]. Fig. 1.1(c)
shows the sketch drawn by an artist for the person whose faagé is shown in
Fig. 1.1(a). One can observe from Figs. 1.1(b) and (c) thatirformation of the
sketch is present in the edge map. However all edges are esgmrin the sketch.
Approaches available in the literature to compute the $keta face image will be

discussed in the next chapter.

Caricature: Caricature is a graphical coding of facial features thakseparadoxi-
cally, to be more like a face than the face itself [16]. It isansformation which am-
plifies perceptually significant information, while redngiless relevant details. The
caricature drawn by an artist of the same person (Fig. J.l{ahown in Fig. 1.1(d).

Caricature is a sketch with exaggeration of some signifiggotination.

The images of the same person acquired @#&#nt pose, scale, and age are also shown
in Fig./1.2. The following observations can be made from th@va mentioned three repre-

sentations:

1. The exaggerated features of the caricature (such as ndsheek shown in Fig. 1.1(d))
are independent of pose and scale of the face image. Hersedby to recognize

the person using his caricature as compared to the sketckdgalmap of the face



Fig. 1.1: (a) Gray level face image. (b) Edge map of the image )SKetch and
(d) caricature drawn by an artist for the person shown in (a).

Fig. 1.2: Images of the person in Fig. 1.1 (a) witlifdient pose, scale and age.

image. The exaggerated information is so unique that itsheyen in recognizing the

person’s face image taken at dfdrent age (extreme right in Fig. 1.2).

2. Sketch also contains crucial information about the fatage, that is useful to rec-
ognize the person. The crucial information of the sketchesponds to the physical
edges (edges perceived by human) that are portrayed byisin artthis process, an
artist may leave some edges of the face image to highlightitigueness present in
the face image. The crucial information perceived Wyedent artists could be fiier-

ent, but all of them end up in drawing similar sketches of @&giface image.

3. Edges are computed as changes in brightness of the fage foibbwed by threshold-
ing. Some spurious edges that do not correspond to physigakanay also appear in
the edge map. One way to remove those spurious edges is teecadogh threshold
value in the computation of the edge map. However, some pdlysdges of a face

image may also obliterate from the edge map.



4. From the perception point of view, sketch and caricatueengore robust representa-
tions as compared to the edge map representation of a fage inBait it is not easy
to develop an algorithm to compute those representationis. i$ because one needs
to define the relevant crucial information of a face image ihdifficult to articulate,

and also the information may be specific to a given face image.

5. All information of the sketch is present in the edge maphefface image. But the
reverse is not true. The reason could be that the definitiomdge of an image is

different from the edge perceived by human beings.

The edge map has all information of a sketch along with sos®degnificant information.
Removing the less significant information (by choosing a lighshold value) may lead to
loss of crucial information also. So, there is a tradi&ochoosing the threshold value in the
edge map based representation of a face image. In this thesasgue in favor of using a
representation that captures the edge information intiglicther than a representation that
requires edge extraction (discrimination between spsremd significant edges). Another
issue that needs to be addressed iddhality problem i.e., slight shift in edges of similar
face images leads to poor matching.

In this work we discuss four types of representations gigtelable 1.1) that preserve the
edge features of a face image, and compare their perfornfi@antaee recognition. The first
two representations are based on the derivative operatidheoface image. An edginess-
based representation, obtained using the first derivafiaa omage, is studied first. It is
computed using 1-D processing of images, unlike the ti@ddi 2-D methods of process-
ing. The second is a new representation that associatesl¢jes avith the zero-crossings
of the second derivative or Laplacian of an image. A smoagtluperation is required be-
fore the derivative operation is applied, since the Laplacperation enhances noise in the
image. Two smoothing functions are explored, namely, thie-requency filter and the
standard Gaussian filter. Smoothing using the zero-fre;usssonator has an interesting
interpretation, in the sense that it preserves the impiksecharacteristics (i.e., edges) of
images in the resulting output [17]. The third represeatsais based on the phase of the an-

alytic image, which also exploits the impulse-like chaesistics of edges of an image. Itis



well known that the phase of the Fourier transform of an imaagperceptually significant
information of the image [18], and hence can also be used e@gragentation capturing the

edge information.

Table 1.1: Four types of representations capturing the edgenation of an image.

(a) Edginess-based representation of an image
(b) Laplacian of a smoothed image
(c) Phase of the analytic image

(d) Phase of the Fourier transform of an image

1.3 Objective and scope of the work

The objective of this work is to study the importance of regrgation of an image in the
context of face recognition. The focus is on representdahahcaptures the edge-like infor-
mation of an image. Thefkectiveness of representations is examined for face retogni
using template matching. It is assumed that all the face esnage already cropped and
aligned with respect to the location of the eyes. All the fimeages are rescaled to the same
size. The &ectiveness of dierent representations in dealing with variations due te posl

illumination for face recognition is studied in this work.

1.4 Organization of the thesis

The contents of the thesis are organized as follows:

Chapter 2 gives an overview of the existing representations of a fawge as well as
the approaches for face recognition.

Chapter 3 discusses the edginess-based representation of a face.ithagcomputed
using one-dimensional (1-D) processing of images, whigkegimultiple partial evidences
of the face image. The potential field is derived from the rdgs map of a face image
to address the locality problem in matching. A novel methogroposed to combine the

multiple evidences from ¢lierent reference face images to address the issues of pose and



illumination in face recognition. An autoassociative reduretwork (AANN) model based
method is proposed for decision making in face recognition.

Chapter 4 discusses a new method of processing an image using zeyefrey res-
onator. The zero-frequency resonator for two-dimensisigals like images is realized
using two methods, namely, spatial domain and Fourier domAimethod based on the
zero-frequency resonator is proposed to compute the edgeoma given image. The
method is similar to the standard Laplacian of Gaussian (L@g&ration, in the sense that
the former approach uses the zero-frequency filter for shiogt whereas the latter uses
Gaussian filter for smoothing. The Laplacian operation ésgame in both the cases. We
propose a representation based on the Laplacian of the setbmbage (filtered image) that
preserves the edge information of a face image around tleeczessings of the filtered im-
age. The locality problem of the filtered image is addresgyembhsidering only the first few
eigenvectors for matching. A method is proposed to highligk subject-specific unique
information present in the eigenvectors derived from thergd images.

Chapter 5 proposes a representation of face image using analyticanaagl discusses
issues involved in the definition of an analytic image. Tleigresentation exploits the edge
information present in the phase of the analytic image. Hése the eigenanalysis based
method is employed for matching two face images.

Chapter 6 discusses a representation of a face image using the phake Bburier
transform. The importance of small spacing or large spaedggs is controlled by select-
ing the appropriate discrete Fourier transform (DFT)fGoents. A method is proposed to
utilize the complimentary information present in the phaganalytic image and Fourier
phase. This chapter also compares the proposed four edgéd-lepresentations with exist-
ing approaches for face recognition.

Chapter 7 gives a summary of the present work by listing the major ¢buations of the

present work, and also suggests some directions for furéisearch in this area.



Chapter 2

Review of representations for face

recognition

The problem of automatic face recognition is a composite tfaet involves the detection of
faces from a cluttered background, representation of fdeature extraction) and matching.
A complete face recognition system should address all tbeeabubtasks, and each one of
them presents several research issues. This researchaeoides on the problem of repre-
sentation of face images. fierent representations of face images proposed in thetlitera
are discussed in Section 2.1. Section 2.2 explains mettsmdkfar face recognition. Details
of the face databases used for experiments in this reseandhase given in Section 2.3.

Summary of the chapter is given in Section 2.4.

2.1 Representation of face images

The choice of representation significantijexts the performance of a face recognition sys-
tem. Two types of representations used in the face recogniésearch are: 2-D array of
intensity values and feature vectors. The drawback of sgmtation using 2-D array of in-
tensity values is that it is sensitive to illumination. Alsithe face image is captured using
a different sensor, the performance of the face recognitionrsydégrades.

The most widely used representation of face images is basdeature vectors. Two

approaches are commonly employed to extract the featusgskgature-based approach



and (b) holistic approach. In the former approach the featare derived from the relative
positions and measurements of the facial parts. On the b#ed, the holistic approach
considers the face image as a single unit while derivingdpeasentation.

Features derived using thefidrent facial parts dlier depending upon the pose of a face

image. For example, size of the eyes, and distances betwesioelips are clearly visible in
the frontal pose. For a face image with side view, a set ofatdtaristic points are employed
such as the notch between the brow and nose, the tip of the thesaotch between the
nose and the upper lip, etc.. The features are usually tkendiss and angles between those
characteristic points (facial parts). Table 2.1 lists sem@monly used features. In the late
nineteenth century Galton devised a system in which ptstveere described by numerical
formulae [19]. Each formula consists of four groups of figuwégth five figures in each
group. The shapes of the profile at characteristic pointe wepressed as single numerals.
They are determined from a table in whicHfdrent shapes are represented with an index.
Not more than 10 varieties were given for each feature. FigsBows some possible shapes
for the ridge of the nose. Each of them was assigned a patinuimber (0-6).
Though the features derived from the relative positions medsurements between facial
parts give a compact representation of a face image, thegseptation has certain con-
straints. It depends heavily on the techniques for facetiuiee detection. It requires precise
locations of the facial features, which arefiult to obtain. It also sfiers severely from

partial face occlusions and image degradations. Thesdgongbcan be avoided in a rep-

Fig. 2.1: Some possible shapes used by Galton for ridge of the nose
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Table 2.1:Features used for identifying faces (obtained from gray level values) [2]. Here
D(x,y) represents the distance between the facial features x and y.

Category Features
Overall height, outline, template, area, centroid
Eyes template, shape, colshade, area, opening, intensity around pupil,

D(upper eyelid, eyelid-folddifference of ordinates of inner and outer
corners, inter-eye distance (center), inter-eye distémater corner)
Eyelids | area, length of the bounding curves

Eyebrows| thicknessD(eye, brow)

Lips thickness, shape, template, width

Mouth template, width, height, area, area of opening

Nose width, length, template, shape, area of nostrils

Ears length, shape, area

Hair intensityshadgcolor, amounfcoverage, length, texture

Cheeks | intensity

Distances| width of head on the eye-lin@(chin, eye-line)D(center of lips, chin)
D(eye, hairline) D(eye, center of nosgp(tip of chin, center of face)
D(left edge, center of nosd)(right edge, center of nose)

D(center of face, center of bronp(center of mouth, end of nose)

Areas inner corners of eyes and center of mouth, center of eyeli] fo
center of eye and center of face, center of mouth and centeoofs
Ratios D(center of face, opening of moutB)chin, opening of mouth)

D(chin, opening of moutfip(end of nose, opening of mouth)
Others chin outline, width and height of philtrum, forehead sizmghead outline

resentation derived by considering the face as a compléteTms concept is followed in
all the subspace based methods, which will be discussedadtio8e.2.5. This approach
may give equal importance to all parts of the face image. hemtords, contribution of
the subject-specific unique information, which may reflackome specific part of the face
image, will not get emphasized during matching. Thus, eg@@haach has its own advan-
tages and disadvantages. ldeally, one should use a combindthese two approaches for
representing a face image. These representations indkadiehs caricature and edge map,

which will be explained below.
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2.1.1 Sketch

It is fascinating to see how an artist draws a sketch of a pé&rdace. Sketches are the
simplest form of drawings because they consist of mostlsliiThe artist distils the unique
characteristics of a face, and highlights them with a smathbber of critical strokes [15].

The use of a sketch representation for face recognitioregaatention because of two
reasons: (1) Automatic retrieval of suspect’s photo fromghoto database, and (b) human
beings recognize sketches as accurately as gray levelrfeagges [15]. Here, photo means
the face image with gray level values. Unfortunately, thetplof a suspect is not available
in most cases. To deal with such a problem, a simulated sketpbnerated with the help
of artists and eyewitnesses. Thus, automatically seagdhimugh a photo database using
a sketch is a very useful application. It will not only helgetpolice to locate a group
of potential suspects, but also help the witnesses and tis¢ésao modify drawing of the
sketch of the suspect interactively, based on the similatgshretrieved. In addition, a
simple sketch can reveal interesting characteristics @fraqn.

During the past three decades, many face recognition sgstawve been developed.
Nonetheless, very fewfiective face sketch recognition systems can be found in tee li
ature. In [20, 21] traditional methods of face recognitioicts as the eigenface and elastic
graph matching have been applied on sketches drawn bysakistvever, in practice, creat-
ing a database of sketches is not easy. So the focus of thieprblas shifted towards finding
similarities between a photo and a sketch. Sketches andghot of diferent modalities,
and it is hard to find their similarities. This issue was addesl by shrinking the flerence
between those two representations and then performinghmgtdn [20] the objective was
achieved by normalizing the sketch in geometry and by bigrusing a Gaussian filter, and
then recognizing using the eigenface method. This methed dot perform well because
of large diferences between sketches and photos. Thus, the task ofingaécphoto and a
sketch is attempted by transforming those two representatnto similar patterns. This is

done by transforming a photo to a sketch, or a sketch to a phstdiscussed below:

1. Photo to sketch transformation: The objective of these approaches is to derive a

sketch from the available photos, and then perform matcWitiy the sketch drawn
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by the artist. These approaches can be divided into two caésy namely, feature-

based approach and exemplar-based approach.

The feature-based approaches are given in [22, 23]. In {B2]facial feature points
such as eyes, nose, and mouth are detected using genesgimetetry operator, rect-
angle filter and characteristic shapes. Line drawings adimgethese feature points
give the facial sketch image. The results were shown to biesito the sketch drawn
by an artist. However the representation was not appliedafe recognition. The
method in [23] proposes a grammatical model based approadkétch generation.
A face image is divided into six zones for detection of thefaoial components: two
eyes, two eyebrows, nose and mouth. Each component has &dieérse repre-
sentations, and their topological configurations such &» @nd close states. These
components are modulated by active appearance modelif@imomponent analy-
sis). The presence of components is controlled by the graditahaules [24] through
hidden variables. The six component zones are further cefivith sketch curves
corresponding to the subtleftérences in eye-lid, eye-shade, nostril and lips. This is
performed using prior models and global context derivedhftbe facial components
using several face images. Here, the objective was to cargpeketch that can be
used for low bit rate communication over wireless platfarifisis representation was
used to address the issue of expression in face recogri¥sdnThe performance was
evaluated for the three expressions of face, namseljljng, angryandscreaming The
recognition accuracy was better in the casamjry as compared to themilingand
screaming expressionsince the distortion in the sketches is high in the caseasgh
two expressions. A method recently proposed in [26] alse tleegrammatical-model

based approach for synthesis of a sketch from a given photo.

In exemplar-based approaches, the objective is to learmépping between a photo
and a sketch through several photo-sketch pairs. In [27tB8]mapping is assumed
to be linear. A new face photyg, and sketctys can be represented by a linear com-
bination of training photo-sketch pair sampksandXs. Each column oKX, andXs
represents a training photo sample and the correspondatgrsgkample, respectively.

The linear relationships asg, = X,c, andys = XCs, where the linear combination
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codficientsc, andcs are column vectors obtained by principal component arglysi
Based on the assumption of linearity, a sketch should havaikasiinear reconstruc-
tion to its corresponding photo image, i.€,,~ Cs, SO the pseudo-sketch of the photo
can be synthesized witkisc,. This method is called eigentransform-based pseudo-
sketch synthesis. Three distances basedycendcs were defined to recognize the
given sketch. The performance was further improved by pa@ting the shape and
texture information of photo in the pseudo-sketch synsh@d]. A Bayesian subspace
classifier is employed to recognize the pseudo-sketch@seddrom the probe photo.
The assumption of the linear relation of photo-sketch aielaxed in the approaches
given in [30, 31]. In [30], a local linear embedding (LLE) lealsmethod is used for
the generation of the pseudo-sketch. Nonlinear discrintianalysis is used to recog-
nize the synthesized pseudo-sketches. This method pextopetter than the method
given in [29]. Learning linear or nonlinear mapping betwegdmto-sketch pair re-
qguires many examples. This issue is addressed by the meiver ig [31], which
uses the embedded hidden Markov model (E-HMM) for sketchihggis. The re-
sults are shown only for sketch synthesis, and not for reiiogn Recently a method,
based on multiscale Markov random field, is proposed to ldge@mapping between
a photo and a sketch [32]. In all the exemplar-based appesathe drawing style
of artist plays an important role in the synthesis of pseskietch, since they require

several photo-sketch pairs drawn by the artists.

. Sketch to photo transformation: Compressing more information into smaller com-
pact representation is a more stable operation than entpagtompact representation
to a full representation [29]. Since photos contain dedaiéormation than sketches,
it should be relatively easier to convert a photo to a skefhan extreme example,
suppose that the sketch contains some simple outlines fremphoto of a face. It will
be dfficult to reconstruct the photo from the line drawings onlye Bxperimental re-
sults of the face recognition also give similar conclusi®®][ Nonetheless, synthesis

of photo from sketch is attempted in [33, 34].

A statistical inference method for transformation betwasketch and a photo is given
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in [33]. The relationship between photo and sketch is eistadadi by using two feature
spaces formed by patch-based tensor model. The statdtipahdencies between two
tensor models hold more precisely and flexibly by using Bayesensor interface.
This method is compared with eigentransform [28] and methad preserves local
geometry preserving [30] for facial photo hallucinationdahe results are shown to

be better. But this representation is not yet applied fordlsk bf face recognition.

The synthesis of a photo from a sketch given in [34] is sintidathe method given in

[28]. The only diterence is in the computation of the eigenvector matrix. #] 8

hybrid space is derived by appending sketch vector to thesponding image vector
for computation of the eigenvectors. On the other hand, & {e eigenvector ma-
trices for image space and sketch space are computed sdypalbhas been argued
that the computed eigenvectors for photo space and skedcle spe highly correlated
if they are computed using hybrid space rather than sepspates [34]. The synthe-
sized photos are used in conjunction with advance corogldilier [35] to address the

issue of illumination in face recognition.

2.1.2 Caricaturg/cartoon

“Itis not really the perception of likeness for which we areginally programmed, but notic-
ing of unlikeness, the departure from the norm which standsod sticks to the mind{36]

These thoughts are kept in mind while drawing caricaturesarcature is defined as a
funny drawing of someone that makes some oftta@sdistinct features appear exaggerated
for entertainment [16]. However, caricature of the sams@edrawn by dierent artists can
be diferent, since the drawing style plays an important role. ¥eha caricatures exagger-
ate similar information, which helps us to recognize thespeis face image. Psychological
studies also show that caricatured faces yield faster amd agzurate recognition than using
normal face images [37].

It is not easy to draw the caricature of a given face imageguaisomputgmachine.
The reason is that it is flicult to articulate the way an artist portrays a person. Thaeee

a few attempts toward this goal. The first attempt to develmpputer-assisted caricature
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generation system was made by Brennan [16]. The objectiv@friethod was to teach a
newcomer about what was going on in an artist’s mind.

Available approaches to derive the caricature from a givest@follow two steps: Ex-
traction of the features and exaggeration of those featukeset of facial contour points
and manually marked curves are employed in the methods givg8, 39]. In [40, 41]
the features are extracted automatically, and these tssatuie based on valley and edges of
the given face image. Koshimizu et al. [42] have used thedketch drawn by PICASSO
system as the initial representation of a face image in therg¢ion of caricature.

For the exaggeration of the extracted features, two appesaare followed in the lit-
erature. In the first approach, exaggeration is learnedyysotos of several persons and
the corresponding caricatures drawn by an artist. The ileguis performed using neural
networks [43], and the partial least-squares based me#tiddThese approaches give satis-
factory results from the perception point of view, but anessigve to the drawing style of the
artist. In the second approach, the positions of the exdaietature points are compared to
the positions of same points in a normed face image. Thierdnces are then exaggerated
by a fixed amount to derive the caricature [38—40, 42].

A completely diferent method is followed in [44] for the caricature genemtiShape
features extracted from a face image are expressed in $itigterms. Fuzziness inherent
in the linguistic expressions is expressed by a fuzzy setarficature is drawn by varying
parameter values of each feature of a face image. This mé&thoteractive, and involves
human interaction.

The approaches explained above give a 2-D caricature. Theagh is extended to
obtain a 3-D caricature which gives more degree of flexipbilit mimicking the artistic
flavors [45]. Here several 2-D caricatures are derived sélgrfor each view of a given
person’s face image. The resultant caricatures are cowhibnderive the 3-D caricature.
All the above mentioned approaches focus mainly on the atanie generation. None of the

approaches have been applied for face recognition task.
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2.1.3 Edge map

The edge map of a face image has many similarities with iteckkand caricature repre-
sentations. Takacs [46] made use of edge maps to measurinitegity of face images.
The faces were encoded into binary edge maps computed usbed &lge detection algo-
rithm [12]. The modified Hausd@rdistance was chosen to measure the similarity of the
two point sets, i.e., the edge maps of two faces, becausedbidudistance can be calcu-
lated without an explicit pairing of points in their respeetdata sets. Recognition accuracy
of 92% was achieved in their experiments.

The binary edge map representation was modified in the lige sap (LEM) by group-
ing pixels of face edge map to line segments [47]. In this @ggn, a polygonal line fitting
process is applied after thinning the edge map. An exampehoiman frontal face LEM is
illustrated in Fig. 2.2. A line segment Hausffattistance (LHD) measure is used to match
the LEMs of face images. Experimental results show that ém@®pmance is better than the
eigenface and normal edge map matching. These approachertresholding to decide
whether a given pixel is an edge pixel or a non-edge pixel. pgriesence of spurious edges
or missing of significant edges may lead to poor performadA@g [Another problem with
the edge map is that any shift in the edge locations due td simahges in the face image
reduces the matching score significantly. This problemss &hown adocality problem
The matching is improved by using a spread edge profile, wtheredge image is smeared
using a membrane function [48]. The spread edge profile cegga ghostly face called
hill. The hills have high values at the edges, and the valuesakees we move away from
the edges. The problem of hill representation is that itteisean artificial edginess map of
the face.

Recently a representation, namely, Gradientfaces [49ciwhses the edge orientation
of an image, is proposed to capture the edge information & fenages. This method
reported recognition performances of 99.83% and 98.96%lwmination variation set of
PIE face database [50] and Yale-B face database [51], rirgglgcBut the method does not

address the issue of phase unwrapping.

17



,,———\ (‘ /'"—\\

N\ > )Y T e b

i - //N‘ = ; - j'*»1~ .:/] "“.
I \

Fig. 2.2: An illustration of a face line edge model
(LEM).

2.1.4 Range images

The discussion so far considered representations of a feteuse data obtained from
2-D intensity images. Another topic being studied by resieens is face recognition from
range image data. A range image contains the depth struafttine object under question.
Although such data is not available in most applicationss itmportant to determine the
value added by the information present in range imagesingef its éfect on the accuracy
of face recognition.

A template-based recognition system involving descrgptmsed on curvature calcu-
lations made on range image is described in [52]. The datdtsireed from a rotating
laser scanner system with resolution better than 0.4 mnfa&es are classified into planar,
spherical, and surfaces of revolution. The data is storedy/lindrical coordinate system
asf(r,0,y). At each point on the surface the magnitude and directidghe@fminimum and
maximum normal curvatures are calculated. Since the alouak involve second-order
derivatives, smoothing is required to remove tlie@s of noise in the image. Smoothing
is performed using a Gaussian filter. Surface regions assifiled as convex, concave and
saddle. Ridges and valley lines are determined by obtaihiagnaxima and minima of the

curvatures. The strategy used for face recognition is da/isl
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1. The nose is located.
2. Locating the nose facilitates the search for eyes andmout

3. Other features such as forehead, neck, and cheeks arenmheté by their surface

smoothness (unlike hair and eye regions).
4. This information is then used for depth template compatris

Using the locations of the eyes, nose and mouth, the facesoanealized into a standard
position. This position is re-interpolated to regular oyliical grid, and the volume of the
space between the two normalized surfaces is used as a medsoismatch. This system
was tested on a dataset of 24 images of eight persons with tews of each. The data
represented four male and four female faces. 97% recogratiouracy was reported for the
individual features, and 100% for the whole process. An aggh is described in [53] to
extract the facial curves from range images. The facialesiare matched using geodesic

distance for the task of recognition [54].

2.1.5 Infra-red images

In [55] an initial study comparing theffectiveness of visible and infra-red (IR) imagery
for detecting and recognizing faces is described. One ofrtbsvations for this work is
that changes in illumination can cause significant degradan performance for visible
image based face recognition. Hence infrared imagery,wisimsensitive to illumination
variation, can serve as an alternative source of informétio detection and recognition.
However, the poor resolution of IR images is a drawback.Haurthough the IR imagery is
insensitive to changes in illumination, it is sensitive tanges in temperature. Three face
recognition algorithms were applied to both visible andifages. The recognition results
on 101 subjects show that both visible and IR imagery giveralai performance, and that
the fusion of IR and visible imagery is a viable means of echgthe performance beyond
that of the either alone. The similar observation was maderagctently published paper by
S. Gundimada and V. K. Asari [56].
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2.2 Approaches to face recognition

The earliest work related to face recognition was done bydB4l 9] using face profiles. A
set of five cardinal points (Fig. 2.3) was derived from theefacofile, and features derived
from it were used to compare faces. The cardinal points ssitheanotch between the brow
and nose, the tip of the nose, the notch between the nose angprer lip, parting of the
lips and tip of the chin were used.

One of the earliest works in the last century was reported bg®le [57]. In this system,
the feature points of the face were located by a human opeeatd the located positions
were fed into a computer. Given a set of feature point digaraf an unknown person,
nearest neighbor or other classification rules were useiddéotifying the test image. Since
feature extraction was done manually, this system couldraomodate wide variations in
pose, tilt, image quality, and contrast. Kelly worked in anfiework similar to that of Bled-
soe, but his method does not involve any human intervend8h [He used the body and
close up head images for recognition. Once the body and readldeen outlined, ten mea-
surements were made for use in recognition. Kanade useshdesand angle between points
such as eye corners, mouth extremities, nostrils, and opitotdiscriminate faces [59]. The
facial feature points were located in two stages. A coara@gtage is employed to simplify
the succeeding fferential operation and feature-finding algorithm. Oncestys, nose and
mouth were approximately located, more accurate infolwnatias extracted by confining
the processing to four smaller regions, scanning at higdsmiution and using the best beam
intensity for the region. The four regions were the left ayght eye, nose and mouth. The
beam intensity was based on the local area histogram olbtairtbe coarse-grain stage. A
set of 16 facial parameters which are ratios of distancegsarand angles to compensate
for the varying size of the pictures were extracted. To elmte diferences due to scale, the
components of the resulting vector were normalized. A distaneasure was used to check
for similarity between an image of the test set and the imagleé reference set. The range
of matching accuracies varies from 45% to 75% depending ®@panameters used.

Brunelli and Poggio computed a set of geometrical featurels aa width and length of

nose, mouth position and chin shape [60]. A recognition eayuof 90% was quoted on a
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Fig. 2.3: Characteristic points used by Galton simplifies the sedmng
differential operation and feature-finding algorithms.

database of 97 persons. However, simple template matctinggree gives 100% recognition
for the same database.

In [61] Wong proposed a technique to measure distances betyes, left eye to middle
of the nose, right eye middle of the nose, middle of the noseftedge of face, and middle
of the nose to right edge of face. These measurements wedefarseecognizing human
faces. It works well for a database with small number of facages.

Performance of the above mentioned feature-based matamitigods decreases with
partial face occlusions and image degradations. Moreolvese methods require reliable
and precise detection of facial features. These drawbackedeature-based techniques
led to the evolution of template-based methods. A simplsigarof template-based method
of matching is to use 2-D intensity values for comparing faeages using a suitable met-
ric such as Euclidean distance or cross-correlation. Tppsaach will be sensitive to even
small variations in intensity value. Hence, it gives pooitchang under the intra-class vari-
ation. This issue is addressed by building a complex modegjiseveral face images under
different conditions. These approaches can be divided into fv@dbcategories: Graph
matching, neural network model, hidden Markov model (HMBA) morphable model and

subspace methods.
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2.2.1 Graph matching

Graph matching based approaches construct a topologagath @f each person’s face image
using the feature points that were computed using Gabor letagtlecomposition of facial
image [62—-64]. Typically 35-45 points were derived from treen face image. The iden-
tification process utilizes the information present in tygalogical graph representation of
the feature points. After compensating foffering centroid locations, two cost values were
evaluated, namely, topological cost and similarity coste Tecognized face was the one that
has minimum of the combined cost values. The method worksoatralled background
images like passport and driver’s license pictures. Lades. §65] presented a dynamic
link architecture for distortion invariant object recotjmin, which employs elastic graph
matching to find the closest stored graph. Objects are repted with sparse graphs whose
vertices are labeled with a set of complex Gabor wavelefficoents called a jet. Only the
magnitudes of the cdiécients were used for matching and recognition. When recogna
face of a new image, each graph in the model gallery (dathbasematched to the image
separately, and the best match indicated the recognizedmerhe variations in pose were
compensated by elastic deformation of the graphs. Thisedaiives a good accuracy for a
database of 87 persons, consisting of face images witbrent expressions and poses.
Wiskott et al. extended this system to handle larger gallerand larger variations in
pose, and also to increase the matching accuracy [66].yitise phase of the complex
Gabor wavelet cdécients is used to achieve an accurate location of the noddgpadis-
ambiguate patterns which would be similar in the magnitudfetheir codficients. Sec-
ondly, object-adapted graphs are employed, so that notlesoespecific facial landmarks,
called fiducial points. The correspondence between twafeae then be found across large
changes in viewpoint. Thirdly, a new data structure calkedliunch graph was introduced,
which serves as a generalized representation of faces bpiomg jets of a small set of
individual faces. This allows the system to find the fiduciaings in one matching pro-
cess, which eliminates the need for matching each modehgralividually. This reduces
computational load significantly. It presented an accum@cgbout 98% on FERET face
database [67,68]. The drawback in this approach is thaguires manual intervention to

select the fiducial points in the facial image, and it reqgipeecise locations of those points.
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Though graph matching gives good results, it has the drakwbiareprocessing to be done
manually. It requires the exact position of the facial feasuto build the models. It also
fails when there is a partial occlusion of faces, since figdacial positions in such cases is
difficult.

2.2.2 Neural network based approach

Artificial neural network (ANN) [69—71] is a powerful tool fgpattern recognition problems.
Researchers in the field of face recognition used ANNSs for Umpgse of developing a
model, which operates directly on an image representafifeces rather than geometrical
codings of faces. Using A NN on faces [1] several problemshzeen addressed: gender
classification, face recognition and classification ofdheixpressions. One of the earliest
demonstrations of A NN for face recall applications is reedrin Kohonen’s work using
associative map [72]. Using a small set of face images, ateuecall was reported even
when the input image is noisy, or when portions of an imagerassing.

A single layer adaptive NN (one for each person in the dawbias face recognition,
expression analysis and face verification was reported3h [t uses typically 200-400
presentations for training. The training patterns incthttanslation and variation in facial
expressions. Sixteen classifiers were used for the dataloa$aining face images of 16
persons. Classification was achieved by determining thesiirsthat gives the highest
response for a given input image. Extensions to face vetiicaand expression analysis
were also presented.

A hierarchical neural network which grows automaticallyganot trained with gradient
descent, was used for face recognition [74] . Good results vaported for discrimination
of ten distinctive subjects [74]. The ability of the commies networks was demonstrated
by Cottrell and Fleming in [75,76]. The network was trainethwthe whole image as input,
and it was shown that the network can classify face imagesdir to faceness, gender and
identity. In [71] linear autoassociative networks, noalinautoassociative (or compression),
and hetero-associative backpropagation networks aremdfor face processing.

In [77] Lin et al. proposed a face recognition technique daseprobabilistic decision

based neural network (PDBNN). It adopts a hierarchical ntwstructure with nonlinear
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basis functions and a competitive credit assignment schéinteemonstrated a successful
application of PDBNN on FERET and ORL face databases [78].

In[79] Lawrence et al. presented a hybrid neural networlgtsmh which combines local
image sampling, a self-organizing map (SOM) neural netvaom#t a convolutional neural
network. The SOM provides quantization of the image samipliesa topological space,
where inputs that are nearby in the original space are nearthe output space as well,
thereby providing dimensionality reduction and invariaic minor changes in the image
sample. The convolutional neural network provides for iparhvariance to translation,
rotation, scale and deformation. The recognizer provideseasure of confidence at its
output, and the classification error approaches zero whjecting as few as 10% of the
examples when applied on a database of 400 images of 40dndig, containing high
degree of variability in expression and pose.

In [80] Srinivas et al. described an application of mixtuodsxperts for gender and
ethnic classification of human faces and pose classificalibe mixture consists of an en-
semble of radial basis function (RBF) networks. Inductiveisien trees (DTs) and support
vector machines (SVMs) implement the gating network conepts for deciding which of
the experts should be used to determine the classificatimupand to restrict the support
of the input space. Experiments show good results on geeitheric and pose classification,
which can also be usedtectively in face recognition.

Neural network based methods fail to perform well due todgrgttern dimension and
lack of suficient training samples. Moreover, neural network metheasira lot of compu-

tational éfort to build a face recognition system.

2.2.3 Hidden Markov model (HMM)

Stochastic modeling of nonstationary vector time serigsggddMM has been successful for
processing speech signals [81], and has been applied feré@ognition as well [82]. A
face image is divided into regions such as the eyes, nose aathretc. These regions can
be associated with the states of a HMM. Since HMMs requirela@vation sequence, the
images are converted into 1-D spatial sequence of pixelshgatenating the rowsolumns.

In [82,83] a spatial observation sequence is extracted &dmee image by using a band
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sampling technique. Here, each face image is representadLHy vector series of pixels.
Each observation vector is a block bbflines, and there is an overlap bf lines between
successive observations. A test image is first converted tmbaervation sequence using
band sampling technique. Then, it is matched against HMMagheof the faces in the
database. The model with the highest likelihood is conedles the best match, and the
corresponding face is the identity of the test face image rélsognition rate of the HMM-
based approach is 87% on ORL face database consisting of 4@@aof 40 individuals.
The conversion of a face image into 1-D vector may lead todd8sD structural information
of the face image. This issue is addressed in the pseudo 2-B 4. In the HMM-based
approach the classification time and training time are végi.hMoreover, the choice of

parameters of the HMM is quite specific to the subject.

2.2.4 3-D Morphable model

A morphable face model is based on a vector space repraserdataces that is constructed
such that any convex combination of shape and texture \seafa@rset of examples describes
a realistic human face [85]. After fitting a 3-D morphable rebid the face image, recogni-
tion across dterent viewing conditions is performed in two ways. (a) Coreghe model
codticients which represent the intrinsic shape and texture adsfaand are independent
of the imaging conditions. (b) Three dimensional face rstmttion is employed to gen-
erate synthetic views from gallery probe images [51, 86, §hle synthetic views are then
transfered to a second viewpoint-dependent recognitistesy.

The computer graphics simulation of projection and illuation are combined with
3-D morphable model to automatically estimate 3-D shapeute, and all the relevant 3-
D scene parameters including the head positions and dtii@mtéocal length camera, and
illumination directions [88]. A single model is built to adgss both the issues of pose and il-
lumination. lllumination is not restricted to Lambertiagflection, but takes into account the
specular reflections and cast shadows, which have conbldénfluence on the appearance
of human skin. A recognition accuracy of 95% was obtained@BIIE face database [89],
based on side-view gallery. The 3-D morphable model baspdbaphes may smear the

subject-specific unique information of a face image or ishtice some artifacts while build-
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ing the model.

2.2.5 Subspace based methods

Bayes classifier gives the minimum error in the classificadiczuracy in pattern recognition
provided the estimate of prior and conditional probabitignsity functions (pdf) are accu-
rate. As the dimensionality of the feature vector increafesnumber of samples required
for accurate estimation of the pdf also increases. This @me@mon is also known as curse
of dimensionality [90]. For a face image with size of 83B0 pixels, the dimensionality of

image space will be 900. For such large dimensions, itfficdit to get enough samples for
accurate estimation of the pdf.

However, much of the surface of a face is smooth and has aareguxiture. Hence the
pixel values will be highly correlated. Moreover, the appeae of a face is highly con-
strained. For example, any frontal face is roughly symroalriThus, the natural constraints
suggest that the dimensionality of the image space can lneedd There are several meth-
ods available in the literature to compute the subspacedwurcesl dimensional space, and

these methods can be categorized into two types: linear @mlthear methods.

2.2.5.1 Linear subspace methods

These methods assume linearity while computing the subsgde methods include prin-
cipal component analysis (PCA), linear discriminant analfisDA) and independent com-
ponent analysis (ICA). The principal component analysis¢sis known as Karhunen-Loeve
expansion or eigenanalysis [90]. It is a well known methaddimension reduction in pat-
tern recognition literature, and is one of the extensivelgied methods for face recognition.

Eigenanalysis exploits the second order dependencieg imtitivariate stochastic ob-
servation to obtain a compact representation. X.eRN be a vector representation of a face
image, wherdN is the dimension of the image space. The vector is formed bgatenating
the rowcolumn pixels of a face image. The covariance maffix¢ RNN) of x is defined
as follows:

Ik = E{[x — E{x}][x — E{x}]'}, (2.1)
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where E.} andt denote the expectation and transpose operators, resggctiveigenanal-

ysis, the covariance matrk, is factorized as follows:
T = YAV, (2.2)

where¥ € RVN = [y4,...,y\] is an orthonormal eigenvector matrix, ande RNVN =
diag14, 12, ..., A\} is a diagonal eigenvalue matrix with diagonal element(arglues) in
nonincreasing orden > A,... > Ay).

An important characteristic of the PCA is that it is a dimensieduction method, op-
timal in the sense of minimum square error (MSE), where ondulaset of eigenvectors
[{Y1,¥2,...,¥m}, m < N] are used to represent the original image [91]. The low dinogias
representation of the original vector is given fay, ..., a.n}, wherea, = x'y;. An approx-
imation to the original face image can be reconstructedguia subset of eigenvectors as

follows:

m
=) aui. (2:3)
i=1

The eigenvectors associated with the largest eigenvalgeeterred as eigenfaces. In
1990, Kirby and Sivovich proposed the use of PCA for face asislgnd representation [92].
This idea was extended by Turk and Pentaland [93], which haéinst application of PCA
for face recognition. Each face image was projected ontgthecipal subspace defined
by them principal eigenvectors, giving m-dimensional representation of the face image.
When a test face image is projected onto the subspace, thel&artldistance between
its codficient vector and the vector representing each person indtabdse is computed.
Depending on the distances to the subjects, the test imatgsisfied as belonging to one of
the persons. The basic method ignored the variation modeswie subspace and outside
it, which was incorporated later using Bayesian similarigasure [94,95]. The assumption
of equal covariance matrices of all the classes is elimthetehe principal component null
space analysis (PCNSA) [96].

In [97], a two-dimensional principal component analysigXPCA) is proposed for face

recognition. In contrast to the conventional PCA, the 2-D PE€Mdased on 2-D matrices
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rather than vectors. That is, the image matrix does not neée fpreviously transformed
into a vector. Instead, an image covariance matrix is cootd directly using the original
image matrices in (2.1). Subsequently the method is sinld?CA. When a new face
image matrix is projected to the eigenvector matrix, we getsure matrix or feature image
instead of feature vector as in PCA. The feature matrix oftdfaes image is compared with
the feature matrices of the reference face images to detertiné identity. In contrast to the
covariance matrix of PCA, the size of the image covarianceixabtained using 2-D PCA
is much smaller. As a result, 2-D PCA has two advantages over Pit#, estimation of the
covariance matrix is relatively accurate even with smathber of training samples. Second,
less time is required to determine the corresponding e@sovs. Experimental results
show that the 2-D PCA outperforms PCA and Kernel PCA on the Yale @mtabase [97].
However, the projected feature matrix of the 2-D PCA reflectly @orrelation between
rows of the images, while the correlation between colummsngted [98]. This issue was
addressed by a method called DiaPCA [98], where a diagonal ifaage derived from
the original face image is used in the 2-D PCA. Due to this, threetation between rows
and columns of the image is utilized in the computation of ghgjective feature matrix.
Experimental results on a subset of FERET face database $slabwhe DiaPCA performs
better than both the PCA and 2-D PCA. In addition, it is showntti@recognition accuracy
can be improved further by combining the DiaPCA and 2-D PCA.

The PCA based methods essentially select a subspace thas maiast of the variation
of the training face images. It is suitable for reconstiutif the face images, but may not
be suitable for discrimination purpose. This limitationsaavercome by linear discriminant
analysis (LDA), where the subspace is derived using clpssifc information of the train-
ing samples. This information is useful to develop a metlmvddducing the dimension of
the feature space such that the resulting subspace is mitaiblsifor the task of classifi-
cation. The LDA determines the projection matWx,, in such a way that the ratio of the

between-class scatter and the within-class scatter ismized [91,99], i.e.,

YIS ¥
‘I’LDA:argrpFaxl S | (2.4)

| WTSWY |
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whereSg is the between-class scatter matrix, &yglis the within-class scatter matrix. They

are defined as

N
Sg = Z Ti(ui — ) (i — )’ (2.5)
=
and
N
Sw = Z (k= ) (X = i) (2.6)
i=1 XkeXi

In the above expressiong,is the mean of all the training sampl€E, is the number of
training samples in class N is the number of distinct classes, is the mean vector of
samples belonging to clagsandX; represents the set of samples belonging to dlaske
projection matrix¥.., in (2.4) are the eigenvectors &;;Sg associated with the largest
eigenvalues [99].

In the context of appearance-based object recognitios,generally observed that al-
gorithms based on LDA are superior to those based on PCA (EDA&dlirectly deals with
class discrimination). The PCA might outperform LDA, if thember of training face im-
ages per class is small [100]. Especially, this is the seemmathe case of face recognition,
where the task is also known as small size problem or singufaoblem [91]. Many meth-
ods have been proposed to deal with this problem, includseugo-inverse LDA [101],
PCA+LDA [100], regularized LDA [102] and recursive LDA [103]. 8 of these methods
were applied for face recognition, and the performanceguBi@A+LDA was found to be
better. The issue of the singularity problem is also adéckssing the two-dimensional
LDA (2-D LDA) [104], which is analogous to 2-D PCA.

The approaches based on PCA and LDA use the second ordetictaiisthe training
set, and ignore the higher order statistical dependencigls as the relationships among
three or more pixels of the images [105, 106]. Independemipoment analysis (ICA) [107]
separates the higher order moments of stochastic obsmrsat addition to the second
order moments, and can be seen as generalization of the PG203h two architectures

are proposed to perform the face recognition using ICA. Infits¢ architecture, images
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are considered as random variables and pixels are condidsiteials. Here, the projective
matrix ¥, is derived by making the face images as independent as pms3io images

X1 andx, are independent, if when moving across pixels it is not fsgo predict the
value of the pixel in the image, based on the value of the same pixel in the imageOn

the other hand, pixels are considered as random varialdsieages as trials in the second
architecture. Here th¥,., is derived by making pixels of images as independent aslgessi
Pixelsi andj would be independent if when moving across the entire sehages it is not
possible to predict the value taken by pixddased on the corresponding value taken by
pixel j on the same image. In the first architecture, the data m4trsxorganized such that
the training face images are in rows and the pixels are inncotu The ICA finds a weight
matrix W such that the rows o¥,., = WX are as statistically independent as possible.
The rows of the projective matriX¥{.,) called source images are used as basis functions to
represent the face images. The number of basis imayesthe same as the number of face

images in the training set. A face image can be represenieg tne basis images as

X = b]_l//]_ + bz(//z + -+ bnlﬁn. (27)

The codficient vectob = (by, by, ..., b,)! is compared using the cosine similarity measure
in the nearest neighbor algorithm to compute the identity tdst face image. The second
architecture is realized by repeating the above mentiomededure using data matrix as
transpose oK rather thanX . Both the architectures addressed the issue of singularity b
reducing the dimensionality of the image space using PCA pEnfrmance of face recog-
nition is similar using both the architectures, and is sigoeo the PCA for recognizing face
images across days and changes in expression [105]. In, [@Q8riments were conducted
on a face database containing 206 subjects (2060 face iagesthe method reported a
recognition performance of 79.1%, 81.0% and 88.1% for PCAAlaDd ICA, respectively.

In [109], ICA and its variants, specifically the independanispace analysis (ISA), and
topographic independent component analysis (TICA) are usdéarn the view-specific
subspace of the face images. The learned subspaces areyethfgaestimate the pose of

a given new test face image. In all the ICA-based approachesage is transformed into
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a vector. On the contrary, row-column independent compoaealysis (RC-ICA) which
worked directly on images without image-to-vector stratghis given in [110]. The exper-
imental results show that RC-ICA performs better than PCA, 2-D RGAICA on Yale-B,
AR, and FERET face databases. The performance of the RC-ICA isarechpvith the

representations proposed in this thesis.

2.2.5.2 Nonlinear subspace methods

In these methods, the constraint of linearity is relaxedevbomputing the subspace (pro-
jection matrix). These methods include nonlinear PCA (NLPQ#ernel PCA (KPCA),
kernel LDA (KLDA) and nonlinear ICA. The NLPCA can be performesing autoassocia-
tive neural network (AANN) [111] model which is a mulitlayperceptron network (MLP)
in autoassociation mode. In this network, the number of addehe hidden layer is less
as compared to nodes in the input and output layers (dimemdithe feature vector). The
same vectok is used both as input and as the desired output in AANN netwbeklinear
activation function is employed for each node, then the wtstpf the hidden layer give the
projected cofficients corresponding to the principal eigenvectors. I'NbhBCA, a nonlin-
ear function (sigmoid function) is chosen as an activatiorcfion.

The basic methodology of KPCA is to apply a nonlinear mappomthe inputF(x) :
RN — RY, and then apply a linear PCA in the resulting feature sjidcavhereL is larger
thanN, and possibly infinite. The mapping@j(is made implicit (and economical) by the
use of kernel function satisfying Mercer’s theorem [11ZjeBelection of kernel function is
an engineering problem. The KPCA does not require nonlinptamazation, is not subject
to overfiting, and also does not require prior knowledge efrtatwork architecture as in the
case of AANN based method.

Similar to KPCA, the kernel linear discriminant analysis (B4) was also proposed
in [113]. The experimental results were shown to be bettaroaspared with ICA, PCA,
KPCA, and standard Fisherfaces (LDA) using two data setsdbiatiained images of 40
and 11 subjects, respectively, with varying pose, scaleidundination. Each subspace
method has its own advantages and disadvantages, and ¢sompaf these methods for

face recognition task can be found in [114].
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2.3 Face databases

In this thesis, face recognition for various representetie studied using three face databases,
namely, FacePix, PIE (Pose, lllumination and Expression) ¥ale-B face database. The

details of the databases are given below.

2.3.1 FacePix database

FacePix face database is collected at Arizona State Uiiti¢t45, 116]. It consists of 30
persons, and each having two sets of face images: A set wit@ @ogle variation and a
set with illumination angle variation. The set with pose lengariation has 181 images
(representing angles from -9€ 90 at I° interval) with varying pose. In this thesis we
denote these images by;. .. ., 8%, The illumination set is captured with the subject looking
directly into the camera, while the light source is movediadbthe subject. The light source
is moved at 1interval from-90° to 9¢°. These images are denotedby. .., L. Some

of the face images for a person are shown in Fig. 2.4.

2.3.2 Pose, lllumination and Expression (PIE) database

Pose, illumination and expression (PIE) face databased8®dcted at Carnegie Mellon
University contains three variations of face images. Theepeariation set consists of 68
persons, each having face images for lfBedent poses. We have used three point normal-
ization [117], based on the locations of eyes and nose, tbface images. The cropped
face images of a person are shown in Fig. 2.5(a). a2, C25, C02, C37, C05, C09, C07,
C29, C11, C31, C14andC34are the positions of cameras located dfalent locations to
get the face images atftkrent poses. The illumination variation subset of the Plte fa
database (PIE NL dataset) [50] , has 65 subjects, each hatifgce images, as shown in
Fig.[2.5(b).
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Fig. 2.4: Sample face images of a person with (a) pose variatid@nllumination
variation set of FacePix face database.

2.3.3 Yale-B database

The Yale-B face database [51] contains face images of 1®pegrsFor each person 576
viewing conditions (nine dierent poses and 64ftkrent lighting conditions from negative
azimuth to positive azimuth) are captured. The 64 fronte fianages under fierent light-

ing conditions for each person are used in our experimeids 26 shows some samples of

face images for a person.

2.4 Summary

In this chapter we have discusseffelient representations of face images used in face recog-

nition. The gray level values of a face image cannot be usedttly for matching in a face
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Fig. 2.5: Sample face images of a person with (a) pose variation(lan
illumination variation of PIE face database.

recognition task due to variability in pose and illuminatiof the face image. It is im-
portant to extract suitable representation to addresss#ues of inter-class and intra-class
variations. The available methods for representing a fawge use either feature-based
approach or holistic approach. The feature-based appadtanpts to highlight the unique
information, which may reflect in the relative positions loé ffacial features. This approach
gives good performance even in the extreme cases of irdss-ofriations, as for example,
a face image with large variations in the pose. Howevergaetitbn of facial features from
such extreme cases is not easy. The feature-based appisachfiers from the problem
of partial face occlusion. In the holistic approach, repreation of a face image is obtained
by considering the entire face as a single unit. In this aggnpthe subject-specific unique
information of face image may not get emphasized during hiiadc Thus, both approaches
have their own advantages and disadvantages. Ideallyhonddsuse a combination of these

two approaches for representing a face image. Such repatisais are sketch, caricature
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Fig. 2.6: Sample images of a person from illumination variation
subset of Yale-B face database.

and edge map of a face image. The sketch and caricature abesheepresentation from
the perception point of view. Though there are a few appresi@noposed in the literature
to derive the sketch and caricature of a given face image,icking the artist’s ability is
still a challenge.

Edge map is another representation that contains perdigptwacial information of
a face image. Moreover, an edge map contains all informadresent in the sketch and
caricature of a face image. However, the edge map repregenteas two drawbacks in
the context of face recognition: a) Selection of thresha@ltlie for edge extraction, and b)
matching of the edge maps. In this work we have explored fyped of representations of
face image that capture the edge-like information of a faxage, but do not perform the task
of edge extraction. The second issue of matching edge-lrapeglsentations is addressed
to some extent by smearing the edge information. Templatelmmag based approach is
employed to illustrate the significance of the proposed duirged representations for face

recognition.
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Chapter 3

Edginess-based representation

In this chapter, we consider edginess-based represanti#dto face image. It is computed
using one-dimensional processing of the image [118-120ikeithe traditional 2-D pro-
cessing methods. A potential field is derived from the edggnmage to improve matching
under intra-class variation of the face image. Templatechiag) is used for matching face
images with pose and illumination variation. Evidencesrfrdifferent reference templates
are combined, and classified using AANN models.

The chapter is organized as follows: Section 3.1 discuss@putation of the edginess
image using 1-D processing. The template matching of imagew) the edginess-based
representation is discussed in Section 3.2. The scoremebthy matching with several
templates are combined in a selective way as explained iticBe®.3. A neural network
model is proposed in Section 3.4 to develop a classifier uiagcombined scores. Ex-
perimental results are discussed in Section 3.5, and a sgnoh#he chapter is given in
Section 3.6.

3.1 Edginess-based representation using 1-D processing of
images
The continuous gradient computed at every pixel is callegirexds of an image [119]. Di-

rect computation of the gradient using a derivative operattances noise as well, along
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with the edge information. The noise level can be reduceddgplyang a smoothing op-
eration followed by a derivative operation. The smoothipgration smears the edge in-
formation. One-dimensional (1-D) processing of images lmamsed to reduce thdtect
of noise without smearing the edges significantly [119, 120]1-D processing of a given
image, the smoothing operator is applied along one dinectind the derivative operator is
applied along the orthogonal direction. By repeating theecpdure of smoothing followed
by derivative operation along the orthogonal directiom aiwo edge gradients are obtained.
As the smoothing is done along a direction orthogonal to tfeztion of the edge extraction,
smearing of the edges is reduced. This methdi@idi from the traditional methods [12], in
the sense that smoothing is done along one direction, dfetehtial operator is applied
along the orthogonal direction.

In 1-D processing of images, a 1-D Gaussian filter is usedrfaaghing, and the first
derivative of the 1-D Gaussian function is used aBedential operator. The 1-D Gaussian
filter is given by

a(x) = ! exp_xz, (3.2)
V2noy 2077

whereo is the standard deviation of the Gaussian function. Thedesivative of a 1-D

Gaussian is given by
2

—X —
exp—s,
\Y 27'(0'2 20—2

where o, is the standard deviation of the Gaussian function. Theeghf o; and o>

c(x) = (3.2

decide the spatial extent of these 1-D filters. The edge gnadibtained by applying the
derivative operator along a directi@nwith respect to a horizontal scan line is denoted as
i¥. Fig.3.1 shows examples of the gradient maps obtained alitfegent directions for the
same face image. It shows that they contain complementéoynation of the face image.

In this study, the values af; ando, are chosen to be 0.6 and 1, respectively, based on
experimental studies on several face images. It must beqebout that the choice of the
values ofo-; ando;, is not critical. One of the problems with the edge gradieptesentation

is that they are very sparse, i.e., most of the values aresragll, close to 0. Because of
this, even a small deviation in the edge contour for the s@oe image leads to poor scores

in template matching. This is calléakcality problem and it can be reduced by spreading the
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Fig. 3.1: (a) Gray level face image. Edge gradiefl} ¢f the face
image obtained using; = 0.6,0, = 1, for (b)6 = 0°, (c) 6 = 45°,
(d)o =90 and (e)p = 135.

edge information in the edge gradient representation. @ige emformation can be spread by
either using high values ef,, or by removing some of the high frequency DFT fiméents
of the edginess image. But spreading the edge informatiohismtanner leads to loss of
information.

Alternatively, the edge information can be spread usingmitl field representation [121].
The potential fielcdl,, derived from the edge gradieiﬁt is obtained by minimizing the en-

ergy Ey given by [122]

B = f f [1((Uo,)? + (Ug)?) +1GD? + (2,002 Iy — 132 1dxdly; (3.3)

whereu,, andu,, are the partial derivatives @ along thex andy axes, respectively. The

parametey is the scaling factor used to control the amount of smearirgs variational
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formulation follows the standard principle that the resuiist be smooth when there is no
data. In particular, we see that when the gradiég'namdigwo are small, the energy is dom-
inated by the partial derivatives of the field, yielding a sitiofield. This smoothing term

(the first term in the integrand of (3.3)) is the same term useHorn and Schunk in their

classical formulation of optical flow [123]. On the other dawhen the gradient s large, the
second term dominates in the integrand of (3.3), and it iSrmim whenu, = ig. This term

is responsible for introducing the gradient informatiorthe potential field. This approach
is similar to the one used in [122] for developing a defororatorce of snakes. To minimize

the energyE, given by (3.3), the following Euler equation is a necessanydition [124]
1 9% U = (Ug — I)I(I)? + (8,607 = O, (3.4)

wherev? is the Laplacian operator. We can see that wherever theegridizero,/ (3.4) will
reduce to the Laplacian operator. It can be solved by conisgle, as a function of the

variablet, and the solution is given by [122]

u9t(x7 y’ t) = M VZ UQ(X7 y’ t) - [UQ(X’ y’ t)
=506 MGG Y)? + (15,0006 )T, (3.5)

whereu, is the partial derivative afi(x, y, t) with respect td. The above equation is known
as generalized ffusion equation, commonly encountered in heat conductiaghreactor
physics [125]. Lekx andAy be the inter pixel distance along tkandy axes, andt be the
change irt. Then, using the standard approximations for the partiavaléves, [(3.5) can be

written as
unt
Ut = (A-Efatu;+ m(ug},m + Uiy
+URL g+ UGy — AUR ) + B A,
(3.6)
whereE;; = \/(igi’j)2 + (i5,00;, )% @anduy, ; is the potential field at the location {) after

m" iteration. Equation (3.6) is stable, provideg andigi’j are bounded, and the Courant-
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a

Fig. 3.2: (a) Gray level face image. Potential fielg)(developed
from the edge gradient of the face image (a) usig- 0.6,0, =1,
1 =0.005 for (b) = 0°, (c)9 =45, (d)9 =90° and (e} = 135.

Friedrich-Lewis restrictionﬁ%y < ;11 is maintained [124]. The potential fields obtained by
(3.6) for different edge gradient images are shown in Fig. 3.2. It showghtbadges are
smeared in the potential field representation, and thusgtores the matching in the case

of deviation in edge contours between test and referenedriaages of the same person.

3.2 Template matching using edginess-based representa-
tion

Template matching is one of the approaches proposed inttratlire to address the is-
sue of inter-class variation [60], because it takes intmantthe unique information of a

person’s face image. But this approach has the drawbacktthateis poor performance
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under intra-class variation [126]. The problem of intrasd variation can be overcome
using an approach which synthesizes a 3-D model of the faeganfrom a given sam-
ple [51,86,87,127,128]. But synthesis of face image maylressome artifacts, and also
some loss of the unique information. Thus synthesis-bagptbach may degrade the per-
formance of the face recognition system. Another way to esklthe issue of intra-class
variation is to consider several reference face imageshwépture variations in the face
images such as due tofiirent poses or due toftkrent lighting conditions. These multiple
reference face images can be used to build a model for thedperface image. The result-
ing model is used to identity a test face image. Such metheddiscussed in [96,129-133].
In these cases the model may be averaging out some of thenation that is unique for
that person. In this work we propose a template matchingdoasethod, which neither
synthesizes the face image, nor derives a model for the persmwe. We use the reference
face images (at lierent poses or at fllerent lighting condition) separately for template
matching.

Template matching is performed using a correlation-baseldnique. Correlation be-

tween reference face imaggx, y) and test face imagéx, y) is computed as follows:

i(%y) ©r(xy)
ffi(x,y)r(x+rx,y+ry)dxdy

f f I*(u, V)R(u, v) exp(j2r(ury + vry))dudy (3.7)

C(tx, Ty)

wherel (u, v) andR(u, v) are the Fourier transforms g, y) andr(x, y), respectively, and
denotes the correlation operator. The correlation outftt 7y) should have a high value
at the origin, when the test and reference face images aitasin®n the other hand, if
the test and reference face images are not similar, therotinel&tion output should have a
relatively low value even at the origin. Here, the originarsfto the center of the correlation
function. Figsl 3.3(a) and (b) show the normalized cori@fabutputs for a true class face
image and for a false class face image, respectively. Thelation output of a true class
image (Fig!. 3.3(a)) has a high peak value near the originyedsefor the false class image
(Fig.[3.3(b)) the correlation output is generally low. Tleéative heights of the values at the
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Fig. 3.3: A typical correlation output for (a) true class face gaand (b) false class face
image.

origin determine whether the test and reference face imagesmilar or not. The sharpness
of the peak in the correlation output is quantified using gteagidelobe ratio (PSR) [134].
The PSR P) is defined as

p=PK (3.8)

wherep is the value of the maximum peak in the correlation output the mean of the
correlation output within a window (of size ¥99 pixels) around the peak, awmdis the
standard deviation of the values in this window. In pragtige leave out a region of size
7x7 pixels around the center of the window while computingndo. The choice of the
sizes of these windows is arrived at empirically. Other césican also be made to highlight
the peak to sidelobe characteristics. The PSR measuresathmness of the highest peak in
the correlation output. For a similar face images, the pelibbessharp and high relative to
the values in the neighborhood. Otherwise the peak will taedind blunt.

The edge gradientégﬁ for different directionsd) give different information of a face
image. Hence, we have performed correlation between paxtidence (;) of the given
test and reference face images. Lkgbe the correlation output obtained when the corre-

lation between the partial evidence alahdgirection of the test and reference face images
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is performed. The resultant correlation output is used tomae the PSRR}) using (3.8).
Ideally theP, should be high if the given test face image is similar to tlierence image. In
our experiment we have computed the partial evidengea{ong the four directiong(= 0°,

45°, 90 and 180). Hence, for a given test face image a four dimensional featector (i.e.,
containing four PSR values) is obtained. Fig. 3.4(a) shbwstatter plot obtained from the
PSR vectors of the true class and false class face imagegpknsan using pose variation
set of the FacePix face database. For visualization we shewltt using threed(= 0°, 45

and 90) of the four dimensions. In this example we have uBeds a training (reference)
face image of a person. The remaining 180 face images of We@ gierson form examples
of the true class image, and the corresponding PSR valueteacged by the diamona)
symbol in the plot. For the false class,»281 = 5249 face images are available, and the
PSR values are shown by the pointgymbol in the scatter plot. Though the separation
between the true and false class face images are not dedisivene can observe from the
plot that high scores are given by the face imalges?, 14, 1° and|° of the true class. These
face images have pose that is close to the pose of the trair@fegence) face image. One
can also see that none of the face images of the false class lgiyh scores. It means that
the chances of matching face images of twiiedtent persons even with the same pose, is
less. Similar observations can be made from the scattespttn in Fig. 3.4 (b), which is
obtained usind“® as the reference face image. This behavior is utilized togeize a given

face image.

3.3 Combining scores from diferent templates

One can conclude from the previous section that if a testifaege of the true class has a
pose that lies between poses of two reference face imagesttha test image will give high
scores with respect to both the reference face images. #tisrkito combine these scores
rather then use them separately for taking decision. Onetavapmbine the scores is as
follows. Let Pg' is the similarity score (PSR) obtained when the potential fiepresentation
alongd direction of the test face imadeis correlated with the corresponding representation

of reference imagé#. The combined similarity score for two reference imatjesnd|™ is
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Fig. 3.4: Scatter plots of PSRs for a person’s face image usingnpalté&eld repre-
sentation, obtained fromy, = 0°, 6, = 45°, 63 = 9C°, and using (a)* and (b)I*® as
the training (reference) face image.

given by

a

S HCIRTCAN @9

where the parameterdecides the weights associated with the scoresaeFof, min[P%, Pgm] <
PLl+pLm pPLlpim
2 ! 2

and fora > 1,

pLm < < P < max[Py, P5™. A low value of @ is suit-
able for the case of false class, and a high value @ir true class. One has to choose a
suitable value ofr such that the separation between true and false classelsanaad. We
have found empirically that = 3 is a good choice. Fig. 3.5 illustrates thigeet of @ on
PSR vector through scatter plots. Figs. 3.5 (a) and (b) &edme scatter plots as shown in
Figs. 3.4 (a) and (b), respectively, but with &eient view. In this example we have shown
only the scores obtained from the true class face imédes 2 < t < 45. Figs!| 3.5 (c), (d),
(e) and (f) are the scatter plots obtained after combinieg®8R scores in Figs. 3.5 (a) and
(b) using (3.9), forw = 0.4, 1, 3, and 5, respectively. One can see that agreases the
points due to true and false classes move away from the o&milarly, we can combine

the scores obtained from other reference face images afexdjposes.
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Fig. 3.5: Scatter plots of PSRs for a person’s face image usingnpaltéeld repre-
sentation, obtained fromy, = 0°, 6, = 45°, 63 = 9C°, and using (a)* and (b)I*® as
the training (reference) face image. Combining (a) and (mMgu&) a = 0.4, (d)a
=1, (e)a =3 and (fla = 5.
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3.4 AANN based classification using distribution of feature

vectors

The next task is to classify a given test face image using élatufe vectors consisting
of the combined scoré’g"m for the four diferent values of. One can employ a classifier
based on multilayer perceptron (MLP) [69] neural networldelmr support vector machine
(SVM) [70]. But these models require samples from both the &md false classes. Though
we can have a large number of false class images for a giveompdout we cannotféord

to have many face images of the true class. This problem cavdéxeome by using an
approach based on autoassociative neural network (AANNJeind35]. There are two
reasons for adopting this approach: Firstly, one can havey/riadse class face images for a
given person. Secondly, the feature points due to falss el@smore dense as compared to
the feature points due to the true class in the scatter pltits.distribution of these closely
spaced points of the false class can be modeled using thibdigin capturing ability of an
AANN model. The distribution capturing ability of an AANN ilustrated in Fig! 3.6(b)
for the 2-D data shown in Fig. 3.6(a). The structure of the ARModel is 2 10N 10N 1N
10N 10N 2L, whereL denotes a linear unit, ad denotes a nonlinear unit. The network is
trained using the coordinates of the data as input and aukigt 3.6(b) is obtained using
the confidence value derived from the error between the iapdtoutput for each test point
(i) in the 2-D plane in the range (-1 tdl, -1 to+1). The confidence value is computed for

the squared errol) of thei™ point as
Ci = exp(-BE), (3.10)

wherep is constant. It can be seen that the confidence value is higimwie density of
points is high in the input data.

The distribution of points due to false class could bffedent for diferent reference
face images. Hence, separate AANN models are obtained &br rederence face image.
The AANN model can be used for accepting or rejecting a claivien a test face image

belonging to the true class is given to the AANN model, thelltesy score vector does not
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Fig. 3.6: Distribution capturing ability of AANN model. (a) Aficial two dimensional
data. (b) Confidence surface realized by the network stres@ufON 10N 1N 10N 10N 2L.

fall into the cluster of points belonging to the false claBsus using a suitable threshold for
the output of the AANN model, a decision can be made whethactept the claim of the

test input or not.

3.5 Experimental results

Here, we give a brief summary of our experiments. The resultthe pose variation set
of the FacePix face database is explained first. The blodjraa of the training phase

is shown in Fig. 3.7(a). In this block diagram we have showamtng with five reference
face imaged?, 145, 19, |13¢ and |18, This process can be generalized for any number of
reference face images. The reference face images are ¢losenh a way that their poses
are uniformly spaced over the span 6f-0180. Several false class images are chosen,
and their potential field representationsg)(are computed along the four directioms=( 0°,

45°, 9C¢° and 138). These representations are correlated with the correlspgnepresenta-
tion of each reference face image. The resulting correlatigtput is used to compute the

similarity score using (3.8). Hence, five sets of four dimenal feature vectors (4 PSR
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Fig. 3.7: Block diagram of face verification system for (a) traghand (b) verification.

values) are obtained for each false class image. The sityikores obtained from refer-
ence face images having adjacent poses are combined usga8 shown in Fig. 3.7(a).
These combined scores are presented to an AANN model fairtcaiLet AAN N-46 denote
the AANN model trained with the combined similarity scor@gl(“s) obtained using the
reference face imagds$ and14¢. The structure of the AANN model isL48N 2N 8N 4L.
The AANN model is trained using backpropagation algoritlomebout 3000 epochs. Sim-
ilarly, we have designeAAN N9 AANNL136 and AAN NE38181 ysing the same false class
face images. The block diagram of the testing phase of fagBcation system is shown
in Fig.[3.7(b). For a given test face image, the potentiatifrepresentation, is computed
along the four directions9(= 0°, 45°, 9¢° and 1358). These representations are correlated
with the corresponding representation of each refereraifaage of the claimed identity.
The resulting similarity scores are combined as in the iimgiphase, and are presented to
AANN models as shown in Fig. 3.7(b). The combined similasitpre (4 dimensional fea-
ture vector) is used to compute the error in associating ¢ogov with the AANN models
corresponding to the reference face images. If the errdneseaa threshold iany one of
the AANN models, the claim is accepted. Here, the threshalde/for each AANN model

could be diferent. False acceptance ratio (FAR) and false rejection (@RR) are two er-
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ror metrics that are used to evaluate a face verificatioresysi he trade 1 between FAR
and FRR is a function of the decision threshold. Equal ErroeRBER) is the value for
which the error rates FA and FR are equal. Here, we will erptlaé computation of EER
for a single person. We have uskd 146, 19, 1136 and 118! as reference face images. The
remaining 176= (181- 5) face images form the examples of the true class. For fidss,c
5259= (29 x 181) face images are available. Out of these, 3000 face snageused to
train theAAN N6, AAN N9 AAN NL136 and AANNE3618 models. The remaining 2249
= (5349- 3000) false class face images are used for testing. But teectass sample will
be diterent for each of the AANN models, because the objective oNNAs to verify if
the true class face image has a pose in a specific range. ThA&MN-*6, the true class
samples will be the images betweErnto 14¢. By varying the threshold value &ANN-4
the resultant receiver operating characteristics (ROG)ecigrobtained as shown in Fig. 3.8.
The ROC characteristics show that the FAR curve is steefdtidg that the corresponding
combined PSR values are clustered around low values. Ortlee lsand, the FRR curve
is slowly varying, indicating that the corresponding PSRiga are more scattered. The in-

tersection point of FAR and FRR curves gives the EER for thidehoLikewise, the EERs
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Table 3.1: Performance (average recognition rate in % gusilginess-based representation
for different sets of training (reference) face images under pasatioa of FacePix face
database.

Set of reference face images
Approaches 191 | 1191 angl|iet 11,198, 191,
’ and| 3¢ and| 18!

Principal component analys|s 20.74 50.53 71.66
Linear discriminant analysis [115,116] 20.7 56.9 78.7
Hidden Markov model ' 31.7 41.3 63.5
Bayesian information criteria 18.5 45.2 69.5
Edginess-based approach 46.1 74.4 92.2

for the other AANN models are computed, and the average EBRt&ned for that person.
The experiment is repeated by building verification modelefach person, and the corre-
sponding value of EER is used as a measure of performanceavienage EERs obtained
for pose variation set of FacePix face database for oneg thme five reference templates
are 51%, 3465% and 1417%, respectively. Likewise, the average EERs obtainedltor i
mination variation set of FacePix face database [115, 1di6piie, three and five reference
templates are 33%, 1B31% and H%, respectively. For pose subset of the PIE database [89],
an average EER of 480% was obtained using single reference templates.

For comparison of results with other studies on these dagahan identification system
was developed using the verification models. The identibods done by verification on a
closed set of test samples. We call the set of all test samapleepted by any of the verifi-
cation models as the closed set data. Table 3.1 shows thaparice of the identification
system in comparison with other systems fditetient sets of reference images. The pro-
posed method seems to perform better than the existing aetAde reason could be that
the proposed method may be preserving some unique infmmatia person’s face image
for a given pose. The results in Tables|3.1 shows that it mayelter to use reference face
images separately, rather than building a single model tftem. The proposed approach
is also evaluated for the pose subset of the PIE face databhseaverage recognition rate
using one training (reference) template is shown in Talf?e &ong with the performance

obtained using some existing approaches [117]. The resuits that the proposed method
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Table 3.2: Performance (average recognition rate in % gusalginess-based representation
on pose variation subset of PIE face database using a sagdarhage for training.

Eigenfaces Facelt| Eigen Light-Fields| Proposed approac\h
Average recognitior] 16.6 24.3 52.5 57.3 \

performs better than the existing methods. The performaaoebe improved further by
increasing the number of reference templates. But selectitive reference template is cru-
cial. When three reference templates (frontal view, leffifg@nd right profile) are used,
the average recognition rate increase$4®%%.

The experiments were repeated with the set of images camdspg to the variation of
ilumination angle in FacePix and Yale-B face database® gdrformance is summarized
in Table 6.3 and Table 6.4 in Chapter 6, along with the perfoceaf the other proposed

representations.

3.6 Summary

In this chapter we have discussed the edginess-basedertatsn that highlight the edge-
like information of an image. The edginess-based repratientis very sparse, and hence
gives poor scores in template matching based approach. pfidem was overcome by
spreading the edge information using potential field regpregion. The representation was
derived using 1-D processing of images, to obtain multi@etipl evidences for a given
image. An approach was proposed to combine the scores ebthynmatching multiple
partial evidences of flierent face images to address the issues of pose and illuomnat
in face recognition. This approach preserves the uniquenmition of face images while
matching. It uses the given reference face images fégrdnt poses or illumination condi-
tions) separately for template matching, rather than mglé model or synthesizing a face
image. The resulting combined scores were used to verifydéity of the person using
AANN models. The proposed AANN model based approach hasdbaage that it does
not require training images of the true class. Experimemsdits show that the proposed

approach is a promising approach for dealing with the proldépose in face recognition.
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Chapter 4

Zero-frequency resonator based

representation

This chapter proposes an approach based on the zero-figgesonator [17,136] to extract
the edge information of images. The proposed approach isteontuitive to the concept
that edges correspond to the high frequency componentsiofeage. The impulse-like char-
acteristics of edges in an image, distribute the energytumify over all frequencies of the
spectrum, including around the zero-frequency. This ptype exploited in processing a
signal using the zero-frequency resonator, for extradtiegocations of impulses [17, 136].
Spatial domain and Fourier domain methods are employedalizeethe zero-frequency
resonator for two-dimensional signals. The Laplacian ef@aussian (LOG) and the pro-
posed approach are similar in the sense that the former agiprsses a Gaussian filter for
smoothing, whereas a zero-frequency resonator is usecdnimothing in the proposed ap-
proach. The output of the resonator is processed using atiapl operator to extract the
edge information. In the resulting filtered image the eddermation is preserved around
the zero-crossings, and the edges are extracted usingasigrspondence principle [137] to
identify the zero-crossings corresponding to edges.

Since the information of the edges is preserved around tteeczessings of the filtered
image, the Laplacian of the smoothed image is proposed agrasentation of the face
image for face recognition task. The range of values of tieréd image are normalized

for matching using a nonlinear transformation, withofieeting the locations of the zero-
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crossings. Théocality problemis addressed by considering only the first few eigenvectors
derived from the filtered face images of the training set. Mpleasize the unique informa-
tion of a face image, the eigenvectors are weightdi@aintly in the distance computation
for matching. Two smoothing filters, namely, the zero-freaey filter and the standard
Gaussian filter are used to demonstrate the results. Thdreepeency filter for smoothing
performs better than the Gaussian filter.

This chapter is organized as follows: Section 4.1 expldiesorocessing of 1-D signals
using the zero-frequency resonator. The zero-frequertey ifl an infinite impulse response
(IIR) filter, and it is realized for 2-D signals using two appobes, namely, the spatial do-
main and the Fourier domain. These are explained in Sectin Section 4.3 discusses
comparison of the proposed approach with the LOG operasamyusome illustrations of
edge extraction from clean and noisy images. Issues inglotvasing the Laplacian of the
smoothed image as a representation are discussed in SégtioBection 4.5 discusses the
locality problemof the filtered image using eigenanalysis. Experimentalltesre given in

Section 4.6, and a summary of the chapter is given in Sectin 4

4.1 Zero-frequency resonator for 1-D signals

An ideal impulse has, in principle, equal amplityelgergy at all frequencies, including
around the zero-frequency. Any other zero mean signal, thithsame strength or energy
of the unit impulse, has its energy distributed unevenihhbotthe time and frequency do-
mains. It has been shown that the characteristics of an sapnla signal are preserved in
the output obtained by filtering the signal using a zerodesgpy resonator [17].

An ideal digital zero-frequency resonator is a second osglstem whose system func-

tion is given by (see Appendix A)

Y@ _ 1
X(@ 1-2z1+z?

H(2) (4.1)

whereY(2) and X(2) are thez-transforms of the outputy[n]) and input &[n]) of the zero-

frequency resonator, respectively. The unit sample respaoi the filter is given by the
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recurrence relation

yln] = 2y{n - 1] - yin - 2] +4[n], (4.2)

whered[n] is the unit sample sequence. Note that|(4.2) can be intexgbiees a cumulative

sum of the input performed twice. That is,

n

vl = > x(mi
m=0

yinl = > yalml. (4.3)
m=0

Here, the outpuy[n] at each instant depends only on the past two output valunesthe
current input value.

Because of the cumulative summation, the output of the zexpiEncy resonator for a
sequence of impulses grows approximately as a polynommaitiion of time [17]. But the
fluctuations in the output contain the information of the ulges and their locations. In
order to extract this information, the local mean is sultetddrom the output signal. The

resulting signal calledjltered signal is given by

yinl = yin] - yinl, (4.4)
where the local meay[n] is computed as

1 .

using a window size of (8, + 1) samples. Here, the size of the window is not very critisal a
long as it is in the range of 0.5 to 1.5 times the average iatdr@tween the impulses [17].
The positive zero-crossings (PZCs) in the filtered signaknetihe signal changes its sign
from negative to positive, correspond to the locations @f ithpulses. Generally, it is
preferable to pass the signal through two or more 0-Hz rdemm# suppress thefects

of high frequency components [17]. Fig. 4.1(a) shows a secpief impulses with varying
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Fig. 4.1: (a) Impulses at random locations with varying magratud (b)
Output of cascade of two 0-Hz resonators. (c) Filtered sigisd Estimated
magnitudes of the impulses from the filtered signal.

strengths. The corresponding filtered signal is shown in &ifj(c). The locations of the
impulses derived from the filtered signal are indicated pvamarks in Fig. 4.1(a). The
range of the values of the output of the zero-frequency &sons very large because of
the cumulative sum, as shown in Fig. 4.1 (b). The strengthhefmpulses at each PZC
are given approximately by the slope of the filtered signatiad the PZCs. The slope is
obtained by computing the fiierence between samples on either side of the PZCs in the
filtered signal. Thus, both the locations and strengthseirtipulses can be obtained from
the filtered signal, as can be seen from Fig. 4.1(d). If thaieece of randomly located
impulses is passed through a time varying filter with somenasce or antiresonance char-
acteristics, the resulting signal does not show the exaitahformation clearly. But the

excitation information, i.e., the locations and strengihthe impulses, can still be derived
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Fig. 4.2: (a) Response of a time varying system with unit impulsested at
random locations. (b) Output of cascade of two 0-Hz resarato) Filtered signal.

from the filtered signal. The filtered signal is obtained bggpag the signal through a zero-
frequency resonator, and then subtracting the local mean(ds4). Fig. 4.2 illustrates the

signal and the filtered signal, along with the locations eféxcitation impulses (shown by
arrow marks).

The sequence of impulses can be viewed as edges in 1-D. Hoveevedge in 1-D
signal is not an impulse, but a step function. The strengtthefedge is given by the
gradient of the step. In addition, the step could be posdiveegative. The objective here
is to determine the locations and strengths of the steps &@iven noisy 1-D signal. It
is also necessary to know whether the edge is due to positpeos negative step. Thus
both positive zero-crossings (PZCs) and negative zercsitigs (NZCs), where the filtered
signal changes its sign from positive to negative, are ree&aenark the edge locations in a
noisy 1-D signal [137].

Extraction of the locations of positive and negative stegesdrom a noisy 1-D signal
using zero-frequency resonator is illustrated in Figs.ah8 4.4, respectively. Fig. 4.3(b)
shows a noisy version (overall SNR of 0 dB) of the 1-D signamahin Fig./4.3(a). The
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negative and positive step edges of the original signakspond to NZCs and PZCs of the
filtered signal, respectively. All the NZCs of the filteredrsdjare shown by arrow marks
in Fig./4.3(c). There are some NZCs (see Fig. 4.3(chfer1000 anch ~ 160) that do not

correspond to the negative step edges. These can be ebahinging slope thresholding,
since the slopes of these NZCS are relatively low. The NZCsneddaafter slope thresh-
olding are shown by arrow marks in Fig. 4.3(d). One can oleséimat the slope of one
NZC atn = 375 is high, but the NZC does not correspond to a negativeestgp. Such

NZCs are removed using the “zero-crossing sign correspaedernnciple” (see Appendix

B). According to this principle, if a step edge has a positivst filerivative, it must corre-

spond to a PZC of the filtered signal. On the other hand, if tap edge has a negative
first derivative, it must correspond to a NZC in the filtereginsil. A zero-crossing violat-

ing this principle cannot correspond to a step edge. Thestdbulting NZCs (after slope
thresholding followed by application of the sign corresgemce principle) correspond to
the genuine step edges of the original signal, as shown irdE3ge). Similar observations
can be made from Fig. 4.4, where the elimination of false PAG@Emonstrated. The sign
correspondence principle helps in suppressing the falgeaessings which can not be re-
moved using simple slope thresholding. The significanceadbus parameters involved in
realizing the zero-frequency resonator will be discuseetie next section in the context of

edge map extraction.
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Fig. 4.3: Extraction of locations of the negative step edges imiaynstep
signal. (a) Step signal. (b) Noisy step signal. The filteigda (y[n]) derived
from x[n] is shown in (c), (d) and (e). The downward arrow marks in (c)
indicate all the NZCs. The NZCs retained after slope threshgldperation
are shown in (d). The NZCs retained after slope thresholdmigagplication

of zero-crossing sign correspondence principle are shawa)i The NZCs
retained in (e), also shown in (a), correspond to the genoégative step
edges.
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Fig. 4.4: Extraction of locations of the positive step edges iroeystep
signal. (a) Step signal. (b) Noisy step signal. The filteigda (y[n]) derived
from x[n] is shown in (c), (d) and (e). The downward arrow marks in (c)
indicate all the PZCs. The PZCs retained after slope threstwplzperation
are shown in (d). The PZCs retained after slope thresholdidgaplication

of zero-crossing sign correspondence principle are shawga)i The PZCs
retained in (e), also shown in (a), correspond to the genpositive step
edges.
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4.2 Zero-frequency resonator for 2-D signals

This section presents a method for extracting the edgenrdgtion by processing an image
using a zero-frequency resonator. The realization of thie-frequency resonator using
multiple integration of 2-D array of pixel values in the gpatiomain is not straightforward.

It can be realized approximately either in the spatial donoain the Fourier domain. These

methods are discussed in the following sections.

4.2.1 Spatial domain realization

In the spatial domain, the 1-D zero-frequency resonatoppdied along each dimension of
the image separately. Here, the dependency of pixel valoeg ane dimension does not
play a role while computing the response of the zero-frequeasonator along the other
dimension. The dependency can be brought up to some extespgdlying a smoothing

operator along one dimension followed by application ofzbe-frequency resonator along
the orthogonal direction. The algorithm for realizing tleea-frequency resonator along the
horizontal direction is given in Table 4.1. Fig. 4.5(c) sisothe edge map obtained for a
simulated image (shown in Fig. 4.5(a)), using the algorithizen in Table 4.1. It gives

the vertical edges of the given image. Similarly, the hartab edges of the image are
obtained by changing the operations along row to column,varelversa in the algorithm.

The resulting edge map is shown in Fig. 4.5(e). The complége enap is obtained by

Table 4.1: Algorithm to compute the vertical edges of an ienaging spatial domain real-
ization of the zero-frequency filter.

1. Apply a smoothing operator (1-D Gaussian filter of very kwaiance (0.2-0.3))
along each column of the image.

2. Implement((4.3) and (4.4) along each row of the smoothedjerobtained from Ste
1. The resultant image is called filtered image along thezbatal direction.

©

3. Extract the locations of the edges along each row of tlezdittimage obtained in Step
2, using the zero-crossing sign correspondence principle.
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Fig. 4.5: (a) Gray level image. Filtered images along (b) horiabmand (c) vertical direc-

tions obtained using spatial domain realization of the #B¥quency filter. (d) Edge map
obtained from the filtered image in (b) using zero-crossigg sorrespondence principle.
(e) Edge map obtained from the filtered image in (c) using-peossing sign correspon-
dence principle. (f) Edge map obtained using ‘OR’ operatiartle partial edge map
evidences shown in (d) and (e).

combining the two partial edge map evidences using OR dparats shown in Fig. 4.5(f).
Results for another example are shown in Fig. 4.6.

The output of a zero-frequency resonator is obtained bygratang the input signal
twice. In practice, more than one zero-frequency resomaty be needed to suppress the
noise present in the image. The magnitude response of adeastl zero-frequency res-
onators is given approximately k¥, as shown in Fig. 4.7 for éiierent values oN, where
f denotes the frequency variable. Nsncreases, the decay in the magnitude spectrum with
respect td becomes sharper. Thus the suppression of the high freqeengyonents of the

signal will be better for largé\.
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Fig. 4.6: (a) Gray level image. Filtered images along (b) horiabrand (c) verti-
cal directions obtained using spatial domain realizatibthe zero-frequency filter. (d)
Edge map obtained from the filtered image in (b) using zeossing sign correspondence
principle. (e) Edge map obtained from the filtered image Jruging zero-crossing sign
correspondence principle. (f) Edge map obtained using ‘Q@ietation on the partial edge
map evidences shown in (d) and (e).

The length of the windowv{ = 2N, + 1) for computing the local mean for trend removal
also plays a significant role in extracting the edge inforamat Fig.[4.8 shows the edge
maps obtained usingfiierent values ofv for a noisy image. For small values wf closely
spaced edges are emphasized in the edge map. This can beexXjtethe following way.
The operation of subtracting the local mean is equivalehéoLaplacian operation (will
be explained in the next section), which works as a high péss, fbecause the impulse
response of the Laplacian operator is proportionaitoSo the magnitude response of the
complete system (zero-frequency resonator followed byat& mean subtraction) will be

a narrow bandpass filter. The center frequency of the narsowdjpass filter increasesas
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Fig. 4.7: Magnitude response of a cascadé&laero-
frequency resonators.

decreases. Thus, for small valuesiofelatively closely spaced edges are emphasized in the
edge map.

The information of the edges of an image may not appear indge enap if the local
means are subtracted only once. This is because the range wdlties of the output of the
zero-frequency resonator is very large. The local meandraag to be subtracted more than
once to derive the information of the edges. At the same texegssive subtraction of the
local means may emphasize spurious edges in the edge mapskdhe magnitude response
corresponding tdv times local mean subtractions (Laplacian operation) ip@ronal to
f2M_ So for larger values dff, the emphasis on the higher frequency components will be

more. The edge maps obtained foffelient values oM are shown in Fig. 49.
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Fig. 4.8: (a) Noisy image. Edge maps obtained using spatial doneailization of the
zero-frequency filter foN = 3,M =4, and (bw =3, (c)w= 15, (d)w=7 and (ew = 9.
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(d) ¢

Fig. 4.9: (a) Noisy image. Edge maps obtained using spatial doneailization of the zero-
frequency filter foN = 3,w=5,and (b00M =2, (c)M =3, (d)M =4 and (e = 5.
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4.2.2 Fourier domain realization

In the spatial domain realization, the two dimensions ofraage are considered separately
while computing the filtered image, even though smoothingeisormed along the orthog-
onal direction. In the Fourier domain approach, the zeegtiency filtering is performed on
the 2-D DFT (discrete Fourier transform) of the entire imalyermally in the case of 1-D
signals, the DFT needs to be computed over segments of sttantatord to capture the time
varying characteristics of the system. In such a case tihnedting window severelyfiects
the components around the zero-frequency also. But impletien of the zero-frequency
resonator in the time domain is straightforward in the cdseD, whereas conceptually it
is more dificult in the case of 2-D.

The zero-frequency filter in the frequency domain correspanto the single integration

in the spatial domain is given by
1
\f2+ f2

where f; and f, denote the indices along the two spatial frequencies.| Fi@) ghows the

WL, f] = (4.5)

magnitude response of the zero-frequency filter. Note\#{& O] is set to zero. The 2-D

WIF 1]

Fig. 4.10: Magnitude response of the 2-D
zero-frequency filter.
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(d)

Fig. 4.11: (a) Gray level image. (b) Output of 2-D zero-frequefiltgr. (c) Filtered image
obtained after local means are subtracted ugirg5. (d) Edge map obtained from the filtered
image in (c) using zero-crossing sign correspondenceiptéc

DFT of an image is multiplied wittW[f,, f;], and the inverse discrete Fourier transform

(IDFT) of the product gives the response

ylng, o] = IDFT {X[ fy, R]W[ f, 2]}, (4.6)

whereX] f;, f;] denotes the 2-DFT ok[ny, ny]. Fig./4.11(b) shows the output of the zero-
frequency filter W[ f, f;]) for an image shown in Fig. 4.11(a). The range of values in
the output is very large in the spatial domain as expected,tduhe &ect of equivalent
cumulative sum in the spatial domain. This is not exactlyesamthe cumulative sum in the
spatial domain, since only the magnitude of the zero-fraqu&esonator is used in (4.5).
Moreover, the value oV f,, f,] is set to zero at the origify = f, = 0.

As in the case of 1-D, it is necessary to remove the trend imthput to bring out the
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features corresponding to the edge information. The trerrémoved by subtracting the

mean of (N; + 1) x (2N; + 1) pixels around each pixel of the output. Thus the filtereadgm

is given by
YNz, o] = y[m, no] — y[ng, ny], 4.7)
where
1 N1 N1
Ml = o DT 1) ZN,Z;‘. ying+i,m + . (4.8)

The filtered image is shown in Fig. 4.11(c). In the filtered gma&ach genuine edge could
be either at a positive or at a negative zero-crossing, dkpgron whether the edge is
from white to black pixels or vice versa in the original imagdeis not possible to derive
and interpret the zero-crossing locations in 2-D easilyjnathe case of 1-D. The edge
map from the filtered image is computed by finding the zergsirgs along each row and
column, separately. Spurious edges are removed usinggheairespondence principle as
explained earlier. The resulting edge map is shown in/FibL(4). Here, the estimation of
the edge locations at the corners is not accurate. This museche 2-D zero-crossings of
the filtered image are interpreted as 1-D zero-crossings.

A cascade oN zero-frequency filters can be realized by multiplying the B¥T of the
input image with the filter\V[ f,, f,]]N. The dfects of the parameters, such as the number
of zero-frequency filters in the cascade, the number of tilme$ocal means are subtracted,
and the length of the window used for computation of the loeahns are similar as in the
case of the spatial domain realization of the zero-frequeesonator.

The following observations can be made in the realizatidrth® zero-frequency res-
onator in the Fourier domain and in the spatial domain. Th&iEodomain method uses
a finite impulse response (FIR) approximation of the zergtfescy resonator, which may
introduce artifacts due to finite window length [138]. In #otoh, the phase information
of the zero-frequency filter is not used in the Fourier dormapproach, which is not the
case in the spatial domain realization. The spatial doneatization does not exploit the

relations between pixels along the rows and columns of agémdrig. 4.12 shows edge
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maps obtained for noisy synthetic images using both theadplimain and Fourier domain
approaches. The spatial domain realization gives peratyptoetter results as compared to

the Fourier domain realization.

4.3 Comparison with Laplacian of Gaussian (LOG)

The Laplacian of Gaussian (LOG) operation was proposed by &tad Hildreth [14] to
detect the edges in an image. According to the principle oBl.@ero-crossings of the sec-
ond derivative (Laplacian) of an image give the locationthefedges. Since the derivative
operation is sensitive to noise, theet of noise is reduced by smoothing the image before

applying the derivative operator. Smoothing is performsidg a Gaussian filter, given by

—(n? + ng)}, 4.9)

1
glng, nz] = 2252 <P 252

whereo denotes the variance. A high valuemfs chosen for noisy image, but this leads to

smearing of the edges also. The frequency response of thesi@aadilter is given by

G[fy, fo] = 2n0? exp{@}. (4.10)
The response of the Gaussian filter for a given imgge, n,] is computed as
yini, Nyl = IDFT{X[fy, f2]G[ 1, f]}. (4.12)
The Laplacian of the resultant output is computed as [139]
V2[yln. n2]] = V2[x[ng, 0] @ glng, no]l, (4.12)

where® andV? denote the convolution and Laplacian operations, respdytiThe compu-
tational complexity of thév? operation is high because it is image dependent [139]. This

issue is addressed in two ways: In the first method the lityeanid shift invariance proper-
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ties of convolution and Laplacian operations are expldi1&®]. That is

VX[, np] @ glng, ng]] = X[y, ng] ® V2g[ny, ny]. (4.13)

Therefore, Gaussian filtering followed by Laplacian is sasdiltering with Laplacian of
Gaussian. The right hand side of (4.13) is mdfent, sincev?g[ny, ny] can be generated
in advance, as it is independent of the image. In the secomidoah¢140], an approximate
mask of the Laplacian operator is derived, as shown in Fi@ &), and this mask is used to
compute the Laplacian of the Gaussian smoothed image. intfée mask can be derived
from two parts, one is an all-pass filter and the other is a rfikan whose masks are shown
in Figs. 4.13 (a) and (b), respectively. Based on this decaitipn, the Laplacian of an
image can also be obtained by subtracting the outputs @utafter applying the masks
shown in Figs. 4.13 (a) and (b) on the image. This operatieqjisvalent to the local mean
subtraction/(4.7), which is proposed to extract the edgeriétion from the output of the
zero-frequency filter.

One can observe from (4.6) and (4.11) that in the proposeraphp, the smoothing of
image is performed using the zero-frequency filter, instgfadsing the Gaussian filter as
in the case of LOG. The Laplacian operation is common in bo¢haipproaches. Fig. 4.12
shows the edge map obtained using the LOG operation, andlgeereaps obtained using
the two approaches for realizing the zero-frequency rasondere, the parameters for each
approach are chosen in such a way that the resultant edgesrpapceptually good. Sup-
pression of noise and estimation of the edge locations dterle the proposed approaches
as compared to the LOG operation. This is due to the fact kieatiécay in the magnitude
spectrum of the zero-frequency filter with respect i® sharper as compared to that in the
case of Gaussian filter, as illustrated in Fig. 4.14. In tleneple the magnitude spectrum
of the Gaussian filter is computed usiog= 3. It is possible to obtain the spectrum of the
Gaussian filter similar to that of the zero-frequency filtgrchoosing a very large value of
o. In practice large values af result in large error in the edge localization.

The proposed approaches are also used to derive the edgdonapseral real world

images under noisy condition. Additive white Gaussian @@igth zero mean and variance
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of .002 is used to generate the noisy images. 4.15 ah@ sthow the results for the
“peppers” and “car” images, respectively. Estimation & éuges due to the peduncles and
boundaries of the peppers is better in the spatial domalizagian of the zero-frequency
resonator for both the original and the noisy images. Simulaservations can be made
from the estimated edges due to the mud guard and rim of aggrehown in Fig. 4.16(b).
Though the estimation of edges is similar in the both the ieoutomain realization of the
zero-frequency filter and the Gaussian filter, the formeraggh suppresses the noise better
than the latter. The results also show that the edge lot@lizés poor in the case of the
edge map obtained using the LOG operation as compared todpeged approaches. This
Is due to the fact that the error in the edge localization du&aussian filter increases as
the standard deviation of the Gaussian increases. On tke loéimd, even if we emphasize
the components of the image near the zero-frequency, treseadg still detected accurately
while suppressing the noise. This is because the edges afageihave characteristics of

an impulse, whosefkect is spread uniformly over all frequencies of the spectrum
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Fig. 4.12: (a) Noisy images. Edge maps obtained using (b) spatidl(c) Fourier domain
realization of the zero-frequency filter. (d) Edge maps ioletd using LOG operation.
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Fig. 4.13: Mask for Laplacian operation

Fig. 4.14: Magnitude response of (a) 2-D zero-frequency filtel @)
Gaussian filter. The large and small values of the magnitpdetsum
are denoted as white and back in the image, respectively.
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Clean image Noisy image

Fig. 4.15: (a) Original and noisy images of “peppers”. Edge mdgained using (b)
spatial, and (c) Fourier domain realization of the zeraency filter. (d) Edge maps
obtained using LOG operation.
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Clean image Noisy image

537~

Fig. 4.16: (a) Original and noisy images of “car’. Edge maps atadiusing (b) spatial,
and (c) Fourier domain realization of the zero-frequendgrfil(d) Edge maps obtained
using LOG operation.



4.4 Laplacian of smoothed image as a representation of

face image

Here we propose the use of filtered images obtained usingetivefrequency filter and the
LOG operation for representation of face images. We shotthieae representations help in
reducing the ffects of illumination in face recognition. Fig. 4117 shows ftitered images
obtained using the Gaussian filter, and the two methods bzirggathe zero-frequency filter
for 2-D signals. In the spatial domain method, two filteredges are derived, one along the
horizontal direction and the other along the vertical dimet These filtered images capture
the vertical and horizontal edge information of the facegmas shown in Figs. 4.17(b) and
(c), respectively. In the case of Fourier domain realizatibthe zero-frequency filter or in
the LOG operation, only one filtered image is obtained forwegiface image, as shown
in Figs. 4.17(d) and (e). The filtered images obtained usifigrént smoothing filters can
not be compared perceptually, since the information of tigges is present around the zero-
crossings of the filtered images.

For matching two filtered images, it is necessary to have riiegées within the same
dynamic range, at the same time preserving the informafitimeoedges present around the
zero-crossings. Note that normalization of the filteredgeasing a linear transformation
between the maximum and minimum values shifts the level@f#ro-crossings, and hence
the resultant normalized filtered images cannot be used &chimg. A nonlinear transfor-
mation is proposed which truncates the positive and negatlues of the filtered image
beyond certain threshold values, and which has a lineasfmanation within the range of
the positive and negative threshold values. The nonlimaasformationT (x) is shown in
Fig./4.18. The value of the threshold amplitudéor the transformation function is derived

from the filtered imag®[ny, n,] as follows:
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Fig. 4.17: (a) Gray level image. Filtered images along (b) hariaband (c) vertical
directions obtained using spatial domain realization efzbro-frequency filter. (d) Fil-
tered image obtained using Fourier domain realization efziro-frequency filter. (e)
Filtered image obtained using Gaussian filter. The secowdgiees the corresponding
nonlinearly transformed filtered images.

where

m = min{| max@ny, nz]) |, I((Min@[na, nz])) 1. (4.14)

The value of the parametgg is chosen between 0 and 100. Note that that the locationg of th
zero-crossings are preserved. For very small valugs (flose to zero), the transformation
function gives only two outputs -1 an#ll, which is not desirable, as it results in a binary
image. Experimentally we have observed that a valug.oh the range of 70 to 90 is
reasonable for face recognition. The transformed filtenedgies obtained from the zero-

frequency filter and the Gaussian filter are shown in the stomw of Fig. 4.17 forp. = 80.

4.5 Locality problem: Smearing of the filtered images

One of the problems in using any representation based ondipe ieformation for face

recognition is thdocality problem Due to this, matching of filtered images results in poor
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Fig. 4.18: Nonlinear transfer function to preserve the
zero-crossings of filtered images.

score under intra-class variation of the face image. Onetwayprove the performance is
to smear the edge information and then perform matching. Bugssive smearing of edges
may result in loss of information, leading to poor performmaror inter-class variation of

the face image.

Smearing is fiected by removing the céicients of the eigenvectors corresponding to
low variances. Eigenanalysis using two partial filteredge®s obtained with the spatial
domain realization of the zero-frequency filter, will be satered first. LeD; denote the
set of training face images for th& person. For all the available training face images, the
two partial filtered images are computed. I¥tandx" denote the vector representations
of the filtered images along the vertical and horizontal aioms for the imageqn;, ny],
respectively. The eigenvector math® € RPP = [y7, ..., yy], and the diagonal eigenvalue
matrix AY € RP*P = diag 17, 43, . . ., 4)} with the diagonal elements (eigenvalues) arranged
in decreasing orderl{ > 15... > 1)), are obtained using’ representations of the training
face images. Similarl{" € RP*P andA" € RP*P are obtained using representations of the
training face images. Hene= R x C, whereR andC are the number of rows and columns
of the given face image, respectively. A face imafye, n,] can be represented in terms of

the eigenvectors as [91]
a;]’p — (\Ph)txh,
a,” = (V")'x", (4.15)
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wherea? anda!" are the projected céigcients. Heret denotes the transpose operation.

The filtered face image can be reconstructed using the peojeodficientsa,” as follows:

XY a, Y

p
DAt (4.16)
i=1

whereal’= [/}, ..., ap]. The eigenvectors associated with the largest eigensaltealso
referred to as eigenfaces [141]. Removing the last few piejecodficients in|(4.16) leads
to smearing of edges.

The significance of smearing of edges of the filtered face @aniagemplate matching
can be observed using the scatter plot of distami@‘ée(nddi‘f;‘) for a person’s face image.
The distances are defined for a given test face imgae, f1,]) with respect to the reference

face images of thé" person using the first projected cofficients as follows:

hn _ i hn _ shn
diy = minla,” — a2,

diy = minflag" - a"ll> (4.17)

Ideally, the distances should be low if the test face imagef isue class, and high for a
false class face image. The maximum valuena$ (R x C) = 2500, as each face image
was rescaled to 58 50 pixels in our experiments. Fig. 4.19 shows the scattes o a
person for diferent values oh (number of projected cdicients), using one face image
(L% as training (reference) image for each person in the ilhation variation set of the
FacePix face database. The remaining 180 face images oétherpform the test samples
of the true class, and the matching distances are shown ksytheol ‘>’ (diamond) in the
scatter plots. The number of test samples of the false c$a®9x 181 = 5249, and the
corresponding distances are shown by the symb{diot) in the the scatter plots. Ideally,
the points due to true class should be close to the origin tleaghoints due to false class
should be farther from the origin. The plots show that thenfsoare more dense for false
class, and most of the points are far from the origin in Fig94d) for both true and false

classes as compared to Figs. 4.19(a)-(c). Sinckttadity problemfor the true class images
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is severe when all the projected ¢dgients 6 = 2500) are employed for matching, the
chances of matching of any test face image with the referfamesimages is less. Removing
a few codficients corresponding to the small eigenvalues leads toramgeat edges of the

filtered face image, and thus reduces the locality problent.eBcessive smearing reduces
discrimination between true and false class images as caedrein Fig. 4.19(a), where the
true class points are closer to the origin, due to better mvagc but at the same time the
false class points are more spread out and are brought ¢tosiee origin. Thus there is a

trade-dt in the smearing of the edges, whicfiiexts the performance of face recognition.
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Fig. 4.19: Scatter plots of distances for a person’s face imamgy wertical
and horizontal filtered face images arfd as training (reference) face image.
(@n=5, (b)n= 20, (c)n=30 and (dn = 2500. Heren denotes the number
of eigenvectors used to compute the similarity measm{{ly%e(nddi‘f;‘).
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Fig. 4.20: Comparison of the performance of vertical
and horizontal filtered images forftkrent numbem)

of eigenvectors and using* as training (reference)
face image.

The identity (*) of a given test face imaggn;, n,] using the firsi projected cofficients

is computed as follows:

() = arg mirf(dfy)? + (dy)4 2 (4.18)

_Number of Correctly identified face images .
The performancer(n) = Total number of available test face imag 100) for diferent

values ofn is shown in Fig. 4.20. The performances obtained with thegamtial evidences
(dirj;,” andd;}') separately are also shown in the figure. The performanceyuke filtered
image along the vertical direction is better than the penoice using the filtered image
along the horizontal direction. This is because the edgasyahe vertical direction seem
to capture more discriminative information of face imagdésreover, the performance does
not improve by combining the two evidences, where they anabtoed by simple norm-2.
We can observe from (4.18) that the identification perforoea) depends on the dis-
tance values of the test face image with the reference faagemof all the persons. Note
that, the scatter plot shows similarity scores of the test fenage with respect to reference
face images of only one person. Thus the scatter plots ara doect indication of the
identification performance, but they are used to examindémavior of the true and false

class samples.
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4.5.1 Weighted eigenvectors

The eigenvalues indicate the spread of the training facg@salong the corresponding
eigenvectors. The eigenvector corresponding to the lamjgenvalue gives information
common to all the training samples. On the other hand, theenm unwanted information
is present in the eigenvectors corresponding to small eajees. The unique information
of a face image can be highlighted by removing the common arsy tomponents of the

given filtered face image. Following this idea, (4.16) camllvided into three terms as

I1 I2 p

X' = A+ D adul+ > A, (4.19)
i=1 i:|1+l i:|2+l
wherel; andl, are indices. The cdﬁcients{ax"”ip, i = 1,...,l;} defining the first term,

correspond to the information which is common to most of théing face images. The
second term corresponds to the unique information presehti given face image, and is
defined by the cdﬁcients{aﬁf, i =1;+1,...,1,}. The third term corresponds mostly
to noise. The second term will be more useful for discrimoraas compared to the first
and third terms. These characteristics were observed hatlgtay level representation of
the face image also [142, 143]. The performance of face rétiog can be improved by
assigning more weight to the déieients of the second term as compared to thefments
of the first and third terms during matching. One of the isgthasneed to be addressed is,
how to decide the values of the indidesandl, that divide the given representation of the
face image into the three terms as discussed above. Thegigdendl, may be specific to
a given face image.

In this work, the inverses of the eigenvalues are used ashigetg the cofficients in
the matching task. This will give more weightage to thosgquted coéicients which
correspond more to the unique information of a given facegenarollowing these ideas,

the weighted distance measure is given by

dy' = miniia)"Wy - & Wil
diy = min|laf"Wy — ax"Wyll.. (4.20)
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Fig. 4.21: Scatter plots of distances for a person’s face imamg dise hor-
izontal and vertical filtered imaget?* as reference face image and 30 pro-
jected cofficients. (a) With weighted eigenvectors. (b) Without wegght
eigenvectors.

whereWy = } andW" = diag—= } are diagonal matrices. The

diag —= Ve \/_ v \/_

advantage of using the weighted distance measure can béseethe scatter plots shown
in Fig./[4.21. The points due to false class samples are mosedmnd farther from the origin
in Fig.[4.21(a) as compared to Fig. 4.21(b). This is due tddbethat the coficients which

have discriminative information get more weight than thefitccents which have common
or less discriminative information, and hence the perforoeas improved by4% as shown

in Fig.[4.22. In the computation of the weights, to avoid ggiarge weightage to the
codficients which have less discriminative information, a srpa8itive value is assigned to

the corresponding eigenvalues.

4.5.2 Hfect of choice of parameters for face recognition

It is to be noted that the parameters involved in realiziregaéro-frequency filterféect the
recognition performance to some extent. Hence, it is nacgss study the fect of such
parameters. The information about the edges of the facednsagaptured around the zero-
crossings of the filtered image. Closely spaced edges ggneoatespond to noise in the

filtered image. The edges with large spacing correspondlti@mbinformation of the face
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Fig. 4.22: Comparison of the performance under

weighted and normal similarity measures obtained us-
ing the horizontal and vertical filtered face images for

different numberr{) of eigenvectors.

image that is similar across the face images @edent persons. The importance of edges
of small or large spacing in matching can be controlled bypdw@meterd, w andM used

in realizing the zero-frequency filter. Fig. 4.23 shows tleef@rmance of face recognition
obtained using (4.18) for fierent values of the parameters and one training (referéace)

image (°%) of each person. The following observations can be made:

1. The complete system of smoothing (low pass filter) folldveg the local mean sub-
tractiorfLaplacian operation (high pass filter) is a narrow bandplss fiiear the zero-
frequency. The center frequency of the bandpass filter aser®asy decreases. Thus,

closely spaced edges are highlighted in the filtered imagsmaller values oiv.

2. When more than one zero-frequency filter is employed toragsphe noise present
in the image, the range of the resultant smoothed image bexeary large. It is
necessary to remove the local mean more than once to brirtge@atige information.

But excessive subtraction of the local mean may emphasize r{olosely spaced

edges) also.

3. For a fixedN and small window\ = 3), asM increases, the performance decreases,

because the relatively closely spaced edges get hightightine filtered image.

4. For large values of the window lengtiv & 7 to 9) and fixed\, asM increases the
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Fig. 4.23: Significance of the parameters used to compute theetilienage using spatial do-
main realization of the zero-frequency filter, in the comnteikface recognition.N = number
of integrationsM = number of times local mean is subtracted ané length of the window
to compute the local mean. Performances obtained usingettiieal evidence, horizontal evi-
dence, and combined evidence are shown usingando, respectively.
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performance increases. The reason could be that large wihdhlights the widely
spaced edges for smadl. With increase irM, relatively closely spaced edges also get
highlighted.

5. The set of parameters needs to be chosen suitably, suchditlaer very closely-

spaced edges nor widely spaced edges are highlighted intdrediimage.

4.6 Experimental results

Performance of the proposed filtered image representaiging diferent smoothing filters
is compared for dferent sets of training images from FacePix and Yale-B fatebdaes.
The results are summarized in Table 4.2 and Table 4.3. FerBdhce database two sets of
training data are formed: Set 1 containing>X3%0 = 350 images of negative azimuth (with
35 images for each person), and set 2 containing 20 = 290 images of positive azimuth
(with 29 images for each person). The eigenvectors areatetiging the data set 1, and the
performance is evaluated using the data set 2. The perfaenaralso obtained by inter-
changing the training and test data sets. The experimeat®peated with filtered images
derived from the spatial domain and Fourier domain reabmatf the zero-frequency filter.
In the case of spatial domain realization, the evidencegugrtical and horizontal direc-
tional smoothing are obtained separately. For both thezeguency filtered image and the
Gaussian filtered image, the paramet&isi, M ando) are varied to obtain the best results.
Among the representations obtained using directional sinmag filters, the filtered image
derived along the vertical direction in the spatial domaalization of the zero-frequency
filter gives the best results. This is because the edges #hengertical direction seem to
contain more discriminatory information of the face imagenpared to the edges along the
horizontal direction. The filtered image obtained using Bo@rier domain realization of
the zero-frequency filter gives good performance, althaughslightly lower compared to
the performance of the spatial domain realization of therfitl image. Note that the 1%
improvement over Gaussian filter is significant due to thetfzat the performance has im-
proved to 9%% from 985% (see column 2 in Table 4.3). These results will be compared

with other representations as well as with some existingagghes in Chapter 6.
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Table 4.2: Performance (average recognition rate in %)tefét images obtained using the
zero-frequency filter and Gaussian filter foffdrent sets of training (reference) face images
under illumination variation of FacePix face database.

Set of reference face images
Ll L91 Ll L46 L91

Approaches

L91
and L181 L136 and L181
_ _ . | Vertical filtered image | 85.9| 98.6 99.8
Spatial domain realization 5 3 o niarfiltered image 60.1| 94 95.6
of the zero-frequency filte Combined 77 41985 999
Four . 7at

ourier domain realza-tlon 75 2| 97 99.3

of the zero-frequency filter
LOG 76 | 96 99.2

Table 4.3: Performance (average recognition rate in %) td#rétl face images obtained
using the zero-frequency filter and the Gaussian filter fiecent sets of training (reference)
face images under illumination variation of Yale-B faceatatse.

Set of reference face images

Setl| Set?2
, _ .. | Vertical filtered image | 99.6 | 99.5
Spatial domain reallzat'lor Horizontal filtered image 94 93

of the zero-frequency filter =5 pined 991 1997

Fourier domain realization

Approaches

. 98 98.9
of the zero-frequency filter

LOG 98.5 | 98
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4.7 Summary

In this chapter we have discussed processing of images tiermero-frequency resonator
for two applications, namely, computation of edge map apdesentation of face image.
The idea behind the zero-frequency resonator is that thggo&unit impulse is distributed
equally at all frequencies, including the zero-frequerByt this is not true for other zero
mean signals of the same strength or energy as that of thanypitise. The output of
the zero-frequency resonator captures the impulse-likeadteristics of the signal. The
results were demonstrated using several one-dimensigradls. The edges of an image
are expected to possess the characteristics of an impuésbaVé proposed two approaches
based on spatial domain and Fourier domain to realize tleefeequency resonator for two-
dimensional signals. The spatial domain realization dagserploit the relation between
two dimensions (between rows and columns) of an image. Tlhgae between rows and
columns is utilized in the Fourier domain approach, but & iBIR approximation of the
zero-frequency resonator. Moreover, the frequency domesilization does not specify any
phase information.

The locations of the edges are detected by finding the zessitrgs of the filtered im-
age, which is obtained after removing the trend from the widp the zero-frequency filter.
In the case of Fourier domain realization, the zero-crgssin the filtered image are two-
dimensional. Since it is not easy to detect the zero-crgssim 2-D, it is performed by
finding the zero-crossings along each dimension separalig could be the reason that
the detection of edges at the corners is not accurate in geeatd-ourier domain realization
of the zero-frequency filter. The operation of removing tleadl from the output of the zero-
frequency filter is equivalent to the Laplacian operationudthe proposed approach can be
viewed as smoothing using the zero-frequency filter folldwg the Laplacian operation. It
has similarity with the LOG operation where smoothing isf@ened by a Gaussian filter.
The results show that suppression of noise and edge lotafiza better in the case of the
proposed two approaches.

We have also shown that the filtered images, derived from éipdelcian of the smoothed

images, can be used directly as a representation for faogm#ion, without explicitly de-
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riving the edge information. The zero-crossings of the riiteimage preserve the edge
information of the image. A nonlinear transformation isgweed to normalize the values of
the filtered image, by preserving the information aroundzéit®-crossings. The normalized
filtered images are used to compute the distance betweeratweorhages for face recog-
nition. Thelocality problemof the filtered face image is addressed by smearing the edge
information, which is realized by removing the eigenvestrresponding to low variances.
Excessive smearing of the edges may give importance to edtfesarge spacing, which
may correspond to global information of a face image. Thig meault in poor performance
under inter-class variation. The performance can be imgatdy giving more weightage to
the subject-specific unique information.

The zero-frequency filter and the Gaussian filter are usedrfayothing the images.
The spatial domain realization of the zero-frequency figimes two filtered images that
capture the vertical and horizontal edge information ssedy. The filtered image derived
along the vertical direction seems to capture well the d@igoatory information of the face
image. This study demonstrates that the edge informatied net be confined only to the
high frequency components in the spectrum. The edge intiwmés distributed evenly

throughout the spectrum, including the region around the-frequency.
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Chapter 5

Analytic iImage based representation

Another representation that preserves the impulse-likeadteristics of a signal is based
on the concept of analytic image, as discussed in this chapte theory of analytic func-
tion underpins many concepts of signal analysis such asitaul{frequency demodulation
(AM-FM) [144], instantaneous frequency [145] and inteof@etry [146]. Moreover, it has
applications in geophysics [147, 148], narrow-band compation [149] and Radar [150].

The analytic signal is a complex signal and can be brokenwdaomponents, namely,
magnitude and phase. It is well known that the phase of thiytamaignal, derived from a
real 1-D signal, preserves the information of the edgesebtiginal signal [151]. Compu-
tation of the phase using arctan function gives wrappedehtisan be avoided by using
functions of the analytic phase rather than phase direttlythis work, the trigopnometric
functions of the analytic phase are used to exploit the edligemation present in the face
image to address the issue of illumination in face recogmitHere also thécality prob-
lemis addressed by smearing the edges of the function of anggise by removing the
eigenvectors corresponding to low variances before magchThe performance is further
improved by giving more weightage to the eigenvectors apwad to the unique informa-
tion present in the face image.

The chapter is organized as follows: Section 5.1 gives tHimitden of the analytic
function for two-dimensional signals. Section /5.2 disessthe information present in the
magnitude and phase of the analytic signal. The proposedifuns of the analytic phase

are explained in Section 5.3. Eigenanalysis of these fanstis made for use in the face
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recognition task, as explained in Section 5.4. Experimi@rtaults for face recognition are

given in Section 5.,5. Section 5.6 summarizes the chapter.

5.1 Analytic image

The analytic signal of a real one-dimensional (1-D) signadwroposed by Gabor in 1946 [152].
Since then the analytic signal has been used as an impootanhtprocessing of 1-D sig-
nals [153]. The analytic signal is derived by suppressihgedative frequencies of the real
signal. This results in a complex signal that is a sum of tivergreal 1-D signal and an
imaginary component that is Hilbert transform [153] of tlngeq signal.

Let x(t) be a real 1-D signal. Then the analytic sigrg(lt) is defined as
Xat) = X() + jxu(®), (5.1)

wherexy(t) is the Hilbert transform (HT) ok(t), given by [153]

xa(t) = Hix®) = %p.v f X g (5.2)

t—71
Here, p.v denotes the Cauchy principal value of the integimithe Fourier domain, the
relation between the analytic signal and the original digngiven by
Xa(w) = (1+ sgn@))X(w), (5.3)
where signum function (sgn) is defined as

1 w>0
sgnw) = (5.4)
-1  w<O.
The Fourier transform ofa(t) and x(t) are denoted b¥(w) and X(w), respectively. One
can observe from (5.3) that the spectrum of the analyticadignzero for the negative fre-
guencies.

The complex signal obtained using (5.1) satisfies the Ca&sagrann condition for
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differentiability, and has been traditionally called analgiignal [153]. This definition is
extended to 2-D signals as well. The 2-D analytic sighal heenbapplied for feature ex-
traction and classification in image processing [154]. €hae three definitions proposed
for analytic signal of 2-D signals [144]. Two of them define @nalytic image as a sum of
the original image and its Hilbert transform, as in the casé-D. These are based on the
total Hilbert transform [155] and the partial Hilbert trémsn [156]. The third definition
is based on the principle of suppressing some frequenciggispectrum of the original

image. These definitions are as follows:

Definition |: Here, the definition of the Hilbert transform (5.2) is exded to two

dimensions. The analytic image of an imadg, t,) is written as [144]

XA(t]_, tz) = X(tl,tz) + j7‘{{X(t1, tz)}
= X(tl,tz) + jXH(tl,tz), (55)
where
_ _ 1 X(Tla TZ)
XH (tl, tz) = W{X(tl,tz)} = pr f 2 (tl — Tl)(tz — Tz) dTlde.
Applying Fourier transform on both side of (5.5), we get
Xa(wi, wz2) = (1-sgnwi)sgnws))X(ws, w2), (5.6)

where Xa(w1, w2) and X(w1, wy) are the Fourier transforms (i, t;) and x(ty, t),

respectively.

Definition II : In this definition, the 2-D Hilbert transform is considesithe succes-
sive applications of the 1-D Hilbert transform along the tdimensions separately.

The partial Hilbert transform of an imaget,, t;) alongt; direction is written as

Xi(tnt) = p.v f RAELY (5.7)

T tl—Tl
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The corresponding analytic image is given by
X%(tl,tz) = X(tl, tz) + ]X:_l| (t]_, tz), (58)

and is called horizontal analytic image. Similarly, thetiead analytic image can be

computed by using the partial Hilbert transform aldandirection.

Definition Ill : This definition of analytic signal was proposed by S. L. H{b56].
In analogy to 1-D analytic signal, the spectrum of the imagymaade zero everywhere
except in one quadrant of the frequency domain. The anaigage, whose spectrum

is suppressed in all the three quadrants except in the fiegirgat, is given by
Xa(w1, wz) = (1+5gNs) + Sgns) + SGNW1)SgN(2)) X(w1, wz).  (5.9)
The inverse Fourier transform is given by
Xa(te, t2) = X(t1, t2) — Xu(ts, t2) + JOK3 (te, t) + X3 (te, t2)). (5.10)

Similarly by preserving the values of the spectrum in any oinéae remaining three

guadrants in the Fourier domain, one can derive analytigésas [156]

XAl o) = X(to, 1) + Xu(te, t2) — (45 (e, t2) — X3 (t, 12)),
Xt t) = X(tz, 1) + X (te, to) + J(x (t, t2) — X2 (1, 1)),
Xi(tl, t2) = X(tl’ t2) — XH (tl’ t2) - J(XE (tla t2) + XtH2 (tla t2)) (511)

In the first two definitions, the original image can be recedeby considering the real
part of the analytic image. But these definitions do not satisé property of having zero
spectrum in the negative frequencies. The third definitatisBes this property, however
reconstruction of the original image requires one moreydicamage constructed from any
of the other quadrants. This is one of the issues in the daoatyage based representation.
In addition, all the three definitions have a degree of dioaetity associated with them due

to product of the 1-D signum functions [150, 157]. The prddfche 1-D signum functions
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results in a quadrant signum function. Such products arelyh@nisotropic owing to the
directional line discontinuities, resulting in the anregtic definitions [157]. One way to
address this issue is to maintain the point discontinuity-8f signum function in 2-D also.
A point is a non-directional discontinuity in two or more dinsions [148, 158]. In this

work, the first two definitions are used to represent an image.

5.2 Significance of phase of analytic image

The analytic image computed with any one of the definitiossussed in the previous sec-

tion can be written as

Xa(ts, t2) = [Xa(ty, t2)l €Xp(jo(ts, t2)), (5.12)

wherexa(ty, t;) = v(X(t, t2)? + Xu(ti, t2)?, andg = arctari8} it is difficult to visualize
how the information in these two components are relatedgumethe magnitude and phase
are not directly comparable.

The significance of the phase and magnitude of the analgiasis illustrated using
1-D signal in Fig. 5.1. An aperiodic sequence of impulse$winit strengths is shown in
Fig.'5.1(a). The sequence is filtered by a 200 Hz resonatdrttenfiltered output is shown
in Fig./5.1(b). The magnitude and phase of the analytic $ighéhe filtered output are
shown in Figs. 5.1(c) and (d), respectively. The phase oatiadytic signal of the filtered
output can be expressed#$) = wot + 6(t), wherewy is the frequency of the resonator. It
is difficult to see the information present in the phase of the anaignal because of the
linear term (uot) present in equation. The information can be extracted loypeding the
derivative of the phase of the analytic signal, as shown @gn/Fil(e). Here, the derivative
of the phase is not computed by simplyfdrentiating the phase of the analytic signal. It
is computed directly from the analytic signal [17]. This amgch avoids unwrapping of
the phase function. One can observe from Figs. 5.1(c) anth&he information of the
impulses of the original signal is preserved better in thasghof the analytic signal. This

observation leads us to use the phase of the analytic imag®tacterize the impulse-like
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characteristics (i.e., edge information) of the face image

0.5- 4@
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Fig. 5.1: Significance of magnitude and phase of an analytic igapAperiodic
sequence of impulses with unit strengths. (b) Output of arra®r (whose resonant
frequency is 200 Hz) for the sequence of impulses shown igaMagnitude and
(d) phase of the analytic signal obtained from the filteregbou (e) Derivative of
the phase of the analytic signal.
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5.3 Proposed functions of analytic phase image

The phase of the analytic image contains the informatiomefetdges of a given image. It

can be computed as

(5.13)

dw(ty, 1) = arCtan{imag{XA(tl, tz)}}

reafxa(ts, t2)}
wherexa(t1, t2) can be defined using any one of the definitions explainedarstction 5.1.
This computation gives only the principal value of the phiasthe range of €z, 7]. Any
value outside this interval will be wrapped around, prodgca wrapped phase function.

The actual phase(t;, t;) and the wrapped phase are related by [159]

P(t1, t2) = Pu(ts, t2) £ 1(ts, 1) 2r, (5.14)

for some integel(t;, t,). The objective of phase unwrapping is to compute the agtuase
#(t1, 1) either from the wrapped phasgg(ty, t2) or from the analytic imaga&a(ty, to).

Unwrapped phase in two dimensions has potential applicaition synthetic aperture
radar (SAR) interferometric imaging, the phase values spord to the terrain elevation
heights [159-161]. A similar application is in optical irfierometry, where the phase values
are used to obtain information such as shape and displacehére surface [162]. The
unwrapped phase values of the magnetic resonance (MR) immag&sn information about
flow or inhomogeneities in the magnetic field [163]. Also, qautation of the complex
cepstrum requires phase unwrapping as one of the processry[138]. Other applications
of unwrapped phase are in compensated imaging [164] an#lspetaging [165].

It can be observed from (5.14) that théfdience between the wrapped phase and the ac-
tual phase is multiples ofi2 Due to this, the wrapped phase will have many discontiesiiti
in multiples of Zr. A simple approach to unwrap the phase is to first detect theoditi-
nuities in the wrapped phase using a predetermined thrshotl then remove them by
adding or subtracting multiples ofr2 This method works well for noiseless signals. In
general, detection of the discontinuities may be errone@ssilting in inaccurate estimate

of the unwrapped phase [166].
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There are several approaches proposed in the literatuoartpute the unwrapped phase [146,
159,166-175]. Each approach has its own advantages artVaigages. The unwrapping
of phase is still an open research problem. In this work, vap@se to use functions of
the phase, instead of the phase itself, to avoid the probfgshase unwrapping. One can
rewrite (5.12) as

exp(jo(ts, t2)) cos@(ts, t2) + j sin(@(t1, t2))

Xa(t1, t2)
— > 5.15
IXa(t1, )| ( )
where
cosg(ty, tz)) = X(t1, 1) = Xt t) ,
\/Xz(tl, tz) + X}Z_{ (tl, tz)
and
sinf(ty, 1)) = X’(ti, 1) = Xi(ta. 1) (5.16)

\/x2(t1, to) + %2 (t1, to)

The trigonometric functions of the analytic phase computsidg the 2-D analytic image
defined in((5.5) and the vertical and horizontal analyticgemdefined in (5/8) are shown
in Figs./ 5.2/ 5.3 and 5.4, respectively. The following okatons can be made from the

images

1. Computation of the vertical and horizontal analytic inegensiders the two dimen-
sions of the image independently. Although the dependsrméween the two di-
mensions are exploited in the computation of the 2-D amalytiage, its definition
Is ambiguous. For example, the spectrum of the 2-D analgtage is nonzero for

negative frequencies.

2. The cosine function of the analytic phase is similar todhginal gray level image

(C(ty, 1) = —=____ ~ x(t,,1,)) for all the definitions of the analytic image.

X2 (t1,t2) 3 (ta.t2)

3. The values of the trigonometric functions are bound betwd to+1. Due to this
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most of the values in cosine and sine functions of the amgtytase are limited to that

range. Therefore the functions of the analytic phase agixesa binary image.

4. Each function of the phase of the analytic image givé®edint information of the

face image.

Sketch face image

Gray level face image

(c)

(o

Fig. 5.2: lllustration of the trigonometric functions of anatyphase for two images
using 2-D analytic image. (a) Original image. (b) Cosine an&ihe of the analytic
phase.
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Sketch face image \ i

Gray level face image w
a

Fig. 5.3: lllustration of the trigonometric functions of anatyphase for two images
using vertical analytic image. (a) Original image. (b) Cesand (c) sine of the
analytic phase.

Sketch face image N\ =,

Grayevefacemagew ﬁ |
a b h (c

Fig. 5.4: lllustration of the trigonometric functions of anatyphase for two images
using horizontal analytic image. (a) Original image. (b) @esand (c) sine of
analytic phase.
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5.4 Locality problem of functions of phase of analytic im-
age

In the case of template matching based face recognitiorfiutiedions of analytic phase give
poor matching under intra-class variations. The matchargle improved by smearing the
edge information of the function of the analytic phase. Tinearing of edges is performed
using eigenanalysis based approach as explained in Sdckion

Let 0 and d}' be the two distance measures (Equation (4.17)) betweert éates
imagey[n;, n;] and the training (reference) face images of theperson obtained using
first n projected cofficients of sine and cosine functions of the analytic phaspedively.
Fig./5.5 shows the scatter plots obtained using the twortlistaneasures for a person using
different values oh with one training face image.$*) of each person in the illumination
variation set of the FacePix face database. It can be oltb&ora the plots that the behavior
of the true and false class samples using the functions oénlaéytic phase for dierent
values ofn is similar to the behavior of the horizontal and verticakfitd images obtained
using the spatial domain realization of the zero-frequeiiltsr (as explained in Section
4.5, Fig. 4.19). For small values af matching of any two face images is easier because
the global information of the face image (large spacing sfigéys an important role in
matching due to excessive smearing of the edges. On thelwhdr thdocality problemof
the trigonometric functions of the analytic phase is sewdren all the projected cdigcients
are used for matching.

Another observation from the scatter plots is that the saspil the true class are follow-
ing a trajectory. The face imageis'(.. ., L) of illumination variation set of the FacePix
face database were captured by moving the light sourceiatekval from—-90° to 9C°. The
scatter plots are obtained usih® (light source at frontal position) as the reference face
image. The distance measures will be large for the face im&ger L as compared to the

face image_®? or L8. The distances with other true class face images followjadiary.
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Fig. 5.5: Scatter plots of distances for a person’s face imaggyusigono-
metric functions of the analytic phase aifd as the reference face image. (a)
n=>5, (b)n= 20, (c)n=30 and (d)n = 2500. Heren denotes the number
of eigenvectors used to compute the similarity measutgsgnddy’). The
definition of 2-D analytic image given in Equation 5.5 is usedompute the
trigonometric functions of the analytic phase.
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Fig. 5.6: Comparison of the performance of trigono-
metric functions of the analytic phase (computed us-
ing 2-D analytic image) for dierent numberrn() of
eigenvectors and usind®) as training (reference)
face image.

Fig. 5.6 shows the performance obtained using the combioees (Equation (4.18))
for different values oh. The performance obtained using the cosine and sine fursctio
of the analytic phase separately are also shown in the samheTgle sine function seems
to perform better than the cosine function of the analytiaggh The reason could be that
the edge information of a face image is captured better irsthe function as compared
to the cosine function of the analytic phase. The cosinetfomof the analytic phase is
similar to original image, as can be observed from the imatpesvn in Figs. 5.2 (a) and
(b). Furthermore, the performance does not seem to imprgw®imbining the evidences
from the two functions when combined using norm-2. The perénce is improved by
using weighted measure (as discussed in Section 4.5.1hichwnore weightage is given
to the subject specific unique information of the face imagsent in the function of the
analytic phase. The scatter plots using normal and weighstance measures are shown in
Fig. 5.7. It shows that the points due to false class sampéesare dense and farther from
the origin in the case of weighted distance as compared toalatistance measures. In the
case of weighted distances, the chances of matching false felce image is less, a desirable
property to address the issue of inter-class variationde facognition. The improvement
in the performance using combined similarity scores careba # Figl. 5.8. In addition, the

performance of the individual evidences (sine and cosinetfons of the analytic phase) is
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also improved using the weighted measure.

1} 1t
0.8} 0.8}
0.6} 0.6

Ee s

0.4} 0.4}
0.2} 0.2
0 o)

0 02040608 1 0 02040608 1

d® d®

@) (b)

Fig. 5.7: Scatter plots of distances for a person’s face imageetkeusing

trigonometric functions of analytic phase (obtained uszD analytic im-

age),|® as training image and 30 projected fiogents. (a) With weighted
eigenvectors. (b) Without weighted eigenvectors.

5.5 Experimental results

Performance of the functions of the analytic phase for facegnition is obtained using the
first two definitions (Definitions | and Il) of the analytic imge on the illumination variation
sets of FacePix and Yale-B face databases. The resultsawe #hTable 5.1 and Table 5.2,
respectively. The performance is computed using weighigdrice measures forfterent
training sets. For comparison, we have also shown the peaioce using sine and cosine

functions of the analytic phase. The following observatioan be made:

1. The sine function of the analytic phase gives better perdoce than the cosine func-

tion of the analytic phase for all the definitions of the atialimage.

2. Among the diferent definitions and the corresponding functions of théyéinghase,
the sine function of the analytic phase obtained using thce¢ analytic image gives
the best performance for the two face databases andfferelt sets of training face

images. It is due to the fact that the vertical analytic imegptures the edges along

103



—=— Normal distance measure
60| —— Weighted distance measure|;

Performance in %

5 10 15 20 25 30
No. of projected coefficients (n)

Fig. 5.8: Comparison of the performance under
weighted and normal similarity measures ob-
tained using trigonometric functions of the an-
alytic phase (computed using 2-D analytic im-
age) for diterent numbern) of eigenvectors.

the vertical direction of the face image. The edges alongvéngcal direction of a
face image are more useful for discrimination as comparetth¢oedges along the

horizontal direction. The poorer performance using the aralytic image may be

due to ambiguity in its definition.

3. The evidences of sine and cosine functions of the angifise are combined using
norm-2. This approach does not assure that the performasiog the combined

evidence is better than the performances using individuekaces.

The performance of the representations discussed in tafgehis compared with the exist-

ing approaches in Chapter 6.
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Table 5.1: Performance (average recognition rate in %)gdmiometric functions of the an-
alytic phase derived using two definitions of the analytiagra and dterent sets of training
(reference) face images under illumination variation afdRix face database.

Sets of training face image
Representations
L91 Ll, L91' Ll, L46, L91’
andL18! | L1%6gndL 18t
Cos 39.2| 92.7 99.1
2-D analytic image Sine 62 |95.6 99.3
Combined| 51 | 96.7 99.3
Cos 42.5| 93.1 99.2
Vertical analyticimage | Sine 68.3| 97.6 99.2
Combined| 54.4| 97.6 99.3
Cos 39.7| 86.3 97
Horizontal analytic image Sine 41.9]91.2 98.7
Combined| 40.6| 91 98.8

Table 5.2: Performance (average recognition rate in %)gdmiometric functions of the an-
alytic phase derived using two definitions of the analytiagra and dterent sets of training
(reference) face images under illumination variation oeYR face database.

Representations Sets of training face image

Setl| Set?2

Cos 63.1 | 58.6

2-D Hilbert analytic image Sine 67.9 | 67.8

Combined| 81 74.5

Cos 73.5 | 61.5

Vertical analytic image Sine 84 78.5

Combined| 84.3 | 75.7
Cos 62.4 | 58

Horizontal analytic image| Sine 73 70.5
Combined| 68 66
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5.6 Summary

In this chapter we have explored a representation basedg@htse of the analytic image to
capture the edge (impulse-like) information of a face imagaddress the issue of illumina-
tion in face recognition task. The significance of phase aagnitude of the analytic signal
was demonstrated using 1-D signal. The definition of amakiinal for 2-D signals is not
as straightforward as in the case of 1-D signal. It is stid#search issue that needs to be ad-
dressed. The two definitions of the analytic image availabtae literature have been used
to show our results. Computation of the analytic phase usic@@ function leads to the
problem of phase unwrapping. It is avoided by using trigoatria functions of the analytic
phase. These functions of the analytic phase are used sspanatemplate matching for
face recognition task. The edge information present in timetfons of the analytic phase
is smeared to improve the matching of face images under the-ctass variations. The
smearing was done by considering only the first few eigevedor template matching.
The performance is further improved by using weighted distaneasure. The idea behind
the weighted distance measure is to give more weightage tortected ca@cients which
have more discriminative information as compared to théfmoents with less discrimina-
tive information of a face image. Another observation ig tih@ edges along the vertical
direction are more useful for discrimination as compareth&éedges along the horizontal

direction.
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Chapter 6

Fourier transform based representation

The phase of the Fourier transform (FT) preserves the lmtsitof events such as lines
and edges of an image [18, 176]. It can be used as a represerdéta face image that
captures the edge-like features of the face image. As disdus the previous chapter, the
computation of the phase of the analytic signal using arfttantion leads to the problem
of phase unwrapping. The problem of unwrapping exists irctiraputation of the Fourier
phase also. In this chapter, we consider a representatggdlzn the phase of the Fourier
transform [138], to address the issue of illumination inefagcognition. Theféect of noise
(closely spaced edges) is enhanced in the proposed refatses, but can be reduced using
the eigenanalysis based approach explained in Chapter 4usehef phase of the Fourier
transform of a given face image for face recognition wasistlith [177], where the phase
was computed directly using the arctan function. The mefitogosed in this chapter does
not use the phase of the Fourier transform directly, but treesnformation present in the
phase. The performance of the face recognition is improyecbmbining evidences from
both the phase of Fourier transform and the phase of the tamatyage, as both of them
contain the information of face image in a complimentarhias.

The organization of the chapter is as follows: Section 6stulises the information
present in the phase and magnitude spectrum of an image. ropesed FT phase repre-
sentation of a face image is described in Section 6.2. Eitgpsis on the proposed repre-
sentation is discussed in Section 6.3 to addressottadity problem Section 6.4 gives the

results of experimental studies on face recognition. Ewede from the phase of the ana-
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lytic image and the phase of the Fourier transform are coetbusing Borda count based
approach [178], as explained in Section 6.5. Section 6 ésgiomparison of the edge-based

representations proposed in this thesis. A summary of thptehis given in Section 6.7.

6.1 Significance of phase of Fourier transform of image

The representations discussed so far in this thesis weeslias the information in spa-
tial domain, i.e., a 2-D array of positive numbers, corregjiog to the gray levels of the
pixels. Here, a representation based on the discrete Fdtaiesform (DFT) of the 2-D
array of pixels [138] is proposed. The Fourier represemiainvolves complex numbers,
I.e., magnitude and phase components. The relative inmprtaf the DFT magnitude and
phase of a signgimage under dferent conditions was studied in [18,176]. Though these
two components cannot be compared, the information prasémém can be visualized by
synthesizing images using only magnitude and using onlg@kaparately. The DFT of an

imagex[ny, ny] is given by

X[k]_, kz] DFT {X[ Ny, nz]}

X [Ka, ko] + jXi[k, ko]

IX[ka, ko]l exp[jd[ky. ko], (6.1)

where|X[ky, ko]l = VX Ty, ko] + XKy, ko] and o[k, ko] = arctan{ 34l are the magnitude
and phase of the DFT, respectively. The real and imaginang pd the DFT are denoted
by X, andX;, respectively. The information contained in the magnitadd phase of the
DFT can be visualized using magnitude-only synthesis ofahe imagex.[n;, n;] and the

phase-only synthesis of the face imagfn, n,], respectively. These are defined as follows:

Xm[Ny, No] IDFT {|X[ky, ko] [} (6.2)

IDFT {exp[6[ki, ko]]} (6.3)

Xp[N1, N7
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Gray level face image

Sketch face image

@)

Fig. 6.1: Significance of magnitude and phase of the DFT, illuisttaising two images.
(a) Original image. (b) Magnitude-only and (c) phase-owyteesis images.

Here IDFT refers to inverse discrete Fourier transform. ifegesx,[ni, np] and X,[N1, ny]

are shown in Fig. 6.1. The phase-only face image retains roftie useful features of the
original face image. The phase-only synthesis image issisan for a line diagram of a
face which is equivalent to the sequence of impulses in I-Bhaws that the information
of impulses in 2-D is preserved better in the phase of the FCbagpared to the magnitude.
This can be explained as follows. The phase-only synthésidace image can be written

as

Xp[N1, N7

IDFT{ X[k, ko] }

XKy, k]|

= IDFT{ }@ IDFT {X[Ky, ko]}

1
IX[Kq, ko]
h[Nny, np] ® X[Ny, Ny], (6.4)

whereh[ny, ny] = IDFT{m}, and® is a convolution operator. Since the spectral mag-
nitude |X[ky, k]| of a face image tends to fallffoat high frequency, the phase-only face
image Xp[ny, nNy] has a high frequency emphasis, which will accentuate liegiges and
other spatially narrow events (noise) without changingrtbesitions [18]. The edges have

characteristics of an impulse whose energy is distributetbumly over all frequencies in
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the spectrum (as discussed in Chapter 4). Therefore, duegbasis of the high frequency
components, the edges will appear in the phase-only syisttaee image. In addition, noise
(spatially narrow events or closely spaced edges) will algpear inx,[n;, n], because it

corresponds to high frequency components of the spectrutthodgh, these arguments
provide a general basis for the information present in thespkonly face image, the pro-
cessing method to obtain the phase-only signal is non#lingzereas the above mentioned

interpretation assumes a linear operation [18].

6.2 Functions of phase of Fourier transform

The phase spectrum of an image contains edge informatidreafrtage. But computation
of the phase spectrum using arctan function leads to thdgmrobf phase wrapping [138].
This issue was addressed in the literature using phase ppimgaand group-delay process-
ing [138, 166,179, 180].

One way to address this issue is to use a function of the plpastrsm (as discussed in

the previous chapter), instead of the phase spectrum lgiréée can write

exp[jo[ki, ko]] cosPlky, ko]] + j sin[f[k, ka]]

X[ki, ko]
IX[Kq, k]I 6:3)
That s,
. s Xk, ko
sinfo[ky, ko] = Xki, ko] = X[ke, ko]l
and
e X[k, ko]
cosplke, ko] = X[ki, ko] = —Ix[kl,kz]l' (6.6)

We can use the sine and cosine functions of the phase to &htise wrapping problem.
These components may contain complementary informatidheoface image, and hence

they are analyzed separately for template matching baggdagh for face recognition.
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Fig. 6.2: 2-D spatial frequency domain. DFT co-
efficients X[ky, ko] in the shaded area determine the
remaining co#icients.

6.3 Locality problem of functions of phase spectrum

The sine and cosine functions of the phase spectrum acteriheanoise (closely spaced
edges) also, which leads to poor matching under the ingrssalariation of the face image in
template matching. This is equivalent to tbeality problem of edge-based representation.
The matching can be improved using eigenanalysis basedagpas explained in Section

4.5. The DFT of a real image exhibits conjugate symmetry, i.e

X[k, k)] = X'[R—ki,C—ks], O<k <R-1,
O<k,<C-1. (6.7)

Hence, only the non-redundant ¢heientsRC/2 + 2 (the points in the shaded region in
Fig.[6.2), are used for eigenanalysis. Due to this, the mepoepresentationX{ and X°®)
have an advantage in the context of eigenanalysis, bechesize of resulting covariance
matrix ((%3 +2) X (%3 + 2)) is approximately one fourth of the size of the covariamaerix
(RC x RC) obtained using gray level values of the face image diredthus, estimation of

the covariance matrix (eigenvectors) may be more accuoatbé same number of training
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face images.

Let df;/m denote the minimum Euclidean distance obtained for a gigehface image
y[n1, np] using cosine function of phase spectrum (firstodficients) of the available train-
ing face images of thé" person. Similarly, the minimum Euclidean distance is coragu
using sine function of the phase spectrum of the test andnigaface images, and is denoted
by df’ym. The dfect of closely spaced edges or noise can be reduced by congidely the
first m projected cofficients in the matching process. In Fig. 6.3, the significafaigen-
vectors is illustrated with the scatter plots obtained gif]” andd" for different values
of m. The points are found to be more dense and far away from tgeon Fig. 6.3(d) as
compared to Figs. 6.3(a)-(c). The reason for this is thathiag) of any face image is poor
due to the &ect of noise if all the ca@cients (n = RG2+2=1252) are used for matching.
By removing the last few projected daeients, the fect of noise can be reduced in the
matching process. Removing many ffagents leads to excessive smearing of the edges,
which results in retaining only the global information oktface image. This results in
matching with some of the false class face images also. Taus ts a trade{bin reducing

the dfect of noise and smearing of the edges.
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Fig. 6.3: Scatter plots of distances for a person’s face imagggusigono-
metric functions of the Fourier phase akfd as the reference face image. (a)
m= 10, (b)m= 20, (c)m= 100 and (dn=1252. Herendenotes the number
of eigenvectors used to compute the similarity measwgs€ndad").
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Fig. 6.4: Comparison of the performance of trigono-
metric functions of the Fourier phase forfiérent
number (n) of eigenvectors and usind* as training
(reference) face image.

Performance is computed using combined distance sdjfesndd’" (Equation (4.18))
for different values ofn, as shown in Fig. 6.4. The performance is also shown using&os
and sine functions of the phase spectrum separately in the pbot. The edge information
of a face image is distributed uniformly in the two functiasfsthe Fourier phase. Hence
one cannot say that any one of the functions performs bettegbserved in the case of
functions of the analytic phase. In general, the perforraamcreases witim, but after some
value of m the performance reaches a saturation point. The perforenahthe proposed
representations of the Fourier phase does not improve ghvied eigenvectors (explained
in Section 4.5.1) are used in template matching. This is Umx#he edge information of
the face image is distributed uniformly in all the projectamifficients obtained from the
eigenanalysis 0K¢ and X® representations of the face image. Nonetheless, the sake ta
can be performed by selecting appropriate DFTfigoients while computing the FT phase

representation of the face image.

6.3.1 Significance of DFT cofficients

Information of the relative locations of the edges or linepiieserved in the phase of the
Fourier transform. The spacing of the edges will be invgrpebportional to the frequency

in the phase of the Fourier transform. Thus the low frequddEy codficients correspond
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Fig. 6.5: (a) Gray level face image. Phase-only synthesis faagenfor (b)l
=5,(c)l =10, (d)I =15 and (e) = 20.

to events separated by large spacing, and the high frequ2RTycodficients correspond
to events separated by small spacing. Tfieat of the DFT cofficients can be seen in the
phase-only synthesis face image, by making the fid T codfticients zero along both the
axes in the frequency domain, and preserving the remainifip @dficients. For diterent
values ofl, the phase-only synthesis face images are shown in Figafdbthe features in
the images justify the above-mentioned arguments.

Matching between true class face images can be improvedrbgviag the high fre-
guency DFT cofficients. This is an advantage because noise and events astiyckpaced
edges are given less importance. Face recognition expaismere repeated by taking only
the firstk DFT cosficients along both the axes of thé andX° representations of the given
training face image. Only non-redundant ffaeents (the shaded region in Fig. 6.6) were

used in the eigenanalysis. Since the number of eigenvedépsnds on the size of covari-
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Fig. 6.6: 2-D spatial frequency domain. The shaded
region in the figure determines the non-redundant co-
efficients if only the firstk DFT codficients along
both the axes 0K[k,, k;] are considered for computa-
tion of the DFT phase.

ance matrix, which in turn depends on the value&,ofhe optimal number of eigenvectors
(m") for which maximum identification performance is obtainedliferent for each case.
Fig. 6.7 shows the scatter plots fofférent values ok using the optimal number of eigen-
vectors () for eachk, with one training (reference) face imagde®) of each person. It
shows that the points are more scattered for low valudsasf compared to high values of
k. This is because, for high values kgfeventgedges with small spacing get importance in
matching process. Chances of the matching with the true fdassmages is also poor. On
the other hand, for low values &f only the event®dges with large spacing take part in the
matching process. This is equivalent to shape matching tchmg of global information
of face image, hence the chances of matching of false classifeages becomes high. Per-
formance of the proposed approach fotelient values ok using diferent sets of training

face images is discussed in Section 6.4.
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Fig. 6.7: Scatter plots of distances for a person’s face imaggyusigono-
metric functions of the Fourier phasg? as training (reference) image, for
(@ k=5, (b)k =10, (c)k = 18 and (d)k = 25. Herek DFT cosdficients
along both the axes of® and X® representations are employed to derive the
eigenvectors.
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6.3.2 Zero-padding in the computation of Fourier transform phase

One of the properties of DFT is that zero-padding in one damesults in increased number
of samples in the other domain [138]. Hence zero-paddingerspatial domain results in
increased number of samples in the frequency domain. A simply of zero-padding is
to append strings of zeros at the end of the 2-D sequencer @&gfgending, the new 2-D
sequence attains the sigzBx fC, wheref is a factor parameter, aftlandC are the number
of rows and columns in the original face image, respectiely. 6.8 shows the scatter plots
for different values of using one training (reference) face image for each persamolvs
that the points due to false class are dense, and are faxtlagrfeom the origin for high
values off, as compared to the low values faf For high values of the finer resolution of
the phase spectrum is captured, and this helps in improkimdiscrimination. Performance

of the proposed approach forfidirent values of is discussed in the next section.
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Fig. 6.8: Scatter plots of the distances of a person’s face imagegurigonometric
functions of the Fourier phase?* as training (reference) image and for parameterf (a)
=1, (b) f =1.5and (c)f = 2. Here the parametégoverns the zero-padding in the DFT
computation.

6.4 Experimental results

Performance of the proposed approach on illumination ttanaet of FacePix face database

for different values ok andf (symbols are explained in Section 6.3) usinffatent sets of

118



Table 6.1: Performance (average recognition rate in %)igbmometric functions of the
phase spectrum for fierent values ok andf, using diferent sets of training (reference)
face images of the FacePix face database.

Set of training face images
f k L91 Ll, L91 and L181 Ll, L46, L91’ L136 and L181
5| 48.1 80 96.8
10| 68.2 97.1 99.2
15| 67.1 96.9 99.2
1 18| 65.7 95.7 99.2
20| 64 94.5 99.1
25| 62.6 93.5 98.6
10| 62 92.8 99.1
15| 71.2 97.3 99.2
15/20| 72.6 97.1 99.3
25| 711 96.4 99.2
30| 694 94.8 98.9
37| 68.1 93.5 98.7
10| 52.5 87.3 98.1
20| 72.47 97.9 99.3
2 (30| 71.6 97.5 99.3
40| 69.6 95.3 98.9
45| 68.6 94.3 98.7
50| 67.6 93.4 98.6

training (reference) face images is given in Table 6.1. dththat for a fixed value df the
performance is improved by removing some high frequency Bédficients. But removing
many codicients leads to loss of information, and hence reductiohemperformance. The
performance can be improved by increasing the paranfietethe DFT computation by
padding with zeros. The performance was found to be the bestf2 andk = 20. Table 6.2
compares the performance of the proposed approach with d¢tleooh discussed in [177]
which uses wrapped phase of the Fourier transform, usifigreit sets of training face
images of PIE-NL face database. The results in the table shaiithe proposed approach
uses the phase informatioffectively, and avoids phase unwrapping as well. Comparison
with the performance of other approaches usirftedent representations of the face image
is discussed in Section 6.6
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Table 6.2: Performance (average recognition rate in %)igbmometric functions of the
phase spectrum for fiierent sets of training (reference) face images of PIE NL sd#dta
Herel”, 110, andI'® are face images with frontal lightind3 and 16 are face images with
left shadow and right shadow respectively.

Set of training face images
Approaches
17 117, 1% andI®® | I3 1*®andl”
Eigenphase [177] - 97 100
Proposed 97.7 99.1 100

6.5 Analytic phase and Fourier phase

The edge information is preserved in a complementary fashithe analytic phase and the
Fourier transform phase of an image, in the sense that the $acing of impulses or edges
in the spatial domain are reflected as closely spaced inpuisedges in the frequency
domain and vice versa. This can be observed from the follpwissic Fourier transform

relation for a sequence of uniformly spaced impulses in tiomain:
FT 2 2n
Zm:a(t— mT) &= ?;5(0)— =K. (6.8)

Here,§(.) denotes the impulse functiohandw denote the time and frequency variables,
respectively.T denotes the spacing between the impulses in the time doramm perfor-
mance of the face recognition can be improved by combiniegethdences from both the
representations. We have used Borda count [181] based a&pymaombine the rank given
by the individual evidences. The Borda count is a simple ffecéve method of combining
the rankings.

In the literature of pattern recognition, several appreacire proposed to combine the
ranks given by multiple classifiers [181]. The simplest whgambing classifiersis to let the
classifier cast the vote by forwarding the class they préfetbest (first rank). The identity
of a test sample will be the class which obtain the first rank Ioyajority of the classifiers.
It is simple and quitef@ective, but uses only the top ranking classes. This apprdaes not
exploit the information given by the second or third ranksskess, which may be more useful

in the context of face recognition. The distance scores ®ffélce images of the top few
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ranks assigned by filerent classifiers are more or less similar. So considerihgtba first
rank class of dierent classifiers for final decision may not lead to the comesult. This
iIssue is addressed in the Borda count [178,182, 183] basedaabpof combining the ranks
of different classifiers. Here, the highest ranked classNfolasses) of a classifier gdis
points, and each subsequent class gets one point less @udin@nked class gelé-1 points
and 3rd ranked class gdts2 points and so on). All the points for each class obtained from
different classifiers are added up, and the class with the highesgier of points is assigned
as identify of the test sample.

In this work we have combined the evidences given by fourasgmtations (two func-
tions of the Fourier phase and two functions of the analytiase) of an image to exploit
the complementary information present in both the Fourrse and analytic phase. Each
representation can be seen as a classifier, and the pershtethe class. For a given test
face imagey) the distance scores using all the classifiers are computb@iMhe available
person’s reference face images. The rank of each persomiguted using these distance
scores. Ler be the rank given to th&" person using the cosine function of the analytic

phase. The resulting score for tifgperson will be
py=N-r. (6.9)

HereN is the number of persons in the face database. Similp@y,pﬁ; and pf; are com-
puted using the sine function of the analytic phase (Heng &) analytic image definition
is used), sine function of the Fourier phase and cosineifumof the Fourier phase, respec-

tively. The identity (*) of a test face imagg is computed as

ca

. f f
i = arg rr?ax{ Py + Py + pﬁy + pfy}. (6.10)

The performance obtained using this approach is given iteTaB and Table 6.4.
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6.6 Comparison of the proposed representations

Performance of all the proposed edge-based represerstatiercompared along with some
existing approaches on the illumination variation set afdRix face database and Yale-B
face database, and the results are given in Table 6.3 and &ahl respectively. The first
four rows in Table 6.3 and the first seven rows in Table 6.4espond to the results from
some existing approaches. These methods use gray levesegpation of images, and seem
to perform poorly compared to the proposed edge-basedsaaion, indicating the im-
portance of the edge information for face recognition urvagying illumination conditions.
The tables also show the results using the standard Galevrifdsed representation [184],
which also captures the edge information of face imagesdiGabor filter based approach,
a face image is represented by concatenating the magnitdloe @sponse of the Gabor fil-
ters obtained for five dlierent scales and eightftérent orientations [184]. Matching is
performed using eigenanalysis based method. The resulis tfat the edge information
seems to have been captured better in the proposed re@tsesis compared to the Gabor
filter based representation. In case of one training (retexeface image per person (second
column of Table 6.3), the performance of the edginess-bagrdsentation is better than the
other edge-based representations (except vertical esedafrihe directional zero-frequency
filter). This is because smearing of the edge informatioh@former representation is inde-
pendent of the number of training (reference) images, véseirethe other representations
the smearing of the edge is realized using the first few emggnys, which are obtained
using eigenanalysis on only a small number (30) of the tngirface images. When the
number of training images is increased, the performancheoétige-based representations
has improved significantly compared to the edginess-basmesentation, as can be seen
from the results in the third and fourth columns of Table &Bgre the number of training
images are 90 and 150, respectively. In fact this can alsedris the results for both these
types of representations in the second and third columnsliEeT6.4, where the number of
training face images in each set is large.

Among the representations obtained using directional s filters, the filtered im-

age derived along the vertical direction using the spatmhain realization of the zero-
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frequency filter gives the best results. This is becausedbesalong the vertical direction
contain more discriminatory information of the face imagene filtered image obtained
using the Fourier domain realization of the zero-frequeiiltgr gives good performance,
although it is slightly lower compared to the performancehef spatial domain realization
of the filtered image. The Gaussian filter and the Fourier domesalization give similar
performances.

Another representation that attempts to capture the imgike characteristics of an
image is based on the phase of the analytic image. The peafaens relatively low, may
be because the definition of the analytic image in 2-D is aodaig. The performance can
be improved when the phase of the analytic image is combirixtie phase of the Fourier
transform using the Borda count based approach.

Representation emphasizing the information of edges appeguerior to direct gray
level representation. Instead of direct representatidhe@ftdge information through edgi-
ness image, if the edge information is preserved arounddie@ossings, as in the case of
the filtered images, the performance of face recognitiorravgs significantly. For match-
ing it is not necessary to extract the edge information frown filtered images. All the
filtered images seem to perform better by more than 5% in atesplerformance over the
edginess-based representation. Even among the filteregegnthe representation derived
using the spatial domain realization of the zero-frequediitgr gives recognition perfor-
mance over 99%. This clearly demonstrates the significance of reprasientof images
for face recognition task. In addition, one can conclude tiva representation based on the

edge information is not only crucial but also depends how damputed.
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Table 6.3: Performance (average recognition rate in %) wf pooposed edge-based representations along with thiene@pproaches

for different sets of reference face images under illuminatioratian of FacePix face database.

Set of reference face images

ApproaCheS 91 |_1, 9T and L8t |_1, |_46, |_91’ 136 and 18T

Principal component analysis 48.8| 71.7 90.3
Linear discriminate analysis [115,116] 53 | 795 94.9
Hidden Markov model ' 19.3| 374 594
Bayesian information criteria 49.8| 79.1 93.5
Gabor filter 61 |88 95
Edginess-based representation 81.4|94.3 99.7
Vertical filtered image | 85.9| 98.6 99.8

Laplacian Zero-frequency Spatial | Horizontal filtered image 60.1| 94 95.6
of smoothed | filter domain| Combined 77.4| 98.5 99.9
image Fourier domain 75.2| 97 99.3
Gaussian filter 76 | 96 99.2

Cos 39.2| 92.7 99.1

Analytic phase| Sine 62 | 95.6 99.3
Combined 51 |96.7 99.3

Cos 71.3|97.3 99.2

Fourier phase | Sine 70.2| 96.8 99.4
Combined 72.6|97.1 99.3

Combining Fourier phase and analytic phase 73.1| 97.8 99




Table 6.4: Performance (average recognition rate in %) efftlur proposed edge-based
representations along with the existing approaches fiagréint sets of reference face images
under illumination variation of Yale-B face database.

Set of reference
Approaches

face images
Setl| Set?2
(PCA) Principal component analysis 79.3 | 80.3
(2DPCA) 2-D principal component analysis 82.8 | 86.9
(BDPCA) Bidirectional PCA 82.8 | 88.6
(W-BDPCA) Whitened BDPCA [110] 87.6 | 91.1
(ICA) Independent component analysis 82.4 | 84.6
(EICA) Enhance ICA 86.9 | 85.1
(RC-ICA) Row column ICA 91.4 | 92.6
Gabor filter 83 85.2
Edginess-based representation 92.2 | 94.4
Vertical filtered image | 99.6 | 99.5
Zero-frequency Spatial | Horizontal filtered image 94 93
Laplacian of filter domain| Combined 99.1 | 99.7
smoothed image Fourier domain 98 98.9
Gaussian filter 98.5 | 98
Cos 63.1 | 58.6
Analytic phase | Sine 67.9 | 67.8
Combined 81 74.5
Cos 90.6 | 94.4
Fourier phase | Sine 89.2 | 95.7
Combined 93.6 | 96
Combining Fourier phase and analytic phase 95 97
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6.7 Summary

In this chapter, a representation based on the phase of theeFtransform is proposed
to capture the edge-like information of face images. The@sed approach avoids com-
putation of the unwrapped phase by computing two functidrie@phase spectrum rather
than using the phase directly. These two functions givieint information of the face
image, and are used separately for matching. Computatidmegbrioposed representation
emphasizes the closely spaced edges which are mostly fdiseffect of noise is reduced
using selected number of eigenvectors in the eigenanaysie phase representations for
template matching. Thefect of small spacing or large spacing edges in matching of two
face images can be controlled by selecting appropriate Eficients in the eigenanalysis.
The dimension of the functions of the phase spectrum canceegl using the conjugate
symmetry property of the DFT. This helps in better estimabbthe eigenvectors from the
same number of training face images.

The present study also demonstrates the complementameradtthe edge information
present in both the phase of the analytic image and in theepbfate Fourier transform of
the image. The relative performances of all the edge-basa@sentations of face images

were discussed in this chapter.
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Chapter 7

Summary and conclusions

Edge is one of the important features of the sketch and ¢argsavhich contain perceptually
the most informative part of a face image in a concise marinéiis work the &ectiveness
of the four representations, that capture the edge infeomaf images, was investigated in
the context of face recognition.

Derivative operation is employed in the first two represtoms of a face image. The
first representation, namely, edginess (first derivativaroimage), is computed using 1-D
processing of images. Potential field is derived from therezks image to address tloeal-
ity problem The multiple partial evidences, derived using 1-D procegef a face image,
are used separately for template matching, because eaodnofdontains some complimen-
tary information of the face image. In the proposed tempiad¢ching based approach, the
scores obtained from matching of partial evidences of aifaege with diferent reference
face images (at lierent poses or ffierent lighting conditions) are combined. The combing
of scores was based on the observation that if a test facesinfdge true class has pose that
lies between poses of two references face images, thengh&ate image will give high
scores with respect to both the reference face images. Mereihe chances of matching
of face images at the same pose fdfatent persons will be less. Thus the distribution of
feature points due to imposter will be more dense as compgheedistribution of feature
points of the true class. This behavior was exploited in tloppsed AANN-based method
to identify a test face image. This method does not requeesimples from the true class

face image to take decision.

127



The second representation associates edges with thermssings of the second deriva-
tive or Laplacian of an image, called filtered image. For rhiug, the values of the filtered
image are brought into the same range using a nonlinean&maehile preserving the loca-
tions of the zero-crossings. Thecality problemis addressed by considering only the first
few eigenvectors derived from the filtered face images. Agivieid eigenvector scheme is
employed in the process of matching to give more importandhe unique information
present in a face image.

Two smoothing filters, namely, zero-frequency filter andstandard Gaussian filter are
used to demonstrate the significance of the filtered imagedoapresentation. Smoothing
of images using the zero-frequency filter is counter intaitio the traditional smoothing
filters, where it is assumed that noise and edge of an imagelmate to the high frequency
components in the spectrum. On the contrary, the edge imfttwmis present throughout the
frequency spectrum as illustrated in the processing ofreasigsing the zero-frequency filter.
The zero-frequency filter for 1-D signal is an infinite impailesponse (IIR) filter (recursive
filter), and its realization for a 2-D signal is not straigitfard. It is approximately realized
for images either in the spatial domain or in the Fourier domahough the zero-frequency
filter is realized as an IIR filter in the spatial domain methibaonsiders the two dimen-
sions of an image independently. This is not an issue in thei€&odomain method, where
a finite impulse response (FIR) approximation of the zerqtfeacy filter is employed to
smooth the image. Experimental results of edge map extrastiow that estimation of the
edge locations and suppression of noise are better in tieeofdlse zero-frequency filter as
compared to the Gaussian filter.

The two filtered images, derived using spatial realizatibthe zero-frequency filter,
emphasize the horizontal and vertical edges of a face imagarately. The performance
of the filtered image along the vertical direction is bettert the horizontal direction, as
the edges along vertical direction seem to contain moreidigtatory information of face
images.

The spatial domain method performs better than the Fouaerath. The performance
of the filtered face image obtained using the zero-frequéditiey realized in the Fourier

domain and the standard Gaussian filter is similar.
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Another representation is based on the phase of an analytial svhich preserves the
impulse-like characteristics of the signal. Itis utilizefliciently using the proposed trigono-
metric (sine and cosine) functions of the phase of an awalytage. The proposed repre-
sentations bypass the unwrapping problem of the analytsg@h Thdocality problemin
these representations is addressed by the method similae tme used in the case of filter
image based representations. Experimental results shaiviit edge information is pre-
served better in the sine function as compared to the cosmaibn of the analytic phase.
Two definitions of the analytic images were used to demotestiee experimental results.
The definition (vertical analytic image) which emphasizesd¢dges along the vertical direc-
tion seems to perform better. It reinforces the statementeagioned earlier that the edges
along the vertical direction of a face image contain morerthsinatory information of a
face image.

Similar methodology is used in the representation of ed@gnmation using the phase
of the Fourier transform. Here, the importance of the snralllarge spacings edges is con-
trolled by selecting appropriate DFT d&eients for eigenanalysis based template matching.
The performance is improved by combining the evidences flaphase of the analytic im-
age and the phase of the Fourier transform using Borda cogetbaethod to exploit the
complementary nature of the edge information present ih bbthem.

In the case of pose variation, the edginess-based repatisenperforms well when
the partial evidences obtained fronffdrent reference face images are combined using an
AANN model. The representation based on the zero-frequessmynator performs best in
comparison with other proposed representations undenitiiation variation of face im-
age. It also shows that the Laplacian of the smoothed imagédealirectly used for face
recognition, without explicitly extracting the edge infaaition from the zero crossing of the
Laplacian of the smoothed image. The smoothing of imagesuke zero-frequency filter
shows that the edge information is not just a high frequenfryrination, but it is present at
all frequencies, including around the zero frequency. Mweg, it was shown that the com-
plementary nature of the edge information present in baghptiase of the analytic image
as well as in the phase of the Fourier transform of the imagéeaexploited for improving

the performance of face recognition under illuminationatwn. It is to be noted that the
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performances of three representations, namely, filteregi@nphase of analytic image, and
phase of the Fourier transform were not evaluated for the pasation set of face database.
Computation of these representations requires eigenamaliigch in turns governed by the
pose of the training (reference) face images. Hence, soh@ ptocessing is required in
order to use these representations to address the issuse¥gaation in face recognition.
While the work addressed the issue of representation of the edormation for face
recognition under variations of pose and illumination, risal issue in practical face recog-
nition is to identify and extract the relevant features, Hreh use them for matching. Also,
in practice, the features used by a human being for face nittmg are diferent for diferent
persons. That is, there is no common feature space, as imedsn all the face recognition
methods. Therefore, we are nowhere near realization ofdpleisticated pattern processing
used by human beings for face recognition, even though weiomenl that edge information

is an important perceptual information in image processing

7.1 Major contributions

In this thesis we have discussed four representations efifaage that capture the edge

information implicitly. The major contributions of thisekis are as follows:

¢ A method to combine the evidences obtained from matchingtsfaee image with

different reference face images.

AANN-based method to identify a given test face image.

Laplacian of a smoothed face image to capture the edge iatowmof the face image.

Spatial and Fourier domain methods to realize the zeras&egy filter for 2-D sig-

nals.

A nonlinear normalization function to preserve the locasiof the zero-crossings.

A weighted eigenvector scheme to incorporate the subptic unique information

of the face image in matching.
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¢ Functions of analytic phase and Fourier phase to exploiedlye information present

in the analytic image and Fourier transform of the image.

e The complimentary information present in both the phaséefanalytic image and
phase of the Fourier transform is exploited to improve thvégpenance of face recog-

nition.

7.2 Directions for further work

The research work can be extended in the following direstion

¢ In the spatial domain realization of the zero-frequencerile zero-frequency res-
onator is realized along the two directions of an image s#pbt In principle, it can
be realized along any other directions of the image to chariae the edge informa-

tion of the image fficiently.

¢ In the proposed two methods of realizing the zero-frequdittey for images, there
is a trade-ff between IIR realization of the filter and the relationshipiels values
along all directions. This issue may be addressed by reeursalization of the zero-

frequency filter in two dimensions.

e The performance of the analytic phase based representaiioe improved by using
a definition of analytic image which extends the concept &f 4ignum function to
2-D.

e The approach employed in this thesis to make use of the comaptary information

present in both Fourier phase and analytic phase needs hadoevied.

e The proposed representations may be useful to reduce fiieeetices between gray

level face image and the corresponding sketches drawn kartise
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Appendix A

Zero-frequency resonator
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Fig. A.l: Pole-zero configuration for a digital resonator
whose resonant frequencydis

A digital resonator is an infinite impulse response (lIR) éinsystem having a complex
conjugate pair of poles located inside the unit circle ofayane. The angle of the poles
with abcicssa (Re(z)) of the z-plane decides the resonamdrecy of the resonator, while
the distance of the poles with the unit circle sets the badthwiThe closer they are to the
unit circle, smaller is the bandwidth. The transfer funet{pl(z)) of a linear system having

a pair of complex conjugate poles atos) + jr sin(w) in the z-plane, as illustrated in
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Fig.[A.1, is given by [138]

1
(1 - (rcos) + jr sin(w))z1)(1 - (r cos) — jr sin(w))z?)
1

= . A.l
1-2rcosw)zl+r2z2 A1)

H@) =

For an ideal resonator (minimum bandwidth) with zero resbfi@quency, the values of

andw should be one and zero, respectively. Thus

1

H@) = 1-2z1+772

(A.2)
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Appendix B

Sign gradient principle
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Fig. B.1: Sign correspondence between the first and second degivat

The step edge can be detected using the zero-crossings lodiphace operation. Some
false zero-crossings, that ardiiult to remove by slope thresholding, can be suppressed
using the sign correspondence principle. This principlgeisionstrated in Fig. B.1, where
two different cases of the smoothed steps edges and its first anddserckan derivatives
are shown. In case 1, the first derivative is positive and dwersd derivative changes its

sign from positive to negative. Such zero-crossings areneléfas negative zero-crossing
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(NZC). In case 2, the first derivative is negative and the sedarivative changes its sign
from negative to positive. This corresponds to a positive-zeossing (PZC) in the second
derivative. Thus for a step edge, if it has positive firstwive, it must correspond to a PZC
in the second derivative. On the other hand for negativedestative, it must correspond
to NZC in the second derivative. The converse should alsd. hohis principle is called

"zero-crossing sign correspondence principle [137]".
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