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ABSTRACT

Keywords: face recognition, edge, smearing of edges, impulse, 1-D processing of images,

zero-frequency filter, Laplacian operation, zero-crossing, analytic image, Fourier transform.

In this thesis we consider four representations of an image to capture the edge information

of the image, and examine their utility in the context of facerecognition under variations of

pose and illumination. These representations are edginessimage (first derivative of an im-

age), second derivative/Laplacian of a smoothed image (filtered image), phase of the analytic

image and phase of the Fourier transform of the image. The twomain issues that need to be

addressed in using edge-based representations are : 1) Edgeextraction, i.e., discrimination

of spurious and significant edges, and 2)locality problem, i.e., slight shift in edges of similar

face images leading to poor matching. The proposed four representations do not involve the

task of edge extraction directly, but at the same time they preserve the edge information for

matching purpose. The locality issue is addressed by smearing the edge information to help

improve the matching of face images.

There is a trade-off between noise suppression and the smearing of edges in the compu-

tation of the edge information using derivative operation,since it is generally assumed that

edge and noise of an image correspond to the high frequency components in the spectrum.

On the contrary, processing of signals using zero-frequency filter illustrates that the edge

has characteristics of an impulse whose energy is distributed uniformly throughout the spec-

trum, including around the zero-frequency. This property is exploited in the proposed two

methods of realizing the zero-frequency filter for images tocapture the edge information in

the filtered image representation. The edge information present in the Fourier phase and in

the phase of the analytic image are exploited using functions of phase rather than the phase

directly. These representations avoid the problem of phaseunwrapping. Performance of

face recognition is further improved by exploiting the complimentary information present

in both the Fourier phase and the analytic phase using Borda count based approach. The

performance of the four representations is evaluated usingtwo standard databases covering

pose and illumination variations. The representation based on Laplacian of smoothed im-

ages performs better than the other representations. The representation derived using the
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zero-frequency filtered signal seems to perform better thanall other representations under

illumination variation. It shows that the edges do not confine to only high frequency com-

ponents, and that the edge information for face recognitionis not only important but also

depends how it is computed. The results of this thesis demonstrate that representation, es-

pecially the edge information of an image, is crucial in applications such as face recognition

using template matching. The major contributions of the thesis are:

• A method for combining evidences using autoassociative neural network.

• Laplacian of a smoothed image for representing edge information.

• Zero-frequency filter for deriving the smoothed image.

• Functions of analytic phase and Fourier phase for representing the edge information

of images.

• A method to exploit the complimentary information present in the Fourier phase and

analytic phase using Borda count based approach.
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Chapter 1

Introduction

In many image processing applications, it is essential to represent the information in an im-

age in a form suitable for that application. Since the valuesof pixels acquired from sensors

are affected by lighting conditions and noise, the relevant information needs to be extracted

from the image to derive the suitable representation. Deriving a suitable representation from

an image is governed by three factors, namely, application,perception and processing. It is

difficult to derive a representation which is applicable for all the applications. The represen-

tation should contain perceptually significant information of the image, which is specific to

the given application. Processing of an image should not addartifacts or enhance noise in

the resulting representation. In the context of face recognition (an application where a face

image is used to recognize a person), it is difficult to define or articulate the perceptually

significant information in a given face image. The information that makes an individual

face unique must be found in the subtle variations of the facial features (e.g., eyes, nose

and mouth), since all the faces share the same set of featuresarranged in roughly similar

configuration [1].

1.1 Psychophysics issues relevant for representing face

It has been estimated that a normal person knows about 700 people personally, and thousands

in general [2]. Humans are also capable of identifying a large number of strange faces with

relatively brief exposures. Typically, one sees thousandsof faces over one’s lifetime. Identi-
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fication of known faces or faces of famous people occurs almost instantaneously. However,

for both familiar and unfamiliar faces with unusual orientations (example, upside-down or

partial exposures) the time taken for identification is usually longer. Face identification by

humans is also robust in the sense that humans identify facesunder a wide range of trans-

formations.

It has been studied that for every known face there exists a unit in the brain that registers

its familiarity under all conditions [3]. More familiar faces need less evidence for identifi-

cation compared to the less familiar ones [4]. Consequently,familiar faces are less likely

to be falsely recognized. Bartlett postulated that all new faces have the same (zero) level of

familiarity, and new typical faces produce a stronger impression of familiarity than unusual

faces [4]. Increase in the degree of familiarity after a single exposure is higher for unusual

faces than typical faces.

Despite the ability of humans to identify faces rather effortlessly, it is difficult to describe

a human face. Neuroscientists performed research on human recognition of faces and found

many reasons for correct recognition of faces by humans. From psychophysics point of

view, the face recognition system in humans utilizes a broadspectrum of stimuli obtained

from many, if not all, of the senses (visual, auditory, olfactory (related to the sense of smell),

tactile (related to the sense of touch), etc) [5]. These stimuli are used in either an individual

or collective manner for both storing and retrieval of face images for the purpose of recog-

nition. There are many instances where contextual knowledge is also applied, for example,

recognizing faces in relation to where they are supposed to be located.

1.1.1 Face processing by humans

Evidence for the existence of a dedicated face processing system in human brain comes from

three sources:

(a) Faces are more easily remembered by humans than other objects when presented in

an upright orientation [6].

(b) Prosopagnosia patients are unable to recognize previously familiar faces, but usually

have no other profound agnosia [7]. They recognize people bytheir voices, hair color,
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dresses, etc. Although they can perceive eyes, nose, mouth,hair, etc., they are un-

able to put these features together for the purpose of identification. It was found that

prosopagnosia patients can recognize whether the given object is a face or not, but

they have difficulty in identifying the face [7].

(c) It is argued that infants come into the world pre-wired tobe attracted by faces. Neonates

(a child less than a month old) seem to prefer to look at movingstimuli that have face-

like patterns in comparison to those containing no pattern or with jumbled features [8].

1.1.2 Distinctiveness

Studies show that distinctive faces are better retained in memory, and are recognized better

and faster than typical faces [4]. For example, a person having a scar on his face can be

easily identified than a person having no such distinctive feature. However, if a decision

has to be made as to whether an object is a face or not, it takes longer time to recognize an

atypical face than a typical face.

1.1.3 Role of race and gender

Humans recognize the faces of person from their own race better than the faces of person

from another race [9]. This may be due to the fact that humans may be coding an average

face with average attributes, the characteristics of whichmay be different for different races,

making the recognition of faces from a different race harder. The gender of a person enables

quick recognition of a face than recognizing a person from a photograph without any gender

information [10].

1.2 Perceptual significance of edge information of face im-

age

Psychophysics studies suggest that human visual perception distils and encodes key features

or “formless invariants”, regardless of the point of view orstyle of representation of the
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given face image [11]. Interestingly, these key features are present in a caricature or a

sketch of a given face image drawn by an artist. Representations of a face image using

edge map, sketch, and caricature are discussed below to illustrate the significance of unique

information/key features present in the face image.

Edge map: The edge of an image is defined as the discontinuity in the image bright-

ness [12]. These discontinuities correspond to discontinuity in depth, discontinuity in

surface and variations in illumination. There are several algorithms available in the

literature to compute the edges of an image [12–14]. Fig. 1.1(b) shows the edge map

of the face image (shown in Fig. 1.1(a)), computed using Cannyoperator [13].

Sketch: A sketch consists of lines, and perhaps it is the simplest form of drawing.

It is also known as line drawing. The sketch of a face shows major contours, and

contrast edges plus finer details such as lines and wrinkles of the face [15]. Fig. 1.1(c)

shows the sketch drawn by an artist for the person whose face image is shown in

Fig. 1.1(a). One can observe from Figs. 1.1(b) and (c) that the information of the

sketch is present in the edge map. However all edges are not present in the sketch.

Approaches available in the literature to compute the sketch of a face image will be

discussed in the next chapter.

Caricature: Caricature is a graphical coding of facial features that seeks, paradoxi-

cally, to be more like a face than the face itself [16]. It is a transformation which am-

plifies perceptually significant information, while reducing less relevant details. The

caricature drawn by an artist of the same person (Fig. 1.1(a)) is shown in Fig. 1.1(d).

Caricature is a sketch with exaggeration of some significant information.

The images of the same person acquired at different pose, scale, and age are also shown

in Fig. 1.2. The following observations can be made from the above mentioned three repre-

sentations:

1. The exaggerated features of the caricature (such as nose and cheek shown in Fig. 1.1(d))

are independent of pose and scale of the face image. Hence, itis easy to recognize

the person using his caricature as compared to the sketch andedge map of the face
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(a) (b) (c) (d)

Fig. 1.1: (a) Gray level face image. (b) Edge map of the image (a). (c) Sketch and
(d) caricature drawn by an artist for the person shown in (a).

Fig. 1.2: Images of the person in Fig. 1.1 (a) with different pose, scale and age.

image. The exaggerated information is so unique that it helps even in recognizing the

person’s face image taken at a different age (extreme right in Fig. 1.2).

2. Sketch also contains crucial information about the face image, that is useful to rec-

ognize the person. The crucial information of the sketch corresponds to the physical

edges (edges perceived by human) that are portrayed by an artist. In this process, an

artist may leave some edges of the face image to highlight theuniqueness present in

the face image. The crucial information perceived by different artists could be differ-

ent, but all of them end up in drawing similar sketches of a given face image.

3. Edges are computed as changes in brightness of the face image followed by threshold-

ing. Some spurious edges that do not correspond to physical edges may also appear in

the edge map. One way to remove those spurious edges is to choose a high threshold

value in the computation of the edge map. However, some physical edges of a face

image may also obliterate from the edge map.
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4. From the perception point of view, sketch and caricature are more robust representa-

tions as compared to the edge map representation of a face image. But it is not easy

to develop an algorithm to compute those representations. This is because one needs

to define the relevant crucial information of a face image that is difficult to articulate,

and also the information may be specific to a given face image.

5. All information of the sketch is present in the edge map of the face image. But the

reverse is not true. The reason could be that the definition ofedge of an image is

different from the edge perceived by human beings.

The edge map has all information of a sketch along with some less significant information.

Removing the less significant information (by choosing a highthreshold value) may lead to

loss of crucial information also. So, there is a trade-off in choosing the threshold value in the

edge map based representation of a face image. In this thesiswe argue in favor of using a

representation that captures the edge information implicitly rather than a representation that

requires edge extraction (discrimination between spurious and significant edges). Another

issue that needs to be addressed is thelocality problem, i.e., slight shift in edges of similar

face images leads to poor matching.

In this work we discuss four types of representations (listed in Table 1.1) that preserve the

edge features of a face image, and compare their performancefor face recognition. The first

two representations are based on the derivative operation on the face image. An edginess-

based representation, obtained using the first derivative of an image, is studied first. It is

computed using 1-D processing of images, unlike the traditional 2-D methods of process-

ing. The second is a new representation that associates the edges with the zero-crossings

of the second derivative or Laplacian of an image. A smoothing operation is required be-

fore the derivative operation is applied, since the Laplacian operation enhances noise in the

image. Two smoothing functions are explored, namely, the zero-frequency filter and the

standard Gaussian filter. Smoothing using the zero-frequency resonator has an interesting

interpretation, in the sense that it preserves the impulse-like characteristics (i.e., edges) of

images in the resulting output [17]. The third representation is based on the phase of the an-

alytic image, which also exploits the impulse-like characteristics of edges of an image. It is
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well known that the phase of the Fourier transform of an imagehas perceptually significant

information of the image [18], and hence can also be used as a representation capturing the

edge information.

Table 1.1: Four types of representations capturing the edgeinformation of an image.

(a) Edginess-based representation of an image
(b) Laplacian of a smoothed image
(c) Phase of the analytic image
(d) Phase of the Fourier transform of an image

1.3 Objective and scope of the work

The objective of this work is to study the importance of representation of an image in the

context of face recognition. The focus is on representationthat captures the edge-like infor-

mation of an image. The effectiveness of representations is examined for face recognition

using template matching. It is assumed that all the face images are already cropped and

aligned with respect to the location of the eyes. All the faceimages are rescaled to the same

size. The effectiveness of different representations in dealing with variations due to pose and

illumination for face recognition is studied in this work.

1.4 Organization of the thesis

The contents of the thesis are organized as follows:

Chapter 2 gives an overview of the existing representations of a face image as well as

the approaches for face recognition.

Chapter 3 discusses the edginess-based representation of a face image. It is computed

using one-dimensional (1-D) processing of images, which gives multiple partial evidences

of the face image. The potential field is derived from the edginess map of a face image

to address the locality problem in matching. A novel method is proposed to combine the

multiple evidences from different reference face images to address the issues of pose and
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illumination in face recognition. An autoassociative neural network (AANN) model based

method is proposed for decision making in face recognition.

Chapter 4 discusses a new method of processing an image using zero-frequency res-

onator. The zero-frequency resonator for two-dimensionalsignals like images is realized

using two methods, namely, spatial domain and Fourier domain. A method based on the

zero-frequency resonator is proposed to compute the edge map of a given image. The

method is similar to the standard Laplacian of Gaussian (LOG) operation, in the sense that

the former approach uses the zero-frequency filter for smoothing, whereas the latter uses

Gaussian filter for smoothing. The Laplacian operation is the same in both the cases. We

propose a representation based on the Laplacian of the smoothed image (filtered image) that

preserves the edge information of a face image around the zero-crossings of the filtered im-

age. The locality problem of the filtered image is addressed by considering only the first few

eigenvectors for matching. A method is proposed to highlight the subject-specific unique

information present in the eigenvectors derived from the filtered images.

Chapter 5 proposes a representation of face image using analytic image, and discusses

issues involved in the definition of an analytic image. This representation exploits the edge

information present in the phase of the analytic image. Herealso the eigenanalysis based

method is employed for matching two face images.

Chapter 6 discusses a representation of a face image using the phase ofthe Fourier

transform. The importance of small spacing or large spacingedges is controlled by select-

ing the appropriate discrete Fourier transform (DFT) coefficients. A method is proposed to

utilize the complimentary information present in the phaseof analytic image and Fourier

phase. This chapter also compares the proposed four edge-based representations with exist-

ing approaches for face recognition.

Chapter 7 gives a summary of the present work by listing the major contributions of the

present work, and also suggests some directions for furtherresearch in this area.
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Chapter 2

Review of representations for face

recognition

The problem of automatic face recognition is a composite task that involves the detection of

faces from a cluttered background, representation of faces(feature extraction) and matching.

A complete face recognition system should address all the above subtasks, and each one of

them presents several research issues. This research work focuses on the problem of repre-

sentation of face images. Different representations of face images proposed in the literature

are discussed in Section 2.1. Section 2.2 explains methods used for face recognition. Details

of the face databases used for experiments in this research work are given in Section 2.3.

Summary of the chapter is given in Section 2.4.

2.1 Representation of face images

The choice of representation significantly affects the performance of a face recognition sys-

tem. Two types of representations used in the face recognition research are: 2-D array of

intensity values and feature vectors. The drawback of representation using 2-D array of in-

tensity values is that it is sensitive to illumination. Also, if the face image is captured using

a different sensor, the performance of the face recognition system degrades.

The most widely used representation of face images is based on feature vectors. Two

approaches are commonly employed to extract the features: (a) Feature-based approach
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and (b) holistic approach. In the former approach the features are derived from the relative

positions and measurements of the facial parts. On the otherhand, the holistic approach

considers the face image as a single unit while deriving the representation.

Features derived using the different facial parts differ depending upon the pose of a face

image. For example, size of the eyes, and distances between eyes or lips are clearly visible in

the frontal pose. For a face image with side view, a set of characteristic points are employed

such as the notch between the brow and nose, the tip of the nose, the notch between the

nose and the upper lip, etc.. The features are usually the distances and angles between those

characteristic points (facial parts). Table 2.1 lists somecommonly used features. In the late

nineteenth century Galton devised a system in which portraits were described by numerical

formulae [19]. Each formula consists of four groups of figures with five figures in each

group. The shapes of the profile at characteristic points were expressed as single numerals.

They are determined from a table in which different shapes are represented with an index.

Not more than 10 varieties were given for each feature. Fig. 2.1 shows some possible shapes

for the ridge of the nose. Each of them was assigned a particular number (0-6).

Though the features derived from the relative positions andmeasurements between facial

parts give a compact representation of a face image, the representation has certain con-

straints. It depends heavily on the techniques for facial feature detection. It requires precise

locations of the facial features, which are difficult to obtain. It also suffers severely from

partial face occlusions and image degradations. These problems can be avoided in a rep-

3 4 5 60 21

Fig. 2.1: Some possible shapes used by Galton for ridge of the nose.
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Table 2.1:Features used for identifying faces (obtained from gray level values) [2]. Here
D(x,y) represents the distance between the facial features x and y.

Category Features
Overall height, outline, template, area, centroid
Eyes template, shape, color/shade, area, opening, intensity around pupil,

D(upper eyelid, eyelid-fold), difference of ordinates of inner and outer
corners, inter-eye distance (center), inter-eye distance(outer corner)

Eyelids area, length of the bounding curves
Eyebrows thickness,D(eye, brow)
Lips thickness, shape, template, width
Mouth template, width, height, area, area of opening
Nose width, length, template, shape, area of nostrils
Ears length, shape, area
Hair intensity/shade/color, amount/coverage, length, texture
Cheeks intensity
Distances width of head on the eye-line,D(chin, eye-line), D(center of lips, chin),

D(eye, hairline), D(eye, center of nose), D(tip of chin, center of face),
D(left edge, center of nose), D(right edge, center of nose),
D(center of face, center of brow), D(center of mouth, end of nose)

Areas inner corners of eyes and center of mouth, center of eyelid fold,
center of eye and center of face, center of mouth and center ofbrows

Ratios D(center of face, opening of mouth)/D(chin, opening of mouth),
D(chin, opening of mouth)/D(end of nose, opening of mouth)

Others chin outline, width and height of philtrum, forehead size, forehead outline

resentation derived by considering the face as a complete unit. This concept is followed in

all the subspace based methods, which will be discussed in Section 2.2.5. This approach

may give equal importance to all parts of the face image. In other words, contribution of

the subject-specific unique information, which may reflect in some specific part of the face

image, will not get emphasized during matching. Thus, each approach has its own advan-

tages and disadvantages. Ideally, one should use a combination of these two approaches for

representing a face image. These representations include sketch, caricature and edge map,

which will be explained below.
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2.1.1 Sketch

It is fascinating to see how an artist draws a sketch of a person’s face. Sketches are the

simplest form of drawings because they consist of mostly lines. The artist distils the unique

characteristics of a face, and highlights them with a small number of critical strokes [15].

The use of a sketch representation for face recognition gained attention because of two

reasons: (1) Automatic retrieval of suspect’s photo from the photo database, and (b) human

beings recognize sketches as accurately as gray level face images [15]. Here, photo means

the face image with gray level values. Unfortunately, the photo of a suspect is not available

in most cases. To deal with such a problem, a simulated sketchis generated with the help

of artists and eyewitnesses. Thus, automatically searching through a photo database using

a sketch is a very useful application. It will not only help the police to locate a group

of potential suspects, but also help the witnesses and the artists to modify drawing of the

sketch of the suspect interactively, based on the similar photos retrieved. In addition, a

simple sketch can reveal interesting characteristics of a person.

During the past three decades, many face recognition systems have been developed.

Nonetheless, very few effective face sketch recognition systems can be found in the liter-

ature. In [20, 21] traditional methods of face recognition such as the eigenface and elastic

graph matching have been applied on sketches drawn by artists. However, in practice, creat-

ing a database of sketches is not easy. So the focus of the problem has shifted towards finding

similarities between a photo and a sketch. Sketches and photos are of different modalities,

and it is hard to find their similarities. This issue was addressed by shrinking the difference

between those two representations and then performing matching. In [20] the objective was

achieved by normalizing the sketch in geometry and by blurring using a Gaussian filter, and

then recognizing using the eigenface method. This method does not perform well because

of large differences between sketches and photos. Thus, the task of matching a photo and a

sketch is attempted by transforming those two representations into similar patterns. This is

done by transforming a photo to a sketch, or a sketch to a photo, as discussed below:

1. Photo to sketch transformation: The objective of these approaches is to derive a

sketch from the available photos, and then perform matchingwith the sketch drawn
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by the artist. These approaches can be divided into two categories, namely, feature-

based approach and exemplar-based approach.

The feature-based approaches are given in [22, 23]. In [22],the facial feature points

such as eyes, nose, and mouth are detected using generalizedsymmetry operator, rect-

angle filter and characteristic shapes. Line drawings connecting these feature points

give the facial sketch image. The results were shown to be similar to the sketch drawn

by an artist. However the representation was not applied forface recognition. The

method in [23] proposes a grammatical model based approach for sketch generation.

A face image is divided into six zones for detection of the sixfacial components: two

eyes, two eyebrows, nose and mouth. Each component has a set of diverse repre-

sentations, and their topological configurations such as open and close states. These

components are modulated by active appearance model (principal component analy-

sis). The presence of components is controlled by the grammatical rules [24] through

hidden variables. The six component zones are further refined with sketch curves

corresponding to the subtle differences in eye-lid, eye-shade, nostril and lips. This is

performed using prior models and global context derived from the facial components

using several face images. Here, the objective was to compute a sketch that can be

used for low bit rate communication over wireless platforms. This representation was

used to address the issue of expression in face recognition [25]. The performance was

evaluated for the three expressions of face, namely,smiling, angryandscreaming. The

recognition accuracy was better in the case ofangryas compared to thesmilingand

screaming expressions, since the distortion in the sketches is high in the case of those

two expressions. A method recently proposed in [26] also uses the grammatical-model

based approach for synthesis of a sketch from a given photo.

In exemplar-based approaches, the objective is to learn themapping between a photo

and a sketch through several photo-sketch pairs. In [27, 28], the mapping is assumed

to be linear. A new face photoyp and sketchys can be represented by a linear com-

bination of training photo-sketch pair samplesXp andXs. Each column ofXp andXs

represents a training photo sample and the corresponding sketch sample, respectively.

The linear relationships areyp = Xpcp andys = Xscs, where the linear combination
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coefficientscp andcs are column vectors obtained by principal component analysis.

Based on the assumption of linearity, a sketch should have a similar linear reconstruc-

tion to its corresponding photo image, i.e.,cp ≈ cs, so the pseudo-sketch of the photo

can be synthesized withXscp. This method is called eigentransform-based pseudo-

sketch synthesis. Three distances based oncp andcs were defined to recognize the

given sketch. The performance was further improved by incorporating the shape and

texture information of photo in the pseudo-sketch synthesis [29]. A Bayesian subspace

classifier is employed to recognize the pseudo-sketches derived from the probe photo.

The assumption of the linear relation of photo-sketch pair is relaxed in the approaches

given in [30, 31]. In [30], a local linear embedding (LLE) based method is used for

the generation of the pseudo-sketch. Nonlinear discriminant analysis is used to recog-

nize the synthesized pseudo-sketches. This method performed better than the method

given in [29]. Learning linear or nonlinear mapping betweenphoto-sketch pair re-

quires many examples. This issue is addressed by the method given in [31], which

uses the embedded hidden Markov model (E-HMM) for sketch synthesis. The re-

sults are shown only for sketch synthesis, and not for recognition. Recently a method,

based on multiscale Markov random field, is proposed to learnthe mapping between

a photo and a sketch [32]. In all the exemplar-based approaches, the drawing style

of artist plays an important role in the synthesis of pseudo-sketch, since they require

several photo-sketch pairs drawn by the artists.

2. Sketch to photo transformation: Compressing more information into smaller com-

pact representation is a more stable operation than enlarging a compact representation

to a full representation [29]. Since photos contain detailed information than sketches,

it should be relatively easier to convert a photo to a sketch.As an extreme example,

suppose that the sketch contains some simple outlines from the photo of a face. It will

be difficult to reconstruct the photo from the line drawings only. The experimental re-

sults of the face recognition also give similar conclusion [28]. Nonetheless, synthesis

of photo from sketch is attempted in [33,34].

A statistical inference method for transformation betweena sketch and a photo is given
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in [33]. The relationship between photo and sketch is established by using two feature

spaces formed by patch-based tensor model. The statisticaldependencies between two

tensor models hold more precisely and flexibly by using Bayesian tensor interface.

This method is compared with eigentransform [28] and methodthat preserves local

geometry preserving [30] for facial photo hallucination, and the results are shown to

be better. But this representation is not yet applied for the task of face recognition.

The synthesis of a photo from a sketch given in [34] is similarto the method given in

[28]. The only difference is in the computation of the eigenvector matrix. In [34] a

hybrid space is derived by appending sketch vector to the corresponding image vector

for computation of the eigenvectors. On the other hand, in [28] the eigenvector ma-

trices for image space and sketch space are computed separately. It has been argued

that the computed eigenvectors for photo space and sketch space are highly correlated

if they are computed using hybrid space rather than separatespaces [34]. The synthe-

sized photos are used in conjunction with advance correlation filter [35] to address the

issue of illumination in face recognition.

2.1.2 Caricature/cartoon

“It is not really the perception of likeness for which we are originally programmed, but notic-

ing of unlikeness, the departure from the norm which standsout and sticks to the mind”.[36]

These thoughts are kept in mind while drawing caricatures. Acaricature is defined as a

funny drawing of someone that makes some of his/her distinct features appear exaggerated

for entertainment [16]. However, caricature of the same person drawn by different artists can

be different, since the drawing style plays an important role. Yet all the caricatures exagger-

ate similar information, which helps us to recognize the person’s face image. Psychological

studies also show that caricatured faces yield faster and more accurate recognition than using

normal face images [37].

It is not easy to draw the caricature of a given face image using a computer/machine.

The reason is that it is difficult to articulate the way an artist portrays a person. Thereare

a few attempts toward this goal. The first attempt to develop computer-assisted caricature
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generation system was made by Brennan [16]. The objective of this method was to teach a

newcomer about what was going on in an artist’s mind.

Available approaches to derive the caricature from a given photo follow two steps: Ex-

traction of the features and exaggeration of those features. A set of facial contour points

and manually marked curves are employed in the methods givenin [38, 39]. In [40, 41]

the features are extracted automatically, and these features are based on valley and edges of

the given face image. Koshimizu et al. [42] have used the linesketch drawn by PICASSO

system as the initial representation of a face image in the generation of caricature.

For the exaggeration of the extracted features, two approaches are followed in the lit-

erature. In the first approach, exaggeration is learned using photos of several persons and

the corresponding caricatures drawn by an artist. The learning is performed using neural

networks [43], and the partial least-squares based method [41]. These approaches give satis-

factory results from the perception point of view, but are sensitive to the drawing style of the

artist. In the second approach, the positions of the extracted feature points are compared to

the positions of same points in a normed face image. The differences are then exaggerated

by a fixed amount to derive the caricature [38–40,42].

A completely different method is followed in [44] for the caricature generation. Shape

features extracted from a face image are expressed in linguistic terms. Fuzziness inherent

in the linguistic expressions is expressed by a fuzzy set. A caricature is drawn by varying

parameter values of each feature of a face image. This methodis interactive, and involves

human interaction.

The approaches explained above give a 2-D caricature. The approach is extended to

obtain a 3-D caricature which gives more degree of flexibility in mimicking the artistic

flavors [45]. Here several 2-D caricatures are derived separately for each view of a given

person’s face image. The resultant caricatures are combined to derive the 3-D caricature.

All the above mentioned approaches focus mainly on the caricature generation. None of the

approaches have been applied for face recognition task.
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2.1.3 Edge map

The edge map of a face image has many similarities with its sketch and caricature repre-

sentations. Takacs [46] made use of edge maps to measure the similarity of face images.

The faces were encoded into binary edge maps computed using Sobel edge detection algo-

rithm [12]. The modified Hausdorff distance was chosen to measure the similarity of the

two point sets, i.e., the edge maps of two faces, because Hausdorff distance can be calcu-

lated without an explicit pairing of points in their respective data sets. Recognition accuracy

of 92% was achieved in their experiments.

The binary edge map representation was modified in the line edge map (LEM) by group-

ing pixels of face edge map to line segments [47]. In this approach, a polygonal line fitting

process is applied after thinning the edge map. An example ofa human frontal face LEM is

illustrated in Fig. 2.2. A line segment Hausdorff distance (LHD) measure is used to match

the LEMs of face images. Experimental results show that the performance is better than the

eigenface and normal edge map matching. These approaches require thresholding to decide

whether a given pixel is an edge pixel or a non-edge pixel. Thepresence of spurious edges

or missing of significant edges may lead to poor performance [47]. Another problem with

the edge map is that any shift in the edge locations due to small changes in the face image

reduces the matching score significantly. This problem is also known aslocality problem.

The matching is improved by using a spread edge profile, wherethe edge image is smeared

using a membrane function [48]. The spread edge profile composes a ghostly face called

hill . The hills have high values at the edges, and the values decrease as we move away from

the edges. The problem of hill representation is that it creates an artificial edginess map of

the face.

Recently a representation, namely, Gradientfaces [49], which uses the edge orientation

of an image, is proposed to capture the edge information of face images. This method

reported recognition performances of 99.83% and 98.96% on illumination variation set of

PIE face database [50] and Yale-B face database [51], respectively. But the method does not

address the issue of phase unwrapping.
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Fig. 2.2: An illustration of a face line edge model
(LEM).

2.1.4 Range images

The discussion so far considered representations of a face that use data obtained from

2-D intensity images. Another topic being studied by researchers is face recognition from

range image data. A range image contains the depth structureof the object under question.

Although such data is not available in most applications, itis important to determine the

value added by the information present in range images in terms of its effect on the accuracy

of face recognition.

A template-based recognition system involving descriptors based on curvature calcu-

lations made on range image is described in [52]. The data is obtained from a rotating

laser scanner system with resolution better than 0.4 mm. Surfaces are classified into planar,

spherical, and surfaces of revolution. The data is stored incylindrical coordinate system

as f (r, θ, y). At each point on the surface the magnitude and direction ofthe minimum and

maximum normal curvatures are calculated. Since the calculations involve second-order

derivatives, smoothing is required to remove the effects of noise in the image. Smoothing

is performed using a Gaussian filter. Surface regions are classified as convex, concave and

saddle. Ridges and valley lines are determined by obtaining the maxima and minima of the

curvatures. The strategy used for face recognition is as follows:
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1. The nose is located.

2. Locating the nose facilitates the search for eyes and mouth.

3. Other features such as forehead, neck, and cheeks are determined by their surface

smoothness (unlike hair and eye regions).

4. This information is then used for depth template comparison.

Using the locations of the eyes, nose and mouth, the faces arenormalized into a standard

position. This position is re-interpolated to regular cylindrical grid, and the volume of the

space between the two normalized surfaces is used as a measure of mismatch. This system

was tested on a dataset of 24 images of eight persons with three views of each. The data

represented four male and four female faces. 97% recognition accuracy was reported for the

individual features, and 100% for the whole process. An approach is described in [53] to

extract the facial curves from range images. The facial curves are matched using geodesic

distance for the task of recognition [54].

2.1.5 Infra-red images

In [55] an initial study comparing the effectiveness of visible and infra-red (IR) imagery

for detecting and recognizing faces is described. One of themotivations for this work is

that changes in illumination can cause significant degradation in performance for visible

image based face recognition. Hence infrared imagery, which is insensitive to illumination

variation, can serve as an alternative source of information for detection and recognition.

However, the poor resolution of IR images is a drawback. Further, though the IR imagery is

insensitive to changes in illumination, it is sensitive to changes in temperature. Three face

recognition algorithms were applied to both visible and IR images. The recognition results

on 101 subjects show that both visible and IR imagery give a similar performance, and that

the fusion of IR and visible imagery is a viable means of enhancing the performance beyond

that of the either alone. The similar observation was made ina recently published paper by

S. Gundimada and V. K. Asari [56].
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2.2 Approaches to face recognition

The earliest work related to face recognition was done by Galton [19] using face profiles. A

set of five cardinal points (Fig. 2.3) was derived from the face profile, and features derived

from it were used to compare faces. The cardinal points such as the notch between the brow

and nose, the tip of the nose, the notch between the nose and the upper lip, parting of the

lips and tip of the chin were used.

One of the earliest works in the last century was reported by Bledsoe [57]. In this system,

the feature points of the face were located by a human operator, and the located positions

were fed into a computer. Given a set of feature point distances of an unknown person,

nearest neighbor or other classification rules were used foridentifying the test image. Since

feature extraction was done manually, this system could accommodate wide variations in

pose, tilt, image quality, and contrast. Kelly worked in a framework similar to that of Bled-

soe, but his method does not involve any human intervention [58]. He used the body and

close up head images for recognition. Once the body and head have been outlined, ten mea-

surements were made for use in recognition. Kanade used distance and angle between points

such as eye corners, mouth extremities, nostrils, and chin top to discriminate faces [59]. The

facial feature points were located in two stages. A coarse-grain stage is employed to simplify

the succeeding differential operation and feature-finding algorithm. Once theeyes, nose and

mouth were approximately located, more accurate information was extracted by confining

the processing to four smaller regions, scanning at higher resolution and using the best beam

intensity for the region. The four regions were the left eye,right eye, nose and mouth. The

beam intensity was based on the local area histogram obtained in the coarse-grain stage. A

set of 16 facial parameters which are ratios of distances, areas, and angles to compensate

for the varying size of the pictures were extracted. To eliminate differences due to scale, the

components of the resulting vector were normalized. A distance measure was used to check

for similarity between an image of the test set and the image in the reference set. The range

of matching accuracies varies from 45% to 75% depending on the parameters used.

Brunelli and Poggio computed a set of geometrical features such as width and length of

nose, mouth position and chin shape [60]. A recognition accuracy of 90% was quoted on a
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Fig. 2.3: Characteristic points used by Galton simplifies the succeeding
differential operation and feature-finding algorithms.

database of 97 persons. However, simple template matching scheme gives 100% recognition

for the same database.

In [61] Wong proposed a technique to measure distances between eyes, left eye to middle

of the nose, right eye middle of the nose, middle of the nose toleft edge of face, and middle

of the nose to right edge of face. These measurements were used for recognizing human

faces. It works well for a database with small number of face images.

Performance of the above mentioned feature-based matchingmethods decreases with

partial face occlusions and image degradations. Moreover,these methods require reliable

and precise detection of facial features. These drawbacks of the feature-based techniques

led to the evolution of template-based methods. A simple version of template-based method

of matching is to use 2-D intensity values for comparing faceimages using a suitable met-

ric such as Euclidean distance or cross-correlation. This approach will be sensitive to even

small variations in intensity value. Hence, it gives poor matching under the intra-class vari-

ation. This issue is addressed by building a complex model using several face images under

different conditions. These approaches can be divided into five broad categories: Graph

matching, neural network model, hidden Markov model (HMM),3-D morphable model and

subspace methods.
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2.2.1 Graph matching

Graph matching based approaches construct a topological graph of each person’s face image

using the feature points that were computed using Gabor wavelet decomposition of facial

image [62–64]. Typically 35-45 points were derived from thegiven face image. The iden-

tification process utilizes the information present in the topological graph representation of

the feature points. After compensating for differing centroid locations, two cost values were

evaluated, namely, topological cost and similarity cost. The recognized face was the one that

has minimum of the combined cost values. The method works on controlled background

images like passport and driver’s license pictures. Lades et al. [65] presented a dynamic

link architecture for distortion invariant object recognition, which employs elastic graph

matching to find the closest stored graph. Objects are represented with sparse graphs whose

vertices are labeled with a set of complex Gabor wavelet coefficients called a jet. Only the

magnitudes of the coefficients were used for matching and recognition. When recognizing a

face of a new image, each graph in the model gallery (database) was matched to the image

separately, and the best match indicated the recognized person. The variations in pose were

compensated by elastic deformation of the graphs. This method gives a good accuracy for a

database of 87 persons, consisting of face images with different expressions and poses.

Wiskott et al. extended this system to handle larger galleries, and larger variations in

pose, and also to increase the matching accuracy [66]. Firstly, the phase of the complex

Gabor wavelet coefficients is used to achieve an accurate location of the nodes, and to dis-

ambiguate patterns which would be similar in the magnitudesof their coefficients. Sec-

ondly, object-adapted graphs are employed, so that nodes refer to specific facial landmarks,

called fiducial points. The correspondence between two faces can then be found across large

changes in viewpoint. Thirdly, a new data structure called the bunch graph was introduced,

which serves as a generalized representation of faces by combining jets of a small set of

individual faces. This allows the system to find the fiducial points in one matching pro-

cess, which eliminates the need for matching each model graph individually. This reduces

computational load significantly. It presented an accuracyof about 98% on FERET face

database [67, 68]. The drawback in this approach is that it requires manual intervention to

select the fiducial points in the facial image, and it requires precise locations of those points.
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Though graph matching gives good results, it has the drawback of preprocessing to be done

manually. It requires the exact position of the facial features to build the models. It also

fails when there is a partial occlusion of faces, since finding facial positions in such cases is

difficult.

2.2.2 Neural network based approach

Artificial neural network (ANN) [69–71] is a powerful tool for pattern recognition problems.

Researchers in the field of face recognition used ANNs for the purpose of developing a

model, which operates directly on an image representation of faces rather than geometrical

codings of faces. Using A NN on faces [1] several problems have been addressed: gender

classification, face recognition and classification of facial expressions. One of the earliest

demonstrations of A NN for face recall applications is reported in Kohonen’s work using

associative map [72]. Using a small set of face images, accurate recall was reported even

when the input image is noisy, or when portions of an image aremissing.

A single layer adaptive NN (one for each person in the database) for face recognition,

expression analysis and face verification was reported in [73]. It uses typically 200-400

presentations for training. The training patterns included translation and variation in facial

expressions. Sixteen classifiers were used for the databasecontaining face images of 16

persons. Classification was achieved by determining the classifier that gives the highest

response for a given input image. Extensions to face verification and expression analysis

were also presented.

A hierarchical neural network which grows automatically, and not trained with gradient

descent, was used for face recognition [74] . Good results were reported for discrimination

of ten distinctive subjects [74]. The ability of the compression networks was demonstrated

by Cottrell and Fleming in [75,76]. The network was trained with the whole image as input,

and it was shown that the network can classify face images according to faceness, gender and

identity. In [71] linear autoassociative networks, nonlinear autoassociative (or compression),

and hetero-associative backpropagation networks are explored for face processing.

In [77] Lin et al. proposed a face recognition technique based on probabilistic decision

based neural network (PDBNN). It adopts a hierarchical network structure with nonlinear
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basis functions and a competitive credit assignment scheme. It demonstrated a successful

application of PDBNN on FERET and ORL face databases [78].

In [79] Lawrence et al. presented a hybrid neural network solution which combines local

image sampling, a self-organizing map (SOM) neural networkand a convolutional neural

network. The SOM provides quantization of the image samplesinto a topological space,

where inputs that are nearby in the original space are nearbyin the output space as well,

thereby providing dimensionality reduction and invariance to minor changes in the image

sample. The convolutional neural network provides for partial invariance to translation,

rotation, scale and deformation. The recognizer provides ameasure of confidence at its

output, and the classification error approaches zero while rejecting as few as 10% of the

examples when applied on a database of 400 images of 40 individuals, containing high

degree of variability in expression and pose.

In [80] Srinivas et al. described an application of mixturesof experts for gender and

ethnic classification of human faces and pose classification. The mixture consists of an en-

semble of radial basis function (RBF) networks. Inductive decision trees (DTs) and support

vector machines (SVMs) implement the gating network components for deciding which of

the experts should be used to determine the classification output, and to restrict the support

of the input space. Experiments show good results on gender,ethnic and pose classification,

which can also be used effectively in face recognition.

Neural network based methods fail to perform well due to large pattern dimension and

lack of sufficient training samples. Moreover, neural network methods need a lot of compu-

tational effort to build a face recognition system.

2.2.3 Hidden Markov model (HMM)

Stochastic modeling of nonstationary vector time series using HMM has been successful for

processing speech signals [81], and has been applied for face recognition as well [82]. A

face image is divided into regions such as the eyes, nose and mouth, etc. These regions can

be associated with the states of a HMM. Since HMMs require an observation sequence, the

images are converted into 1-D spatial sequence of pixels by concatenating the rows/columns.

In [82,83] a spatial observation sequence is extracted froma face image by using a band
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sampling technique. Here, each face image is represented bya 1-D vector series of pixels.

Each observation vector is a block ofL lines, and there is an overlap ofM lines between

successive observations. A test image is first converted to an observation sequence using

band sampling technique. Then, it is matched against HMM of each of the faces in the

database. The model with the highest likelihood is considered as the best match, and the

corresponding face is the identity of the test face image. The recognition rate of the HMM-

based approach is 87% on ORL face database consisting of 400 images of 40 individuals.

The conversion of a face image into 1-D vector may lead to lossof 2-D structural information

of the face image. This issue is addressed in the pseudo 2-D HMM [84]. In the HMM-based

approach the classification time and training time are very high. Moreover, the choice of

parameters of the HMM is quite specific to the subject.

2.2.4 3-D Morphable model

A morphable face model is based on a vector space representation of faces that is constructed

such that any convex combination of shape and texture vectors of a set of examples describes

a realistic human face [85]. After fitting a 3-D morphable model to the face image, recogni-

tion across different viewing conditions is performed in two ways. (a) Compare the model

coefficients which represent the intrinsic shape and texture of faces, and are independent

of the imaging conditions. (b) Three dimensional face reconstruction is employed to gen-

erate synthetic views from gallery probe images [51, 86, 87]. The synthetic views are then

transfered to a second viewpoint-dependent recognition system.

The computer graphics simulation of projection and illumination are combined with

3-D morphable model to automatically estimate 3-D shape, texture, and all the relevant 3-

D scene parameters including the head positions and orientation, focal length camera, and

illumination directions [88]. A single model is built to address both the issues of pose and il-

lumination. Illumination is not restricted to Lambertian reflection, but takes into account the

specular reflections and cast shadows, which have considerable influence on the appearance

of human skin. A recognition accuracy of 95% was obtained using PIE face database [89],

based on side-view gallery. The 3-D morphable model based approaches may smear the

subject-specific unique information of a face image or introduce some artifacts while build-
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ing the model.

2.2.5 Subspace based methods

Bayes classifier gives the minimum error in the classificationaccuracy in pattern recognition

provided the estimate of prior and conditional probabilitydensity functions (pdf) are accu-

rate. As the dimensionality of the feature vector increases, the number of samples required

for accurate estimation of the pdf also increases. This phenomenon is also known as curse

of dimensionality [90]. For a face image with size of 30× 30 pixels, the dimensionality of

image space will be 900. For such large dimensions, it is difficult to get enough samples for

accurate estimation of the pdf.

However, much of the surface of a face is smooth and has a regular texture. Hence the

pixel values will be highly correlated. Moreover, the appearance of a face is highly con-

strained. For example, any frontal face is roughly symmetrical. Thus, the natural constraints

suggest that the dimensionality of the image space can be reduced. There are several meth-

ods available in the literature to compute the subspace or reduced dimensional space, and

these methods can be categorized into two types: linear and nonlinear methods.

2.2.5.1 Linear subspace methods

These methods assume linearity while computing the subspace. The methods include prin-

cipal component analysis (PCA), linear discriminant analysis (LDA) and independent com-

ponent analysis (ICA). The principal component analysis is also known as Karhunen-Loeve

expansion or eigenanalysis [90]. It is a well known method for dimension reduction in pat-

tern recognition literature, and is one of the extensively studied methods for face recognition.

Eigenanalysis exploits the second order dependencies in the multivariate stochastic ob-

servation to obtain a compact representation. Letx ∈ RN be a vector representation of a face

image, whereN is the dimension of the image space. The vector is formed by concatenating

the row/column pixels of a face image. The covariance matrix (Σx ∈ RN×N) of x is defined

as follows:

Σx = E{[x − E{x}][x − E{x}]t}, (2.1)
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where E{.} andt denote the expectation and transpose operators, respectively. In eigenanal-

ysis, the covariance matrixΣx is factorized as follows:

Σx = ΨΛΨ
t, (2.2)

whereΨ ∈ RN×N = [ψ1, . . . , ψN] is an orthonormal eigenvector matrix, andΛ ∈ RN×N =

diag{λ1, λ2, . . . , λN} is a diagonal eigenvalue matrix with diagonal elements (eigenvalues) in

nonincreasing order (λ1 ≥ λ2 . . . ≥ λN).

An important characteristic of the PCA is that it is a dimension reduction method, op-

timal in the sense of minimum square error (MSE), where only asubset of eigenvectors
[{ψ1, ψ2, . . . , ψm},m≤ N

]

are used to represent the original image [91]. The low dimensional

representation of the original vector is given by{a1, . . . ,am}, whereai = xtψi. An approx-

imation to the original face image can be reconstructed using the subset of eigenvectors as

follows:

x̂ =
m
∑

i=1

aiψi . (2.3)

The eigenvectors associated with the largest eigenvalues are referred as eigenfaces. In

1990, Kirby and Sivovich proposed the use of PCA for face analysis and representation [92].

This idea was extended by Turk and Pentaland [93], which was the first application of PCA

for face recognition. Each face image was projected onto theprincipal subspace defined

by them principal eigenvectors, giving am-dimensional representation of the face image.

When a test face image is projected onto the subspace, the Euclidean distance between

its coefficient vector and the vector representing each person in the database is computed.

Depending on the distances to the subjects, the test image isclassified as belonging to one of

the persons. The basic method ignored the variation modes within the subspace and outside

it, which was incorporated later using Bayesian similarity measure [94,95]. The assumption

of equal covariance matrices of all the classes is eliminated in the principal component null

space analysis (PCNSA) [96].

In [97], a two-dimensional principal component analysis (2-D PCA) is proposed for face

recognition. In contrast to the conventional PCA, the 2-D PCA is based on 2-D matrices
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rather than vectors. That is, the image matrix does not need to be previously transformed

into a vector. Instead, an image covariance matrix is constructed directly using the original

image matrices in (2.1). Subsequently the method is similarto PCA. When a new face

image matrix is projected to the eigenvector matrix, we get afeature matrix or feature image

instead of feature vector as in PCA. The feature matrix of a test face image is compared with

the feature matrices of the reference face images to determine the identity. In contrast to the

covariance matrix of PCA, the size of the image covariance matrix obtained using 2-D PCA

is much smaller. As a result, 2-D PCA has two advantages over PCA. First, estimation of the

covariance matrix is relatively accurate even with small number of training samples. Second,

less time is required to determine the corresponding eigenvectors. Experimental results

show that the 2-D PCA outperforms PCA and Kernel PCA on the Yale face database [97].

However, the projected feature matrix of the 2-D PCA reflects only correlation between

rows of the images, while the correlation between columns isomitted [98]. This issue was

addressed by a method called DiaPCA [98], where a diagonal face image derived from

the original face image is used in the 2-D PCA. Due to this, the correlation between rows

and columns of the image is utilized in the computation of theprojective feature matrix.

Experimental results on a subset of FERET face database show that the DiaPCA performs

better than both the PCA and 2-D PCA. In addition, it is shown that the recognition accuracy

can be improved further by combining the DiaPCA and 2-D PCA.

The PCA based methods essentially select a subspace that retains most of the variation

of the training face images. It is suitable for reconstruction of the face images, but may not

be suitable for discrimination purpose. This limitation was overcome by linear discriminant

analysis (LDA), where the subspace is derived using class-specific information of the train-

ing samples. This information is useful to develop a method for reducing the dimension of

the feature space such that the resulting subspace is more suitable for the task of classifi-

cation. The LDA determines the projection matrixΨLDA in such a way that the ratio of the

between-class scatter and the within-class scatter is maximized [91,99], i.e.,

ΨLDA = arg max
Ψ

| ΨTSBΨ |
| ΨTSWΨ |

, (2.4)
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whereSB is the between-class scatter matrix, andSW is the within-class scatter matrix. They

are defined as

SB =

N
∑

i=1

Ti(µi − µ)(µi − µ)t, (2.5)

and

SW =

N
∑

i=1

∑

xk∈X i

(xk − µi)(xk − µi)
t. (2.6)

In the above expressions,µ is the mean of all the training samples,Ti is the number of

training samples in classi, N is the number of distinct classes,µi is the mean vector of

samples belonging to classi, andX i represents the set of samples belonging to classi. The

projection matrixΨLDA in (2.4) are the eigenvectors ofS−1
W SB associated with the largest

eigenvalues [99].

In the context of appearance-based object recognition, it is generally observed that al-

gorithms based on LDA are superior to those based on PCA (sinceLDA directly deals with

class discrimination). The PCA might outperform LDA, if the number of training face im-

ages per class is small [100]. Especially, this is the scenario in the case of face recognition,

where the task is also known as small size problem or singularity problem [91]. Many meth-

ods have been proposed to deal with this problem, including pseudo-inverse LDA [101],

PCA+LDA [100], regularized LDA [102] and recursive LDA [103]. Some of these methods

were applied for face recognition, and the performance using PCA+LDA was found to be

better. The issue of the singularity problem is also addressed using the two-dimensional

LDA (2-D LDA) [104], which is analogous to 2-D PCA.

The approaches based on PCA and LDA use the second order statistics of the training

set, and ignore the higher order statistical dependencies such as the relationships among

three or more pixels of the images [105,106]. Independent component analysis (ICA) [107]

separates the higher order moments of stochastic observations in addition to the second

order moments, and can be seen as generalization of the PCA. In[105], two architectures

are proposed to perform the face recognition using ICA. In thefirst architecture, images
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are considered as random variables and pixels are considered as trials. Here, the projective

matrixΨICA is derived by making the face images as independent as possible. Two images

x1 andx2 are independent, if when moving across pixels it is not possible to predict the

value of the pixel in the imagex2 based on the value of the same pixel in the imagex1. On

the other hand, pixels are considered as random variables, and images as trials in the second

architecture. Here theΨICA is derived by making pixels of images as independent as possible.

Pixelsi andj would be independent if when moving across the entire set of images it is not

possible to predict the value taken by pixeli based on the corresponding value taken by

pixel j on the same image. In the first architecture, the data matrixX is organized such that

the training face images are in rows and the pixels are in columns. The ICA finds a weight

matrix W such that the rows ofΨICA = WX are as statistically independent as possible.

The rows of the projective matrix (ΨICA) called source images are used as basis functions to

represent the face images. The number of basis images (n) is the same as the number of face

images in the training set. A face image can be represented using the basis images as

x = b1ψ1 + b2ψ2 + · · · + bnψn. (2.7)

The coefficient vectorb = (b1,b2, . . . ,bn)t is compared using the cosine similarity measure

in the nearest neighbor algorithm to compute the identity ofa test face image. The second

architecture is realized by repeating the above mentioned procedure using data matrix as

transpose ofX rather thanX . Both the architectures addressed the issue of singularity by

reducing the dimensionality of the image space using PCA. Theperformance of face recog-

nition is similar using both the architectures, and is superior to the PCA for recognizing face

images across days and changes in expression [105]. In [108], experiments were conducted

on a face database containing 206 subjects (2060 face images), and the method reported a

recognition performance of 79.1%, 81.0% and 88.1% for PCA, LDA and ICA, respectively.

In [109], ICA and its variants, specifically the independent subspace analysis (ISA), and

topographic independent component analysis (TICA) are usedto learn the view-specific

subspace of the face images. The learned subspaces are employed to estimate the pose of

a given new test face image. In all the ICA-based approaches animage is transformed into
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a vector. On the contrary, row-column independent component analysis (RC-ICA) which

worked directly on images without image-to-vector stretching, is given in [110]. The exper-

imental results show that RC-ICA performs better than PCA, 2-D PCAand ICA on Yale-B,

AR, and FERET face databases. The performance of the RC-ICA is compared with the

representations proposed in this thesis.

2.2.5.2 Nonlinear subspace methods

In these methods, the constraint of linearity is relaxed while computing the subspace (pro-

jection matrix). These methods include nonlinear PCA (NLPCA), Kernel PCA (KPCA),

kernel LDA (KLDA) and nonlinear ICA. The NLPCA can be performedusing autoassocia-

tive neural network (AANN) [111] model which is a mulitlayerperceptron network (MLP)

in autoassociation mode. In this network, the number of nodes in the hidden layer is less

as compared to nodes in the input and output layers (dimension of the feature vector). The

same vectorx is used both as input and as the desired output in AANN network. If a linear

activation function is employed for each node, then the outputs of the hidden layer give the

projected coefficients corresponding to the principal eigenvectors. In theNLPCA, a nonlin-

ear function (sigmoid function) is chosen as an activation function.

The basic methodology of KPCA is to apply a nonlinear mapping to the inputF(x) :

R
N → RL, and then apply a linear PCA in the resulting feature spaceR

L, whereL is larger

thanN, and possibly infinite. The mapping F(x) is made implicit (and economical) by the

use of kernel function satisfying Mercer’s theorem [112]. The selection of kernel function is

an engineering problem. The KPCA does not require nonlinear optimization, is not subject

to overfiting, and also does not require prior knowledge of the network architecture as in the

case of AANN based method.

Similar to KPCA, the kernel linear discriminant analysis (KLDA) was also proposed

in [113]. The experimental results were shown to be better ascompared with ICA, PCA,

KPCA, and standard Fisherfaces (LDA) using two data sets thatcontained images of 40

and 11 subjects, respectively, with varying pose, scale andillumination. Each subspace

method has its own advantages and disadvantages, and comparison of these methods for

face recognition task can be found in [114].
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2.3 Face databases

In this thesis, face recognition for various representations is studied using three face databases,

namely, FacePix, PIE (Pose, Illumination and Expression) and Yale-B face database. The

details of the databases are given below.

2.3.1 FacePix database

FacePix face database is collected at Arizona State University [115, 116]. It consists of 30

persons, and each having two sets of face images: A set with pose angle variation and a

set with illumination angle variation. The set with pose angle variation has 181 images

(representing angles from -90◦ to 90◦ at 1◦ interval) with varying pose. In this thesis we

denote these images byI1, . . . , I181. The illumination set is captured with the subject looking

directly into the camera, while the light source is moved around the subject. The light source

is moved at 1◦ interval from−90◦ to 90◦. These images are denoted byL1, . . . , L181. Some

of the face images for a person are shown in Fig. 2.4.

2.3.2 Pose, Illumination and Expression (PIE) database

Pose, illumination and expression (PIE) face database [89]collected at Carnegie Mellon

University contains three variations of face images. The pose variation set consists of 68

persons, each having face images for 13 different poses. We have used three point normal-

ization [117], based on the locations of eyes and nose, to crop the face images. The cropped

face images of a person are shown in Fig. 2.5(a). TheC22, C25, C02, C37, C05, C09, C07,

C29, C11, C31, C14andC34are the positions of cameras located at different locations to

get the face images at different poses. The illumination variation subset of the PIE face

database (PIE NL dataset) [50] , has 65 subjects, each having21 face images, as shown in

Fig. 2.5(b).
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(a)

(b)

Fig. 2.4: Sample face images of a person with (a) pose variation and (b) illumination
variation set of FacePix face database.

2.3.3 Yale-B database

The Yale-B face database [51] contains face images of 10 persons. For each person 576

viewing conditions (nine different poses and 64 different lighting conditions from negative

azimuth to positive azimuth) are captured. The 64 frontal face images under different light-

ing conditions for each person are used in our experiments. Fig. 2.6 shows some samples of

face images for a person.

2.4 Summary

In this chapter we have discussed different representations of face images used in face recog-

nition. The gray level values of a face image cannot be used directly for matching in a face
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Fig. 2.5: Sample face images of a person with (a) pose variation and (b)
illumination variation of PIE face database.

recognition task due to variability in pose and illumination of the face image. It is im-

portant to extract suitable representation to address the issues of inter-class and intra-class

variations. The available methods for representing a face image use either feature-based

approach or holistic approach. The feature-based approachattempts to highlight the unique

information, which may reflect in the relative positions of the facial features. This approach

gives good performance even in the extreme cases of intra-class variations, as for example,

a face image with large variations in the pose. However, extraction of facial features from

such extreme cases is not easy. The feature-based approach also suffers from the problem

of partial face occlusion. In the holistic approach, representation of a face image is obtained

by considering the entire face as a single unit. In this approach, the subject-specific unique

information of face image may not get emphasized during matching. Thus, both approaches

have their own advantages and disadvantages. Ideally, one should use a combination of these

two approaches for representing a face image. Such representations are sketch, caricature
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Fig. 2.6: Sample images of a person from illumination variation
subset of Yale-B face database.

and edge map of a face image. The sketch and caricature are thebest representation from

the perception point of view. Though there are a few approaches proposed in the literature

to derive the sketch and caricature of a given face image, mimicking the artist’s ability is

still a challenge.

Edge map is another representation that contains perceptually crucial information of

a face image. Moreover, an edge map contains all informationpresent in the sketch and

caricature of a face image. However, the edge map representation has two drawbacks in

the context of face recognition: a) Selection of threshold value for edge extraction, and b)

matching of the edge maps. In this work we have explored four types of representations of

face image that capture the edge-like information of a face image, but do not perform the task

of edge extraction. The second issue of matching edge-basedrepresentations is addressed

to some extent by smearing the edge information. Template matching based approach is

employed to illustrate the significance of the proposed edge-based representations for face

recognition.
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Chapter 3

Edginess-based representation

In this chapter, we consider edginess-based representation of a face image. It is computed

using one-dimensional processing of the image [118–120], unlike the traditional 2-D pro-

cessing methods. A potential field is derived from the edginess image to improve matching

under intra-class variation of the face image. Template matching is used for matching face

images with pose and illumination variation. Evidences from different reference templates

are combined, and classified using AANN models.

The chapter is organized as follows: Section 3.1 discusses computation of the edginess

image using 1-D processing. The template matching of imagesusing the edginess-based

representation is discussed in Section 3.2. The scores obtained by matching with several

templates are combined in a selective way as explained in Section 3.3. A neural network

model is proposed in Section 3.4 to develop a classifier usingthe combined scores. Ex-

perimental results are discussed in Section 3.5, and a summary of the chapter is given in

Section 3.6.

3.1 Edginess-based representation using 1-D processing of

images

The continuous gradient computed at every pixel is called edginess of an image [119]. Di-

rect computation of the gradient using a derivative operator enhances noise as well, along
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with the edge information. The noise level can be reduced by applying a smoothing op-

eration followed by a derivative operation. The smoothing operation smears the edge in-

formation. One-dimensional (1-D) processing of images canbe used to reduce the effect

of noise without smearing the edges significantly [119, 120]. In 1-D processing of a given

image, the smoothing operator is applied along one direction, and the derivative operator is

applied along the orthogonal direction. By repeating this procedure of smoothing followed

by derivative operation along the orthogonal direction also, two edge gradients are obtained.

As the smoothing is done along a direction orthogonal to the direction of the edge extraction,

smearing of the edges is reduced. This method differs from the traditional methods [12], in

the sense that smoothing is done along one direction, and differential operator is applied

along the orthogonal direction.

In 1-D processing of images, a 1-D Gaussian filter is used for smoothing, and the first

derivative of the 1-D Gaussian function is used as differential operator. The 1-D Gaussian

filter is given by

g(x) =
1

√
2πσ1

exp
−x2

2σ2
1

, (3.1)

whereσ1 is the standard deviation of the Gaussian function. The firstderivative of a 1-D

Gaussian is given by

c(x) =
−x
√

2πσ3
2

exp
−x2

2σ2
2

, (3.2)

whereσ2 is the standard deviation of the Gaussian function. The values ofσ1 andσ2

decide the spatial extent of these 1-D filters. The edge gradient obtained by applying the

derivative operator along a directionθ with respect to a horizontal scan line is denoted as

ig
θ
. Fig. 3.1 shows examples of the gradient maps obtained alongdifferent directions for the

same face image. It shows that they contain complementary information of the face image.

In this study, the values ofσ1 andσ2 are chosen to be 0.6 and 1, respectively, based on

experimental studies on several face images. It must be pointed out that the choice of the

values ofσ1 andσ2 is not critical. One of the problems with the edge gradient representation

is that they are very sparse, i.e., most of the values are verysmall, close to 0. Because of

this, even a small deviation in the edge contour for the same face image leads to poor scores

in template matching. This is calledlocality problem, and it can be reduced by spreading the
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(a)

(b) (c)

(d) (e)

Fig. 3.1: (a) Gray level face image. Edge gradient (ig
θ
) of the face

image obtained usingσ1 = 0.6,σ2 = 1, for (b) θ = 0◦, (c) θ = 45◦,
(d) θ = 90◦ and (e)θ = 135◦.

edge information in the edge gradient representation. The edge information can be spread by

either using high values ofσ2, or by removing some of the high frequency DFT coefficients

of the edginess image. But spreading the edge information in this manner leads to loss of

information.

Alternatively, the edge information can be spread using potential field representation [121].

The potential fielduθ, derived from the edge gradientig
θ
, is obtained by minimizing the en-

ergyEθ given by [122]

Eθ =

∫ ∫

[µ((uθx)
2 + (uθy)

2) + |(ig
θ
)2 + (ig

θ+90)
2| |uθ − ig

θ
|2 ]dxdy, (3.3)

whereuθx anduθy are the partial derivatives ofuθ along thex andy axes, respectively. The

parameterµ is the scaling factor used to control the amount of smearing.This variational

38



formulation follows the standard principle that the resultmust be smooth when there is no

data. In particular, we see that when the gradientsig
θ

andig
θ+90 are small, the energy is dom-

inated by the partial derivatives of the field, yielding a smooth field. This smoothing term

(the first term in the integrand of (3.3)) is the same term usedby Horn and Schunk in their

classical formulation of optical flow [123]. On the other hand, when the gradient is large, the

second term dominates in the integrand of (3.3), and it is minimum whenuθ = ig
θ
. This term

is responsible for introducing the gradient information inthe potential field. This approach

is similar to the one used in [122] for developing a deformation force of snakes. To minimize

the energyEθ given by (3.3), the following Euler equation is a necessary condition [124]

µ ▽2 uθ − (uθ − ig
θ
)|(ig

θ
)2 + (ig

θ+90)
2|2 = 0, (3.4)

where▽2 is the Laplacian operator. We can see that wherever the gradient is zero, (3.4) will

reduce to the Laplacian operator. It can be solved by considering uθ as a function of the

variablet, and the solution is given by [122]

uθ t(x, y, t) = µ ▽2 uθ(x, y, t) − [uθ(x, y, t)

−ig
θ
(x, y)][( ig

θ
(x, y))2 + (ig

θ+90(x, y))2], (3.5)

whereuθ t is the partial derivative ofu(x, y, t) with respect tot. The above equation is known

as generalized diffusion equation, commonly encountered in heat conduction and reactor

physics [125]. Let△x and△y be the inter pixel distance along thex andy axes, and△t be the

change int. Then, using the standard approximations for the partial derivatives, (3.5) can be

written as

um+1
θ i, j = (1− E2

i, j △ t)um
θ i, j +

µ △ t
△x△ y

(um
θ i, j+1 + um

θ i+1, j

+um
θ i−1, j + um

θ i, j−1 − 4um
θ i, j) + E2

i, j(i
g
θ i, j △ t),

(3.6)

whereEi, j =

√

(ig
θ i, j)

2 + (ig
θ+90 i, j)

2, andum
θ i, j is the potential field at the location (i, j) after

mth iteration. Equation (3.6) is stable, providedEi, j andig
θ i, j are bounded, and the Courant-
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(a)

(b) (c)

(d) (e)

Fig. 3.2: (a) Gray level face image. Potential field (uθ) developed
from the edge gradient of the face image (a) usingσ1 = 0.6,σ2 = 1,
µ = 0.005 for (b)θ = 0◦, (c) θ = 45◦, (d) θ = 90◦ and (e)θ = 135◦.

Friedrich-Lewis restrictionµ△t
△x△y ≤

1
4 is maintained [124]. The potential fields obtained by

(3.6) for different edge gradient images are shown in Fig. 3.2. It shows that the edges are

smeared in the potential field representation, and thus it improves the matching in the case

of deviation in edge contours between test and reference face images of the same person.

3.2 Template matching using edginess-based representa-

tion

Template matching is one of the approaches proposed in the literature to address the is-

sue of inter-class variation [60], because it takes into account the unique information of a

person’s face image. But this approach has the drawback that it gives poor performance
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under intra-class variation [126]. The problem of intra-class variation can be overcome

using an approach which synthesizes a 3-D model of the face image from a given sam-

ple [51,86,87,127,128]. But synthesis of face image may result in some artifacts, and also

some loss of the unique information. Thus synthesis-based approach may degrade the per-

formance of the face recognition system. Another way to address the issue of intra-class

variation is to consider several reference face images which capture variations in the face

images such as due to different poses or due to different lighting conditions. These multiple

reference face images can be used to build a model for that person’s face image. The result-

ing model is used to identity a test face image. Such methods are discussed in [96,129–133].

In these cases the model may be averaging out some of the information that is unique for

that person. In this work we propose a template matching based method, which neither

synthesizes the face image, nor derives a model for the person’s face. We use the reference

face images (at different poses or at different lighting condition) separately for template

matching.

Template matching is performed using a correlation-based technique. Correlation be-

tween reference face imager(x, y) and test face imagei(x, y) is computed as follows:

c(τx, τy) = i(x, y) ⊙ r(x, y)

=

∫ ∫

i(x, y)r(x+ τx, y+ τy)dxdy

=

∫ ∫

I ∗(u, v)R(u, v) exp(j2π(uτx + vτy))dudv, (3.7)

whereI (u, v) andR(u, v) are the Fourier transforms ofi(x, y) andr(x, y), respectively, and⊙

denotes the correlation operator. The correlation outputc(τx, τy) should have a high value

at the origin, when the test and reference face images are similar. On the other hand, if

the test and reference face images are not similar, then the correlation output should have a

relatively low value even at the origin. Here, the origin refers to the center of the correlation

function. Figs. 3.3(a) and (b) show the normalized correlation outputs for a true class face

image and for a false class face image, respectively. The correlation output of a true class

image (Fig. 3.3(a)) has a high peak value near the origin, whereas for the false class image

(Fig. 3.3(b)) the correlation output is generally low. The relative heights of the values at the
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Fig. 3.3: A typical correlation output for (a) true class face image and (b) false class face
image.

origin determine whether the test and reference face imagesare similar or not. The sharpness

of the peak in the correlation output is quantified using peak-to-sidelobe ratio (PSR) [134].

The PSR (P) is defined as

P =
p− µ
σ

, (3.8)

wherep is the value of the maximum peak in the correlation output,µ is the mean of the

correlation output within a window (of size 19×19 pixels) around the peak, andσ is the

standard deviation of the values in this window. In practice, we leave out a region of size

7×7 pixels around the center of the window while computingµ andσ. The choice of the

sizes of these windows is arrived at empirically. Other choices can also be made to highlight

the peak to sidelobe characteristics. The PSR measures the sharpness of the highest peak in

the correlation output. For a similar face images, the peak will be sharp and high relative to

the values in the neighborhood. Otherwise the peak will be low and blunt.

The edge gradients (ig
θ
) for different directions (θ) give different information of a face

image. Hence, we have performed correlation between partial evidence (uθ) of the given

test and reference face images. Letcθ be the correlation output obtained when the corre-

lation between the partial evidence alongθ direction of the test and reference face images
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is performed. The resultant correlation output is used to compute the PSR (Pθ) using (3.8).

Ideally thePθ should be high if the given test face image is similar to the reference image. In

our experiment we have computed the partial evidence (uθ) along the four directions (θ = 0◦,

45◦, 90◦ and 180◦). Hence, for a given test face image a four dimensional feature vector (i.e.,

containing four PSR values) is obtained. Fig. 3.4(a) shows the scatter plot obtained from the

PSR vectors of the true class and false class face images for aperson using pose variation

set of the FacePix face database. For visualization we show the plot using three (θ = 0◦, 45◦

and 90◦) of the four dimensions. In this example we have usedI1 as a training (reference)

face image of a person. The remaining 180 face images of the given person form examples

of the true class image, and the corresponding PSR values aredenoted by the diamond (⋄)

symbol in the plot. For the false class, 29×181= 5249 face images are available, and the

PSR values are shown by the point (·) symbol in the scatter plot. Though the separation

between the true and false class face images are not decisive, but one can observe from the

plot that high scores are given by the face imagesI2, I3, I4, I5 andI6 of the true class. These

face images have pose that is close to the pose of the training(reference) face image. One

can also see that none of the face images of the false class gives high scores. It means that

the chances of matching face images of two different persons even with the same pose, is

less. Similar observations can be made from the scatter plotshown in Fig. 3.4 (b), which is

obtained usingI46 as the reference face image. This behavior is utilized to recognize a given

face image.

3.3 Combining scores from different templates

One can conclude from the previous section that if a test faceimage of the true class has a

pose that lies between poses of two reference face images, then the test image will give high

scores with respect to both the reference face images. It is better to combine these scores

rather then use them separately for taking decision. One wayto combine the scores is as

follows. LetPt,l
θ

is the similarity score (PSR) obtained when the potential field representation

alongθ direction of the test face imageI t is correlated with the corresponding representation

of reference imageI l. The combined similarity score for two reference imagesI l andIm is
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Fig. 3.4: Scatter plots of PSRs for a person’s face image using potential field repre-
sentation, obtained fromθ1 = 0◦, θ2 = 45◦, θ3 = 90◦, and using (a)I1 and (b)I46 as
the training (reference) face image.

given by

Pt,l,m
θ
=

[

1
2

[(

Pt,l
θ

)α
+
(

Pt,m
θ

)α]
]

1
α

, (3.9)

where the parameterα decides the weights associated with the scores. Forα ≤ 1, min[Pt,l
θ
,Pt,m

θ
] ≤

Pt,l,m
θ
≤ Pt,l

θ
+Pt,m

θ

2 , and forα ≥ 1,
Pt,l
θ
+Pt,m

θ

2 ≤ Pt,l,m
θ
≤ max[Pt,l

θ
,Pt,m

θ
]. A low value ofα is suit-

able for the case of false class, and a high value ofα for true class. One has to choose a

suitable value ofα such that the separation between true and false classes is enhanced. We

have found empirically thatα = 3 is a good choice. Fig. 3.5 illustrates the effect ofα on

PSR vector through scatter plots. Figs. 3.5 (a) and (b) are the same scatter plots as shown in

Figs. 3.4 (a) and (b), respectively, but with a different view. In this example we have shown

only the scores obtained from the true class face imagesI t for 2 ≤ t ≤ 45. Figs. 3.5 (c), (d),

(e) and (f) are the scatter plots obtained after combining the PSR scores in Figs. 3.5 (a) and

(b) using (3.9), forα = 0.4, 1, 3, and 5, respectively. One can see that asα increases the

points due to true and false classes move away from the origin. Similarly, we can combine

the scores obtained from other reference face images of adjacent poses.
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Fig. 3.5: Scatter plots of PSRs for a person’s face image using potential field repre-
sentation, obtained fromθ1 = 0◦, θ2 = 45◦, θ3 = 90◦, and using (a)I1 and (b)I46 as
the training (reference) face image. Combining (a) and (b) using (c)α = 0.4, (d)α
= 1, (e)α = 3 and (f)α = 5.
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3.4 AANN based classification using distribution of feature

vectors

The next task is to classify a given test face image using the feature vectors consisting

of the combined scorePt,l,m
θ

for the four different values ofθ. One can employ a classifier

based on multilayer perceptron (MLP) [69] neural network model or support vector machine

(SVM) [70]. But these models require samples from both the true and false classes. Though

we can have a large number of false class images for a given person, but we cannot afford

to have many face images of the true class. This problem can beovercome by using an

approach based on autoassociative neural network (AANN) model [135]. There are two

reasons for adopting this approach: Firstly, one can have many false class face images for a

given person. Secondly, the feature points due to false class are more dense as compared to

the feature points due to the true class in the scatter plots.The distribution of these closely

spaced points of the false class can be modeled using the distribution capturing ability of an

AANN model. The distribution capturing ability of an AANN isillustrated in Fig. 3.6(b)

for the 2-D data shown in Fig. 3.6(a). The structure of the AANN model is 2L 10N 10N 1N

10N 10N 2L, whereL denotes a linear unit, andN denotes a nonlinear unit. The network is

trained using the coordinates of the data as input and output. Fig. 3.6(b) is obtained using

the confidence value derived from the error between the inputand output for each test point

(i) in the 2-D plane in the range (-1 to+1, -1 to+1). The confidence value is computed for

the squared error (Ei) of the i th point as

Ci = exp(−βEi), (3.10)

whereβ is constant. It can be seen that the confidence value is high when the density of

points is high in the input data.

The distribution of points due to false class could be different for different reference

face images. Hence, separate AANN models are obtained for each reference face image.

The AANN model can be used for accepting or rejecting a claim.When a test face image

belonging to the true class is given to the AANN model, the resulting score vector does not
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Fig. 3.6: Distribution capturing ability of AANN model. (a) Artificial two dimensional
data. (b) Confidence surface realized by the network structure 2L 10N 10N 1N 10N 10N 2L.

fall into the cluster of points belonging to the false class.Thus using a suitable threshold for

the output of the AANN model, a decision can be made whether toaccept the claim of the

test input or not.

3.5 Experimental results

Here, we give a brief summary of our experiments. The resultson the pose variation set

of the FacePix face database is explained first. The block diagram of the training phase

is shown in Fig. 3.7(a). In this block diagram we have shown training with five reference

face imagesI1, I46, I91, I136 and I181. This process can be generalized for any number of

reference face images. The reference face images are chosen, in such a way that their poses

are uniformly spaced over the span of 0◦ − 180◦. Several false class images are chosen,

and their potential field representations (uθ) are computed along the four directions (θ = 0◦,

45◦, 90◦ and 135◦). These representations are correlated with the corresponding representa-

tion of each reference face image. The resulting correlation output is used to compute the

similarity score using (3.8). Hence, five sets of four dimensional feature vectors (4 PSR
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Fig. 3.7: Block diagram of face verification system for (a) training and (b) verification.

values) are obtained for each false class image. The similarity scores obtained from refer-

ence face images having adjacent poses are combined using (3.9), as shown in Fig. 3.7(a).

These combined scores are presented to an AANN model for training. LetAANN1,46 denote

the AANN model trained with the combined similarity scores (Pt,1,46
θ

) obtained using the

reference face imagesI1 and I46. The structure of the AANN model is 4L 8N 2N 8N 4L.

The AANN model is trained using backpropagation algorithm for about 3000 epochs. Sim-

ilarly, we have designedAANN46,91, AANN91,136 andAANN136,181 using the same false class

face images. The block diagram of the testing phase of face verification system is shown

in Fig. 3.7(b). For a given test face image, the potential field representationuθ is computed

along the four directions (θ = 0◦, 45◦, 90◦ and 135◦). These representations are correlated

with the corresponding representation of each reference face image of the claimed identity.

The resulting similarity scores are combined as in the training phase, and are presented to

AANN models as shown in Fig. 3.7(b). The combined similarityscore (4 dimensional fea-

ture vector) is used to compute the error in associating the vector with the AANN models

corresponding to the reference face images. If the error is above a threshold inanyone of

the AANN models, the claim is accepted. Here, the threshold value for each AANN model

could be different. False acceptance ratio (FAR) and false rejection ratio (FRR) are two er-
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Fig. 3.8: ROC curves for a person usingAANN1,46.

ror metrics that are used to evaluate a face verification system. The trade off between FAR

and FRR is a function of the decision threshold. Equal Error Rate (EER) is the value for

which the error rates FA and FR are equal. Here, we will explain the computation of EER

for a single person. We have usedI1, I46, I91, I136 and I181 as reference face images. The

remaining 176= (181− 5) face images form the examples of the true class. For false class,

5259= (29× 181) face images are available. Out of these, 3000 face images are used to

train theAANN1,46, AANN46,91, AANN91,136 andAANN136,181 models. The remaining 2249

= (5349− 3000) false class face images are used for testing. But the true class sample will

be different for each of the AANN models, because the objective of AANN is to verify if

the true class face image has a pose in a specific range. Thus for AANN1,46, the true class

samples will be the images betweenI1 to I46. By varying the threshold value ofAANN1,46

the resultant receiver operating characteristics (ROC) curve is obtained as shown in Fig. 3.8.

The ROC characteristics show that the FAR curve is steep, indicating that the corresponding

combined PSR values are clustered around low values. On the other hand, the FRR curve

is slowly varying, indicating that the corresponding PSR values are more scattered. The in-

tersection point of FAR and FRR curves gives the EER for this model. Likewise, the EERs
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Table 3.1: Performance (average recognition rate in %) using edginess-based representation
for different sets of training (reference) face images under pose variation of FacePix face
database.

Set of reference face images
Approaches

I91 I1, I91 andI181 I1, I46, I91,

andI136 andI181

Principal component analysis

[115,116]

20.74 50.53 71.66
Linear discriminant analysis 20.7 56.9 78.7
Hidden Markov model 31.7 41.3 63.5
Bayesian information criteria 18.5 45.2 69.5
Edginess-based approach 46.1 74.4 92.2

for the other AANN models are computed, and the average EER isobtained for that person.

The experiment is repeated by building verification model for each person, and the corre-

sponding value of EER is used as a measure of performance. Theaverage EERs obtained

for pose variation set of FacePix face database for one, three and five reference templates

are 51%, 34.55% and 14.17%, respectively. Likewise, the average EERs obtained for illu-

mination variation set of FacePix face database [115, 116] for one, three and five reference

templates are 33%, 16.24% and 3.5%, respectively. For pose subset of the PIE database [89],

an average EER of 43.40% was obtained using single reference templates.

For comparison of results with other studies on these databases, an identification system

was developed using the verification models. The identification is done by verification on a

closed set of test samples. We call the set of all test samplesaccepted by any of the verifi-

cation models as the closed set data. Table 3.1 shows the performance of the identification

system in comparison with other systems for different sets of reference images. The pro-

posed method seems to perform better than the existing methods. The reason could be that

the proposed method may be preserving some unique information of a person’s face image

for a given pose. The results in Tables 3.1 shows that it may bebetter to use reference face

images separately, rather than building a single model fromthem. The proposed approach

is also evaluated for the pose subset of the PIE face database. The average recognition rate

using one training (reference) template is shown in Table 3.2, along with the performance

obtained using some existing approaches [117]. The resultsshow that the proposed method
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Table 3.2: Performance (average recognition rate in %) using edginess-based representation
on pose variation subset of PIE face database using a single face image for training.

Eigenfaces FaceIt Eigen Light-Fields Proposed approach
Average recognition 16.6 24.3 52.5 57.3

performs better than the existing methods. The performancecan be improved further by

increasing the number of reference templates. But selectionof the reference template is cru-

cial. When three reference templates (frontal view, left profile and right profile) are used,

the average recognition rate increases to74.69%.

The experiments were repeated with the set of images corresponding to the variation of

illumination angle in FacePix and Yale-B face databases. The performance is summarized

in Table 6.3 and Table 6.4 in Chapter 6, along with the performance of the other proposed

representations.

3.6 Summary

In this chapter we have discussed the edginess-based representation that highlight the edge-

like information of an image. The edginess-based representation is very sparse, and hence

gives poor scores in template matching based approach. Thisproblem was overcome by

spreading the edge information using potential field representation. The representation was

derived using 1-D processing of images, to obtain multiple partial evidences for a given

image. An approach was proposed to combine the scores obtained by matching multiple

partial evidences of different face images to address the issues of pose and illumination

in face recognition. This approach preserves the unique information of face images while

matching. It uses the given reference face images (at different poses or illumination condi-

tions) separately for template matching, rather than building a model or synthesizing a face

image. The resulting combined scores were used to verify theidentity of the person using

AANN models. The proposed AANN model based approach has the advantage that it does

not require training images of the true class. Experimentalresults show that the proposed

approach is a promising approach for dealing with the problem of pose in face recognition.
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Chapter 4

Zero-frequency resonator based

representation

This chapter proposes an approach based on the zero-frequency resonator [17,136] to extract

the edge information of images. The proposed approach is counterintuitive to the concept

that edges correspond to the high frequency components of animage. The impulse-like char-

acteristics of edges in an image, distribute the energy uniformly over all frequencies of the

spectrum, including around the zero-frequency. This property is exploited in processing a

signal using the zero-frequency resonator, for extractingthe locations of impulses [17,136].

Spatial domain and Fourier domain methods are employed to realize the zero-frequency

resonator for two-dimensional signals. The Laplacian of the Gaussian (LOG) and the pro-

posed approach are similar in the sense that the former approach uses a Gaussian filter for

smoothing, whereas a zero-frequency resonator is used for smoothing in the proposed ap-

proach. The output of the resonator is processed using a Laplacian operator to extract the

edge information. In the resulting filtered image the edge information is preserved around

the zero-crossings, and the edges are extracted using sign correspondence principle [137] to

identify the zero-crossings corresponding to edges.

Since the information of the edges is preserved around the zero-crossings of the filtered

image, the Laplacian of the smoothed image is proposed as a representation of the face

image for face recognition task. The range of values of the filtered image are normalized

for matching using a nonlinear transformation, without affecting the locations of the zero-
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crossings. Thelocality problemis addressed by considering only the first few eigenvectors

derived from the filtered face images of the training set. To emphasize the unique informa-

tion of a face image, the eigenvectors are weighted differently in the distance computation

for matching. Two smoothing filters, namely, the zero-frequency filter and the standard

Gaussian filter are used to demonstrate the results. The zero-frequency filter for smoothing

performs better than the Gaussian filter.

This chapter is organized as follows: Section 4.1 explains the processing of 1-D signals

using the zero-frequency resonator. The zero-frequency filter is an infinite impulse response

(IIR) filter, and it is realized for 2-D signals using two approaches, namely, the spatial do-

main and the Fourier domain. These are explained in Section 4.2. Section 4.3 discusses

comparison of the proposed approach with the LOG operation using some illustrations of

edge extraction from clean and noisy images. Issues involved in using the Laplacian of the

smoothed image as a representation are discussed in Section4.4. Section 4.5 discusses the

locality problemof the filtered image using eigenanalysis. Experimental results are given in

Section 4.6, and a summary of the chapter is given in Section 4.7.

4.1 Zero-frequency resonator for 1-D signals

An ideal impulse has, in principle, equal amplitude/energy at all frequencies, including

around the zero-frequency. Any other zero mean signal, withthe same strength or energy

of the unit impulse, has its energy distributed unevenly both in the time and frequency do-

mains. It has been shown that the characteristics of an impulse in a signal are preserved in

the output obtained by filtering the signal using a zero-frequency resonator [17].

An ideal digital zero-frequency resonator is a second ordersystem whose system func-

tion is given by (see Appendix A)

H(z) =
Y(z)
X(z)

=
1

1− 2z−1 + z−2
, (4.1)

whereY(z) andX(z) are thez-transforms of the output (y[n]) and input (x[n]) of the zero-

frequency resonator, respectively. The unit sample response of the filter is given by the
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recurrence relation

y[n] = 2y[n− 1] − y[n− 2] + δ[n], (4.2)

whereδ[n] is the unit sample sequence. Note that (4.2) can be interpreted as a cumulative

sum of the input performed twice. That is,

y1[n] =
n
∑

m=0

x[m]

y[n] =
n
∑

m=0

y1[m]. (4.3)

Here, the outputy[n] at each instant depends only on the past two output values, and the

current input value.

Because of the cumulative summation, the output of the zero-frequency resonator for a

sequence of impulses grows approximately as a polynomial function of time [17]. But the

fluctuations in the output contain the information of the impulses and their locations. In

order to extract this information, the local mean is subtracted from the output signal. The

resulting signal called,filtered signal, is given by

ŷ[n] = y[n] − ȳ[n], (4.4)

where the local mean ¯y[n] is computed as

ȳ[n] =
1

2N1 + 1

N1
∑

i=−N1

y[n+ i],

using a window size of (2N1+1) samples. Here, the size of the window is not very critical as

long as it is in the range of 0.5 to 1.5 times the average interval between the impulses [17].

The positive zero-crossings (PZCs) in the filtered signal, where the signal changes its sign

from negative to positive, correspond to the locations of the impulses. Generally, it is

preferable to pass the signal through two or more 0-Hz resonators to suppress the effects

of high frequency components [17]. Fig. 4.1(a) shows a sequence of impulses with varying
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Fig. 4.1: (a) Impulses at random locations with varying magnitudes. (b)
Output of cascade of two 0-Hz resonators. (c) Filtered signal. (d) Estimated
magnitudes of the impulses from the filtered signal.

strengths. The corresponding filtered signal is shown in Fig. 4.1(c). The locations of the

impulses derived from the filtered signal are indicated by arrow marks in Fig. 4.1(a). The

range of the values of the output of the zero-frequency resonator is very large because of

the cumulative sum, as shown in Fig. 4.1 (b). The strengths ofthe impulses at each PZC

are given approximately by the slope of the filtered signal around the PZCs. The slope is

obtained by computing the difference between samples on either side of the PZCs in the

filtered signal. Thus, both the locations and strengths of the impulses can be obtained from

the filtered signal, as can be seen from Fig. 4.1(d). If the sequence of randomly located

impulses is passed through a time varying filter with some resonance or antiresonance char-

acteristics, the resulting signal does not show the excitation information clearly. But the

excitation information, i.e., the locations and strengthsof the impulses, can still be derived
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Fig. 4.2: (a) Response of a time varying system with unit impulses located at
random locations. (b) Output of cascade of two 0-Hz resonators. (c) Filtered signal.

from the filtered signal. The filtered signal is obtained by passing the signal through a zero-

frequency resonator, and then subtracting the local mean asin (4.4). Fig. 4.2 illustrates the

signal and the filtered signal, along with the locations of the excitation impulses (shown by

arrow marks).

The sequence of impulses can be viewed as edges in 1-D. However, an edge in 1-D

signal is not an impulse, but a step function. The strength ofthe edge is given by the

gradient of the step. In addition, the step could be positiveor negative. The objective here

is to determine the locations and strengths of the steps froma given noisy 1-D signal. It

is also necessary to know whether the edge is due to positive step or negative step. Thus

both positive zero-crossings (PZCs) and negative zero-crossings (NZCs), where the filtered

signal changes its sign from positive to negative, are needed to mark the edge locations in a

noisy 1-D signal [137].

Extraction of the locations of positive and negative step edges from a noisy 1-D signal

using zero-frequency resonator is illustrated in Figs. 4.3and 4.4, respectively. Fig. 4.3(b)

shows a noisy version (overall SNR of 0 dB) of the 1-D signal shown in Fig. 4.3(a). The
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negative and positive step edges of the original signal correspond to NZCs and PZCs of the

filtered signal, respectively. All the NZCs of the filtered signal are shown by arrow marks

in Fig. 4.3(c). There are some NZCs (see Fig. 4.3(c) forn > 1000 andn ≈ 160) that do not

correspond to the negative step edges. These can be eliminated using slope thresholding,

since the slopes of these NZCS are relatively low. The NZCs retained after slope thresh-

olding are shown by arrow marks in Fig. 4.3(d). One can observe that the slope of one

NZC at n = 375 is high, but the NZC does not correspond to a negative stepedge. Such

NZCs are removed using the “zero-crossing sign correspondence principle” (see Appendix

B). According to this principle, if a step edge has a positive first derivative, it must corre-

spond to a PZC of the filtered signal. On the other hand, if the step edge has a negative

first derivative, it must correspond to a NZC in the filtered signal. A zero-crossing violat-

ing this principle cannot correspond to a step edge. Thus, the resulting NZCs (after slope

thresholding followed by application of the sign correspondence principle) correspond to

the genuine step edges of the original signal, as shown in Fig. 4.3(e). Similar observations

can be made from Fig. 4.4, where the elimination of false PZCs is demonstrated. The sign

correspondence principle helps in suppressing the false zero-crossings which can not be re-

moved using simple slope thresholding. The significance of various parameters involved in

realizing the zero-frequency resonator will be discussed in the next section in the context of

edge map extraction.
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Fig. 4.3: Extraction of locations of the negative step edges in a noisy step
signal. (a) Step signal. (b) Noisy step signal. The filtered signal (ŷ[n]) derived
from x[n] is shown in (c), (d) and (e). The downward arrow marks in (c)
indicate all the NZCs. The NZCs retained after slope thresholding operation
are shown in (d). The NZCs retained after slope thresholding and application
of zero-crossing sign correspondence principle are shown in (e). The NZCs
retained in (e), also shown in (a), correspond to the genuinenegative step
edges.
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ŷ
[n

]

(e)

n

Fig. 4.4: Extraction of locations of the positive step edges in a noisy step
signal. (a) Step signal. (b) Noisy step signal. The filtered signal (ŷ[n]) derived
from x[n] is shown in (c), (d) and (e). The downward arrow marks in (c)
indicate all the PZCs. The PZCs retained after slope thresholding operation
are shown in (d). The PZCs retained after slope thresholding and application
of zero-crossing sign correspondence principle are shown in (e). The PZCs
retained in (e), also shown in (a), correspond to the genuinepositive step
edges.
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4.2 Zero-frequency resonator for 2-D signals

This section presents a method for extracting the edge information by processing an image

using a zero-frequency resonator. The realization of the zero-frequency resonator using

multiple integration of 2-D array of pixel values in the spatial domain is not straightforward.

It can be realized approximately either in the spatial domain or in the Fourier domain. These

methods are discussed in the following sections.

4.2.1 Spatial domain realization

In the spatial domain, the 1-D zero-frequency resonator is applied along each dimension of

the image separately. Here, the dependency of pixel values along one dimension does not

play a role while computing the response of the zero-frequency resonator along the other

dimension. The dependency can be brought up to some extent byapplying a smoothing

operator along one dimension followed by application of thezero-frequency resonator along

the orthogonal direction. The algorithm for realizing the zero-frequency resonator along the

horizontal direction is given in Table 4.1. Fig. 4.5(c) shows the edge map obtained for a

simulated image (shown in Fig. 4.5(a)), using the algorithmgiven in Table 4.1. It gives

the vertical edges of the given image. Similarly, the horizontal edges of the image are

obtained by changing the operations along row to column, andvice versa in the algorithm.

The resulting edge map is shown in Fig. 4.5(e). The complete edge map is obtained by

Table 4.1: Algorithm to compute the vertical edges of an image using spatial domain real-
ization of the zero-frequency filter.

1. Apply a smoothing operator (1-D Gaussian filter of very small variance (0.2-0.3)))
along each column of the image.

2. Implement (4.3) and (4.4) along each row of the smoothed image obtained from Step
1. The resultant image is called filtered image along the horizontal direction.

3. Extract the locations of the edges along each row of the filtered image obtained in Step
2, using the zero-crossing sign correspondence principle.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.5: (a) Gray level image. Filtered images along (b) horizontal, and (c) vertical direc-
tions obtained using spatial domain realization of the zero-frequency filter. (d) Edge map
obtained from the filtered image in (b) using zero-crossing sign correspondence principle.
(e) Edge map obtained from the filtered image in (c) using zero-crossing sign correspon-
dence principle. (f) Edge map obtained using ‘OR’ operation on the partial edge map
evidences shown in (d) and (e).

combining the two partial edge map evidences using OR operation, as shown in Fig. 4.5(f).

Results for another example are shown in Fig. 4.6.

The output of a zero-frequency resonator is obtained by integrating the input signal

twice. In practice, more than one zero-frequency resonatormay be needed to suppress the

noise present in the image. The magnitude response of a cascade ofN zero-frequency res-

onators is given approximately by1f 2N , as shown in Fig. 4.7 for different values ofN, where

f denotes the frequency variable. AsN increases, the decay in the magnitude spectrum with

respect tof becomes sharper. Thus the suppression of the high frequencycomponents of the

signal will be better for largeN.

61



(a) (b) (c)

(d) (e) (f)

Fig. 4.6: (a) Gray level image. Filtered images along (b) horizontal, and (c) verti-
cal directions obtained using spatial domain realization of the zero-frequency filter. (d)
Edge map obtained from the filtered image in (b) using zero-crossing sign correspondence
principle. (e) Edge map obtained from the filtered image in (c) using zero-crossing sign
correspondence principle. (f) Edge map obtained using ‘OR’ operation on the partial edge
map evidences shown in (d) and (e).

The length of the window (w = 2N1+1) for computing the local mean for trend removal

also plays a significant role in extracting the edge information. Fig. 4.8 shows the edge

maps obtained using different values ofw for a noisy image. For small values ofw, closely

spaced edges are emphasized in the edge map. This can be explained in the following way.

The operation of subtracting the local mean is equivalent tothe Laplacian operation (will

be explained in the next section), which works as a high pass filter, because the impulse

response of the Laplacian operator is proportional tof 2. So the magnitude response of the

complete system (zero-frequency resonator followed by thelocal mean subtraction) will be

a narrow bandpass filter. The center frequency of the narrow bandpass filter increases asw
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Fig. 4.7: Magnitude response of a cascade ofN zero-
frequency resonators.

decreases. Thus, for small values ofw relatively closely spaced edges are emphasized in the

edge map.

The information of the edges of an image may not appear in the edge map if the local

means are subtracted only once. This is because the range of the values of the output of the

zero-frequency resonator is very large. The local means mayhave to be subtracted more than

once to derive the information of the edges. At the same time,excessive subtraction of the

local means may emphasize spurious edges in the edge map, because the magnitude response

corresponding toM times local mean subtractions (Laplacian operation) is proportional to

f 2M. So for larger values ofM, the emphasis on the higher frequency components will be

more. The edge maps obtained for different values ofM are shown in Fig. 4.9.
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(a) (b) (c)

(d) (e)

Fig. 4.8: (a) Noisy image. Edge maps obtained using spatial domain realization of the
zero-frequency filter forN = 3, M = 4, and (b)w = 3, (c)w = 5, (d)w = 7 and (e)w = 9.
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(a) (b) (c)

(d) (e)

Fig. 4.9: (a) Noisy image. Edge maps obtained using spatial domain realization of the zero-
frequency filter forN = 3, w = 5, and (b)M = 2, (c)M = 3, (d)M = 4 and (e)M = 5.
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4.2.2 Fourier domain realization

In the spatial domain realization, the two dimensions of an image are considered separately

while computing the filtered image, even though smoothing isperformed along the orthog-

onal direction. In the Fourier domain approach, the zero-frequency filtering is performed on

the 2-D DFT (discrete Fourier transform) of the entire image. Normally in the case of 1-D

signals, the DFT needs to be computed over segments of short data record to capture the time

varying characteristics of the system. In such a case the truncating window severely affects

the components around the zero-frequency also. But implementation of the zero-frequency

resonator in the time domain is straightforward in the case of 1-D, whereas conceptually it

is more difficult in the case of 2-D.

The zero-frequency filter in the frequency domain corresponding to the single integration

in the spatial domain is given by

W[ f1, f2] =
1

√

f 2
1 + f 2

2

, (4.5)

where f1 and f2 denote the indices along the two spatial frequencies. Fig. 4.10 shows the

magnitude response of the zero-frequency filter. Note thatW[0,0] is set to zero. The 2-D

Fig. 4.10: Magnitude response of the 2-D
zero-frequency filter.
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(a) (b) (c)

(d)

Fig. 4.11: (a) Gray level image. (b) Output of 2-D zero-frequencyfilter. (c) Filtered image
obtained after local means are subtracted usingw = 5. (d) Edge map obtained from the filtered
image in (c) using zero-crossing sign correspondence principle.

DFT of an image is multiplied withW[ f1, f2], and the inverse discrete Fourier transform

(IDFT) of the product gives the response

y[n1,n2] = IDFT {X[ f1, f2]W[ f1, f2]} , (4.6)

whereX[ f1, f2] denotes the 2-DFT ofx[n1,n2]. Fig. 4.11(b) shows the output of the zero-

frequency filter (W[ f1, f2]) for an image shown in Fig. 4.11(a). The range of values in

the output is very large in the spatial domain as expected, due to the effect of equivalent

cumulative sum in the spatial domain. This is not exactly same as the cumulative sum in the

spatial domain, since only the magnitude of the zero-frequency resonator is used in (4.5).

Moreover, the value ofW[ f1, f2] is set to zero at the originf1 = f2 = 0.

As in the case of 1-D, it is necessary to remove the trend in theoutput to bring out the
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features corresponding to the edge information. The trend is removed by subtracting the

mean of (2N1+1)× (2N1+1) pixels around each pixel of the output. Thus the filtered image

is given by

ŷ[n1,n2] = y[n1,n2] − ȳ[n1,n2], (4.7)

where

ȳ[n1,n2] =
1

(2N1 + 1)(2N1 + 1)

N1
∑

i=−N1

N1
∑

j=−N1

y[n1 + i,n2 + j]. (4.8)

The filtered image is shown in Fig. 4.11(c). In the filtered image each genuine edge could

be either at a positive or at a negative zero-crossing, depending on whether the edge is

from white to black pixels or vice versa in the original image. It is not possible to derive

and interpret the zero-crossing locations in 2-D easily, asin the case of 1-D. The edge

map from the filtered image is computed by finding the zero-crossings along each row and

column, separately. Spurious edges are removed using the sign correspondence principle as

explained earlier. The resulting edge map is shown in Fig. 4.11(d). Here, the estimation of

the edge locations at the corners is not accurate. This is because the 2-D zero-crossings of

the filtered image are interpreted as 1-D zero-crossings.

A cascade ofN zero-frequency filters can be realized by multiplying the 2-D DFT of the

input image with the filter [W[ f1, f2]] N. The effects of the parameters, such as the number

of zero-frequency filters in the cascade, the number of timesthe local means are subtracted,

and the length of the window used for computation of the localmeans are similar as in the

case of the spatial domain realization of the zero-frequency resonator.

The following observations can be made in the realizations of the zero-frequency res-

onator in the Fourier domain and in the spatial domain. The Fourier domain method uses

a finite impulse response (FIR) approximation of the zero-frequency resonator, which may

introduce artifacts due to finite window length [138]. In addition, the phase information

of the zero-frequency filter is not used in the Fourier domainapproach, which is not the

case in the spatial domain realization. The spatial domain realization does not exploit the

relations between pixels along the rows and columns of an image. Fig. 4.12 shows edge
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maps obtained for noisy synthetic images using both the spatial domain and Fourier domain

approaches. The spatial domain realization gives perceptually better results as compared to

the Fourier domain realization.

4.3 Comparison with Laplacian of Gaussian (LOG)

The Laplacian of Gaussian (LOG) operation was proposed by Marr and Hildreth [14] to

detect the edges in an image. According to the principle of LOG, zero-crossings of the sec-

ond derivative (Laplacian) of an image give the locations ofthe edges. Since the derivative

operation is sensitive to noise, the effect of noise is reduced by smoothing the image before

applying the derivative operator. Smoothing is performed using a Gaussian filter, given by

g[n1,n2] =
1

2πσ2
exp

{−(n2
1 + n2

2)

2σ2

}

, (4.9)

whereσ denotes the variance. A high value ofσ is chosen for noisy image, but this leads to

smearing of the edges also. The frequency response of the Gaussian filter is given by

G[ f1, f2] = 2πσ2 exp

{−σ2( f 2
1 + f 2

2 )

2

}

. (4.10)

The response of the Gaussian filter for a given imagex[n1,n2] is computed as

y[n1,n2] = IDFT {X[ f1, f2]G[ f1, f2]} . (4.11)

The Laplacian of the resultant output is computed as [139]

∇2[y[n1,n2]] = ∇2[x[n1,n2] ⊗ g[n1,n2]] , (4.12)

where⊗ and∇2 denote the convolution and Laplacian operations, respectively. The compu-

tational complexity of the∇2 operation is high because it is image dependent [139]. This

issue is addressed in two ways: In the first method the linearity and shift invariance proper-
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ties of convolution and Laplacian operations are exploited[139]. That is

∇2[x[n1,n2] ⊗ g[n1,n2]] = x[n1,n2] ⊗ ∇2g[n1,n2]. (4.13)

Therefore, Gaussian filtering followed by Laplacian is sameas filtering with Laplacian of

Gaussian. The right hand side of (4.13) is more efficient, since∇2g[n1,n2] can be generated

in advance, as it is independent of the image. In the second method [140], an approximate

mask of the Laplacian operator is derived, as shown in Fig. 4.13 (c), and this mask is used to

compute the Laplacian of the Gaussian smoothed image. In fact, this mask can be derived

from two parts, one is an all-pass filter and the other is a meanfilter, whose masks are shown

in Figs. 4.13 (a) and (b), respectively. Based on this decomposition, the Laplacian of an

image can also be obtained by subtracting the outputs obtained after applying the masks

shown in Figs. 4.13 (a) and (b) on the image. This operation isequivalent to the local mean

subtraction (4.7), which is proposed to extract the edge information from the output of the

zero-frequency filter.

One can observe from (4.6) and (4.11) that in the proposed approach, the smoothing of

image is performed using the zero-frequency filter, insteadof using the Gaussian filter as

in the case of LOG. The Laplacian operation is common in both the approaches. Fig. 4.12

shows the edge map obtained using the LOG operation, and the edge maps obtained using

the two approaches for realizing the zero-frequency resonator. Here, the parameters for each

approach are chosen in such a way that the resultant edge map is perceptually good. Sup-

pression of noise and estimation of the edge locations are better in the proposed approaches

as compared to the LOG operation. This is due to the fact that the decay in the magnitude

spectrum of the zero-frequency filter with respect tof is sharper as compared to that in the

case of Gaussian filter, as illustrated in Fig. 4.14. In this example the magnitude spectrum

of the Gaussian filter is computed usingσ = 3. It is possible to obtain the spectrum of the

Gaussian filter similar to that of the zero-frequency filter by choosing a very large value of

σ. In practice large values ofσ result in large error in the edge localization.

The proposed approaches are also used to derive the edge mapsfor several real world

images under noisy condition. Additive white Gaussian noise with zero mean and variance
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of .002 is used to generate the noisy images. Figs. 4.15 and 4.16 show the results for the

“peppers” and “car” images, respectively. Estimation of the edges due to the peduncles and

boundaries of the peppers is better in the spatial domain realization of the zero-frequency

resonator for both the original and the noisy images. Similar observations can be made

from the estimated edges due to the mud guard and rim of a tyre,as shown in Fig. 4.16(b).

Though the estimation of edges is similar in the both the Fourier domain realization of the

zero-frequency filter and the Gaussian filter, the former approach suppresses the noise better

than the latter. The results also show that the edge localization is poor in the case of the

edge map obtained using the LOG operation as compared to the proposed approaches. This

is due to the fact that the error in the edge localization due to Gaussian filter increases as

the standard deviation of the Gaussian increases. On the other hand, even if we emphasize

the components of the image near the zero-frequency, the edges are still detected accurately

while suppressing the noise. This is because the edges of an image have characteristics of

an impulse, whose effect is spread uniformly over all frequencies of the spectrum.
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Noisy image 1 Noisy image 2

(a)

(b)

(c)

(d)

Fig. 4.12: (a) Noisy images. Edge maps obtained using (b) spatial, and (c) Fourier domain
realization of the zero-frequency filter. (d) Edge maps obtained using LOG operation.
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Fig. 4.13: Mask for Laplacian operation

(a) (b)

Fig. 4.14: Magnitude response of (a) 2-D zero-frequency filter and (b)
Gaussian filter. The large and small values of the magnitude spectrum
are denoted as white and back in the image, respectively.
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Clean image Noisy image

(a)

(b)

(c)

(d)

Fig. 4.15: (a) Original and noisy images of “peppers”. Edge maps obtained using (b)
spatial, and (c) Fourier domain realization of the zero-frequency filter. (d) Edge maps
obtained using LOG operation.
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Clean image Noisy image

(a)

(b)

(c)

(d)

Fig. 4.16: (a) Original and noisy images of “car”. Edge maps obtained using (b) spatial,
and (c) Fourier domain realization of the zero-frequency filter. (d) Edge maps obtained
using LOG operation.
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4.4 Laplacian of smoothed image as a representation of

face image

Here we propose the use of filtered images obtained using the zero-frequency filter and the

LOG operation for representation of face images. We show that these representations help in

reducing the effects of illumination in face recognition. Fig. 4.17 shows the filtered images

obtained using the Gaussian filter, and the two methods of realizing the zero-frequency filter

for 2-D signals. In the spatial domain method, two filtered images are derived, one along the

horizontal direction and the other along the vertical direction. These filtered images capture

the vertical and horizontal edge information of the face image as shown in Figs. 4.17(b) and

(c), respectively. In the case of Fourier domain realization of the zero-frequency filter or in

the LOG operation, only one filtered image is obtained for a given face image, as shown

in Figs. 4.17(d) and (e). The filtered images obtained using different smoothing filters can

not be compared perceptually, since the information of the edges is present around the zero-

crossings of the filtered images.

For matching two filtered images, it is necessary to have the images within the same

dynamic range, at the same time preserving the information of the edges present around the

zero-crossings. Note that normalization of the filtered image using a linear transformation

between the maximum and minimum values shifts the level of the zero-crossings, and hence

the resultant normalized filtered images cannot be used for matching. A nonlinear transfor-

mation is proposed which truncates the positive and negative values of the filtered image

beyond certain threshold values, and which has a linear transformation within the range of

the positive and negative threshold values. The nonlinear transformationT(x) is shown in

Fig. 4.18. The value of the threshold amplitudeα for the transformation function is derived

from the filtered image ˆy[n1,n2] as follows:

α = m× pc

100
,
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(a) (b) (c) (d) (e)

Fig. 4.17: (a) Gray level image. Filtered images along (b) horizontal and (c) vertical
directions obtained using spatial domain realization of the zero-frequency filter. (d) Fil-
tered image obtained using Fourier domain realization of the zero-frequency filter. (e)
Filtered image obtained using Gaussian filter. The second row gives the corresponding
nonlinearly transformed filtered images.

where

m= min{|max(ŷ[n1,n2])|, |(min(ŷ[n1,n2]))|}. (4.14)

The value of the parameterpc is chosen between 0 and 100. Note that that the locations of the

zero-crossings are preserved. For very small values ofpc (close to zero), the transformation

function gives only two outputs -1 and+1, which is not desirable, as it results in a binary

image. Experimentally we have observed that a value ofpc in the range of 70 to 90 is

reasonable for face recognition. The transformed filtered images obtained from the zero-

frequency filter and the Gaussian filter are shown in the second row of Fig. 4.17 forpc = 80.

4.5 Locality problem: Smearing of the filtered images

One of the problems in using any representation based on the edge information for face

recognition is thelocality problem. Due to this, matching of filtered images results in poor
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Fig. 4.18: Nonlinear transfer function to preserve the
zero-crossings of filtered images.

score under intra-class variation of the face image. One wayto improve the performance is

to smear the edge information and then perform matching. But excessive smearing of edges

may result in loss of information, leading to poor performance for inter-class variation of

the face image.

Smearing is affected by removing the coefficients of the eigenvectors corresponding to

low variances. Eigenanalysis using two partial filtered images, obtained with the spatial

domain realization of the zero-frequency filter, will be considered first. LetDi denote the

set of training face images for thei th person. For all the available training face images, the

two partial filtered images are computed. Letxv andxh denote the vector representations

of the filtered images along the vertical and horizontal directions for the imagex[n1,n2],

respectively. The eigenvector matrixΨv ∈ Rp×p = [ψv
1, . . . , ψ

v
p], and the diagonal eigenvalue

matrixΛv ∈ Rp×p = diag{λv
1, λ

v
2, . . . , λ

v
p} with the diagonal elements (eigenvalues) arranged

in decreasing order (λv
1 ≥ λv

2 . . . ≥ λv
p), are obtained usingxv representations of the training

face images. SimilarlyΨh ∈ Rp×p andΛh ∈ Rp×p are obtained usingxh representations of the

training face images. Herep = R×C, whereR andC are the number of rows and columns

of the given face image, respectively. A face imagex[n1,n2] can be represented in terms of

the eigenvectors as [91]

ah,p
x = (Ψh)txh,

av,p
x = (Ψv)txv, (4.15)

78



whereah,p
x andav,p

x are the projected coefficients. Here,t denotes the transpose operation.

The filtered face image can be reconstructed using the projected coefficientsav,p
x as follows:

xv = av,p
x Ψ

v

=

p
∑

i=1

av,p
x,i ψ

v
i , (4.16)

whereav,p
x = [av,p

x,1, . . . ,a
v,p
x,p]. The eigenvectors associated with the largest eigenvalues are also

referred to as eigenfaces [141]. Removing the last few projected coefficients in (4.16) leads

to smearing of edges.

The significance of smearing of edges of the filtered face image in template matching

can be observed using the scatter plot of distances (dh,n
i,y anddv,n

i,y ) for a person’s face image.

The distances are defined for a given test face image (y[n1,n2]) with respect to the reference

face images of thei th person using the firstn projected coefficients as follows:

dh,n
i,y = min

x∈Di

||ah,n
y − ah,n

x ||2,

dv,n
i,y = min

x∈Di

||av,n
y − av,n

x ||2. (4.17)

Ideally, the distances should be low if the test face image isof true class, and high for a

false class face image. The maximum value ofn is (R× C) = 2500, as each face image

was rescaled to 50× 50 pixels in our experiments. Fig. 4.19 shows the scatter plots for a

person for different values ofn (number of projected coefficients), using one face image

(L91) as training (reference) image for each person in the illumination variation set of the

FacePix face database. The remaining 180 face images of the person form the test samples

of the true class, and the matching distances are shown by thesymbol ‘⋄’ (diamond) in the

scatter plots. The number of test samples of the false class is 29× 181= 5249, and the

corresponding distances are shown by the symbol ‘·’ (dot) in the the scatter plots. Ideally,

the points due to true class should be close to the origin, andthe points due to false class

should be farther from the origin. The plots show that the points are more dense for false

class, and most of the points are far from the origin in Fig. 4.19(d) for both true and false

classes as compared to Figs. 4.19(a)-(c). Since thelocality problemfor the true class images

79



is severe when all the projected coefficients (n = 2500) are employed for matching, the

chances of matching of any test face image with the referenceface images is less. Removing

a few coefficients corresponding to the small eigenvalues leads to smearing of edges of the

filtered face image, and thus reduces the locality problem. But excessive smearing reduces

discrimination between true and false class images as can beseen in Fig. 4.19(a), where the

true class points are closer to the origin, due to better matching, but at the same time the

false class points are more spread out and are brought closerto the origin. Thus there is a

trade-off in the smearing of the edges, which affects the performance of face recognition.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

dv

dh

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

dv

dh

(b)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

dv

dh

(c)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

dv

dh

(d)

Fig. 4.19: Scatter plots of distances for a person’s face image using vertical
and horizontal filtered face images andI91 as training (reference) face image.
(a)n = 5, (b)n = 20, (c)n = 30 and (d)n= 2500. Heren denotes the number
of eigenvectors used to compute the similarity measures (dh,n

i,y anddv,n
i,y ).
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Fig. 4.20: Comparison of the performance of vertical
and horizontal filtered images for different number (n)
of eigenvectors and usingI91 as training (reference)
face image.

The identity (i∗) of a given test face imagey[n1,n2] using the firstn projected coefficients

is computed as follows:

i∗(n) = arg min
i

[(dh,n
i,y )2 + (dv,n

i,y )2]1/2. (4.18)

The performance (η(n) =
Number of Correctly identified face images
Total number of available test face images× 100) for different

values ofn is shown in Fig. 4.20. The performances obtained with the twopartial evidences

(dh,n
i,y anddv,n

i,y ) separately are also shown in the figure. The performance using the filtered

image along the vertical direction is better than the performance using the filtered image

along the horizontal direction. This is because the edges along the vertical direction seem

to capture more discriminative information of face images.Moreover, the performance does

not improve by combining the two evidences, where they are combined by simple norm-2.

We can observe from (4.18) that the identification performance (η) depends on the dis-

tance values of the test face image with the reference face images of all the persons. Note

that, the scatter plot shows similarity scores of the test face image with respect to reference

face images of only one person. Thus the scatter plots are nota direct indication of the

identification performance, but they are used to examine thebehavior of the true and false

class samples.
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4.5.1 Weighted eigenvectors

The eigenvalues indicate the spread of the training face images along the corresponding

eigenvectors. The eigenvector corresponding to the largest eigenvalue gives information

common to all the training samples. On the other hand, the noise or unwanted information

is present in the eigenvectors corresponding to small eigenvalues. The unique information

of a face image can be highlighted by removing the common and noisy components of the

given filtered face image. Following this idea, (4.16) can bedivided into three terms as

xv =

l1
∑

i=1

av,p
x,i ψ

v
i +

l2
∑

i=l1+1

av,p
x,i ψ

v
i +

p
∑

i=l2+1

av,p
x,i ψ

v
i , (4.19)

wherel1 and l2 are indices. The coefficients{av,p
x,i , i = 1, . . . , l1} defining the first term,

correspond to the information which is common to most of the training face images. The

second term corresponds to the unique information present in the given face image, and is

defined by the coefficients{av,p
x,i , i = l1 + 1, . . . , l2}. The third term corresponds mostly

to noise. The second term will be more useful for discrimination as compared to the first

and third terms. These characteristics were observed with the gray level representation of

the face image also [142, 143]. The performance of face recognition can be improved by

assigning more weight to the coefficients of the second term as compared to the coefficients

of the first and third terms during matching. One of the issuesthat need to be addressed is,

how to decide the values of the indicesl1 and l2 that divide the given representation of the

face image into the three terms as discussed above. The indicesl1 andl2 may be specific to

a given face image.

In this work, the inverses of the eigenvalues are used as weights to the coefficients in

the matching task. This will give more weightage to those projected coefficients which

correspond more to the unique information of a given face image. Following these ideas,

the weighted distance measure is given by

dh,n
i,y = min

x∈Di

||ah,n
y Wh

n − ah,n
x Wh

n||2

dv,n
i,y = min

x∈Di

||av,n
y Wv

n − av,n
x Wv

n||2, (4.20)
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Fig. 4.21: Scatter plots of distances for a person’s face image using the hor-
izontal and vertical filtered images,I91 as reference face image and 30 pro-
jected coefficients. (a) With weighted eigenvectors. (b) Without weighted
eigenvectors.

whereWv
n = diag{ 1√

λv
1

, . . . , 1√
λv

n

} andWh
n = diag{ 1√

λh
1

, . . . , 1√
λh

n

} are diagonal matrices. The

advantage of using the weighted distance measure can be seenfrom the scatter plots shown

in Fig. 4.21. The points due to false class samples are more dense and farther from the origin

in Fig. 4.21(a) as compared to Fig. 4.21(b). This is due to thefact that the coefficients which

have discriminative information get more weight than the coefficients which have common

or less discriminative information, and hence the performance is improved by≈4% as shown

in Fig. 4.22. In the computation of the weights, to avoid giving large weightage to the

coefficients which have less discriminative information, a smallpositive value is assigned to

the corresponding eigenvalues.

4.5.2 Effect of choice of parameters for face recognition

It is to be noted that the parameters involved in realizing the zero-frequency filter affect the

recognition performance to some extent. Hence, it is necessary to study the effect of such

parameters. The information about the edges of the face image is captured around the zero-

crossings of the filtered image. Closely spaced edges generally correspond to noise in the

filtered image. The edges with large spacing correspond the global information of the face
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Fig. 4.22: Comparison of the performance under
weighted and normal similarity measures obtained us-
ing the horizontal and vertical filtered face images for
different number (n) of eigenvectors.

image that is similar across the face images of different persons. The importance of edges

of small or large spacing in matching can be controlled by theparametersN,w andM used

in realizing the zero-frequency filter. Fig. 4.23 shows the performance of face recognition

obtained using (4.18) for different values of the parameters and one training (reference)face

image (I91) of each person. The following observations can be made:

1. The complete system of smoothing (low pass filter) followed by the local mean sub-

traction/Laplacian operation (high pass filter) is a narrow bandpass filter near the zero-

frequency. The center frequency of the bandpass filter increases asw decreases. Thus,

closely spaced edges are highlighted in the filtered image for smaller values ofw.

2. When more than one zero-frequency filter is employed to suppress the noise present

in the image, the range of the resultant smoothed image becomes very large. It is

necessary to remove the local mean more than once to bring outthe edge information.

But excessive subtraction of the local mean may emphasize noise (closely spaced

edges) also.

3. For a fixedN and small window (w = 3), asM increases, the performance decreases,

because the relatively closely spaced edges get highlighted in the filtered image.

4. For large values of the window length (w = 7 to 9) and fixedN, asM increases the
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Fig. 4.23: Significance of the parameters used to compute the filtered image using spatial do-
main realization of the zero-frequency filter, in the context of face recognition.N = number
of integrations,M = number of times local mean is subtracted andw = length of the window
to compute the local mean. Performances obtained using the vertical evidence, horizontal evi-
dence, and combined evidence are shown using×, ◦ and�, respectively.
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performance increases. The reason could be that large window highlights the widely

spaced edges for smallM. With increase inM, relatively closely spaced edges also get

highlighted.

5. The set of parameters needs to be chosen suitably, such that neither very closely-

spaced edges nor widely spaced edges are highlighted in the filtered image.

4.6 Experimental results

Performance of the proposed filtered image representationsusing different smoothing filters

is compared for different sets of training images from FacePix and Yale-B face databases.

The results are summarized in Table 4.2 and Table 4.3. For Yale-B face database two sets of

training data are formed: Set 1 containing 35× 10= 350 images of negative azimuth (with

35 images for each person), and set 2 containing 29× 10= 290 images of positive azimuth

(with 29 images for each person). The eigenvectors are derived using the data set 1, and the

performance is evaluated using the data set 2. The performance is also obtained by inter-

changing the training and test data sets. The experiments are repeated with filtered images

derived from the spatial domain and Fourier domain realization of the zero-frequency filter.

In the case of spatial domain realization, the evidences using vertical and horizontal direc-

tional smoothing are obtained separately. For both the zero-frequency filtered image and the

Gaussian filtered image, the parameters (N,w, M andσ) are varied to obtain the best results.

Among the representations obtained using directional smoothing filters, the filtered image

derived along the vertical direction in the spatial domain realization of the zero-frequency

filter gives the best results. This is because the edges alongthe vertical direction seem to

contain more discriminatory information of the face image compared to the edges along the

horizontal direction. The filtered image obtained using theFourier domain realization of

the zero-frequency filter gives good performance, althoughit is slightly lower compared to

the performance of the spatial domain realization of the filtered image. Note that the 1%

improvement over Gaussian filter is significant due to the fact that the performance has im-

proved to 99.6% from 98.5% (see column 2 in Table 4.3). These results will be compared

with other representations as well as with some existing approaches in Chapter 6.

86



Table 4.2: Performance (average recognition rate in %) of filtered images obtained using the
zero-frequency filter and Gaussian filter for different sets of training (reference) face images
under illumination variation of FacePix face database.

Set of reference face images
Approaches

L91 L1, L91, L1, L46, L91,

andL181 L136 andL181

Vertical filtered image 85.9 98.6 99.8
Spatial domain realization Horizontal filtered image 60.1 94 95.6
of the zero-frequency filter Combined 77.4 98.5 99.9

Fourier domain realization
75.2 97 99.3

of the zero-frequency filter
LOG 76 96 99.2

Table 4.3: Performance (average recognition rate in %) of filtered face images obtained
using the zero-frequency filter and the Gaussian filter for different sets of training (reference)
face images under illumination variation of Yale-B face database.

Approaches
Set of reference face images

Set 1 Set 2
Vertical filtered image 99.6 99.5

Spatial domain realization Horizontal filtered image 94 93
of the zero-frequency filter Combined 99.1 99.7

Fourier domain realization
98 98.9

of the zero-frequency filter
LOG 98.5 98
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4.7 Summary

In this chapter we have discussed processing of images usingthe zero-frequency resonator

for two applications, namely, computation of edge map and representation of face image.

The idea behind the zero-frequency resonator is that the energy of unit impulse is distributed

equally at all frequencies, including the zero-frequency.But this is not true for other zero

mean signals of the same strength or energy as that of the unitimpulse. The output of

the zero-frequency resonator captures the impulse-like characteristics of the signal. The

results were demonstrated using several one-dimensional signals. The edges of an image

are expected to possess the characteristics of an impulse. We have proposed two approaches

based on spatial domain and Fourier domain to realize the zero-frequency resonator for two-

dimensional signals. The spatial domain realization does not exploit the relation between

two dimensions (between rows and columns) of an image. The relation between rows and

columns is utilized in the Fourier domain approach, but it isa FIR approximation of the

zero-frequency resonator. Moreover, the frequency domainrealization does not specify any

phase information.

The locations of the edges are detected by finding the zero-crossings of the filtered im-

age, which is obtained after removing the trend from the output of the zero-frequency filter.

In the case of Fourier domain realization, the zero-crossings in the filtered image are two-

dimensional. Since it is not easy to detect the zero-crossings in 2-D, it is performed by

finding the zero-crossings along each dimension separately. This could be the reason that

the detection of edges at the corners is not accurate in the case of Fourier domain realization

of the zero-frequency filter. The operation of removing the trend from the output of the zero-

frequency filter is equivalent to the Laplacian operation. Thus the proposed approach can be

viewed as smoothing using the zero-frequency filter followed by the Laplacian operation. It

has similarity with the LOG operation where smoothing is performed by a Gaussian filter.

The results show that suppression of noise and edge localization is better in the case of the

proposed two approaches.

We have also shown that the filtered images, derived from the Laplacian of the smoothed

images, can be used directly as a representation for face recognition, without explicitly de-
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riving the edge information. The zero-crossings of the filtered image preserve the edge

information of the image. A nonlinear transformation is proposed to normalize the values of

the filtered image, by preserving the information around thezero-crossings. The normalized

filtered images are used to compute the distance between two face images for face recog-

nition. The locality problemof the filtered face image is addressed by smearing the edge

information, which is realized by removing the eigenvectors corresponding to low variances.

Excessive smearing of the edges may give importance to edgeswith large spacing, which

may correspond to global information of a face image. This may result in poor performance

under inter-class variation. The performance can be improved by giving more weightage to

the subject-specific unique information.

The zero-frequency filter and the Gaussian filter are used forsmoothing the images.

The spatial domain realization of the zero-frequency filtergives two filtered images that

capture the vertical and horizontal edge information separately. The filtered image derived

along the vertical direction seems to capture well the discriminatory information of the face

image. This study demonstrates that the edge information need not be confined only to the

high frequency components in the spectrum. The edge information is distributed evenly

throughout the spectrum, including the region around the zero-frequency.

89



Chapter 5

Analytic image based representation

Another representation that preserves the impulse-like characteristics of a signal is based

on the concept of analytic image, as discussed in this chapter. The theory of analytic func-

tion underpins many concepts of signal analysis such as amplitude-frequency demodulation

(AM-FM) [144], instantaneous frequency [145] and interferometry [146]. Moreover, it has

applications in geophysics [147,148], narrow-band communication [149] and Radar [150].

The analytic signal is a complex signal and can be broken intotwo components, namely,

magnitude and phase. It is well known that the phase of the analytic signal, derived from a

real 1-D signal, preserves the information of the edges of the original signal [151]. Compu-

tation of the phase using arctan function gives wrapped phase. It can be avoided by using

functions of the analytic phase rather than phase directly.In this work, the trigonometric

functions of the analytic phase are used to exploit the edge information present in the face

image to address the issue of illumination in face recognition. Here also thelocality prob-

lem is addressed by smearing the edges of the function of analytic phase by removing the

eigenvectors corresponding to low variances before matching. The performance is further

improved by giving more weightage to the eigenvectors correspond to the unique informa-

tion present in the face image.

The chapter is organized as follows: Section 5.1 gives the definition of the analytic

function for two-dimensional signals. Section 5.2 discusses the information present in the

magnitude and phase of the analytic signal. The proposed functions of the analytic phase

are explained in Section 5.3. Eigenanalysis of these functions is made for use in the face
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recognition task, as explained in Section 5.4. Experimental results for face recognition are

given in Section 5.5. Section 5.6 summarizes the chapter.

5.1 Analytic image

The analytic signal of a real one-dimensional (1-D) signal was proposed by Gabor in 1946 [152].

Since then the analytic signal has been used as an important tool in processing of 1-D sig-

nals [153]. The analytic signal is derived by suppressing all negative frequencies of the real

signal. This results in a complex signal that is a sum of the given real 1-D signal and an

imaginary component that is Hilbert transform [153] of the given signal.

Let x(t) be a real 1-D signal. Then the analytic signalxA(t) is defined as

xA(t) = x(t) + jxH(t), (5.1)

wherexH(t) is the Hilbert transform (HT) ofx(t), given by [153]

xH(t) = H{x(t)} = 1
π

p.v
∫

x(τ)
t − τdτ. (5.2)

Here, p.v denotes the Cauchy principal value of the integral.In the Fourier domain, the

relation between the analytic signal and the original signal is given by

XA(ω) = (1+ sgn(ω))X(ω), (5.3)

where signum function (sgn) is defined as

sgn(ω) =



















1 ω>0

−1 ω<0.
(5.4)

The Fourier transform ofxA(t) andx(t) are denoted byXA(ω) andX(ω), respectively. One

can observe from (5.3) that the spectrum of the analytic signal is zero for the negative fre-

quencies.

The complex signal obtained using (5.1) satisfies the Cauchy-Riemann condition for
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differentiability, and has been traditionally called analyticsignal [153]. This definition is

extended to 2-D signals as well. The 2-D analytic signal has been applied for feature ex-

traction and classification in image processing [154]. There are three definitions proposed

for analytic signal of 2-D signals [144]. Two of them define the analytic image as a sum of

the original image and its Hilbert transform, as in the case of 1-D. These are based on the

total Hilbert transform [155] and the partial Hilbert transform [156]. The third definition

is based on the principle of suppressing some frequencies inthe spectrum of the original

image. These definitions are as follows:

Definition I : Here, the definition of the Hilbert transform (5.2) is extended to two

dimensions. The analytic image of an imagex(t1, t2) is written as [144]

xA(t1, t2) = x(t1, t2) + jH{x(t1, t2)}

= x(t1, t2) + jxH(t1, t2), (5.5)

where

xH(t1, t2) = H{x(t1, t2)} = p.v
∫ ∫

1
π2

x(τ1, τ2)
(t1 − τ1)(t2 − τ2)

dτ1dτ2.

Applying Fourier transform on both side of (5.5), we get

XA(ω1, ω2) = (1− sgn(ω1)sgn(ω2))X(ω1, ω2), (5.6)

whereXA(ω1, ω2) andX(ω1, ω2) are the Fourier transforms ofxA(t1, t2) and x(t1, t2),

respectively.

Definition II : In this definition, the 2-D Hilbert transform is consideredas the succes-

sive applications of the 1-D Hilbert transform along the twodimensions separately.

The partial Hilbert transform of an imagex(t1, t2) alongt1 direction is written as

xt1
H(t1, t2) = p.v

∫

1
π

x(τ1, t2)
t1 − τ1

dτ1. (5.7)
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The corresponding analytic image is given by

xt1
A(t1, t2) = x(t1, t2) + jxt1

H(t1, t2), (5.8)

and is called horizontal analytic image. Similarly, the vertical analytic image can be

computed by using the partial Hilbert transform alongt2 direction.

Definition III : This definition of analytic signal was proposed by S. L. Hahn[156].

In analogy to 1-D analytic signal, the spectrum of the image is made zero everywhere

except in one quadrant of the frequency domain. The analyticimage, whose spectrum

is suppressed in all the three quadrants except in the first quadrant, is given by

X1
A(ω1, ω2) = (1+ sgn(ω1) + sgn(ω2) + sgn(ω1)sgn(ω2))X(ω1, ω2). (5.9)

The inverse Fourier transform is given by

x1
A(t1, t2) = x(t1, t2) − xH(t1, t2) + j(xt1

H(t1, t2) + xt2
H(t1, t2)). (5.10)

Similarly by preserving the values of the spectrum in any oneof the remaining three

quadrants in the Fourier domain, one can derive analytic images as [156]

x2
A(t1, t2) = x(t1, t2) + xH(t1, t2) − j(xt1

H(t1, t2) − xt2
H(t1, t2)),

x3
A(t1, t2) = x(t1, t2) + xH(t1, t2) + j(xt1

H(t1, t2) − xt2
H(t1, t2)),

x4
A(t1, t2) = x(t1, t2) − xH(t1, t2) − j(xt1

H(t1, t2) + xt2
H(t1, t2)). (5.11)

In the first two definitions, the original image can be recovered by considering the real

part of the analytic image. But these definitions do not satisfy the property of having zero

spectrum in the negative frequencies. The third definition satisfies this property, however

reconstruction of the original image requires one more analytic image constructed from any

of the other quadrants. This is one of the issues in the analytic image based representation.

In addition, all the three definitions have a degree of directionality associated with them due

to product of the 1-D signum functions [150,157]. The product of the 1-D signum functions
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results in a quadrant signum function. Such products are highly anisotropic owing to the

directional line discontinuities, resulting in the anisotropic definitions [157]. One way to

address this issue is to maintain the point discontinuity of1-D signum function in 2-D also.

A point is a non-directional discontinuity in two or more dimensions [148, 158]. In this

work, the first two definitions are used to represent an image.

5.2 Significance of phase of analytic image

The analytic image computed with any one of the definitions discussed in the previous sec-

tion can be written as

xA(t1, t2) = |xA(t1, t2)|exp(jφ(t1, t2)), (5.12)

wherexA(t1, t2) =
√

(x(t1, t2)2 + xH(t1, t2)2, andφ = arctan{ xH(t1,t2)
x(t1,t2) }. It is difficult to visualize

how the information in these two components are related, because the magnitude and phase

are not directly comparable.

The significance of the phase and magnitude of the analytic signal is illustrated using

1-D signal in Fig. 5.1. An aperiodic sequence of impulses with unit strengths is shown in

Fig. 5.1(a). The sequence is filtered by a 200 Hz resonator, and the filtered output is shown

in Fig. 5.1(b). The magnitude and phase of the analytic signal of the filtered output are

shown in Figs. 5.1(c) and (d), respectively. The phase of theanalytic signal of the filtered

output can be expressed asφ(t) = ω0t + θ(t), whereω0 is the frequency of the resonator. It

is difficult to see the information present in the phase of the analytic signal because of the

linear term (ω0t) present in equation. The information can be extracted by computing the

derivative of the phase of the analytic signal, as shown in Fig. 5.1(e). Here, the derivative

of the phase is not computed by simply differentiating the phase of the analytic signal. It

is computed directly from the analytic signal [17]. This approach avoids unwrapping of

the phase function. One can observe from Figs. 5.1(c) and (e)that the information of the

impulses of the original signal is preserved better in the phase of the analytic signal. This

observation leads us to use the phase of the analytic image tocharacterize the impulse-like
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characteristics (i.e., edge information) of the face image.
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Fig. 5.1: Significance of magnitude and phase of an analytic signal. (a) Aperiodic
sequence of impulses with unit strengths. (b) Output of a resonator (whose resonant
frequency is 200 Hz) for the sequence of impulses shown in (a). (c) Magnitude and
(d) phase of the analytic signal obtained from the filtered output. (e) Derivative of
the phase of the analytic signal.
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5.3 Proposed functions of analytic phase image

The phase of the analytic image contains the information of the edges of a given image. It

can be computed as

φw(t1, t2) = arctan

{

imag{xA(t1, t2)}
real{xA(t1, t2)}

}

, (5.13)

wherexA(t1, t2) can be defined using any one of the definitions explained in the Section 5.1.

This computation gives only the principal value of the phasein the range of (−π, π]. Any

value outside this interval will be wrapped around, producing a wrapped phase function.

The actual phaseφ(t1, t2) and the wrapped phase are related by [159]

φ(t1, t2) = φw(t1, t2) ± l(t1, t2)2π, (5.14)

for some integerl(t1, t2). The objective of phase unwrapping is to compute the actualphase

φ(t1, t2) either from the wrapped phaseφw(t1, t2) or from the analytic imagexA(t1, t2).

Unwrapped phase in two dimensions has potential applications. In synthetic aperture

radar (SAR) interferometric imaging, the phase values correspond to the terrain elevation

heights [159–161]. A similar application is in optical interferometry, where the phase values

are used to obtain information such as shape and displacement of the surface [162]. The

unwrapped phase values of the magnetic resonance (MR) imagescontain information about

flow or inhomogeneities in the magnetic field [163]. Also, computation of the complex

cepstrum requires phase unwrapping as one of the processingsteps [138]. Other applications

of unwrapped phase are in compensated imaging [164] and speckle imaging [165].

It can be observed from (5.14) that the difference between the wrapped phase and the ac-

tual phase is multiples of 2π. Due to this, the wrapped phase will have many discontinuities

in multiples of 2π. A simple approach to unwrap the phase is to first detect the disconti-

nuities in the wrapped phase using a predetermined threshold, and then remove them by

adding or subtracting multiples of 2π. This method works well for noiseless signals. In

general, detection of the discontinuities may be erroneous, resulting in inaccurate estimate

of the unwrapped phase [166].
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There are several approaches proposed in the literature to compute the unwrapped phase [146,

159, 166–175]. Each approach has its own advantages and disadvantages. The unwrapping

of phase is still an open research problem. In this work, we propose to use functions of

the phase, instead of the phase itself, to avoid the problem of phase unwrapping. One can

rewrite (5.12) as

exp(jφ(t1, t2)) = cos(φ(t1, t2) + j sin(φ(t1, t2))

=
xA(t1, t2)
|xA(t1, t2)|

, (5.15)

where

cos(φ(t1, t2)) = xc(t1, t2) =
x(t1, t2)

√

x2(t1, t2) + x2
H(t1, t2)

,

and

sin(φ(t1, t2)) = xs(t1, t2) =
xH(t1, t2)

√

x2(t1, t2) + x2
H(t1, t2)

. (5.16)

The trigonometric functions of the analytic phase computedusing the 2-D analytic image

defined in (5.5) and the vertical and horizontal analytic images defined in (5.8) are shown

in Figs. 5.2, 5.3 and 5.4, respectively. The following observations can be made from the

images

1. Computation of the vertical and horizontal analytic images considers the two dimen-

sions of the image independently. Although the dependencies between the two di-

mensions are exploited in the computation of the 2-D analytic image, its definition

is ambiguous. For example, the spectrum of the 2-D analytic image is nonzero for

negative frequencies.

2. The cosine function of the analytic phase is similar to theoriginal gray level image

(xc(t1, t2) =
x(t1,t2)√

x2(t1,t2)+x2
H(t1,t2)

≈ x(t1, t2)) for all the definitions of the analytic image.

3. The values of the trigonometric functions are bound between -1 to+1. Due to this
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most of the values in cosine and sine functions of the analytic phase are limited to that

range. Therefore the functions of the analytic phase appearlike a binary image.

4. Each function of the phase of the analytic image gives different information of the

face image.

Sketch face image

Gray level face image

(a) (b) (c)

Fig. 5.2: Illustration of the trigonometric functions of analytic phase for two images
using 2-D analytic image. (a) Original image. (b) Cosine and (c) sine of the analytic
phase.
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Sketch face image

Gray level face image

(a) (b) (c)

Fig. 5.3: Illustration of the trigonometric functions of analytic phase for two images
using vertical analytic image. (a) Original image. (b) Cosine and (c) sine of the
analytic phase.

Sketch face image

Gray level face image

(a) (b) (c)

Fig. 5.4: Illustration of the trigonometric functions of analytic phase for two images
using horizontal analytic image. (a) Original image. (b) Cosine and (c) sine of
analytic phase.
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5.4 Locality problem of functions of phase of analytic im-

age

In the case of template matching based face recognition, thefunctions of analytic phase give

poor matching under intra-class variations. The matching can be improved by smearing the

edge information of the function of the analytic phase. The smearing of edges is performed

using eigenanalysis based approach as explained in Section4.5.

Let ds,n
i,y and dc,n

i,y be the two distance measures (Equation (4.17)) between a test face

imagey[n1,n2] and the training (reference) face images of thei th person obtained using

first n projected coefficients of sine and cosine functions of the analytic phase, respectively.

Fig. 5.5 shows the scatter plots obtained using the two distance measures for a person using

different values ofn with one training face image (L91) of each person in the illumination

variation set of the FacePix face database. It can be observed from the plots that the behavior

of the true and false class samples using the functions of theanalytic phase for different

values ofn is similar to the behavior of the horizontal and vertical filtered images obtained

using the spatial domain realization of the zero-frequencyfilter (as explained in Section

4.5, Fig. 4.19). For small values ofn, matching of any two face images is easier because

the global information of the face image (large spacing edges) plays an important role in

matching due to excessive smearing of the edges. On the otherhand, thelocality problemof

the trigonometric functions of the analytic phase is severewhen all the projected coefficients

are used for matching.

Another observation from the scatter plots is that the samples of the true class are follow-

ing a trajectory. The face images (L1, . . . , L181) of illumination variation set of the FacePix

face database were captured by moving the light source at 1◦ interval from−90◦ to 90◦. The

scatter plots are obtained usingL91 (light source at frontal position) as the reference face

image. The distance measures will be large for the face imageL181 or L1 as compared to the

face imageL92 or L89. The distances with other true class face images follow a trajectory.
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Fig. 5.5: Scatter plots of distances for a person’s face image using trigono-
metric functions of the analytic phase andI91 as the reference face image. (a)
n = 5, (b) n = 20, (c)n = 30 and (d)n = 2500. Heren denotes the number
of eigenvectors used to compute the similarity measures (dc,n

i,y andds,n
i,y ). The

definition of 2-D analytic image given in Equation 5.5 is usedto compute the
trigonometric functions of the analytic phase.
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Fig. 5.6: Comparison of the performance of trigono-
metric functions of the analytic phase (computed us-
ing 2-D analytic image) for different number (n) of
eigenvectors and using (I91) as training (reference)
face image.

Fig. 5.6 shows the performance obtained using the combined scores (Equation (4.18))

for different values ofn. The performance obtained using the cosine and sine functions

of the analytic phase separately are also shown in the same plot. The sine function seems

to perform better than the cosine function of the analytic phase. The reason could be that

the edge information of a face image is captured better in thesine function as compared

to the cosine function of the analytic phase. The cosine function of the analytic phase is

similar to original image, as can be observed from the imagesshown in Figs. 5.2 (a) and

(b). Furthermore, the performance does not seem to improve by combining the evidences

from the two functions when combined using norm-2. The performance is improved by

using weighted measure (as discussed in Section 4.5.1), in which more weightage is given

to the subject specific unique information of the face image present in the function of the

analytic phase. The scatter plots using normal and weighteddistance measures are shown in

Fig. 5.7. It shows that the points due to false class samples are more dense and farther from

the origin in the case of weighted distance as compared to normal distance measures. In the

case of weighted distances, the chances of matching false class face image is less, a desirable

property to address the issue of inter-class variation in face recognition. The improvement

in the performance using combined similarity scores can be seen in Fig. 5.8. In addition, the

performance of the individual evidences (sine and cosine functions of the analytic phase) is
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also improved using the weighted measure.
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Fig. 5.7: Scatter plots of distances for a person’s face image derived using
trigonometric functions of analytic phase (obtained using2-D analytic im-
age),I91 as training image and 30 projected coefficients. (a) With weighted
eigenvectors. (b) Without weighted eigenvectors.

5.5 Experimental results

Performance of the functions of the analytic phase for face recognition is obtained using the

first two definitions (Definitions I and II) of the analytic image on the illumination variation

sets of FacePix and Yale-B face databases. The results are shown in Table 5.1 and Table 5.2,

respectively. The performance is computed using weighted distance measures for different

training sets. For comparison, we have also shown the performance using sine and cosine

functions of the analytic phase. The following observations can be made:

1. The sine function of the analytic phase gives better performance than the cosine func-

tion of the analytic phase for all the definitions of the analytic image.

2. Among the different definitions and the corresponding functions of the analytic phase,

the sine function of the analytic phase obtained using the vertical analytic image gives

the best performance for the two face databases and for different sets of training face

images. It is due to the fact that the vertical analytic imagecaptures the edges along
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Fig. 5.8: Comparison of the performance under
weighted and normal similarity measures ob-
tained using trigonometric functions of the an-
alytic phase (computed using 2-D analytic im-
age) for different number (n) of eigenvectors.

the vertical direction of the face image. The edges along thevertical direction of a

face image are more useful for discrimination as compared tothe edges along the

horizontal direction. The poorer performance using the 2-Danalytic image may be

due to ambiguity in its definition.

3. The evidences of sine and cosine functions of the analyticphase are combined using

norm-2. This approach does not assure that the performance using the combined

evidence is better than the performances using individual evidences.

The performance of the representations discussed in this chapter is compared with the exist-

ing approaches in Chapter 6.
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Table 5.1: Performance (average recognition rate in %) of trigonometric functions of the an-
alytic phase derived using two definitions of the analytic image and different sets of training
(reference) face images under illumination variation of FacePix face database.

Representations
Sets of training face image

L91 L1, L91, L1, L46, L91,

andL181 L136 andL181

Cos 39.2 92.7 99.1
2-D analytic image Sine 62 95.6 99.3

Combined 51 96.7 99.3
Cos 42.5 93.1 99.2

Vertical analytic image Sine 68.3 97.6 99.2
Combined 54.4 97.6 99.3
Cos 39.7 86.3 97

Horizontal analytic image Sine 41.9 91.2 98.7
Combined 40.6 91 98.8

Table 5.2: Performance (average recognition rate in %) of trigonometric functions of the an-
alytic phase derived using two definitions of the analytic image and different sets of training
(reference) face images under illumination variation of Yale-B face database.

Representations
Sets of training face image

Set 1 Set 2
Cos 63.1 58.6

2-D Hilbert analytic image Sine 67.9 67.8
Combined 81 74.5
Cos 73.5 61.5

Vertical analytic image Sine 84 78.5
Combined 84.3 75.7
Cos 62.4 58

Horizontal analytic image Sine 73 70.5
Combined 68 66
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5.6 Summary

In this chapter we have explored a representation based on the phase of the analytic image to

capture the edge (impulse-like) information of a face imageto address the issue of illumina-

tion in face recognition task. The significance of phase and magnitude of the analytic signal

was demonstrated using 1-D signal. The definition of analytic signal for 2-D signals is not

as straightforward as in the case of 1-D signal. It is still a research issue that needs to be ad-

dressed. The two definitions of the analytic image availablein the literature have been used

to show our results. Computation of the analytic phase using arctan function leads to the

problem of phase unwrapping. It is avoided by using trigonometric functions of the analytic

phase. These functions of the analytic phase are used separately in template matching for

face recognition task. The edge information present in the functions of the analytic phase

is smeared to improve the matching of face images under the intra-class variations. The

smearing was done by considering only the first few eigenvectors for template matching.

The performance is further improved by using weighted distance measure. The idea behind

the weighted distance measure is to give more weightage to the projected coefficients which

have more discriminative information as compared to the coefficients with less discrimina-

tive information of a face image. Another observation is that the edges along the vertical

direction are more useful for discrimination as compared tothe edges along the horizontal

direction.
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Chapter 6

Fourier transform based representation

The phase of the Fourier transform (FT) preserves the locations of events such as lines

and edges of an image [18, 176]. It can be used as a representation of a face image that

captures the edge-like features of the face image. As discussed in the previous chapter, the

computation of the phase of the analytic signal using arctanfunction leads to the problem

of phase unwrapping. The problem of unwrapping exists in thecomputation of the Fourier

phase also. In this chapter, we consider a representation based on the phase of the Fourier

transform [138], to address the issue of illumination in face recognition. The effect of noise

(closely spaced edges) is enhanced in the proposed representations, but can be reduced using

the eigenanalysis based approach explained in Chapter 4. Theuse of phase of the Fourier

transform of a given face image for face recognition was studied in [177], where the phase

was computed directly using the arctan function. The methodproposed in this chapter does

not use the phase of the Fourier transform directly, but usesthe information present in the

phase. The performance of the face recognition is improved by combining evidences from

both the phase of Fourier transform and the phase of the analytic image, as both of them

contain the information of face image in a complimentary fashion.

The organization of the chapter is as follows: Section 6.1 discusses the information

present in the phase and magnitude spectrum of an image. The proposed FT phase repre-

sentation of a face image is described in Section 6.2. Eigenanalysis on the proposed repre-

sentation is discussed in Section 6.3 to address thelocality problem. Section 6.4 gives the

results of experimental studies on face recognition. Evidences from the phase of the ana-
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lytic image and the phase of the Fourier transform are combined using Borda count based

approach [178], as explained in Section 6.5. Section 6.6 gives comparison of the edge-based

representations proposed in this thesis. A summary of the chapter is given in Section 6.7.

6.1 Significance of phase of Fourier transform of image

The representations discussed so far in this thesis were based on the information in spa-

tial domain, i.e., a 2-D array of positive numbers, corresponding to the gray levels of the

pixels. Here, a representation based on the discrete Fourier transform (DFT) of the 2-D

array of pixels [138] is proposed. The Fourier representation involves complex numbers,

i.e., magnitude and phase components. The relative importance of the DFT magnitude and

phase of a signal/image under different conditions was studied in [18, 176]. Though these

two components cannot be compared, the information presentin them can be visualized by

synthesizing images using only magnitude and using only phase separately. The DFT of an

imagex[n1,n2] is given by

X[k1, k2] = DFT {x[n1,n2]}

= Xr [k1, k2] + jXi[k1, k2]

= |X[k1, k2]|exp[jθ[k1, k2]] , (6.1)

where|X[k1, k2]| =
√

Xr [k1, k2] + Xi[k1, k2] andθ[k1, k2] = arctan
{

Xi [k1,k2]
Xr [k1,k2]

}

are the magnitude

and phase of the DFT, respectively. The real and imaginary parts of the DFT are denoted

by Xr andX i, respectively. The information contained in the magnitudeand phase of the

DFT can be visualized using magnitude-only synthesis of theface imagexm[n1,n2] and the

phase-only synthesis of the face imagexp[n1,n2], respectively. These are defined as follows:

xm[n1,n2] = IDFT {|X[k1, k2]|} (6.2)

xp[n1,n2] = IDFT
{

exp[θ[k1, k2]]
}

. (6.3)
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Gray level face image

Sketch face image

(a) (b) (c)

Fig. 6.1: Significance of magnitude and phase of the DFT, illustrated using two images.
(a) Original image. (b) Magnitude-only and (c) phase-only synthesis images.

Here IDFT refers to inverse discrete Fourier transform. Theimagesxm[n1,n2] andxp[n1,n2]

are shown in Fig. 6.1. The phase-only face image retains manyof the useful features of the

original face image. The phase-only synthesis image is alsoshown for a line diagram of a

face which is equivalent to the sequence of impulses in 1-D. It shows that the information

of impulses in 2-D is preserved better in the phase of the FT ascompared to the magnitude.

This can be explained as follows. The phase-only synthesis of a face image can be written

as

xp[n1,n2] = IDFT

{

X[k1, k2]
|X[k1, k2]|

}

= IDFT

{

1
|X[k1, k2]|

}

⊗ IDFT {X[k1, k2]}

= h[n1,n2] ⊗ x[n1,n2], (6.4)

whereh[n1,n2] = IDFT
{

1
|X[k1,k2]|

}

, and⊗ is a convolution operator. Since the spectral mag-

nitude |X[k1, k2]| of a face image tends to fall off at high frequency, the phase-only face

image xp[n1,n2] has a high frequency emphasis, which will accentuate lines, edges and

other spatially narrow events (noise) without changing their positions [18]. The edges have

characteristics of an impulse whose energy is distributed uniformly over all frequencies in
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the spectrum (as discussed in Chapter 4). Therefore, due to emphasis of the high frequency

components, the edges will appear in the phase-only synthesis face image. In addition, noise

(spatially narrow events or closely spaced edges) will alsoappear inxp[n1,n2], because it

corresponds to high frequency components of the spectrum. Although, these arguments

provide a general basis for the information present in the phase-only face image, the pro-

cessing method to obtain the phase-only signal is non-linear, whereas the above mentioned

interpretation assumes a linear operation [18].

6.2 Functions of phase of Fourier transform

The phase spectrum of an image contains edge information of the image. But computation

of the phase spectrum using arctan function leads to the problem of phase wrapping [138].

This issue was addressed in the literature using phase unwrapping and group-delay process-

ing [138,166,179,180].

One way to address this issue is to use a function of the phase spectrum (as discussed in

the previous chapter), instead of the phase spectrum directly. We can write

exp[jθ[k1, k2]] = cos[θ[k1, k2]] + j sin[θ[k1, k2]]

=
X[k1, k2]
|X[k1, k2]|

. (6.5)

That is,

sin[θ[k1, k2]] = Xs[k1, k2] =
Xi[k1, k2]
|X[k1, k2]|

and

cos[θ[k1, k2]] = Xc[k1, k2] =
Xr [k1, k2]
|X[k1, k2]|

. (6.6)

We can use the sine and cosine functions of the phase to avoid the phase wrapping problem.

These components may contain complementary information ofthe face image, and hence

they are analyzed separately for template matching based approach for face recognition.
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Fig. 6.2: 2-D spatial frequency domain. DFT co-
efficientsX[k1, k2] in the shaded area determine the
remaining coefficients.

6.3 Locality problem of functions of phase spectrum

The sine and cosine functions of the phase spectrum accentuate the noise (closely spaced

edges) also, which leads to poor matching under the intra-class variation of the face image in

template matching. This is equivalent to thelocality problem of edge-based representation.

The matching can be improved using eigenanalysis based approach as explained in Section

4.5. The DFT of a real image exhibits conjugate symmetry, i.e.,

X[k1, k2] = X∗[R− k1,C − k2], 0 ≤ k1 ≤ R− 1,

0 ≤ k2 ≤ C − 1. (6.7)

Hence, only the non-redundant coefficientsRC/2 + 2 (the points in the shaded region in

Fig. 6.2), are used for eigenanalysis. Due to this, the proposed representations (Xs andXc)

have an advantage in the context of eigenanalysis, because the size of resulting covariance

matrix ((RC
2 + 2)× (RC

2 + 2)) is approximately one fourth of the size of the covariancematrix

(RC× RC) obtained using gray level values of the face image directly. Thus, estimation of

the covariance matrix (eigenvectors) may be more accurate for the same number of training
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face images.

Let dc,m
i,y denote the minimum Euclidean distance obtained for a given test face image

y[n1,n2] using cosine function of phase spectrum (firstmcoefficients) of the available train-

ing face images of thei th person. Similarly, the minimum Euclidean distance is computed

using sine function of the phase spectrum of the test and training face images, and is denoted

by ds,m
i,y . The effect of closely spaced edges or noise can be reduced by considering only the

first m projected coefficients in the matching process. In Fig. 6.3, the significanceof eigen-

vectors is illustrated with the scatter plots obtained using dc,m
i,y andds,m

i,y for different values

of m. The points are found to be more dense and far away from the origin in Fig. 6.3(d) as

compared to Figs. 6.3(a)-(c). The reason for this is that matching of any face image is poor

due to the effect of noise if all the coefficients (m= RC/2+2=1252) are used for matching.

By removing the last few projected coefficients, the effect of noise can be reduced in the

matching process. Removing many coefficients leads to excessive smearing of the edges,

which results in retaining only the global information of the face image. This results in

matching with some of the false class face images also. Thus there is a trade-off in reducing

the effect of noise and smearing of the edges.
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Fig. 6.3: Scatter plots of distances for a person’s face image using trigono-
metric functions of the Fourier phase andI91 as the reference face image. (a)
m= 10, (b)m= 20, (c)m= 100 and (d)m= 1252. Heremdenotes the number
of eigenvectors used to compute the similarity measures (dc,m

i,y andds,m
i,y ).
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Fig. 6.4: Comparison of the performance of trigono-
metric functions of the Fourier phase for different
number (m) of eigenvectors and usingI91 as training
(reference) face image.

Performance is computed using combined distance scoresdc,m
i,y andds,m

i,y (Equation (4.18))

for different values ofm, as shown in Fig. 6.4. The performance is also shown using cosine

and sine functions of the phase spectrum separately in the same plot. The edge information

of a face image is distributed uniformly in the two functionsof the Fourier phase. Hence

one cannot say that any one of the functions performs better,as observed in the case of

functions of the analytic phase. In general, the performance increases withm, but after some

value ofm the performance reaches a saturation point. The performance of the proposed

representations of the Fourier phase does not improve if weighted eigenvectors (explained

in Section 4.5.1) are used in template matching. This is because the edge information of

the face image is distributed uniformly in all the projectedcoefficients obtained from the

eigenanalysis ofXc andXs representations of the face image. Nonetheless, the same task

can be performed by selecting appropriate DFT coefficients while computing the FT phase

representation of the face image.

6.3.1 Significance of DFT coefficients

Information of the relative locations of the edges or lines is preserved in the phase of the

Fourier transform. The spacing of the edges will be inversely proportional to the frequency

in the phase of the Fourier transform. Thus the low frequencyDFT coefficients correspond
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(a)

(b) (c)

(d) (e)

Fig. 6.5: (a) Gray level face image. Phase-only synthesis face image for (b)l
= 5, (c) l = 10, (d)l = 15 and (e)l = 20.

to events separated by large spacing, and the high frequencyDFT coefficients correspond

to events separated by small spacing. The effect of the DFT coefficients can be seen in the

phase-only synthesis face image, by making the firstl DFT coefficients zero along both the

axes in the frequency domain, and preserving the remaining DFT coefficients. For different

values ofl, the phase-only synthesis face images are shown in Fig. 6.5,and the features in

the images justify the above-mentioned arguments.

Matching between true class face images can be improved by removing the high fre-

quency DFT coefficients. This is an advantage because noise and events with closely spaced

edges are given less importance. Face recognition experiments were repeated by taking only

the firstk DFT coefficients along both the axes of theXs andXc representations of the given

training face image. Only non-redundant coefficients (the shaded region in Fig. 6.6) were

used in the eigenanalysis. Since the number of eigenvectorsdepends on the size of covari-
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Fig. 6.6: 2-D spatial frequency domain. The shaded
region in the figure determines the non-redundant co-
efficients if only the firstk DFT coefficients along
both the axes ofX[k1, k2] are considered for computa-
tion of the DFT phase.

ance matrix, which in turn depends on the value ofk, the optimal number of eigenvectors

(m∗) for which maximum identification performance is obtained is different for each case.

Fig. 6.7 shows the scatter plots for different values ofk using the optimal number of eigen-

vectors (m∗) for eachk, with one training (reference) face image (L91) of each person. It

shows that the points are more scattered for low values ofk as compared to high values of

k. This is because, for high values ofk, events/edges with small spacing get importance in

matching process. Chances of the matching with the true classface images is also poor. On

the other hand, for low values ofk, only the events/edges with large spacing take part in the

matching process. This is equivalent to shape matching or matching of global information

of face image, hence the chances of matching of false class face images becomes high. Per-

formance of the proposed approach for different values ofk using different sets of training

face images is discussed in Section 6.4.
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Fig. 6.7: Scatter plots of distances for a person’s face image using trigono-
metric functions of the Fourier phase,I91 as training (reference) image, for
(a) k = 5, (b) k = 10, (c) k = 18 and (d)k = 25. Herek DFT coefficients
along both the axes ofXc andXs representations are employed to derive the
eigenvectors.
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6.3.2 Zero-padding in the computation of Fourier transform phase

One of the properties of DFT is that zero-padding in one domain results in increased number

of samples in the other domain [138]. Hence zero-padding in the spatial domain results in

increased number of samples in the frequency domain. A simple way of zero-padding is

to append strings of zeros at the end of the 2-D sequence. After appending, the new 2-D

sequence attains the sizef R× fC, wheref is a factor parameter, andRandC are the number

of rows and columns in the original face image, respectively. Fig. 6.8 shows the scatter plots

for different values off using one training (reference) face image for each person. It shows

that the points due to false class are dense, and are farther away from the origin for high

values off , as compared to the low values off . For high values off the finer resolution of

the phase spectrum is captured, and this helps in improving the discrimination. Performance

of the proposed approach for different values off is discussed in the next section.
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Fig. 6.8: Scatter plots of the distances of a person’s face image using trigonometric
functions of the Fourier phase,I91 as training (reference) image and for parameter (a)f
= 1, (b) f = 1.5 and (c)f = 2. Here the parameterf governs the zero-padding in the DFT
computation.

6.4 Experimental results

Performance of the proposed approach on illumination variation set of FacePix face database

for different values ofk andf (symbols are explained in Section 6.3) using different sets of
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Table 6.1: Performance (average recognition rate in %) of trigonometric functions of the
phase spectrum for different values ofk and f, using different sets of training (reference)
face images of the FacePix face database.

f k
Set of training face images

L91 L1, L91 andL181 L1, L46, L91, L136 andL181

5 48.1 80 96.8
10 68.2 97.1 99.2
15 67.1 96.9 99.2

1 18 65.7 95.7 99.2
20 64 94.5 99.1
25 62.6 93.5 98.6
10 62 92.8 99.1
15 71.2 97.3 99.2

1.5 20 72.6 97.1 99.3
25 71.1 96.4 99.2
30 69.4 94.8 98.9
37 68.1 93.5 98.7
10 52.5 87.3 98.1
20 72.47 97.9 99.3

2 30 71.6 97.5 99.3
40 69.6 95.3 98.9
45 68.6 94.3 98.7
50 67.6 93.4 98.6

training (reference) face images is given in Table 6.1. It shows that for a fixed value off, the

performance is improved by removing some high frequency DFTcoefficients. But removing

many coefficients leads to loss of information, and hence reduction in the performance. The

performance can be improved by increasing the parameterf in the DFT computation by

padding with zeros. The performance was found to be the best for f = 2 andk= 20. Table 6.2

compares the performance of the proposed approach with the method discussed in [177]

which uses wrapped phase of the Fourier transform, using different sets of training face

images of PIE-NL face database. The results in the table showthat the proposed approach

uses the phase information effectively, and avoids phase unwrapping as well. Comparison

with the performance of other approaches using different representations of the face image

is discussed in Section 6.6
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Table 6.2: Performance (average recognition rate in %) of trigonometric functions of the
phase spectrum for different sets of training (reference) face images of PIE NL dataset.
Here I7, I10, andI19 are face images with frontal lighting.I3 and I16 are face images with
left shadow and right shadow respectively.

Approaches
Set of training face images

I7 I7, I10 andI19 I3, I16 andI7

Eigenphase [177] - 97 100
Proposed 97.7 99.1 100

6.5 Analytic phase and Fourier phase

The edge information is preserved in a complementary fashion in the analytic phase and the

Fourier transform phase of an image, in the sense that the large spacing of impulses or edges

in the spatial domain are reflected as closely spaced impulses or edges in the frequency

domain and vice versa. This can be observed from the following basic Fourier transform

relation for a sequence of uniformly spaced impulses in timedomain:

∑

m

δ(t −mT)
FT⇐⇒ 2π

T

∑

k

δ(ω − 2π
T

k). (6.8)

Here,δ(.) denotes the impulse function,t andω denote the time and frequency variables,

respectively.T denotes the spacing between the impulses in the time domain.The perfor-

mance of the face recognition can be improved by combining the evidences from both the

representations. We have used Borda count [181] based approach to combine the rank given

by the individual evidences. The Borda count is a simple yet effective method of combining

the rankings.

In the literature of pattern recognition, several approaches are proposed to combine the

ranks given by multiple classifiers [181]. The simplest way of combing classifiers is to let the

classifier cast the vote by forwarding the class they prefer the best (first rank). The identity

of a test sample will be the class which obtain the first rank bya majority of the classifiers.

It is simple and quite effective, but uses only the top ranking classes. This approachdoes not

exploit the information given by the second or third rank classes, which may be more useful

in the context of face recognition. The distance scores of the face images of the top few
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ranks assigned by different classifiers are more or less similar. So considering only the first

rank class of different classifiers for final decision may not lead to the correct result. This

issue is addressed in the Borda count [178,182,183] based approach of combining the ranks

of different classifiers. Here, the highest ranked class (forN classes) of a classifier getsN

points, and each subsequent class gets one point less (so the2nd ranked class getsN-1points

and 3rd ranked class getsN-2 points and so on). All the points for each class obtained from

different classifiers are added up, and the class with the highestnumber of points is assigned

as identify of the test sample.

In this work we have combined the evidences given by four representations (two func-

tions of the Fourier phase and two functions of the analytic phase) of an image to exploit

the complementary information present in both the Fourier phase and analytic phase. Each

representation can be seen as a classifier, and the person refers to the class. For a given test

face image (y) the distance scores using all the classifiers are computed with all the available

person’s reference face images. The rank of each person is computed using these distance

scores. Letr be the rank given to thei th person using the cosine function of the analytic

phase. The resulting score for thei th person will be

pca
i,y = N − r. (6.9)

HereN is the number of persons in the face database. Similarly,psa
i,y, ps f

i,y andpc f
i,y are com-

puted using the sine function of the analytic phase (Here only 2-D analytic image definition

is used), sine function of the Fourier phase and cosine function of the Fourier phase, respec-

tively. The identity (i∗) of a test face imagey is computed as

i∗ = arg max
i

{

pca
i,y + psa

i,y + pc f
i,y + ps f

i,y

}

. (6.10)

The performance obtained using this approach is given in Table 6.3 and Table 6.4.
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6.6 Comparison of the proposed representations

Performance of all the proposed edge-based representations are compared along with some

existing approaches on the illumination variation set of FacePix face database and Yale-B

face database, and the results are given in Table 6.3 and Table 6.4, respectively. The first

four rows in Table 6.3 and the first seven rows in Table 6.4 correspond to the results from

some existing approaches. These methods use gray level representation of images, and seem

to perform poorly compared to the proposed edge-based representation, indicating the im-

portance of the edge information for face recognition undervarying illumination conditions.

The tables also show the results using the standard Gabor filter based representation [184],

which also captures the edge information of face images. In the Gabor filter based approach,

a face image is represented by concatenating the magnitude of the response of the Gabor fil-

ters obtained for five different scales and eight different orientations [184]. Matching is

performed using eigenanalysis based method. The results show that the edge information

seems to have been captured better in the proposed representations as compared to the Gabor

filter based representation. In case of one training (reference) face image per person (second

column of Table 6.3), the performance of the edginess-basedrepresentation is better than the

other edge-based representations (except vertical evidence of the directional zero-frequency

filter). This is because smearing of the edge information in the former representation is inde-

pendent of the number of training (reference) images, whereas in the other representations

the smearing of the edge is realized using the first few eigenvectors, which are obtained

using eigenanalysis on only a small number (30) of the training face images. When the

number of training images is increased, the performance of the edge-based representations

has improved significantly compared to the edginess-based representation, as can be seen

from the results in the third and fourth columns of Table 6.3,where the number of training

images are 90 and 150, respectively. In fact this can also be seen in the results for both these

types of representations in the second and third columns of Table 6.4, where the number of

training face images in each set is large.

Among the representations obtained using directional smoothing filters, the filtered im-

age derived along the vertical direction using the spatial domain realization of the zero-
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frequency filter gives the best results. This is because the edges along the vertical direction

contain more discriminatory information of the face image.The filtered image obtained

using the Fourier domain realization of the zero-frequencyfilter gives good performance,

although it is slightly lower compared to the performance ofthe spatial domain realization

of the filtered image. The Gaussian filter and the Fourier domain realization give similar

performances.

Another representation that attempts to capture the impulse-like characteristics of an

image is based on the phase of the analytic image. The performance is relatively low, may

be because the definition of the analytic image in 2-D is ambiguous. The performance can

be improved when the phase of the analytic image is combined with the phase of the Fourier

transform using the Borda count based approach.

Representation emphasizing the information of edges appears superior to direct gray

level representation. Instead of direct representation ofthe edge information through edgi-

ness image, if the edge information is preserved around the zero-crossings, as in the case of

the filtered images, the performance of face recognition improves significantly. For match-

ing it is not necessary to extract the edge information from the filtered images. All the

filtered images seem to perform better by more than 5% in absolute performance over the

edginess-based representation. Even among the filtered images, the representation derived

using the spatial domain realization of the zero-frequencyfilter gives recognition perfor-

mance over 99.5%. This clearly demonstrates the significance of representation of images

for face recognition task. In addition, one can conclude that the representation based on the

edge information is not only crucial but also depends how it is computed.
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Table 6.3: Performance (average recognition rate in %) of four proposed edge-based representations along with the existing approaches
for different sets of reference face images under illumination variation of FacePix face database.

Set of reference face images
Approaches L91 L1, L91 andL181 L1, L46, L91, L136 andL181

Principal component analysis

[115,116]

48.8 71.7 90.3
Linear discriminate analysis 53 79.5 94.9
Hidden Markov model 19.3 37.4 59.4
Bayesian information criteria 49.8 79.1 93.5
Gabor filter 61 88 95
Edginess-based representation 81.4 94.3 99.7

Vertical filtered image 85.9 98.6 99.8
Laplacian Zero-frequency Spatial Horizontal filtered image 60.1 94 95.6
of smoothed filter domain Combined 77.4 98.5 99.9
image Fourier domain 75.2 97 99.3

Gaussian filter 76 96 99.2
Cos 39.2 92.7 99.1

Analytic phase Sine 62 95.6 99.3
Combined 51 96.7 99.3
Cos 71.3 97.3 99.2

Fourier phase Sine 70.2 96.8 99.4
Combined 72.6 97.1 99.3

Combining Fourier phase and analytic phase 73.1 97.8 99
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Table 6.4: Performance (average recognition rate in %) of the four proposed edge-based
representations along with the existing approaches for different sets of reference face images
under illumination variation of Yale-B face database.

Set of reference
Approaches face images

Set 1 Set 2
(PCA) Principal component analysis

[110]

79.3 80.3
(2DPCA) 2-D principal component analysis 82.8 86.9
(BDPCA) Bidirectional PCA 82.8 88.6
(W-BDPCA) Whitened BDPCA 87.6 91.1
(ICA) Independent component analysis 82.4 84.6
(EICA) Enhance ICA 86.9 85.1
(RC-ICA) Row column ICA 91.4 92.6
Gabor filter 83 85.2
Edginess-based representation 92.2 94.4

Vertical filtered image 99.6 99.5
Zero-frequency Spatial Horizontal filtered image 94 93

Laplacian of filter domain Combined 99.1 99.7
smoothed image Fourier domain 98 98.9

Gaussian filter 98.5 98
Cos 63.1 58.6

Analytic phase Sine 67.9 67.8
Combined 81 74.5
Cos 90.6 94.4

Fourier phase Sine 89.2 95.7
Combined 93.6 96

Combining Fourier phase and analytic phase 95 97
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6.7 Summary

In this chapter, a representation based on the phase of the Fourier transform is proposed

to capture the edge-like information of face images. The proposed approach avoids com-

putation of the unwrapped phase by computing two functions of the phase spectrum rather

than using the phase directly. These two functions give different information of the face

image, and are used separately for matching. Computation of the proposed representation

emphasizes the closely spaced edges which are mostly noise.The effect of noise is reduced

using selected number of eigenvectors in the eigenanalysisof the phase representations for

template matching. The effect of small spacing or large spacing edges in matching of two

face images can be controlled by selecting appropriate DFT coefficients in the eigenanalysis.

The dimension of the functions of the phase spectrum can be reduced using the conjugate

symmetry property of the DFT. This helps in better estimation of the eigenvectors from the

same number of training face images.

The present study also demonstrates the complementary nature of the edge information

present in both the phase of the analytic image and in the phase of the Fourier transform of

the image. The relative performances of all the edge-based representations of face images

were discussed in this chapter.

126



Chapter 7

Summary and conclusions

Edge is one of the important features of the sketch and caricature, which contain perceptually

the most informative part of a face image in a concise manner.In this work the effectiveness

of the four representations, that capture the edge information of images, was investigated in

the context of face recognition.

Derivative operation is employed in the first two representations of a face image. The

first representation, namely, edginess (first derivative ofan image), is computed using 1-D

processing of images. Potential field is derived from the edginess image to address thelocal-

ity problem. The multiple partial evidences, derived using 1-D processing of a face image,

are used separately for template matching, because each of them contains some complimen-

tary information of the face image. In the proposed templatematching based approach, the

scores obtained from matching of partial evidences of a faceimage with different reference

face images (at different poses or different lighting conditions) are combined. The combing

of scores was based on the observation that if a test face image of the true class has pose that

lies between poses of two references face images, then the test face image will give high

scores with respect to both the reference face images. Moreover, the chances of matching

of face images at the same pose for different persons will be less. Thus the distribution of

feature points due to imposter will be more dense as comparedthe distribution of feature

points of the true class. This behavior was exploited in the proposed AANN-based method

to identify a test face image. This method does not require the samples from the true class

face image to take decision.
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The second representation associates edges with the zero-crossings of the second deriva-

tive or Laplacian of an image, called filtered image. For matching, the values of the filtered

image are brought into the same range using a nonlinear function while preserving the loca-

tions of the zero-crossings. Thelocality problemis addressed by considering only the first

few eigenvectors derived from the filtered face images. A weighted eigenvector scheme is

employed in the process of matching to give more importance to the unique information

present in a face image.

Two smoothing filters, namely, zero-frequency filter and thestandard Gaussian filter are

used to demonstrate the significance of the filtered image based representation. Smoothing

of images using the zero-frequency filter is counter intuitive to the traditional smoothing

filters, where it is assumed that noise and edge of an image contribute to the high frequency

components in the spectrum. On the contrary, the edge information is present throughout the

frequency spectrum as illustrated in the processing of a signal using the zero-frequency filter.

The zero-frequency filter for 1-D signal is an infinite impulse response (IIR) filter (recursive

filter), and its realization for a 2-D signal is not straightforward. It is approximately realized

for images either in the spatial domain or in the Fourier domain. Though the zero-frequency

filter is realized as an IIR filter in the spatial domain method, it considers the two dimen-

sions of an image independently. This is not an issue in the Fourier domain method, where

a finite impulse response (FIR) approximation of the zero-frequency filter is employed to

smooth the image. Experimental results of edge map extraction show that estimation of the

edge locations and suppression of noise are better in the case of the zero-frequency filter as

compared to the Gaussian filter.

The two filtered images, derived using spatial realization of the zero-frequency filter,

emphasize the horizontal and vertical edges of a face image separately. The performance

of the filtered image along the vertical direction is better than the horizontal direction, as

the edges along vertical direction seem to contain more discriminatory information of face

images.

The spatial domain method performs better than the Fourier domain. The performance

of the filtered face image obtained using the zero-frequencyfilter realized in the Fourier

domain and the standard Gaussian filter is similar.
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Another representation is based on the phase of an analytic signal which preserves the

impulse-like characteristics of the signal. It is utilizedefficiently using the proposed trigono-

metric (sine and cosine) functions of the phase of an analytic image. The proposed repre-

sentations bypass the unwrapping problem of the analytic phase. Thelocality problemin

these representations is addressed by the method similar tothe one used in the case of filter

image based representations. Experimental results show that the edge information is pre-

served better in the sine function as compared to the cosine function of the analytic phase.

Two definitions of the analytic images were used to demonstrate the experimental results.

The definition (vertical analytic image) which emphasizes the edges along the vertical direc-

tion seems to perform better. It reinforces the statement asmentioned earlier that the edges

along the vertical direction of a face image contain more discriminatory information of a

face image.

Similar methodology is used in the representation of edge information using the phase

of the Fourier transform. Here, the importance of the small and large spacings edges is con-

trolled by selecting appropriate DFT coefficients for eigenanalysis based template matching.

The performance is improved by combining the evidences fromthe phase of the analytic im-

age and the phase of the Fourier transform using Borda count based method to exploit the

complementary nature of the edge information present in both of them.

In the case of pose variation, the edginess-based representation performs well when

the partial evidences obtained from different reference face images are combined using an

AANN model. The representation based on the zero-frequencyresonator performs best in

comparison with other proposed representations under illumination variation of face im-

age. It also shows that the Laplacian of the smoothed image can be directly used for face

recognition, without explicitly extracting the edge information from the zero crossing of the

Laplacian of the smoothed image. The smoothing of images using the zero-frequency filter

shows that the edge information is not just a high frequency information, but it is present at

all frequencies, including around the zero frequency. Moreover, it was shown that the com-

plementary nature of the edge information present in both the phase of the analytic image

as well as in the phase of the Fourier transform of the image can be exploited for improving

the performance of face recognition under illumination variation. It is to be noted that the
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performances of three representations, namely, filtered image, phase of analytic image, and

phase of the Fourier transform were not evaluated for the pose variation set of face database.

Computation of these representations requires eigenanalysis which in turns governed by the

pose of the training (reference) face images. Hence, some other processing is required in

order to use these representations to address the issue of pose variation in face recognition.

While the work addressed the issue of representation of the edge information for face

recognition under variations of pose and illumination, thereal issue in practical face recog-

nition is to identify and extract the relevant features, andthen use them for matching. Also,

in practice, the features used by a human being for face recognition are different for different

persons. That is, there is no common feature space, as is assumed in all the face recognition

methods. Therefore, we are nowhere near realization of the sophisticated pattern processing

used by human beings for face recognition, even though we mentioned that edge information

is an important perceptual information in image processing.

7.1 Major contributions

In this thesis we have discussed four representations of face image that capture the edge

information implicitly. The major contributions of this thesis are as follows:

• A method to combine the evidences obtained from matching a test face image with

different reference face images.

• AANN-based method to identify a given test face image.

• Laplacian of a smoothed face image to capture the edge information of the face image.

• Spatial and Fourier domain methods to realize the zero-frequency filter for 2-D sig-

nals.

• A nonlinear normalization function to preserve the locations of the zero-crossings.

• A weighted eigenvector scheme to incorporate the subject-specific unique information

of the face image in matching.
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• Functions of analytic phase and Fourier phase to exploit theedge information present

in the analytic image and Fourier transform of the image.

• The complimentary information present in both the phase of the analytic image and

phase of the Fourier transform is exploited to improve the performance of face recog-

nition.

7.2 Directions for further work

The research work can be extended in the following directions:

• In the spatial domain realization of the zero-frequency filter, a zero-frequency res-

onator is realized along the two directions of an image separately. In principle, it can

be realized along any other directions of the image to characterize the edge informa-

tion of the image efficiently.

• In the proposed two methods of realizing the zero-frequencyfilter for images, there

is a trade-off between IIR realization of the filter and the relationship ofpixels values

along all directions. This issue may be addressed by recursive realization of the zero-

frequency filter in two dimensions.

• The performance of the analytic phase based representationcan be improved by using

a definition of analytic image which extends the concept of 1-D signum function to

2-D.

• The approach employed in this thesis to make use of the complimentary information

present in both Fourier phase and analytic phase needs to be improved.

• The proposed representations may be useful to reduce the differences between gray

level face image and the corresponding sketches drawn by theartist.
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Appendix A

Zero-frequency resonator
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Fig. A.1: Pole-zero configuration for a digital resonator
whose resonant frequency isω.

A digital resonator is an infinite impulse response (IIR) linear system having a complex

conjugate pair of poles located inside the unit circle of thez-plane. The angleω of the poles

with abcicssa (Re(z)) of the z-plane decides the resonant frequency of the resonator, while

the distance of the poles with the unit circle sets the bandwidth. The closer they are to the

unit circle, smaller is the bandwidth. The transfer function (H(z)) of a linear system having

a pair of complex conjugate poles atr cos(ω) ± jr sin(ω) in the z-plane, as illustrated in
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Fig. A.1, is given by [138]

H(z) =
1

(1− (r cos(ω) + jr sin(ω))z−1)(1− (r cos(ω) − jr sin(ω))z−1)

=
1

1− 2r cos(ω)z−1 + r2z−2
. (A.1)

For an ideal resonator (minimum bandwidth) with zero resonant frequency, the values ofr

andω should be one and zero, respectively. Thus

H(z) =
1

1− 2z−1 + z−2
. (A.2)
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Appendix B

Sign gradient principle

Fig. B.1: Sign correspondence between the first and second derivative.

The step edge can be detected using the zero-crossings of theLaplace operation. Some

false zero-crossings, that are difficult to remove by slope thresholding, can be suppressed

using the sign correspondence principle. This principle isdemonstrated in Fig. B.1, where

two different cases of the smoothed steps edges and its first and second order derivatives

are shown. In case 1, the first derivative is positive and the second derivative changes its

sign from positive to negative. Such zero-crossings are defined as negative zero-crossing
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(NZC). In case 2, the first derivative is negative and the second derivative changes its sign

from negative to positive. This corresponds to a positive zero-crossing (PZC) in the second

derivative. Thus for a step edge, if it has positive first derivative, it must correspond to a PZC

in the second derivative. On the other hand for negative firstderivative, it must correspond

to NZC in the second derivative. The converse should also hold. This principle is called

”zero-crossing sign correspondence principle [137]”.
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