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ABSTRACT

This thesis addresses some issues in the recognition of subword units in continuous
speech. The main issues addressed are related to handling the large number of Stop
Consonant-Vowel (SCV) unitsand the confusability among these units. To deal with
these issues a new feature is presented in this thesis, namely use of the acoustic-
phonetic knowledge to improve the classification performance. The knowledge is
incorporated in theform of constraints in a constraint satisfaction model. The signif-
icant feature of this model is that a collection of even weak evidences could enhance
the discriminability of confusable units.

Modular neural networks are considered for developing classifiers for the large
number of classes. Separate neural networks (subnets) are trained for subgroups
o classes. The performance of the conventional modular networks is poor because
classification is performed by assigning the class of the largest value among the out-
puts o the subnets. We develop a Constraint Satisfaction Model (CSM) in which
the outputs of the subnets are combined using the constraints that represent the
similarities among the SCV classes. The constraints are derived from the acoustic-
phonetic knowledge of the classes and also from the performance of the subnets. The
improved performance of the CSM is mainly due to its ability to enhance even the
weak evidences and combine the multiple evidences available in the outputs of the
subnets based on different grouping criteria. Though the CSM is developed for the
classification of isolated utterances of SCVs, the approach can be extended for the
classification of SCV segments in continuous speech.

For spotting the SCV segments in continuous speech, an approach based on the
detection o Vowd Onset Points (VOPs) and scanning around the VOPs using the

classifiers is developed. This approach is shown to be useful in reducing the number



o false alarms, besides reducing the computational complexity significantly. A neural
network based method is proposed for the detection o VOPs in continuous speech.

An analysisd the performance of the modelsfor recognition of SCV's has shown
that a significant percentage of errors is due to misclassification of the place o artic-
ulation of the stop consonants. The place d articulation information is reflected in
the formant transitions, and hence suitable methods for extracting and representing
the formant transition information are explored.

The methods presented in this thesis suggest ways of dealing with large number
o confusable subword units like SCV's, which in turn may lead to the realization of

a speech signal-to-symbol transformation module d a speech recognition system.
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Chapter 1

INTRODUCTION

11 Problem of Continuous Speech Recognition

One o the major research problemsin thefield of artificial intelligence isto provide
natural input/output to a computer. Natural communication can be through either
speech or image. In this thesis, we address some issues involved in providing natural
input through speech in Indian languages. We are specifically interested in continuous
speech recognition where the clearly spoken input speech is converted into a mean-
ingful text. This provides a limited dictation capability to a computer. A continuous
speech recognition system consists of two major modules, namely, (1) speech signal-
to-symbol transformation module and (2) symbol-to-text conversion module. The
signal-to-symbol transformation module converts the input speech into a sequence
of symbols which will be converted into a meaningful text by the symbol-to-text
conversion module using lexical, syntactic and semantic knowledge sources. In the
present thesis work, we address some issues involved in developing a signal-to-symbol
transformation module for vocabulary independent recognition of continuous speech
in Indian languages.

Signal processing and pattern matching techniques used for isolated word speech
recognition cannot be extended for continuous speech recognition because of the com-
plex variations in the characteristics of basic speech units due to coarticulation, con-
text anti speaking rate in continuous speech. Human beings use language specific

knowledge in addition to the knowledge of speech production in identifying different



segments d continuous speech [1]. For a computer to perform the same task, it is
necessary to endow it with this knowledge. Initialy it was proposed to develop the
signal-to-symbol transformation module based on expert systems approach using pri-
marily the acoustic-phonetic knowledge. Characters d an Indian language (Hindi)
were chosen as symbols and a character spotting approach to develop the signal-to-
symbol transformation module was explored [2].

One o the main difficultiesin the expert systems approach was the acquisition d
knowledge necessary to build the knowledge-base for the expert system. It is difficult
to manually derive the rules and refine them. The difficulty is mainly due to the
complex nature of the continuous speech. The manifestation o a particular sound
unit in the speech signal is different not only for different speakers, but also for the
same speaker in different contexts due to coarticulation effects. It is not possible to
collect and enumerate al types o variations and incorporate them explicitly in the
form d rules. Acquisitiond knowledgewas one d the main limitationsin the expert
systems approach.

Attempts were made to develop recognition models that are capable d acquiring
knowledge from examples automatically . Statistical modelssuch as Hidden Markov
Models (HMMs) have been extensively used for speech recognition [3] (4]. In ap-
proaches based on HMMs, a separate model is trained for each symbol to estimate
the probability of a given speech segment being generated by that model. The model
parameters are estimated from a large number o examplesd the utterances d the
corresponding symbol. Successful recognition systems usng HMMs have been devel-
oped for large vocabulary isolated word recognition and connected word recognition
in which words are used as basic speech units. The successd HMMs in vocabulary
independent continuous speech recognition has been limited mainly because o the

poor capability d these models in discrimination of subword units.



Artificial Neural Network (ANN) models have been shown to be suitable for pat-
tern recognition tasks because of their ability to form complex decision surfaces by
using discriminatory learning algorithms [5]. ANN models have been extensively used
for speech recognition applications [6] and have been shown to give a better classifica
tion performancefor recognition of subword unitssuch as phonemesand CV syllables
[7). The main limitation of the ANN models is their inability to model temporal
sequences. Recent approaches for continuous speech recognition have been based on
hybrid modelsin which ANN modelsare used for modeling subword unitsand HMMs
are used for modeling words and sentences as concatenations of subword unit models
(8]. Thesystemsaretrained and evaluated at thelevel of sentences. These approaches
are suitable for vocabulary dependent continuous speech recognition applications. In
order to realize a vocabulary independent continuous speech recognition system, it is
necessary to develop models that can recognize subword unitsin continuous speech
independent of vocabulary and task.

In this thesis, we address issues in developing neural network models for vocab-
ulary independent recognition of subword units corresponding to CV segments that

occur in continuous speech.

12 Approachesto Recognition of Subword Units

Automatic segmentation d continuous speech into subword units and labeling the
units by classification has been the standard approach adopted for vocabulary inde-
pendent recognition of subword units in continuous speech. Commonly used subword
units are phonemes, syllables, diphones and triphones. This approach requires a
robust and speaker independent method for automatic segmentation of continuous
speech into regions corresponding to subword units chosen for a system. Because

d the variability in the characteristics of subword units in continuous speech, seg-



mentation is not a trivial task. Once segmentation is done, then the recognition
performance is dependent on the ability o classification models to correctly label the
subword unit regions.

An alternate approach that avoids the need for automatic segmentation is to spot
subword units in continuous speech. In spotting approach, classification models de-
veloped for subword units are used to scan the continuous speech signal and identify
the regions where the corresponding subword units are present. Recognition perfor-
mance of systems based on spotting approach depends on the ability of classification
models to correctly identify the regions belonging to the corresponding subword units
and reject all other regions.

In the following sections, we briefly discuss the main issues in classification and

spotting of subword units corresponding to CV segments.

1.3 Importance of Recognition of CV Segments

Phonemes, the sounds corresponding to consonants and vowels, are the basic speech
units of a language. Consonants cannot be produced in isolation. A consonant is
mostly followed or preceded by a vowd to form a CV or VC speech production unit
respectively. A consonant can also be followed or preceded by other consonants to
form consonant clusters. But, any consonant cluster should be followed or preceded
by a vowd. This resultsin C*V or VC* speech production units. Here C* denotes
the presence of one or more consonants in a unit. A meaningful word, in general, can
be considered as a sequenced C*V unitsor as a sequence of VC* units. It is easier
to mark, at least manually, the boundaries of a C*V segment in continuous speech
signal than that of a VC* segment. Additionally, in many Indian languages, a C*V
unit is represented by a single, may be a composite, character making it a convenient

general form o speech production unitsfor processing. Consonant-Vowel (CV) units



occur on their own as characters (for example, /ti/ in /prativa:d/) and as part o
cluster characters (for example, /ti/ in /mu:rti/). Therefore CV units occur with a
high frequency in any text.

In continuous speech, the production of a sound is affected mainly by the immedi-
ately adjacent sounds leading to coarticulation effects. Significant cluesfor recognition
of consonantsare influenced by their adjacent vowels. Because most of the segmental
coarticulation effects are also captured in the CVs, we have considered CVs as basic
speech units for processing and performing continuous speech recognition. Develop-
ment o strategies for redognition of CVs in continuous speech with good accuracy
is important for realizing a continuous speech-to-text conversion system for Indian

languages.

14 Frequency of Occurrence of Different Categoriesof CVs

A study was carried out to determine the frequency o occurrence of different cate-
goriesd CVs based on the broad manner of production o consonants. For thisstudy,
consonants d Hindi are grouped into the following categories : (1) Stop consonants,
(2) Affricates, (3) Nasals, (4) Semivowelsand (5) Fricatives. The percentage distri-
butions of different categories indicating their frequency o occurrence in a total of
about 16000 CVs present in about 800 Hindi sentences collected from five different
textsaregiven in Table-1.1.

It can be noted that nearly 45% o the total number o CVs belong to the cat-
egory o Stop Consonant-Vowel (SCV) units. Recognition o SCVsis an important
and challenging task because o the high frequency of occurrence of SCVs, the large
number (160) d SCV classes and confusability amongst several SCV classes. In this
thesis, we focus on recognition o SCV segments that occur in continuous speech.

In the following sections, we discuss the important issues in recognition of SCV



Table 1.1: Percentage distribution indicating
the frequency of occurrence of different cate-

goriesof CVs.
Category of Percentage
CVs Distribution
Stop Consonants 44.32
Affricates 05.63
Nasal s 13.40
Semivowels 20.21
Fricatives 16.44

segments in continuous speech. We first discuss the issuesin classification o SCV
segments excised from continuous speech and then discuss theissues in spotting SCV

segments.

15 Issuesin Classification of SCV Segments

1.5.1 Confusability amongst SCV Classes

The similarities in the nature of speech signal for different SCV's are because of simi-
laritiesin their production mechanism. Production of SCVsconsist o all or a subset
of the following significant events: closure, burst, aspiration, transition and vowel.
The discriminatory clues for any two SCV's are dependent on the events present in
their production and the differencesin the characteristics of those events. The man-
ifestation of these differences in the acoustic signal depends on the specific speech
production features characterizing the events. Each o the stop consonants in Hindi
is uniquely described by its manner of articulation and place of articulation. The
differences in the manner of articulation of consonants  two different SCV's mani-
fest assignals d different characteristics (voiced/unvoiced) in the closure region and,

as presence, weak presence or absence o the aspiration region. The differences in



the place o articulation of consonants of two different SCV's manifest as follows. (1)
Different characteristics o the spectrum for the signal in the burst region and (2)
Different characteristics of the spectrum in the transition region. The differencesin
the vowelsaof two different SCVs mainly affect the characteristicsdof the signal in the
vowel and the transition regions.

Difficulty in classification of SCVsismainly dueto the need for finediscrimination
amongst many similar classes. The classification performance depends on the ability
of parametric representations of SCV segments to capture the discriminatory infor-
mation and the capability of classification modelsto form nonlinear complex decision
surfaces in the parametric space. The nature of the SCV utterances suggests that
any classifier model needs to use the information present in all the regionsaof an SCV
segment to perform classification. It is not possible to perform classification based on

the information in only one or two frames.

152 Characteristics of SCVsin Continuous Speech

Characteristics of subword units in continuous speech are different from the idea
characteristics of the isolated utterances of units. Thereis an analogy between con-
tinuous speech and cursivescript. In continuous speech, the characteristicsof subword
units are affected by the context and speaking rate. In cursive script, the features of
individual characters are significantly modified by the context. The inherent charac-
teristics o the individual units are dep«ndent on their production mechanism. The
variability in the characteristics of units is mainly due to the context in which they
occur.

The context in which an SCV is uttered in continuous speech affects its charac-
teristics. The voicing in the closure regions for voiced SCVs may be present weakly

or may not be present at all. The burst may be totally absent. The aspiration region



supposed to be present for the aspirated SCVs may also have a weak presence or
may not be present at all. The duration of the steady region of the vowd in an SCV
is severely affected in continuous speech. This is due to the tendency of the speech
production mechanism to use minimum effort in production of sounds in continu-
ous speech. Therefore, the discriminatory clues necessary for classification may be
partially present or may be completely absent. A system for recognition of SCVsin
continuous speech should be able to classify an SCV with the modified characteristics
as one o the SCVs that are close to it in termsd production features. Fuzzy logic
can be used to handle the variations in the characteristicsd the signal due to vari-
ations in speakers and due to the context. Fuzzy logic can also be used to indicate
the graded presence o the clues, and to assign confidence levelsto the hypotheses
made by the classifier. Ordering the hypotheses based on the confidence levels and
considering more than one hypothesis in labeling SCV segments helps to some extent

in handling the variability in the characteristics of SCV's in continuous speech.

153 Large Number of SCV Classesin Indian Languages

An important issue in recognition of SCVs in Indian languages is the large num-
ber of SCV classes. The total nhumber of possible SCVs for Hindi is 160. This

number is arrived at by considering the combination of each o the 16 stop con-

sonants (/k/,/kh/,/g/./gh/,/t/,/th/,/d/,/db/,/t/, [th/,/d[,/dn/,/p/,/Ph/,/b/ and
/bh/) with 10 vowds (/a/,/a:/,/i/,/[i:/,/u/, [u:/,/e/,[ai/,[o/ and [au/). It is ob-
served that the characteristics of an SCV with a consonant and ashort vowd (/a/,/i/
or /u/) are more or less same as that of an SCV with the same consonant and long
version of the vowe (/a:/,/i:/ or /u:/ respectively). The difference is mainly in their
overal durations. Therefore such classes can be combined into a single class. This

results in a total number of 112 classes. If one is considering only pure vowels (i.e., if



diphthongs /ai/ and /au/ are not being considered), then the number of SCV classes
is80. The recognition system for such a large number of classes should use a suitable

classifier architecture which can discriminate all the classes.

1.5.4 Varying Frequency of Occurrence of SCV Classes

It is observed that all the SCVs do not occur with the same frequency. Some SCV's
occur very frequently, some less frequently, and others rarely. The frequency of oc-
currence for different SCV classesin about 800 Hindi sentencesisgivenin Table-1.2.
The frequency of occurrence for a class is given as a percentage of the total number
(about 7150) of SCVs present in the sentences. It is observed that only 20 SCV
classes (out of a total of 80 classes) occur with afrequency greater than the average
frequency of occurrence (i.e., 1.25%), and about 20 other classes have a frequency of
occurrence that is less than 0.1%.

The varying frequency of occurrence for different classes is a characteristic of any
language. This factor needs to be taken into account in evolving the strategies for
training and recognition in the design of a classifier. The standard procedure for
building the training data setsis to create a database consisting of alarge number of
sentences collected, and then use a percentage of the totally available data for each
class astraining datafor that class. Becauseof thedifferent frequenciesdf occurrence
for different classes, the sizes of the totally available data sets for different classes in
any database are not uniform. This resultsin nonuniform sizes of the training data
sets for different classes. Because the varying frequency of occurrence of classes is
a characteristic of the language, increasing the number of sentences in the database
to any extent arbitrarily will not help. One can carefully collect more number of
sentences that contain those classes for which the sizes of available data sets are

small and try to make the sizes d al classes uniform. This is a difficult task when



Table 1.2: Frequency d occurrenced different SCV classes in Hindi.
About 20 classes occur with a frequency greater than the average
frequency o occurrence. About 20 other classes occur rarely with a
frequency less than 0.1%. This shows that SCV classes have varying
frequency o occurrence.

Class| in% || Class| in% || Class| in% || Class| in%
ka 12.68 || kha 122 ga 3.66 gha 0.48
ta 085 tha | 032 da 126 || dha | 0.20
ta 628 || tha |264| da |264| dha | 1.62
pa 706 || pha | 039 || ba 561 || bha | 1.66

Ki 8.65 || khi 035 || gi 0.76 || ghi 0.04
ti 0.53 || thi 029 || di 0.78 || dhi 0.13
{i 371 thi |[154 | di 206 || dhi | 090
pi 0.67 phi 0.20 || bi 0.80 || bhi 250

ku 0.80 || khu [ 0.15 gu 041 | ghu | 0.06
tu 0.07 || thu | 0.01 || du 004 || ghu | 0.01
tu 092 || thu | 0.00 |[ du 0.99 || dhu | 0.15
Fu 158 | phu | 021 || bu 071 || bhu | 0.11
ke 6.10 || khe |0.13 ge 045 || ghe |0.03
te 024 || the |0.11 | ge 0.76 || dhe | 0.10
te 201 || the |1.13 ([ de 201 || dhe |0.08
pe 0.20 phe 0.08 || be 0.52 || bhe 0.17
ko 3.80 || kho [0.18 go 042 | gho |0.24
to 004 | tho [0.03 ] do 014 || dho | 0.04
to 1.38 || tho |0.13 || do 0.56 || dho |[0.03
po 0.06 || pho [0.04 | bo 0.24 || bho |0.08

the number o classes is large and when some classes, by nature, occur rarely. One
solution to this problem is to use isolated utterance datafor training the models. We
consider the SCV data excised from continuous speech for our studies on recognition
d frequently occurring SCV classes and the isolated utterance data for the studies

on recognition o all the SCV classes.

155 Varying Durations of SCV Utterances

Durations d the utterances vary for different SCV classes. Durations of segments

belonging to a particular SCV class aso vary depending on the speaking rate and



the context in continuous speech. This suggests that it is necessary to use classifier
architectures that can handle varying duration patterns derived from SCV segments.
Though the durations of SCVs vary, the durations of some of the regions (burst,
aspiration and transition regions) for an SCV do not vary as much. The variations
in the overall duration manifest mostly as variations in the durations of the closure
and vowel regions. The closure and vowe regions are the initial and final regions
o an SCV segment respectively. Because the discriminatory clues in these regions
are present mainly in their steady characteristics, it is not necessary to process the
complete durations of these regions. This suggests that most of the information
necessary for recognition of SCVs can be captured by processing the portion o an
SCV segment around the vowd onset point, that contains parts of the closure and
vowel regions, and all of the burst, aspiration and transition regions. Therefore it
is possible to represent any SCV utterance, irrespective of its overall duration, by a
fixed duration pattern retaining most of the relevant information and thus avoid the

need for handling varying duration patterns.

156 Detection of Vowel Onset Pointsin SCV Segments

In order to obtain fixed duration patterns automatically from varying duration SCV
segments, it is necessary to identify the Vowe Onset Point (VOP) in an SCV seg-
ment. Once the VOP is identified, a portion of speech signal with a fixed duration
around the VOP can be processed to obtain a fixed duration pattern. The method
for identification of VOP has to be robust and independent of speaker. In our studies
on cClassification of SCVs, we explore suitable methods for identification of VOPs in

SCV segments.



1.5.7 Parametric Representations for SCV Segments

Two important aspects of parametric representation are identification of parameters
suitable for different significant regions of an SCV utterance [9] and development of
methods for the extraction of the parameters from speech signal. Some main issues

related to these aspects are mentioned below:

e Parameters for distinguishing voiced/unvoiced closure regions.

e Parameters for identifying the frequency of the peak in the spectrum of the

burst region which is short in duration.

e Parameters to capture the characteristics of an aspiration region when it is

present.

e Parameters for representing the transition regions. The transition region may
start at the beginning of the vowel region as in unaspirated SCVs or during the
aspiration region as in aspirated SCVs. Parameters for the transition region

should be able to capture and represent the formant transitions.

e Parameters to represent the formant frequencies and amplitudes of the vowel
region, even when the duration o the steady portion of the vowel region is

short.

e Methods to absorb thevariations in parameters due to speakersand the context,

without losing the discriminatory information.

1.5.8 Importanceof Transitionsin SCV Segments

The characteristics of sounds in SCV segments are affected by the adjacent sounds
because of coarticulation effects. Thisis more true in the case of continuous speech.

Thecluesfor recognition of stop consonants are dependent on their immediate context



significantly. Formant transition clues for the place of articulation of stop consonants
are dependent on the following and preceding vowels [10], [11]. It is necessary to
capture thisinformation present in the transition regionsd SCV segmentsfor correct
classification of SCVs [12]. It is necessary to represent the transition regions by
suitable speech parameters that help to capture the information from the time varying

speech signal in those regions.

1.5.9 Fuzzy Nature of Cluesfor Recognition of SCVs

There are many sources o variability in the characteristics of the SCV utterances
in continuous speech. The main sources due to the speech production mechanism
are the speaker characteristics, the context and the speaking rate. It is difficult to
collect and enumerate the variations in different sounds due to each source. The
recognition strategies to handle the variability should either isolate the variability by
looking for the invariant discriminatory clues or should use the methods to take the
variability into account. Thevariability in the characteristicsdof the utterances mainly
manifests as variations in the parameters extracted from the speech signal. Therefore
it is necessary to obtain a representation of the parameters that is less sensitive
to the variability. One method for doing this is to transform the parameters into
features that describe the parameters. The features can be linguistic descriptions
d the parameters. The linguistic descriptions are best represented by fuzzy logic.
This suggests the need for fuzzification of speech signal parameters to handle the
variability in the utterances. The process o fuzzification has to be done carefully
in a way that does not lead to loss of the discriminatory information present in the

parameters extracted from the speech signal.
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1.5.10 Issues Addressed in the Thesis

Wefirst address theissuesin developing neural network modelsfor classificationd the
SCV segments manually excised from continuous speech for a small set of frequently
occurring SCV classes. Then we address the issuesin developing modelsfor classifica-
tion of isolated utterances o all the SCV classes. We develop a method for deriving
the fixed duration patterns from varying duration SCV segments and utterances.
Parametric representation based on weighted cepstral coefficientsis used in deriving
the patterns from SCV segments. We explore suitable methods for representing the
transition regions in SCVs.

The issues discussed so far are concerned with classificationd the SCV segments
excised from continuous speech and isolated utterances d SCVs. In the next section,
we discuss the main issues in developing models for spotting the SCV segments in

continuous speech.

16 Issuesin Spotting SCV Segments in Continuous Speech

Though there have been many successful efforts in devel oping approaches for spotting
keywords in unrestricted speech, these approaches cannot be extended for spotting
subword units. The main reasons are: (1) The vocabulary d keywords is application
dependent whereas the number o subword unitsis language dependent, and (2) Con-
fusability amongst the keywordsis not as high as that amongst the subword units.
Additionally, the approaches for keyword spotting make the following assumptions:
(1) A given continuous speech utterance has only one occurrence of one d the key-
words, and (2) A given continuous speech utterance can be modeled as a segment
containing one o the keywords that may be preceded and followed by nonvocabulary
speech segments. These assumptions that ssimplify the design of modelsfor spotting

keywords are not valid in developing models for spotting subword units. Develop-



ment o systemsfor spotting subword units requires classification models capable of
discriminating large number of similar classes.

Strategies for spotting subword units in continuous speech have been based on
training classification models to classify only the segments of the continuous speech
signal belonging to subword units and reject all other segments. The models thus
trained to classify or reject are then used to scan the speech signal continuously
and hypothesize the presence or absence o the corresponding subword units. This
strategy for spotting requires models capable of rejecting all nonvocabulary segments
in continuous speech. For spotting SCV's, we consider a strategy in which the vowd
onset points (VOPs) arefirst located in continuous speech and then the scanning by
classification models for SCVs is limited to the regions around VOPs. This locate
and scan strategy is likely to result in fewer false alarms than the commonly used
strategy based only on scanning. The locate and scan strategy spotting requires a
robust method for automatic identification of VOPs in continuous speech. In our
studies on spotting SCV's, we develop a neural network based method for detection

o VOPs in continuous speech and adopt the locate and scan strategy for spotting.

1.7 Organization of the Thesis

A ‘roadmap’ showing the evolution of ideas reported in this thesisisgivenin Fig.1.1.

The organization of thethesisis asfollows: In Chapter 2, wefirst review methods
for extraction o suitable parametric representationsfor recognition of SCV segments
and then present a review of approaches for automatic recognition o subword units
in continuous speech. In Chapter 3, we present our studies on developing models for
classification of SCV segments manually excised from continuous speech for a small
set of frequently occurring SCV classes. In Chapter 4, modular neural networks based

approaches are explored for handling the large number o SCV classes. We consider



10.
11.
12.
13.
14.
15.

16.
17.
18.
19.

Neural Network Models for Recognition of SCV Segments

. Continuous speech recognition:

e Signal-to-symbol transformation: Acoustic-phonetic analysis
e Symbol-to-text conversion: Lexical, syntactic and semantic analysis

. Signal -to-symbol transformation: Recognition of Subword units
Recognition of subword units: CVs as units, Spotting, Classification
Classification of SCVs: Classification models, Parametric representations
Classification models: Good discrimination, Handle large number of classes|
Discriminatory models: Neural network models

Neural network models: Fixed duration pattern classifiers
Derivation of fixed duration patterns: Vowd onset pointsin SCVs
Classification of SCV segments excised from continuous speech:

e Large number o SCV classes. Similarity amongst several classes
Varying frequency o occurrence of SCV classes: Limited training data
Variability in characteristics o SCVs in continuous speech

Difficulty in capturing all the variations from the limited training data

Neural network architectures: OCON and ACON architectures
Models for large number of classes: Training data, Modular networks
Training datafor all SCV classes. Isolated SCV data

Derivation of patterns: Effectsdf segment durations

Modular networks: Criteriafor grouping classes into subgroups
Constraint satisfaction network:

e Neura networks for subsets of classes: Nonlinear feature extractors
e Combination o evidencesfrom multiple sources
e Constraints based on acoustic-phonetic knowledge and experimental data

Spotting SCVs: Strategy for spotting, Models for spotting

L ocate and scan strategy: Vowd onset points in continuous speech
Models for spotting: Rejection o non-SCV segments

Parametric representations:

e Representation d SCV transitions. Pitch region analysis
e Reduction o variability: Fuzzification

Figure 1.1: Evolution o idem described in the thesis.



different criteria guided by the phonetic description of SCVs for grouping the large
number of SCV classes into subgroups. In Chapter 5, we propose a constraint satis-
faction model to combinetheevidences availablefrom the networks based on different
grouping criteria. Studies on spotting SCV segments in continuous speech are pre-
sented in Chapter 6. Studieson suitable parametric representations for transitions in
SCV segments are described in Chapter 7. Methods for fuzzification of formant tra-
jectoriesin SCV transitions are also explored in this chapter. Finally, we summarize

the contributions o this research work in Chapter 8.



Chapter 2

REVIEW OF APPROACHESTO
RECOGNITION OF SUBWORD UNITS

In this chapter, wefirst give a review o approaches based on different classification
models for automatic recognition o subword units. Then we present the nature of
clues for recognition of Stop Consonant-Vowel (SCV) segments and give a review o
methods for extraction of the clues from speech signal. In Section 2.1, we review
approaches based on hidden Markov models for classification of subword units such
as phonemes and syllables. Approaches based on artificial neural network models are
reviewed in Section 2.2. Modular neural networks based approaches for classification
arereviewedin Section 2.3. In Section 2.4, we give a review of approachesfor spotting
subword units in continuous speech. In Section 2.5, we review the methods for ex-
traction of cluesfor classification d SCV segments. We present a review of methods

for detection o vowd onset pointsin Section 26.

21 Approaches based on Hidden Markov Models

Statistical pattern recognition approachesfor continuous speech recognition are mainly
based on hidden Markov models [4] [13]. Hidden Markov Models (HMMs) are used
for their inherent ability to incorporate the sequential and stochastic nature o the
speech signal. An HMM is a doubly stochastic process with an underlying stochastic
process that is hidden, but can only be observed through another set of stochastic

processes that generates the sequence of observed symbols [14]. An HMM is charac-



terised by a finite number of states, a finite number o observation symbols per state,
a transition (from one state to another) probability distribution, an observation sym-
bol probability distribution and an initial state probability distribution. In discrete
HMMs, observations are characterised as discrete symbols and a discrete probability
density is used to specify theobservation probability distribution. Continuous speech
signal representations are converted into a sequenced discrete symbols using vector
guantization methods. Continuous HMMs use continuous observation densities to
model continuous signal representations directly. The continuous HMMs need larger
training data sets because the number of model parameters to be estimated is much
larger than that in discrete HMMs.

Approaches based on statistical models for large vocabulary continuous speech
recognition have used HMMs for modeling subword units. Models for words are
built as concatenations o models for subword units and statistical language models
are used for matching at sentence level [14] [15]. Commonly used subword units are
context-independent phones, context-dependent phones (diphones and triphones) [16]
[17], syllables and acoustic units {18] [19]). In most d these approaches the training
o systems is carried out at the level of sentences and the recognition performance
o systems is given in terms o word accuracies and sentence accuracies, making
them suitable for task specific continuous speech recognition {14]. The recognition
performance at word and sentence levelsis ultimately limited by the performance at
subword unit level. The performance at subword unit level is more important for
vocabulary independent, task independent continuous speech recognition. Therefore
we will focus on the approaches for recognition at subword unit level.

The recognition performance at subword unit level for a continuous speech recog-
nition system that uses discrete hidden Markov models for phones as subword units

isgivenin [16]. A recognition accuracy o 64.1% for context independent phone units



20

and 73.8% for right context dependent phone units is reported for the system using
a bigram phone model as the language model. A recognition accuracy o 58.1% is
reported for 8 stop consonant, context independent phone units used in this system.

Recently approaches based on modeling segments within the stop consonants have
been used for obtaining an improved recognition performance. HMMs have been de-
veloped for stationary microsegments of stop consonants such as silence, voice bar,
burst and aspiration and a concatenation of the models for microsegments is used to
model a stop consonant [20]. Resultsof recognition studies indicate an improvement
in the performance using this approach over an approach that used a single model for
each stop consonant. An HMM representation o quantized articulatory features o
consonants and vowels has been used for speaker dependent recognition o 18 isolated
stop consonant-vowel and CVC utterances in [21]. In [22], stop consonants are mod-
elled using continuous HMMs as consisting of several well defined microsegments, and
arecognition accuracy d 73.6% has been reported for speaker independent recognition
o 5 stop consonants in VCV segments excised from continuous speech.

The main limitation of the HMMsin using them for recognition of confusable vo-
cabulary is their poor discriminatory capability [23]. Training HMMs using maximum
mutual information (MMI) criterion has been considered for incorporating discrimi-
natory information [24]. But optimization procedures for estimation & HMM model
parameters using MM criterion are complex and often lead to numerical problems
in implementation. Approaches based on artificial neural networks have been found
to be suitable for discriminatory training. In the next section, we review approaches

based on ANNs for recognition o subword units.
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2.2 Approachesbased on Artificial Neural Network M odels

A number of properties that alayered feedforward neural network should have so that
it will be useful for speech recognition are listed in [7]. First, the network should have
multiple layers and sufficient interconnections between units in each o these layers.
Thisistoensure that the network will have the ability to learn complex nonlinear de-
cision surfaces. Second, the network should have the ability to represent relationships
between eventsin time. Third, the actual features d abstractions learned by the net-
work should be invariant under translation in time. Fourth, the learning procedure
should not require precise temporal alignment of the labels that are to be learned.
Fifth, the number o weightsin the network should be sufficiently small compared to
amount of training data so that the network isforced to encode the training data by
extracting regularity.

Having listed the properties, the paper describes a time delay neural network
(TDNN) architecture for recognition o phonemes {b,d,g} that satisfies these prop-
erties. The input to the TDNN consists o 15 frames of speech centered around the
handlabeled vowe onset. Each frame consists of normalized mel scale spectral coeffi-
cientsderived from the speech sampled at 12 kHz, Hamming windowed and analyzed
using a 256 point FFT every5 ms. Adjacent coeffcientsin time are collapsed to give
an overall frame rateof 10 ms. Coefficientsare normalized to lie between -1 and +1.
Thefirst hidden layer consists o 8 time-delay hidden units. Theinput to these time-
delay units expanded out spatially into a three frame window. In the second hidden
layer, each o three time-delay units look at a five frame window o activity levels
in the first hidden layer. The-output is obtained by integrating the evidence from
each o the three units in the second hidden layer over time and connecting it to its
pertinent output unit. The speech data used for training and testing was extracted

from the isolated utterances o Japanaese words from three speakers. In performance



evaluation, the TDNN achieved an average recognition score of 98.5%.

The reasons for various design choicesin the TDNN architecture are discussed in
[25]). Each unit in thefirst o two hidden layersisconnected to three successiveframes
d input (thisis called receptive field). This enables the network to capture the rela
tionships between events in time. Thisis also the reason for calling the architecture
as time-delay neural network. To permit the detection of multiple features in each
diced theinput, the network has multiple number of hidden units connected to each
receptive field. To eliminate the misalignment problem during learning, the network
is forced to apply the same set o feature detectors to every diced the input. Still,
there may be incorrect alignment o the utterance during recognition. To solve this
problem, a network that contains several copiesd each output unit is suggested.

Having described the efforts based on TDNN architectures to develop speech
recognition systems, we now summarize other effortsto develop phoneme recognition
systems using multilayer neural networks. A connectionist structure for phoneme
recognition proposed in [26] has two main parts: (1) A sound subunit classifier using
a backpropagation network with two hidden layers to classify speech subunits from
framesd speech data and (2) A sequence classifier to classify phonemes from input
sequences o subunits by their occurrence and duration. 128 pointsin the FFT spec-
trum o speech sampled at 10 kHz and split into nonoverlapping 10 ms frames are
used as inputs to the subunit classfier network. The network has 15 output nodes
corresponding to the 15 subunits (3 initial stop consonants, 4 final stop consonants, 2
fricatives, 5 vowelsand 1 silence). A sequence processor for recognition of phonemes
from the subunits is aso developed. Overall recognition rate of 87% on the test set
of 90 pseudo-words d type C1VC2 or C1D (where C1 is initia consonant, C2 is a
final consonant, V is a pure vowd and D is a diphthong) is reported.

Two neural network models, multilayer perceptron and radial basis function net-



work, are applied to a static speech recognition problem in [27]. In the multilayer
perceptron network model, the class boundaries are modeled by hyperplanes defined
by the hidden nodes. In the radial basis function networks, hidden nodes define hy-
perellipsoids. Phonetic labeling experimentswere conducted on handsegmented vowe
tokens of 20 classes (12 monophthongs and 8 diphthongs). The analysis method ex-
tracts 20 LPC-derived median cepstral coefficientsfor each third o the token and 12
coefficientsrepresenting a coarse coding of duration. Both the network modelsare re-
ported to givesimilar recognition performanced about 70% on test data. The radial
basis function network could be trained much faster than the multilayer perceptron
network of same complexity.

Nine different parametric representations d speech based on linear predictive pa-
rameters are compared in [28]. The input to a multilayer perceptron classifier are
parameters extracted for a 20 ms segment excised from the center of steady-state
part of avowd. The MLP classifier is shown to perform best with the cepstral coef-
ficient representation, which gave a recognition score d 91% over 900 utterances of
/b/-vowel-/b/ syllables from three speakers.

Two schemes to obtain phonemic transcriptions d spoken utterances are described
in (29]. Both schemes utilize the self-organizing Kohonen maps [30] first to vector
quantize speech into a sequence d phoneme labels centiseconds apart. In the first
scheme, the quasiphoneme sequence is converted into a phoneme string using simple
durational transform.tion rules. In the second scheme, the conversion is carried out
by using a multilayered feedforward network. The input vector to the self-organizing
maps consists o 15 component approximations o the short time power spectra of
the speech signal. Using durational transformation rules, the phonemic accuracy
achieved is 83.6%. The feedforward network with one hidden layer is used in the

second scheme. The network is trained to filter the transitions between phonemes



out of the quasiphoneme sequence. A phoneme recognition rate o 85.5% is achieved
using multilayer networks.

Other studies on classification of CVs are mostly on isolated CV utterances as in
[31] for English letters, or on isolated CV utterances with the same vowd as in [32]
[33] for the Eset (B,C,D,E,G,P,T,V) o the English alphabet.

Many cluesfor identification of speech sounds and their features arein alinguistic
form. They are best represented by using fuzzy logic [34]). Fuzzy logic based ap-
proaches have been used for classification o patterns [35]. Recently there have been
attempts to combine neural networks and fuzzy logic based approaches for pattern
classification [36]) [37]. Neural networks that usefuzzy representation of formant data
for recognition of vowes have been shown to give a better classification performance
in [38]. Fuzzy representation of the similarity of patterns was used in training neural
networks for recognition of vowels and it has been shown that the fuzzy neural net-
works based approaches give better performance than the conventional approaches

[39).

2.3 Modular Networks based Approaches

Monoalithic neural network architectures are not suitable for developing classifiers for
a large number of classes, as in the case d subword unit based continuous speech
recognition. Modular networks based approaches have been proposed for recognition
of large number of classes. In these approaches modularity is viewed as a manifes-
tation of the principle of divide and conquer, which permits one to solve a complex
computational task by dividing it into simpler subtasks and then combining their
individual solutions [40]. A neural network issaid to be modular if the computation
performed by the network can be composed into two or more modules (subsystems

or subnetworks) that operate on distinct inputs without communicating with each
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other. The outputs of the modules are mediated by an integrating unit that is not
permitted to feed information back to the modules.

Modularity has been used as a design strategy in developing large phonemic net-
works for recognition of all consonants [41]. In this approach, several time-delay
neural networks have been developed for different subsets of consonants and the out-
puts of these subsystems are combined to determinethe consonant class. Phonemes
are grouped into thefollowing subgroups: ( {b,d,g}, {p,t,k}, {m,n,syllabic nasal sN},
{s,sh,h,z}, {ch,ts}, {r,w,y} and {a,,e,o,u} ). A discrimination score of above 96%
for each of these subgroups is reported. When two of these networks for {b,d,g} and
{p,t,k} are combined to build a network for {b,d,g,p,t,k}, the performance decreased
to about 60%. This indicated that further training of the combined network is nec-
essary to improve the performance. Different strategiesfor incremental learning were
explored. They are (1) use of class distinctive features, (2) connectionist glue tech-
niques where more hidden units areincluded in the hidden layer 1 to learn any missing
discriminatory features and (3) all-net fine tuning. After combination learning and
all-net fine tuning, the consonant network yielded a recognition score of about 95%
for the phonemes excised from the utterances of Japanese words. This is compared
with an improved version of HMM model which gave a recognition score o 92.7% on
the same data.

In another approach, a hierarchical strategy has been proposed for handling the
large number of phoneme classes [42]. In this strategy, the subgroup of a given input
pattern isfirst decided by a network and the subsystem for that group is permitted to
classify the given input pattern into one o the classesin its corresponding subgroup.
Recently, modular approaches have been considered for recognition at subword unit

level in hybrid HMM/ANN based approaches for continuous speech recognition [43].



2.4 Approachesto Spotting Subword Units

Though there have been many successful effortsin developing approaches for spotting
keywords in unrestricted speech, these approaches cannot be extended for spotting
subword units. The main reasons are: (1) The number of keywordsin the vocabulary
is application dependent and is much smaller than the number of subword units
which is language dependent and (2) Confusability amongst the keywords is not as
high as that amongst the subword units. Additionally, the approaches for keyword
spotting make assumptions that a given continuous speech utterance has only one
occurrence of one of the keywords, and that the given continuous speech utterance
can be modeled as a segment containing one of the keywords that may be preceded
and followed by non-vocabulary speech segments. These assumptions that simplify
the design of models for spotting keywords are not valid in developing models for
spotting subword units.

Hidden Markov models have been extensively used in keyword spotting systems
because of their ability to model keywords of varying durations and also because
they can be used to build models that satisfy the above assumptions [44] [45] [46].
Development of subword unit spotting systems requires classification models capa-
ble of discriminating large number of similar classes. Discriminant techniques for
training HMMs used for word spotting have been shown to improve the spotting
performance [47]. A learning algorithm based on discriminative learning theory,
namely, Minimum Classification Error formalization/Generalized Probabilistic De-
scent method(MCE/GPD), has been proposed for minimizing errors in spotting five
Japanese consonants [48].

Artificial neural networks are shown to have a better discriminatory capability
than HMMs. Approaches based on ANNs for spotting words have used self-organizing

map and feed-forward networks [49], recurrent networks [50], neural tree networks



[51] and multiple Restricted Coloumb Energy networks [52]. Time delay neural net-
works (TDNN) have been considered for spotting phonemes and a small set of CV
syllables [42] in word utterances. In order to develop a vocabulary independent con-
tinuous speech recognition system by spotting subword units in continuous speech,
it is necessary to evolve suitable strategies for minigpizing errors in spotting subword
units which are large in number and which form a highly confusable set of classes.
We address the issues in developing approaches for spotting subword units of Stop

Consonant-Vowe (SCV) classes.

2.5 Methods for Processing SCV Segments

Stop consonants are considered to be the most difficult consonants to recognize for
the following reasons [53]: (1) The speech production mechanism of a stop consonant
is dynamic, involving a closure and release period, (2) The complex nature of this
production mechanism results in many diverse acoustic cues, and (3) The acoustic
events during the production o the sound can be omitted or severely distorted. In
this section, we briefly describe the speech production mechanism o stop consonants,
identify the important cluesfor recognition of stop consonants and present the nature

o these clues.

251 Speech Production Mechanism for Stop Consonants

Production of stop consonants are characterized by thefollowing successivesignificant
events[54]: (1) Closure that can be voiced or silent, (2) Transient corresponding to the
response of the vocal tract to the pressure release, (3) Frication that is characterized
by noise produced at the consonantal constriction, (4) Aspiration characterized by
an 'h-like' noise, and (5) Transition corresponding to the initial part o a following

voiced sound to the extent that it isinfluenced by coarticulation with the stop. For



stop consonants in English and many other European languages, the speech segment
corresponding to the transient, frication and aspiration eventsis treated as a single
segment called the 'burst’. In Indian languages, the presence or absence of the as-
piration event is one of the discriminating characteristicsof different stop consonant
sounds. Therefore the speech segment corresponding to the transient and frication
events is considered as 'burst’ for stop consonants in Indian languages. Different
significant events in production of an SCV utterance /kha/ in Hindi are shown in
Fig.2.1l. The figure shows the plots of speech signal waveform, formant frequencies,

and the regions of different significant eventsin the utterance.
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Figure 2.1: Different significant events in the production of the SCV
utterance /kha/. The figure shows the plots of signal waveform and for-
mant frequencies, and indicates the boundaries of regions corresponding
to different significant events in production of the SCV utterance. The
vowe onset point (VOP) is also indicated.

Stop consonants in Hindi are characterized by their manner of articulation and
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Figure 21: Different significant events in the production of the SCV
utterance /kha/. The figure shows the plots of signal waveform and for-
mant frequencies, and indicates the boundaries of regions corresponding
to different significant events in production of the SCV utterance. The
vowel onset point (VOP) is aso indicated.

Stop consonants in Hindi are characterized by their manner of articulation and



place of articulation [55]. There are four different manners o articulation and four
different places o articulation. Typical speech signal waveforms for different stop
consonants of Hindi are shown in Fig.2.2. The plots for the 16 stop consonants are
arranged in four columns and four rows. The four columns correspond to the four
mannersad articulation and thefour rows correspond to thefour placesd articulation.
The points at which the vocal tract closure occurs for different places o articulation
[56] are also shown in Fig.2.2. Speech signal waveform plots show the closure, burst,
and aspiration regions (wherever they are present), and the initial portions of the
vowel for utterances o SCVs with the vowd /a/. In the remainder of this section,
we present the important clues and nature of these clues for identification of manner

and place of articulation of stop consonants.

2.5.2 Cluesfor Manner of Articulation of Stop Consonants

Manner of articulation of stop consonants is described by the unvoiced or voiced na-
ture of the closure event and the presence or absence d the aspiration event, leading
to four different manners o articulation. They are (1) Unvoiced-Unaspirated, (2)
Unvoiced-Aspirated, (3) Voiced-Unaspirated and (4) Voiced- Aspirated. The main
clues for recognition o the manner o articulation are present in the segments corre-
sponding to the closure and aspiration events. The closure segment is characterized
by a low energy region and the aspiration segment by a formant structure similar to
that of the following vowel, but with no periodicity [55]. The acoustic features corre-
sponding to these cluesare [57] [55]: (1) Voicing during closure, (2) Voiceonset time,
(3) Naturead first formant transition, (4) Spectral flatness and (5) Ratio of the high
frequency energy to the low frequency energy. Because of incomplete articulation o
sounds in continuous speech, voicing during closure may have a weak presence and

aspiration may also have a weak presence or it may completely be absent. Recogni-
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Figure 2.2: Different stop consonants in Hindi. The figure shows the plots of speech
signal waveforms for 16 stop consonants in Hindi. The plots are arranged in 4
columns and 4 rows. The 4 columns correspond to the 4 manners of articulation of
Hindi stop consonants. The 4 rows correspond to the 4 places of articulation. The
point in the vocal tract at which the closure occurs for each place of articulation is
also shown. Speech signal waveform plots show the closure, burst, and aspiration
regions (wherever present), and the initial portions of the vowel for utterances of
SCVs with the vowd /a/.
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tion errors (such as /dha/ being classified as /da/) due to imprecise articulation o
the manner of stop consonants can be handled only by using lexica knowledge in the

symbol-to-text conversion stage of a speech recognition system.

2.5.3 Clues for Place of Articulation of Stop Consonants

Place of articulation of stop consonants is described by the portion of the vocal tract
at which the consonantal constriction occurs during production of stop consonant
sounds. There are four placesof articulation for stop consonants in Indian languages,
namely, (1) Velar, (2) Alveolar, (3) Dental and (4) Bilabial. The main cluesfor recog-
nition of the place o articulation are present in the segments corresponding to the
burst and transition events [58]. The burst segment is characterized by a short du-
ration (5-10 ms) and the transition segment is characterized by a dynamic spectrum.
Theacoustic features corresponding to the cluesfor place of articulation are {57} {59]:
(1) Distribution of energy in the burst spectrum, (2) Dynamics in the burst spec-
trum, and (3) formant transitions between the release of stop consonants and steady
region of thefollowing vowels. Development of suitablesignal processing methods for
extraction of the features from speech segments o short durations and time varying
spectral characteristicsisimportant for recognition of the placed articulation of stop
consonants. In continuous speech, the burst may have a weak presence or may even
be absent. Even when it is present, it is difficult to identify the burst segment and
extract rhe features only from the burst segment using the existing signal process-
ing methods. Formant transition features are certainly present in any SCV segment.
Therefore they are more reliable and important features than the burst segment fea-
tures [60] [61]. The formant transition features for a stop consonant are dependent
on the adjacent vowels (10] [62]. Therefore it is necessary to take the vowe context

into account for extraction of formant transition features. We next review methods



for modeling and processing the transition segments.

Modeling Transitions in SCVs

There are mainly two methods for modeling the transitional behaviour in consonantal
environments. Thefirst method is based on thelocus theory [63] whereiit is assumed
that for each consonant thereis a single target spectrum or locus with the property
that in VC and CV transitions the vowel spectratend to converge towards the target
for the consonant [64]. The identification of loci associated with place of articula-
tion from acoustic analyses of real speech has been elusive. In a recent attempt, the
locus concept has been generalized to that of locus equations that describe linear
rel ationships between the formants at the voicing onset of CV syllables and those at
the midvowel nuclei [65]. It has also been shown that locus equations have the prop-
erty o relational invariance, i.e., they are invariant with respect to the consonantal
place and are relational with respect to the vowd context. Context dependent hidden
Markov models structured by locus equations have been developed for modeling and
classification df transitions in a CV C environment [66] [67].

The second method for modeling transitional behaviour in consonantal environ-
ments is based on acoustic measurements aimed at quantifying formant transition
patterns in relation to the vowd formant values [11]. In this method, the transition
regions in CV and VC segments are analyzed to extract features related to formant
frequenciesand changes in formant frequencies. The focus in this method is on de-
veloping suitable signal processing techniques for extraction of the formant features
from transition regions characterized by dynamic spectral characteristics. Processing
techniques based on a time-varying model [68] for speech signal have been shown
to give a better classification performance than the standard processing techniques

for recognition o unvoiced stops in VC environments [69]. In our studies, we con-
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sider pitch region analysis based processing techniquesfor extraction o featuresfrom

transition regions SCV segments [70].

2.6 Methods for Detection of Vowd Onset Points

In thissubsection, we present a review d methodsfor detection of Vowd Onset Points
(VOPs) in continuous speech. The objectived using a method for detection o VOPs
in recognition d SCVs is to focus on processing and analysis d speech segments
around VOPs. These segments contain most of the relevant information necessary
for recognition of SCVs. In classification o SCVs using neural network models,
segments with a fixed duration around VOPs are processed to obtain fixed duration
patterns which are given asinput to the neural network classifiers. For spotting SCV's,
scanning o speech signal can be limited to only the segments around VOPs. This
helpsin automatically eliminating many portionsd the continuous speech signal that
do not contain SCVsand in reducing the number o false alarms during spotting.

One o the methods for detection of VOPs in continuous speech is based on seg-
mentation of continuous speech into vowd and nonvowe like regions {71]. In this
method speech signal parameters such as energy, ratio d the high frequency energy
(energy in the range o 3800-4600Hz) to the low frequency energy (energy in the
range of 0-800Hz), ratio o the volumesd back and total cavities df voca tract and
ratio of the volumesd front and back cavities of voca tract were used as features to
discriminate vowe and nonvowe like regions. The performance o this method on 10
sentences containing about 90 VOPs was shown to give an error percentage d about
3% on male speaker data and about 7% on female speaker data.

A method for detection o VOPsin continuous speech by identifying the points
at which there is a rapid increase in the vowd strength was proposed in [72]. In

this method the vowd strength is computed using the difference in energy d each



of the peaks in the amplitude spectrum and the energy of a dip associated with the
peak. Speech segments with duration of pitch periods are analysed to obtain the
amplitude spectrum and computing the vowd strengths. This method was shown
to givea correct detection performance d 91% on speech data containing about 375
VOPs with a precision d 20 msec or better.

Another method for detection of VOPsis based on first classifying the speech sig-
nal into voiced /unvoiced/silence regions [73] (74] and then labelling the voiced regions
as vowd and nonvowd regions. A method for voi ced/unvoiced/silence classification
by automatic labelling of instants o significant excitation in speech signa has been
proposed in [75]. In this method absolute and relative parameters of speech signal
energy and linear prediction residual energy of frames with a duration of about 3
ms and on both the sides o significant points of excitation [76] were used to train
afeedforward network for classification of speech signal into voiced/unvoiced/silence
regions.

In our studies, we consider two methods for detection of VOPs. One method is
concerned with detection of VOPsin SCV segmentsexcised manually from continuous
speech and in isolated utterancesdof SCVs. This method is based on detection o the
point where thereisa rapid increase in the energy d the speech signal. This method
is used in our studies on classification of SCVs. The second method is concerned
with detection of VOPs in continuous speech. This method is used in our studies on

spotting SCVsin continious speech.

2.7 Summary

Approaches based on neural networksfor classification o subword units were devel-
oped for the isolated utterances d units or for the segments manually excised from

isolated words and continuous speech. Patterns derived from handsegmented portions
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of afixed duration were used for training and testing the classification models. In our
studies, we develop a method for- automatically deriving the fixed duration patterns
from varying duration segments. This method is based on detection of vowd onset
points and processing fixed duration segments around them.

Phonemes have been used as subword units in many approaches for continuous
speech recognition. The number o phonemesissmall but it is difficult to recognize
them becausedf thecoarticulation effectson their characteristicsin continuous speech.
Linguistic constraints at word and sentence level have been used to correct the errors
in recognition & phonemes. Syllables have not been used mainly because they are
large in number. We have chosen CVs as basic units. We devel op approaches based
on modular neural networks for handling the large number of units. We consider
different criteriafor grouping the unit classes into subgroups and training a separate
network for each subgroups. We develop a constraint satisfaction model that uses the
acoustic-phonetic knowledge o the classes to combine the evidences from modular
networks for different groupings. This approach for classificationd subword units is
vocabulary independent.

Spotting subword unitsisimportant for vocabulary independent continuous speech
recognition. Approaches used for spotting keywordsare not suitable for spotting sub-
word units. Many approaches for spotting have been based on scanning the speech
signal o asentence continuously. We address the issuesin devel oping an approach for
spotting based on the detection o vowd onset pointsin continuous speech and scan-
ning only the segments around them. The focus o this thesis work is on vocabulary

independent recognition d the stop consonant-vowel (SCV) segments.



Chapter 3

STUDIES ON CLASSIFICATION OF
SCV SEGMENTS

3.1 Objectives of the Studies

Theobjectivesd thestudies presented in this chapter are: (1)to developan approach
based on neural network models for classification of the SCV segments excised from
continuous speech, (2) to compare the performance of different models and architec-
tures for classification d the SCV segments, and (3) to analyze the performance o
the modelsin order toidentify the main sources of errorsin classification. Inthe next
section, we present an approach for classification & the SCV segments. In Section 3.3
and 3.4, we describe the classification models and architectures used in our studies.
The classification studies and the results are presented in Section 3.5. In Section 3.6,

we give an analysis of the results of the studies.

3.2 An Approach for Classification of SCV Segments

The SCV segmentsin continuous speech have varying durations. The durations are
approximately in the range of 75 to 350 ms. It is observed that SCVs with short
vowds /i/ and /u/ and occurring at the end o phrases and sentences have short
durations. The segments belonging to the SCV classes with 'long vowel /a:/ in the
beginning d phrases and sentences have been observed to be of long durations. Neu-

ral network classifiers considered in our studies are capable d handling only fixed



duration patterns. Therefore it is necessary to derive fixed duration patterns from
SCV segments of varying durations. The fixed duration patterns should have all the
important information necessary for classification. In this section, we develop an
approach for deriving fixed duration patterns..

An SCV segment consists of all or a subset of the following significant speech
production events: Closure, Burst, Aspiration, Transition and Vowd. Any SCV
segment will have the regions corresponding to the closure, transition and vowe
events. The burst is supposed to be present for al the stop consonants. In SCVs
occurring in continuous speech, the bursts may be totally absent or may have a weak
presence. The aspiration is supposed to be present in the aspirated stop consonant
sounds. It is observed that in continuous speech the aspirated stop consonants are
some times pronounced as unaspirated sounds or they are characterised with weak
aspiration. The important and reliable clues for classification are present in the
closure, transition and vowel regions. It is important to take these aspects into
account in development of modelsfor classification of the SCV segments excised from
continuous speech.

The signal waveform and the formant frequencies for two segments belonging to
the classes /ka/ and /ka:/ are shown in Fig.3.1. It isimportant to note that though
thedifference in the total durations of the two segmentsis high, the durations of the
eventssuch as burst and transition are not much different. The differencein the total
durations mainly manifests as differences in the durations o the closure and vowe
regions.

The closure and the vowel regions are theinitial and final regions of an SCV seg-
ment respectively. Because the discriminatory features in these regions are present
mainly in their steady characteristics, it is not necessary to process the complete du-

rations of these regions. The information necessary for classification can be captured
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Figure 3.1: Differences in the durations of significant events for SCVs with
short and long vowels. The figure shows the plots of signal and formant fre-
quencies for the SCV segments of /ka/ with short vowel and /ka:/ with long
vowel. The transition regions are marked in the plots of formant frequencies.
It can be seen that though thereis a difference of 170 msin the overall dura-
tions of /ka/ and /ka:/, this difference mainly manifests as differences in the
durations of the closure and vowd regions. The durations o the burst and
transition regions are not affected significantly.



by processing the portion o an SCV segment containing parts o the closure and
vowel regions, and all o the burst, aspiration and transition regions. The closure,
burst and aspiration regions are present before the Vowd Onset Point (VOP) in any
SCV segment. The transition and vowd regions are present after the VOP. Since
it is possible to automatically identify the VOP in an SCV segment, a fixed dura-
tion signal around the VOP that contains most o the necessary information can be
processed to derive a fixed duration pattern.

In our studies, we consider a 100 mslong signal starting at 20 ms before the VOP
and ending at 80 ms after the VOP. The signa before the VOP would include the
closure, burst and aspiration events that may be present in an SCV segment, and the
signal after the VOP would include thetransition and vowe regions. These durations
are arrived at after observing that the duration of transition regionsis in the range
of 30-40 ms and that the characteristics of the vowd in an SCV are to be captured
by processing at least 30 to 40 msdf thesteady portion of the vowd region. We now

present a method for the detection of VOPs in the SCV segments.

321 Detection of Vowel Onset Points in SCV Segments

It is important to identify the vowe onset points in the SCV segments with a good
accuracy because they form the anchor points around which the signal is processed
to derive the patterns. An error in detection of the VOP leads to deriving a pattern
that does not include the necessary information for classification. In this section, we
consider a method based on the derivative o the signal energy to identify the VOPs
in the SCV segments.

It is observed that the energy of the signal increases rapidly at the VOP in the
SCV segments. This is because the energy o the signal immediately after the VOP
is much higher than that in the closureor burst regions that immediately precede the



VOP. Though in most o the SCV segments the increase in energy is the highest at
VOPs, it is observed that in some cases the energy continues to increase even after
the VOP and the point at which the maximum increase in energy occurs does not
coincide with the VOP. The proposed method computes the maximum d the energy
derivativein the SCV segment and then identifies the first point from the beginning
o the SCV segment at which the derivativeis above a threshold. The threshold is a
fraction of the maximum energy derivative value. The signal waveform, the energy
derivative and the VOP identified are shown in Fig.3.2 for a segment belonging to
the class /kha/. It is observed that in some of the aspirated SCVs, the beginning
o the aspiration region is identified as VOP because there is a significant increase
in the energy when the closure region ends and the aspiration region begins. Thisis
illustrated in Fig.3.3 a segment belonging to the class /dha/. It is necessary to evolve
a better method for detection of VOPs in the aspirated SCVs.

Once the VOP in an SCV segment is identified, a 100 ms long signal around
the VOP is processed to obtain 20 frames with 12 weighted cepstral coefficients in
each frame. The weighted cepstral coefficients are derived from an 8th order linear
prediction analysis [77], using aframesize of 20 msand a shift of 5ms. Thealgorithm
used for extraction of weighted cepstral coefficientsisgiven in Appendix A. If an SCV
segment does not have 20 mssignal before the VOP or 80 ms after the VOP, then the
first and the last frames d the segment are duplicated to derive a 20 frame pattern.
Duplicating the frames in the steady regions of the SCV segments does not affect
their classification.

The method proposed in this section has been used to obtain the training and
test patterns of the SCV data used in our studies. In the next section, we describe

the models used for classification d the SCV segments.
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Figure 32: Detection of vowe onset point (VOP) in an SCV segment.
Thefigure shows the plots of signal waveformand the derivative of energy.
The largest peak in the derivative of energy occurs at the VOP.
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Figure 3.3: Misdetection of vowe onset point (VOP) inan SCV segment.
Thefigure showsthe plotsof signal waveform and thederivatived energy.
The largest peak in the derivative d energy occurs at the beginning o
aspiration region instead of occurring at the VOP. Therefore the detected
VOP is different from the actual VOP shown.
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3.3 Neaural Nework Models for Classification o SCVs

3.3.1 Multilayer Perceptron

Approaches based on artificial neural networks have been used for speech recognition
[6). The main advantages of neural networks are a powerful discrimination based
learning procedure and relatively mild assumptions about statistical distributions
[40]. Multilayer perceptrons are the commonly used neural networks. Multilayer
perceptrons with two hidden layers are capable of forming complex decision surfaces
using hyperplane bounded decision regions spread across multiple layers. It has been
shown that multilayer perceptronsgive a better generalization performance compared
to statistical models when the underlying distributions o classes are not known [78].
The structure of the multilayer perceptron model used in our studies is shown in
Fig.3.4. The input layer consists d 240 nodes to input a 20 frame pattern with
12 weighted cepstral coefficients per frame. A column o nodes in the input layer
represents a frame. Each unit in thefirst hidden layer is connected to each d the 240
nodes in theinput layer. Similarly each node in the second hidden layer is connected
to all the nodes in thefirst hidden layer, and each of the nodes in the output layer is
connected to all the nodesin the second hidden layer. Standard error backpropagation

algorithm [40] is used for training the multilayer perceptron networks.

3.3.2 Time Delay Neural Network

One of the main limitations d the multilayer perceptron model is its inability to
provide invariance for translation in time. Time Delay Neural Network (TDNN) [25]
model can be used to overcome this limitation. Typical structured a TDNN used
for classification of SCVs is shown in Fig.3.5.

The input to the TDNN is a 20 frame pattern derived from an SCV segment.

Each unit in the hidden layer is connected to a certain number o frames of input
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Figure 34: Structure o the multilayer perceptron network used for classification
of SCVs. The input layer consists d 240 nodes to input a 20 frame pattern with
12 weighted cepstral coefficients per frame. A column o nodes in the input layer
represents a frame. Each unit in the first hidden layer is connected to each o the
240 nodes in the input layer. Similarly each node in the second hidden layer is
connected to all the nodes in the first hidden layer, and each o the nodes in the
output layer is connected to all the nodes in the second hidden layer.
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Figure 35. Structure o the time delay neural network used for classification of
SCVs. The input layer consists of 240 nodes to input a 20 frame pattern with
12 weighted cepstral coefficients per frame. A column d nodes in the input layer
represents a frame. Each unit in the hidden layer is connected to 3 consecutive
framesof input forming its receptivefield. The hidden layer consistsof replicasfor
each hidden node. The number of replicasis same as the number o receptivefields
o size 3in the input layer. The replicas for a hidden node are shown in a row.
The number d rowsin the hidden layer corresponds to the number of hidden nodes.
The replicative structure is also used for the output layer and each output node is
connected to a receptivefied of size 5 in the hidden layer.
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(called receptive field). The number of receptivefieldsis dependent on thesized the
receptive field and the overlap between adjacent receptive fields. For example, the
total number d receptivefieldsis 18 for an input layer consisting of 20 frames, with a
receptivefield sized 3framesand an overlap of 2 frames. The hidden layer consists of
replicasfor each hidden node. The number o replicasfor a hidden node issameasthe
number d receptivefieldsin the input layer. The number of columnsin the hidden
layer corresponds to the number o receptivefields in the input layer. The number
o rows in the hidden layer corresponds to the number o hidden nodes. Severa
hidden nodes are used to permit detection d multiplefeaturesin each receptivefield.
Replicas o the nodes are used to detect the samefeaturesin different receptivefields.

To eliminate the misalignment problem during training, the replicas of a node use
thesameset o weights. Still, there may beincorrect alignment o during recognition.
To solve this problem, the output nodes are replicated and each replica is connected
to adifferent dice d the hidden layer. The learning algorithm used for training the
multilayer perceptron is modified to train the TDNN. The learning algorithm for
TDNN is derived in Appendix B.

Because o the similarity amongst SCV classes, it is necessary to incorporate
the discriminatory information in the classification models. In the next section, we
consider different neural network architectures for incorporating the discriminatory

information.

3.4 Neural Network Architectures for Classification of SCVs

We consider two neural network architectures, namely, (1) One-Class-One-Network
(OCON) and (2) All-Class-One-Network (ACON), in developing classifiers for the
SCV segments. In the OCON architecture a separate network is trained for: each

class. The network o a class is trained with patterns belonging to that class which
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are used as positiveexamples, and also with patterns belonging to the classes closeto
it which are used as negative examples. The network is trained to givea high output
valuefor positiveexamplesand a low valuefor negative examples. Theaim o training
a network for aclassis to form a decision boundary around the region o that class
in the pattern space. During classification a test pattern is input to the networks o
al the classes and the outputs of the networks are processed to determine its class.
The main advantage o the OCON architectureisthat the sized the networksis not
large. Another advantage isthat it is possibleto use a suitable preprocessing method
for each class. The main disadvantage is that it is difficult to train the network of
a class to give a low output value for patterns belonging to many other classes and
hence the discriminatory capability o the network can be poor. The structured the
classifier based on the OCON architecture is shown in Fig.3.6.

in the ACON architecture a single network is trained for all the classes. The
number o output nodesin the network issameas the number o classes. Thestructure
d the classifier based on the ACON architecture is shown in Fig.3.7. The training
data consistsof a number o patterns belonging to each class. The network is trained
to givea high value for the output node belonging to the classdf a training pattern
and a low value for al other output nodes. The aim o training is to form decision
surfaces among the regionsd dl the classesin the pattern space. The shapes d the
decision surfaces become more complex as the number o the classesincreases. It may
be difficultto train a single network for large number o classes. If a network can
be trained for agiven set d classes, the discriminatory capability of the network is
expected to be better than that o the OCON architecture. The disadvantage is that
it isnot possible to use different preprocessing methods for different classes.

In our studies, we consider the OCON and ACON architecture based neural net-

work classifiersusing MLP and TDNN models. In the next section, we describe the
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Figure 3.6. One-Class-One-Network (OCON) architecturefor classification of SCVs.
A separate network is trained for each o the classes under consideration. The
number o networksis same as the number o classes. For classification o an SCV
pattern, it isinput to each network and theoutputsd all the networksare combined
by a postprocessor that implementsthe classification criterion to determineits class.
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Figure 3.7: All-Class-One-Network (ACON) architecturefor classification of SCVs.
A single network is trained for all classes under consideration. The outputs df the
network for a given SCV pattern are combined by a postprocegsor that implements
the classification criterion to determine the classd the input pattern.
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studies on classification of the SCV segments excised from continuous speech.

3.5 Classification Studies and Results

We have conducted studies on classification of continuous speech segments belonging
to a subset of SCV classes in Hindi. In this section we first present the classes
of SCVs considered in our studies, the details of the speech data collected and the

implementation detailsof theclassifiers. Then we present thestudies and their results.

351 Classes of SCVs for Studies

Speech signal data belonging to each of the 80 SCV classes was collected by manually
excising the SCV segments from continuous speech o 50 sentences for each of the 8
speakers (5 maleand 3 female) considered in our studies. The total number of SCVs
present in this datais about 2500. About 55% of the total number of SCVsbelong to
the subset & the most frequently occurring six SCV classes (/ka/, /ki/, /ke/, /ta/,
/dha/ and /pa/) and about 75% of the total data belong to the subset o ten SCV
classes (/ka/, /ki/, [ke/, [ko/, [ta/, [til, [tol, [da/, /dha/ and /pa/). The number
o segments belonging to the remaining 70 SCV classesisonly about 25% of thetotal
data. We have considered the set of six SCV classes in our first study and the set
o ten SCV classes in our second study. Though the number of classes considered in
the studies is much smaller than the total number o classes, classification o these
frequently occurring SCVs is still a challenging problem because these classes are

highly confusable.

3.5.2 Implementation Details of Classification Models

We have conducted classification studies using multilayer perceptron (MLP) and time

delay neural network (TDNN) models. Models with different number o nodesin the
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hidden layers have been considered in our studies. The performance is given for the
models with the optimal number of hidden nodes. The performance of the models
has not improved even if the number o the hidden nodes is increased beyond the
optimal number.

For the OCON architecture based classifiers, the MLP modes has 20 nodes in
the first hidden layer and 15 nodes in the second hidden layer. The TDNN model
has 10 nodes in the hidden layer. For the ACON architecture based classifiers, the
performance is given for two MLP models and two TDNN models. The first MLP
model, denoted as MLP1, has 125 nodesin thefirst hidden layer and 60 nodes in the
second hidden layer. Thesecond MLP model, MLP2, uses 20 nodesin thefirst hidden
layer and 15 nodes in the second hidden layer. Thefirst TDNN model, TDNN1, has
20 nodes in the hidden layer (sameasin thefirst hidden layer of MLP2). The second
TDNN model, TDNN2, has only 10 nodes in the hidden layer. Training of models
was carried out until the total sum of squares error [40] is small and does not change
from one epoch to another. It was observed that the TDNN models required much
longer training periods compared to the MLP models. Thisis mainly because of the
replicativestructure of the TDNN models.

In order to compare the performance of neural network classifiers with that of
hidden Markov models, wehave considered discrete hidden Markov models (DHMMSs).
A 5-state, left-bright, discrete HMM was used to model an SCV segment. The
structure o this model isshown in Fig.3.8. It isexpected that different states would
represent different significant eventsin the production o an SCV segment. Skipping
o statesis alowed to model the absence of specific eventsin some SCV utterances.
Standard Baum-Welch reestimation method was used for training the DHMMs and
the forward procedure was used for recognition [14]. The algorithms for the training

and recognition methodsare given in Appendix C. Vector quantization of the weighted



Figure 3.8: Discrete hidden Markov model used for classificationdf SCVs. A 5-state,
left-to-right model is trained for each SCV class. A circlein the figure represents a
stateand an arc represents astatetransition. Theinput to the model isa sequenceod
codebook indicescorresponding to the weighted cepstral coefficient vectors extracted
from speech signal o an SCV segment.

cepstral coefficient vectors was performed using the binary split algorithm [14] to build

a codebook of size 256.

353 Classification Studies

Here we present our studies on comparison o the performance of different models and
architectures for classification of the SCV segments. The list of the studies carried
out are givenin Table-3.1.

In our studies, the performance of the classifiers is given for the following two
cases of classification criterion: (1) Correct class is the class with the largest output
value and (2) Correct class is amongst the classes with the largest and the second
largest output values. The second case is considered because it is observed that the
class with the second largest output is the correct class in many instancesof errorsin
classification. A significant increase in the performance for the second case suggests
that two alternative class symbols can be given for each SCV segment during classi-

fication. The correct symbol can be chosen using the lexical and syntactic knowledge
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Table 3.1: List of studies on classification d the
SCV segmentsexcised from continuous speech.

1. Comparison o the performance o classifiers based on OCON
and ACON architectures, and using MLP, TDNN and DHMM
models for six frequently occurring SCV classes.

2. Confusability among the six SCV classes.

3. Comparison o the performance of classifiers based on differ-
ent models and architectures for ten frequently occurring SCV
classes.

4. Confusability among the ten SCV classes.

5. Effectsd theinclusion a additional classes on the performance
d the OCON and ACON architecture based classifiers.

6. Analysis d the performance of classifiers to identify the main
sources d errors in classification.

d the language.

Our first study considers six frequently occurring SCV classes. (/ka/, /ki/, /ke/,
/ta/, /dha/ and /pa/). Thetrainingset for a network in the OCON classifiers consists
o 10 patterns belonging to its classfrom each of thefive speakers. These patternsare
used as positive examples. Thetraining set also includes 50 patterns belonging to the
other classes which are used as negative examples. The training set for the network
in the ACON classifiersconsists d 10 patterns per classfor each d the five speakers.
Thus, a total number of 300 patterns were used for training. The remaining data o
the five speakers (582 patterns) was used as the multispeaker test set. The complete
datafor thesix classesfrom three new speakers (490 patterns) was used as the speaker
independent test set. The performance for Case-1, the first case of the classification
criterion, is given in Table-3.2(a) and the performance for the Case-2, the second

case of the classification criterion, is given in Table-3.2(b) . The performance isgiven



as the percentage o the total number of patternsin a data set that are correctly

classified.

Table 3.2; Comparison d the performance o classifiers based on different models
and architectures for six frequently occurring SCV classes. Performance is given
for the two cases of classification criterion: (a) Case-1 that an input pattern is
correctly classified if the classd the input pattern isthe class with the largest value
amongst the outputs of a classifier, and (b) Case2 that an input pattern is correctly
classfied if the classd theinput pattern is amongst' the classes with the largest and
the second largest output values. It can be seen that the ACON classfiers give
a better performance than the OCON classifiers. Classifiers based on the MLP
model give a better performance than the TDNN or HMM models. The increase
in performance for Case2 over Case-1 indicates that for many patterns that are
incorrectly classified, the class with the second largest output value is the correct
class.
(a) Performance o classifiersfor Case-1d the classification criterion.

OCON ACON
Data Set MLP | TDNN | MLP1 [ MLP2 [ TDNN1 | TDNN2 | DHMM
Training 860 | 727 | 980 | 903 94.0 93.7 99.0
Multispeaker | 75.1 | 713 | 86.6 | 84.2 81.2 80.0 713
Speaker-
independent | 63.3 | 475 68.2 | 655 61.0 63.5 59.2

(b)Performance of classifiersfor Case2 of the classification criterion.

OCON ACON
Data Set MLP [ TDNN | MLP1 | MLP2 | TDNN1 | TDNN2 | DHMM
Training 98.7 | 940 | 987 | 96.3 98.0 99.0 100.0
Multispeaker | 940 | 926 | 950 | 94.2 94.5 93.8 90.9
Speaker-
independent | 829 | 757 | 855 | 79.2 84.7 83.7 83.5

It is observed that there is a significant increase (by about 10 to 25%) in the
performance on the test data sets for Case-2 over Case-1 of the classification crite-
rion. This indicates that when there are errors in classification, the class with the
second largest value is likely to be the correct class. The better performance of the
ACON classifiersover the the OCON classifiers indicates the better discriminatory

capability o the ACON classifiers. It is aso observed that MLP models give a better



performance than the TDNN or DHMM models.

The best performance is given by the ACON classifier using the MLPI model.
The performance of thisclassifier for Case-I'is used to obtain confusion matrices that
indicate the confusability amongst the six classes. The confusion matrix based on
the performance for the multispeaker test set isgivenin Table-3.3(a). The confusion

matrix based on the performance for the speaker independent test set is given in

Table-3.3(b).

Table 3.3: Confusion matricesfor six frequently occurring SCV classes.
Theconfusion matrix based on the performance o the ACON classifier
using the M L PI model for the multispeaker test set isgivenin (a) and
for the speaker independent test set isgiven in (b). The entriesin a
row give the total number o patternsfor a class and the number of
these patterns that are classified as patterns belonging to each of the
six classes. It can beseen that the confusion for a classis mainly with

the classes that are phonetically close to it.

(a)Confusion matrix based on the perfor-
mance for the multispeaker test data set.

Class | Tota | ka ke ki ta dha pa
ka 1621151 0 O 2 2 7
ke 53] 2 34 14 1 1 1
ki B 0 2129 0 0 O
ta 721 3 0 058 4 7
dha 92| 0 0 4 7 7 9 2
pa 72 3 0 0 11 5 53

(b) Confusion matrix based on the per-
formancefor the speaker independent test

data set.

Class | Total | ka ke ki ta dha pa
ka 11892 0 0 8 612
ke 5] 6 21 13 3 15 1
Ki 1021 4 987 0 2 0
ta 67110 0 0 31 14 12
dha 811 2 0 0 6 6 6 7
pa 63| 3 0 o0 9 14 37

The diagonal entriesin the matrices give the number o patterns that are correctly




classified. The non-diagonal entries in arow give the number of patterns belonging to
. aclassthat are misclassified as patterns belonging to each of the other classes. The
confusion matrices indicate that in case of errors, the patterns belonging to a class
are assigned to the classes which are phonetically closeto that class.

Our second study considers four additional SCV classes (/ko/, /ti/, /[to/ and
/da/). The training set for this study contains additionally five patterns per class
of these four classes for each of the five speakers. The remaining data of the ten
classesfor the fivespeakers (713 patterns) was used as the multispeaker test set. The,
completedatafor the ten classes from three new speakers (617 patterns) was used as
the speaker independent test set. The performance of different classifiersis given in

Table-3.4(a) for Case-1 and in Table-3.4(b) for Case_2.

Table 34: Comparison of the performance of classifiers based on different models
and architecturesfor ten frequently occurring SCV classes. It can be seen that the
ACON classifiersgive a better performance than the OCON classifiers. The models
with larger number of hidden nodes (MLP1 and TDNN2) givea better performance.
There isa significant increase in the performance for Case2 over Case-1.

(a) Performance of classifiers for Case-1of the classification criterion.

OCON ACON
Data Set MLP | TDNN | MLP1 | MLP2 | TDNN1 | TDNN2 | DHMM
Training 828 | 69.8 98.5 | 1000 915 84.0 98.8
Multispeaker | 67.0 | 58.6 735 712 724 67.6 68.3
Speaker-
independent | 524 | 41.8 61.9 52.8 56.1 504 52.1

(b) Performance of classifiersfor Case2 of the classification criterion.

OCON ACON N
Data Set MLP | TDNN | MLP1 | MLP2 [ TDNNI | TDNN2 | DHMM
Training 973 | 873 | 993 | 1000 | 975 94.3 100.0
Multispeaker | 879 | 81.1 | 896 | 84.2 89.3 84.4 85.0
Speaker-
independent | 759 | 655 | 776 | 716 715 705 70.3

The observations made from the resultsin thefirst study hold good for the second
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study dso. There is a decrease in the performance of a classifier for the ten classes
compared to that of the corresponding classifier for the six classes. This is mainly
because some d the classes that are included for the second study are close to the
classes considered in the first study. This leads to more confusability amongst the
classes. An observation made from the performance of the ACON classifiersis that
when the complexities (in terms o the number of hidden nodes) o the MLP and
TDNN models are approximately the same (MLP2 and TDNN1), the TDNN model
givesa marginally better performancecompared to the MLP model. The best perfor-
manceis given by the ACON classifier using the MLP1 model. The confusion matrix
derived from the performance of this classifier for the multispeaker and the speaker
independent test setsis given in Table-3.5(a) and Table-3.5(b) respectively.

In this section we have presented the studies on classification of SCV segments
excised from continuous speech using different models and architectures. In the next

section we give an analysis d the performance o different classifiers.

3.6 Analysis of the Performance of Classifiers

The results o the studies presented in the previous section indicate that the best
classification performance is 73.5% on the multispeaker test data and is 61.9% on
the speaker independent test data for ten frequently occurring SCV classes. The
performance o ACON classifiershas been evaluated for models with different number
d hidden nodes. It isobserved that increasing the number o hidden nodes up to a
limit resultsin an improvement o the performance. The MLP modelswith more than
125 nodesin thefirst hidden layer did not show any improvement. The performance
of the modelswith larger number d hidden nodesislimited by the available training
data set. As the number d hidden nodes is increased, the TDNN model requires

longer training periods and more importantly larger training sets. For example, a



Table 35: Confusion matrices for ten frequently occurring SCV
classes. The confusion matrix based on the performance of the ACON
classifier using the MLP1 model for the multispeaker test set is given
in (a) and for the speaker independent test set is given in (b). The
entries in a row give the total number of patternsfor a class and the
number of these patterns that are classified as patterns belonging to
each of thesix classes. It can be seen that the confusion for a classis
mainly with the classes that are phonetically closeto it.

(a)Confusion matrix based on the perfor-
mance for the multispeaker test data set.

Class| Total | ka ke ki ko ta ti to da dha pa
ka 1621134 1 3 2 1 0 1 O 4 6
ke 53 0 37 4 0 0 1 0O 1 0 o
ki 131 0 17 96 0 0 18 0 O 0 O
ko 19 2 0 1 13 0 1 1 O 1 0
ta 72 4 0 0 053 0 4 0 3 8
ti 33 1 0 6 0 1 22 0 O 2 1
to 29 0O 0 0 2 4 0 21 O 2 0
da 50 0o 1 0 0 O O 1 3 13 o0
dha 92 o 0 1 0 4 2 0 18 65 2
pa 72 3 0 0 1 11 0 1 5 3 48

(a)Confusion matrix based on the perfor-
mance for the speaker independent test
data set.

Class | Total | ka ke ki ko ta ti to da dha pa
ka 118112 0 5 0 0 5 0 0 1 O 0o 7
ke 5911211312102 8 0
ki 102 4 87 2001400 4 0
ko 21 10 01 500 30 2 0
ta 67 2 0 0 522 0 1 1 1 15
ti 38 11 6 0 0 2 7 0O 3 0
to 29 7 0 0 2 2 0 1 4 0 3 1
da 39 7 0 0 2 0 O O 7 2 2 1
dha 81| 3 0 0 6 3 001 1580
, 63| 5 0 0 4 4 0 0 4 5 41

56
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TDNN model with even 50 nodes in its hidden layer could not be trained with the
availabletraining dataset. Thisisbecaused the multiplicativeincrease in the number
of replicated nodes as the number o hidden nodes is increased.

An analysisd the performanced the OCON and ACON classifiersfor thesix and
ten SCV classes is carried out to identify the effects o including additional classes.
We focus on the performance of the classifiers using M_P models that gave the best
performance. In Table-3.6 below wecompare the performance o the classifierson the

data belonging to the six SCV classes considered in our first study.

Table 3.6: Comparison o the performance d the OCON and ACON classifiers for
the six and ten frequently occurring SCV classes on the test data sets of the six
classes. The inclusion o the additional four classes (/ko/,/ti/,/to/ and /da/) in
the ten class classifier did not affect the performance o the OCON classifiers for
the classes other than /dha/. A significant differencein the performance of ACON
classifiers can be noted for al the six classes.

Multispeaker Test Data Speaker Independent Test Data

SCV Six Ten Six Ten Six Ten Six Ten
Class Class | Class | Class| Class | Class | Class | Class | Class
OCON | OCON | ACON | ACON | OCON | OCON | ACON | ACON

ka 87.0 81.5 93.2 82.7 66.4 64.7 77.3 88.2
Ki 57.3 54.2 98.5 73.3 71.6 71.6 85.3 70.6
ke 75.5 75.5 64.2 69.8 40.7 40.7 35.6 35.6
ta 84.7 84.7 80.6 73.6 20.9 20.9 46.3 32.8
dha 73.9 65.2 85.9 70.7 84.0 50.6 81.5 71.6
pa 72.2 69.4 73.6 65.3 82.5 82.5 58.7 65.1
Average | 75.1 71.1 86.6 4.7 63.3 57.3 68.2 65.1

It is observed that there is a significant difference in the performance o the six
class and the ten class OCON classifiers only for the class /dha/. It is interesting
to note that there is a differencein the performance o the ACON classifiersfor all
the six classes. The performance d the ten class ACON classifier is significantly less
than that o the six class ACON classifier for the classes /ki/ as wdl as /dha/. The

different behaviours & the OCON and ACON classifierswhen additional classes are



included can be explained as follows.

Each o the networksin the OCON classifiersistrained to form a decision bound-
ary around the region o its class in the pattern space. The networks in the ACON
architecturearetrained toform decision surfaces amongst the regionsdf all the classes.
Inclusion d additional classes may not alter the decision boundaries formed for the
OCON networkswhereasit may significantly alter thedecision surfaces o the ACON
classifiers. Thisisindicated in the confusion matricesd thesix class and theten class
ACON classifiersgiven in Tables 3.3 and 35. These tables show that the decrease
in the performance d the ten class ACON network for the class /ki/ is due to the
presence o the class /ti/ which differsfrom /ki/ only in the place o articulation o
the stop consonant. The differencein the performance for each of the six classesis
because o the readjusted decision surfaces when additional classesare included.

The behaviour of the OCON and ACON classfiersisillustrated in Fig.3.9 for an
arbitrary 2-dimensiona pattern space. Typical boundaries expected to be formed
for two classes by networks in the OCON classifier are shown in Fig.3.9(a). The
boundaries for these classes do not change when the number of classes is increased
to four as shown in Fig.3.9(b). This is because a network is trained for each class
separately. The boundaries for the same two classes expected to be formed by the
network in the ACON classfier are shown in Fig.3.9(c). It can be noted that the
boundaries for these classes change when the number o classes is increased to four
as shown in Fig.3.9(d).

It is observed that both the OCON and ACON classifiers show a decrease in the
performance for the class /dha/. This is found to be mainly due to the presence
of the class /da/ in set o ten SCV classes. Most o the errors in classification of
/dha/ segments that are classified as /da/ have been found to be due to the absence

of aspiration in their production. The difference in the phonetic descriptions of the
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Figure 3.9: Illustration of decision boundaries formed by the OCON and ACON
classifiers. An arbitrary 2-dimensiona pattern space is used to explain the effect
of inclusion of additional classes. Typicai boundaries expected to be formed for
two classes by networks in the OCON classifier are shown in (a). The boundaries
for these classes do not change when the number o classes is increased to four as
shown in (b). This is because a network is trained for each class separately. The
boundaries for the same two classes expected to be formed by the network in the
ACON classifier are shown in (c). It can be noted that the boundaries for these
classes change when the number of classes isincreased to four as shown in (d).
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Figure 3.9: lllustration o decision boundaries formed by the OCON and ACON
classifiers. An arbitrary 2-dimensional pattern space is used to explain the effect
of inclusion o additional classes. Typicai” boundaries expected to be formed for
two classes by networks in the OCON classifier are shown in(a). The boundaries
for these classes do not change when the number of ‘classes is increased to four as
shown in (b). Thisis because a network is trained for each cl ass separately. The
boundaries for the same two classes expected to be formed by the network in the
ACON classifier are shown in (c). It can be noted that the boundaries for these
classes change when the number d classes is increased to four as shown in (d).



Chapter 4

MODULAR NEURAL NETWORKS
FOR LARGE NUMBER OF CLASSES

4.1 Introduction

In the previous chapter, we have developed a method for classification o SCV seg-
ments excised from continuous speech. The performance of different classification
models was evaluated for a small set of frequently occurring SCV classes. Neura
network architectures considered for a small set of classes have limitations in extend-
ing them for large number of classes. In this chapter, we consider approaches based
on modular neural network architecturesfor all the SCV classes which are large in
number. The classifiers developed for all the SCV classes can be used to spot any
SCV segment in continuous speech.

The main reason for limiting the studies presented in the previous chapter to
asmall set o classes is the difficulty in collecting adequate training set data from
continuous speech for infrequently occurring classes. We consider the isolated ut-
terances of SCVs so that the required training set data can be collected for al the
classes. Another important reason for considering the isolated utterance data is that
the variability in the characteristics of the isolated utterances is expected to be less
compared to the variability in the characteristics of the SCV segmentsin continuous
speech. This is because the isolated utterances are wdl articulated and they are not
affectedby the factorssuch as the context and speaking rate which significantly affect

the characteristics d the segments in continuous speech. The variability due to these
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classes /da/ and /dha/ is that /da/ is unaspirated whereas /dha/ is aspirated. But
in continuous speech, many aspirated sounds are produced as unaspirated sounds.
Therefore the differencein the phonetic description may not have manifested in the
signal. It isdifficult to train the networks to form decision boundaries among the
overlapping regions. The classification errors due to imprecisearticulation of sounds
can be corrected using the lexical and syntactic knowledge of thelanguage only. The
above analysis indicates that the performanced the OCON classifiersisless affected
than the performance of the ACON classifiers when additional classes are included.
However, the ACON classifiers have been shown to have a better discriminatory
capability for a given set of classes compared to the OCON classifiers.

An analysisof the performance of the classifiersfor ten SCV classes segments was
carried out to determine the distribution of errors due to misclassification of each
of thefollowing: (1) place of articulation (POA) of consonants only, (2) manner of
articulation (MOA) of consonants only, (3) vowel only, (4) POA and MOA, (5) POA
and vowel, (6) MOA and vowel, and (7) POA, MOA and vowel. The distribution of
errors for the multispeaker test data set is given in Table-3.7(a) and the distribution
for the speaker independent test data set is given in Table-3.7(b). The total number
of errors for a model is shown in the parentheses and the distribution of errorsis
given as the percentage o the total number of errors. It isobserved that a significant
percentage (about 25% to 40%) of the errors is only due to misclassification of the
place of articulation, irrespective of the classification model used. This indicates
the need for strategies to classify the POA more accurately in order to obtain an
improved performance. In Chapter 7, we present the studies that address the issues

in classification of the placed articulation.
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Table 3.7: Distribution o errorsin the performance of classifiersfor ten frequently
occurring SCV classes due to misclassification of one or mored the following three
features of an SCV: (1) Manner o articulation (MOA) of the consonant, (2) Place
of articulation (POA) of the consonant, and (3) Vowd. The distribution for the
multispeaker test datais given in (@) and the distribution for the speaker indepen-
dent test data is given in (b). The entries in the parantheses indicate the total
number of errors. A significant percentage of errors is due to misclassification d
POA, irrespective of the classification model used.

(a)Distribution of errorsin the performance of classifierson the mul-
tispeaker test data set of 713 patterns.

OCON ACON
Source of MLP | TDNN | MLPI | MLP2 | TDNN1 | TDNN2 | DHMM
Errors (235) | (295) | (189) | (205) | (197) | (231) | (226)
POA only 260 | 438 | 37.1 | 31.2 | 244 38.1 38.1
MOA only 21.3 | 166 | 201 | 234 | 320 24.2 19.0
Vowe only 294 | 193 | 259 | 283 | 188 16.5 24.8
POA and MOA | 55 | 88 74 | 78 11.2 9.1 7.1
POA and Vowd | 148 | 85 | 37 | 178 5.6 6.9 8.4
MOA and Vowe | 0.9 | 2.0 37 | 15 4.5 3.5 1.3
POA, MOA and
Vowe 21 | 1.0 | 21 | 0.0 3.5 1.7 1.3

(b)Distribution of errors in the performance o classifiers on the
speaker independent test data set of 617 patterns.

OCON ACON
Source of MLP | TDNN | MLPI | MLP2 | TDNN1 | TDNN2 | DHMM
Errors (294) | (359) | (235) | (292) | (270) (306) (295)
POA only 38.5 32.6 33.2 37.6 31.7 39.9 414
MOA only 17.3 2.5 16.2 17.5 8.1 6.2 7.5
Vowd only 14.6 25.9 19.6 14.4 14.4 16.6 18.3
POA and MOA 11.2 24.8 8.5 12.0 21.1 23.2 17.6
POA and Vowd 9.2 8.4 9.8 12.3 9.5 7.2 11.2
MOA and Vowd | 1.7 14 2.5 3.1 3.3 2.3 0.6
POA, MOA and
Vowd 7.5 4.4 10.2 3.1 5.9 4.6 34




3.7 Summary and Conclusions

A summary o the major results of the studies presented in this chapter is given in

Table-3.8.

Table 38 Summary o the major results o the studies on classifi-
cation of the SCV segments excised from continuous speech.

1. An approach has been developed for classification of varying duration
SCV segments using neural network classifiersthat can handle fixed du-
ration patterns. The patterns are derived by processing afixed duration
signal around the vowd onset points in the SCV segments.

2. The performanceof classifiersbased on OCON and ACON architectures,
and using MLP, TDNN and DHMM models has been compared for fre-
guently occurring SCV classes.

3. Theclassfiersusng MLP model gave a better performance compared to
TDNN and DHMM models.

4. ACON classifiers gave a better performance compared to OCON classi-
fiers. Thisis mainly due to discriminatory training of ACON classifiers.

5. The performance o the ACON classifiersis more significantly affected
than that o the OCON classifiers when additional classes are included.

6. A dignificant percentage o errors in classification of segments is due to
misclassificationd the place of articulation o stop consonants.

In this chapter, we have presented an approach for classification of varying dura-
tion Stop Consonant-Vowel (SCV) segments excised from continuous speech. A fixed
duration signal around the vowd onset point in an SCV segment is processed to derive
a pattern that isgiven as input to neural network classifiers. The performance of dif-
ferent models and architectures was evaluated for frequently occurring SCV classes.
The classifiers using multilayer perceptron models give a better classification perfor-

mance compared to the classifiersusing TDNN models. It was also observed that the



All-Class-One-Network (ACON) classifiers show a better discriminatory capability
than the One-Class-One-Network (OCON) classifiersfor a given set of classes.

It was observed that the performanceof al the classifiersfor the speaker indepen-
dent test data is poorer than the performance for the multispeaker test data. It is
necessary to use parametric representationsthat are invariant to the variationsin the
characteristics of the SCV segments due to different speakers. It is also necessary to
train with datafrom large number of speakersand use speaker adaptation techniques.

Our studies have indicated the need for appropriate parametric representations
for SCV segments to obtain an improved performance. One method is to use differ-
ent parametric representations appropriate for different eventsin the SCV segments.
This method requires an approximate segmentation into regions corresponding to dif-
ferent significant production events, and extraction o suitable parameters from each
region. It is straightforward to use patterns formed from multiple parametric rep-
resentations as input to multilayer perceptron models. However multi-stream input
based approaches [79] may have to be explored for TDNN and HMM models.

Mere parametric representation extracted from speech signal does not help to
improve the classification accuracy beyond a limit. The parametric representation is
currently viewed as a vector o data. But to take care of the variability for different
repetitions and due to different speakers, it is necessary to capture thefeatures present
in the parameter data and use these features for classification. It may be possible to
use neural network models to capture the features from data.

In this chapter, we have presented the studieson classification of segments belong-
ing to a subset of SCV classes. In the next chapter, we explore suitable models for
classification of the utterances o all the SCV classes. When the number of classes is
large, both the OCON and ACON architectures havelimitations. Thediscriminatory

capability will be poor for OCON architectures. The limitation of the ACON archi-



tecture isthat it isnot possible to train a single network for large number of classes.
In the next chapter we consider modular neural network architectures to handle the
large number of SCV classes in Indian languages.

While the classification studies on manually excised segments corresponding to
the subword units highlight the issues in parametric representation and classification,
the main task is to spot these segments in continuous speech. Speech recognition
by humans also takes place by spotting key segments. Therefore it is essential to
develop approaches for spotting the subword units in continuous speech signal in
order to realise a vocabulary independent continuous speech recognition system. In

Chapter 6, we present our studies on spotting SCVs in continuous speech.
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effects in continuous speech is better handled by using suitable parametric represen-
tations than trying to train the models toperform classification that is invariant to
these effects.

In order to usetheclassifiers trained with theisolated utterance data for spotting
SCV segmentsin continuous speech, it is necessary to address some issues arising out
of thedifferences in thedurationsof theisolated utterances and the SCV segmentsin
continuous speech. It isobserved that theisolated utterances of a class are of much
longer duration compared to the segments of the same class in continuous speech.
In the approach presented in the previous chapter, speech signal with a duration of
100 ms around the vowel onset point in an SCV segment is processed to derive a
fixed duration pattern that isinput to neural network classifiers. This fixed duration
pattern has most of the necessary information for classification of SCV segments in
continuous speech. Because of the longer durations o the isolated utterances, it is
necessary to process the speech signal with a duration of moreth.an 100 msaround the
vowel onset point. In developing classifiers for all the SCV classes that can be used
for spotting, we consider different durations and study their effect on the performance
of classifiers.

This chapter is organized as follows. The need for modular approaches to handle
the large number of SCV classes is explained in section 4.2. Important issues in
developing modular approaches are discussed in section 4.3. Specific issues related
to modular approaches for classification »f SCVs are presented in section 4.4. The
issues in using the isolated utterance data are discussed in section 4.5. Studies on

classification of all the SCV classes are presented in section 4.6.



4.2 Need for Modular Approaches

When the number o classesislarge and the similarity amongst theclassesis high, it
Is difficult to train a monolithic neural network classifier based on the All-Class-One-
Network (ACON) architecture to form the necessary decision surfaces in the input
pattern space. An attempt has been made to train a multilayer perceptron network
for all the80 SCV classes. It was observed that even after a large number o epochs,
the total sum of squares error remained high and it did not change from one epoch
to another. It shows that a single network could not be trained for large number
o classes. It is possible to develop a classifier based on the One-Class-One-Network
(OCON). architecture in which a separate network is trained for each class. This
approach requires a large number of networks. In addition, the studies presented in
the previous chapter have shown that the discriminatory capability o the OCON
classifiersis poor.

Modular approaches can be used to overcome the limitations d the ACON and
OCON architectures. In these approaches modularity is viewed as a manifestation of
the principleof divide and conquer, which permits one to solve a complex computa-
tional task by dividing it into simpler subtasks and then combining their individual
solutions [40]. In modular approaches for classification, the large number o classes
are grouped into small subgroups and a separate neural network is trained for each
subgroup. In the next section, we discuss the main issues in developing classifiers

based on modular approach.

4.3 Issuesin Modular Approachesfor Classification

Two commonly used neural networks based on modular approaches are: (1) modular
networks [40] [41] and (2) hierarchical networks [42]. A neural network is said to be

modular if the computation performed by the network can be decomposed into two



or more modules (subnetworks or subnets). Modular networks use a postprocessor to

combine the outputs of the subnets. The structure of a modular network is shown in

Fig.4.1.
Subnet 1 . }i
- Subnet 2 - }_
Input — -
Pattern ] - Post- Class
. processor

Subnet M : }—

Figure 4.1: Modular network architecture for classification of patterns. The total
number o classes are divided into subgroups and a separate network (subnet) is
trained for each subgroup. The number o outputs d a subnet is same as the
number of classesin itssubgroup. For classificationd a pattern, the pattern isinput
to each subnet. The outputs from all the subnets are combined by a postprocessor
that implements the classification criterion to determine the class.

In hierarchical networks a selector network is used to determine the subgroup to
which agiveninput pattern belongsto. Then the network for that subgroup processes
the input pattern to determine its class. The structure o a hierarchical network is

shown in Fig.4.2.

The main issuescommon to both the approaches are: (1) Selection dof acriterion for
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Figure4.2: Hierarchical network architecturefor classificationof patterns. The total
number o classes are divided into subgroups and a separate network (subnet) is
trained for each subgroup. For classification d a pattern, a preprocessor determines
the subgroup to which the pattern may belong to, and then the pattern is given
as input to the subnet o that subgroup only. The outputs from that subnet are
combined by a postprocessor to determine the class.

grouping classes into subgroups, (2) Methods for discriminatory training o subnets
and (3) Choice o classification model for subnets. An issue specific to modular
networks is the design o a suitable postprocessor. An issue specific to hierarchical
networks is the design o a selector network. The design of the selector network
is dependent on the grouping criterion chosen. The performance o a hierarchical
network is critically dependent on the performance d the selector network. In our
studies, we explore grouping criteriaand classification modelsfor developing modular

networksfor all the SCV classes.
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4.4 Modular Networks for All the SCV Classes

In this section, wefirst consider different criteria that can be used for grouping SCV
classes into subgroups. Then we discuss the issues in training the subnets. Methods

for processing the outputs o the subnets are discussed in thefinal subsection.

4.4.1 Criteriafor Grouping SCV Classes into Subgroups

The criterion used for grouping the large number of classesinto subgroups decides the
constitution of each subgroup. One can randomly group the classesinto an arbitrarily
chosen number of subgroups. Then it will be necessary to exploredifferent number of
subgroups and different ways d grouping. Instead d arbitrary grouping, we consider
criteria guided by the phonetic descriptions‘d the SCV classes. Such criteria are
useful in analyzing the performance o the classifiers and determining the sources d
errors in classification.

A unique phonetic description can be given for each o the 80 SCV classes in
terms o three features, namely, (1) the manner o articulation (MOA) o the stop
consonant in that SCV, (2) the place df articulation (POA) o thestop consonant and
(3) theidentity of the vowel in that SCV. For example, the class /ka/ is described as
‘Unvoiced unaspirated velar stop consonant followed by the vowd /a/'. The phonetic
description of the SCV classessuggests that grouping can be done in such a way that
one of the three features is common to the classesin a subgroup. This resultsin three
criteria that can be considered for grouping.

Grouping based on MOA leads to four subgroups: (1) Unvoiced-Unaspirated
(UVUA), (2) Unvoiced-Aspirated (UVA), (3) Voiced-Unaspirated (VUA) and (4)
Voiced-Aspirated (VA). Each subgroup consists of 20 classes and the stop conso-
nants in these classes have the same manner d articulation. The classesin each of

these subgroups are given in Table-4.1(a).



Table4.1: Classesin subgroups based on different grouping criteria.
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(a)Classes in (b)Classes in
MOA subgroups POA subgroups
MOA SCV Classes POA SCV Classes
UVUA | ka ki ku ke ko Velar |ka ki ku ke ko
ta ti tu te to kha khi khu khe kho
ta i tu te to ga g gu ge go
pa_pi__pu pe po gha ghi ghu ghe gho
UVA | kha khi khu khe kho Alveolar [fa fi tu te to
tha thi thu the tho tha thi thu the tho
tha thi thu the tho da di du de do
pha phi  phu phe pho dha dhi dhu dhe dho
VUA ga g gu ge Qo Dental ta ti tu te to
da di du de do tha thi thu the tho
da di du de do da di du de do
ba b bu be bo dha dhi dhu dhe dho
VA |gha ghi ghu ghe gho| | Bilabia | pa pi pu pe po
dha dhi dhu dhe dho pha phi phu phe pho
dha dhi dhu dhe dho ba bi bu be bo
bha bhi bhu bhe bho bha bhi bhu bhe bho
(c) Classes in
Vowd subgroups
Vowd SCV Classes
Ja/ | ka kha ga gha
ta tha da dha
ta tha da dha
pa pha ba bha
Ji/ | ki khi g ghi
ti thi di dhi
ti thi didhi
pi phi b bhi
Ju/ | ku khu gu ghu
tu thu du dhu
tu thu du dhu
pu phu bu bhu
Je/ |ke khe ge ghe
te the de dhe
te the de dhe
pe phe be bhe
Jo/ | ko kho go gho
to tho do dho
to tho do dho
po pho bo bho
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Grouping based on POA leads to four subgroups: (1) Vear, (2) Alveolar, (3)
Dental and (4) Bilabia. Each subgroup consistsdf 20 classesand the stop consonants
in these classes have the same place of articulation. The classes in each of these
subgroups are given in Table-4.1(b).

Grouping based on the vowd in SCVs |eads to five subgroups with one subgroup
for each of thefivevowds /a/, [i/, /u/, lel and [o/. Each subgroup consists of 16
cl asses and these classes have the same vowd. The classesin each of these subgroups
are given in Table-4.1(c).

We consider each o the three grouping criteriain developing a modular network
for all the SCV classes. Theclassification performance d a modular network based on
a particular grouping dependson the performance of its subnets. The performance of
subnets is dependent on the data used for training them. We next discuss the issues

in training the subnets.

4.4.2 Training of Subnets

The training data set for a subnet should generally consist of patterns belonging to
the classesin its subgroup only. Then each subnet istrained as an ACON classifier to
form the decision surfacesfor the classesin its subgroup. When a modular network is
used for classification, a given test pattern isinput to all its subnets and the out puts
o the subnets are processed to determine the class. In order to correctly classify,
the output valuefor theclassd the test pattern should be high and all other output
values should be low. It may be necessary to train each subnet with a few patterns
belonging to the classes of the other subnets. These patterns can be considered as
negative examples. For a negative example pattern, the subnet should be trained to
give a low valuefor al itsoutputs. The amof using negative examplesin training a

subnet is to form a decison boundary around the regionsd its classes.
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The effect of including negative examples in the training data sets of subnets is
illustrated in Fig.4.3 for an arbitrary 2-dimensional pattern space. Typical decision
surfaces expected to be formed by subnets are shown in Fig.4.3(a). Here we consider
16 classes that are divided into 4 subgroups with 4 classes in each subgroup. Each
subnet is separately trained with patterns belonging to the classes in its subgroup
only. Thereforefor each subnet, the decision surfacesareformed among the regions of
classesin the subgroup only. When the patterns o the classesin the other subgroups
are included as negative examples, it isexpected that a boundary be formed around
the regions of the classes in its subgroup. The expected effect d including negative
examples is shown in Fig.4.3(b). In our studies, we compare the performance of the
modular networks with and without negative examples being used in training the

subnets.

4.4.3 Processing the Outputs of Subnets

A simple way of processing the outputs of subnets is to assign the class with the
largest value among theoutputs o all the subnets. Becaused the similarity amongst
the classeswith in asubgroup and a so amongst several classesin different subgroups,
we use a method in which the classes with the largest and the second largest output

values of each subnet are also considered in deciding the class.

4.5 Derivation of Patterns for Isolated Utterance Data

The approach proposed in the previous chapter for classification of SCV segmentsin
continuous speech can be extended for theisolated utterance data. In this approach,
afixed duration portion of thesignal around the Vowd Onset Point (VOP) of an SCV
utterance is processed to derivea pattern. There are two important factors that have

to be taken into consideration for deciding the duration of the portion of the signal to



(a) Training subnets with- (b) Training subnets with
out negative examples negative examples

Figure 4.3: lllustration of decision surfaces and boundaries formed by subnet clas-
sifiers in modular networks. An arbitrary 2-dimensional pattern space is used to
explain the effect of including negative examples in training data sets of subnets.
Typical decision surfacesexpected to beformed by subnets areshown in (a). Here 16
classes are divided into 4 subgroups with 4 classes in each subgroup. Each subnet is
separately trained with patterns belonging to theclassesin itssubgroup only. There-
fore for each subnet, the decision surfaces are formed among the regions of classes
in the subgroup only. When the patterns of the classes in the other subgroups are
included as negative examples in the training data set of a subnet, it is expected
that a boundary be formed around the regions o the classes in its subgroup. The
expected effect of including negative examples is shown in (b).
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Figure 4.3. lllustration of decision surfaces and boundaries formed by subnet clas-
sifiers in modular networks. An arbitrary 2-dimensional pattern space is used to
explain the effect of including negative examples in training data sets of subnets.
Typical decision surfaces expected to beformed by subnets areshown in (a). Here 16
classes aredivided into 4 subgroups with 4 classes in each subgroup. Each subnet is
separately trained with patterns belonging to the classesin itssubgroup only. There-
fore for each subnet, the decision surfaces are formed among the regions of classes
in the subgroup only. When the patterns o the classes in the other subgroups are
included as negative examples in the training data set of a subnet, it is expected
that a boundary be formed around the regions of the classes in its subgroup. The
expected effect of including negative examples is shown in (b).
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be processed for the isolated utterance data. Thefirst factor isthat the portion o the
signal should have al the necessary information for classification. The second factor
is that it should be possible to use the networks trained with the isolated utterance
data for spotting SCV segments in continuous speech. For this, the patterns derived
from theisolated utterance data have to be matched with the patterns derived from
continuous speech segments. We consider three different durations in our studies.

We first consider the method for deriving a pattern from a 200 ms portion of
the signal with 60 ms before and 140 ms after the VOP. This fixed duration signal is
processed to extract 40 frames with 12 weighted cepstral coefficientsin each frame. In
order to reduce thesized the pattern, the average coefficientsfor every two adjacent
frames are used. Thus a 20 frame pattern is used to represent an SCV utterance.
This method for derivation of patterns for the segment duration of 200 ms is shown
in Fig.4.4(a).

We next present the method used for deriving a pattern from a 150 ms portion
of the signal with 60 ms before and 90 ms after the VOP. The signal is processed to
extract 30 frames o weighted cepstral coefficients. The first 16 frames are retained
and the remaining 14 frames are averaged to get the other 4 framesin the 20 frame
pattern, as shown in Fig.4.4(b).

Finally we consider a 100 ms portion of the signal with 20 ms before and O ms
after the VOP. This signal is processed to extract 20 frames using a frame size of 20
ms and a shift of 5 ms. All the 20 frames are used as the pattern frames, as shown
in Fig.4.4(c).

In our studies, we compare the performance of subnets and modular networks for

different segment durations.
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Figure 4.4: Derivation of fixed duration patterns from speech signal of SCVs using
different segment durations. The method used for derivation of a pattern of 20
frames is shown for the segment duration o (a) 200 ms, (b) 150 ms, and (c) 100 ms.
The portions o the speech signal around the vowd onset point (VOP) processed,
the frames extracted, and the pattern frames derived from the extracted frames are
indicated for each duration. For the duration o 200 ms, 40 frames are extracted
and the adjacent frames are averaged. For the duration of 150 ms, 30 frames are
extracted. Thefirst 16 framesare retained and the other 14 frames are averaged as
shown to obtain the remaining 4 frames of the pattern. For the segment duration
of 100 ms, 20 frames extracted from speech signal are used as the pattern frames.



4.6 Classfication Studies and Results

4.6.1 Implementation details

Isolated utterancedatafor the 80 SCV classeswas collected from three male speakers.
For each class, 12 tokens were collected from each speaker. In the studies presented
in this chapter, the training data for a class includes four tokens from each speaker.
The remaining eight tokens from each speaker for a class are used as the test data.
A pattern consisting of 20 frames with 12 weighted cepstral coefficients per frameis
derived by processing the speech signal with a particular duration around the vowe
onset point. The vowd onset points in the SCV utterances are detected using the
method presented in the previous chapter.

We consider the multilayer perceptron (MLP), time-delay neural network (TDNN)
and discrete hidden Markov model (DHMM) to build the subnets. The MLP model
has 70 nodes in thefirst hidden layer and 50 nodes in the second hidden layer. The
TDNN model has a single hidden layer with 20 nodes. The DHMM is a 5-state,
left-to-right model.

Inour first set of studies, weevaluate the performance of subnets based on different
grouping criteria and built using different models. Patterns derived using a segment
duration of 200 ms are used in these studies. In the second set o studies, we compare
the performance of subnets for different segment durations. Finally we study the
performanceof modular networks. In the remaining part o this section, we describe
these studies and present the results. The studies carried out in this chapter are listed

in Table-4.2.

4.6.2 Performance of Subnets using Different Models

The aim o the studies presented in this subsection is to evaluate and analyze the

classification performance o subnets based on different grouping criteria and built



Table4.2: List of studieson development of modular networks
for classificationof large number of SCV classes.

1. Comparison of the performance of subnets for subgroups of SCV
classes formed using different grouping criteria.

2. Comparison of the performance of subnets using MLP, TDNN
and DHMM models.

3. Analysisaf the performance of subnets based on different group-
ing criteria to identify the sources of errors in classification.

4. Comparison of the performance of subnets based on different
grouping criteriafor each SCV class.

5. Comparison and analysis o the performance of subnets for dif-
ferent segment durations.

6. Performance of modular networks based on different grouping
criteriaand for different segment durations.

7. Comparison of the performance of modular networks using dif-
ferent data sets for training the subnets.

8. Comparison of the performance of modular networks based on
different grouping criteriafor each SCV class.

using different classification models. In these studies, we consider patterns derived
from 200 mslong segments. The training and the test data sets of a subnet includes
the patterns belonging to the classesin its subgroup only. The performance of subnets
for different subgroups is given in Tahle-4.3. The performance is given a percentage
of the total number of patternsin a data set that are correctly classified by a subnet.

Grouping based on POA gives the best average performance irrespective d the
model used. The average performance for the other two groupings is approximately
same. The better performance for grouping based on POA can beexplained as follows.

The subnets for POA subgroups haveto be trained to discriminate only the manners



Table 43 Classification performance d subnets for subgroups d SCV
classes formed using different grouping criteria. The performance for
subnets based on MOA grouping is given in (a), for subnets based on
POA grouping in (b) and for subnets based on vowe grouping in (c).
The performance is given for different models. Subnets based on POA
grouping give the best average performance. Subnets built using MLP
models give a better performance compared to the other models.

(a) Performance of subnets based on MOA grouping.
MOA Training Data Test Data
Subgroup | MLP | TDNN | DHMM | MLP | TDNN [ DHMM
UVUA 981 | 80.0 979 771 | 650 57.9

UVA 981 | 798 95.8 700 | 588 46.3
VUA 942 | 675 86.0 629 | 504 45.8
VA 910 | 710 86.9 56.3 | 475 37.5

Average | 954 | 742 917 66.6 | 544 46.9

(b) Performance of subnets based on POA grouping.

POA Training Data Test Data
Subgroup | MLP | TDNN | DHMM | MLP | TDNN | DHMM
Vear 95.6 74.2 915 54.6 46.7 48.3

Alveolar | 950 | 806 9.0 842 | 646 66.3
Dental 933 | 719 94.4 779 | 56.7 55.8
Bilabial 917 | 760 925 | 80.0 | 588 58.8
Average | 939 | 75.7 93.6 742 | 56.6 57.4

(a) Performance o subnets based on Vowd grouping.

Vowd Training Data Test Data
Subgroup | MLP | TDNN | DHMM | MLP | TDNN | DHMM
/a/ 927 | 820 9.1 | 615 | 604 50.0
/i/ 932 | 672 920 | 666 | 427 40.1
Ju/ 22 | 674 89.3 688 | 526 41.7
Je/ A0 | 799 89.3 620 | 55.7 36.5
/o/ 917 | 771 90.6 67.7 | 56.8 45.3
Average | 928 | 747 91.3 65.1 | 53.6 42.7




of articulation and the vowels. The subnets for theother groupings haveto betrained
todiscriminatethe placesaof articulation. It ismoredifficult to discriminatethe places
of articulation because the necessary information is mainly present in the transition
regions with dynamic spectral characteristics.

An analysis of the performance of subnets was carried out to determinethe dis-
tribution of errors due to misclassification of each of thefollowing: (1) POA only, (2)
MOA only, (3) vowd only, (4) POA and MOA, (5) POA and vowel, (6) MOA and
vowel, and (7) POA, MOA and vowel. The distribution of errors for the MLP based

subnets is given in Table-4.4.

Table 44: Distribution of errors in classification performance of MLP
based subnets for different grouping criteria, due to misclassification of
one or more of the following three features of an SCV: (1) Manner of
articulation (MOA) of the consonant, (2) Place of articulation (POA)
of the consonant, and (3) Vowd. For a particular grouping criterion,
the SCV classes in a subgroup have one of these features common to
all of them. Therefore the errors in the performance of subnets based
on a particular criterion can be due to misclassification of the other two
features only. It can be noted that for the criteriadof MOA and Vowd,
more than 50% o theerrors are due to misclassification of POA feature

only.

Grouping | Source of Percentage of

Criterion | Errors Errors

MOA POA only 55.3
Vowd only 22.7
POA and Vowd 22.0

POA MOA only 39.9
Vowd only 35.1
MOA and Vowd 25.0

Vowd MOA only 22.7
POA only 50.1
MOA and POA 27.2

It can be noted that about 50% of the total number of errors in the performance

for the grouping criteriaof MOA and Vowd are due to misclassification of the POA



only. This analysis supports the explanation given above.

It isobserved that the subnets for the unaspirated SCV classes (UVUA and VUA
subgroups) give a better performance than the corresponding subnets for the aspi-
rated SCV classes (UVA and VA subgroups). The poorer performance for the aspi-
rated SCVs can be due to absence of the necessary discriminatory information in the
patterns derived. The beginning of the aspiration region may have been identified as
the vowd onset point. It is necessary to evolve a better techniquefor deriving the
patterns from the aspirated SCV utterance data.

The results o the studies indicate that the subnets using multilayer perceptron
model gave a better performance on the test data compared to TDNN and DHMM
models. The poorer performanced the TDNN model can be dueto the small number
of hidden nodes used. This is indicated by its poor performance for the training
data. It may be necessary to increase the number d hidden nodes to improve the
performance. The TDNN models with large number of hidden nodes require long
training periods and large training sets. The better generalization capability o the
MLP model compared to DHMM isindicated by the differencein their performance
on thetest datathough their performanceon the training data is approximately same.

We examine the performance of subnets on the test data when the class with
the second largest output value is also considered in deciding the class. The average
performance o subnets for different grouping criteria is given in Table-4.5 for two
cases of deciding the class: (1) Correct classis the class with the largest value among
the outputs of asubnet (Case-1) and (2) Correct class is amongst the classes with the
largest and the second largest output valuesof asubnet(Case_2). It can be noted that
there is an increase of about 12 to 22% in the performance for Case_2 over Case_l
indicating the similarity even amongst the classes in a subgroup.

The classification performance of a subnet for patterns belonging to an SCV class



Table 4.5: Average performance d subnets based for the two cases of
classification criterion: (1) Case-1that an input pattern iscorrectly clas-
sified if itsclass is the class with the largest value amongst the outputs
d asubnet, and (2) Case2 that an input pattern is correctly classified
If its class is amongst the classes with the largest and the second largest
output values & asubnet. The increase in the performance for Case2
over Case_1 indicates that for many patterns that are incorrectly classi-
fied by asubnet, the class with the second largest value is the correct

class.
Grouping Case_l Case_ 2
Criterion | MLP| TDNN [ DHMM| MLP | TDNN [ DHMM
MOA 66.6 | 544 46.9 795 | 722 65.5
POA 742 | 56.6 57.4 86.0 | 785 74.8
Vowe 65.1 | 53.6 42.7 787 | 67.8 60.2

depends not only on thecharacteristicsof these patterns but also on thecharacteristics
d the patterns belonging to the other classes in the subgroup. The shape d the
decision surface for a class depends on the other classes for which asubnet is trained.
Therefore the performance d subnets on the test data of aclass can vary for different
grouping criteria. For example, the class /ka/ belongs to the UVUA subgroup for
grouping based on MOA, to the'Velar' subgroup for grouping based on POA and to
the '/a/* subgroup for grouping based on vowd. The constitution d each o these
subgroups is different and hence the decision surface for the class /ka/ will be of
differentshape in their subnets. The performanced subnets for each of the classesin
their subgroups is given in Table-4.6. Each entry in the table shows the percentage
o the total number of test patterns of an SCV class that are correctly classified by
itssubnet. Here we consider the performance of subnets built using the MLP model.
It can be noted from Table-4.6 that subnets of the three grouping criteriado not give

the same performance for many classes.



Table4.6: Classification performance (in percentage) of subnets based
on different grouping criteriafor test data of each SCV class.

SCV | Grouping Criterion || SCV | Grouping Criterion
Class| MOA | POA | Vowd || Class| MOA | POA | Vowe
ka 58 83 42| ta 92 92 83
kha 92 67 92| tha 92 83 58
ga 67 83 . 83| da 83 67 67
gha 50 50 251 dha 67 75 58
ki 58 50 58| ti 75 83 58
khi 50 67 58 || thi 67| 100 58
gi 42| 33 67| di 67| 67 42
ghi 33 42 30 | dhi 67 67 58
ku 67 75 83| tu 83| 100 92
khu 75 58 67 || thu 58 92 67
gu 50| 50 25| du 67| 92 75
ghu 33 17 33 || dhu 58 67 58
ke 75 67 %0 | te 92 92 100
khe 58 42 42 || the 67 92 75
ge 50 42 67 || de 50 92 58
ghe 58 42 42 || dhe 92 92 67
ko 75 67 922 |l to 75 83 75
kho 67| 58 75 || tho Bl 92 50
go 42 42 67 || do 83 83 83
gho 67 58 17 || dho 75 75 67
ta 100 | 100 100 || pa 92 92 75
tha 42 58 42 || pha 92| 100 58
da 67 67 42 || ba 83 83 75
dha 67 92 50 || bha 67 75 33
ti 92 Is) 67 || pi 50 42 67
thi 75| 100 92 || phi 92 83 92
di 75 3 58 || bi 75 75 75
dhi 58 83 42 || bhi 42 | 100 92
tu I6) 83 67 pu 83 67 83
thu 67 67 50 || phu 42 67 75
du 75 42 75 || bu 92 83 75
dhu 42 I6) 92 || bhu 75 58 83
te I6) 92 83 | pe 83| 100 67
the 16 100 58 p he 67 92 83
de 42 58 8 || be 58 58 33
dhe 50 | 100 75 || bhe 75 83 83
to 67| 75| 67 |po B R
tho 75 IS 83 pho 75 92 92
do 42 67 58 || bo 50 75 58
dho 42 67 50 || bho 83 83 75
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The studies presented in this subsection are concerned with evaluation and anal-
ysis of the performance o subnets based on different grouping criteria and using
different classification models. Fixed duration patterns derived from the speech sig-
nal with the duration o 200 ms around the vowe onset points have been used in
these studies. In the next subsection, we consider the performance o subnets using

patterns derived using different segment durations.

4.6.3 Performance of Subnets for Different Segment Durations

In this subsection we study the effects of the durations used for deriving the patterns
on the performance of subnets. As mentioned in section 4.5, three different durations
are considered. The performance o subnets for the segment duration of 200 ms
was given in the previous subsection. Similar studies have been carried out for the
segment durations of 150 ms and 100 ms. These studies have been limited to the
multilayer perceptron models because these models have given a better performance.
The performance of subnets for different segment durations is given in Table-4.7.

The performance for subnets based on MOA grouping indicates that there is
a significant decrease in the performance for aspirated SCV classes (UVA and VA
subgroups) when the segment duration is reduced from 200 ms to 150 ms and 100
ms. The performance of subnets for POA subgroups shows that reduction of duration
from 200 ms to 150 ms has affected the performance for subgroups other than the
‘Velar' .subgroup. The decrease in performance is higher for adl the subgroups when
the duration is reduced to 100 ms. It isobserved from the performanced subnets for
vowe subgroups is not affected significantly when the duration is reduced from 200
ms t0 150 ms. When the duration is reduced to 100 ms, thereis a significant decrease
in the performance for all subgroups with an exception of the ‘/a/’ subgroup.

In order to determine the effects d the segment durations on the performance




Table 47 Classification performance d subnets for different segment
durations. The performance for subnets based on MOA grouping is
givenin (a), for subnets based on POA groupingin (b) and for subnets
based on vowd grouping in (c). Thesegment duration of 200 ms gives
a better performance compared to the durations d 150 ms and 100
ms.

(a) Performance o subnets based on MOA grouping.
MOA I Training Data l Test Data - |
Subgroup | 200ms | 150ms | 100ms | 200ms | 150ms | 100ms
UVUA 98.1 99.2 90.6 771 64.1 62.7

UVA 981 | 988 97.9 700 | 404 310
VUA 942 | 996 | 1000 | 629 | 658 | 640
VA 91.0 | 99.2 988 | 563 | 438 35.0

Average | 954 99.2 9.1 66.6 53.5 48.2

(a) Performance d submnets based on POA grouping.

POA Training Data Test Data
Subgroup | 200ms | 150ms | 100ms | 200ms | 150ms | 100ms
Vda %6 | 996 975 | 546 | 608 | -51.5

Alveolar | 950 | 996 | 988 | 842 | 625 | 46
Dental 933 | 96 | 9.7 779 | 681 | 510
Bilabial 917 | 996 | 983.| 800 | 715 | 565
Average | 939 99.6 | 978 | 742 | 657 534

(a) Performance of subnets based on POA grouping.

Vowd Training Data Test Data
Subgroup | 200ms | 150ms | 100ms | 200ms | 150ms | 100ms
/a/ 927 | 974 984 | 615 | 698 | 41
[/ 932 99.5 U3 | 666 | 635 | 313
/u/ 922 | 1000 | 979 688 | 630 | 458
/e/ 40 | 90 %4 620 | 615 | 417
/o/ 91.7 | 1000 | 958 677 | 695 | 404
Average | 928 | 99.2 96.6 65.1 | 655 | 446
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of subnets, the distribution of errors in classification is obtained. The distributions
for different grouping criteria are given in Table-4.8. This table gives the number of
errorsin classification performance df asubnet due to misclassification of oneor more

o the three features, namely, MOA, POA and vowd.

Table 48 Distribution of errorsin classification performance of
subnets for different segment durations.

Grouping | Source of Number of Errors
Criterion | Errors 200ms | 150ms | 100ms
MOA POA only 352 3% 515
Vowd only 146 280 217
POA and Vowd 142 218 263
POA MOA only 198 209 465
Vowd only 174 349 247
MOA and Vowd 124 100 188
Vowe MOA only 152 174 294
POA only 336 401 414
MOA and POA 182 88 355

The distribution o errors for MOA grouping indicates that when the duration is
reduced from 200 ms to 150 ms, the number o errors due to misclassification of vowel
has increased significantly. |t isobserved that many of these errors are for aspirated
SCV utterances. Thisindicates that the discriminatory information about vowe has
been lost in derivation of patterns for aspirated SCV data. When the duration is
reduced to 100 ms, the number of errors has increased due to misclassification of
POA as well as vowd.

The distribution for POA grouping indicates that the number of errors due to
misclassification of vowe has increased significantly when the duration is reduced to
150 ms. The number o errors due to misclassification o MOA has increased more
significantly than that due to misclassification of vowe for the duration o 100 ms.

This can be mainly due to the short duration of 20 ms before VOP being used in the
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duration o 100 ms.

The distribution o errors for vowel grouping indicates that the number of errors
due to misclassification & POA only is not much different for durations d 150 ms
and 100 ms. Therefore the increase in the total number o errors for duration o 100
ms is mainly due to misclassification of MOA.

Thestudies on performance of subnets for different ssgment durations have shown
that the duration of 200 ms gives the best average performance irrespective o the
grouping criterion. The decrease in the performance for the duration of 150 msis
mainly due to misclassification of vowel. The decrease in the performance for the
duration of 100 msisfound to be mainly due to misclassification of MOA and and to
a lesser extent due to misclassification of POA.

Thefocus o the studies presented so far has been on the performance of subnets
in classification of patterns belonging to the classes in their subgroups only. In the
next subsection, we study the performance of modular networksin deciding the class

d a pattern belonging to any of the 80 SCV classes.

4.6.4 Classification Performance of Modular Networks

In order to determine the class of a pattern belonging to any of the 80 SCV classes,
it is necessary to process the outputs of subnets in the modular network based on a
particular grouping criterion. The following method is used to determine the class.
Let A; bethelargest output value of theith subnet and N be the number of subnets
for a particular grouping criterion. Then the class with Ap,, = max { A; },1 =
1,2,...,N, can beassigned totheinput pattern. Because df the large number of classes
and similarity amongst several classes, the correct class may be the class with the
second largest output in a subnet or the class with the second largest value amongst

the A;s. This suggests that one can also consider the classes with the output values




that are close to that of Ama..- Let A;; and A;; be the largest and the second largest
output values of the ith subnet. Considering the M largest values amongst the set
of values { Ay, Az }, 1 =1,2,...,N, the performance of the modular networks can be
given for different values of M. In our studies, we give the performance for M = 1, 2,
3 and 4, cdled as Case-1, Case_2, Case_3 and Case-4, respectively.

We consider the performance of modular networks with subnets built using multi-
layer perceptron model only because the subnets built using this model gave the best
performance. The average performanceon the test dataof all the 80 SCV classes for
the modular networks based on different grouping criteriaand for different segments

durations is given in Table-4.9.

Table 49: Classification performance on test data of all SCV classes
for the modular networks based on different grouping criteria and for
different segment durations. The performance is given for four different
cases of classification criterion. The Case-M d classification criterion
corresponds to the case when the class o an input pattern is amongst
the classes of the M largest output values of all subnets in a modular
network. The modular networks for the POA grouping give a better
performance compared to other two groupings. The performancefor the
duration of 200 ms is better than that for the reduced durations. The
significant increase in the performancefor Case2 over Case-1 indicates
that for many patterns that are incorrectly classified by the modular
network, the class with the second largest value among 80 outputsis the

correct class.
Grouping | Segment Classification Criterion
criterion | Duration | Case-1 | Case2 | Case-3 | Case-4
MOA 200ms 29.2 50.2 59.0 65.3

150ms 222 38.2 48.3 54.4
100ms 19.0 31.3 40.8 47.2
POA 200ms 3.1 56.9 69.5 76.6
150ms 30.8 494 60.1 66.7
100ms 20.6 36.4 47.0 53.9
Vowe 200ms 30.1 47.5 58.8 63.6
150ms 214 37.0 49.8 59.3
100ms 13.0 24.9 330 37.9
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A performanceadf about 75% isobtained for the modular network when the classes
with the four largest output valuesamongst the80 SCV classes are considered. This
performance is significant considering the large number of classes and confusability
amongst several classes. The modular networks for the POA grouping give a better
performance compared to the other two groupings. It is also seen that the perfor-
mancefor the duration of 200 msis better than that for the reduced durations. This
behaviour in the performanced the modular networks reflects the performance o the
subnets. It isimportant to evolve techniques to reduce the number of errorsin clas-
sification at the level of subnets in order to improve the performance of the modular
networks.

It isobserved that the performanced the modular networksfor Case-1is muchless
than the average performance of the subnets. One o the reasons for this behaviour
is that each of the subnets is not trained to give low output values for the patterns
belonging to the classes of the other subnets. A study is carried out in which each
subnet istrained to givelow output valuesfor patterns (negative examples) belonging
to theclassesdf theother subnets. Thisstudy iscarried out for thesubnets built using
multilayer perceptron model and for the segment duration of 200 ms. A comparison
o the performanced the modular networks using subnets trained without and with
the negative examples included in their training data setsis given in Table-4.10.

It can be seen that the performancefor Case-1 increases by about 12 to 20% for
all the grouping criteria when the .negative examples are included. A performance of
about 50% can be obtained for the modular networksin classification of all the SCV
classes even when only the class with the largest value amongst the outputs for 80
classes is considered.

It has been observed earlier that the performance o subnets based on different

grouping criteriais not uniform for many o the SCV classes. A similar behaviour has
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Table 4.10: Comparison d the performanceon test data o all the SCV
classes for the MLP based modular networks without and with the
negative examples included in the training data sets o their subnets.
The comparison o the performance is given for different groupings
and for different cases of classification criterion. The performance
for Case-1 of classification criterion increases significantly when the
negative examples are included.

Without negative examples With negative examples
Grouping in training data in training data
criterion | Case-1 | Case 2 | Case.3 | Case-4 | Case-1 | Case2 | Case_3 | Case-4
MOA 29.2 50.2 59.0 65.3 49.8 59.7 65.6 69.8
POA 35.1 56.9 69.5 76.6 474 64.1 713 75.1
Vowd 30.1 475 58.8 63.6 50.6 64.6 700 73.3

also been observed in the performance d the modular networks. The performance
on test dataof each SCV class for the modular networks based on different grouping
criteria is given in Table-4.11. The performance is given for MLP based modular
networks and for the duration of 200 ms. The differencesin the performancesare sig-
nificant for many classes. For example, the modular network based on MOA grouping
gives a performance o 41% for the class /to/. The network based on POA group-
ing gives a performance o 75% and the network based on vowd grouping gives a
performance o only 16%.

It is also observed that the modular networks based on different groupings cor-
rectly classified different patterns in the test set o a class. Therefore, though the
average performance of different networks for a class is same, it is not necessary that
al of them correctly classified the same subset d patterns. A study has been carried
out to determinethe percentage o the total number of test patternsaof all the classes
that have been correctly classified by different number of networks. The results of

this study are presented for different segment durations in Table-4.12.



Table 4.11: Classification performance (in percentage) of modular networks based
on different grouping criteriafor test data of each SCV class.

SCV | Grouping Criterion | SCV | Grouping Criterion
Class| MOA | POA | Vowd | Class| MOA | POA | Vowd
ka 33 16 16| ta 50 50 58
kha 66 58 33| tha 58 50 33
ga 16 25 2| da 33 58 16
gha 0 16 0| dha 41 0 25
ki 8 8 0| ti 25 8 16
khi 25 25 33 || thi 33 58 50
gi 25 8 41| di 5| 3 16
hi 16 16 25| dhi 41 33 0
Eu 25 25 41| tu 53| 100 75
khu 41 33 33 || thu 5 66 50
gu 25 25 0 du 33 50 58
ghu 8 0 33| dhu 25 3 16
ke 50 50 41 || te 33 41 66
khe 16 0 8| the 0 58 25
ge 25 16 0| de 8 41 8
ghe 33 5 8 || dhe 58 58 5
ko 33 50 41 || to 41 7 16
kho 25 33 41 || tho 41 83 33
go 25 16 25| do 16 58 41
gho 25 25 8 | dho 33 58 0
ta 41 83 50 pa 33 58 58
tha 16 16 0 pha 33 41 41
da 41 16 16 || ba 25 16 66
dha 16 25 16 || bha 33 33 8
ti 41| 4| 4 |pi 8| 0| =
thi 50 41 S0 | phi 66 66 66
di 25 0 0 || bi 16 16 8
dhi 0 25 8 | bhi 25 5 33
tu 66 50 25 pu 16 33 58
thu 33 25 8 || phu 33 33 25
du 16 8 33 | bu 58 50 66
dhu 16 3 50 || bhu 25 0 66
te 50 41 33 | pe 8 66 25
the 33 41 41 phe 25 66 50
de 25 41 8 || be 25 8 16
dhe 8 25 41 || bhe 41 25 33
to 8 25 25 | po 25 58 0
tho 33 8 16 || pho 8 50 50
do 8 41 16 | bo 16 16 16
dho 25 25 8 | bho 41 33 3




Table 4.12: Percentage of the total number of test patternsof
all the SCV classes that have been correctly classified by dif-
ferent number of modular networks. Only a small percentage
of the patterns have been correctly classified by all the three
or even two of the three networks. This behaviour isobserved
for al the three durations.

All Only Two | Only One None
Segment | Three d the o the o the
Duration | Networks | Networks | Networks | Networks
200ms 8.7 18.2 3.7 414
150ms 47 156 29.0 50.7
100ms 24 10.7 23.8 63.1

The above results clearly show that only a small percentage of the total number
of test patterns have been correctly classified by all the three modular networks. It
has been observed that even though all the three networks do not give the largest
output value for the class of a given pattern, all of them give a significantly large
valuefor that class. Thisisillustrated in Fig.4.5, where the outputs of subnets based
on the three grouping criteria for an input utterance of /ka/ are shown. The classes
corresponding to the indices used in thisfigure are given in Table-4.13.

It can be seen from Fig.4.5 that only the modular network based on MOA group-
ing correctly classifiesthe input utterance because the output for the class /ka/ (with
theclassindex of 1) isthelargest among the outputs for all 80 classes. The networks
based on POA and vowel groupings do not classify correctly. Even though the out-
puts of subnets in these two networks are not the largest for the class /ka/, they are
significantly large. It is also interesting to note that though the POA grouping gives
the largest output value for the class /ta/ (with the class index of 9), the outputs of
subnets based on MOA and vowd groupings for that class are insignificant. These
observations suggest that it is possible to improve the performance by properly com-

bining the evidences available in the outputs of subnets based on different grouping
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Figure 4.5: Outputs o subnets based on different grouping criteria
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for theclass /ka/ (with theindex of 1) islargefor all the threegrouping
criteria.
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Table 4.13: The classes corresponding to the indices used in Fig.4.5.

Index | Class || Index | Class |[ Index | Class || Index | Class || Index | Class
1 ka 17 [ ki 33 | ku 49 | ke 65 | ko
2 kha 18 | khi 34 | khu 50 | khe 66 | kho
3 ga 19 | gi 35 | gu 51 | ge 67 | go
4 gha 20 | ghi 36 | ghu 52 | ghe 68 | gho
) ta 21 ti 37 | tu 53 | te 69 |to
6 tha 22 | thi 38 | thu 54 | the 70 | tho
7 da 23 [ di 39 |du 55 | de 71 | do
8 dha 24 | dhi 40 | dbu 56 | dhe 72 | dho
9 ta 25 ti 41 tu 97 | te 73 to

10 | tha 26 | thi 42 | thu 58 | the 74 | tho
11 da 27 | di 43 | du 59 | de 75 | do
12 | dha 28 | dhi 44 | dhu 60 |dhe | 76 | dho
13 pa 29 | pi 45 | pu 61 pe 77 | po
14 | pha 30 | ph 46 | phu 62 | phe 78 | pho
15 | ba 31 | bi 47 | bu 63 | be 79 | bo
16 bha 32 | bhi 48 | bhu 64 | bhe 80 | bho

criteria. In the next chapter, we propose a constraint satisfaction neural network

model to combine evidences in the outputs of the al the subnets.

4.7 Summary and Conclusions

In this chapter, we have addressed the issues in developing classifiersfor all the SCV
classes in Indian languages. We have considered different criteria for grouping the
classes and developed modular neural networks for classification. Isolated utterance
data has been used for training and testing. Different segment durations have been
considered for deriving the fixed duration patterns from isolated utterances. The
major results of the studies carried out in this chapter are summarized in Table-4.14.

The performance of subnets based on differentgrouping criteria has been evaluated
for different classification models. The subnets using multilayer perceptron model

gave a better performance compared to the time delay neural network and hidden



Table 4.14: Summary of the major results of the studies
on development of modular networks for all the SCV
classes.

. Different criteria based on the phonetic description of the SCV classes have
been considered for grouping the 80 SCV classes o Hindi into subgroups.

. Modular networks have been developed for different grouping criteria using
MLP, TDNN and DHMM models.

. The classification performance of subnets based on different grouping criteria
and using different models has been compared. The subnets based on POA
grouping gave the best average performance. The subnets using MLP models
gave a better performance compared TDNN and DHMM models.

. The analysis of the performance of subnets has shown that about 50% o the
total number of errors is due to misclassification of the place of articulation o
stop consonants.

. Theanalysisd the performance d subnets on test data sets o each SCV class
has shown that subnets based on different grouping criteria gave a different
performance for many SCV classes.

. The performance of subnets has been compared for different segment durations
used in deriving the patterns from isolated utterances. The performance for
theduration of 200 msis better than the performance for the durations of 150
ms and 100 ms.

. The modular networks in classification d all the SCV classes gave a signifi-
cantly poorer performance compared to the performance of the subnets. This
ismainly due to the large number of classesand also due to the simple method
used for processing the outputs of the subnets. The performa:ce of the mod-
ular networks reflects the performance o the subnets used in them.

. The modular networks based on different grouping criteria gave different per-
formances on test data sets of each of SCV class. This indicates the need for
combining the evidences available in the outputs of al the subnets.




Markov models. The performance o subnets based POA grouping gave a better
performance compared to the other two grouping criteria. The duration d 200 ms
used for deriving the fixed duration patterns from isolated utterances has given a
better performance than the durations of 150 ms and 100 ms. The analysis o the
results has shown that the performance for the aspirated SCV classesis significantly
less than the performance for the unaspirated SCV classes. It is necessary to evolve
better techniquesfor deriving patternsfrom aspirated SCV utterances. The modular
neural network architecture allows one to use suitable preprocessing methods for
different subgroups to derive the patterns and improve the performance.

It is observed that the performance of the modular networks is significantly less
than the average performance of the subnets. This is mainly because of the simple
method used to process the outputs of the subnets. In the next chapter, we propose
a constraint satisfaction model in which the knowledge about similarities among the
SCV classes is represented in the form of constraints and they are used to combine

the evidences in the outputs o the subnets.



Chapter 5

CONSTRAINT SATISFACTION
MODEL FOR CLASSIFICATION OF
SCV UTTERANCES

5.1 Introduction

In the previous chapter, an architecture based on modular neural networks has been
developed for large number d classes. In that architecture the 80 SCV classes are
divided into subgroups and a separate neural network (subnet) is trained for each
subgroup. For classification of a given SCV utterance, the pattern derived from it is
input to all the subnets, and the outputs of the subnets are processed to assign the
class d the largest output valueto it. Though the classification performance d the
subnets for the classesin their subgroups is high (about 65 to 75%), the performance
d the modular networks is significantly low (about 30 to 35%). The main reason is
that the outputs of the subnets are combined by simply choosing the class with the
largest output value. Becausedf the similarities among severa classes, many classes
in each subgroup are close to one another. In addition, each subnet is not trained to
discriminate all the classes. Confusability among the classes can be resolved to some
extent by using the knowledged the classes. This knowledge can be incorporated as
constraints to be met by these classes. A constraint satisfaction model [80] that tries
to satisfy as many of these constraints as possible can be used to process the outputs

of the subnets. The advantage is that it will work even if some of the constraints
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derived from acoustic-phonetic knowledge are weak, conflicting and erroneous.

In this chapter we propose a feedback neural network that contains a node for
each of the 80 SCV classes. The weight for the connection between a pair of nodesin
the network is determined based on the similarity between the classes of the nodes.
The similarity between two SCV classes is determined from the knowledge about the
differences in their speech production features and also from the confusabili ty between
them indicated by the performance of the subnets.

The studies presented in the previous chapter have shown that the subnets based
on different grouping criteria give different performance for an SCV class. In the
present chapter, we propose a constraint satisfaction model consisting of a feedback
network for each of the three grouping criteria. The model combines the multiple
evidences available from the subnets of the three criteriafor an SCV utterance to
decide its class. In this model, the multilayer perceptron network for each subnet
is interpreted as a set of nonlinear filters tailored to its subgroup. The output of
the filtersfor an utterance is viewed as a feature vector representing the utterance.
Thedistribution of the feature vectorsfor a class may be different for each grouping
criterion. The feature vector of an utterance is given as input to the feedback net-
work corresponding to that group. Then the constraint satisfaction model is allowed
to relax to an equilibrium state. The resulting state represents a situation where
the constraints are satisfied to maximum extent for the given input to the feedback
networks. A stable state is expected to be close to the correct one even though the
constraints are weak due to partial knowledge used in deriving the constraints, and
also even if the representation of the discriminatory information in thefeature vectors
is poor.

The organization of this chapter is as follows. The next section explains the

interpretation of multilayer perceptrons as nonlinear feature extractors. Section 5.3
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describes the method used for deriving the weightsfor the connectionsin thefeedback
networks. The proposed constraint satisfaction model is described in Section 5.4.
The operation of the constraint satisfaction model, the relaxation strategy and the
interpretation of the stable state of the network are also discussed in this section.
The classification of SCV utterances by the constraint satisfaction model is presented

in Section 5.5.

5.2 Neural Networksas Nonlinear Feature Extractors

A multilayer perceptron is a Multilayer Feedforward Neural Network (MLFFNN).
The MLFFNN trained for a subgroup of classes is considered as a filter designed in
such a way that it provides discrimination among the classes. One such network is
used for each subgroup consisting of about 16 or 20 SCV classes depending on the
grouping criterion used. Thus there are 16 or 20 filters in each subgroup and 80
filtersfor each grouping criterion. It may be noted that each SCV class occurs with a
different subgroup for each o the threegroupings. We can also interpret the network
as afilter set tailored to the classesin asubgroup. Thisis like Gabor filters used for
texture classification where thefiltersare tailored to the characteristicsd the texture
classes under consideration [81]. The characteristics to be optimized in the case of
Gabor filters are resolution, orientation and spatial frequency.

The shape of the decision surface formed for a class by an MLFFNN will vary
depending on the other classes in the subgroup. This behaviour is illustrated for an
arbitrary 2-dimensional pattern space in Fig.5.1. In this figure the regions for 10
classes are shown. We consider one class for which there are eight classes that are
closetoit. Theregion for the class under consideration is shown in dark shade. When
this class is grouped with three other classes that are close to it, the decision surface

formed for the class is dependent on which three classes are present in the subgroup.
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Figure 5.1 Illustration of the effect of grouping a class with different sibsets of
classes on the decision surfaces formed. An arbitrary 2-dimensional pattern space is
used to explain the effect of different ways of grouping. The region of a class under
consideration is shown in dark shade. The regions of the classes with which the
class under consideration is grouped are shown in a different shade. Typical decision
surfaces expected to be formed around the region of the class under consideration
are shown for 4 different subsets of classes with which the class is grouped.




Figure 5.1 lllustration of the effect of grouping a class with different svbsets of
classes on the decision surfaces formed. An arbitrary 2-dimensional pattern spaceis
used to explain the effect of different ways of grouping. The region of a class under
consideration is shown in dark shade. The regions of the classes with which the
class under consideration isgrouped are shown in adifferent shade. Typical decision
surfaces expected to be formed around the region o the class under consideration
are shown for 4 different subsets of classes with which the class is grouped.



Typical decision surfaces that are expected to be formed for MLFFNNSs trained for
four different subgroups containing the class are shown in the figure. The shapes d
the decision surfaces for the class are different in each o the MLFFNNSs. Therefore
the different MLFFNNSs are likely to give different output valuesfor the class of the
input pattern.

This behaviour has been observed in the outputs of the subnets. The outputs of
the subnets for an input utterance of the class /ka/ are shown in Fig.5.2. It can be
seen that the output value for the class /ka/ (with the class index of 1) is different
for the three subnets.

Normally the trained MLFFNNs are used directly as classifiers for subgroups of
classes. But the concept dof filter interpretation providesgreater flexibility and robust-
ness in the development of a classifier for all the SCV classes. Once the MLFFNNs
are trained, then they are used as nonlinear filters. Theoutputs of thefiltersfor each
subgroup for a given training sampleis considered as a feature vector. Thedistribu-
tion of the feature vectorsis obtained for each class from a second training set data.
The distribution is represented in termsd a mean vector and a variance parameter
derived from the feature vectors for the class.

The outputs d the sets d filters designed in thissection are input to the feedback
networks in the constraint satisfaction model. The next section will describe the feed-
back networks and explain the method o determiningthe weights for the connections
in the networks. These weights represent the constraints, and they are derived using

the acoustic-phonetic knowledge and the performance statistics o the subnets.

5.3 Feedback Networks for Different Grouping Criteria

We first build three different feedback networks, one for each of the three grouping

criteria. Since the SCV classes within a subgroup have been designed to compete
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Figure 5.2: Difference in the outputs of subnets based on different.
grouping criteria for an input utterance belonging to the SCV class
/ka/. It can be noted that the output valuesfor the class /ka/ (with
the class index of 1) are different for each grouping criterion. Thisis
mainly due to different constitution of the subgroups containing the
class /ka/ for different grouping criteria



amongst themselvesduring training d the MLFFNN for that subgroup, we provide
excitatory connections between the nodes corresponding to the classesin a subgroup.
All the connections across the subgroups are made inhibitory. The weights for the
excitatory and inhibitory connections have been derived from the confusion matrices
obtained from the classification performance o subnets.

We first obtain the confusion matricesfor different manners o articulation, dif-
ferent places dof articulation and for different vowds The confusion matrix for dif-
ferent manners o articulation (MOAs) o stop consonants in SCVs is obtained as
follows. We determine the percentage o the total number d patterns belonging to
the classes with a particular MOA, say Unvoiced-Unaspirated (UVUA), that were
classified as belonging to the classes in different manner subgroups, namely, UVUA,
Unvoiced-Aspirated (UVA), Voiced-Unaspirated (VUA) and Voiced-Aspirated (VA).
The confusion matrix for different mannersof articulation isgiven in Table-5.1(a) be-
low. The confusion matrix for different placesof articulation is given in Table-5.1(b).
The confusion matrix for different vowelsin SCVs is given in Table-5.1(c).

The confuson matrices are used to derive symmetric similarity matrices. The
similarity matrix for different manners of articulation is obtained as follows. From
Table-5.1(a), it is noted that 2.5% o the total humber of patterns belonging to the
SCV classes with UVUA as the MOA are classified as belonging to the classes with
UVA as the MOA, and 3.1% o the total number o patterns belonging to the the
classes with UVA are classified as belonging to the classes with UVUA as the MOA.
On an average, 2.8% o the total number o patterns belonging to the classes with
UVUA and UVA as MOA are misclassified due to the confusion between these two
manners. The average percentage is used to determine the similarity measure in the
range 0.0 to 1.0. The similarity between UVUA and UVA is indicated as 2.8/100

which is rounded to 0.03. The similarity matrix for different manners of articulation
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Table5.1: Confusion matricesfor (a) different mannersd articulation
of stop consonants in SCVs, (b) different places of articulation of stop
consonants in SCVs and (c) different vowelsin SCVs.

(@) Confusion matrix for different manners

of articulation.
MOA | UVUA | UVA [ VUA | VA
UVUA | 86.9 2.5 7.7 | 29
UVA 31 842 | 44 | 83
VUA 4.2 3.3 | 783 | 14.2
VA 0.4 7.9 9.6 | 821

(b) Confusion matrix for different places
o articulation.

POA Velar | Alveolar | Dental | Bilabial
Velar 72.1 9.0 7.1 11.8
Alveolar [ 6.0 75.4 7.3 11.3
Dental 8.1 12.9 67.7 11.3
Bilabial 4.2 75 8.5 79.8

(c) Confusion matrix for different vowels.
Vowel | /a/ | /if | [u/ | [e/ ) [o/
Ja/ 89.3| 1.0 | 29 | 0.8 | 6.0
/i/ 05 (8.7 31 |99} 0.8
fu/ 1.3 | 1.6 {823 1.3 }13.5
/e/ 1.3 168 | 13 190.3( 0.3
Jo/ 44 | 00 | 188 0.0 | 76.8

is given in Table-5.2(a), for different places of articulation in Table-5.2(b) and for
different vowels in SCVs in Table-5.2(c).

The similarity measures are used to determine the weights for the excitatory and
inhibitory connections in thefeedback networks. An excitatory connection is provided
between nodes o two SCV classes within a subgroup if they differ in only MOA or
POA or vowd characteristic. The weight of an excitatory connection is equal to the
sirnilarity measure between the differing production features of the two classes. For
example, in grouping based on MOA, the SCV class /ka/ belongs to UVUA subgroup.
Of the 20 SCV classes present in this subgroup (/ka/, /ta/, /ta/, Ipal, [ki/, /ti/,




Table 5.2: Similarity matricesfor (a) different manners of articulation
of stop consonants in SCVs, (b) different places of articulation of stop
consonants in SCVs and (c) different vowelsin SCVs.

(a) Similarity matrix showing the closeness
between different manners of articulation.
MOA UVUA | UVA | VUA | VA

UVUA | 087 | 0.03 | 0.06 | 0.02
UVA 0.03 | 0.84 { 0.04 | 0.08
VUA 0.06 | 0.04 | 0.78 | 0.12
VA 0.02 | 0.08 | 0.12 {0.82

(b) Similarity matrix showing the closeness
between different places of articulation.

POA Vela | Alveolar | Dental | Bilabial
Velar 0.72 0.08 0.08 0.08
Alveolar | 0.08 0.75 0.10 0.09
Dental 0.08 0.10 0.68 0.10
Bilabial | 0.08 0.09 0.10 0.80

(c) Similarity matrix showing the closeness
between different vowels.

Vowd | ja/ | fil | fu/ | [el | [o/
/a/ 0.89 | 0.01 | 0.02 | 0.01 | 0.05
/i 0.01 | 0.86| 0.02 | 0.08 | 0.00
Ju/ 0.02 | 002 | 082 | 0.01 0.16
le/ 0.01 | 0.08 | 0.01 | 0.90 | 0.00
/o/ 0.05 | 0.00 | 0.16 | 0.00 | 0.77

J4i/, Ioif, [kuf, v/, Jwaf, [puf, [ke/, [te], [te], [pe], [ko], [to], [to] and [po]),
an excitatory connection is provided between /ka/ and each of the following seven
classesonly : /ta/, /ta/, Ipal, [ki/, /ku/, /ke/ and /ko/. The remaining 12 classes
in this subgroup differ with /ka/ in both POA and vowel, and hence no connection
is provided between the nodes o /ka/ and these 12 classes. The weight for the
excitatory connection between /ka/ and /ki/ is 0.01 which is the similarity measure
between vowels /a/ and /i/ as given in Table-5.2(c).

An inhibitory connection is provided between classes in different subgroups only



if the two classes differ either in MOA or POA or vowd only. For the earlier example
d class /ka/ in the grouping based on MOA, an inhibitory connection is provided
between /ka/ in UVUA subgroup and each o the following classes: /kha/ in UVA,
/ga/ in VUA and /gha/ in VA subgroup. All the other classes in UVA, VUA and
VA subgroups differ with /ka/ not only in MOA but alsoin POA or/and vowel. The
weight for an inhibitory connection isinversely proportional to the similarity measure
between the differing production features of the two classes. If the similarity measure

is C (in the range 0.0 to 1.0), then the inhibitory weight W is assigned as follows:

1
100+« C

(5.1)

If the closeness measure C isless than 0.01, then the corresponding inhibitory weight
is assigned as -1.0. The weights of the connectionsfor the class /ka/ in the feedback
networks for different grouping criteria are given in Table-5.3.

The connections in the feedback network for the grouping criterion of POA are
illustrated in Fig.5.3. The excitatory connections for the class /ka/ in the 'Velar'
subgroup are shown in Fig.5.3(a) and the inhibitory connections for the class are
shown in Fig.5.3(b).

The main function o each feedback network is to enhance the evidence available
from thefilters for the class of the input utterance by giving positive contributions
fromevidences for the classes close toit in a subgroup, and to reduce the evidence for
the classes which are in the other subgroups but are close to it. The weights of the
connections based on similarities among classes help thefeedback network to perform
its function.

Each unit in a feedback network is associated with a mean vector i and a variance
parameter o representing the distribution o feature vectors for the class d the unit.
The mean vector and the variance parameter are obtained from a second training set

data. A training pattern belonging to the classd the unit isinput to the subnet for
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(a) Excitatory connections for theclass /ka/ in the POA feedback network

Alveolar Dental

~—--o /pa/

vdar ' Bilabial

(b) Inhibitory connectionsfor theclass /ka/ in the POA feedback network

Figure 5.3: Connections for the class /ka/ in the POA feedback network.

The excitatory connections for the class /ka/ in the'Velar' subgroup are
shown in (a). The inhibitory connections for the class /ka/ are shown in

(b).
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Table5 3 Illustration of weightsof connections
for class /ka/ in the feedback networks for dif-
ferent grouping criteria.

Grouping Excitatory Inhibitory
Criterion Connections Connections
Class [ Weight | Class | Weight
MOA /ta/ 0.08 | /kha/|-0.33
/ta/ 0.08 /ga/ |-0.16

/pal (010 ] ha/ | -0.50
/Flj(i/ 0.01 fghe/
/ku/ 0.02
/ke/ 001
/ko/ | QO

POA /kha/ | 0.0 | /ta/ |-0.125
/ga/ Q0% | jta |-0.125
Jki/ 001
/ku/ 0.02
[ke/ ad
/ko/ 0.6

Vowel /ta/ 0.08 | /ki/ 1.0
Jta/ 0.08 | /ku/ |[-0.5
Ipal 0.08 | /ke/ |-1O
/kha/ | 0.03 /ko/ 0.2
/ga/ | 006
[gha/ | 0.Q2

the subgroup containing the class. The output of the subnet is used to form a feature
vector. The dimension of the feature vector is same as the number o classes in the
subgroup. If y, isthe feature vector obtained for theith training pattern and N is the
number of training patterns for each class, then the kth element of the mean vector,

Uk, 1S computed as follows:

1 i
uk = — Yik (5.2)
N =1 .

where yix is the kth element of y;. The variance parameter a is computed from the
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mean vector and the feature vectors for the N training patterns as follows:
1 N M .
o= (yix — i)’ £5.3)
Ni:lk:l
where M is the dimension of the feature vectors and the mean vector.
The mean vector and the variance parameter are computed for each of the80 SCV
classes and for each of the three grouping criteria during the second level of training:
For classification of an SCV utterance, the pattern belonging to the utterance isinput

to al the subnets. The outputs of the subnets are input to the feedback network

corresponding to their grouping.

5.4 Constraint Satisfaction M odel for Classification of SCVs

Thefeedback networks for different grouping criteriainteract with each other through
a pool of units, called instance pool [82]. Thereareas many (80) unitsin theinstance
pool as the number of SCV classes. Each unit in the instance pool (for example, the
unit, corresponding to class /ka/) has a bidirectional excitatory connection with the
corresponding units in the feedback networks (for example, units corresponding to
/ka/ in MOA group, /ka/ in POA group and /ka/ in Vowd group). Units within
the instance pool compete with one another and hence are connected by a fixed
negative weight (-0.2). Thus the three feedback networks along with the instance pool
constitute the constraint satisfaction model reflecting the known speech production
knowledge of the SCVs as well as the knowledge derived in the organization of the
classes for training the subnets. The constraint satisfaction model developed for
classification of SCVsisshown in Fig.5.4.

Theoperation of the constraint satisfaction model is as follows: Each unit j in the
constraint satisfaction model computes the weighted sum of inputs from the other

units (net,) in the model. An external input for each of the units in the feedback
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Figure 5.4: Constraint satisfaction model for classification of SCV utterances. The
constraint satisfaction model consists of three feedback networks for three grouping
criteria, and an instance pool through which the feedback networks interact. The
instance pool has one node for each class. The instance pool node for a class is
connected to the nodes o that classin the three feedback networks by a bidirectional
excitatory connection. A node in the instance pool has a bidirectional inhibitory

connection with all the other nodes in the pool.



networks is provided as bias derived from the 16- or 20-dimensional feature vector of
the subgroup to which the unit belongs to. For a given input pattern, the output of
an MLFFNN isconsidered as a feature vector denoted by x. Each unit j is associated

with @ mean vector g; and a variance parameter o;. Then the external bias for the

unit, bzas;, is computed as follows:

1 _ di
bas; = ———==e" 3 (5.4)
y(@m)Ma;?
: _ x—ml
distance = o—JJ (5.5)
2
1 M
Ix — p)? = HZ(xi — pi)? (5.6)

1=1
where M is the dimension o the feature and mean vectors, x; and uj; are the ith
elements of the feature vector x and the mean vector u; respectively.

The net input to the unit j is given by
netinput; = a x bias; + B * net; + 0 (5.7)

where a, # and 8 are constants in the range 0.0 to 1.0, chosen empirically by trial

and error. The output function for the units is a sigmoid function and is given by

1

1+ e—k-neh’nputj

output; = (5.8)

wherek is a constant that determines the slope d the sigmoid curve.

The constraint satisfaction model is initialized as follows. When a new pattern
is presented to the MLFFNNSs, the feature vectors, x's, for all the MLFFNNs are
obtained. The outputs o the units in the feedback networks for whom the corre-
sponding feature vector element value is above a threshold 6 (0.3) are initialized to
+1.0 and the outputsd al other unitsin the feedback networksare initialized to 0.0.

The bias for a unit in the instance pool is computed from the net input to the unit
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after the feedback networks are initialized. The output o a unit in the instance pool
isinitialized to +1.0, if the net input to the unit is greater than 0.0. The constraint
satisfaction model is then allowed to relax until a stable state is reached for a given
input. Deterministicrelaxation method is used. In this method a unit in the model is
chosen at random and its output is computed. This method is continued until there
is no significant change in the outputs of the units. At a stable state of the model,
the outputs of the instance pool units are interpreted to determine the class o the
input pattern.

The class of the instance pool unit with the largest output value is assigned as
the class of the input utterance. Because d similarity amongst SCV classes, we
consider the cases in which the correct class can be among the classes corresponding
to the K largest output values. In the next section, we present the classification
performance of the constraint satisfaction model for Case-1, Case_2, Case-3, and
Case-4, corresponding to K =1, 2, 3, and 4, respectively.

If the feature vectors for an input pattern are considered as evidences for the
classes available from subnets based on different grouping criteria, then the outputs
o theinstance pool units in the final state of the model can be considered as the
combined evidence for each class after satisfaction of as many constraints as possible.
The feature vectors for an input pattern belonging to the class /ka/ are plotted in
Fig.5.5. Theoutputsd theinstance pool unitsin thefinal stated the model are aso

shown in the figure.

5.5 Results and Discussion

In the previous chapter, we have considered different durations of segments for de-
riving the patterns from isolated utterances of SCVs, and compared the classification

performance of the subnets and the modular networks. In this section we present
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Figure5.5: Outputs of subnets based on different grouping criteriaand
the instance pool units in the constraint satisfaction model (CSM)
for an input utterance belonging to the SCV class /ka/. Multiple
evidences available from the three criteria are combined by the CSM
using the constraints based on similarities among the classes.
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the performance o the constraint satisfaction model for classification o al the SCV
classes. The average performance o the constraint satisfaction model on. the test
data is given in Table-5.4 for different segment durations and for different cases of
decision criterion. The performanced the modular networksis also given in the table
for comparison. Here we consider the performance o the modular networks based
on POA grouping as they gave the best classification performance among the three

groupings.

Table 54: Classification performance o the constraint satisfaction
model on the test data of all the SCV classes for different segment
durations. The performanced the modular network with POA as the
grouping criterion is also given for comparison. The performance is
given for four different cases of decision criterion. The Case_M for the
constraint satisfaction model refersto thecriterion that theclassd an
input pattern is amongst the M largest output valuesd the instance
pool units. The Case_M for the modular network refers to the case
when the M largest values amongst the outputsfor all the SCV classes
areconsidered in deciding the class. The constraint satisfaction model
gives a significantly better performance than the modular network.
This behaviour is observed for different segment durations.

Segment | Constraint Satisfaction Model Modular Network
Duration | Case-1 | Case 2 | Case 3 | Case-4 | Case-1 | Case 2 | Case.3 | Case-4
200ms 65.6 75.0 80.2 82.6 b1 56.9 69.5 76.6
150ms 54.3 67.5 73.1 76.7 30.8 494 60.1 66.7
100ms 39.0 49.5 56.0 60.8 20.6 364 470 53.9

It is observed that the classification performance o the constraint satisfaction
rmodel (CSM) is distinctly better than the performance of the modular networks.
The performance o CSM for Case-1 is as high as 65% for the segment duration o
200 msindicating that the instance pool unit with the largest output value gives the
classd the input utterance correctly for 65% o the total number o test utterances.
This result is significant considering that the classification is performed by the CSM

by discriminating among 80 SCV classes and that many d these classes are similar.
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The performance o the CSM increases to about 82% for the Case-4 of the decision
criterion.

The postprocessor in a modular network processes the outputs o the subnets in
that network to decide the class. The postprocessor simply assigns the class d the
largest output value without using the similarity information available in the other
outputs. The modular networks for different groupings operate independent o each
other. The evidences available from different modular networks are not used in the
classification. In the CSM, the outputs from subnets o each grouping criterion are
processed by the feedback network for that grouping. Similarities among classes are
represented in the weights of the connections in the feedback network. Evidences
available from different groupings are combined by letting the feedback networks
interact with one another through theinstance pool. Thereforethe CSM not only uses
the knowledge about the similarities among classes but also combines the evidences
from multiple sources in performing the classification. It is observed that even the
weak evidences available from different sources are enhanced by the CSM during
relaxation. The improved classification performance of the CSM is mainly due to its
ability to combine evidences from multiple sources.

Theresultsd thestudiesin the previous chapter haveshown that the classification
performance o the modular networks is much less than the average performance of
subnets. It isobserved that the performance d the CSM approaches the performance
of subnets. In Table-5.5 we give the performance d the CSM on the test d:.ta sets
o the classes in differentsubgroups. The table also gives the performance o subnets
for the same data. It isimportant to note that the CSM performs classification by
discriminating among al the 80 classes where as a subnet performs classification by
discriminating only among the 16 or 20 classes in its subgroup. It is significant that

the performance o the CSM is close to that o the subnets. The performance of the



CSM and the subnets is given for different segment durations used for analysis.

Table 5.5: Classification performance d the constraint satisfaction
model and the subnets on test datad SCV classes in subgroups based
on different grouping criteria. The comparison d performance isgiven
for different segment durations. The performance o the constraint
satisfaction model on data for a subgroup d classes is close to the
performanced the subnet for that subgroup. The constraint satisfac-
tion model performs classification by discriminatingamong all the 80
SCV classes where as the subnet discriminatesonly among the classes
in its subgroup. This behaviour is observed for different segment du-

rations.

Grouping 200ms 150ms 100ms

Criterion | Subgroup | CSM | Subnet | CSM | Subnet | CSM | Subnet

MOA UVUA 767 | 771 | 650 | 641 | 534 | 627
UVA 663 | 700 | 396 | 404 | 223 | 310
VUA 621 | 629 | 69.2 | 658 | 548 | 64.0
VA 575 | 563 | 433 | 438 | 250 | 350

POA Velar 550 | 546 | 556 | 608 | 421 | 515
Alveolar | 733 | 842 | 535 | 625 | 369 | 546
Dental 663 | 779 | 502 | 681 | 319 | 510
Bilabial 679 | 80.0 | 577 | 715 | 446 | 56.5

Vowe /a/ 682 | 615 | 630 | 698 | 549 | 64.1
/i/ 662 | 666 | 516 | 635 | 29.7 | 313
Ju/ 615 | 688 |542 | 630 | 37.3 | 458
/e/ 656 | 620 | 526 | 615 | 391 | 417
/of 66.7 | 677 |[500 [ 695 | 334 | 404

It isinteresting to note that the performanced the CSM some times exceeds even
that of the subgroup. For example, consider the performance for the'/a/* subgroup
for the segmen.t duration of 200 ms. The performancedf the CSM for thissubgroup is
68.2%, whereas the performanceitssubnet isonly 61.5%. Thisis possible becausethe
CSM uses the evidences available fromn subnets based on all three grouping criteria.
A similar behaviour can be noted for the VUA subgroup for the duration of 150 ms.

The performance df the subnets isimportant for the performancedf the constraint

satisfaction model. It can be seen that the poorer performance o the CSM for the



durations of 150 ms and 100 ms compared to 200 ms is mainly because of the poor
performance of the subnets for the reduced durations. Even a marginal improve-
ment in the performance o the subnets can lead to a significant improvement in the

performance of the CSM.

5.6 Summary and Conclusions

A summary of the issues addressed and major results o thestudies carried out in this
chapter are given in Table-5.6. In this chapter, we have proposed a new approach
for developing a model for classification of utterances of al the SCV classes. In
this approach we proposed a constraint satisfaction model to represent the known
constraints of the problem. Trained multilayer feedforward neural networks are used
as nonlinear filters to extract features. A second level of training is used to derive
the distribution of the featuresfor each class. Since the constraint satisfaction model
satisfies a set of weak constraints in the best possible manner, the results are good in
most of the cases.

The ability of the CSM to combine multiple evidences is useful for performing
speaker independent classification. The subnets are trained for the data collected
from multiple speakers and no speaker adaptation is performed by them. Therefore
the outputs o subnets for an utterance from a new speaker can be low and hence
the evidences available may be weak. Though the performance of subnets is not
speaker independent, the operation of the CSM is speaker independent and hence it
is expected that the CSM would show a distinct improvement in speaker independent
classification over the modular networks.

The main difficulty in improving the classification performance is in the para-
metric representation of speech. If the representation does not capture the crucial

information from the speech signal, then there is no hope of classifying theinput cor-



Table 5.6: Summary o the results o studies on development o a
constraint satisfaction model for classification o SCV utterances.
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. Neura networks used for building subnets for subgroups o SCV classes
have been interpreted as nonlinear featureextractors. Thisinterpretation
is useful in looking at the outputs of a subnet for an input SCV pattern
as the outputs d the set of nonlinear filters developed during training of
a subnet for the classes in its subgroup.

. A feedback neural network has been developed for each d the three
criteria considered for grouping SCV classes. A second level o training
has been carried out to obtain the mean feature vector and variance for
each SCV class, which are used in computing the bias valuefor the node
o a class in the feedback network. The weights for the connections in
the feedback networksare determined using the similarities among SCV'
classes derived from experimental results.

. A constraint satisfaction model has been developed in which the three
feedback networks interact with one another through an instance pool.
The multiple evidences available from different grouping criteria for an
input SCV pattern are combined using a relaxation method to determine
Its class.

. The constraint satisfaction model gave a significantly better (about 30%
higher) performance compared to the modular networksfor classification
d utterances o al the80 SCV classes.

. The performance o the constraint satisfaction model in the classification
d the80 SCV classes approaches the average performance o the subnets
in classification d subgroups o the SCV classes.
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rectly using a simple classifier. Parametric representation is also a limiting factor for
realizing speaker independent classification d SCV utterances. Our studies demon-
strate the power of constraint satisfaction models to enhance even the weak evidence
available in the input data. The models developed for the classification of isolated
utterances of SCVs can be used for spotting SCV segments in continuous speech.
In the next chapter, we propose an approach in which the speech signal around the

vowel onset points is scanned by the classification models to spot SCVs.




Chapter 6

SPOTTING SCV SEGMENTSIN
CONTINUOUS SPEECH

61 Introduction

The focus o the studies in the previous chapters has been on developing models for
classification of continuous speech segments belonging to a small set o frequently
occurring SCV classes, and on developing models for classification of isolated utter-
ances of all the 80 SCV classes. Models based on One-Class-One-Network (OCON)
and All-Class-One-Network (ACON) architectures have been considered for small sets
of classes. Modular neural network architecture has been considered for classification
large number o classes. In this chapter we address the issues in using these clas-
sification models for spotting SCV segments in continuous speech. We propose an
approach in which the vowd onset points (VOPs) in continuous speech are detected
first, and the classification modelsfor SCVsare then used to scan the speech segments
around VOPs for spotting SCVs. Spotting SCVs in continuous speech is useful in
developing vocabulary independent continuous speech recognition system.

The organization o this chapter is as follows. The main issues in spotting SCV's
are discussed in the next section. In section 6.3 we describe a neural network based
method for detection of vowd onset points in continuous speech. In section 6.4 we

present the studies on spotting SCVs.
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6.2 Issuesin Spotting SCVs

Strategiesfor spotting subword unitsin continuous speech have been based on training
a model for each of the classes to classify only the segments df the continuous speech
signal belonging to that class and reject all other segments [42]. The models thus
trained are then used to scan the speech signal continuously and hypothesize the
presence or absence o the corresponding subword units. The hypotheses from the
models for all the classes are processed further to hypothesize the subword units
present in a given continuous speech signal. We discuss some issues in adopting this
strategy and propose an approach for spotting SCVs.

The commonly used approaches for spotting subword units scan the speech signal
continuously. In these approaches patterns extracted from fixed duration segments
starting at every 5 or 10 ms are given as input to a classifier to determine their
classes. In our approach to spotting SCV's, we propose to identify the Vowd Onset
Points (VOPs) in continuous speech and scan a portion of the speech signal around
each VOP to determine the class d a segment around the VOP. By restricting the
scanning to regions around VOPs, the portions of the speech signal not belonging to
CV segmentsare eliminated from consideration thus leading to a significant reduction
in the number o falsealarms. The resulting false alarmsare mainly dueto theerrors
made by the classifiers.

The performance d any spotting approach is mainly dependent on the capability
of theclassifiersto correctly classify thesegments belonging to each o the SCV classes
and reject all other segments. Therefore the classifiers used for spotting should be
trained to classify segments belonging to any SCV class and reject all segments that
do not belong to SCV classes. For spotting any SCV segment, it is necessary to use
a classifier trained for al the SCV classes. It has been pointed out in Chapter 1 that

many SCV classes occur infrequently. It is difficult to collect the adequate number



of training samples from continuous speech for these classes. This was the reason for
limiting the studies in Chapter 3 to a small set of frequently occurring SCV classes.
The OCON and ACON classifiers trained with continuous speech data can be used for
spotting segments of these classes. A training pattern is derived from speech signal
of 100 msduration with 20 ms before and 80 ms after the VOP in an SCV segment.
The patterns that are input to the classifiers during spotting are derived from the
segments of 100 msduration in continuous speech.

Modular neural network architecture has been considered in Chapters 4 and 5 for
developing classifiers for all the SCV classes. The classifiers have been trained with
isolated utterance data. In order to use these models for spotting , it is necessary to
consider the differences in the durations of isolated and continuous speech utterances
of SCVs., Theisolated utterances of an SCV class are of longer duration compared
to the segments of that class in continuous speech. It is observed that most of the
necessary information for classification is present in the speech signal of about 100
ms duration around VOP in continuous speech segments. In isolated utterances,
the information is present in the speech signal d a longer duration (150 to 200 ms)
around VOP. Patterns derived from segments of these durations are used to train
the classifiers. For spotting, these classifiers have to be used to classify the patterns
derived from 100 ms segments in continuous speech. Two important aspects need to
be considered are as follows:. (1) Both the patterns should be of samesize so that they
can be innut to a neural network classifier, since isolated speech utterance patterns
are used for training and continuous speech patterns are used for spotting, and (2)
There should be at least an approximate temporal alignment of the cluesin both the
patterns. We discuss a method that attempts to take these aspects into account.

We have considered the segment durations of 200 ms, 150 ms and 100 ms for

deriving the patterns from isolated utterances. The 200 ms duration consists of 60



ms before VOP and 140 ms after VOP. The 150 ms duration consists of 60 ms before
VOP and 90 ms after VOP. The 100 ms duration consists of 20 ms before and 80 ms
after VOP. The methods used for deriving patterns containing 20 framesof weighted
cepstral coefficients from these different durations have been discussed in Chapter
4. The studies presented in the previous two chapters have shown that the best
classification performance is given for the duration of 200 ms. But the duration o
200 msis not suitable for spotting because many SCV segments in continuous speech
are much shorter than 200 ms. The studies on classification have also shown that
the performance for the duration o 100 msis poor. The classifiers trained with the
patterns derived from 100 mssegments will give alarge number o false alarms during
spotting. The classification performance for the duration d 150 ms is close to that
for the duration of 200 ms. The patterns for the duration of 150 ms are derived in
such a way that the classifiers trained with these patterns can be used for spotting.
The speech signal with 60 ms before and 90 ms after VOP is processed to extract 30
frames at aframe rate of 5 ms. The initial 16 frames contain the information about
the manner and place of articulation o stop consonants. The remaining 14 frames
contain mainly the information about vowel in SCVs. These 14 frames are averaged
to obtain 4 smoothed frames from the vowe region. Theinitial 16 frames along with
the 4 smoothed frames are used to form a 20 frame pattern used during training.
The patterns that are input during spotting are derived from segments d 150 ms
duration in continuous speech using tie same method. In section 6.3 we present the
results of spotting the frequently occurring SCV classes using the classifiers trained
with continuous speech dataand the results of spotting all the SCV classes using the
classifiers trained with the isolated utterance data.

The classifiersthat have been considered so far are trained to classify continuous

speech segments or the isolated utterances of SCVs. When these classifiers are used
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for spotting, in addition to being capable of classifying SCV segments, they should
be capable o rejecting segments that do not belong to any of the SCV classes. The
capability to reject non-SCV segments is important for minimizing the number of
false alarms during spotting. Suitable methods for training the classifiers to develop
the capability of rejecting non-SCV segments have to be explored.

In the proposed approach for spotting SCVs, wefirst identify the VOPsin contin-
uous speech and then use the classifiers to scan speech segments around the VOPs.
In the next section, we discuss a neural network based method for the detection of

VOPs in continuous speech.

6.3 Detection of Vowd Onset Points in Continuous Speech

In this section, we develop a neural network based method for the detection of vowel
onset points in continuous speech. The main aim is to identify the VOPs in SCV
segments of continuous speech so that portions of the speech signal around the VOPs
can be scanned by the classifiers to hypothesize the presence of SCVs. In Chapter 3,
we have developed a method based on thederivatived signal energy for the detection
o VOPs in SCV segments manually excised from continuous speech. The VOP in
an SCV segment is characterized by a low energy region immediately before and a
high energy region immediately after the VOP. Therefore the VOP in an excised
segment can be associated with a point at which there is a maximum increase in
the signal energy. The VOP can be detected by determining the point at which the
energy derivative is maximum. This method cannot be extended for the detection
of VOPs in continuous speech. The continuous speech signal o a sentence contains
many non-SCV segments which are also characterised with the points at which there
is asignificant increase in the signal energy. Therefore it is necessary to use a more

robust method for detecting the VOPs of SCV segments in continuous speech.



Parametric analysis o the speech signal in SCV segments has shown that three
parameters, namely, (1) signal energy, (2) linear prediction (LP) residual energy and
(3) spectral flatness, are significantly different in the regions immediately before and
after the VOPs. The signal energy and the LP residual energy parameters show a
rapid increase at the V OPs whereas the spectral flatness parameter shows a decrease.
These trends in the parameters are illustrated in Fig.6.1. Thefigure shows the plots
for speech signal waveform, energy, LP residual energy and spectral flatness parame-
ters. Thefigure also shows a plot of the derivatived signal energy. This plot shows
only the positive portion of the derivative.

We train a multilayer perceptron network to'detect the VOPs by using the trends
in the speech signal parameters. The network used for detecting the VOPs consists
of 2 hidden layers with 10 nodes in the first hidden layer and 5 nodes in the second
hidden layer. The input layer o the network contains 9 nodes and the output layer
has 3 nodes. Though the main function o the network is to detect the VOPs, it
should also be trained to minimize the number o false alarms in the detection of
VOPs. Therefore 3 nodes are used in the output layer o the network with one node
(labeled as VOP node) to indicate the presence of VOPs and the other two nodes
(labeled as Pre-VOP and Post-VOP) to indicate the absence d VOPs.

For training the network to detect the VOPSs, it is necessary to give the values of
the above three parameters extracted from a speech signal frameimmediately before
the VOP and a frame immediately after the VOP. We also give the ratios o the
parameters in these two frames because the trend in these parameters contains the
information for detection of the VOPs. Thus the signal energy, residual energy and
spectral flatness parameters extracted from two frames around the VOP and the
ratios of the parametersin the two frames are used to form a vector of 9 values that

is input to the network during training. One o the frames starts at 15 ms before
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Figure 6.1: Detection of the vowel onset pointsin the speech signal for
the sentence /dharm ka: pa:lan dhairy se hota: hai/. The figure shows
the plots of signal waveform, parametersused for detection of the VOPs,
output of the multilayer perceptron network, energy derivative and the
VOPs detected. It can be seen that the VOPs o al the SCVs are de-
tected.
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VOP and the other frame starts at 5ms after VOP. The duration o frames is 10
ms. For training the network, the vectors are extracted from manually excised SCV
segments. Thedesired outputs are specified to give the maximum value (10) for the
output node,labeled as VOP and the minimum value (0.0) for the other two output
nodes labeled as Pre-VOP and Post-VOP. We also extract two other vectors from
each SCV segment. One vector isderived from two framesin the region before VOP.
Oneof theseframes starts at 35 msand theother at 15 ms before VOP. The desired
outputs for this training vector specify the maximum vaue for the Pre-VOP node
and minimum values for the VOP and Post-VOP nodes. Another vector is derived
from two frames in the region after VOP. One of these frames starts at 35 ms and
the other at 55 ms after VOP. The desired outputs for this training vector specify
the maximum value for the Post-VOP node and minimum values for the VOP and
Pre-VOP nodes. The network is trained for about 150 SCV segments excised from
continuous speech.

For the detection of VOPs in continuous speech using the network trained as
above, a 9-dimensional parameter vector extracted at every 10 msis given as input
to the network and the output of the network indicates the presence or absence of
VOP at that point in continuous speech. The parameter vector isextracted from two
frames with one frame starting at the point under consideration and another frame
starting at 20ms after this point. Thus the continuous speech signal of a sentence is
scanned by the network to detect the VOPs. Fig.6.1 shows theoutput o the network
for the sentence whose speech signal waveform and parameters are also plotted in the
figure. The network detects the VOPsof all the SCV segments in the sentence. But
it aso hypothesizes many other points as VOPs. It is interesting to note from the
plots d the network output and the energy derivativethat both of them have peaks
at the VOPs of SCVs. At dl other pointsonly one of them shows a high valueor a
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peak. We combine the network output and the energy derivative to eliminate most
of the spurious hypotheses. The VOPs detected in the speech signal for the sentence
/dharm ka: pa:lan dhairy se hota: hai/ using this method are shown in Fig.6.1. They
include the VOPs in SCVs (/dha/, /ka:/, /pa/, /dhai/, /ta:/) and also the VOPs of
the segments belonging to non-SCV classes (/ry/, /se/, /ho/, /hai/). The objective
o our method is to detect the VOPs in SCV segments 0 that scanning of speech
signal during spotting can be limited to only these segments. This method has been
used for detection of the VOPs for 50 sentences and the results have shown that the
VOPs of the SCV segments are detected with nearly 100% accuracy. The method
has failed to detect the VOPs in afew segments where the signal energy islow. Itis
observed that the method also detects the VOPs in many CV segments belonging to
non-SCV classes. The VOPsd most of thefricative CV segments have been detected.
But the VOPsdf many CV segments where thesignal energy in the consonant regions
is high are not detected. These segments mainly belong to the nasal (/m/ and /n/),
semivowel (/y/ and /w/) and lateral (/1/) consonants. For example, the VOP d the
/lal segment in the sentence of Fig.6.1 is not detected. In the next section, we study

the effectsof the detection of VOPs on spotting performance.

6.4 Studies on Spotting SCVs

In this section, we present the results of our proposed approach for spotting. Wefirst
present the results of spotting frequently occurring SCV classes using the classifier
models trained with the segments excised from continuous speech. Then we present
the results of spotting al the SCV classes using the constraint satisfaction model

developed for classification of isolated utterances.



6.4.1 Spotting using Classifiers Trained with Continuous Speech Data

In Chapter 3, we have developed the OCON and ACON classifiers for the set of ten
frequently occurring SCV classes. In this section, we study the performance of these
classifiersin spotting the SCV segments in continuous speech.

We first study the effect of the detection of VOPs on spotting performance. For
this study, we consider the OCON classifier for the following ten classes: /ka/, /ki/,
/ke/, [ko/, [ta/, Itil, [tol, [da/, /dha/ and /pa/l. This classifier contains one
multilayer perceptron network trained for each class. The classifier is first used to
scan the speech signal d a sentence continuously. For scanning, a pattern is derived
at every 5 ms from the signal & 100 ms duration and the pattern is input to the
networks. The outputs o the networks for the ten classes are plotted in Fig.6.2(a)
for a Hindi sentence. It can be seen from the figure that though the presence d the
segments belonging to each o the ten classesisindicated, the number of false alarms
given by the networks is large.

We have used the same classifier for spotting using our approach in which the
VOPs are detected first. Once theVOPsare detected, a segment around each VOP is
scanned by theclassifier. Thescanning window around a VV OP includes50 msec before
the VOP and 100 msec after the VOP. We consider a scanning window around VOP
for spotting to take into account any ambiguity in the detection of VOPs precisely.
It is thus enough if the method gives an approximate location o the VOP of an SCV
segment in continuous speech. The pattern derived from a 100 msec long speech
signal at every 5Smsec in the scanning window is input to the classifier networks. The
maximum output value in a scanning window for a class is assigned as the output
d the network for that class. The outputs of the networks for the ten classes using
this approach are plotted in Fig.6.2(b). It can be seen from Figs.6.2(a) and (b) that

many falsealarms given in the standard approach for spotting are eliminated using
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Figure 6.2: Spotting SCV segmentsin continuous speech d the sentence
/dharm ka pa:lan dhairy se hota: hai/ using the classifier based on the
OCON architecture and MLP model trained for ten frequently occurring
SCV classes. The plots show the outputs o the networks for different
classes in spotting SCVs (a) Without detection of VOPs and (b) With
detection of VOPs. It can be noted that the number of false aarms is
much smaller for spotting with detection of VOPs.



our approach. This has been possible mainly due to limiting the scanning by the
classfier: to segments around the VOPs. Another advantage d our approach is that
the computational complexity is reduced significantly by limiting the scanning.

We have studied the performance o spotting using different classifiers. The out-
puts o different classifiers used for spotting the SCVs in the continuous speech signal
o a Hindi sentence are shown in Figs.6.3(a) and (b). These figures show the speech
signal waveformfor the sentence and the VOPs detected. These figuresalso show the
outputs of the classifiers for each class in the scanning windows around the VOPs.
The outputs of the OCON classifier are shown in Fig.6.3(a) and the outputs of the
ACON classifierin Fig.6.3(b). It isobserved that the presenced the segments belong-
ing to the ten SCV classesis indicated by both the classifiers. The ACON classifier
gives fewer false alarms than the OCON classifier. The false alarms in segments be-
longing to non-SCV classes are mainly due to inadequate training d the classifiersin
rejecting them.

It isobserved that for each segment around a 'V OP, presenced more than one SCV
classis hypothesized. It isinteresting to note that the hypotheses include mainly the
classes that are phonetically close to the actual classd the segment. We consider the
hypotheses made by the ACON classifier in Fig.6.3(b) for illustration. The presence
o theclasses /ka/ and /pa/ is hypothesized for the /ka:/ segment. Theoutput values
d the classfier can be considered as evidencesfor the classes. It is noted that the
evidencefor the class /ka/ is stronger than the evidencefor the class /pa/: A similar
performance has been observed for the segments of /pa:/ and /ta:/. For the /dha/
segment, the hypotheses include the classes /da/ and /pa/ in addition to the class
/dha/. Theevidencefor theclass/pa/ isdlightly stronger than theevidence for /dha/.
A postprocessor can be used to process the outputs o the classifier to determine the

class of a segment using the evidences available. The postprocessor can use a simple
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Figure 6.3: Spotting SCV segmentsin continuous speech d the sentence
/dharm ka: pa:lan dhairy se hota: haif using the MLP based classifiers
trained for ten frequently occurring SCV classes. The plots show the
outputs of the networksin the classifiers based on(a) OCON architecture
and (b) ACON architecture.
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method d assigning the classwith the strongest evidence to asegment. If this method
is used, the class /pa/ will be assigned to the /dha/ segment. A better method isto
use the knowledged similarities among the classes as constraints in combining the
evidences for the classes. It has been shown in the previous chapter that this method
used in a constraint satisfaction model has significantly improved the performance
for classificationd SCV utterances.

The classes hypothesized by the ACON classifier for different SCV segments and
rank ordered based on the evidences available are given for six sentences in Figs.6.4
and Fig.6.5. The text d the sentence, speech signal waveform, vowd onset points
detected and the classes hypothesized for the SCV segments are given for each sen-
tence. It can be seen from these figures that the VOPs of most of the SCV segments
have been detected. The VOPsd afew SCV segments occurring mainly at the end
o the phrases and sentences, and characterized by low signal energy have not been
detected. For example, the VOPs d the /ti:/ segment in Fig.6.4(c) and the /bhi:/
segment in Fig.6.5(a) have not been detected.

It isobserved that for some o the SCV segments, the actual classis not present
among the classeshypothesized. For example, the hypotheses for the /ki:/ segment in
Fig.6.4(c), the/ti/ segment in Fig.6.5(a), and some of the /ke/ segmentsin Figs.6.5(b)
and (c) do not include the actual class. But the hypotheses include the classes that
are phonetically close to the actual class.

It is also observed that the classes that are phonetically close to the actual class
are included in the hypotheses for the segments of the SCV classes for which the
classifierhas not been trained. For example, the hypotheses for the /kha/ segment in
Fig.6.4(c) include the class /ka/, and the class /dha/ has been hypothesized for the
/bha:/ segment in Fig.6.5(a).

The above results show that the classifiers trained with the patterns derived from



Sentence  dharm ka pa:lan dhairy se ho ta: hai
VOPs | . I N R
SCVs pa ka pa ta
spotted dha pa ta pa
da ka da
dha

(a) Spotting SCVs in the speech signal for the sentence
/dharm ka pa:lan dhairy se hota: hai/

Sentence pra:rthna: jaisa: dharm ka  sabse ma:rmik ang hai

Signal

VOPs l L1 ot
SCVs pa ka

spotted da

dha

(b) Spotting SCVs in the speech signal for the sentence
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/satya Ki: kasauti: par khara: utre/

Signal g—.———*—‘—*—.——v——.‘—w’—*——j
I I |

134

Figure 6.4: Spotting SCVs in the speech signal for different sentences using the
classifier based on ACON architecture and MLP model trained with continuous
speech data for ten SCV classes. The figure for a sentence gives the text, signal
waveform, vowd onset points (VOPs) identified and SCV segments spotted. The

hypotheses for non-SCV segments are not indicated.
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(a) Spotting SCVs in the speech signal for the sentence
/vyaktyon ke bha:nti ra:stron ka: nirma:n bhi:/

Sentence keval balida:n ke dva:ra: ho sak ta: ha aur kisi tarah nahi:
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(b) Spotting SCVsin the speech signal for the sentence
/keval balida:n ke dva:ra: ho sak ta: hai aur kis tarah nahi:/

Sentence bina: a:dars ke manuqy pa:l rahit jaha:) ke jaisa: hai
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(c) Spotting SCVs in the speech signal for the sentence
/bina: a:dars ke manuqy pa:l rahit jaha:j ke jaisa: hai/

Figure 65: Spotting SCVs in the speech signal for different sentences using the
classifier based on ACON architecture and MLP model trained with continuous
speech data for ten SCV classes. The figure for a sentence gives the text, signal
waveform, vowe onset points (VOPs) identified and SCV segments spotted. The

hypotheses for non-SCV segments are not indicated.
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manual ly excised segmentscan be used for spotting. The performance d our proposed
approach for spotting depends on the performance of the method used for the detec-
tion of VOPs and the performance of the classifiers. This approach can be extended

for spotting the segments o all the SCV classes.

6.4.2 Spotting using Constraint Satisfaction Model

In the previous chapter, we have developed a constraint satisfaction model (CSM) for
classification d al the SCV classes. The model has been trained with the patterns
derived from theisolated utterances of SCVs. We have used this model as theclassifier
for spotting the segments of all the SCV classes in continuous speech. After the
detection of the VOPs in thespeech signal of a sentence, a segment of 150 msduration
around each VOP is processed to derive a pattern as explained in Section 6.2. This
pattern is input to the CSM to determineits class. The classes of the five largest
values among the output values of the instance pool unitsin the CSM are considered
as the hypotheses for each segment. The output values for the classes are considered
as evidencesfor the hypotheses. The spotting performance of the CSM isillustrated
for two sentences in Fig.6.6. The text of the sentence, speech signal waveform, vowel
onset points detected and the five hypotheses for each the SCV segments are given
for each sentence. It is seen that the hypotheses for many SCV segments include
the actual class. For some segments, the hypotheses include the classes that are
phonetically close to the actual class.

The above result shows the potential of our approach for spotting in using it
for al the 80 SCV classes. The main difficulty is in matching the training patterns
derived from isolated utterances with the patterns derived from continuous speech
segments during spotting. A significant improvement in the spotting performance

can be expected for a CSM trained with continuous speech SCV data.
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(a) Spotting SCVsin the speech signal for the sentence
/sraddha:lu: ka akarm bhi: karm ho ja:ta: hai/

Sentence pra:rrthna: to atma: ko sa:f karne ka jha:du: hai
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gu ko ti da bhi
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(b) Spotting SCVsin the speech signal for the sentence
/pra:rthna: to atma: ko sa:f karne ka: jha:du: hai/

Figure 6.6: Spotting SCVs in the speech signal for different sentences using the
constraint satisfaction model developed for classification of isolated utterancesof all
the SCV classes. The figure for a sentence gives the text, signal waveform, vowel
onset points (VOPs) identified and the first 5 class hypotheses for SCV segments
spotted. The hypotheses for non-SCV segments are not indicated.



6.5 Summary and Conclusions
A summary of the issues addressed and studies carried out for spotting the SCV

segments in continuous speech is given in Table-6.1.

Table 6.1: Summary of the studieson spotting the SCV
segments in continuous speech.

1. An approach based on the detection of vowd onset points and
scanning around them for spotting SCVs in continuous speech
has been developed.

2. A neura network based method for the detection of vowe onset
points in continuous speech has been devel oped.

3. The spotting performance of classifiers trained with the con-
tinuous speech data for a subset of the SCV classes has been
illustrated.

-4, The spotting performance of the constraint satisfaction model
trained with isolated utterance data for all the SCV classes has
been illustrated.

5. The spotting approach based on the detection of vowel onset
points has been shown to give fewer false alarms than the stan-
dard approach for spotting where the speech signal of a sentence
is completely scanned.

In this chapter, we have discussed the main issues in spotting the SCV segments.
We have proposed an approach in which the vowel onset points are detected first and
the segments around these points are scanned by classifiers. We have illustrated the
results of spotting ten frequently occurring SCV classes using the classifiers trained
with continuous speech data. We have shown that our approach eliminates many
false alarms given by the standard approach for spotting. We have also illustrated
the performance o the constraint satisfaction model developed for classification of

isolated utterances in spotting segments of all the SCV classes. It is necessary to
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evolve suitable techniques for using the classifiers trained with isolated utterance
datafor spotting subword unitsin continuous speech. It is also important to explore
learning algorithms that minimizespotting errors (48] for improving the performance
o systems for spotting subword units.

The focus o our studies so far have been on developing models for classification
and spotting d SCV segments. The results of the studies on classification have
shown that a significant percentage of errors is due to misclassification of the place
d articulation o stop consonants. The patterns derived for training and testing
the classifiers have been based on the weighted cepstral coefficient representation for
the speech signal o the SCV segments. In the next chapter, we explore suitable
representations for the transition regions in the SCV segments in order to improve

the performance for classification of the place of articulation.



Chapter 7

PARAMETRIC REPRESENTATIONS
FOR SCV TRANSITIONS

71 Need for Classification of SCV Transitions

Our studieson classification of SCVsin Chapters 3 and 4 haveshown that a significant
percentage of errors is due to misclassification of the place of articulation of the
stop consonants. Parametric representation based on weighted cepstral coefficients
has been used in these studies. In this chapter, we explore methods for suitable
representation of transitions in SCV's which contain the information for classification
of the place of articulation.

The important clues for identifying the place d articulation of stop consonants
are: (1) characteristics of the spectrum during the release of the stop consonant
(burst event) and (2) formant transitions between thestop consonant and its following
vowel (transition event). These clues are dependent on the adjacent vowels [10] [83].
Therefore, it is difficult to identify the POA without using the contextual vowe
information. It may be easier to identify the POA along with the context. That is,
instead of having 'Velar, 'Alveolar’, 'Dental' and 'Bilabial' as the classes, it may be
advantageous to have classes such as 'Velar in the context o vowe /a/ (Velar_a)'.
We attempt to develop a classifier for POA in the context of a vowel. By having a
separate class for POA in the context of each vowe, what we are trying to do is to
classify the type of SCV transitions {70]. Our focusison the design of a classifier for

the SCV transitions that occur in continuous speech.
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7.2 Issuesin Classification of SCV Transitions

For the design d aclassifier for SCV transitions, one has to determine the portion of
the speech signal to be analysed. Astheimportant cluesfor identification o the SCV
transition are the release spectrum and the formant transitions, it is necessary that
the analysis region includes the speech signal between the beginning o the release
of the stop consonant and the steady formant region of the following vowd. The
beginning o the release can be identified, at least manually. But it is difficult to
identify the point at which the vowd formants have become steady. This is more o
in continuous speech, because vowels tend to have short steady formant regions. As
an approximation, we consider the portion of the speech signal of a fixed duration
(about 40 ms) from the beginning o the release instant as the transition region.
Processing of speech signal for classifying the type of SCV transition should aim
at capturing the characteristics of the release spectrum and the transition. Here, we
focus on the analysis of the transition. The spectral characteristics vary during the
transition region. Suitable representation of the dynamic characteristics of the tran-
sition region is important for recognition of the stop consonants {12]. Time varying
features were identified as important cuesfor perception of the place of articulation
of the stop consonants {84]. Differencesin formant frequencies at the beginning and
end d the transition region and the duration o the transition region were used for
recognition of the placedf articulation of unaspirated stop consonants in Telugu (85].
Processing methods using analysis based on time varying, data selective models of
the speech signal in VC transitions have been shown to give improved performance
compared to the standard processing methods [69]. In our study, we use parametric
representations based on standard processing methods and also propose parametric
representations extracted using pitch region analysis to capture the characteristics of

the transitions in SCV segments.



7.3 Classes of SCV Transitions

Stop consonants are characterized by their manner of articulation and place of ar-
ticulation. There are four different places of articulation and four different manners
of articulation. The formant transitions are similar for the stop consonants with the
same POA in the context of a particular vowel. Therefore the SCV transitions of con-
sonants with the same POA but with different manners of articulation are grouped
into a single class. Moreover, the formant transitions for a particular POA in the
context of short and long versions of-a vowe (such as /a/ and /a:/) are not much
different. Taking these observations into consideration, the following classes of SCV

transitions were selected for our study.

(1) Velara (6) Alveolara (11) Dental_-a (16) Bilabial-a
(2) Velari (7) Alveolari (12) Dentali (17) Bilabiali
(3) Velar-u (8) Alveolar-u (13) Dental-u (18) Bilabial-u
(4) Velare (9) Alveolar2 (14) Dental-e (19) Bilabia-e
(5) Velaro (10) Alveolaro (15) Dental-o (20) Bilabial-o

Only 13 of these classes were considered here as there was not enough speech
data available for the other 7 classes (5 classes with Alveolar as POA, Bilabial2 and

Bilabial o).

7.4 Parametric Representations

In our approach to the classification of the SCV transition type, we have used eight
methods to represent the characteristics of the transition region. Four processing
methods use an arbitrarily placed window of a fixed framesize. These methods are
not well suited for capturing the spectral changes in the transition region, which are

important for classifying the SCV transition type. This is because the changes in the



vocal tract system during the analysis interval and the window effects mask the sow
changes in the vocal tract shape during the transition region. For classification, it
is necessary to capture the spectral changes in the transition region. The spectral
information in the high energy portion o each pitch cycleislikely to provide reliable
spectral information. The high energy portion is usually around the significant point
o excitation in the pitch cycle. Therefore, an analysis window centered around the
high energy region of the pitch cycle is used. We propose pitch region analysis to
obtain a robust parametric representation for the SCV transitions. We briefly discuss

implementation details of the processing methods used in our study.

Formant Frequencies and Amplitudes (FMT)

Thefirst three formants were extracted using group delay processing of signal [86] for
four frames starting at the vowd beginning point in an SCV transition region. The
three formant frequencies and their amplitudes for four frames were normalized and

used to form a 24-dimensiona vector for each SCV transition region.

Spectral Coefficients (SPC)

Spectral coefficients were extracted for four frames starting at the vowd beginning
point in an SCV transition region. 16 mel-scale spectral coefficients were computed
using a 128-point FFT with a frame size o 12.8 ms and an overlap o 9.6 ms be-
tween successive frames. The normalized spectral coefficients were used to form a

64-dimensional vector for each SCV transition region.

Mel-scale Weighted Cepstral Coefficients (M CEP)

32 mel-scale spectral coefficients were computed using a 512-point FFT with a frame
size o 12.8 ms and an overlap o 9.6 ms between successive frames. 10 weighted

cepstral coefficientswere derived from these mel-scale spectral coefficientsfor each of



thefirst four framesin the transition region. These cepstral coefficientswere used to

form a 40-dimensional vector for each SCV transition region.

L P Derived Weighted Cepstral Coefficients (WCEP)

Ten weighted cepstral coefficientsderived from linear prediction coefficientswere ex-
tracted from each of the first four frames in an SCV transition region. Thus a 40-

dimensional vector was obtained for each SCV transition.

Pitch Region Analysis based Parameters

In order to extract the parametric representation from the high energy region of each
pitch cycle, it is necessary to determine, at least approximately, the significant points
of excitation in the pitch cycles. We have used a method based on the positions of the
peaks in the energy curve of alow-passfiltered (with 1 KHz cut-off) linear predicti'on
residual signal. These peaks indicate the significant points of excitationsin the pitch
cycles. For each SCV transition region, significant points of excitation in the first
four pitch cycles in the beginning of the transition region were determined. A pitch
region is defined as the region with duration of the pitch period and centered around
the significant point of excitation in the pitch cycle. For every such pitch region, the
formant frequencies and amplitudes (PRFMT), spectral coefficients (PRSPC), mel-
scale weighted cepstral coefficients (PRMCEP) and LP derived weighted cepstral

coefficients (PRWCEP) were extracted.

7.5 Studies on Classification of SCV Transitions

75.1 Data Collection and Preparation

Speech datafor SCV transitions was collected from 50 sentences for three male speak-

ers and three female speakers. The regionsdf analysis were manually identified in the
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digitized speech signal. The duration o the analysis region was fixed at 40 ms, with
10 ms before and 30 ms during the transition region. This duration was arrived at
from the observation o the durations of SCV transition regions on a spectrograph.

Data for 300 SCV transition regions was collected for each of the six speakers.

7.5.2 Classification Model

A multilayer perceptron model with two hidden layers was used as a classifier in our
studies. The number of input nodes depends on the parametric representation used.
The number o nodesin thefirst and second hidden layers were chosen as 30 and 20,

respectively. The number of output nodes were 13, representing the 13 classes used.

7.5.3 Classification Studies and Results
Speaker Dependent (SD) Classification

In this study, different multilayer perceptron networks were trained for each o six
speakers. 30% o the total data available for a speaker was used in training the
network. The remaining 70% o the total data was used as the test data. This
study was performed for each o the eight different parametric representations. The

performance for different parametric representationsis given in Table-7.1.

Multispeaker (MS) and Speaker Independent (SI) Classification

In this study, a network was trained with 30% d the data from four (two male and
two female) speakers. The remaining 70% o the total data (853 patterns) for these
four speakers was used as multispeaker test data. The total data (568 patterns) of
the other two speakers was used as speaker independent test data. The performance

for different parametric representations is given in Table-7.1.
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Table 7.1: Comparisond the performance of different parametric representationsfor
classificationd SCV transitions. The performance isgiven for two casesdf classifica
tion criterion. Case-1 refersto the criterion that the class of a given SCV transition
pattern is the class d the largest value among the outputs of the classifier. Case-2
refers to the criterion that the class o a given SCV transition pattern is amongst
the classesof the largest and the second largest output values o the classifier. The
performance for each parametric representation is given on data sets of speaker de-
pendent (SD), multispeaker (MS) and speaker independent (SI) classification. The
entries in the parantheses indicate the total number of patternsin a data set. It
can be seen that the pitch region analysis based formants (PRFMT) and spectral
coefficients (PRSPC) give a better performance compared to the fixed frame size
analysis based formants (FM T) and spectral coefficients (SPC) respectively.

(a) Performance for Case-1 of classification criterion.

Parametric Training Data Test Data
Representation | SD MS SD MS Sl
(523) | (348) | (1246) | (853) | (568)
FMT 84.1 | 60.6 33.7 | 29.8 | 27.0
SPC 92.0 | 859 43.5 | 43.5 | 34.0
MCEP 94.5 | T8.7 456 | 50.5 | 34.9
WCEP 99.6 | 974 65.1 | 58.6 | 40.3
PRFMT 92.7 | 76.7 39.2 | 34.6 | 34.7
PRSPC 97.7 | 95.7 52.2 | 48.3 | 37.8
PRMCEP 93.7 | 72.1 42.0 | 31.6 | 27.5
PRWCEP 98.7 | 934 51.6 | 49.3 | 39.9

(b) Performancefor Case_2 of classification criterion.
Parametric Training Data Test Data

Representation | SD MS SD MS S
(523) | (348) | (1246) | (853) | (568)
FMT 89.5 | 73.6 56.8 | 51.3 | 46.8
SPC 95.4 | 92.2 65.7 | 65.3 | 54.2
MCEP 95.6 | 87.9 65.2 | 70.6 | 57.2
WCEP 99.8 97.7 81.4 78.0 | 58.6
PRFMT 92.9 85.1 58.3 | 60.6 | 54.7
PRSPC 97.9 | 95.7 71.8 | 68.7 | 56.7
PRMCEP 95.3 83.9 62.3 | 57.2 | 49.5
PRWCEP 99.0 93.7 72.5 | 68.5 | 59.9




7.5.4 Analysis of Performance for SCV Transitions

The results indicate that for formants and spectral coefficient representations, the
pitch region analysis based processing methods give a better classification perfor-
mance compared to the standard processing methods. For the cepstral coefficient
representations, the standard processing methods give a better performance. Thisis
because o the short duration segments used in the pitch region analysis.

The best performance on training data for speaker dependent classification is
above 99% and that for multispeaker classification is above 97%. The performance
reported in [85] for classification o the place d articulation o unaspirated stop con-
sonants in the context d known vowel and using the data collected from isolated
words for 3 speakers is about 70%.

On multispeaker test data, the best performance obtained in our studiesis about
58% for Case-1 and is about 78% for Case 2. On speaker independent test data, the
best performance obtained isabout 40%for Case-1and isabout 60% for Case_2. Con-
sidering the large number o SCV transition classes used and confusability amongst
the classes, this accuracy is significantly high. Human performance is also not likely
to be high for this data.

It is observed that the improvement in the performance for the pitch region anal-
ysis based methods for spectral coefficient representation is significantly higher for
the male speaker data compared with that for the female speaker data. as given in
Table-7.2. The poor performance for the female speaker data can be due to the short
(about 3.0 ms) analysis window used in the pitch region analysis based methods. It
is necessary to explore better methods d processing using short analysis windows to

improve the performance for the female speaker data.
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Table 7.2: Comparison of performance in classification
of SCV transitions for male speaker data and female
speaker data. The pitch region analysis based method
gives a better performancefor male speaker data and a
poorer performance for female speaker data compared
to thefixed frame size analysis based method.

Test data Male Speaker Data | Female Speaker Data
SPC PRSPC SPC PRSPC
Speaker Dependent 42.4 57.0 45.5 49.2
Multispeaker 40.8 56.2 46.2 40.4
Speaker Independent | 36.1 45.6 32.1 29.9

7.6 Fuzzy Nature of Cluesfor SCV Transitions

In continuous speech the same SCV may occur in different contexts. Therefore there
may be variability in the features of the utterance due to variability in speech pro-
duction as well as due to context. Moreover, there will also be variability in speech
production due to different speakers. All these factors lead to feature data that can
best be described in linguistic terms, such as 'low’, 'medium' and ‘high’, which in
turn can best be expressed as values of membership functions of fuzzy sets.

It is necessary to represent the production information in the speech signal in
suitable parameters or features for input to a classifier. Parameters like spectral co-
efficients and cepstral coefficients are likely to be influenced by the nature of signal
processing as well, besides the natural variationsin the production process. Varia-
tions due to signal processing operations contribute to distortion and noise, rather
than fuzziness. Therefore it is preferable to consider articulatory or related acoustic
parameters like formants as features representing the SCV transitions. Formants are
relatively easier to extract compared to thearticulatory parameters. Formant features
also reflect the dynamicsdf the vocal tract system in theform of formant trajectories.

Thereforethe formants were selected as parameters to represent the SCV transitions



in this study.

Speaker variability is caused due to differences in the dimensions of the vocal
tract systems. In order to compensate this to some extent, ratios of formants may
be considered as features. Since we are considering in this study only data from two
speakers, we have decided to consider only the formant values as features. Formant
data is collected for successive frames d speech signal data in each SCV transition,

Formants are resonances d the vocal tract system, and hence any natural varia-
tions in the shape o the vocal tract are reflected in these resonances as well. Since
variability due to speech, context and speaker are all preserved in theformant trajec-
tories, theformant data can be assumed fuzzy, and the data isfuzzified before feeding
it to a neural network classifier for training and testing.

Fuzzification d formant data involves several issues. For example, one could
fuzzify the features individually in the frequency and time domains. But it appears
more logical if thefuzzification could be done knowing that the three formants should
occur together as a set in each frame. Also the formants in successive frames are not
independent. Hence this dependency should also be considered in fuzzifying the input
data to the neural network classifier.

Itisnatural to expect that theclass|abelswill not becrispeither, duetosignificant
overlap o features across the different classes of SCV transitions. Therefore, for
effective classification, it is preferable that the output classes are fuzzy. In the next

section we describe a fuzzy neural network classifier that takes fuzzy input data.

7.7 Fuzzy Neural Network Classfier

It was shown in [38] that fuzzification of input data and the output class label data
improves the classification performance of a multilayer perceptron network for recog-

nition d vowels using formants as features. The network takes as input the values
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o fuzzy membership functionsfor each of the three formants. Each input feature F;
in quantitative form is expressed in terms of membership values to each o the three
linguistic properties 'Low’, 'Medium' and 'High'.  The = membership function is used
to assign membership values for the input features. The = membership function in

one-dimensiona form, with range [0,1], is defined as given below.

201 - (=2, f F<iz-dl<r,
m(zier) = 1-2(24dy for 0<|z-¢ <, (7.1)
0, otherwise,

wherex isa pattern point, r istheradius o the = function and c is the central point.
The fuzzy sets for the linguistic properties 'Low’, 'Medium' and 'High' for each
formant are represented by membership functions =L, mp and wy respectively. The
parameters of these membership functions are defined below.
Let Fjmaz and Fimin be the upper and lower bounds of feature F; in all pattern

points. For the three linguistic property sets, parameters are defined as

TM(F,) = 0-5 * (F}'max - E;'min)
em(F;) =, Fimin +rm(F;)
TL(FJ') = g—L—Jl—J—ch F)=Fymin

fdenom (72)
ct(Fy) = cm(F;) — 0.5 xri(F})
ra(F;) = ()

cu(Fy) = cm(F;) + 0.5 % ru(Fy)

where ’fdenom’ is « parameter controlling the extent of overlapping.
The three # membership functions are defined for each o the three formants and

for each o the N framesin the transition region. Thusa SCV transition isrepresented



by an Nx9-dimensional matrix o membership values. Such Nx9-dimensional patterns
are used as input to a neural network classifier.

During the training phase, the desired output vector is expressed as the desired
membership values, lying in the range [0,1]. To obtain these membership values, the
distance of a training pattern F from the average pattern O, for the kth class is

defined as

. N 9
o= Jg—lﬁ 5 Do (F(i,d) = Onliyi))? (3)

i=1 j=1
The membership value for the training pattern F to the kth class is defined as

1

W (7.4)

de(F) =

where the positive constants f; and f. control the amount of fuzziness in the class-
membership set. The desired output vector for a training pattern is obtained by
computing the membership values for the pattern to each of the classes and used in
training the multilayer perceptron network.

In fuzzification of the input data, the formant features for each frame are fuzzified
independently. But, thereis asequenced framesineach SCV transition, and thedata
in each frame depends to some extent on the adjacent frames. This fact must be used
in fuzzification of formant trajectories. Two methods o fuzzification of sequences of

formant data are presented in the next section.

7.8 Fuzzification of Formant Trajectories

The formant data for one frame is dependent on the adjacent frames. This time-
dependency can be incorporated in the fuzzification o the trajectories by reducing
the variability allowed for the subsequent frames given the variability of the current

frame. The reduction in variability allowed for subsequent frames can be realized by
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decreasing the radii o the = membership functions for fuzzy subsets of features in
those frames, and correspondingly modifying the centers of the functions.

The parameters of the membership functions for the features in the first frame
are defined as explained in the previous section. The parameters of the functions for

subsequent frames are obtained from those of the first frame as follows:

rau(F) = (1= a)* r_gm(F;)

cim(Fj) = Fjimin + B * rim(F)

ric(F5) = (1 —a)*xri_yi(F;)

cip(F;) = ¢m—035 *B* ris(F;)

rig(F;)= (1-a) * raonu(F;)

an(Fj) = em+ 0.5+B* riu(F;)
where i isthe framenumber and 2 <: < N. The constants a and B are chosen such
that the distance between the average patterns of the classes is maximum. Typical
values for the constants a and B are 0.075 and 1.30, respectively.

Another way o incorporating the time dependency is to use multidimensional
membership functions for groups of adjacent frames. The parameters for the mul-
tidimensional membership functions are obtained from the parameters of the one-
dimensional membership functions o features for individual frames. The definition
of one-dimensional = function in equation 7.1 is extended for an n-dimensional =

function of a group of n adjacent framesas given below:

201 — BB for L <fx-c<r
T(x:c,1) = 1—2(153—[)2, for 0<|x—c|<i, (7.6)

-
0, otherwise,

where X is the vector of values of a featurein n adjacent frames, c is the mean vector

o x's for dl patterns, and r isthe radius of the n-dimensional = function. The radius



of the n-dimensional = function is obtained from the radii, r;, of one-dimensional =
functions of feature in individual frames.
r=,(2r? (7.7)
1=1
A two-dimensional = function was used in our studies. We present the effects of the

methods of fuzzification on the classification of SCV transitions in the next section.

7.9 Performance for Different Fuzzification M ethods

For each SCV transition, a fixed 40 ms portion around the vowe onset point was
considered. Formants were extracted using group delay technique [86]. The formant
contours were hand edited and smoothed to remove spurious peaks. From the result-
ing smooth contours the first three formants were obtained for each of the 10 frames
at a frame rate of 3.2 ms. The formant data is fuzzified using methods discussed in
the previous two sections. Thus for each SCV transition, a 90-dimensional vector of
membership values is generated. This representation is used as input to a a.multi-
layer perceptron network with two hidden layers. The desired output specified during
training is also fuzzified. The multispeaker data sets for SCV transitions considered
in the studies on parametric representations were used for training and testing. The
classification performance on the test data for different methods of fuzzification is
given in Table-7.3.

The results show that fuzzification of input and output data improvesthe classifi-
cation accuracy. In particular, fuzzification of input data taking into account thefact
that the formant datais for a sequence of frames, improves the performance signifi-
cantly. ln these studies only a simple method was used to implement the dependence
d fuzziness on the sequence. But a more sophisticated data dependent approach for

determining the fuzzy membership values may improve the performance still further.
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Table 7.3: Comparison of performance for different fuzzifica-
tion methods in classification d SCV transitions. The perfor-
mance is given for two cases d deciding the class: (1) Correct
classis the class with the highest output and (2) Correct class
isamongst the classes with the highest and the second highest

outputs.

Fuzzification Method Case-1| Case2
Non-fuzzy inputs 295 46.3
Fuzzification of individual frames 62.9 82.1
Fuzzification by variability reduction 70.2 84.8
Fuzzification using 2-dimensional = function | 73.5 85.4

7.10 Conclusions

A summary of major results d studies carried out on classification of SCV transitions

isgiven in Table-7.4.

Table 7.4: Summary d the results of studies on parametric
representations for classification of SCV transitions.

1. Classification of SCV transitions accurately isimportant for correct
classification o the place df articulation of stop consonants.

2. The performance of parametric representations based on fixed
frame size analysis and pitch region analysis has been compared.
The formants and spectral coefficient representations based on
pitch region analysis gave a better performance.

3. The pitch region analysis based representations gave a better per-
formancefor malespeaker dataand a poorer performancefor female

speaker data.

4, Different methods for fuzzification of formant features have been
explored for classification d SCV transitions.

In this chapter, we have explored methods for suitable representation of SCV

transitions to improve the performance for classification of the place of articulation
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o stop consonants. The performance of the pitch region analysis based parametric
representations have been compared with the fixed frame size analysis based repre-
sentations. The pitch region analysis based methods gave a better performance for
the male speaker data. Suitable techniques for extraction of parameters from short
duration segments have to be explored to improve the performance for the female
speaker data. In order to account for the variability in the characteristics of SCV
transitions, methods for fuzzification of formant features have been explored. The
results have indicated that fuzzification d formant traectories gives an improved
accuracy in classification.

Here we have explored suitable representations for the transition regions of SCV
segments. Methods for using the information in suitable representationsfor different
production events to perform classification have to be explored in order to obtain an

improved performancefor recognition of SCV segments.



Chapter 8

SUMMARY AND CONCLUSIONS

Approaches for vocabulary independent continuous speech recognition systems are
based on models for classification of subword units. Humans recognize speech by dis-
crimination of sounds and by using different types of knowledge. Acoustic-phonetic
knowledge is used to resolve ambiguities at the level of subword units. Lexical, syn-
tactic and semantic knowledge sources are used to resolve ambiguities at word and
sentence levels. We believe that the success in exploring methods for improving
the performance of recognition systems lies in appropriate usage of these knowledge
sources even when the best available representations and discrimination models are
used for recognition. In this thesis we have demonstrated the potential of this ap-
proach by developing a Constraint Satisfaction Model (CSM) for classification of
Stop Consonant-Vowel (SCV) utterances. The acoustic-phonetic knowledge of the
SCV classes has been incorporated in the form of constraintsin this model, and these
constraints do provide improved classification over conventional classifiers. The con-
straints have been used to enhance even the weak evidences availablein the outputs of
the neural networks (subnets) trained for subgroups of classes and combine multiple
evidences available in the outputs of the subncts based on different criteriafor group-
ing. Further improvement in the performance of the CSM requires better methods
for deriving constraints based on the acoustic-phonetic knowledge and experimental
evidence. Though the CSM has been developed for the classification of isolated utter-
ances of SCVs, the approach can be extended for the classification of SCV segments

in continuous speech.



Approaches for spotting subword units have been based on scanning the speech
signal continuously using the classifiers for the units. We have demonstrated that
the number of false alarms in spotting the SCV units can be reduced significantly
by limiting the scanning to the segments around Vowd Onset Points (VOPs). The
computational complexity in spotting is also reduced by limiting the scanning. Our
approach for spotting can be extended to subword unitsof al CVs.

The performanced our approaches for classification and spotting of subword units
can be improved by using suitable representationsfor the units and by using models
with better discrimination capability. We present some additional research issuesin
exploring methods for improving the performance.

Exploration of suitable parametric representationscan be carried out in thefollow-
ing two ways (1)Signal dependent analysis and (2) Class dependent analysis. Signal
dependent analysis is based on identification of suitable speech parameters for the
regions of different significant eventsin the production of subword units. In the case
of SCVs, it involves identification of suitable parameters for the closure, burst, aspi-
ration, transition and vowd regions. A single parametric representation may not be
suitable for all the regions. It is necessary to evolverepresentations that can capture
the discriminatory cluesin each of the regions. Multiple parametric representations
are to be extracted from speech signal of a subword unit segment and given as input
to the classifiers.

In the approach based on class dependent analysis, suitable parametricrepresenta
tions for subgroups of classescan be identified. The patterns derived from the speech
signal can be based on different parametric representationsfor different subgroups. In
modular neural networks, a separate network is trained for each subgroup. Therefore
one can use a parametric representation that is suitable for discrimination among the

classes in a subgroup. For example, in grouping based on the manner o articulation
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(MOA) o the stop consonants, all the SCV classes in a subgroup have the same
MOA. Therefore one can use parametric representations that focus on capturing the
clues for discrimination of the place of articulation and the vowd characteristics in
deriving the patterns. The results of our studieson classification have shown that the
performance for aspirated SCVs is poor. It is possible to improve the performance
by using a suitable parametric representation for them. The class dependent analysis
based approach provides the scope for continuously evaluating the performance for
different classes and refining the representations to improve the performance.

In addition to identifying suitable parametric representations, it is important to
explore methods for extracting features that can absorb variations in the representa-
tions due to the contextual effects and different speakers. Fuzzy logic based methods
can be explored for deriving features from the parametric representations in such a
way that it iseasier for classifiersto perform discrimination in the feature domain.

The performance o classifiersfor large number of similar classesas in recognition
d subword units is dependent on their ability to form complex decision surfaces in
the input feature space. The shapes d the decision surfaces vary for different neural
network models and architectures. They are also dependent on the methods used for
training. Asit is difficult to visualize the shapes of the decision surfaces in a large
dimensional featurespace, it isimportant to explore analytical methods that can give
an insight into the discrimination capability o classfiers.

Modular network architectures have to be necessarily considered for large number
o classes. Different grouping criterialead to different subgroups o classes and hence
the shape o decision surface for a class variesfor each grouping. In this context, the
interpretation of neural networks trained for subgroups d classes as nonlinear filters
can be used to analyse the performance for each class. Thedistribution o the outputs

o filters for aclass can be analysed to identify the classes that are close to it. The
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resultsd this analysis can be used to continuously refine the modelsand improvethe
performance for each class.

In our studies on classification of SCVs, fixed duration patterns derived from
varying duration segments and utterances have been used for training and testing the
classifiers. It was assumed that these patterns have all the necessary information for
classification. The performanceisdependent on the robustness of the method used for
the detection of VOPs in SCV segmentsand thedurations of the portions before and
after VOP used for deriving the patterns. Loss of crucia discriminatory information
in the process o deriving the patterns can lead to errors in classification. Therefore
it isimportant to explore temporal processing neural network models (40] to handle
varying duration patterns. Another advantage d using temporal processing models
isthat it is possible to train them with isolated utterance data of subword units and
use them for classification or spotting of segmentsdf units with different durations in
continuous speech.

In conclusion, thefollowing is a list of topics that need further study:

1. Refinement d the constraint satisfaction model to incorporate al the available

evidence for solving the recognition problem.

2. Development d robust spotting techniques to take care o the variability in

continuous speech.

3. Organization o modular networks to capture the discriminability among the

classes.

4. Representation of the speech information taking into account the deterministic,

stochastic, fuzzy and temporal nature d the features in the input data.



Appendix A

Algorithm for Extraction of Weighted
Cepstral Coefficients

In this appendix, we present the algorithm used for extraction of weighted cepstral
coefficient representation from speech signal. This algorithm is taken from [14](pages
112-117).

Thedigitized speech signal, s(n), is preemphasized by implementing thefollowing

difference equation:
3(n) = s(n) — 0.95 * s(n — 1) (A.1)

Let NV betheframesizeand M bethe separation between adjacent frames specified

in number of speech signal samples. Then the Ith frame of speech is denoted by
zi(n) = §(M!1+n), n=01,..,.N-11=0,1,...,L—1. (A.2)

where L is the number of framesin the entire speech signal. Each frame is windowed

using a Hamming window as given below.

#1(n) = zi(n)w(n), 0<n<N-1. (A.3)
w(n) = 0.54 — 0.46c0s( 13"_" o), 0<n<N-L - (A.4)

Each frame o windowed signal is autocorrelated as follows:

N-1-m
F(m) =Y &(n)Zi(n+m), m=0,1,..,p, (A.5)

n=0
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where p is the order d the linear prediction analysis. Linear prediction coefficients
are derived from autowrrelation coefficientsusing Durbin’s method given below. The

subscript 1isomitted for convenience.

E® = r(0) (A.6)
R = T
r(s) - ,§1 a; r(li - j)
k,- = E('._l) 5 1 S 1 S D- (A7)
ol = k; (A.8)
ag-‘) = af-"l) - k.'a.(i_,-l) | (A.9)
E® = (1 - g3)EC-Y (A.10)

The above equations are solved recursively for i = 1,2,...,p, and thefinal solution

gives the linear prediction coefficients, a,,, as follows:
am=a£,’f), 1<m<p (A.11)

The cepstral coefficients, ¢, are derived from linear prediction coefficients by recur-

son o the following equations:

co = Ino? (A.12)
m—1 k
Cm = Gm + E(—-)ckam_;‘, 1<m<p (A.13)
k=1 ™
m-—1 k
em = D (—)ckGmt, p<m<@Q (A.14)
k=1 ™

where o? isthegain termin linear prediction analysis and Q is the number of cepstral
coefficients. The cepstral coefficients are weighted using a bandpass filter in the

cepstral domain as given below to obtain weighted cepstral coefficients, ¢,,.

Cm = Wyl (A 15)

w, =1+ Q-Sin(—Q—), 1<m<@Q (A.16)



Appendix B

Learning Algorithm for Time Deay
Neural Network

The instantaneous sum o squared errors, E, in the standard backpropagation ago-

rithm for multilayer perceptron is defined as:

M
E=:Y el (B.1)

1
2 k=1
where e, is the error at the output o the kth neuron in the output layer and M is

the number d nodes in the output layer. Theerror e, is defined as:

where di is the desired target value o the kth neuron in the output layer and y; is

the actual output o the kth neuron.

For TDNN, the output value y, for the kth output node is defined as the average

of the outputs of the replicas o the Eth output node and thereforeis given as:

1 N
Ye = 55 DUkt _ (B.3)
N

where yy; is the actual output o thelth replicad the kth output node, and N isthe
number of replicas for each output node. The error for all the N replicas of the kth
node is defined as:

1 N

ex = e =di — yr = dp — N 2 Ykl (B.4)
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Therefore, the instantaneous sum of squared errors, E, for TDNN is derived as:

M
> (di - N St (B.5)

The correction Aw;;i; applied to the weight w;;i; of the connection between the jth
replicaof theith nodein the hidden layer and the Ith replica of the kth node in the

output layer is defined as:

oF
Qw;jki

(B.6)

Awijkl = -7

where the partial derivative of £ with respect to w;;« is the instant gradient and is

expressed by the chain rule as follows:

8E _ aE 6ek; 8yk, 81)“
Owiju  Oey Oyxi Oviy Owijk

(B.7)

where vy, is the net internal activity level of the Ith replica of the kth node. wvyis
given by
L
Vgl = Z Z wijklyij (BS)
i=1 j€S;
where L is the number of nodes in the hidden layer, S; is the set of hidden layer
columns in the receptive field of the Ith replica, and y;; is the output of the jth
replicad theith hidden node.

The expressions for the partial derivatives in (7) are derived as below:

Ben = K (B.9)
%:_i _ _% (B.10)
g%:-j — &' (vk) (B.11)

Pt _ g (B.12)
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Here ®(z) is the activation function o the neurons and ®’(z) is the partial derivative
o the activation function with its argument X.
Substituting these expressions in (7) and (6), the correction in the weight w;;x is

expressed as:
Awijp = ‘;‘,‘ﬂcqu”(vkl)yij (B.13)
The local gradient éx is defined as

bt = —en®’ (vu) (B.14)

1
N
Then Aw;ji can be expressed as

Awiji = Nbuyi; (B.15)

A similar procedureis used to derive theexpression for the correction in the weight
wpqi; OF the connection between the gth unit of the pth framein the input layer and

the jth replicad ith node in the hidden layer.
Apqij = 16ijYpq (B.16)

where §;; is the local gradient for the jth replicad theith hidden node and y,q isqth

input value o the pth frame. é;; is defined as:

~ OE 9y,
L = 2 vu B.17
oF
- _ 2" B.18
ayué (U'J) ( )
dE XM dey
m ké:l & Kl 5 (B.19)

where 5; is the set of columns in the output layer to which there is a connection for

the jth replicad the ith hidden node. From equations (10), (11) and (8), we get



Oewi _ Dep Ay Doy
Oyi; Oyx Ovi Oy
= - %‘P'(vu)w.’ju

Substituting this in (19) and and then using (14), we get

OE M 1
— = — e =P (vii)wiju
0yij g xeis:, N ’

M
= =YY buwiju

k=1 IGS,‘
Substituting this expression in (18), &;; is derived as
M
bii = 9'(vi;) Y. Y bwijm
k=11[€S;
Finally, the expression for Aw,; isobtained as

M
AWpgij = 19" (vij)¥pg 3 Y Skiwiju
k=11€S;
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(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)



Appendix C

Training and Recognition Algorithms for

Discrete Hidden Markov Models

In this appendix, we present the training and recognition algorithms for discrete

hidden Markov models used in our studies on classificationdf SCVs. The algorithms

are taken from [14](pages 329-370).
A Discrete Hidden Markov Model (DHMM) is characterized by the following:

1. N, the number o states in the model.

2. M, the number o distinct observation symbols per state. In our studies,
M corresponds to the size of the codebook built from vector quantization of
weighted cepstral coefficient vectors. The individual symbols are denoted as V

= {v1,v3,...,um} and in our case v;’s refer to the codebook indices.

3. The state-transition probability distribution, A = {a;;} where a;; is the prob-
ability o making a transition from state i to state j at timet and is given

by
a;; = Plg1 = jlge =1, 1<4j<N. (C.1)

Here ¢, refersto the state of the model at timet.

4. The observation symbol probability distribution, B = {b;(k)}, in which

bj(k) = Plo, = vklg: = j], 1<k<M, (C.2)
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defines the symbol distribution in state j, j = 1,2,...,N. Here o; refers the

symbol output by the model at timet.

5. Theinitial state distribution, # = {#;} in which
m=Plag=i], 1<i<N. (C.3)

A DHMM A is completely specified by the model parameters N and M, and the
probability measures A, B and =. For classification of SCVs, we have used models
with 5 states (i.e., N = 5) and a codebook size of 256 (i.e., M = 256). The probabil-
ity measures are estimated from training data using the Baum-Welch method given

below.

C.1 Training Algorithm for DHMM

The DHMM model parameters are estimated fram the patterns in training data set
using the algorithm given below.
C.l.I The Forward Procedure

The forward variable «,(2) is defined as
a(1) = P(010;...01,q = |A) (CA4)

that is, the probability d the partial observation sequence, o0y0,...0;, and state : at
timet, given the model A. The forward variable a¢(¢) is computed inductively, as

follows:

1. Initialization



2. Induction
N .
a¢+1(j) = [2 at(i)agj]bj(0g+1), 1 S] S N,l S t _<_ T - 1. (C.6)
=1 .

Here T refersto thelength of the.complete observation sequence O. In our case

T corresponds to the number d frames in the speech signal.

3. Termination

N
P(OIX) = > ar(i). (C.T)

=1
C1l.2 The Backward Procedure
The backward variable §;(z) is defined as
ﬂg(‘l) = P(OH,]OH,Q...Oqut = i, A) (CS)

that is, the probability of the partial observation sequence from ¢+1 to the end,
given state i at timet and the model A. The backward variable () is computed

inductively, as follows.

1. Initialization
Br(i)=1, 1<i<N. (C.9)
2. Induction

N
ﬂg(l) = ZG.’jbj(OH,])ﬂH,l(j), 1 S 1 S N,t =T~ 1, T - 2, cey 1(010)

=1
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C.1.3 Parameter Estimation
Define &(¢,] ) as the probability of being in state: at timet, and state] at timet+1,
given the model A and the observation sequenceO, and is given as follows:
i(3,7) = P(qe = ¢, qesa = J|O, ). (C.11)
From the definitions of the forward and backward variables, the following expres-
sion is derived for &(3,§) :

a(2)ai;b;(0141)Be41(J) (C.12)
1 a(2)aijbi(0141)Bi41(7)

€t(7'7]) =

Mz
2

..
Il
A

<
l

Define () as the probability of being in statei at timet, given the entire obser-

vation sequence and the model. Then ~(¢) is related to &(¢, j) as follows:

N
7(1) = ;&(i,j)- (C13)

If we define the current model for DHMM by A = (A, B, r), then the reestimated

model A = (A, B, 7) is computed using the following formulae:

i = m(7) (C.14)
T-1
Z &(Z,])
a; =S — (C 15)
¢§1 ()
T
)Y 7¢(j)
bj(k) = SR (C.16)
> 7t(j)

Based on the above procedure, X isiteratively used in place of A and the reestima-
tion is calculated repeatedly until the probability of O being observed from the model
reaches a limiting point. The final result of the reestimation procedure a maximum

likelihood estimate of the DHMM for the observation sequence O.
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The above reestimation procedure isextended for traininga DHMM with multiple
observation sequences, i.e., multiple number o patterns, as follows:

Let us denote the set o K observation sequences as
0 =[0W,00, ...,0%)] (C.17)

where O = (o), 047, ..., o) is the kth observation sequence and Ty is the length

o the kth observation sequence. The modified reestimation formulae are as follows:

K Tx—1
kE p% ;1 a;(3)ai;b (Ot+1)ﬂt+1(1)
a; = k= ;(— - (C.18)
> AT ak)Bk)
k=1 t=1
S A Y akip)
b(l) = L (C.19)
Sk £ o o)

The above reestimation procedure is used for training a DHMM model for each

o the SCV classes using patterns in the training data set.

C.2 Recognition Algorithm for DHMM

To use the DHMM specified by A for recognition of the observation sequence O o a
pattern, the probability P[O|)A] is computed using the forward procedure. Given an
SCV pattern, these probabilities are computed for the modelsd all the classes and

the class with the highest probability is assigned to the given pattern.
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