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ABSTRACT 

This thesis addresses some issues in the recognition of subword units in continuous 

speech. The main issues addressed are related to handling the large number of Stop 

Consonant-Vowel (SCV) units and the confusability among these units. To deal with 

these issues a new feature is presented in this thesis, namely use of the acoustic- 

phonetic knowledge to  improve the classification performance. The knowledge is 

incorporated in the form of constraints in a constraint satisfaction model. The signif- 

icant feature of this model is that a collection of even weak evidences could enhance 

the discriminability of confusable units. 

Modular neural networks are considered for developing classifiers for the large 

number of classes. Separate neural networks (subnets) are trained for subgroups 

of classes. The performance of the conventional modular networks is poor because 

classification is performed by assigning the class of the largest value among the out- 

puts of the subnets. We develop a Constraint Satisfaction Model (CSM) in which 

the outputs of the subnets are combined using the constraints that represent the 

similarities among the SCV classes. The constraints are derived from the acoustic- 

phonetic knowledge of the classes and also from the performance of the subnets. The 

improved performance of the CSM is mainly due to its ability to enhance even the 

weak evidences and combine the multiple evidences available in the outputs of the 

subnets based on different grouping criteria. Though the CSM is developed for the 

classification of isolated utterances of SCVs, the approach can be extended for the 

classification of SCV segments in continuous speech. 

For spotting the SCV segments in continuous speech, an approach based on the 

detection of Vowel Onset Points (VOPs) and scanning around the VOPs using the 

classifiers is developed. This approach is shown to be useful in reducing the number 



of false alarms, besides reducing the computational complexity significantly. A neural 

network based method is proposed for the detection of VOPs in continuous speech. 

An analysis of the performance of the models for recognition of SCVs has shown 

that a significant percentage of errors is due to misclassification of the place of artic- 

ulation of the stop consonants. The place of articulation information is reflected in 

the formant transitions, and hence suitable methods for extracting and representing 

the formant transition information are explored. 

The methods presented in this thesis suggest ways of dealing with large number 

of confusable subword units like SCVs, which in turn may lead to the realization of 

a speech signal-to-symbol transformation module of a speech recognition system. 
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Chapter 1 

INTRODUCTION 

1.1 Problem of Continuous Speech Recognition 

One of the major research problems in the field of artificial intelligence is t o  provide 

natural input/output t o  a computer. Natural communication can be through either 

speech or image. In this thesis, we address some issues involved in providing natural 

input through speech in Indian languages. We are specifically interested in continuous 

speech recognition where the clearly spoken input speech is converted into a mean- 

ingful text. This provides a limited dictation capability to  a computer. A continuous 

speech recognition system consists of two major modules, namely, (1) speech signal- 

to-symbol transformation module and (2) symbol-to-text conversion module. The 

signal-to-symbol transformation module converts the input speech into a sequence 

of symbols which will be converted into a meaningful text by the symbol-to-text 

conversion module using lexical, syntactic and semantic knowledge sources. In the 

present thesis work, we address some issues involved in developing a signal-to-symbol 

transformation module for vocabulary independent recognition of continuous speech 

in Indian languages. 

Signal processing and pattern matching techniques used for isolated word speech 

recognition cannot be extended for continuous speech recognition because of the com- 

plex variations in the characteristics of basic speech units due to coarticulation, con- 

text anti speaking rate in continuous speech. Human beings use language specific 

knowledge in addition to the knowledge of speech production in identifying different 



segments of continuous speech [I]. For a computer to perform the same task, it is 

necessary to endow it with this knowledge. Initially it was proposed to develop the 

signal-to-symbol transformation module based on expert systems approach using pri- 

marily the acoustic-phonetic knowledge. Characters of an Indian language (Hindi) 

were chosen as symbols and a character spotting approach to develop the signal-to- 

symbol transformation module was explored [2]. 

One of the main difficulties in the expert systems approach was the acquisition of 

knowledge necessary to build the knowledge-base for the expert system. It is difficult 

to manually derive the rules and refine them. The difficulty is mainly due to the 

complex nature of the continuous speech. The manifestation of a particular sound 

unit in the speech signal is different not only for different speakers, but also for the 

same speaker in different contexts due to coarticulation effects. It is not possible to 

collect and enumerate all types of variations and incorporate them explicitly in the 

form of rules. Acquisition of knowledge was one of the main limitations in the expert 

systems approach. 

Attempts were made to develop recognition models that are capable of acquiring 

knowledge from examples automatically . Statistical models such as Hidden Markov 

Models (HMMs) have been extensively used for speech recognition [3] [4]. In ap- 

proaches based on HMMs, a separate model is trained for each symbol to estimate 

the probability of a given speech segment being generated by that model. The model 

parameters are estimated cram a large number of examples of the utterances of the 

corresponding symbol. Successful recognition systems using HMMs have been devel- 

oped for large vocabulary isolated word recognition and connected word recognition 

in which words are used as basic speech units. The success of HMMs in vocabulary 

independent continuous speech recognition has been limited mainly because of the 

poor capability of these models in discrimination of subword units. 



Artificial Neural Network (ANN) models have been shown to be suitable for pat- 

tern recognition tasks because of their ability to form complex decision surfaces by 

using discriminatory learning algorithms [5]. ANN models have been extensively used 

for speech recognition applications [6] and have been shown to give a better classifica- 

tion performance for recognition of subword units such as phonemes and CV syllables 

[7]. The main limitation of the ANN models is their inability to model temporal 

sequences. Recent approaches for continuous speech recognition have been based on 

hybrid models in which ANN models are used for modeling subword units and HMMs 

are used for modeling words and sentences as concatenations of subword unit models 

[8]. The systems are trained and evaluated at the level of sentences. These approaches 

are suitable for vocabulary dependent continuous speech recognition applications. In 

order to realize a vocabulary independent continuous speech recognition system, it is 

necessary to develop models that can recognize subword units in continuous speech 

independent of vocabulary and task. 

In this thesis, we address issues in developing neural network models for vocab- 

ulary independent recognition of subword units corresponding to CV segments that 

occur in continuous speech. 

1.2 Approaches to Recognition of Subword Units 

Automatic segmentation of continuous speech into subword units and labeling the 

units by classification has been the standard approach adopted for vocabulary inde- 

pendent recognition of subword units in continuous speech. Commonly used subword 

units are phonemes, syllables, diphones and triphones. This approach requires a 

robust and speaker independent method for automatic segmentation of continuous 

speech into regions corresponding to subword units chosen for a system. Because 

of the variability in the characteristics of subword units in continuous speech, seg- 



mentation is not a trivial task. Once segmentation is done, then the recognition 

performance is dependent on the ability of classification models to correctly label the 

subword unit regions. 

An alternate approach that avoids the need for automatic segmentation is to spot 

subword units in continuous speech. In spotting approach, classification models de- 

veloped for subword units are used to scan the continuous speech signal and identify 

the regions where the corresponding subword units are present. Recognition perfor- 

mance of systems based on spotting approach depends on the ability of classification 

models to correctly identify the regions belonging to the corresponding subword units 

and reject all other regions. 

In the following sections, we briefly discuss the main issues in classification and 

spotting of subword units corresponding to CV segments. 

1.3 Importance of Recognition of CV Segments 

Phonemes, the sounds corresponding to consonants and vowels, are the basic speech 

units of a language. Consonants cannot be produced in isolation. A consonant is 

mostly followed or preceded by a vowel to form a CV or VC speech production unit 

respectively. A consonant can also be followed or preceded by other consonants to 

form consonant clusters. But, any consonant cluster should be followed or preceded 

by a vowel. This results in C*V or VC* speech production units. Here C* denotes 

the presence of one or more consonants in a unit. A meaningful word, in general, can 

be considered as a sequence of C*V units or as a sequence of VC* units. It is easier 

to mark, at least manually, the boundaries of a C*V segment in continuous speech 

signal than that of a VC* segment. Additionally, in many Indian languages, a C*V 

unit is represented by a single, may be a composite, character making it a convenient 

general form of speech production units for processing. Consonant-Vowel (CV) units 



occur on their own as characters (for example, /ti/ in /prativa:d/) and as part of 

cluster characters (for example, /ti/ in /mu:rti/). Therefore CV units occur with a 

high frequency in any text. 

In continuous speech, the production of a sound is affected mainly by the immedi- 

ately adjacent sounds leading to coarticulation effects. Significant clues for recognition 

of consonants are influenced by their adjacent vowels. Because most of the segmental 

coarticulation effects are also captured in the CVs, we have considered CVs as basic 

speech units for processing and performing continuous speech recognition. Develop 

ment of strategies for redognition of CVs in continuous speech with good accuracy 

is important for realizing a continuous speech-tmtext conversion system for Indian 

languages. 

1.4 Frequency of  Occurrence of  Different Categories of CVs 

A study was carried out to  determine the frequency of occurrence of different cate- 

gories of CVs based on the broad manner of production of consonants. For this study, 

consonants of Hindi are grouped into the following categories : (1) Stop consonants, 

(2) Affricates, (3) Nasals, (4) Semivowels and (5) Fricatives. The percentage distri- 

butions of different categories indicating their frequency of occurrence in a total of 

about 16000 CVs present in about 800 Hindi sentences collected from five different 

texts are given in Table- 1.1. 

It can be noted that nearly 45% of the total number of CVs belong to the cat- 

egory of Stop Consonant-Vowel (SCV) units. hcognition of SCVs is an important 

and challenging task because of the high frequency of occurrence of SCVs, the large 

number (160) of SCV classes and confusability amongst several SCV classes. In this 

thesis, we focus on recognition of SCV segments that occur in continuous speech. 

In the following sections, we discuss the important issues in recognition of SCV 



Table 1.1 : Percent age distribution indicating 
the frequency of occurrence of different cate- 
gories of CVs. 

segments in continuous speech. We first discuss the issues in classification of SCV 

segments excised from continuous speech and then discuss the issues in spotting SCV 

segments. 

Category of 
CVs 
Stop Consonants 
Affricates 
Nasals 
Semi vowels 
Fricatives 

1.5 Issues in Classification of SCV Segments 

Percentage 
Distribution 

44.32 
05.63 
13.40 
20.21 
16.44 

1.5.1 Confusability amongs t  SCV Classes 

The similarities in the nature of speech signal for different SCVs are because of simi- 

larities in their production mechanism. Production of SCVs consist of all or a subset 

of the following significant events: closure, burst, aspiration, transition and vowel. 

The discriminatory clues for any two SCVs are dependent on the events present in 

their production and the differences in the characteristics of those events. The man- 

ifestation of these differences in the aco~~st ic  signal depends on the specific speech 

production features characterizing the events. Each of the stop consonants in Hindi 

is uniquely described by its manner of articulation and place of articulation. The 

differences in the manner of articulation of consonants of two different SCVs mani- 

fest as signals of different characteristics (voiced/unvoiced) in the closure region and, 

as presence, weak presence or absence of the aspiration region. The differences in 



the place of articulation of consonants of two different SCVs manifest as follows: (1) 

Different characteristics of the spectrum for the signal in the burst region and (2) 

Different characteristics of the spectrum in the transition region. The differences in 

the vowels of two different SCVs mainly affect the characteristics of the signal in the 

vowel and the transition regions. 

Difficulty in classification of SCVs is mainly due to the need for fine discrimination 

amongst many similar classes. The classification performance depends on the ability 

of parametric representations of SCV segments to capture the discriminatory infor- 

mation and the capability of classification models to form nonlinear complex decision 

surfaces in the parametric space. The nature of the SCV utterances suggests that 

any classifier model needs to use the infarmation present in all the regions of an SCV 

segment to perform classification. It is not possible to perform classification based on 

the information in only one or two frames. 

1.5.2 Characterist ics of SCVs in Continuous Speech 

Characteristics of subword units in continuous speech are different from the ideal 

characteristics of the isolated utterances of units. There is an analogy between con- 

tinuous speech and cursive script. In continuous speech, the characteristics of subword 

units are affected by the context and speaking rate. In cursive script, the features of 

individual characters are significantly modified by the context. The inherent charac- 

teristics of the individual units are dependent on their production mechanism. The 

variability in the characteristics of units is mainly due to the context in which they 

occur. 

The context in which an SCV is uttered in continuous speech affects its charac- 

teristics. The voicing in the closure regions for voiced SCVs may be present weakly 

or may not be present at all. The burst may be totally absent. The aspiration region 



supposed to be present for the aspirated SCVs may also have a weak presence or 

may not be present at all. The duration of the steady region of the vowel in an SCV 

is severely affected in continuous speech. This is due to the tendency of the speech 

production mechanism to use minimum effort in production of sounds in continu- 

ous speech. Therefore, the discriminatory clues necessary for classification may be 

partially present or may be completely absent. A system for recognition of SCVs in 

continuous speech should be able to classify an SCV with the modified characteristics 

as one of the SCVs that are close to it in terms of production features. Fuzzy logic 

can be used to handle the variations in the characteristics of the signal due to vari- 

ations in speakers and due to the context. Fuzzy logic can also be used to indicate 

the graded presence of the clues, and to assign confidence levels to the hypotheses 

made by the classifier. Ordering the hypotheses based on the confidence levels and 

considering more than one hypothesis in labeling SCV segments helps to some extent 

in handling the variability in the characteristics of SCVs in continuous speech. 

1.5.3 Large Number  of S C V  Classes i n  Indian Languages 

An important issue in recognition of SCVs in Indian languages is the large num- 

ber of SCV classes. The total number of possible SCVs for Hindi is 160. This 

number is arrived at by considering the combination of each of the 16 stop con- 

sonants (/k/,/kh/,/g/,/gh/,/t/~/th/,/d/,/dh/,/t/, /th/,/d/,/dh/,/p/,/ph/,/b/ and 

/bh/) with 10 vowels (/a/,/a:/,/i/,/i:/,/u/, /u:/,/e/,/ai/,/o/ and /au/). It is ob- 

served that the characteristics of an SCV with a consonant and a short vowel (/a/,/i/ 

or /u/)  are more or less same as that of an SCV with the same consonant and long 

version of the vowel (/a:/,/i:/ or /u:/ respectively). The difference is mainly in their 

overall durations. Therefore such classes can be combined into a single class. This 

results in a total number of 112 classes. If one is considering only pure vowels (i.e., if 



diphthongs /ai/ and /au/ are not being considered), then the number of SCV classes 

is 80. The recognition system for such a large number of classes should use a suitable 

classifier architecture which can discriminate all the classes. 

1.5.4 Varying Frequency of Occur rence  of S C V  Classes 

It is observed that all the SCVs do not occur with the same frequency. Some SCVs 

occur very frequently, some less frequently, and others rarely. The frequency of oc- 

currence for different SCV classes in about 800 Hindi sentences is given in Table-1.2. 

The frequency of occurrence for a class is given as a percentage of the total number 

(about 7150) of SCVs present in the  sentences. It is observed that only 20 SCV 

classes (out of a total of 80 classes) occur with a frequency greater than the average 

frequency of occurrence (i.e., 1.25%), and about 20 other classes have a frequency of 

occurrence that is less than 0.1%. 

The varying frequency of occurrence for different classes is a characteristic of any 

language. This factor needs t o  be taken into account in evolving the strategies for 

training and recognition in the design of a classifier. The standard procedure for 

building the training data sets is t o  create a database consisting of a large number of 

sentences collected, and then use a percentage of the totally available data for each 

class as training data for that class. Because of the different frequencies of occurrence 

for different classes, the sizes of the totally available data sets for different classes in 

any database are not uniform. This results in nonuniform sizes of the training data 

sets for different classes. Because the varying frequency of occurrence of classes is 

a characteristic of the language, increasing the number of sentences in the database 

to  any extent arbitrarily will not help. One can carefully collect more number of 

sentences that contain those classes for which the sizes of available data sets are 

small and try to make the sizes of all classes uniform. This is a difficult task when 



Table 1.2: Frequency of occurrence of different SCV classes in Hindi. 
About 20 classes occur with a frequency greater than the average 
frequency of occurrence. About 20 other classes occur rarely with a 
frequency less than 0.1%. This shows that SCV classes have varying 
frequency of occurrence. 

the number of classes is large and when some classes, by nature, occur rarely. One 

solution to this problem is to use isolated utterance data for training the models. We 

consider the SCV data excised from continuous speech for our studies 011 recognition 

of frequently occurring SCV classes and the isolated utterance data for the studies 

on recognition of all the SCV classes. 

- 

1.5.5 Varying Durat ions  of S C V  Utterances 

Durations of the utterances vary for different SCV classes. Durations of segments 

belonging to a particular SCV class also vary depending on the speaking rate and 

Class 
ka 

t a 
ta 
Pa 
k i 
t i  
ti 
pi 
k u 
t u 
tu 
P U 

ke 
be 
te 
Pe 
ko 
to 
t o 
PO 

in% 
12.68 
0.85 
6.28 
7.06 
8.65 
0.53 
3.71 
0.67 
0.80 
0.07 
0.92 
1.58 
6.10 
0.24 
2.01 
0.20 
3.80 
0.04 
1.38 
0.06 

Class 
kha 

tha 
tha 
pha 
khi 
thi 
thi 
phi 
khu 
thu 
thu 
phu 
khe 
the 
the 
phe 
kho 
tho 
tho 
pho 

in% 
1.22 
0.32 
2.64 
0.39 
0.35 
0.29 
1.54 
0.20 
0.15 
0.01 
0.00 
0.21 
0.13 
0.11 
1.13 
0.08 
0.18 
0.03 
0.13 
0.04 

Class 

ga 
da 
da 
ba 
gi 
di 
di 
bi 
gu 
du 
du 
bu 

ge 
de 
de 
be 

go 
do 
do 
bo 

in% 
3.66 
1.26 
2.64 
5.61 
0.76 
0.78 
2.06 
0.80 
0.41 
0.04 
0.99 
0.71 
0.45 
0.76 
2.01 
0.52 
0.42 
0.14 
0.56 
0.24 

Class 

gha 
dha 
dha 
bha 
ghi 
dhi 
dhi 
bhi 
ghu 
dhu 
dhu 
bhu 

ghe 
dhe 
dhe 
bhe 

gho 
dho 
dho 
bho 

in% 
0.48 
0.20 
1.62 
1.66 
0.04 
0.13 
0.90 
2.50 
0.06 
0.01 
0.15 
0.11 
0.03 
0.10 
0.08 
0.17 
0.24 
0.04 
0.03 
0.08 



the context in continuous speech. This suggests that it is necessary to use classifier 

architectures that can handle varying duration patterns derived from SCV segments. 

Though the durations of SCVs vary, the durations of some of the regions (burst, 

aspiration and transition regions) for an SCV do not vary as much. The variations 

in the overall duration manifest mostly as variations in the durations of the closure 

and vowel regions. The closure and vowel regions are the initial and final regions 

of an SCV segment respectively. Because the discriminatory clues in these regions 

are present mainly in their steady characteristics, it is not necessary to process the 

complete durations of these regions. This suggests that most of the information 

necessary for recognition of SCVs can be captured by processing the portion of an 

SCV segment around the vowel onset point, that contains parts of the closure and 

vowel regions, and all of the burst, aspiration and transition regions. Therefore it 

is possible to  represent any SCV utterance, irrespective of its overall duration, by a 

fixed duration pattern retaining most of the relevant information and thus avoid the 

need for handling varying duration patterns. 

1.5.6 D e t e c t i o n  of Vowel Onse t  Po in t s  i n  S C V  Segments  

In order to obtain fixed duration patterns automatically from varying duration SCV 

segments, it is necessary to identify the Vowel Onset Point (VOP) in an SCV seg- 

ment. Once the VOP is identified, a portion of speech signal with a fixed duration 

around the VOP can be processed to obtain a fixed duration pattern. The method 

for identification of VOP has to be robust and independent of speaker. In our studies 

on classification of SCVs, we explore suitable methods for identification of VOPs in 

SCV segments. 



1.5.7 Parametric Representations for SCV Segments 

Two important aspects of parametric representation are identification of parameters 

suitable for different significant regions of an SCV utterance [9] and development of 

methods for the extraction of the parameters from speech signal. Some main issues 

related to these aspects are mentioned below: 

Parameters for distinguishing voiced/unvoiced closure regions. 

Parameters for identifying the frequency of the peak in the spectrum of the 

burst region which is short in duration. 

Parameters to capture the characteristics of an aspiration region when it is 

present. 

Parameters for representing the transition regions. The transit ion region may 

start at  the beginning of the vowel region as in unaspirated SCVs or during the 

aspiration region as in aspirated SCVs. Parameters for the transition region 

should be able to capture and represent the formant transitions. 

Parameters to represent the formant frequencies and amplitudes of the vowel 

region, even when the duration of the steady portion of the vowel region is 

short. 

Methods to absorb the variations in paramt,ters due to speakers and the context, 

without losing the discriminatory information. 

1.5.8 Importance of Transitions in SCV Segments 

The characteristics of sounds in SCV segments are affected by the adjacent sounds 

because of coarticulation effects. This is more true in the case of continuous speech. 

The clues for recognition of stop consonants are dependent on their immediate context 



significantly. Formant transition clues for the place of articulation of stop consonants 

are dependent on the following and preceding vowels [lo], [ll.]. It is necessary to 

capture this information present in the transition regions of SCV segments for correct 

classification of SCVs [12]. It is necessary to represent the transition regions by 

suitable speech parameters that help to capture the information from the time varying 

speech signal in those regions. 

1.5.9 Fuzzy Na tu re  of Clues for  Recognit ion of SCVs 

There are many sources of variability in the characteristics of the SCV utterances 

in continuous speech. The main sources due to the speech production mechanism 

are the speaker characteristics, the context and the speaking rate. It is difficult to 

collect and enumerate the variations in different sounds due to each source. The 

recognition strategies to handle the variability should either isolate the variability by 

looking for the invariant discriminatory clues or should use the methods to take the 

variability into account. The variability in the characteristics of the utterances mainly 

manifests as variations in the parameters extracted from the speech signal. Therefore 

it is necessary to obtain a representation of the parameters that is less sensitive 

to the variability. One method for doing this is to transform the parameters into 

features that describe the parameters. The features can be linguistic descriptions 

of the parameters. The linguistic descriptions are best represented by fuzzy logic. 

This suggests the need for fuzzification of speech signal parameters to handle the 

variability in the utterances. The process of fuzzification has to be done carefully 

in a way that does not lead to loss of the discriminatory information present in the 
* 

parameters extracted from the speech signal. 



1.5.10 Issues Addressed in the Thesis 

We first address the issues in developing neural network models for classification of the 

SCV segments manually excised from continuous speech for a small set of frequently 

occurring SCV classes. Then we address the issues in developing models for classifica- 

tion of isolated utterances of all the SCV classes. We develop a method for deriving 

the fixed duration patterns from varying duration SCV segments and utterances. 

Parametric representation based on weighted cepstral coefficients is used in deriving 

the patterns from SCV segments. We explore suitable methods for representing the 

transition regions in SCVs. 

The issues discussed so far are concerned with classification of the SCV segments 

excised from continuous speech and isolated utterances of SCVs. In the next section, 

we discuss the main issues in developing models for spotting the SCV segments in 

continuous speech. 

1.6 Issues in Spotting SCV Segments in Continuous Speech 

Though there have been many successful efforts in developing approaches for spotting 

keywords in unrestricted speech, these approaches cannot be extended for spotting 

subword units. The main reasons are: (1) The vocabulary of keywords is application 

dependent whereas the number of subword units is language dependent, and (2) Con- 

fusability amongst the keywords is not as high as that amongst the subword units. 

Additionally, the approaches for keyword spotting make the following assumptions: 

(1) A given continuous speech utterance has only one occurrence of one of the key- 

words, and (2) A given continuous speech utterance can be modeled as a segment 

containing one of the keywords that may be preceded and followed by nonvocabulary 

speech segments. These assumptions that simplify the design of models for spotting 

keywords are not valid in developing models for spotting subword units. Develop- 



ment of systems for spotting subword units requires classification models capable of 

discriminating large number of similar classes. 

Strategies for spotting subword units in continuous speech have been based on 

training classification models to classify only the segments of the continuous speech 

signal belonging to subword units and reject all other segments. The models thus 

trained to classify or reject are then used to scan the speech signal continuously 

and hypothesize the presence or absence of the corresponding subword units. This 

strategy for spotting requires models capable of rejecting all nonvocabulary segments 

in continuous speech. For spotting SCVs, we consider a strategy in which the vowel 

onset points (VOPs) are first located in continuous speech and then the scanning by 

classification models for SCVs is limited to the regions around VOPs. This locate 

and scan strategy is likely to result in fewer false alarms than the commonly used 

strategy based only on scanning. The locate and scan strategy spotting requires a 

robust method for automatic identification of VOPs in continuous speech. In our 

studies on spotting SCVs, we develop a neural network based method for detection 

of VOPs in continuous speech and adopt the locate and scan strategy for spotting. 

1.7 Organization of the Thesis 

A 'roadmap' showing the evolution of ideas reported in this thesis is given in Fig.l.1. 

The organization of the thesis is as follows: In Chapter 2, we first review methods 

for extraction of suitable parametric representations for recognition of SCV segments 

and then present a review of approaches for automatic recognition of subword units 

in continuous speech. In Chapter 3, we present our studies on developing models for 

classification of SCV segments manually excised from continuous speech for a small 

set of frequently occurring SCV classes. In Chapter 4, modular neural networks based 

approaches are explored for handling the large number of SCV classes. \Ve consider 



Neural  Network Models for Recognition of S C V  Segments  

1. Continuous speech recognition: 

Signal-to-symbol transformation: Acoustic-phonetic analysis 
Symbol-to-text conversion: Lexical, syntactic and semantic analysis 

2. Signal-to-symbol transformation: Recognition of Subword units 

3. Recognition of subword units: CVs as units, Spotting, Classification 

4. Classification of SCVs: Classification models, Parametric representations 

5. Classification models: Good discrimination, Handle large number of classes 

6. Discriminatory models: Neural network models 

7. Neural  network models: Fixed duration pattern classifiers 

8. Derivation of fixed duration patterns: Vowel onset points in SCVs 

9. Classification of SCV segments excised from continuous speech: 

Large number of SCV classes: Similarity amongst several classes 

Varying frequency of occurrence of SCV classes: Limited training data 
Variability in characteristics of SCVs in continuous speech 
Difficulty in capturing all the variations from the limited training data 

10. Neural  network architectures: OCON and ACON architectures 

11. Models for large number of classes: Training data, Modular networks 

12. Training d a t a  for all SCV classes: Isolated SCV data 

13. Derivation of patterns: Effects of segment durations 

14. Modular  networks: Criteria for grouping classes into subgroups 

15. Constraint  satisfaction network: 

Neural networks for subsets of classes: Nonlinear feature extractors 

Combination of evidences from multiple sources 
Constraints based on acoustic-phonetic knowledge and experimental data 

16. Spot t ing  SCVs: Strategy for spotting, Models for spotting 

17. Locate  and  scan strategy: Vowel onset points in continuous speech 

18. Models for spotting: Rejection of non-SCV segments 

19. Paramet r ic  representations: 

Representation of SCV transitions: Pitch region analysis 
Reduction of variability: Fuzzification 

Figure 1.1: Evolution of idem described in the thesis. 



different criteria guided by the phonetic description of SCVs for grouping the large 

number of SCV classes into subgroups. In Chapter 5, we propose a constraint satis- 

faction model to combine the evidences available from the networks based on different 

grouping criteria. Studies on spotting SCV segments in continuous speech are pre- 

sented in Chapter 6. Studies on suitable parametric representations for transitions in 

SCV segments are described in Chapter 7. Methods for fuzzification of formant tra- 

jectories in SCV transitions are also explored in this chapter. Finally, we summarize 

the contributions of this research work in Chapter 8. 



Chapter 2 

REVIEW OF APPROACHES TO 

RECOGNITION OF SUBWORD UNITS 

In this chapter, we first give a review of approaches based on different classification 

models for automatic recognition of subword units. Then we present the nature of 

clues for recognition of Stop Consonant-Vowel (SCV) segments and give a review of 

methods for extraction of the clues from speech signal. In Section 2.1, we review 

approaches based on hidden Markov models for classification of subword units such 

as phonemes and syllables. Approaches based on artificial neural network models are 

reviewed in Section 2.2. Modular neural networks based approaches for classification 

are reviewed in Section 2.3. In Section 2.4, we give a review of approaches for spotting 

subword units in continuous speech. In Section 2.5, we review the methods for ex- 

traction of clues for classification of SCV segments. We present a review of methods 

for detection of vowel onset points in Section 2.6. 

2.1 Approaches based on Hidden Markov Models 

Statistical pattern recognition approaches for continuous speech recognition are mainly 

based on hidden Markov models [4] [13]. Hidden Markov Models (HMMs) are used 

for their inherent ability to incorporate the sequential and stochastic nature of the 

speech signal. An HMM is a doubly stochastic process with an underlying stochastic 

process that is hidden, but can only be observed through another set of stochastic 

processes that generates the sequence of observed symbols [14]. An HMM is charac- 



terised by a finite number of states, a finite number of observation symbols per state, 

a transition (from one state to another) probability distribution, an observation sym- 

bol probability distribution and an initial state probability distribution. In discrete 

HMMs, observations are characterised as discrete symbols and a discrete probability 

density is used to specify the observation probability distribution. Continuous speech 

signal representations are converted into a sequence of discrete symbols using vector 

quantization methods. Continuous HMMs use continuous observation densities to 

model continuous signal representations directly. The continuous HMMs need larger 

training data sets because the number of model parameters to be estimated is much 

larger than that in discrete HMMs. 

Approaches based on statistical models for large vocabulary continuous speech 

recognition have used HMMs for modeling subword units. Models for words are 

built as concatenations of models for subword units and statistical language models 

are used for matching a t  sentence level [14] [15]. Commonly used subword units are 

context-independent phones, context-dependent phones ( diphones and triphones) (1 61 

[17], syllables and acoustic units (181 [19]. In most of these approaches the training 

of systems is carried out at the level of sentences and the recognition performance 

of systems is given in terms of word accuracies and sentence accuracies, making 

them suitable for task specific continuous speech recognition 1141. The recognition 

performance at word and sentence levels is ultimately limited by the performance at 

subword unit level. The performance a t  subword unit level is more important for 

vocabulary independent, task independent continuous speech recognition. Therefore 

we will focus on the approaches for recognition a t  subword unit level. 

The recognition performance a t  subword unit level for a continuous speech recog- 

nition system that uses discrete hidden Markov models for phones as subword units 

is given in [16]. A recognition accuracy of 64.1% for context independent phone units 



and 73.8% for right context dependent phone units is reported for the system using 

a bigram phone model as the language model. A recognition accuracy of 58.1% is 

reported for 8 stop consonant, context independent phone units used in this system. 

Recently approaches based on modeling segments within the stop consonants have 

been used for obtaining an improved recognition performance. HMMs have been de- 

veloped for stationary microsegments of stop consonants such as silence, voice bar, 

burst and aspiration and a concatenation of the models for microsegments is used to 

model a stop consonant [20]. Results of recognition studies indicate an improvement 

in the performance using this approach over an approach that used a single model for 

each stop consonant. An HMM representation of quantized articulatory features of 

consonants and vowels has been used for speaker dependent recognition of 18 isolated 

stop consonant-vowel and CVC utterances in [21]. In [22], stop consonants are mod- 

elled using continuous HMMs as consisting of several well defined microsegments, and 

a recognition accuracy of 73.6% has been reported for speaker independent recognition 

of 5 stop consonants in VCV segments excised from continuous speech. 

The main limitation of the HMMs in using them for recognition of confusable vo- 

cabulary is their poor discriminatory capability [23]. Training HMMs using maximum 

mutual information (MMI) criterion has been considered for incorporating discrimi- 

natory information [24]. But optimization procedures for estimation of HMM model 

parameters using MMI criterion are complex and often lead to numerical problems 

in implementatior~. Approaches based on artificial neural networks have been found 

to be suitable for discriminatory training. In the next section, we review approaches 

based on ANNs for recognition of subword units. 



2.2 Approaches based on Artificial Neural Network Models 

A number of properties that a layered feedforward neural network should have so that 

it will be useful for speech recognition are listed in [7]. First, the network should have 

multiple layers and sufficient interconnections between units in each of these layers. 

This is to ensure that the network will have the ability to learn complex nonlinear de- 

cision surfaces. Second, the network should have the ability to represent relationships 

between events in time. Third, the actual features of abstractions learned by the net- 

work should be invariant under translation in time. Fourth, the learning procedure 

should not require precise temporal alignment of the labels that are to be learned. 

Fifth, the number of weights in the network should be sufficiently small compared to 

amount of training data so that the network is forced to encode the training data by 

extracting regularity. 

Having listed the properties, the paper describes a time delay neural network 

(TDNN) architecture for recognition of phonemes {b,d,g) that satisfies these prop- 

erties. The input to the TDNN consists of 15 frames of speech centered around the 

handlabeled vowel onset. Each frame consists of normalized me1 scale spectral coeffi- 

cients derived from the speech sampled at 12 kHz, Hamming windowed and analyzed 

using a 256 point FFT every5 ms. Adjacent coeffcients in time are collapsed to give 

an overall frame rate of 10 ms. Coefficients are normalized to lie between -1 and +l. 

The first hidden layer consists of 8 time-delay hidden units. The input to these time- 

delay units expanded out spatially into a three frame window. In the second hidden 

layer, each of three time-delay units look at a five frame window of activity levels 

in the first hidden layer. The-output is obtained by integrating the evidence from 

each of the three units in the second hidden layer over time and connecting it to its 

pertinent output unit. The speech data used for training and testing was extracted 

from the isolated utterances of Japanaese words from three speakers. In performance 



evaluation, the TDNN achieved an average recognition score of 98.5%. 

The reasons for various design choices in the TDNN architecture are discussed in 

[25]. Each unit in the first of two hidden layers is connected to three successive frames 

of input (this is called receptive field). This enables the network to capture the rela- 

tionships between events in time. This is also the reason for calling the architecture 

as time-delay neural network. To permit the detection of multiple features in each 

slice of the input, the network has multiple number of hidden units connected to each 

receptive field. To eliminate the misalignment problem during learning, the network 

is forced to apply the same set of feature detectors to every slice of the input. Still, 

there may be incorrect alignment of the utterance during recognition. To solve this 

problem, a network that contains several copies of each output unit is suggested. 

Having described the efforts based on TDNN architectures to develop speech 

recognition systems, we now summarize other efforts to develop phoneme recognition 

systems using multilayer neural networks. A connectionist structure for phoneme 

recognition proposed in [26] has two main parts: (1) A sound subunit classifier using 

a backpropagation network with two hidden layers to classify speech subunits from 

frames of speech data and (2) A sequence classifier to classify phonemes from input 

sequences of subunits by their occurrence and duration. 128 points in the FFT spec- 

trum of speech sampled at 10 kHz and split into nonoverlapping 10 ms frames are 

used as inputs to the subunit classifier network. The network has 15 output nodes 

corresponding to the 15 subuniis (3 initial stop consonants, 4 final stop consonants, 2 

fricatives, 5 vowels and 1 silence). A sequence processor for recognition of phonemes 

from the subunits is also developed. Overall recognition rate of 87% on the test set 

of 90 pseudo-words of type ClVC2 or C1D (where C1 is initial consonant, C2 is a 

final consonant, V is a pure vowel and D is a diphthong) is reported. 

Two neural network models, multilayer perceptron and radial basis function net- 



work, are applied to a static speech recognition problem in [27]. In the multilayer 

perceptron network model, the class boundaries are modeled by hyperplanes defined 

by the hidden nodes. In the radial basis function networks, hidden nodes define hy- 

perellipsoids. Phonetic labeling experiments were conducted on handsegmented vowel 

tokens of 20 classes (12 monophthongs and 8 diphthongs). The analysis method ex- 

tracts 20 LPC-derived median cepstral coefficients for each third of the token and 12 

coefficients representing a coarse coding of duration. Both the network models are re- 

ported to give similar recognition performance of about 70% on test data. The radial 

basis function network could be trained much faster than the multilayer perceptron 

network of same complexity. 

Nine different parametric representations of speech based on linear predictive pa- 

rameters are compared in [28]. The input to a multilayer perceptron classifier are 

parameters extracted for a 20 ms segment excised from the center of steady-state 

part of a vowel. The MLP classifier is shown to perform best with the cepstral coef- 

ficient representation, which gave a recognition score of 91% over 900 utterances of 

/b/-vowel-/b/ sylIables from three speakers. 

Two schemes to obtain phonemic transcriptions of spoken utterances are described 

in [29]. Both schemes utilize the self-organizing Kohonen maps [30] first to vector 

quantize speech into a sequence of phoneme labels centiseconds apart. In the first 

scheme, the quasiphoneme sequence is converted into a phoneme string using simple 

durational transforn~ation ruIes. In the second scheme, the conversion is carried out 

by using a multilayered feedforward network. The input vector to the self-organizing 

maps consists of 15 component approximations of the short time power spectra of 

the speech signal. Using durational transformation rules, the phonemic accuracy 

achieved is 83.6%. The feedforward network with one hidden layer is used in the 

second scheme. The network is trained to filter the transitions between phonemes 



out of the quasiphoneme sequence. A phoneme recognition rate of 85.5% is achieved 

using multilayer networks. 

Other studies on classification of CVs are mostly on isolated CV utterances as in 

[31] for English letters, or on isolated CV utterances with the same vowel as in [32] 

[33] for the Eset  (B,C,D,E,G,P,T,V) of the English alphabet. 

Many clues for identification of speech sounds and their features are in a linguistic 

form. They are best represented by using fuzzy logic [34]. Fuzzy logic based ap- 

proaches have been used for classification of pat terns [35]. Recently there have been 

attempts to combine neural networks and fuzzy logic based approaches for pattern 

classification [36] [37]. Neural networks that use fuzzy representation of formant data 

for recognition of vowels have been shown to give a better classification performance 

in [38]. Fuzzy representation of the similarity of patterns was used in training neural 

networks for recognition of vowels and it has been shown that the fuzzy neural net- 

works based approaches give better performance than the conventional approaches 

[391- 

2.3 Modular Networks based Approaches 

Monolithic neural network architectures are not suitable for developing classifiers for 

a large number of classes, as in the case of subword unit based continuous speech 

recognition. Modular networks based approaches have been proposed for recognition 

of large number of classes. In these approaches modularity is viewed as a manifes- 

tation of the principle of divide and conquer, which permits one to solve a complex 

computational task by dividing it into simpler subtasks and then combining their 

individual solutions [40]. A neural network is said to be modular if the computation 

performed by the network can be composed into two or more modules (subsystems 

or subnetworks) that operate on distinct inputs without communicating with each 



other. The outputs of the modules are mediated by an integrating unit that is not 

permitted to feed information back to the modules. 

Modularity has been used as a design strategy in developing large phonemic net- 

works for recognition of all consonants [41]. In this approach, several time-delay 

neural networks have been developed for different subsets of consonants and the out- 

puts of these subsystems are combined to determine the consonant class. Phonemes 

are grouped into the following subgroups: ( {b,d,g), {p,t ,k), {m,n,syllabic nasal sN), 

{s,sh,h,z), {ch,ts), {r,w,y) and {a,i,e,o,u) ). A discrimination score of above 96% 

for each of these subgroups is reported. When two of these networks for {b,d,g) and 

{p,t,k) are combined to build a network for {b,d,g,p,t,k), the performance decreased 

to about 60%. This indicated that further training of the combined network is nec- 

essary to improve the performance. Different strategies for incremental learning were 

explored. They are (1) use of class distinctive features, (2) connectionist glue tech- 

niques where more hidden units are included in the hidden layer 1 to learn any missing 

discriminatory features and (3) all-net fine tuning. After combination learning and 

all-net fine tuning, the consonant network yielded a recognition score of about 95% 

for the phonemes excised from the utterances of Japanese words. This is compared 

with an improved version of HMM model which gave a recognition score of 92.7% on 

the same data. 

In another approach, a hierarchical strategy has been proposed for handling the 

large number of phoneme classes [42]. In this strategy, the subgroup of a given input 

pattern is first decided by a network and the subsystem for that group is permitted to 

classify the given input pattern into one of the classes in its corresponding subgroup. 

Recently, modular approaches have been considered for recognition at  subword unit 

level in hybrid HMM/ANN based approaches for continuous speech recognition [43]. 



2.4 Approaches to Spotting Subword Units 

Though there have been many successful efforts in developing approaches for spotting 

keywords in unrestricted speech, these approaches cannot be extended for spotting 

subword units. The main reasons are: (1) The number of keywords in the vocabulary 

is application dependent and is much smaller than the number of subword units 

which is language dependent and (2) Confusability amongst the keywords is not as 

high as that amongst the subword units. Additionally, the approaches for keyword 

spotting make assumptions that a given continuous speech utterance has only one 

occurrence of one of the keywords, and that the given continuous speech utterance 

can be modeled as a segment containing one of the keywords that may be preceded 

and followed by non-vocabulary speech segments. These assumptions that simplify 

the design of models for spotting keywords are not valid in developing models for 

spotting subword units. 

Hidden Markov models have been extensively used in keyword spotting systems 

because of their ability to model keywords of varying durations and also because 

they can be used to build models that satisfy the above assumptions [44] [45] [46]. 

Development of subword unit spotting systems requires classification models capa- 

ble of discriminating large number of similar classes. Discriminant techniques for 

training HMMs used for word spotting have been shown to  improve the spotting 

performance [47]. A learning algorithm based on discriminative learning theory, 

namely, Minimum Classification Error formalization/Generalized Probabilistic De- 

scent method(MCE/GPD), has been proposed for minimizing errors in spotting five 

Japanese consonants [48]. 

Artificial neural networks are shown to  have a better discriminatory capability 

than HMMs. Approaches based on ANNs for spotting words have used self-organizing 

map and feed- forward networks [49], recurrent networks [50], neural tree networks 



[51] and multiple Restricted Coloumb Energy networks [52]. Time delay neural net- 

works (TDNN) have been considered for spotting phonemes and a small set of CV 

syllables [42] in word utterances. In order to develop a vocabulary independent con- 

tinuous speech recognition system by spotting subword units in continuous speech, 

it is necessary to evolve suitable strategies for mini@zing errors in spotting subword 

units which are large in number and which form a highly confusable set of classes. 

We address the issuea in developing approaches for spotting subword units of Stop 

Consonant -Vowel (SCV) classes. 

2.5 Methods for Processing SCV Segments 

Stop consonants are considered to be the most difficult consonants to recognize for 

the following reasons [53]: (1) The speech production mechanism of a stop consonant 

is dynamic, involving a closure and release period, (2) The complex nature of this 

production mechanism results in many diverse acoustic cues, and (3) The acoustic 

events during the production of the sound can be omitted or severely distorted. In 

this section, we briefly describe the speech production mechanism of stop consonants, 

identify the important clues for recognition of stop consonants and present the nature 

of these clues. 

2.5.1 Speech Product ion Mechanism for S top  Consonants 

Production of stop consonants are characterized by the following successive significant 

events[54]: (1) Closure that can be voiced or silent, (2) Transient corresponding to the 

response of the vocal tract to the pressure release, (3) Frication that is characterized 

by noise produced at the consonantal constriction, (4) Aspiration characterized by 

an 'h-like' noise, and (5) Transition corresponding to the initial part of a following 

voiced sound to the extent that it is influenced by coarticulation with the stop. For 



stop consonants in English and many other European languages, the speech segment 

corresponding to the transient, frication and aspiration events is treated as a single 

segment called the 'burst'. In Indian languages, the presence or absence of the as- 

piration event is one of the discriminating characteristics of different stop consonant 

sounds. Therefore the speech segment corresponding to the transient and frication 

events is considered as 'burst' for stop consonants in Indian languages. Different 

significant events in production of an SCV utterance /kha/ in Hindi are shown in 

Fig.2.1. The figure shows the plots of speech signal waveform, formant frequencies, 

and the regions of different significant events in the utterance. 

Events Closure Burst Aspi Tran Vowel 

Signal 

VOP 

I I 

400 
Time in ms 

Figure 2.1: Different significant events in the production of the SCV 
utterance /kha/. The figure shows the plots of signal waveform and for- 
mant frequencies, and indicates the boundaries of regions corresponding 
to different significant events in production of the SCV utterance. The 
vowel onset point (VOP) is also indicated. 
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stop consonants in English and many other European languages, the speech segment 

corresponding to  the transient, frication and aspiration events is treated as a single 

segment called the 'burst'. In Indian languages, the presence or absence of the as- 

piration event is one of the discriminating characteristics of different stop consonant 

sounds. Therefore the speech segment corresponding to the transient and frication 

events is considered as 'burst' for stop consonants in Indian languages. Different 

significant events in production of an SCV utterance /kha/ in Hindi are shown in 

Fig.2.1. The figure shows the plots of speech signal waveform, formant frequencies, 

and the regions of different significant events in the utterance. 
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place of articulation [55]. There are four different manners of articulation and four 

different places of articulation. Typical speech signal waveforms for different stop 

consonants of Hindi are shown in Fig.2.2. The plots for the 16 stop consonants are 

arranged in four columns and four rows. The four columns correspond to the four 

manners of articulation and the four rows correspond to the four places of articulation. 

The points a t  which the vocal tract closure occurs for different places of articulation 

[56] are also shown in Fig.2.2. Speech signal waveform plots show the closure, burst, 

and aspiration regions (wherever they are present), and the initial portions of the 

vowel for utterances of SCVs with the vowel /a/. In the remainder of this section, 

we present the important clues and nature of these clues for identification of manner 

and place of articulation of stop consonants. 

2.5.2 Clues  for Manner  of Articulat ion of S t o p  Consonants  

Manner of articulation of stop consonants is described by the unvoiced or voiced na- 

ture of the closure event and the presence or absence of the aspiration event, leading 

to four different manners of articulation. They are (1) Unvoiced-Unaspirated, (2) 

Unvoiced-Aspirated, (3) Voiced-Unaspirated and (4) Voiced- Aspirated. The main 

clues for recognition of the manner of articulation are present in the segments corre- 

sponding to the closure and aspiration events. The closure segment is characterized 

by a low energy region and the aspiration segment by a formant structure similar to 

that of the following vowel, but with no periodicity [55]. The acoustic features corre- 

sponding to these clues are [57] [55]: (1) Voicing during closure, (2) Voice onset time, 

(3) Nature of first formant transition, (4) Spectral flatness and (5) Ratio of the high 

frequency energy to the low frequency energy. Because of incomplete articulation of 

sounds in continuous speech, voicing during closure may have a weak presence and 

aspiration may also have a weak presence or it may completely be absent. Recogni- 



Unvoiced- Unvoiced- Voiced- Voiced- 
Unaspirated Aspirated Unaspirated Aspirated 

Velar /k/ 

Alveolar /!/ 

Dental /t/ 
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Figure 2.2: Different stop consonants in Hindi. The figure shows the plots of speech 
signal waveforms for 16 stop consonants in Hindi. The plots are arranged in 4 
columns and 4 rows. The 4 columns correspond to  the 4 manners of articulation of 
Hindi stop consonants. The 4 rows correspond to the 4 places of articulation. The 
point in the vocal tract at which the closure occurs for each place of articulation is 
also shown. Speech signal waveform plots show the closure, burst, and aspiration 
regions (wherever present), and the initial portions of the vowel for utterances of 
SCVs with the vowel /a/. 



tion errors (such as /dha/ being classified as Ida/)  due to imprecise articulation of 

the manner of stop consonants can be handled only by using lexical knowledge in the 

symbol- t e tex t  conversion stage of a speech recognition system. 

2.5.3 Clues for Place of Articulation of Stop Consonants 

Place of articulation of stop consonants is described by the portion of the vocal tract 

a t  which the consonantal constriction occurs during production of stop consonant 

sounds. There are four places of articulation for stop consonants in Indian languages, 

namely, (1) Velar, (2) Alveolar, (3) Dental and (4) Bilabial. The main clues for recog- 

nition of the place of articulation are present in the segments corresponding to the 

burst and transition events [58]. The burst segment is characterized by a short du- 

ration (510 ms) and the transition segment is characterized by a dynamic spectrum. 

The acoustic features corresponding to the clues for place of articulation are [57] [59]: 

(1) Distribution of energy in the burst spectrum, (2) Dynamics in the burst spec- 

trum, and (3) formant transitions between the release of stop consonants and steady 

region of the following vowels. Development of suitable signal processing methods for 

extraction of the features from speech segments of short durations and time varying 

spectral characteristics is important for recognition of the place of articulation of stop 

consonants. In continuous speech, the burst may have a weak presence or may even 

be absent. Even when it is present, it is difficult to identify the burst segment and 

extract [ he  features only from the burst segment using the existing signal process- 

ing methods. Formant transition features are certainly present in any SCV segment. 

Therefore they are more reliable and important features than the burst segment fea- 

tures [60] [61]. The formant transition features for a stop consonant are dependent 

on the adjacent vowels [lo] [62]. Therefore it is necessary to take the vowel context 

into account for extraction of formant transition features. We next review methods 



for modeling and processing the transition segments. 

Modeling Transitions in SCVs 

There are mainly two methods for modeling the transitional behaviour in consonantal 

environments. The first method is based on the locus theory [63] where it is assumed 

that for each consonant there is a single target spectrum or locus with the property 

that in VC and CV transitions the vowel spectra tend to converge towards the target 

for the consonant [MI. The identification of loci associated with place of articula- 

tion from acoustic analyses of real speech has been elusive. In a recent attempt, the 

locus concept has been generalized to that of locus equations that describe linear 

relationships between the formants a t  the voicing onset of CV syllables and those at 

the midvowel nuclei [65]. It has also been shown that locus equations have the prop- 

erty of relational invariance, i.e., they are invariant with respect to the consonantal 

place and are relational with respect to the vowel context. Context dependent hidden 

Markov models structured by locus equations have been developed for modeling and 

classification of transitions in a CVC environment [66] [67]. 

The second method for modeling transitional behaviour in consonantal environ- 

ments is based on acoustic measurements aimed at quantifying formant transition 

patterns in relation to the vowel formant values [ll]. In this method, the transition 

regions in CV and VC segments are analyzed to extract features related to formant 

frequencies and changes in formant frequencies. The focus in this method is on de- 

veloping suitable signal processing techniques for extraction of the formant features 

from transition regions characterized by dynamic spectral characteristics. Processing 

techniques based on a time-varying model [68] for speech signal have been shown 

to give a better classification performance than the standard processing techniques 

for recognition of unvoiced stops in VC environments [69]. In our studies, we con- 



sider pitch region analysis based processing techniques for extraction of features from 

transition regions SCV segments [70]. 

2.6 Methods for Detection of Vowel Onset Points 

In this subsection, we present a review of methods for detection of Vowel Onset Points 

(VOPs) in continuous speech. The objective of using a method for detection of VOPs 

in recognition of SCVs is to focus on processing and analysis of speech segments 

around VOPs. These segments contain most of the relevant information necessary 

for recognition of SCVs. In classification of SCVs using neural network models, 

segments with a fixed duration around VOPs are processed to obtain fixed duration 

patterns which are given as input to the neural network classifiers. For spotting SCVs, 

scanning of speech signal can be limited to only the segments around VOPs. This 

helps in automatically eliminating many portions of the continuous speech signal that 

do not contain SCVs and in reducing the number of false alarms during spotting. 

One of the methods for detection of VOPs in continuous speech is based on seg- 

mentation of continuous speech into vowel and nonvowel like regions [71]. In this 

method speech signal parameters such as energy, ratio of the high frequency energy 

(energy in the range of 3800-4600Hz) to the low frequency energy (energy in the 

range of 0-800Hz), ratio of the volumes of back and total cavities of vocal tract and 

ratio of the volumes of front and back cavities of vocal tract were used as features to 

discriminate vowel and nonvowel like regions. The performance of this method on 10 

sentences containing about 90 VOPs was shown to give an error percentage of about 

3% on male speaker data and about 7% on female speaker data. 

A method for detection of VOPs in continuous speech by identifying the points 

at which there is a rapid increase in the vowel strength was proposed in [72]. In 

this method the vowel strength is computed using the diiference in energy of each 



of the peaks in the amplitude spectrum and the energy of a dip associated with the 

peak. Speech segments with duration of pitch periods are analysed to obtain the 

amplitude spectrum and computing the vowel strengths. This method was shown 

to give a correct detection performance of 91% on speech data containing about 375 

VOPs with a precision of 20 msec or better. 

Another method for detection of VOPs is based on first classifying the speech sig- 

nal into voiced/unvoiced/silence regions [73] [74] and then labelling the voiced regions 

as vowel and nonvowel regions. A met hod for voi ced/unvoiced/silence classification 

by automatic labelling of instants of significant excitation in speech signal has been 

proposed in [75]. In this method absolute and relative parameters of speech signal 

energy and linear prediction residual energy of frames with a duration of about 3 

ms and on both the sides of significant points of excitation [76] were used to train 

a feedforward network for classification of speech signal into voiced/unvoiced/silence 

regions. 

In our studies, we consider two methods for detection of VOPs. One method is 

concerned with detection of VOPs in SCV segments excised manually from continuous 

speech and in isolated utterances of SCVs. This method is based on detection of the 

point where there is a rapid increase in the energy of the speech signal. This method 

is used in our studies on classification of SCVs. The second method is concerned 

with detection of VOPs in continuous speech. This method is used in our studies on 

spotting SCVs in conti~iiious speech. 

2.7 Summary 

Approaches based on neural networks for classification of subword units were devel- 

oped for the isolated utterances of units or for the segments manually excised from 

isolated words and continuous speech. Patterns derived from handsegmented portions 



of a fixed duration were used for training and testing the classification models. In our 

studies, we develop a method for- automatically deriving the fixed duration pat terns 

from varying duration segments. This method is based on detection of vowel onset 

points and processing fixed duration segments around them. 

Phonemes have been used as subword units in many approaches for continuous 

speech recognition. The number of phonemes is small but it is difficult to recognize 

them because of the coarticulation effects on their characteristics in continuous speech. 

Linguistic constraints at word and sentence level have been used to correct the errors 

in recognition of phonemes. Syllables have not been used mainly because they are 

large in number. We have chosen CVs as basic units. We develop approaches based 

on modular neural networks for handling the large number of units. We consider 

different criteria for grouping the unit classes into subgroups and training a separate 

network for each subgroups. We develop a constraint satisfaction model that uses the 

acoustic-phonetic knowledge of the classes to combine the evidences from modular 

networks for different groupings. This approach for classification of subword units is 

vocabulary independent. 

Spotting subword units is important for vocabulary independent continuous speech , 

recognition. Approaches used for spotting keywords are not suitable for spotting sub- 

word units. Many approaches for spotting have been based on scanning the speech 

signal of a sentence continuously. We address the issues in developing an approach for 

spotting based on the detection of vowel onset points in continuous speech and scan- 

ning only the segments around them. The focus of this thesis work is on vocabulary 

independent recognition of the stop consonant-vowel (SCV) segments. 



Chapter 3 

STUDIES ON CLASSIFICATION OF 

SCV SEGMENTS 

3.1 Objectives of the Studies 

The objectives of the studies presented in this chapter are: (1) to develop an approach 

based on neural network models for classification of the SCV segments excised from 

continuous speech, (2) to compare the performance of different models and architec- 

tures for classification of the SCV segments, and (3) to  analyze the performance of 

the models in order to identify the main sources of errors in classification. In the next 

section, we present an approach for classification of the SCV segments. In Section 3.3 

and 3.4, we describe the classification models and architectures used in our studies. 

The classification studies and the results are presented in Section 3.5. In Section 3.6, 

we give an analysis of the results of the studies. 

3.2 An Approach for Classification of SCV Segments 

The SCV segments in continuous speech have varying durations. The durations are 

approximately in the range of 75 to 350 ms. I t  is observed that SCVs with short 

vowels /i/ and /u/ and occurring a t  the end of phrases and sentences have short 

durations. The segments belonging to the SCV classes withrlong vowel /a:/ in the 

beginning of phrases and sentences have been observed to be of long durations. Neu- 

ral network classifiers considered in our studies are capable of handling only fixed 



duration patterns. Therefore it is necessary to derive fixed duration patterns from 

SCV segments of varying durations. The fixed duration patterns should have all the 

important information necessary for classification. In this section, we develop an 

approach for deriving fixed duration patterns.. 

An SCV segment consists of all or a subset of the following significant speech 

production events: Closure, Burst, Aspiration, Transition and Vowel. Any SCV 

segment will have the regions corresponding to the closure, transition and vowel 

events. The burst is supposed to  be present for all the stop consonants. In SCVs 

occurring in continuous speech, the bursts may be totally absent or may have a weak 

presence. The aspiration is supposed to  be present in the aspirated stop consonant 

sounds. It is observed that in continuous speech the aspirated stop consonants are 

some times pronounced as unaspirated sounds or they are characterised with weak 

aspiration. The important and reliable clues for classification are present in the 

closure, transition and vowel regions. It is important to take these aspects into 

account in development of models for classification of the SCV segments excised from 

continuous speech. 

The signal waveform and the formant frequencies for two segments belonging to 

the classes /ka/ and /ka:/ are shown in Fig.3.1. It is important to  note that though 

the difference in the total durations of the two segments is high, the durations of the 

events such as burst and transition are not much different. The difference in the total 

durations mainly manifests as differences in the durations of the closure and vowel 

regions. 

The closure and the vowel regions are the initial and final regions of an SCV seg- 

ment respectively. Because the discriminatory features in these regions are present 

mainly in their steady characteristics, it is not necessary to process the complete du- 

rations of these regions. The information necessary for classification can be captured 
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Figure 3.1: Differences in the durations of significant events for SCVs with 
short and long vowels. The figure shows the plots of signal and formant fre- 
quencies for the SCV segments of /ka/ with short vowel and /ka:/ with long 
vowel. The transition regions are marked in the plots of formant frequencies. 
It can be seen that though there is a difference of 170 ms in the overall dura- 
tions of /ka/ and /ka:/, this difference mainly manifests as differences in the 
durations of the closure and vowel regions. The durations of the burst and 
transition regions are not affected significantly. 



by processing the portion of an SCV segment.containing parts of the closure and 

vowel regions, and all of the burkt, aspiration and transition regions. The closure, 

burst and aspiration regions are present before the Vowel Onset Point (VOP) in any 

SCV segment. The transition and vowel regions are present after the VOP. Since 

it is possible to automatically identify the VOP in an SCV segment, a fixed dura- 

tion signal around the VOP that contains most of the necessary information can be 

processed to derive a fixed duration pattern. 

In our studies, we consider a 100 ms long signal starting at  20 ms before the VOP 

and ending at 80 ms after the VOP. The signal before the VOP would include the 

closure, burst and aspiration events that may be present in an SCV segment, and the 

signal after the VOP would include the transition and vowel regions. These durations 

are arrived at after observing that the duration of transition regions is in the range 

of 30-40 ms and that the characteristics of the vowel in an SCV are to be captured 

by processing at  least 30 to 40 ms of the steady portion of the vowel region. We now 

present a method for the detection of VOPs in the SCV segments. 

3.2.1 Detection of Vowel Onset Points in SCV Segments 

It is important to identify the vowel onset points in the SCV segments with a good 

accuracy because they form the anchor points around which the signal is processed 

to derive the patterns. An error in detection of the VOP leads to deriving a pattern 

that does not include the necessary information for classification. In this section, we 

consider a method based on the derivative of the signal energy to identify the VOPs 

in the SCV segments. 

It is observed that the energy of the signal increases rapidly at the VOP in the 

SCV segments. This is because the energy of the signal immediately after the VOP 

is much higher than that in the closure or burst regions that immediately precede the 



VOP. Though in most of the SCV segments the increase in energy is the highest at 

VOPs, it is observed that in some cases the energy continues to  increase even after 

the VOP and the point at which the maximum increase in energy occurs does not 

coincide with the VOP. The proposed method computes the maximum of the energy 

derivative in the SCV segment and then identifies the first point from the beginning 

of the SCV segment at which the derivative is above a threshold. The threshold is a 

fraction of the maximum energy derivative value. The signal waveform, the energy 

derivative and the VOP identified are shown in Fig.3.2 for a segment belonging to 

the class /kha/. It is observed that in some of the aspirated SCVs, the beginning 

of the aspiration region is identified as VOP because there is a significant increase 

in the energy when the closure region ends and the aspiration region begins. This is 

illustrated in Fig.3.3 a segment belonging to  the class /dha/. It is necessary to evolve 

a better method for detection of VOPs in the aspirated SCVs. 

Once the VOP in an SCV segment is identified, a 100 ms long signal around 

the VOP is processed to obtain 20 frames with 12 weighted cepstral coefficients in 

each frame. The weighted cepstral coefficients are derived from an 8th order linear 

prediction analysis [77], using a frame size of 20 ms and a shift of 5 ms. The algorithm 

used for extraction of weighted cepstral coefficients is given in Appendix A. If an SCV 

segment does not have 20 ms signal before the VOP or 80 ms after the VOP, then the 

first and the last frames of the segment are duplicated to derive a 20 frame pattern. 

Duplicating the frames in the steady regions of the SCV segments does not affect 

their classification. 

The method proposed in this section has been used to obtain the training and 

test patterns of the SCV data used in our studies. In the next section, we describe 

the models used for classification of the SCV segments. 
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Figure 3.2: Detection of vowel onset point (VOP) in an SCV segment. 
The figure shows the plots of signal waveform and the derigative of energy. 
The largest peak in the derivative of energy occurs at the VOP. 
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Figure 3.3: Misdetection of vowel onset point (VOP) in an SCV segment. 
The figure shows the plots of signal waveform and the derivative of energy. 
The largest peak in the derivative of energy occurs at the beginning of 
aspiration region instead of occurring at the VOP. Therefore the detected 
VOP is different from the actual VOP shown. 



3.3 Neural Network Models for Classification of SCVs 

3.3.1 Multi layer Percep t ron  

Approaches based on artificial neural networks have been used for speech recognition 

[6]. The main advantages of neural networks are a powerful discrimination based 

learning procedure and relatively mild assumptions about statistical distributions 

[40]. Multilayer perceptrons are the commonly used neural networks. Multilayer 

perceptrons with two hidden layers are capable of forming complex decision surfaces 

using hyperplane bounded decision regions spread across multiple layers. It has been 

shown that multilayer perceptrons give a better generalization performance compared 

to statistical models when the underlying distributions of classes are not known [78]. 

The structure of the multilayer perceptron model used in our studies is shown in 

Fig.3.4. The input layer consists of 240 nodes to input a 20 frame pattern with 

12 weighted cepstral coefficients per frame. A column of nodes in the input layer 

represents a frame. Each unit in the first hidden layer is connected to each of the 240 

nodes in the input layer. Similarly each node in the second hidden layer is connected 

to all the nodes in the first hidden layer, and each of the nodes in the output layer is 

connected to all the nodes in the second hidden layer. Standard error backpropagation 

algorithm [40] is used for training the multilayer perceptron networks. 

3.3.2 T i m e  Delay Neural  Network 

One of the main limitations of the multilayer perceptron model is its inability to 

provide invariance for translation in time. Time Delay Neural Network (TDNN) [25] 

model can be used to overcome this limitation. Typical structure of a TDNN used 

for classification of SCVs is shown in Fig.3.5. 

The input to the TDNN is a 20 frame pattern derived from an SCV segment. 

Each unit in the hidden layer is connected to a certain number of frames of input 
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Figure 3.4: Structure of the multilayer perceptron network used for classification 
of SCVs. The input layer consists of 240 nodes to input a 20 frame pattern with 
12 weighted cepstral coefficients per frame. A column of nodes in the input layer 
represents a frame. Each unit in the first hidden layer is connected to each of the 
240 nodes in the input layer. Similarly each node in the second hidden layer is 
connected to all the nodes in the first hidden layer, and each of the nodes in the 
output layer is connected to all the nodes in the second hidden layer. 
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Figure 3.5: Structure of the time delay neural network used for classification of 
SCVs. The input layer consists of 240 nodes to input a 20 frame pattern with 
12 weighted cepstral coefficients per frame. A column of nodes in the input layer 
represents a frame. Each unit in the hidden layer is connected to 3 consecutive 
frames of input forming its receptive field. The hidden layer consists of replicas for 
each hidden node. The number of replicas is same as the number of receptive fields 
of size 3 in the input layer. The replicas for a hidden node are shown in a row. 
The number of rows in the hidden layer corresponds to the number of hidden nodes. 
The replicative structure is also used for the output layer and each output node is 
connected to a receptive field of size 5 in the hidden layer. 



(called receptive field). The number of receptive fields is dependent on the size of the 

receptive field and the overlap between adjacent receptive fields. ÿ or* example, the 

total number of receptive fields is 18 for an input layer consisting of 20 frames, with a 

receptive field size of 3 frames and an overlap of 2 frames. The hidden layer consists of 

replicas for each hidden node. The number of replicas for a hidden node is same as the 

number of receptive fields in the input layer. The number of columns in the hidden 

layer corresponds to the number of receptive fields in the input layer. The number 

of rows in the hidden layer corresponds to the number of hidden nodes. Several 

hidden nodes are used to permit detection of multiple features in each receptive field. 

Replicas of the nodes are used to detect the same features in different receptive fields. 

To eliminate the misalignment problem during training, the replicas of a node use 

the same set of weights. Still, there may be incorrect alignment of during recognition. 

To solve this problem, the output nodes are replicated and each replica is connected 

to a different slice of the hidden layer. The learning algorithm used for training the 

multilayer perceptron is modified to train the TDNN. The learning algorithm for 

TDNN is derived in Appendix B. 

Because of the similarity amongst SCV classes, it is necessary to incorporate 

the discriminatory information in the classification models. In the next section, we 

consider different neural network architectures for incorporating the discriminatory 

information. 

3.4 Neural Network Architectures for Classification of SCVs 

We consider two neural network architectures, namely, (1) One-Class-One-Network 

(OCON) and (2) All- Class-One-Network (ACON), in developing classifiers for the 

SCV segments. In the OCON architecture a separate network is trained for: each 

class. The network of a class is trained with patterns belonging to that class which 



are used as positive examples, and also with patterns belonging to the classes close to 

it which are used as negative examples.   he network is trained to give a high output 

value for positive examples and a low value for negative examples. The aim of training 

a network for a class is to form a decision boundary around the region of that class 

in the pattern space. During classification a test pattern is input to the networks of 

all the classes and the outputs of the networks are processed to determine its class. 

The main advantage of the OCON architecture is that the size of the networks is not 

large. Another advantage is that it is possible to use a suitable preprocessing method 

for each class. The main disadvantage is that it is difficult to train the network of 

a class to give a low output value for patterns belonging to many other classes and 

hence the discriminatory capability of the network can be poor. The structure of the 

classifier based on the OCON architecture is shown in Fig.3.6. 

in the ACON architecture a single network is trained for all the classes. The 

number of output nodes in the network is same as the number of classes. The structure 

of the classifier based on the ACON architecture is shown in Fig.3.7. The training 

data consists of a number of patterns belonging to each class. The network is trained 

to give a high value for the output node belonging to the class of a training pattern 

and a low value for all other output nodes. The aim of training is to form decision 

surfaces among the regions of all the classes in the pattern space. The shapes of the 

decision surfaces become more complex as the number of the classes increases. It may 

be difficult to train a single network for large number of classes. If a network can 

be trained for a given set of classes, the discriminatory capability of the network is 

expected to be better than that of the OCON architecture. The disadvantage is that 

it is not possible to use different preprocessing methods for different classes. 

In our studies, we consider the OCON and ACON architecture based neural net- 

work classifiers using MLP and TDNN models. In the next section, we describe the 
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Figure 3.6: One-Class-One-Network (OCON) architecture for classification of SCVs. 
A separate network is trained for each of the classes under consideration. The 
number of networks is same as the number of classes. For classification of an SCV 
pattern, it is input to each network and the outputs of all the networks are combined 
by a postprocessor that implements the classification criterion to determine its class. 
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Figure 3.7: All-Class-One-Network (ACON) architecture for classification of SCVs. 
A single network is trained for all classes under consideration. The outputs of the 
network for a given SCV pattern are combined by a postprocetsor that implements 
the classification criterion to determine the class of the input pattern. 
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studies on classification of the SCV segments excised from continuous speech. 

3.5 Classification Studies and Results 

We have conducted studies on classification of continuous speech segments belonging 

to a subset of SCV classea in Hindi. In this section we first present the classes 

of SCVs considered in our studies, the details of the speech data collected and the 

implementation details of the classifiers. Then we present the studies and their results. 

3.5.1 Classes of SCVs for Studies  

Speech signal data belonging to  each of the 80 SCV classes was collected by manually 

excising the SCV segments from continuous speech of 50 sentences for each of the 8 

speakers (5 male and 3 female) considered in our studies. The total number of SCVs 

present in this data is about 2500. About 55% of the total number of SCVs belong to 

the subset of the most frequently occurring six SCV classes (/ka/, /ki/, /ke/, / t a l l  

/dha/ and /pa/) and about 75% of the total data belong to the subset of ten SCV 

classes (/ka/, /ki/, /ke/, /ko/, /ta/, /ti/, /to/, Ida/, /dha/ and /pa/). The number 

of segments belonging to the remaining 70 SCV classes is only about 25% of the total 

data. We have considered the set of six SCV classes in our first study and the set 

of ten SCV classes in our second study. Though the number of classes considered in 

the studies is much smaller than the total number of classes, classification of these 

frequently occurring SCVs is still a challenging problem because these classes are 

highly confusable. 

3.5.2 Implementat ion Details  of Classification Models 

We have conducted classification studies using multilayer perceptron (MLP) and time 

delay neural network (TDNN) models. Models with different number of nodes in the 



hidden layers have been considered in our studies. The performance is given for the 

models with the optimal number of hidden nodes. The performance of the models 

has not improved even if the number of the hidden nodes is increased beyond the 

optimal number. 

For the OCON architecture based classifiers, the MLP modes has 20 nodes in 

the first hidden layer and 15 nodes in the second hidden layer. The TDNN model 

has 10 nodes in the hidden layer. For the ACON architecture based classifiers, the 

performance is given for two MLP models and two TDNN models. The first MLP 

model, denoted as MLP1, has 125 nodes in the first hidden layer and 60 nodes in the 

second hidden layer. The second MLP model, MLP2, uses 20 nodes in the first hidden 

layer and 15 nodes in the second hidden layer. The first TDNN model, TDNN1, has 

20 nodes in the hidden layer (same as in the first hidden layer of MLP2). The second 

TDNN model, TDNN2, has only 10 nodes in the hidden layer. Training of models 

was carried out until the total sum of squares error [40] is small and does not change 

from one epoch to another. It was observed that the TDNN models required much 

longer training periods compared to the MLP models. This is mainly because of the 

replicative structure of the TDNN models. 

In order to compare the performance of neural network classifiers with that of 

hidden Markov models, we have considered discrete hidden Markov models (DHMMs). 

A 5-state, left-bright, discrete HMM was used to model an SCV segment. The 

structure of this model is shown in Fig.3.8. It is expected tllat different states would 

represent different significant events in the production of an SCV segment. Skipping 

of states is allowed to model the absence of specific events in some SCV utterances. 

Standard Baum-Welch reestimation method was used for training the DHMMs and 

the forward procedure was used for recognition [14]. The algorithms for the training 

and recognition methods are given in Appendix C. Vector quantization of the weighted 



Figure 3.8: Discrete hidden Markov model used for classification of SCVs. A 5-state, 
left-to-right model is trained for each SCV class. A circle in the figure represents a 
state and an arc represents a state transition. The input to the model is a sequence of 
codebook indices corresponding to the weighted cepstral coefficient vectors extracted 
from speech signal of an SCV segment. 

cepstral coefficient vectors was performed using the binary split algorithm [14] to build 

a codebook of size 256. 

3.5.3 Classification S tudies  

Here we present our studies on comparison of the performance of different models and 

architectures for classification of the SCV segments. The list of the studies carried 

out are given in Table-3.1. 

In our studies, the performance of the classifiers is given for the following two 

cases of classification criterion: (1) Correct class is the class with the largest output 

value and (2) Correct class is amongst the classes with the largest and the second 

largest output values. The second case is considered because it is observed that the 

class with the second largest output is the correct class in many instances of errors in 

classification. A significant increase in the performance for the second case suggests 

that two alternative class symbols can be given for each SCV segment during classi- 

fication. The correct symbol can be chosen using the lexical and syntactic knowledge 



Table 3.1: List of studies on classification of the 
SCV segments excised from continuous speech. 

1. Comparison of the performance of classifiers based on OCON 
and ACON architectures, and using MLP, TDNN and DHMM 
models for six frequently occurring SCV classes. 

2. Confusability among the six SCV classes. 

3. Comparison of the performance of classifiers based on differ- 
ent models and architectures for ten frequently occurring SCV 
classes. 

4. Confusability among the ten SCV classes. 

5. Effects of the inclusion of additional classes on the performance 
of the OCON and ACON architecture based classifiers. 

6. Analysis of the performance of classifiers to identify the main 
sources of errors in classification. 

of the language. 

Our first study considers six frequently occurring SCV classes: (/ka/, /ki/, /ke/, 

/ta/, /dha/ and /pa/). The training set for a network in the OCON classifiers consists 

of 10 patterns belonging to its class from each of the five speakers. These patterns are 

used as positive examples. The training set also includes 50 patterns belonging to the 

other classes which are used as negative examples. The training set for the network 

in the ACON classifiers consists of 10 patterns per class for each of the five speakers. 

Thus, a total number of 300 patterns were used for training. The remaining data of 

the five speakers (582 patterns) was used as the multispeaker test set. The complete 

data for the six classes from three new speakers (490 patterns) was used as the speaker 

independent test set. The performance for Case-1, the first case of the classification 

criterion, is given in Table-3.2(a) and the performance for the Case-2, the second 

case of the classification criterion, is given in Table-3.2(b) . The performance is given 



as the percentage of the total number of patterns in a data set that are correctly 

classified. 

Table 3.2; Comparison of the performance of classifiers based on different models 
and architectures for six frequently occurring SCV classes. Performance is given 
for the two cases of classification criterion: (a) Case-1 that an input pattern is 
correctly classified if the class of the input pattern is the class with the largest value 
amongst the outputs of a classifier, and (b) Case2 that an input pattern is correctly 
classified if the class of the input pattern is amongst' the classes with the largest and 
the second largest output values. It can be seen that the ACON classifiers give 
a better performance than the OCON classifiers. Classifiers based on the MLP 
model give a better performance than the TDNN or HMM models. The increase 
in performance for Case2 over Case-1 indicates that for many patterns that are 
incorrectly classified, the class with the second largest output value is the correct 
class. 

(a) Performance of classifiers for Case-1 of the classification criterion. 

It  is observed that there is a significant increase (by about 10 to 25%) in the 

performance on the test data sets for Case-2 over Case-1 of the classification crite- 

rion. This indicates that when there are errors in classification, the class with the 

second largest value is likely to be the correct class. The better performance of the 

ACON classifiers over the the OCON classifiers indicates the better discriminatory 

Data Set 
Training 
Multispeaker 
Speaker- 
independent 

(b)Performance of classifiers for Case2 of the classification criterion. 

capability of the ACON classifiers. It is also observed that MLP models give a better 

Data Set 
Training 
Multispeaker 
Speaker- 
independent 

OCON 
MLP 
86.0 
75.1 

63.3 

OCON 

DHMM 
99.0 
71.3 

59.2 

TDNN 
72.7 
71.3 

47.5 

ACON 

MLP 
98.7 
94.0 

82.9 

MLPl 
98.0 
86.6 

68.2 

DHMM 
100.0 
90.9 

83.5 

ACON 
TDNN 

94.0 
92.6 

75.7 

MLPl 
98.7 
95.0 

85.5 

MLP2 
90.3 
84.2 

65.5 

MLP2 
96.3 
94.2 

79.2 

TDNNl 
94.0 
81.2 

61.0 

TDNN2 
93.7 
80.0 

63.5 

TDNNl 
98.0 
94.5 

84.7 

TDNN2 
99.0 
93.8 

83.7 



performance than the TDNN or DHMM models. 

The best performance is given by the ACON classifier using the MLPl model. 

The performance of this classifier for Case-l'is used to obtain confusion matrices that 

indicate the confusability amongst the six classes. The confusion matrix based on 

the performance for the multispeaker test set is given in Table-3.3(a). The confusion 

matrix based on the performance for the speaker independent test set is given in 

Table 3.3: Confusion matrices for six frequently occurring SCV classes. 
The confusion matrix based on the performance of the ACON classifier 
using the MLPl model for the multispeaker test set is given in (a) and 
for the speaker independent test set is given in (b). The entries in a 
row give the total number of patterns for a class and the number of 
these patterns that are classified as patterns belonging to each of the 
six classes. It can be seen that the confusion for a class is mainly with 
the classes that are phonetically close to it. 

(a)Confusion matrix based on the perfor- 
mance for the multis~eaker test data set. 

Class 
ka 

(b) Confusion matrix based on the per- 

ke 
ki 
t a  
dha 
Pa 

formance for the speaker independent test 

Total 
162 

ka ke ki t a  dha pa 
151 0 0 2 2 7 

53 
131 

72 
92 
72 

The diagonal entries in the matrices give the number of patterns that are correctly 

2 34 14 1 1 1  
0 2 129 0 0 0 
3 0  0 5 8  4 7  
0 0  4 7 7 9 2  
3 0 0 11 5 53 

, data set. 
Class 
ka 
ke 
ki 
ta 
dha 
D a  

Total 
1 1 8 9 2  
59 

102 
67 

63 

ka ke ki ta dha pa 
0 0 8 6 1 2  

6 21 13 3 15 1 
4 9 8 7  0 2 0 

10 0 0 31 14 12 
8 1 2 0 0 6 6 6 7  

3 0 0 9 14 37 



classified. The non-diagonal entries in a row give the number of patterns belonging to 

a class that are misclassified as patterns belonging to each of the other classes. The 

confusion matrices indicate that in case of errors, the patterns belonging to a class 

are assigned to the classes which are phonetically close to  that class. 

Our second study considers four additional SCV classes (/ko/, /ti/, /to/ and 

Ida/). The training set for this study contains additionally five patterns per class 

of these four classes for each of the five speakers. The remaining data of the ten 

classes for the five speakers (713 patterns) was used as the multispeaker test set. The, 

complete data for the ten classes from three new speakers (617 patterns) was used as 

the speaker independent test set. The performance of different classifiers is given in 

Table3.4(a) for Case-1 and in Table3.4(b) for Case2. 

Table 3.4: Comparison of the performance of classifiers based on different models 
and architectures for ten frequently occurring SCV classes. It  can be seen that the 
ACON classifiers give a better performance than the OCON classifiers. The models 
with larger number of hidden nodes (MLP1 and TDNN2) give a better performance. 
There is a significant increase in the performance for Case2 over Case-1. 

(b) Performance of classifiers for Case2 of the classification criterion. 
OCON ACON 7 

(a) Performance of classifiers for Case-1 of the classification criterion. 

The observations made from the results in the first study hold good for the second 

Data Set 
Training 
Multispeaker 
Speaker- 
independent 

Data Set 
Training 
Multispeaker 
Speaker- 
inde~endent 

DHMM 
98.8 
68.3 

52.1 

ACON OCON 
MLPl 
98.5 
73.5 

61.9 

MLP 
82.8 
67.0 

52.4 

MLP 
97.3 
87.9 

75.9 

TDNN 
69.8 
58.6 

41.8 

TDNN 
87.3 
81.1 

65.5 

MLP2 
100.0 
71.2 

52.8 

DHMM 
100.0 
85.0 

70.3 

TDNN2 
94.3 
84.4 

70.5 

TDNNl 
91.5 
72.4 

56.1 

TDNNl 
97.5 
89.3 

71.5 

MLPl 
99.3 
89.6 

77.6 

TDNN2 
84.0 
67.6 

50.4 

MLP2 
100.0 
84.2 

71.6 



study also. There is a decrease in the performance of a classifier for the ten classes 

compared to that of the corresponding classifier for the six classes. This is mainly 

because some of the classes that are included for the second study are close to the 

classes considered in the first study. This leads to more confusability amongst the 

classes. An observation made from the performance of the ACON classifiers is that 

when the complexities (in terms of the number of hidden nodes) of the MLP and 

TDNN models are approximately the same (MLP2 and TDNNl), the TDNN model 

gives a marginally better performance compared to the MLP model. The best perfor- 

mance is given by the ACON classifier using the MLPl model. The confusion matrix 

derived from the performance of this classifier for the multispeaker and the speaker 

independent test sets is given in Table-3.5(a) and Table-3.5(b) respectively. 

In this section we have presented the studies on classification of SCV segments 

excised from continuous speech using different models and architectures. In the next 

section we give an analysis of the performance of different classifiers. 

3.6 Analysis of the Performance of Classifiers 

The results of the studies presented in the previous section indicate that the best 

classification performance is 73.5% on the multispeaker test data and is 61.9% on 

the speaker independent test data for ten frequently occurring SCV classes. The 

performance of ACON classifiers has been evaluated for models with different number 

of hidden nodes. It is observed that increasing the number of hidden nodes up to a 

limit results in an improvement of the performance. The MLP models with more than 

125 nodes in the first hidden layer did not show any improvement. The performance 

of the models with larger number of hidden nodes is limited by the available training 

data set. As the number of hidden nodes is increased, the TIINN model requires 

longer training periods and more importantly larger training sets. For example, a 



Table 3.5: Confusion matrices for ten frequently occurring SCV 
classes. The confusion matrix based on the performance of the ACON 
classifier using the MLPl  model for the multispeaker test set is given 
in (a) and for the speaker independent test set is given in (b). The 
entries in a row give the total number of patterns for a class and the 
number of these patterns that are classified as patterns belonging to 
each of the six classes. It can be seen that the confusion for a class is 
mainly with the classes that are phonetically close to it. 

(a)Confusion matrix based on the perfor- 
~ c e  for the multispeaker test data set. 
ka ke ki ko ta ti to da dha pa I Class 

I ka 
ke 

1 ki 
I ko 
ta  
ti 
t o 
da 
dha 
D a  

t a 

to 
da 
dha 

--- 

Total 
162 
53 

131 
19 
72 
33 
29 
50 
92 
72 

(a)Confusion matrix based on the perfor- 
mance for the speaker independent test 

dat 
Total 

118 
59 

102 
21 
6  7  
38 
29 
39 
8  1 
63 

, set. 
ka ke ki ko ta  ti to da dha pa 

1 0 5 0 0 5 0 0 1 0  0 7  
1 1 2 1 1 3 1 2 1 0 2  8 0  

4 8 7 2 0 0 1 4 0 0  4 0  
1 0 0 1 5 0 0 3 0  2 0  

22 0  0  5 2 2  0  1 1  1 15 
1 1 6 0 0 2 7 0 0  3 0  
7 0 0 2 2 0 1 4 0  3 1  
7 0 0 2 0 0 0 7 2 2 1  
3 0 0 6 3 0 0 1 1 5 8 0  
5 0 0 4 4 0 0 4  5  41 



TDNN model with even 50 nodes in its hidden layer could not be trained with the 

available training data set. This is because of the multiplicativeincrease in the number 

of replicated nodes as the number of hidden nodes is increased. 

An analysis of the performance of the OCON and ACON classifiers for the six and 

ten SCV classes is carried out to identify the effects of including additional classes. 

We focus on the performance of the classifiers using MLP models that gave the best 

performance. In Table-3.6 below we compare the performance of the classifiers on the 

data belonging to the six SCV classes considered in our first study. 

Table 3.6: Comparison of the performance of the OCON and ACON classifiers for 
the six and ten frequently occurring SCV classes on the test data sets of the six 
classes. The inclusion of the additional four classes (/ko/,/ti/,/to/ and Ida/) in 
the ten class classifier did not affect the performance of the OCON classifiers for 
the classes other than /&a/. A significant difference in the performance of ACON 
classifiers can be noted for all the six classes. 

It is observed that there is a significant difference in the performance of the six 

class and the ten class OCON classifiers only for the class /dha/. It is interesting 

to note that there is a difference in the performance of the ACON classifiers for all 

the six classes. The performance of the ten class ACON classifier is significantly less 

than that of the six class ACON classifier for the classes /ki/ as well as /dha/. The 

different behaviours of the OCON and ACON classifiers when additional classes are 

SCV 
Class 

ka 
ki 
ke 
t a  
dha 
Pa 
Average 

Speaker Independent Test Data Multispeaker Test Data 
Six 

Class 
OCON 

66.4 
71.6 
40.7 
20.9 
84.0 
82.5 
63.3 

Six 
Class 

OCON 
87.0 
57.3 
75.5 
84.7 
73.9 
72.2 
75.1 

Ten 
Class 

OCON 
64.7 
71.6 
40.7 
20.9 
50.6 
82.5 
57.3 

Ten 
Class 

OCON 
81.5 
54.2 
75.5 
84.7 
65.2 
69.4 
71.1 

Six 
Class 

ACON 
77.3 
85.3 
35.6 
46.3 
81.5 
58.7 
68.2 

Six 
Class .  

ACON 
93.2 
98.5 
64.2 
80.6 
85.9 
73.6 
86.6 

Ten 
Class 

ACON 
88.2 
70.6 
35.6 
32.8 
71.6 
65.1 
65.1 

Ten 
Class 

ACON 
82.7 
73.3 
69.8 
73.6 
70.7 
65.3 
74.7 



included can be explained as follows. 

Each of the networks in the OCON classifiers is trained to form a decision bound- 

ary around the region of its class in the pattern space. The networks in the ACON 

architecture are trained to form decision surfaces amongst the regions of all the classes. 

Inclusion of additional classes may not alter the decision boundaries formed for the 

OCON networks whereas it may significantly alter the decision surfaces of the ACON 

classifiers. This is indicated in the confusion matrices of the six class and the ten class 

ACON classifiers given in Tables 3.3 and 3.5. These tables show that the decrease 

in the performance of the ten class ACON network for the class /ki/ is due to the 

presence of the class /ti/ which differs from /ki/ only in the place of articulation of 

the stop consonant. The difference in the performance for each of the six classes is 

because of the readjusted decision surfaces when additional classes are included. 

The behaviour of the OCON and ACON classifiers is illustrated in Fig.3.9 for an 

arbitrary 2-dimensional pattern space. Typical boundaries expected to be formed 

for two classes by networks in the OCON classifier are shown in Fig.3.9(a). The 

boundaries for these classes do not change when the number of classes is increased 

to four as  show^ in Fig.3.9(b). This is because a network is trained for each class 

separately. The boundaries for the same two classes expected to be formed by the 

network in the ACON classifier are shown in Fig.3.9(c). It can be noted that the 

boundaries for these classes change when the number of classes is increased to four 

as shown in Fig.3.9(d). . 

It is observed that both the OCON and ACON classifiers show a decrease in the 

performance for the class /dha/. This is found to be mainly due to the presence 

of the class Ida/ in set of ten SCV classes. Most of the errors in classification of 

/dha/ segments that are classified as Ida/ have been found to be due to the absence 

of aspiration in their production. The difference in the phonetic descriptions of the 



Figure 3.9: Illustration of decision boundaries formed by the OCON and ACON 
classifiers. An arbitrary 2-dimensional pattern space is used to explain the effect 
of inclusion of additional classes. Typicai-boundaries expected to  be formed for 
two classes by networks in the OCON classifier are shown in (a). The boundaries 
for these classes do not change when the number of classes is increased to  four as 
shown in (b). This is because a network is trained for each class separately. The 
boundaries for the same two classes expected to be formed by the network in the 
ACON classifier are shown in (c). It can be noted that the boundaries for these 
classes change when the number of classes is increased to four as shown in (d). 



Figure 3.9: Illustration of decision boundaries formed by the OCON and ACON 
classifiers. An arbitrary 2-dimensional pattern space is used to explain the effect 
of inclusion of additional classes. Typical- boundaries expected to be formed for 
two classes by networks in the OCON classifier are shown in (a). The boundaries 
for these classes do not change when the number of.classes is increased to four as 
shown in (b). This is because a network is trained for each class separately. The 
boundaries for the same two classes expected to be formed by the network in the 
ACON classifier are shown in (c). It can be noted that the boundaries for these 
classes change when the number of classes is increased to four as shown in (d). 



Chapter 4 

MODULAR NEURAL NETWORKS 

FOR LARGE NUMBER OF CLASSES 

4.1 Introduction 

In the previous chapter, we have developed a method for classification of SCV seg- 

ments excised from continuous speech. The performance of different classification 

models was evaluated for a small set of frequently occurring SCV classes. Neural 

network architectures considered for a small set of classes have limitations in extend- 

ing them for large number of classes. In this chapter, we consider approaches based 

on modular neural network architectures for all the SCV classes which are large in 

number. The classifiers developed for all the SCV classes can be used to spot any 

SCV segment in continuous speech. 

The main reason for limiting the studies presented in the previous chapter to 

a small set of classes is the difficulty in collecting adequate training set data from 

continuous speech for infrequently occurring classes. We consider the isolated ut- 

terances of SCVs so that the required training set data can be collected for all the 

classes. Another important reason for considering the isolated utterance data is that 

the variability in the characteristics of the isolated utterances is expected to be less 

compared to the variability in the characteristics of the SCV segments in continuous 

speech. This is because the isolated utterances are well articulated and they are not 

affected by the factors such as the context and speaking rate which significantly affect 

the characteristics of the segments in continuous speech. The variability due to these 



classes /da/ and /dha/ is that Ida/ is unaspirated whereas /&a/ is aspirated. But 

in continuous speech, many aspirated sounds are produced as unaspirated sounds. 

Therefore the difference in the phonetic description may not have manifested in the 

signal. It is difficult to train the networks to  form decision boundaries among the 

overlapping regions. The classification errors due to  imprecise articulation of sounds 

can be corrected using the lexical and syntactic knowledge of the language only. The 

above analysis indicates that the performance of the OCON classifiers is less affected 

than the performance of the ACON classifiers when additional classes are included. 

However, the ACON classifiers have been shown to have a better discriminatory 

capability for a given set of classes compared to  the OCON classifiers. 

An analysis of the performance of the classifiers for ten SCV classes segments was 

carried out to determine the distribution of errors due to misclassification of each 

of the following: (1) place of articulation (POA) of consonants only, (2) manner of 

articulation (MOA) of consonants only, (3) vowel only, (4) POA and MOA, (5) POA 

and vowel, (6) MOA and vowel, and (7) POA, MOA and vowel. The distribution of 

errors for the multispeaker test data set is given in Table-3.7(a) and the distribution 

for the speaker independent test data set is given in Table-3.7(b). The total number 

of errors for a model is shown in the parentheses and the distribution of errors is 

given as the percentage of the total number of errors. It is observed that a significant 

percentage (about 25% to 40%) of the errors is only due to misclassification of the 

place of articulation, irrespective of the classification model used. This indicates 

the need for strategies to classify the POA more accurately in order to obtain an 

improved performance. In Chapter 7, we present the studies that address the issues 

in classification of the place of articulation. 



Table 3.7: Distribution of errors in the performance of classifiers for ten frequently 
occurring SCV classes due to misclassification of one or more of the following three 
features of an SCV: (1) Manner of articulation (MOA) of the consonant, (2) Place 
of articulation (POA) of the consonant, and (3) Vowel. The distribution for the 
multispeaker test data is given in (a) and the distribution for the speaker indepen- 
dent test data is given in (b). The entries in the parantheses indicate the total 
number of errors. A significant percentage of errors is due to misclassification of 
POA, irrespective of the classification model used. 

(a)Distribution of errors in the performance of classifiers on the mul- 
. . 

tispeaker test data set of 71 
OCON 

Source of MLP 1 TDNN 
Errors 
POA only 
MOA only 
Vowel only 
POA and MOA 
POA and Vowel 
MOA and Vowel 
POA, MOA and 
Vowel 

I patterns. 
ACON 

MLP1 I MLP2 I TDNN1 ( TDNN2 DHMM 

Source of 
Errors 
POA only 
MOA only 
Vowel only 
POA and MOA 
POA and Vowel 
MOA and Vowel 
POA, MOA and 
Vowel 

(b)Distribution of errors in the performance of classifiers on the 
speaker independent test data set of 617 patterns. 

I 

TDNN ( MLPl 
OCON 

DHMM 
(295) 
41.4 
7.5 

18.3 
17.6 
11.2 
0.6 

3.4 

ACON I 



3.7 Summary and Conclusions 

A summary of the major results of the studies presented in this chapter is given 

Table-3.8. 

Table 3.8: Summary of the major results of the studies on classifi- 
cation of the SCV segments excised from continuous speech. 

1. An approach has been developed for classification of varying duration 
SCV segments using neural network classifiers that can handle fixed du- 
ration patterns. The patterns are derived by processing a fixed duration 
signal around the vowel onset points in the SCV segments. 

2. The performance of classifiers based on OCON and ACON architectures, 
and using MLP, TDNN and DHMM models has been compared for fre- 
quently occurring SCV classes. 

3. The classifiers using MLP model gave a better performance compared to 
TDNN and DHMM models. 

4. ACON classifiers gave a better performance compared to OCON classi- 
fiers. This is mainly due to discriminatory training of ACON classifiers. 

5. The performance of the ACON classifiers is more significantly affected 
than that of the OCON classifiers when additional classes are included. 

6. A significant percentage of errors in classification of segments is due to 
misclassification of the place of articulation of stop consonants. 

In this chapter, we have presented an approach for classification of varying dura- 

tion Stop Consonant-Vowel (SCV) segments excised from continuous speech. A fixed 

duration signal around the vowel onset point in an SCV segment is processed to derive 

a pattern that is given as input to neural network classifiers. The performance of dif- 

ferent models and architectures was evaluated for frequently occurring SCV classes. 

The classifiers using multilayer perceptron models give a better classification perfor- 

mance compared to the classifiers using TDNN models. It was also observed that the 



All-Class-One-Network ( ACON) classifiers show a better discriminatory capability 

than the One-Class-One-Network (OCON) classifiers for a given set of classes. 

It was observed that the performance of all the classifiers for the speaker indepen- 

dent test data is poorer than the performance for the multispeaker test data. It is 

necessary to use parametric representations that are invariant to the variations in the 

characteristics of the SCV segments due to different speakers. It is also necessary to 

train with data from large number of speakers and use speaker adaptation techniques. 

Our studies have indicated the need for appropriate parametric representations 

for SCV segments to obtain an improved performance. One method is to use differ- 

ent parametric representations appropriate for different events in the SCV segments. 

This method requires an approximate segmentation into regions corresponding to dif- 

ferent significant production events, and extraction of suitable parameters from each 

region. It is straightforward to use patterns formed from multiple parametric rep- 

resentations as input to multilayer perceptron models. However mu1 ti-stream input 

based approaches [79] may have to be explored for TDNN and HMM models. 

Mere parametric representation extracted from speech signal does not help to 

improve the classification accuracy beyond a limit. The parametric representation is 

currently viewed as a vector of data. But to take care of the variability for different 

repetitions and due to different speakers, it is necessary to capture the features present 

in the parameter data and use these features for classification. It may be possible to 

use neural network models to capture the features from data. 

In this chapter, we have presented the studies on classification of segments belong- 

ing to a subset of SCV classes. In the next chapter, we explore suitable models for 

classification of the utterances of all the SCV classes. When the number of classes is 

large, both the OCON and ACON architectures have limitations. The discrimiliatory 

capability will be poor for OCON architectures. The limitation of the ACON archi- 



tecture is that it is not possible to train a single network for large number of classes. 

In the next chapter we consider modular neural network architectures to handle the 
' 

large number of SCV classes in Indian languages. 

While the classification studies on manually excised segments corresponding to 

the subword units highlight the issues in parametric representation and classification, 

the main task is to spot these segments in continuous speech. Speech recognition 

by humans also takes place by spotting key segments. Therefore it is essential to 

develop approaches for spotting the subword units in continuous speech signal in 

order to realise a vocabulary independent continuous speech recognition system. In 

Chapter 6, we present our studies on spotting SCVs in continuous speech. 



effects in continuous speech is better handled by using suitable parametric represen- 

tations than trying to train the models to-perform classification that is invariant to 

these effects. 

In order to  use the classifiers trained with the isolated utterance data for spotting 

SCV segments in continuous speech, it is necessary to address some issues arising out 

of the differences in the durations of the isolated utterances and the SCV segments in 

continuous speech. It is observed that the isolated utterances of a class are of much 

longer duration compared to  the segments of the same class in continuous speech. 

In the approach presented in the previous chapter, speech signal with a duration of 

100 ms around the vowel onset point in an SCV segment is processed to  derive a 

fixed duration pattern that is input to  neural network classifiers. This fixed duration 

pattern has most of the necessary information for classification of SCV segments in 

continuous speech. Because of the longer durations of the isolated utterances, it is 

necessary to process the speech signal with a duration of more than 100 ms around the . 
vowel onset point. In developing classifiers for all the SCV classes that can be used 

for spotting, we consider different durations and study their effect on the performance 

of classifiers. 

This chapter is organized as follows. The need for modular approaches to handle 

the large number of SCV classes is explained in section 4.2. Important issues in 

developing modular approaches are discussed in section 4.3. Specific issues related 

to  modular approaches for classification a f  SCVs are presented in section 4.4. The 

issues in using the isolated utterance data are discussed in section 4.5. Studies on 

classification of all the SCV classes are presented in section 4.6. 



4.2 Need for Modular Approaches 

When the number of classes is large and the similarity amongst the classes is high, it 

is difficult to train a monolithic neural network classifier based on the All-Class-One- 

Network (ACON) architecture to form the necessary decision surfaces in the input 

pattern space. An attempt has been made to train a multilayer perceptron network 

for all the 80 SCV classes. It was observed that even after a large number of epochs, 

the total sum of squares error remained high and it did not change from one epoch 

to another. It shows that a single network could not be trained for large number 

of classes. It is possible to develop a classifier based on the One-Class-One-Network 

(OCON). architecture in which a separate network is trained for each class. This 

approach requires a large number of networks. In addition, the studies presented in 

the previous chapter have shown that the discriminatory capability of the OCON 

classifiers is poor. 

Modular approaches can be used to overcome the limitations of the ACON and 

OCON architectures. In these approaches modularity is viewed as a manifestation of 

the principle of divide and conquer, which permits one to solve a complex computa- 

tional task by dividing it into simpler subtasks and then combining their individual 

solutions [40]. In modular approaches for classification, the large number of classes 

are grouped into small subgroups and a separate neural network is trained for each 

subgroup. In the next section, we discuss the main issues in developing classifiers 

based on modular approach. 

4.3 Issues in Modular Approaches for Classification 

Two commonly used neural networks based on modular approaches are: (1) modular 

networks [40] [41] and (2) hierarchical networks [42]. A neural network is said to be 

modular if the computation performed by the network can be decomposed into two 



or more modules (subnetworks or subnets). Modular networks use a postprocessor to 

combine the outputs of the subnets. The structure of a modular network is shown in 

Fig.4.1. 

-- - 
- Subnet 2 : 

Input 
Pattern - Post- I class 

Figure 4.1: Modular network architecture for classification of patterns. The total 
number of classes are divided into subgroups and a separate network (subnet) is 
trained for each subgroup. The number of outputs of a subnet is same as the 
number of classes in its subgroup. For classification of a pattern, the pattern is input 
to each subnet. The outputs from all the subnets are combined by a postprocessor 
that implements the classification criterion to determine the class. 

In hierarchical networks a selector network is used to determine the subgroup to 

which a given input pattern belongs to. Then the network for that subgroup processes 

the input pattern to determine its class. The structure of a hierarchical network is 

shown in Fig.4.2. 

The main issues common to both the approaches are: (1) Selection of a criterion for 



Post- Class 
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- - - Post- - : processoi 
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Input 

Figure 4.2: Hierarchical network architecture for classification of patterns. The total 
number of classes are divided into subgroups and a separate network (subnet) is 
trained for each subgroup. For classification of a pattern, a preprocessor determines 
the subgroup to which the pattern may belong to, and then the pattern is given 
as input to the subnet of that subgroup only. The outputs from that subnet are 
combined by a postprocessor to determine the class. 

grouping classes into subgroups, (2) Methods for discriminatory training of subnets 

- - 

and (3) Choice of classification model for subnets. An issue specific to modular 

P 

networks is the design of a suitable postprocessor. An issue specific to hierarchical 

Post- 
processor 

networks is the design of a selector network. The design of the selector network 

Pattern 

is dependent on the grouping criterion chosen. The performance of a hierarchical 

Subnet * • 

network is critically dependent on the performance of the selector network. In our 

: 
4 

- 

studies, we explore grouping criteria and classification models for developing modular 

networks for all the SCV classes. 

Pre- 
processor 



4.4 Modular Networks for All the SCV Classes 

In this section, we first consider different criteria that can be used for grouping SCV 

classes into subgroups. Then we discuss the issues in training the subnets. Methods 

for processing the outputs of the subnets are discussed in the final subsection. 

4.4.1 Criteria for Grouping SCV Clwses into Subgroups 

The criterion used for grouping the large number of classes into subgroups decides the 

constitution of each subgroup. One can randomly group the classes into an arbitrarily 

chosen number of subgroups. Then it will be necessary to explore different number of 

subgroups and different ways of grouping. Instead of arbitrary grouping, we consider 

criteria guided by the phonetic descriptions of the SCV classes. Such criteria are 

useful in analyzing the performance of the classifiers and determining the sources of 

errors in classification. 

A unique phonetic description can be given for each of the 80 SCV classes in 

terms of three features, namely, (1) the manner of articulation (MOA) of the stop 

consonant in that SCV, (2) the place of articulation (POA) of the stop consonant and 

(3) the identity of the vowel in that SCV. For example, the class /ka/ is described as. 

'Unvoiced unaspirated velar stop consonant followed by the vowel /a/'. The phonetic 

description of the SCV classes suggests that grouping can be done in such a way that 

one of the three features is common to the classes in a subgroup. This results in three 

criteria that can be considered for grouping. 

Grouping based on MOA leads to four subgroups: (1) Unvoiced-Unaspirated 

(UVUA), (2) Unvoiced-Aspirated (UVA), (3) Voiced-Unaspirated (VUA) and (4) 

Voiced-Aspirated (VA). Each subgroup consists of 20 classes and the stop conso- 

nants in these classes have the same manner of articulation. The classes in each of 

these subgroups are given in Table-4.l(a). 



Table 4.1: Classes in subgroups based on different grouping criteria. 

(a)Classes in (b)Classes in 
MOA subgroups POA subgroups 

- 
MOA 

UVUA 

UVA 

VUA 

VA 

(c) Classes in 
Vowel subgroups 

SCV Classes 
ka ki ku ke ko 
ta ti tu te to 
ta ti tu te to 
Pa pi PU Pe Po _ 
kha khi khu khe kho 
tha thi thu the tho 
tha thi thu the tho 
pha phi phu phe pho 
ga gi gu ge go 
da di du de do 
da di du de do 
ba bi bu be bo 

gha ghi ghu ghe gho 
dha dhi dhu dhe dho 
dha dhi dhu dhe dho 
bha bhi bhu bhe bho 

POA 
Velar 

Alveolar 

Dental 

Bilabial 

SCV Classes 
ka ki ku ke ko 
kha khi khu khe kho 
ga gi gu ge go 
gha ghi ghu ghe gho 
f a  f i  tu te to  
tha thi thu the tho 
da @ du de do 
dha dhi dhu dhe dho 
ta ti tu te to 
tha thi thu the tho 
da di du de do 
dha dhi dhu dhe dho 
pa pi pu pe po 
pha phi phu phe pho 
ba bi bu be bo 
bha bhi bhu bhe bho 

Vowel 

/a/ 

i 

/u/ 

/e/ 

/o/ 

SCV Classes 
ka kha ga gha 
ta  !ha da dha 
ta tha da dha 
pa pha ba bha 
ki khi gi ghi 
ti thi di dhi 
ti thi di dhi 
pi phi bi bhi 
ku khu gu ghu 
t u  thu du dhu 
tu thu du dhu 
pu phu bu bhu 
ke khe ge ghe 
te the de dhe 
te the de dhe 
pe phe be bhe 
ko kho go gho 
to tho do dho 
to tho do dho 
po pho bo bho 



Grouping based on POA leads to four subgronps: (1) Velar, (2) Alveolar, (3) 

Dental and (4) Bilabial. Each subgroup consists of 20 classes and the stop consonants 

in these classes have the same place of articulation. The classes in each of these 

subgroups are given in Table-4.1 (b). 

Grouping based on the vowel in SCVs leads to five subgroups with one subgroup 

for each of the five vowels: /a/, /i/, /u/, /e/ and /o/. Each subgroup consists of 16 

classes and these classes have the same vowel. The classes in each of these subgroups 

are given in Table-4.l(c). 

We consider each of the three grouping criteria in developing a modular network 

for all the SCV classes. The classification performance of a modular network based on 

a particular grouping depends on the performance of its subnets. The performance of 

subnete is dependent on the data used for training them. We next discuss the issues 

in training the subnets. 

4.4.2 Training of Subnets 

The training data set for a subnet should generally consist of patterns belonging to 

the classes in its subgroup only. Then each subnet is trained as an ACON classifier to 

form the decision surfaces for the classes in its subgroup. When a modular network is 

used for classification, a given test pattern is input to all its subnets and the out puts 

of the subnets are processed to determine the class. In order to correctly classify, 

the output value for the class of the test pattern should be high and all other output 

values should be low. It may be necessary to train each subnet with a few patterns 

belonging to the classes of the other subnets. These patterns can be considered as  

negative examples. For a negative example pattern, the subnet should be trained to 

give a low value for all its outputs. The aim-of using negative examples in training a 

subnet is to form a decision boundary around the regions of its classes. 



The effect of including negative examples in the training data sets of subnets is 

illustrated in Fig.4.3 for an arbitrary Zdimensional pattern space. Typical decision 

surfaces expected to be formed by subnets are shown in Fig.4.3(a). Here we consider 

16 classes that are divided into 4 subgroups with 4 classes in each subgroup. Each 

subnet is separately trained with patterns belonging to the classes in its subgroup 

only. Therefore for each subnet, the decision surfaces are formed among the regions of 

classes in the subgroup only. When the patterns of the classes in the other subgroups 

are included as negative examples, it is expected that a boundary be formed around 

the regions of the classes in its subgroup. The expected effect of including negative 

examples is &own in Fig.4.3(b). In our studies, we compare the performance of the 

modular networks with and without negative examples being used in training the 

subnets. 

4.4.3 Processing t h e  O u t p u t s  of Subnets  

A simple way of processing the outputs of subnets is to assign the class with the 

largest value among the outputs of all the subnets. Because of the similarity amongst 

the classes with in a subgroup and also amongst several classes in different subgroups, 

we use a method in which the classes with the largest and the second largest output 

values of each subnet are also considered in deciding the class. 

4.5 Derivation of Patterns for Isolated Utterance Data 

The approach proposed in the previous chapter for classification of SCV segments in 

continuous speech can be extended for the isolated utterance data. In this approach, 

a fixed duration portion of the signal around the Vowel Onset Point (VOP) of an SCV 

utterance is processed to derive a pattern. There are two important factors that have 

to be taken into consideration for deciding the duration of the portion of the signal to 



(a) Training subnets with- 
out negative examples 

(b) Training subnets with 
negative examples 

Figure 4.3: Illustration of decision surfaces and boundaries formed by subnet clas- 
sifiers in modular networks. An arbitrary 2-dimensional pattern space is used to  
explain the effect of including negative examples in training data sets of subnets. 
Typical decision surfaces expected to be formed by subnets are shown in (a). Here 16 
classes are divided into 4 subgroups with 4 classes in each subgroup. Each subnet is 
separately trained with patterns belonging to  the classes in its subgroup only. There- 
fore for each subnet, the decision surfaces are formed among the regions of classes 
in the subgroup only. When the patterns of the classes in the other subgroups are 
included as negative examples in the training data set of a subnet, it is expected 
that a boundary be formed around the regions of the classes in its subgroup. The 
expected effect of including negative examples is shown in (b). 



(a) Training subnets with- 
out negative examples 

(b) Training subnets with 
negative examples 

Figure 4.3: Illustration of decision surfaces and boundaries formed by subnet clas- 
sifiers in modular networks. An arbitrary 2-dimensional pattern space is used to 
explain the effect of including negative examples in training data sets of subnets. 
Typical decision surfaces expected to be formed by subnets are shown in (a). Here 16 
classes are divided into 4 subgroups with 4 classes in each subgroup. Each subnet is 
separately trained with patterns belonging to the classes in its subgroup only. There- 
fore for each subnet, the decision surfaces are formed among the regions of classes 
in the subgroup only. When the patterns of the classes in the other subgroups are 
included as negative examples in the training data set of a subnet, it is expected 
that a boundary be formed around the regions of the classes in its subgroup. The 
expected effect of including negative examples is shown in (b). 



be processed for the isolated utterance data. The first factor is that the portion of the 

signal should have all the necessary information for classification. The second factor 

is that it should be possible to use the networks trained with the isolated utterance 

data for spotting SCV segments in continuous speech. For this, the patterns derived 

from the isolated utterance data have to be matched with the patterns derived from 

continuous speech segments. We consider three different durations in our studies. 

We first consider the method for deriving a pattern from a 200 ms portion of 

the signal with 60 ms before and 140 ms after the VOP. This fixed duration signal is 

processed to extract 40 frames with 12 weighted cepstral coefficients in each frame. In 

order to reduce the size of the pattern, the average coefficients for every two adjacent 

frames are used. Thus a 20 frame pattern is used to represent an SCV utterance. 

This method for derivation of patterns for the segment duration of 200 ms is shown 

in Fig.4.4(a). 

We next present the method used for deriving a pattern from a 150 ms portion 

of the signal with 60 ms before and 90 ms after the VOP. The signal is processed to 

extract 30 frames of weighted cepstral coefficients. The first 16 frames are retained 

and the remaining 14 frames are averaged to get the other 4 frames in the 20 frame 

pattern, as shown in Fig.4.4(b). 

Finally we consider a 100 ms portion of the signal with 20 ms before and SO ms 

after the VOP. This signal is processed to extract 20 frames using a frame size of 20 

ms and a shift of 5 ms. All the 20 frames are used as the pattern frames, as shown 

in Fig.4.4(c). 

In our studies, we compare the performance of subnets and modular networks for 

different segment durations. 



VOP 

(a) Analysis duration of 200 ms 

VOP 

(b) Analysis duration of 150 ms 

VOP 

Extracted 
frames 

Pattern 
frames 

Extracted 
frames 

Pattern 
frames 

(c) Analysis duration of 100 ms 

Figure 4.4: Derivation of fixed duration patterns from speech signal of SCVs using 
different segment durations. The method used for derivation of a pattern of 20 
frames is shown for the segment duration of (a) 200 ms, (b) 150 ms, and (c) 100 ms. 
The portions of the speech signal around the vowel onset point (VOP) processed, 
the frames extracted, and the pattern frames derived from the extracted frames are 
indicated for each duration. For the duration of 200 ms, 40 frames are extracted 
and the adjacent frames are averaged. For the duration of 150 ms, 30 frames are 
extracted. The first 16 frames are retained and the other 14 frames are averaged as 
shown to obtain the remaining 4 frames of the pattern. For the segment duration 
of 100 ms, 20 frames extracted from speech signal are used as the pattern frames. 



4.6 Classification Studies and Results 

4.6.1 Implementation details 

Isolated utterance data for the 80 SCV classes was collected from three male speakers. 

For each class, 12 tokens were collected from each speaker. In the studies presented 

in this chapter, the training data for a class includes four tokens from each speaker. 

The remaining eight tokens from each speaker for a class are used as the test data. 

A pattern consisting of 20 frames with 12 weighted cepstral coefficients per frame is 

derived by processing the speech signal with a particular duration around the vowel 

onset point. The vowel onset points in the SCV utterances are detected using the 

method presented in the previous chapter. 

We consider the multilayer perceptron (MLP), time-delay neural network (TDNN) 

and discrete hidden Markov model (DHMM) to build the subnets. The MLP model 

has 70 nodes in the first hidden layer and 50 nodes in the second hidden layer. The 

TDNN model has a single hidden layer with 20 nodes. The DHMM is a 5-state, 

left-to-right model. 

In our first set of studies, we evaluate the performance of subnets based on different 

grouping criteria and built using different models. Patterns derived using a segment 

duration of 200 ms are used in these studies. In the second set of studies, we compare 

the ~erformance of subnets for different segment durations. Finally we study the 

performance of modular networks. In the remaining part of this section, we describe- 

these studies and present the results. The studies carried out in this chapter are listed 

in Table-4.2. 

4.6.2 Performance of Subnets  using Different Models 

The aim of the studies presented in this subsection is to evaluate and analyze the 

classification performance of subnets based on different grouping criteria and built 



Table 4.2: List of studies on development of modular networks 
for classification of large number of SCV classes. 

1. Comparison of the performance of subnets for subgroups of SCV 
classes formed using different grouping criteria. 

2. Comparison of the performance of subnets using MLP, TDNN 
and DHMM models. 

3. Analysis of the performance of subnets based on different group- 
ing criteria to identify the sources of errors in classification. 

4. Comparison of the performance of subnets based on different 
grouping criteria for each SCV class. 

5. Comparison and analysis of the performance of subnets for dif- 
ferent segment durations. 

6. Performance of modular networks based on different grouping 
criteria and for different segment durations. 

7. Comparison of the performance of modular networks using dif- 
ferent data sets for training the subnets. 

8. Comparison of the performance of modular networks based on 
different grouping criteria for each SCV class. 

using different classification models. In these studies, we consider patterns derived 

from 200 ms long segments. The training and the test data sets of a subnet includes 

the patterns belonging to the classes in its subgroup only. The performance of subnets 

for different subgroups is given in Tal?le-4.3. The performance is given a percentage 

of the total number of patterns in a data set that are correctly classified by a subnet. 

Grouping based on POA gives the best average performance irrespective of the 

model used. The average performance for the other two groupings is approximately 

same. The better performance for grouping based on POA can be explained as follows. 

The subnets for POA subgroups have to be trained to discriminate only the manners 



Table 4.3: Classification performance of subnets for subgroups of SCV 
classes formed using different grouping criteria. The performance for 
subnets based on MOA grouping is given in (a), for subnets based on 
POA grouping in (b) and for subnets based on vowel grouping in (c). 
The performance is given for different models. Subnets based on POA 
grouping give the best average performance. Subnets built using MLP 
models give a better performance compared to the other models. 

(b) Performance of subnets based on POA grouping. 
\ POA Training Data 1 Test Data 

(a) Performance of subnets based on MOA grouping. - 
MOA 
Subgroup 
UVUA 
UVA 
VUA 
VA 
Average 

Subgroup 
Velar 
Alveolar 
Dental 
Bilabial 
Average 

(a) Performance of subnets based on Vowel grouping. 

Training Data 

54.6 
84.2 
77.9 
80.0 
74.2 

7 

Vowel 
Subgroup 

1.1 
/i/  
1.1 
1.1 
/o/ 
Average 

MLP 
98.1 
98.1 
94.2 
91.0 
95.4 

Test Data 
MLP 
77.1 
70.0 
62.9 
56.3 
66.6 

91.5 
96.0 
94.4 
92.5 
93.6 

46.7 
64.6 
56.7 
58.8 
56.6 

95.6 
95.0 
93.3 
91.7 
93.9 

TDNN 
80.0 
79.8 
67.5 
71.0 
74.2 

48.3 
66.3 
55.8 
58.8 
57.4 

74.2 
80.6 
71.9 
76.0 
75.7 

Training Data 

DHMM 
97.9 
95.8 
86.0 
86.9 
91.7 

TDNN 
65.0 
58.8 
50.4 
47.5 
54.4 

Test Data 
1 

MLP 
92.7 
93.2 
92.2 
94.0 
91.7 
92.8 

DHMM 
57.9 
46.3 
45.8 
37.5 
46.9 

MLP 
61.5 
66.6 
68.8 
62.0 
67.7 
65.1 

TDNN 
82.0 
67.2 
67.4 
79.9 
77.1 
74.7 

TDNN 
60.4 
42.7 
52.6 
55.7 
56.8 
53.6 

DHMM 
95.1 
92.0 
89.3 
89.3 
90.6 
91.3 

DHMM 
50.0 
40.1 
41.7 
36.5 
45.3 
42.7 



of articulation and the vowels. The subnets for the other groupings have to  be trained 

to discriminate the places of articulation. It is more difficult to discriminate the places 

of articulation because the necessary information is mainly present in the transition 

regions with dynamic spectral characteristics. 

An analysis of the performance of subnets was carried out to  determine the dis- 

tribution of errors due to misclassification of each of the following: (1) POA only, (2) 

MOA only, (3) vowel only, (4) POA and MOA, (5) POA and vowel, (6) MOA and 

vowel, and (7) POA, MOA and vowel. The distribution of errors for the MLP based 

subnets is given in Table-4.4. 

Table 4.4: Distribution of errors in classification performance of MLP 
based subnets for different grouping criteria, due to  misclassification of 
one or more of the following three features of an SCV: (1) Manner of 
articulation (MOA) of the consonant, (2) Place of articulation (POA) 
of the consonant, and (3) Vowel. For a particular grouping criterion, 
the SCV classes in a subgroup have one of these features common to 
all of them. Therefore the errors in the performance of subnets based 
on a particular criterion can be due to misclassification of the other two 
features only. It can be noted that for the criteria of MOA and Vowel, 
more than 50% of the errors are due to misclassification of POA feature 
only. 

It can be noted that about 50% of the total number of errors in the  performance 

for the grouping criteria of MOA and Vowel are due to misclassification of the POA 

Grouping 
Criterion 
MOA 

POA 

Vowel 

Source of 
Errors 
PO A only 
Vowel only 
POA and Vowel 
MOA only 
Vowel only 
MOA and Vowel 
MOA only 
POA only 
MOA and POA 

Percent age of 
Errors 
55.3 
22.7 
22.0 
39.9 
35.1 
25.0 
22.7 
50.1 
27.2 



only. This analysis supports the explanation given above. 

It is observed that the subnets for the unaspirated SCV classes (UVUA and VUA 

subgroups) give a better performance than the corresponding subnets for the aspi- 

rated SCV classes (UVA and VA subgroups). The poorer performance for the aspi- 

rated SCVs can be due to absence of the necessary discriminatory information in the 

patterns derived. The beginning of the aspiration region may have been identified as 

the vowel onset point. It is necessary to evolve a better technique for deriving the 

patterns from the aspirated SCV utterance data. 

The results of the studies indicate that the subnets using multilayer perceptron 

model gave a better performance on the test data compared to TDNN and DHMM 

models. The poorer performance of the TDNN model can be due to the small number 

of hidden nodes used. This is indicated by its poor performance for the training 

data. It may be necessary to increase the number of hidden nodes to improve the 

performance. The TDNN models with large number of hidden nodes require long 

training periods and large training sets. The better generalization capability of the 

MLP model compared to DHMM is indicated by the difference in their performance 

on the test data though their performance on the training data is approximately same. 

We examine the performance of subnets on the test data when the class with 

the second largest output value is also considered in deciding the class. The average 

performance of subnets for different grouping criteria is given in Table-4.5 for two 

cases of deciding the class: (1) Correct class is the class with the largest value among 

the outputs of a subnet (Case-1) and (2) Correct class is amongst the classes with the 

largest and the second largest output values of a subnet(Case-2). It can be noted that 

there is an increase of about 12 to 22% in the performance for Case2 over Case-1 

indicating the similarity even amongst the classes in a subgroup. 

The classification performance of a su bnet for pat terns belonging to an SCV class 



Table 4.5: Average performance of subnets based for the two cases of 
classification criterion: (1) Case-1 that an input pattern is correctly clas- 
sified if its class is the class with the largest value amongst the outputs 
of a subnet, and (2) Case2 that an input pattern is correctly classified 
if its class is amongst the classes with the largest and the second largest 
output values of a subnet. The increase in the performance for Case2 
over Case-1 indicates that for many patterns that are incorrectly classi- 
fied by a subnet, the class with the second largest value is the correct 
class. 

depends not only on the characteristics of these patterns but also on the characteristics 

of the patterns belonging to the other classes in the subgroup. The shape of the 

decision surface for a class depends on the other classes for which a subnet is trained. 

Therefore the performance of subnets on the test data of a class can vary for different 

grouping criteria. For example, the class /ka/ belongs to the UVUA subgroup for 

grouping based on MOA, to the 'Velar' subgroup for grouping based on POA and to 

the '/a/' subgroup for grouping based on vowel. The constitution of each of these 

subgroups is different and hence the decision surface for the class /ka/ will be of 

different shape in their subnets. The performance of subnets for each of the classes in 

their subgroups is qiven in Table-4.6. Each entry in the table shows the percentage 

of the total number of test patterns of an SCV class that are correctly classified by 

its subnet. Here we consider the performance of subnets built using the MLP model. 

It can be noted from Table-4.6 that subnets of the three grouping criteriado not give 

the same performance for many classes. 

Grouping 
Criterion 
MOA 
POA 
Vowel 

Case-1 Case2  
MLP 
66.6 
74.2 
65.1 

DHMM 
65.5 
74.8 
60.2 

TDNN 
54.4 
56.6 
53.6 

MLP 
79.5 
86.0 
78.7 

DHMM 
46.9 
57.4 
42.7 

TDNN 
72.2 
78.5 
67.8 



Table 4.6: Classification performance (in percentage) of subnets based 
on different grouping criteria for test data of each SCV class. 

SCV 
Class 
ka 
kha 

g a 
gha 
ki 
khi 
gi 
ghi 
ku 
khu 

gu 
ghu 
ke 
khe 

g e 
ghe 
ko 
kho 
F' 
gho 
t a  
tha  
d a  
dha 
ti 
thi 
di 
dhi 
tu  
thu 
du 
dhu 
t e  
the 
de 
dhe 
to 
tho 
do  
dho 

Grouping 
MOA 

58 
92 
67 
50 
58 
50 
42 
33 
67 
75 
50 
33 
75 
58 
50 
58 
75 
67 
42 
67 

100 
42 
67 
67 
92 
75 
75 
58 
75 
67 
75 
42 
75 
75 
42 
50 
67 
75 
42 
42 

SCV 
Class 
$a 
tha 
d a  
dha 
ti 
!hi 
di 
dhi 
tu 
thu 
du 
dhu 
t e  
the 
de 
dhe 
to 
tho 
do 
dho 
pa 
pha 
ba 
bha 

pi 
phi 
bi 
bhi 
pu 
phu 
bu 
bhu 
pe 
phe 
be 
bhe 
PO 

pho 
bo 
bho 

Criterion 
POA 

83 
67 
83 
50 
50 
67 
33 
42 
75 
58 

' 

Vowel 
42 
92 

. 83 
25 
58 
58 
67 
50 
83 
67 

Grouping 
MOA 

92 
92 
83 
67 
75 
67 
67 
67 
83 
58 
67 
58 
92 
67 
50 
92 
75 
75 
83 
75 
92 
92 
8 3 
67 
50 
92 
75 
42 
83 
42 
92 
75 
83 
67 
58 
75 
75 
75 
50 
83 

POA 
92 
83 
67 
75 
83 

100 
67 
67 

100 
92 
92 
67 
92 
92 
92 
92 
83 
92 
83 
75 
92 

100 
8 3 
75 
42 
83 
75 

100 
67 
67 
83 
58 

100 
92 
58 
83 
92 
92 
75 
83 

50 
17 
67 
42 
42 
42 
67 
58 
42 
58 

100 
58 
67 
92 
75 

100 
S3 
83 
83 
67 
42 
75 
92 

100 
58 

100 
75 
75 
67 
67 

Criterion 
Vowel 

83 
58 
67 
58 
58 
58 
4 2 
58 
92 
67 
75 
58 

100 
75 
58 
6 7 
75 
50 
83 
67 
75 
58 
75 
33 
67 
92 
75 
92 
83 
75 
75 
83 
67 
8 3 
33 
83 
75 
92 
58 
75 

25 
33 
50 
42 
67 
42 
92 
75 
67 
17 

100 
42 
42 
50 
67 
92 
58 
42 
67 
50 
75 
92 
83 
58 
8 

75 
67 
83 
58 
50 



The studies presented in this subsection ' a e  concerned with evaluation and anal- 

ysis of the performance of subnets based on different grouping criteria and using 

different classification models. Fixed duration patterns derived from the speech sig- 

nal with the duration of 200 ms around the vowel onset points have been used in 

these studies. In the next subsection, we consider the performance of subnets using 

patterns derived using different segment durations. 

4.6.3 Performance of Subnets for Different Segment Durations 

In this subsection we study the effects of the durations used for deriving the patterns 

on the performance of subnets. As mentioned in section 4.5, three different durations 

are considered. The performance of subnets for the segment duration of 200 ms 

was given in the previous subsection. Similar studies have been carried out for the 

segment durations of 150 ms and 100 ms. These studies have been limited to the 

multilayer perceptron models because these models have given a better performance. 

The performance of subnets for different segment durations is given in Table-4.7. 

The performance for subnets based on MOA grouping indicates that there is 

a significant decrease in the performance for aspirated SCV classes (UVA and VA 

subgroups) when the segment duration is reduced from 200 ms to 150 ms and 100 

ms. The performance of subnets for POA subgroups shows that reduction of duration 

from 200 ms to 150 ms has affected the performance for subgroups other than the 

'Velar' .subgroup. The decrease in performance is higher for all the subgroups when 

the duration is reduced to 100 ms. It is observed from the performance of subnets for 

vowel subgroups is not affected significantly when the duration is reduced from 200 

ms to 150 ms. When the duration is reduced to  100 ms, there is a significant decrease 

in the performance for all subgroups with an exception of the '/a/' subgroup. 

In order to determine the effects of the segment durations on the performance 



Table 4.7: Classification performance of subnets for different segment 
durations. The performance for subnets based on MOA grouping is 
given in (a), for subnets based on POA grouping in (b) and for subnets 
based on vowel grouping in (c). The segment duration of 200 ms gives 
a better performance compared to  the durations of 150 ms and 100 
ms. 

(a)  Performance of subnets based on MOA grouping. 
MOA I Training Data 1 Test Data - 1 
Subgroup 
UVU A 
UVA 
VUA 
VA 
Average 

(a) Performance of subnets based on POA grouping. 
POA 
Subgroup 
Velar 
Alveolar 
Dental 
Bilabial 
Average 

(a) Performance of subnets based on POA grouping. 

200ms 
98.1 
98.1 
94.2 
91.0 
95.4 

Vowel 
Subgroup 
/a/ 
/ i /  
/u /  
1.1 
/o/ 
Average 

200ms 
77.1 
70.0 
62.9 
56.3 
66.6 

150ks 
99.2 
98.8 
99.6 
99.2 
99.2 

Training Data 

looms 
99.6 
97.9 
100.0 
98.8 
99.1 

150ms 
64.1 
40.4 
65.8 
43.8 
53.5 

Test Data 
200ms 
95.6 
95.0 
93.3 
91.7 
93.9 

Training Data 

looms 
62.7 
31.0 
64.0 
35.0 
48.2 

200ms 
54.6 
84.2 
77.9 
80.0 
74.2 

200ms 
92.7 
93.2 
92.2 
94.0 
91.7 
92.8 

Test Data 

150ms 
99.6 
99.6 
99.6 
99.6 
99.6 

200ms 
61.5 
66.6 
68.8 
62.0 
67.7 
65.1 

150ms 
60.8 
62.5 
68.1 
71.5 
65.7 

looms 
97.5 
98.8 
96.7 
98.3. 
97.8 

150ms 
97.4 
99.5 

100.0 
99.0 
100.0 
99.2 

looms 
,51.5 
54.6 
51.0 
56.5 
53.4 

looms 
98.4 
94.3 
97.9 
96.4 
95.8 
96.6 

150ms 
. 69.8 

63.5 
63.0 
61.5 
69.5 
65.5 

looms 
64.1 
31.3 
45.8 
41.7 
40.4 
44.6 



of subnets, the distribution of errors in classification is obtained. The distributions 

for different grouping criteria are given in Table-4.8. This table gives the number of 

errors in classification performance of a subnet due to misclassification of one or more 

of the three features, namely, MOA, POA and vowel. 

Table 4.8: Distribution of errors in classification performance of 
subnets for different segment durations. 

' Grouping 
Criterion 
MO A 

POA 

Vowel 

The distribution of errors for MOA grouping indicates that when the duration is 

Source of 
Errors 
POA only 
Vowel only 
POA and Vowel 
MOA only 
Vowel only 
MOA and Vowel 
MOA only 
POA only 
MOA and POA 

Number of Errors 

reduced from 200 ms to 150 ms, the number of errors due to misclassification of vowel 

has increased significantly. I t  is observed that many of these errors are for aspirated 

looms 
515 
217 
263 
465 
247 
188 
294 
414 
355 

200ms 
352 
146 
142 
198 
174 
124 
152 
336 
182 

SCV utterances. This indicates that the discriminatory information about vowel has 

150ms 
394 
280 
218 
209 
349 
100 
174 
401 
88 

been lost in derivation of patterns for aspirated SCV data. When the duration is 

reduced to 100 ms, the number of errors has increased due to misclassification of 

POA as well as vowel. 

The distribution for POA grouping indicates that the number of errors due to 

misclassification of vowel has increased significantly when the duration is reduced to 

150 ms. The number of errors due to misclassification of MOA has increased more 

significantly than that due to misclassification of vowel for the duration of 100 ms. 

This can be mainly due to the short duration of 20 ms before VOP being used in the 



duration of 100 ms. 

The distribution of errors for vowel grouping indicates that the number of errors 

due to misclassification of POA only is not much different for durations of 150 ms 

and 100 ms. Therefore the increase in the total number of errors for duration of 100 

ms is mainly due to misclassification of MOA. 

The studies on performance of subnets for different segment durations have shown 

that the duration of 200 ms gives the best average performance irrespective of the 

grouping criterion. The decrease in the performance for the duration of 150 ms is 

mainly due to misclassification of vowel. The decrease in the performance for the 

duration of 100 ms is found to  be mainly due to  misclassification of MOA and and to 

a lesser extent due to  misclassification of POA. 

The focus of the studies presented so far has been on the performance of subnets 

in classification of patterns belonging to the classes in their subgroups only. In the 

next subsection, we study the performance of modular networks in deciding the class 

of a pattern belonging to any of the 80 SCV classes. 

4.6.4 Classification Performance of M o d u l a r  Networks  

In order to determine the class of a pattern belonging to  any of the 80 SCV classes, 

it is necessary to process the outputs of subnets in the modular network based on a 

particular grouping criterion. The following method is used to determine the class. 

Let A; be the largest output value of the ith subnet and N be the number of subnets 

for a particular grouping criterion. Then the class with AMa2 = max { Ai ), i = 

1,2, ..., N, can be assigned to  the input pattern. Because of the large number of classes 

and similarity amongst several classes, the correct class may be the class with the 

second largest output in a subnet or the class with the second largest value amongst 

the A,s. This suggests that one can also consider the classes with the output values 



that are close to that of AMo,. Let Ail and Ai2 be the largest and the second largest 

output values of the ith subnet. Considering the M largest values amongst the set 

of values { Ail, Ai2 }, i = 1,2, ..., N, the performance of the modular networks can be 

given for different values of M. In our studies, we give the performance for M = 1, 2, 

3 and 4, called as Case-1, Case-2, Case3  and Case-4, respectively. 

We consider the performance of modular networks with subnets built using multi- 

layer perceptron model only because the subnets built using this model gave the best 

performance. The average performance on the test data of all the 80 SCV classes for 

the modular networks based on different grouping criteria and for different segments 

durations is given in Table-4.9. 

Table 4.9: Classification performance on test data of all SCV classes 
for the modular networks based on different grouping criteria and for 
different segment durations. The performance is given for four different 
cases of classification criterion. The Case-M of classification criterion 
corresponds to the case when the class of an input pattern is amongst 
the classes of the M largest output values of all subnets in a modular 
network. The modular networks for the POA grouping give a better 
performance compared to other two groupings. The performance for the  
duration of 200 ms is better than that for the reduced durations. The 
significant increase in the performance for Case2 over Case-1 indicates 
that for many patterns that are incorrectly classified by the modular 
network, the class with the second largest value among 80 outputs is the 
correct class. 

Grouping 
criterion 
MOA 

POA 

Vowel 

Segment 
Duration 

200ms 
150ms 
looms 
200ms 
150ms 
looms 
200ms 
150ms 
lOOms 

Classification Criterion 
Case-1 

29.2 
22.2 
19.0 
35.1 
30.8 
20.6 
30.1 
21.4 
13.0 

Case2 
50.2 
38.2 
31.3 
56.9 
49.4 
36.4 
47.5 
37.0 
24.9 

Case-3 
59.0 
48.3 
40.8 
69.5 
60.1 
47.0 
58.8 
49.8 
33.0 

Case-4 
65.3 
54.4 
47.2 
76.6 
66.7 
53.9 
63.6 
59.3 
37.9 



A performance of about 75% is obtained for the modular network when the classes 

with the four largest output values amongst the 80 SCV classes are considered. This 

performance is significant considering the large number of classes and confusability 

amongst several classes. The modular networks for the POA grouping give a better 

performance compared to the other two groupings. It is also seen that the perfor- 

mance for the duration of 200 ms is better than that for the reduced durations. This 

behaviour in the performance of the modular networks reflects the performance of the 

subnets. It is important to evolve techniques to reduce the number of errors in clas- 

sification a t  the level of subnets in order to improve the performance of the modular 

networks. 

It is observed that the performance of the modular networks for Case-1 is much less 

than the average performance of the subnets. One of the resons for this behaviour 

is that each of the subnets is not trained to give low output values for the patterns 

belonging to the classes of the other subnets. A study is carried out in which each 

subnet is trained to give low output values for patterns (negative examples) belonging 

to the classes of the other subnets. This study is carried out for the subnets built using 

multilayer perceptron model and for the segment duration of 200 ms. A comparison 

of the performance of the modular networks using subnets trained without and with 

the negative examples included in their training data sets is given in Table-4.10. 

It can be seen that the performance for Case-1 increases by about 12 t o  20% for 

all the grouping criteria when t h ~  .negative examples are included. A performance of 

about 50% can be obtained for the modular networks in classification of all the SCV 

classes even when only the class with the largest value amongst the outputs for 80 

classes is considered. 

It has been observed earlier that the performance of subnets based on different 

grouping criteria is not uniform for many of the SCV classes. A similar behaviour has 



Table 4.10: Comparison of the performance on test data of all the SCV 
classes for the MLP based modular networks without and with the 
negative examples included in the training data sets of their subnets. 
The comparison of the performance is given for different groupings 
and for different cases of classification criterion. The performance 
for Case-1 of classification criterion increases significantly when the 
negative examples are included. 

also been observed in the performance of the modular networks. The performance 

on test data of each SCV class for the modular networks based on different grouping 

criteria is given in Table-4.11. The performance is given for MLP based modular 

networks and for the duration of 200 ms. The differences in the performances are sig- 

nificant for many classes. For example, the modular network based on MOA grouping 

gives a performance of 41% for the class /to/. The network based on POA group- 

ing gives a performance of 75% and the network based on vowel grouping gives a 

~erformance of only 16%. 

It is also observed that the modular networks based on different groupings cor- 

rectly classified different patterns in the test set of a class. Therefore, though the 

average performance of different networks for a class is same, it is not necessary that 

all of them correctly classified the same subset of patterns. A study has been carried 

out to determine the percentage of the total number of test patterns of all the classes 

that have been correctly classified by different number of networks. The results of 

this study are presented for different segment durations in Table-4.12. 

Grouping 
criterion 
MOA 
PO A 
Vowel 

Without negative examples 
in training data 

With negative examples 
in training data 

Case-1 
29.2 
35.1 
30.1 

Case-1 
49.8 
47.4 
50.6 

CaseS 
59.0 
69.5 
58.8 

Case2 
50.2 
56.9 
47.5 

Case-4 
65.3 
76.6 
63.6 

Case2 
59.7 
64.1 
64.6 

Case3 
65.6 
71.3 
70.0 

Case-4 
69.8 
75.1 
73.3 



Table 4.11: Classification performance (in percentage) of modular networks based 
on different grouping criteria for test data of each SCV class. 

SCV 
Class 
ka 
kha 
g a 
gha 
ki 
k hi 
g i 
ghi 
ku 
khu 

g U 

ghu 
ke 
khe 
ge 
ghe 
ko 
kho 
go 
gho 
t a  
tha 
da 
dha 
ti 
thi 
di 
dhi 
tu 
thu 
du 
d hu 
te 
the 
de 
dhe 
to  
tho 
do 
dho 

. 

Grouping 
MOA 

50 
58 
33 
4 1 
25 
33 
25 
4 1 
58 
25 
33 
25 
33 
0 
8 

58 
41 
41 
16 
33 
33 
33 
25 
33 
8 

66 
16 
25 
16 
33 
58 
25 
8 

25 
25 
4 1 
25 
8 

16 
4 1 

SCV 
Class 
t a  
tha 
da  
dha 
t i  
thi 
di 
dhi 
tu 
thu 
du 
dhu 
te  
the 
de 
dhe 
to 
tho 
do 
dho 
pa 
pha 
ba 
bha 
pi 
phi 
bi 
bhi 
pu 
phu 
bu 
bhu 
pe 
phe 
be 
bhe 
PO 
pho 
bo 
bho 

Grouping 
MOA 

33 
66 
16 
0 
8 

25 
25 
16 
25 
4 1 
25 
8 

50 
16 
25 
33 
33 
25 
25 
25 
41 
16 
4 1 
16 
41 
50 
25 
0 

66 
33 
16 
16 
50 
33 
25 
8 
8 

33 
8 

25 

POA 
50 
50 
58 
0 
8 

58 
33 
33 

100 
66 
50 
33 
41 
58 
41 
58 
75 
83 
58 
58 
58 
41 
16 
33 
0 

66 
16 
25 
33 
33 
50 
0 

66 
66 
8 

25 
58 
50 
16 
33 

POA 
16 
58 
25 
16 
8 

25 
8 

16 
25 
33 
25 
0 

50 
0 

16 
25 
50 
33 
16 
25 
83 
16 
16 
25 
41 
41 
0 

25 
50 
25 
8 

33 
41 
41 
41 
25 
25 
8 

41 
25 

Criterion 
Vowel 

58 
33 
16 
25 
16 
50 
16 
0 

75 
50 
58 
16 
66 
25 
8 

25 
16 
33 
41 
50 
58 
41 
66 
8 

25 
66 
8 

33 
58 
25 
66 
66 
25 
50 
16 
33 
0 

50 
16 
33 

Criterion 
Vowel 

16 
33 
50 

0 
0 

33 
41 
25 
41 
33 
0 

33 
41 
8 
0 
8 

41 
41 
25 
8 

50 
0 

16 
16 
41 
50 

0 
8 

25 
8 

33 
50 
33 
41 
8 

41 
25 
16 
16 
8 



Table 4.12: Percentage of the total number of test patterns of 
all the SCV classes that have been correctly classified by dif- 
ferent number of modular networks. Only a small percentage 
of the patteras have been correctly classified by all the three 
or even two of the three networks. This behaviour is observed 
for all the three durations. 

The above results clearly show that only a small percentage of the total number 

of test patterns have been correctly classified by all the three modular networks. It 

has been observed that even though all the three networks do not give the largest 

output value for the class of a given pattern, all of them give a significantly large 

value for that class. This is illustrated in Fig.4.5, where the outputs of subnets based 

on the three grouping criteria for an input utterance of /ka/ are shown. The classes 

corresponding to the indices used in this figure are given in Table-4.13. 

It can be seen from Fig.4.5 that only the modular network based on MOA group- 

ing correctly classifies the input utterance because the output for the class /ka/ (with 

the class index of 1) is the largest among the outputs for all 80 classes. The networks 

based 011 POA and vo\vr!l groupings do not classify correctly. Even though the out- 

puts of subnets in these two networks are not the largest for the class /ka/, they are 

significantly large. It  is also interesting to note that though the POA grouping gives 

the largest output value for the class /ea/ (with the class index of 9), the outputs of 

subnets based on MOA and vowel groupings for that class are insignificant. These 

observations suggest that it is possible to improve the performance by properly com- 

bining the evidences available in the outputs of subnets based on different grouping 

Segment 
Duration 

200ms 
150ms 
looms 

All 
Three 

Networks 
8.7 
4.7 
2.4 

Only Two 
of the 

Networks 
18.2 
15.6 
10.7 

Only One 
of the 

Networks 
31.7 
29.0 
23.8 

None 
of the 

Networks 
41.4 
50.7 
63.1 



Output 
value 

-.*- - I  0 : 
0 (.I 10 1 0  10 =O 00 D I  40 40 OO I- 00 -- T O  7- 00 - Class index 

(a) Outputs of subnets based on MOA 

Output 
value 

---, Class index 

(b) Outputs of subnets based on POA 

Output 
value 

---, Class index 

(c) Outputs of subnets based on Vowel 

Figure 4.5: Outputs of subnets based on different grouping criteria 
for an input utterance belonging to  the SCV class /ka/. The classes 
corresponding to  the indices are given in Table-4.13. The output value 
for the class /ka/ (with the index of 1) is large for all the threegrouping 
criteria. 



Table 4.13: The classes corresponding to the indices used in Fig.4.5. 

criteria. In the next chapter, we propose a constraint satisfaction neural network 

model to  combine evidences in the outputs of the all the subnets. 

4.7 Summary and Conclusions 

In this chapter, we have addressed the issues in developing classifiers for all the SCV 

classes in Indian languages. We have considered different criteria for grouping the 

classes and developed modular neural networks for classification. Isolated utterance 

data has been used for training and testing. Different segment durations have been 

considered for deriving the fixed duration patterns from isolated utterances. The 

major results of the studies carried out in this chapter are summarized in Table-4.14. 

The performance of subnets based on different grouping criteria has been evaluated 

for different classification models. The subnets using multilayer perceptron model 

gave a better performance compared to the time delay neural network and hidden 



Table 4.14: Summary of the major results of the studies 
on development of modular networks for all the SCV 
classes. 

1. Different criteria based on the phonetic description of the SCV classes have 
been considered for grouping the 80 SCV classes of Hindi into subgroups. 

2. Modular networks have been developed for different grouping criteria using 
MLP, TDNN and DHMM models. 

3. The classification performance of subnets based on different grouping criteria 
and using different models has been compared. The subnets based on POA 
grouping gave the best average performance. The subnets using MLP models 
gave a better performance compared TDNN and DHMM models. 

4. The analysis of the performance of subnets has shown that about 50% of the 
total number of errors is due to misclassification of the place of articulation of 
stop consonants. 

5. The analysis of the performance of subnets on test data sets of each SCV class 
has shown that subnets based on different grouping criteria gave a different 
performance for many SCV classes. 

6. The performance of subnets has been compared for different segment durations 
used in deriving the patterns from isolated utterances. The performance for 
the duration of 200 ms is better than the performance for the durations of 150 
ms and 100 ms. 

7. The modular networks in classification of all the SCV classes gave a signifi- 
cantly poorer performance compared to the performance of the subnets. This 
is mainly due to the large number of classes and also due to the simple method 
used for processing the outputs of the subnets. The performn,:ce of the mod- 
ular networks reflects the performance of the subnets used in them. 

8. The modular networks based on different grouping criteria gave different per- 
formances on test data sets of each of SCV class. This indicates the need for 
combining the evidences available in the outputs of all the subnets. 



Markov models. The performance of subnets based POA grouping gave a better 

performance compared to the other two grouping criteria. The duration of 200 ms 

used for deriving the fixed duration patterns from isolated utterances has given a 

better performance than the durations of 150 ms and 100 ms. The analysis of the 

results has shown that the performance for the aspirated SCV classes is significantly 

less than the performance for the unaspirated SCV classes. It is necessary to evolve 

better techniques for deriving patterns from aspirated SCV utterances. The modular 

neural network architecture allows one to use suitable preprocessing methods for 

different subgroups to derive the patterns and improve the performance. 

It is observed that the performance of the modular networks is significantly less 

than the average performance of the subnets. This is mainly because of the simple 

method used to process the outputs of the subnets. In the next chapter, we propose 

a constraint satisfaction model in which the knowledge about similarities among the 

SCV classes is represented in the form of constraints and they are used to combine 

the evidences in the outputs of the subnets. 



Chapter 5 

CONSTRAINT SATISFACTION 

MODEL FOR CLASSIFICATION OF 

SCV UTTERANCES 

In the previous chapter, an architecture based on modular neural networks has been 

developed for large number of classes. In that architecture the 80 SCV classes are 

divided into subgroups and a separate neural network (subnet) is trained for each 

subgroup. For classification of a given SCV utterance, the pattern derived from it is 

input to all the subnets, and the outputs of the subnets are processed to assign the 

class of the largest output value to it. Though the classification performance of the 

subnets for the classes in their subgroups is high (about 65 to 75%), the performance 

of the modular networks is significantly low (about 30 to 35%). The main reason is 

that the outputs of the subnets are combined by simply choosing the class with the 

largest output value. Because of the similarities among several classes, many classes 

in each subgroup are close to one another. In addition, each subnet is not trained to 

discriminate all the classes. Confusability among the classes can be resolved to some 

extent by using the knowledge of the classes. This knowledge can be incorporated as 

coristraints to be met by these classes. A constraint satisfaction model [SO] that tries 

to satisfy as many of these constraints as possible can be used to process the outputs 

of the subnets. The advantage is that it will work even if some of the constraints 



derived from acoustic-phonetic knowledge are weak, conflicting and erroneous. 

In this chapter we propose a feedback neural network that  contains a node for 

each of the 80 SCV classes. The weight for the connection between a pair of nodes in 

the network is determined based on the similarity between the classes of the nodes. 

The similarity between two SCV classes is determined from the knowledge about the 

differences in their speech production features and also from the confusabili ty between 

them indicated by the performance of the subnets. 

The studies presented in the previous chapter have shown that the subnets based 

on different grouping criteria give different performance for an SCV class. In the 

present chapter, we propose a constraint satisfaction model consisting of a feedback 

network for each of the three grouping criteria. The model combines the multiple 

evidences available from the subnets of the three criteria for an SCV utterance to 

decide its class. In this model, the multilayer perceptron network for each subnet 

is interpreted as a set of nonlinear filters tailored to its subgroup. The output of 

the filters for an utterance is viewed as a feature vector representing the utterance. 

The distribution of the feature vectors for a class may be different for each grouping 

criterion. The feature vector of an utterance is given as input to the feedback net- 

work corresponding to that group. Then the constraint satisfaction model is allowed 

to relax to an equilibrium state. The resulting state represents a situation where 

the constraints are satisfied to maximum extent for the given input to the feedback 

networks. A stable state is expected to  be close to the correct one even though the 

constraints are weak due to partial knowledge used in deriving the constraints, and 

also even if the representation of the discriminatory information in the feature vectors 

is poor. 

The organization of this chapter is as follows: The next section explains the 

interpretation of multilayer perceptrons as nonlinear feature extractors. Section 5.3 



describes the method used for deriving the weights for the connections in the feedback 

networks. The proposed constraint satisfaction model is described in Section 5.4. 

The operation of the constrailit satisfaction model, the relaxation strategy and the 

interpretation of the stable state of the network are also discussed in this section. 

The classification of SCV utterances by the constraint satisfaction model is presented 

in Section 5.5. 

5.2 Neural Networks as Nonlinear Feature Extractors 

A multilayer perceptron is a Multilayer Feedforward Neural Network (MLFFNN). 

The MLFFNN trained for a subgroup of classes is considered as a filter designed in 

such a way that it provides discrimination among the classes. One such network is 

used for each subgroup consisting of about 16 or 20 SCV classes depending on the 

grouping criterion used. Thus there are 16 or 20 filters in each subgroup and 80 

filters for each grouping criterion. It may be noted that each SCV class occurs with a 

different subgroup for each of the three groupings. We can also interpret the network 

as a filter set tailored to  the classes in a subgroup. This is like Gabor filters used for 

texture classification where the filters are tailored to the characteristics of the texture 

classes under consideration [81]. The characteristics to be optimized in the case of 

Gabor filters are resolution, orientation and spatial frequency. 

The shape of the decision surface formed for a class by an MLFFNN will vary 

depending on the other classes in the subgroup. This behaviour is illustrated for an 

arbitrary 2-dimensional pattern space in Fig.5.1. In this figure the regions for 10 

classes are shown. We consider one class for which there are eight classes that are 

close to it. The region for the class under consideration is shown in dark shade. When 

this class is grouped with three other classes that are close to it, the decision surface 

formed for the class is dependent on which three classes are present in the subgroup. 



Figure 5.1: Illustration of the effect of grouping a class with different srl.bsets of 
classes on the decision surfaces formed. An arbitrary 2-dimensional pattern space is 
used to explain the effect of different ways of grouping. The region of a class under 
consideration is shown in dark shade. The regions of the classes with which the 
class under consideration is grouped are shown in a different shade. Typical decision 
surfaces expected to be formed around the region of the class under consideration 
are shown for 4 different subsets of classes with which the class is grouped. 



Figure 5.1: Illustration of the effect of grouping a class with different s17.bsets of 
classes on the decision surfaces formed. An arbitrary 2-dimensional pattern space is 
used to explain the effect of different ways of grouping. The region of a class under 
consideration is shown in dark shade. The regions of the classes with which the 
class under consideration is grouped are shown in a different shade. Typical decision 
surfaces expected to be formed around the region of the class under consideration 
are shown for 4 different subsets of classes with which the class is grouped. 



Typical decision surfaces that  are expected to be formed for MLFFNNs trained for 

four different subgroups containing the class are shown in the figure. The shapes of 

the decision surfaces for the class are different in each of the MLFFNNs. Therefore 

the different MLFFNNs are likely to give different output values for the class of the 

input pattern. 

This behaviour has been observed in the outputs of the subnets. The outputs of 

the subnets for an input utterance of the class /ka/ are shown in Fig.5.2. It can be 

seen that the output value for the class /ka/ (with the class index of 1) is different 

for the three subnets. 

Normally the trained MLFFNNs are used directly as classifiers for subgroups of 

classes. But the concept of filter interpretation provides greater flexibility and robust- 

ness in the development of a classifier for all the SCV classes. Once the MLFFNNs 

are trained, then they are used as nonlinear filters. The outputs of the filters for each 

subgroup for a given training sample is considered as a feature vector. The distribu- 

tion of the feature vectors is obtained for each class from a second training set data. 

The distribution is represented in terms of a mean vector and a variance parameter 

derived from the feature vectors for the class. 

The outputs of the sets of filters designed in this section are input to the feedback 

networks in the constraint satisfaction model. The next section will describe the feed- 

back networks and explain the method of determining the weights for the connections 

in the networks. These weights represent the constraints, and they are derived using 

the acoustic-phonetic knowledge and the performance statistics of the subnets. 

5.3 Feedback Networks for Different Grouping Criteria 

We first build three different feedback networks, one for each of the three grouping 

criteria. Since the SCV classes within a subgroup have been designed to compete 
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Figure 5.2: Difference in the outputs of subnets based on different. 
grouping criteria for an input utterance belonging to the SCV class 
/ka/. It can be noted that the output values for the class /ka/ (with 
the class index of 1) are different for each grouping criterion. This is 
mainly due to different constitution of the subgroups containing the 
class /ka/ for different grouping criteria. 



amongst themselves during training of the MLFFNN for that subgroup, we provide 

excitatory connections between the nodes corresponding to the classes in a subgroup. 

All the connections across the subgroups are made inhibitory. The weights for the 

excitatory and inhibitory connections have been derived from the confusion matrices 

obtained from the classification performance of subnets. 

We first obtain the confusion matrices for different manners of articulation, dif- 

ferent places of articulation and for different vowels. The confusion matrix for dif- 

ferent manners of articulation (MOAs) of stop consonants in SCVs is obtained as 

follows. We determine the percentage of the total number of patterns belonging to 

the classes with a particular MOA, say Unvoiced-Unaspirated (UVUA), that were 

classified as belonging to the classes in different manner subgroups, namely, UVUA, 

Unvoiced-Aspirated (UVA), Voiced-Unaspirated (VUA) and Voiced-Aspirated (VA). 

The confusion matrix for different manners of articulation is given in Table-5.l(a) be- 

low. The confusion matrix for different places of articulation is given in Table-5.l(b). 

The confusion matrix for different vowels in SCVs is given in Table-5.l(c). 

The confusion matrices are used to derive symmetric similarity matrices. The 

similarity matrix for different manners of articulation is obtained as follows. From 

Table-5.l(a), it is noted that 2.5% of the total number of patterns belonging to the 

SCV classes with UVUA as  the MOA are classified as belonging to the classes with 

UVA as the MOA, and 3.1% of the total number of patterns belonging to the the 

classes with UVA are classified as belonging to the classes with UVUA as the MOA. 

On an average, 2.8% of the total number of patterns belonging to the classes with 

UVUA and UVA as MOA are misclassified due to the confusion between these two 

manners. The average percentage is used to determine the similarity measure in the 

range 0.0 to 1.0. The similarity between UVUA and UVA is indicated as  2.8/100 

which is rounded to 0.03. The similarity matrix for different manners of articulation 



Table 5.1: Confusion matrices for (a) different manners of articulation 
of stop consonants in SCVs, (b) different places of articulation of stop 
consonants in SCVs and (c) different vowels in SCVs. 

(b) Confusion matrix for different places 
of articulation. 

(a) Confusion matrix for different manners 
of articulation. 

MOA 
UVUA 
UVA 
VU A 
VA 

(c) Confusion matrix for different vowels. 

is given in Table-5.2(a), for different places of articulation in Table-5.2(b) and for 

different vowels in SCVs in Table-5.2(c). 

The s i m i l ~ i t y  measures are used to determine the weights for the excitatory and 

inhibitory connections in the feedback networks. An excitatory connection is provided 

between nodes of two SCV classes within a subgroup if they differ in only MOA or 

POA or vowel characteristic. The weight of an excitatory connection is equal to the 

sirnilarity measure between the differing production features of the two classes. For 

example, in grouping based on MOA, the SCV class /ka/ belongs to UVUA subgroup. 

Of the 20 SCV classes present in this subgroup (/ka/, /)a/, / ta/ ,  /pa/, /ki/, / t i / ,  

UVUA 
86.9 
3.1 
4.2 
0.4 

Bilabial 
11.8 
11.3 
11.3 
79.8 - 

PO A 
Velar 
Alveolar 
Dent a1 
Bilabial 

UVA 
2.5 

84.2 
3.3 
7.9 

Alveolar 
9.0 
75.4 
12.9 
7.5 

Velar 
72.1 
6.0 
8.1 
4.2 

Dental 
7.1 
7.3 

67.7 
8.5 

VUA 
7.7 
4.4 

78.3 
9.6 

VA ' 

2.9 
8.3 
14.2 
82.1 



Table 5.2: Similarity matrices for (a) different manners of articulation 
of stop consonants in SCVs, (b) different places of articulation of stop 
consonants in SCVs and (c) different vowels in SCVs. 

(a) Similarity matrix showing the closeness . . - 
between different manners of articulation. 
I MOA 1 UVUA I UVA 1 VUA 1 VA 1 

I I I I I UVUA 1 0.87 1 0.03 1 0.06 1 0.02 1 

(b) Similarity matrix showing the closeness 
between different places of articulation. 

(c) Similarity matrix showing the closeness 

POA 
Velar 
Alveolar 
Dental 
Bilabial 

/ti/, /pi/, /ku/, /tu/, /tu/,  /pu/, /ke/, I tel ,  /te/, /pel,  /ko/, /to/,  /to/ and /PO/), 

an excitatory connection is provided between /ka/ and each of the following seven 

classes only : /!a/, /ta/,  /pa/, /ki/, /ku/, /ke/ and /ko/. The remaining 12 classes 

in this subgroup differ with /ka/ in both POA and vowel, and hence no connection 

is provided between the nodes of /ka/ and these 12 classes. The weight for the 

excitatory connection between /ka/ and /ki/ is 0.01 which is the similarity measure 

between vowels /a/ and /i/  as given in Table-5.2(c). 

An inhibitory connection is provided between classes in different subgroups only 

Velar 
0.72 
0.08 
0.08 
0.08 

Alveolar 
0.08 
0.75 
0.10 
0.09 

. . - 
bet ween different vowels. 

Dental 
0.08 
0.10 
0.68 
0.10 

Vowel 

/a/ 
/i/ 
/u/ 
/e/ 
/o/ 

Bilabial 
0.08 
0.09 
0.10 
0.80 

/i/ 
0.01 
0.86 
0.02 
0.08 
0.00 

/a/ 
0.89 
0.01 
0.02 
0.01 
0.05 

/u/ 
0.02 
0.02 
0.82 
0.01 
0.16 

/e/ 
0.01 
0.08 
0.01 
0.90 
0.00 



if the two classes differ either in MOA or POA or vowel only. For the earlier example 

of class /ka/ in the grouping based on MOA, an inhibitory connection is provided 

between /ka/ in UVUA subgroup and each of the following classes: /kha/ in UVA, 

/ga/ in VUA and /gha/ in VA subgroup. All the other classes in UVA, VUA and 

VA subgroups differ with /ka/ not only in MOA but also in POA orland vowel. The 

weight for an inhibitory connection is inversely proportional to the similarity measure 

between the differing production features of the two classes. If the similarity measure 

is C (in the range 0.0 to 1.0), then the inhibitory weight W is assigned as follows: 

If the closeness measure C is less than 0.01, then the corresponding inhibitory weight 

is assigned as -1.0. The weights of the connections for the class /ka/ in the feedback 

networks for different grouping criteria are given in Table-5.3. 

The connections in the feedback network for the grouping criterion of POA are 

illustrated in Fig.5.3. The excitatory connections for the class /La/ in the 'Velar' 

subgroup are shown in Fig.5.3(a) and the inhibitory connections for the class are 

shown in Fig.5.3(b). 

The main function of each feedback network is to enhance the evidence available 

from the filters for the class of the input utterance by giving positive contrib~t~ions 

from evidences for the classes close to it in a subgroup, and to reduce the evidence for 

the classes which are in the othcr subgroups but are close to it. The weights of the 

connections based on similarities among classes help the feedback network to perform 

its function. 

Each unit in a feedback network is associated with a mean vector p and a variance 

parameter o representing the distribution of feature vectors for the class of the unit. 

The mean vector and the variance parameter are obtained from a second training set 

data. A training pattern belonging to the class of the unit is input to the subnet for 
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(a) Excitatory connections for the class /La/ in the POA feedback network 
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(b) Inhibitory connections for the class /ka/ in the POA feedback network 

Figure 5.3: Connections for the class /ka/ in the POA feedback network. 
The excitatory connections for the class /ka/ in the 'Velar' subgroup are 
shown in (a). The inhibitory connections for the class /ka/ are shown in 

(b). 



Table 5.3: Illustration of weights of connections 
for class /ka/ in the feedback networks for dif- 
ferent grouping criteria. 

the subgroup containing the class. The output of the subnet is used to  form a feature 

vector. The dimension of the feature vector is same as the number of classes in the 

subgroup. If y, is the feature vector obtained for the ith training pattern and N is the 

Grouping 
Criterion 

MOA 

POA 

Vowel 

number of training patterns for each class, then the kth element of the mean vector, 

pk, is computed as follows: 

where yik is the kth element of y;. The variance parameter a is computed from the 

Excitatory 

Class 

/!a/ 
/ ta/  
/pa/ 
/ki/ 
/ku/ 
/ke/ 
/ko/ 
/kha/ 
/gal  
/gha/ 
/ki/ 
/ku/ 
/ke/ 
/ko/ 
/$a/ 
/ ta/  
/pa/ 
/kha/ 
/ga/ 
/aha/ 

Inhibitory 
Connections 

Weight 
0.08 
0.08 
0.08 
0.01 
0.02 
0.01 
0.05 
0.03 
0.06 
0.02 
0.01 
0.02 
0.01 
0.05 
0.08 
0.08 
0.08 
0.03 
0.06 
0.02 

Class 

/kha/ 
/ga/ 
/gha/ 

/ta/ 
/ ta/ 
/pa/ 

/ki/ 
/ku/ 
/ke/ 
/ko/ 

Connections 
Weight 
-0.33 
-0.16 
-0.50 

-0.125 
-0.125 
-0.125 

-1.0 
-0.5 
-1.0 
-0.2 



mean vector and the feature vectors for the N training patterns as follows: 

where M is the dimension of the feature vectors and the mean vector. 

The mean vector and the variance parameter are computed for each of the 80 SCV 

classes and for each of the three grouping criteria during the second level of training: 

For classification of an SCV utterance, the pattern belonging to  the utterance is input 

to  all the subnets. The  outputs of the subnets are input to the feedback network 

corresponding to their grouping. 

5.4 Constraint Satisfaction Model for Classification of SCVs 

The feedback networks for different grouping criteria interact with each other through 

a pool of units, called instance pool [82]. There are as many (80) units in the instance 

pool as the number of SCV classes. Each unit in the instance pool (for example, the 

unit, corresponding to class /ka/) has a bidirectional excitatory connection with the 

corresponding units in the feedback networks (for example, units corresponding to 

/ka/ in MOA group, /ka/ in POA group and /ka/ in Vowel group). Units within 

the instance pool compete with one another and hence are connected by a fixed 

negative weight (-0.2). Thus the three feedback networks along with the instance pool 

constitute the constraint satisfaction model reflecting the known speech production 

knowledge of the SCVs as well as the knowledge derived in the organization of the 

classes for training the subnets. The constraint satisfaction model developed for 

classification of SCVs is shown in Fig.5.4. 

The operation of the constraint satisfaction model is as follows: Each unit j in the 

constraint satisfaction model computes the weighted sum of inputs from the other 

units (net,) in the model. An external input for each of the units in the feedback 
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Velar @ O B i I a b i a l  

Figure 5.4: Constraint satisfaction model for classification of SCV utterances. The 
constraint satisfaction model consists of three feedback networks for three grouping 
criteria, and an instance pool through which the feedback networks interact. The 
instance pool has one node for each class. The instance pool node for a class is 
connected to the nodes of that class in the three feedback networks by a bidirectional 
excitatory connection. A node in the instance pool has a bidirectional inhibitory 
connection with all the other nodes in the pool. 



networks is provided as bias derived from the 16- or 20-dimensional feature vector of 

the subgroup to which the unit belongs to. For a given input pattern, the output of 

an MLFFNN is considered as  a feature vector denoted by x. Each unit j is associated 

$1 wlth a mean vector pj and a variance parameter uj. Then the external bias for the 

unit, biasj, is computed as follows: 

1 -- dircance 

distance = IX - pj12 - 

where M is the dimension of the feature and mean vectors, xi and pji are the ith 

elements of the feature vector x and the mean vector pj respectively. 

The net input to the unit j is given by 

where a, p and 8 are constants in the range 0.0 to 1.0, chosen empirically by trial 

and error. The output function for the units is a sigmoid function and is given by 

where k is a constant that determines the slope of the sigmoid curve. 

The constraint satisfaction model is initialized as follows: When a new pattern 

is presented to the MLFFNNs, the feature vectors, x's, for all the MLFFNNs are 

obtained. The outputs of the units in the feedback networks for whom the corre- 

sponding feature vector element value is above a threshold 6 (0.3) are initialized to 

+1.0 and the outputs of all other units in the feedback networks are initialized to 0.0. 

The bias for a unit in the instance pool is computed from the net input to the unit 



after the feedback networks are initialized. The output of a unit in the instance pool 

- is initialized to +1.0, if the net input to the unit is greater than 0.0. The constraint 

satisfaction model is then allowed to relax until a stable state is reached for a given 

input. Deterministic relaxation method is used. In this method a unit in the model is 

chosen at  random and its output is computed. This method is continued until there 

is no significant change in the outputs of the units. At a stable state of the model, 

the outputs of the instance pool units are interpreted to determine the class of the 

input pattern. 

The class of the instance pool unit with the largest output value is assigned as 

the class of the input utterance. Because of similarity amongst SCV classes, we 

consider the cases in which the correct class can be among the classes corresponding 

to the K largest output values. In the next section, we present the classification 

performance of the constraint satisfaction model for Case-1, Case2, Case-3, and 

Case-4, corresponding to K = 1, 2, 3, and 4, respectively. 

If the feature vectors for an input pattern are considered as evidences for the 

classes available from subnets based on different grouping criteria, then the outputs 

of the instance pool units in the final state of the model can be considered as the 

combined evidence for each class after satisfaction of as many constraints as possible. 

The feature vectors for an input pattern belonging to the class /ka/ are plotted in 

Fig.5.5. The outputs of the instance pool units in the final state of the model are also 

shown in the figure. 

5.5 Results and Discussion 

In the previous chapter, we have considered different durations of segments for de- 

riving the patterns from isolated utterances of SCVs, and compared the classification 

performance of the subnets and the modular networks. In this section we present 
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Figure 5.5: Outputs of subnets based on different grouping criteria and 
the instance pool units in the constraint satisfaction model (CSM) 
for an input utterance belonging to  the SCV class /ka/. Multiple 
evidences available from the three criteria are combined by the CSM 
using the constraints based on similarities among the classes. 



the performance of the constraint satisfaction model for classification of all the SCV 

classes. The average performance of the constraint satisfaction model on. the test 

data is given in Table-5.4 for different segment durations and for different cases of 

decision criterion. The performance of the modular networks is also given in the table 

for comparison. Here we consider the performance of the modular networks based 

on POA grouping as they gave the best classification performance among the three 

groupings. 

Table 5.4: Classification performance of the constraint satisfaction 
model on the test data of all the SCV classes for different segment 
durations. The performance of the modular network with POA as the 
grouping criterion is also given for comparison. The performance is 
given for four different cases of decision criterion. The CaseM for the 
constraint satisfaction model refers to the criterion that the class of an 
input pattern is amongst the M largest output values of the instance 
pool units. The CaseM for the modular network refers to the case 
when the M largest values amongst the outputs for all the SCV classes 
are considered in deciding the class. The constraint satisfaction model 
gives a significantly better performance than the modular network. 
This behaviour is observed for different segment durations. 

It is observed that the classification performance of the constraint satisfaction 

rnodel (CSM) is distinctly better than the performance of the modular networks. 

The performance of CSM for Case-1 is as high as 65% for the segment duration of 

200 ms indicating that the instance pool unit with the largest output value gives the 

class of the input utterance correctly for 65% of the total number of test utterances. 

This result is significant considering that the classificatio~~ is performed by the CSM 

by discri~ninating among 80 SCV classes and that many of these classes are similar. 

Segment 
Duration 

200ms 
150ms 
looms 

Modular Network Constraint Satisfaction Model 
Case-1 

35.1 
30.8 
20.6 

Case-4 
82.6 
76.7 
60.8 

Case-1 
65.6 
54.3 
39.0 

Case2 
56.9 
49.4 
36.4 

Case2 
75.0 
67.5 
49.5 

CaseS 
69.5 
60.1 
47.0 

Case3 
80.2 
73.1 
56.0 

Case-4 
76.6 
66.7 
53.9 



The performance of the CSM increases to about 82% for the Case-4 of the decision 

criterion. 

The postprocessor in a modular network processes the outputs of the subnets in 

that network to decide the class. The postprocessor simply assigns the class of the 

largest output value without using the similarity information available in the other 

outputs. The modular networks for different groupings operate independent of each 

other. The evidences available from different modular networks are not used in the 

classification. In the CSM, the outputs from subnets of each grouping criterion are 

processed by the feedback network for that grouping. Similarities among classes are 

represented in the weights of the connections in the feedback network. Evidences 

available from different groupings are combined by letting the feedback networks 

interact with one another through the instance pool. Therefore the CSM not only uses 

the knowledge about the similarities among classes but also combines the evidences 

from multiple sources in performing the classification. It is observed that even the 

weak evidences available from different sources are enhanced by the CSM during 

relaxation. The improved classification performance of the CSM is mainly due to its 

ability to combine evidences from multiple sources. 

The results of the studies in the previous chapter have shown that the classification 

performance of the modular networks is much less than the average performance of 

subnets. It is observed that the ~erformance of the CSM approaches the performance 

of subnets. In Table-5.5 we give the performance of the CSM on the test cl,:ta sets 

of the classes in different subgroups. The table also gives the performance of subnets 

for the same data. It is important to note that the CSM perfc~rms classification by 

discriminating among all the 80 classes where as a subnet performs classification by 

discriminating only among the 16 or 20 classes in its subgroup. It is significant that 

the performance of the CSM is close to that of the subnets. The performance of the 



CSM and the subnets is given for different segment durations used for analysis. 

Table 5.5: Classification performance of the constraint satisfaction 
model and the subnets on test data of SCV classes in subgroups based 
on different grouping criteria. The comparison of performance is given 
for different segment durations. The performance of the constraint 
satisfaction model on data for a subgroup of classes is close to the 
performance of the subnet for that subgroup. The constraint satisfac- 
tion model performs classification by discriminating among all the 80 
SCV classes where as the subnet discriminates only among the classes 
in its subgroup. This behaviour is observed for different segment du- 
rations. 

It is interesting to  note that the performance of the CSM some times exceeds even 

that of the subgroup. For example, consider the performance for the '/a/' subgroup 

for the segme1lt duration of 200 ms. The performance of the CSM for this subgroup is 

68.2%, whereas the performance its subnet is only 61.5%. This is possible because the 

CSM uses the evidences available from subnets based on all three grouping criteria. 

A similar behaviour can be noted for the VUA subgroup for the duration of 150 ms. 

The performance of the subnets is important for the performance of the constraint 

satisfaction model. It can be seen that the poorer performance of the CSM for the 

Grouping 
Criterion 
MOA 

POA 

Vowel 

Subgroup 
UVUA 
UVA 
VUA 
VA 
Velar 
Alveolar 
Dental 
Bilabial 

/a/ 
/i/ 
/u/ 
1.1 
/o/ 

200ms 
CSM 
76.7 
66.3 
62.1 
57.5 
55.0 
73.3 
66.3 
67.9 
68.2 
66.2 
61.5 
65.6 
66.7 

Subnet 
77.1 
70.0 
62.9 
56.3 
54.6 
84.2 
77.9 
80.0 
61.5 
66.6 
68.8 
62.0 
67.7 

150ms 
CSM 
65.0 
39.6 
69.2 
43.3 
55.6 
53.5 
50.2 
57.7 
63.0 
51.6 
54.2 
52.6 
50.0 

1OOms 
Subnet 

64.1 
40.4 
65.8 
43.8 
60.8 
62.5 
68.1 
71.5 
69.8 
63.5 
63.0 
61.5 
69.5 

CSM 
53.4 
22.3 
54.8 
25.0 
42.1 
36.9 
31.9 
44.6 
54.9 
29.7 
37.3 
39.1 
33.4 

Subnet 
62.7 
31.0 
64.0 
35.0 - 
51.5 
54.6 
51.0 
56.5 
64.1 
31.3 
45.8 
41.7 
40.4 



durations of 150 ms and 100 ms compared to 200 ms is mainly because of the poor 

performance of the subnets for the reduced durations. Even a marginal improve- 

ment in the performance of the subnets can lead to a significant improvement in the 

performance of the CSM. 

5.6 Summary and Conclusions 

A summary of the issues addressed and major results of the studies carried out in this 

chapter are given in Table-5.6. In this chapter, we have proposed a new approach 

for developing a model for classification of utterances of all the SCV classes. In 

this approach we proposed a constraint satisfaction model to  represent the known 

constraints of the problem. Trained multilayer feedforward neural networks are used 

as nonlinear filters to extract features. A second level of training is used to  derive 

the distribution of the features for each class. Since the constraint satisfaction model 

satisfies a set of weak constraints in the best possible manner, th'e results are good in 

most of the cases. 

The ability of the CSM to combine multiple evidences is useful for performing 

speaker independent classification. The subnets are trained for the data collected 

from multiple speakers and no speaker adaptation is performed by them. Therefore 

the outputs of subnets for an utterance from a new speaker can be low and hence 

the evidences available may be weak. Though the performance of subnets is not 

speaker independent, the operation of the CSM is speaker independent and hence it 

is expected that the CSM would show a distinct improvement in speaker independent 

classification over the modular networks. 

The main difficulty in improving the classification performance is in the para- 

metric representation of speech. If the representation does not capture the crucial 

information from the speech signal, then there is no hope of classifying the input cor- 



Table 5.6: Summary of the results of studies on development of a 
constraint satisfaction model for classification of SCV utterances. 

1. Neural networks used for building subnets for subgroups of SCV classes 
have been interpreted as nonlinear feature extractors. This interpretatio~j 
is useful in looking at the outputs of a subnet for an input SCV pattern 
as the outputs of the set of nonlinear filters developed during training oj 
a subnet for the classes in its subgroup. 

2. A feedback neural network has been developed for each of the three 
criteria considered for grouping SCV classes. A second level of training 
has been carried out to obtain the mean feature vector and variance f o ~  
each SCV class, which are used in computing the bias value for the node 
of a class in the feedback network. The weights for the connections in 
the feedback networks are determined using the similarities among SCV 
classes derived from experimental results. 

3. A constraint satisfaction model has been developed in which the three 
feedback networks interact with one another through an instance pool. 
The multiple evidences available from different grouping criteria for an 
input SCV pattern are combined using a relaxation method to determine 
its class. 

4. The constraint satisfaction model gave a significantly better (about 30% 
higher) performance compared to the modular networks for classification 
of utterances of all the 80 SCV classes. 

5. The performance of the constraint satisfaction model in the classification 
of the 80 SCV classes approaches the average performance of the subnets 
in classification of subgroups of the SCV classes. 



rectly using a simple classifier. Parametric representation is d s o  a limiting factor for 

realizing speaker independent classification of SCV utterances. Our studies demon- 

strate the power of constraint satisfaction models to  enhance even the weak evidence 

available in the input data. The models developed for the classification of isolated 

utterances of SCVs can be used for spotting SCV segments in continuous speech. 

In the next chapter, we propose an approach in which the speech signal around the 

vowel onset points is scanned by the classification models to  spot SCVs. 



Chapter 6 

SPOTTING SCV SEGMENTS IN 

CONTINUOUS SPEECH 

6.1 Introduction 

The focus of the studies in the previous chapters has been on developing models for 

classification of continuous speech segments belonging to a small set of frequently 

occurring SCV classes, and on developing models for classification of isolated utter- 

ances of all the 80 SCV classes. Models based on One-Class-One-Network (OCON) 

and All-Class-One-Network (ACON) architectures have been considered for small sets 

of classes. Modular neural network architecture has been considered for classification 

large number of classes. In this chapter we address the issues in using these clas- 

sification models for spotting SCV segments in continuous speech. We propose an 

approach in which the vowel onset points (VOPs) in continuous speech are detected 

first, and the classification models for SCVs are then used to scan the speech segments 

around VOPs for spotting SCVs. Spotting SCVs in continuous speech is useful in 

developing vocabulilry independent continuous speech recognition system. 

The organization of this chapter is as follows: The main issues in spotting SCVs 

are discussed in the next section. In section 6.3 we describe a neural network based 

method for detection of vowel onset points in continuous speech. In section 6.4 we 

present the studies on spotting SCVs. 



6.2 Issues in Spotting SCVs 

Strategies for spotting subword units in continuous speech have been based on training 

a model for each of the classes to classify only the segments of the continuous speech 

signal belonging to that class and reject all other segments [42]. The models thus 

trained are then used to scan the speech signal continuously and hypothesize the 

presence or absence of the corresponding subword units. The hypotheses from the 

models for all the classes are processed further to hypothesize the subword units 

present in a given continuous speech signal. We discuss some issues in adopting this 

strategy and propose an approach for spotting SCVs. 

The commonly used approaches for spotting subword units scan the speech signal 

continuously. In these approaches patterns extracted from fixed duration segments 

starting a t  every 5 or 10 ms are given as input to a classifier to  determine their 

classes. In our approach to spotting SCVs, we propose to identify the Vowel Onset 

Points (VOPs) in continuous speech and scan a portion of the speech signal around 

each VOP to  determine the class of a segment around the VOP. By restricting the 

scanning to regions around VOPs, the portions of the speech signal not belonging to  

CV segments are eliminated from consideration thus leading to  a significant reduction 

in the number of false alarms. The resulting false alarms are mainly due to the errors 

made by the classifiers. 

The performance of any spotting approach is mainly dependent on the capability 

of the classifiers to correctly classify the segments belonging to each of the SCV classes 

and reject all other segments. Therefore the classifiers used for spotting should be 

trained t o  classify segments belonging to  any SCV class and reject all segments that 

do not belong to SCV classes. For spotting any SCV segment, it  is necessary to  use 

a classifier trained for all the SCV classes. It  has been pointed out in Chapter 1 that 

many SCV classes occur infrequently. It is difficult to  collect the adequate number 



of training samples from continuous speech for these classes. This was the reason for 

limiting the studies in Chapter 3 to a small set of frequently occurring SCV classes. 

The OCON and ACON classifiers trained with continuous speech data can be used for 

spotting segments of these classes. A training pattern is derived from speech signal 

of 100 ms duration with 20 ms before and 80 m s  after the VOP in an SCV segment. 

The patterns that are input to the classifiers during spotting are derived from the 

segments of 100 ms duration in continuous speech. 

Modular neural network architecture has been considered in Chapters 4 and 5 for 

developing classifiers for all the SCV classes. The classifiers have been trained with 

isolated utterance data. In order to use these models for spotting , it is necessary to 

consider the differences in the durations of isolated and continuous speech utterances 

of SCVs. The isolated utterances of an SCV class are of longer duration compared 

to the segments of that class in continuous speech. I t  is observed that most of the 

necessary information for classification is present in the speech signal of about 100 

ms duration around VOP in continuous speech segments. In isolated utterances, 

the information is present in the speech signal of a longer duration (150 to  200 ms) 

around VOP. Patterns derived from segments of these durations are used to train 

the classifiers. For spotting, these classifiers have to  be used to classify the patterns 

derived from 100 ms segments in continuous speech. Two important aspects need to 

be considered are as follows: (1) Both the patterns should be of same size so that they 

can be inr)ut to a neural network classifier, since isolated speech utterance patterns 

are used for training and continuous speech patterns are used for spotting, and (2) 

There should be at least an approximate temporal alignment of the clues in both the 

patterns. We discuss a method that attempts to take these aspects into account. 

We have considered the segment durations of 200 ms, 150 ms and 100 ms for 

deriving the patterns from isolated utterances. The 200 ms duration consists of 60 



ms before VOP and 140 ms after VOP. The 150 ms duration consists of 60 ms before 

VOP and 90 ms after VOP. The 100 ms duration consists of 20 ms before and 80 ms 

after VOP. The methods used for deriving patterns containing 20 frames of weighted 

cepstral coefficients from these different durations have been discussed in Chapter 

4. The studies presented in the previous two chapters have shown that the best 

classification performance is given for the duration of 200 ms. But the duration of 

200 ms is not suitable for spotting because many SCV segments in continuous speech 

are much shorter than 200 ms. The studies on classification have also shown that 

the performance for the duration of 100 ms is poor. The classifiers trained with the 

patterns derived from 100 ms segments will give a large number of false alarms during 

spotting. The classification performance for the duration of 150 ms is close to that 

for the duration of 200 ms. The patterns for the duration of 150 ms are derived in 

such a way that the classifiers trained with these patterns can be used for spotting. 

The speech signal with 60 ms before and 90 ms after VOP is processed to extract 30 

frames a t  a frame rate of 5 ms. The initial 16 frames contain the information about 

the manner and place of articulation of stop consonants. The remaining 14 frames 

contain mainly the information about vowel in SCVs. These 14 frames are averaged 

to obtain 4 smoothed frames from the vowel region. The initial 16 frames along with 

the 4 smoothed frames are used to form a 20 frame pattern used during training. 

The patterns that are input during spotting are derived from segments of 150 ms 

duration in continuous speech using the same method. In section 6.3 we present the 

results of spotting the frequently occurring SCV classes using the classifiers trained 

with continuous speech data and the results of spotting all the SCV classes using the 

classifiers trained with the isolated utterance data. 

The classifiers that have been considered so far are trained to classify continuous 

speech segments or the isolated utterances of SCVs. When these classifiers are used 



for spotting, in addition to being capable of classifying SCV segments, they should 

be capable of rejecting segments that do not belong to any of the SCV classes. The 

capability to  reject non-SCV segments is important for minimizing the number of 

false alarms during spotting. Suitable methods for training the classifiers to develop 

the capability of rejecting non-SCV segments have to  be explored. 

In the proposed approach for spotting SCVs, we first identify the VOPs in contin- 

uous speech and then use the classifiers to scan speech segments around the VOPs. 

In the next section, we discuss a neural network based method for the detection of 

VOPs in continuous speech. 

6.3 Detection of Vowel Onset Points in Continuous Speech 

In this section, we develop a neural network based method for the detection of vowel 

onset points in continuous speech. The main aim is to  identify the VOPs in SCV 

segments of continuous speech so that portions of the speech signal around the VOPs 

can be scanned by the classifiers to hypothesize the presence of SCVs. In Chapter 3, 

we have developed a method based on the derivative of signal energy for the detection 

of VOPs in SCV segments manually excised from continuous speech. The VOP in 

an SCV segment is characterized by a low energy region immediately before and a 

high energy region immediately after the VOP. Therefore the VOP in an excised 

segment can be associated with a point a t  which there is a maximum increase in 

the signal energy. The VOP can be detected by determining the point a t  which the 

energy derivative is maximum. This method cannot be extended for the detection 

of VOPs in continuous speech. The continuous speech signal of a sentence contains 

many non-SCV segments which are also characterised with the points a t  which there 

is a significant increase in the signal energy. Therefore it is necessary to  use a more 

robust method for detecting the VOPs of SCV segments in continuous speech. 



Parametric analysis of the speech signal in SCV segments has shown that three 

parameters, namely, (1) signal energy, (2) linear prediction (LP) residual energy and 

(3) spectral flatness, are significantly different in the regions immediately before and 

after the VOPs. The signal energy and the LP residual energy parameters show a 

rapid increase at the VOPs whereas the spectral flatness parameter shows a decrease. 

These trends in the parameters are illustrated in Fig.6.1. The figure shows the plots 

for speech signal waveform, energy, LP residual energy and spectral flatness parame- 

ters. The figure also shows a plot of the derivative of signal energy. This plot shows 

only the positive portion of the derivative. 

We train a multilayer perceptron network to'detect the VOPs by using the trends 

in the speech signal parameters. The network used for detecting the VOPs consists 

of 2 hidden layers with 10 nodes in the first hidden layer and 5 nodes in the second 

hidden layer. The input layer of the network contains 9 nodes and the output layer 

has 3 nodes. Though the main function of the network is to detect the VOPs, it  

should also be trained to minimize the number of false alarms in the detection of 

VOPs. Therefore 3 nodes are used in the output layer of the network with one node 

(labeled as VOP node) to  indicate the presence of VOPs and the other two nodes 

(labeled as Pre-VOP and Post-VOP) to indicate the absence of VOPs. 

For training the network to  detect the VOPs, it is necessary to give the values of 

the above three parameters extracted from a speech signal frame immediately before 

the VOP and a frame immediately after the VOP. We also give the ratios of the 

parameters in these two frames because the trend in these parameters contains the 

information for detection of the VOPs. Thus the signal energy, residual energy and 

spectral flatness parameters extracted from two frames around the VOP and the 

ratios of the parameters in the two frames are used to form a vector of 9 values that 

is input to the network during training. One of the frames starts a t  15 ms before 
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Figure 6.1: Detection of the vowel onset points in the speech signal for 
the sentence /dharm ka: pa:lan dhairy se hota: hai/. The figure shows 
the plots of signal waveform, parameters used for detection of the VOPs, 
output of the multilayer perceptron network, energy derivative and the 
VOPs detected. It can be seen that the VOPs of all the SCVs are de- 
tected. 
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VOP and the other frame starts at 5ms after VOP. The duration of frames is 10 

ms. For training the network, the vectors are extracted from manually excised SCV 

segments. The desired outputs are specified to give the maximum value (1 .O) for the 

output node,labeled as VOP and the minimum value (0.0) for the other two output 

nodes labeled as Pre-VOP and Post-VOP. We also extract two other vectors from 

each SCV segment. One vector is derived from two frames in the region before VOP. 

One of these frames starts at 35 ms and the other at 15 ms before VOP. The desired 

outputs for this training vector specify the maximum value for the Pre-VOP node 

and minimum values for the VOP and Post-VOP nodes. Another vector is derived 

from two frames in the region after VOP. One of these frames starts at  35 ms and 

the other at  55 ms after VOP. The desired outputs for this training vector specify 

the maximum value for the Post-VOP node and minimum values for the VOP and 

Pre-VOP nodes. The network is trained for about 150 SCV segments excised from 

continuous speech. 

For the detection of VOPs in continuous speech using the network trained as 

above, a 9-dimensional parameter vector extracted at  every 10 ms is given as input 

to the network and the output of the network indicates the presence or absence of 

VOP at that point in continuous speech. The parameter vector is extracted from two 

frames with one frame starting at  the point under consideration and another frame 

starting at  20ms after this point. Thus the continuous speech signal of a sentence is 

scanned by the net\\:)rk to detect the VOPs. Fig.6.1 shows the output of the network 

for the sentence whose speech signal waveform and parameters are also plotted in the 

figure. The network detects the VOPs of all the SCV segments in the sentence. But 

it also hypothesizes many other points as VOPs. It is interesting to note from the 

plots of the network output and the energy derivative that both of them have peaks 

at the VOPs of SCVs. At all other points only one of them shows a high value or a 



peak. We combine the network output and the energy derivative to eliminate most 

of the spurious hypotheses. The VOPs detected in the speech signal for the sentence 

Idharm ka: pa:lan dhairy se hota: hail using this method are shown in Fig.6.1. They 

include the VOPs in SCVs (Idha/, /ka:/, /pa:/, /dhai/, /ta:/) and also the VOPs of 

the segments belonging to non-SCV classes (/ry/, /se/, /ho/, /hail). The objective 

of our method is to detect the VOPs in SCV segments so that scanning of speech 

signal during spotting can be limited to only these segments. This method has been 

used for detection of the VOPs for 50 sentences and the results have shown that the 

VOPs of the SCV segments are detected with nearly 100% accuracy. The method 

has failed to detect the VOPs in a few segments where the signal energy is low. It is 

observed that the method also detects the VOPs in many CV segments belonging to 

non-SCV classes. The VOPs of most of the fricative CV segments have been detected. 

But the VOPs of many CV segments where the signal energy in the consonant regions 

is high are not detected. These segments mainly belong to the nasal ( /m/ and In/), 

semivowel (/y/ and /w/) and lateral (/I/) consonants. For example, the VOP of the 

/la/ segment in the sentence of Fig.6.1 is not detected. In the next section, we study 

the effects of the detection of VOPs on spotting performance. 

6.4 Studies on Spotting SCVs 

In this section, we present the results of our proposed approach for spotting. We first 

present the results of spotting frequently occurring SCV classes using the classifier 

models trained with the segments excised from continuous speech. Then we present 

the results of spotting all the SCV classes using the constraint satisfaction model 

developed for classification of isolated utterances. 



6.4.1 Spot t ing  using Classifiers Trained with Continuous Speech D a t a  

In Chapter 3, we have developed the OCON and ACON classifiers for the set of ten 

frequently occurring SCV classes. In this section, we study the performance of these 

classifiers in spotting the SCV segments in continuous speech. 

We first study the effect of the detection of VOPs on spotting performance. For 

this study, we consider the OCON classifier for the following ten classes: /ka/, /ki/, 

/ke/, /ko/, /ta/,  /ti/, /to/, /da/, /dha/ and /pa/. This classifier contains one 

multilayer perceptron network trained for each class. The classifier is first used to 

scan the speech signal of a sentence continuously. For scanning, a pattern is derived 

at every 5 ms from the signal of 100 ms duration and the pattern is input to the 

networks. The outputs of the networks for the ten classes are plotted in Fig.6.2(a) 

for a Hindi sentence. It can be seen from the figure that though the presence of the 

segments belonging to each of the ten classes is indicated, the number of false alarms 

given by the networks is large. 

We have used the same classifier for spotting using our approach in which the 

VOPs are detected first. Once the VOPs are detected, a segment around each VOP is 

scanned by the classifier. The scanning window around a VOP includes 50 msec before 

the VOP and 100 msec after the VOP. We consider a scanning window around VOP 

for spotting to take into account any ambiguity in the detection of VOPs precisely. 

It is thus enough if the method gives an approximate location of the VOP of an SCV 

segment in continuous speech. The pattern derived from a 100 msec long speech 

signal at every 5 msec in the scanning window is input to the classifier networks. The 

maximum output value in a scanning window for a class is assigned as the output 

of the network for that class. The outputs of the networks for the ten classes using 

this approach are plotted in Fig.6.2(b). It can be seen from Figs.6.2(a) and (b) that 

many false alarms given in the standard approach for spotting are eliminated using 
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Figure 6.2: Spotting SCV segments in continuous speech of the sentence 
Idharm ka: pa:lan dhairy se hota: hail  using the classifier based on the 
OCON architecture and MLP model trained for ten frequently occurring 
SCV classes. The plots show the outputs of the networks for different 
classes in spotting SCVs (a) Without detection of VOPs and (b) With 
detection of VOPs. It can be noted that the number of false alarms is 
much smaller for spotting with detection of VOPs. 



our approach. This has been possible mainly due to limiting the scanning by the 

classifier: to segments around the VOPs. Another advantage of our approach is that 

the computational complexity is reduced significantly by limiting the scanning. 

We have studied the performance of spotting using different classifiers. The out- 

puts of different classifiers used for spotting the SCVs in the continuous speech signal 

of a Hindi sentence are shown in Figs.6.3(a) and (b). These figures show the speech 

signal waveform for the sentence and the VOPs detected. These figures also show the 

outputs of the classifiers for each class in the scanning windows around the VOPs. 

The outputs of the OCON classifier are shown in Fig.6.3(a) and the outputs of the 

ACON classifier in Fig.6.3(b). It is observed that the presence of the segments belong- 

ing to the ten SCV classes is indicated by both the classifiers. The ACON classifier 

gives fewer false alarms than the OCON classifier. The false alarms in segments be- 

longing to non-SCV classes are mainly due to inadequate training of the classifiers in 

rejecting them. 

It is observed that for each segment around a VOP, presence of more than one SCV 

class is hypothesized. I t  is interesting to note that the hypotheses include mainly the 

classes that are phonetically close to the actual class of the segment. We consider the 

hypotheses made by the ACON classifier in Fig.6.3(b) for illustration. The presence 

of the classes /ka/ and /pa/ is hypothesized for the /ka:/ segment. The output values 

of the classifier can be considered as evidences for the classes. It is noted that the 

evidence for the class /ka/ is stronger than the evidence for the class /pa/: A similar 

performance has been observed for the segments of /pa:/ and /ta:/. For the /dha/ 

segment, the hypotheses include the classes Ida/ and /pa/ in addition to the class 

/dha/. The evidence for the class /pa/ is slightly stronger than the evidence for /dha/. 

A postprocessor can be used to process the outputs of the classifier to  determine the 

class of a segment using the evidences available. The postprocessor can use a simple 
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Figure 6.3: Spotting SCV segments in continuous speech of the sentence 
jdharm ka: pa:lan dhairy se hota: hai/ using the MLP based classifiers 
trained for ten frequently occurring SCV classes. The plots show the 
outputs of the networks in the classifiers based on (a) OCON architecture 
and (b) ACON architecture. 



method of assigning the class with the strongest evidence to a segment. If this method 

is used, the class /pa/ will be assigned to the /dha/ segment. A better method is to 

use the knowledge of similarities among the classes as constraints in combining the 

evidences for the classes. It has been shown in the previous chapter that this method 

used in a constraint satisfaction model has significantly improved the performance 

for classification of SCV utterances. 

The classes hypothesized by the ACON classifier for different SCV segments and 

rank ordered based on the evidences available are given for six sentences in Figs.6.4 

and Fig.6.5. The text of the sentence, speech signal waveform, vowel onset points 

detected and the classes hypothesized for the SCV segments are given for each sen- 

tence. It can be seen from these figures that the VOPs of most of the SCV segments 

have been detected. The VOPs of a few SCV segments occurring mainly at the end 

of the phrases and sentences, and characterized by low signal energy have not been 

detected. For example, the VOPs of the /ti:/ segment in Fig.6.4(c) and the /bhi:/ 

segment in Fig.6.5(a) have not been detected. 

It is observed that for some of the SCV segments, the actual class is not present 

among the classes hypothesized. For example, the hypotheses for the /ki:/ segment in 

Fig.6.4(c), the /ti/ segment in Fig.6.5(a), and someof the /ke/ segments in Figs.6.5(b) 

and (c )  do not include the actual class. But the hypotheses include the classes that 

are   hone tic ally close to the actual class. 

It is also observccl that the classes that are phonetically close to the actual class 

are included in the hypotheses for the segments of the SCV classes for which the 

classifier has not been trained. For example, the hypotheses for the /kha/ segment in 

Fig.6.4(c) include the class /ka/, and the class /dha/ has been hypothesized for the 

/bha:/ segment in  Fig.6.5(a). 

The above results show that the classifiers trained with the pat terns derived from 
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(a) Spotting SCVs in the speech signal for the sentence 
/dharm ka: pa:lan dhairy se hota: hai/ 
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(b) Spotting SCVs in the speech signal for the  sentence 
/pra:rthna: jaisa: dharm ka: sabse ma:rmik ang hai/ 

Sentence sa tya ki: ka saufi: par khara:u t re  

Signal 

VOPs I  1 1 1 1  I l l  I  
SCVs ke ko pa ka 
spotted ka ko da 

t a  
(c) Spotting SCVs in the speech signal for the sentence 

/satya ki: kasaufi: par khara: utre/ 

Figure 6.4: Spotting SCVs in the speech signal for different sentences using the 
classifier based on ACON architecture and MLP model trained with continuous 
speech data for ten SCV classes. The figure for a sentence gives the text, signal 
waveform, vowel onset points (VOPs) identified and SCV segments spotted. The 
hypotheses for non-SCV segments are not indicated. 
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(a) Spotting SCVs in the speech signal for the sentence 
/vyaktyon ke bha:nti ra:?tron ka: nirma:? bhi:/ 
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(b) Spotting SCVs in the speech signal for the sentence 
/keval ba1ida:n ke dva:ra: ho sak ta: hai aur kisi tarah nahi:/ 

Sentence bina: a:dars ke manuqy pa:l rahit jaha:j ke jaisa: hai 
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(c) Spotting SCVs in the speech signal for the sentence 
/bina: a:dars ke manuqy pa:l rahit jaha:j ke jaisa: hai/ 

Figure 6.5: Spotting SCVs in the speech signal for different sentences using the 
classifier based on ACON architecture and MLP model trained with continuous 
speech data for ten SCV classes. The figure for a sentence gives the text, signal 
waveform, vowel onset points (VOPs) identified and SCV segments spotted. The 
hypotheses for non-SCV segments are not indicated. 



manually excised segments can be used for spotting. The performance of our proposed 

approach for spotting depends on the performance of the method used for the detec- 

tion of VOPs and the performance of the classifiers. This approach can be extended 

for spotting the segments of all the SCV classes. 

6.4.2 Spotting using Constraint Satisfaction Model 

In the previous chapter, we have developed a constraint satisfaction model (CSM) for 

classification of all the SCV classes. The model has been trained with the patterns 

derived from the isolated utterances of SCVs. We have used this model as the classifier 

for spotting the segments of all the SCV classes in continuous speech. After the 

detection of the VOPs in the speech signal of a sentence, a segment of 150 ms duration 

around each VOP is processed to derive a pattern as explained in Section 6.2. This 

pattern is input to the CSM to determine its class. The classes of the five largest 

values among the output values of the instance pool units in the CSM are considered 

as the hypotheses for each segment. The output values for the  classes are considered 

as evidences for the hypotheses. The spotting performance of the CSM is illustrated 

for two sentences in Fig.6.6. The text of the sentence, speech signal waveform, vowel 

onset points detected and the five hypotheses for each the SCV segments are given 

for each sentence. It is seen that the hypotheses for many SCV segments include 

the actual class. For some segments, the hypotheses include the classes that are 

phonetically closcx t o  the actual class. 

The above result shows the potential of our approach for spotting in using it 

for all the 80 SCV classes. The main difficulty is in matching the training patterns 

derived from isolated utterances with the patterns derived from continuous speech 

segments during spotting. A significant improvement in the spotting performance 

can be expected for a CSM trained with continuous speech SCV data. 
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(a) Spotting SCVs in the speech signal for the  sentence 
/sraddha:lu: ka: akarm bhi: karm ho ja:ta: hai/ 

Sentence pra:rthna: to atma: ko sa:f karne ka: jha:du: hai 
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(b) Spotting SCVs in the speech signal for the sentence 
/pra:rthna: to atma: ko sa:f karne ka: jha:du: hai/ 

Figure 6.6: Spotting SCVs in the speech signal for different sentences using the 
constraint satisfaction model developed for classification of isolated utterances of all 
the SCV classes. The figure for a sentence gives the text, signal waveform, vowel 
onset points (VOPs) identified and the first 5 class hypotheses for SCV segments 
spotted. The hypotheses for non-SCV segments are not indicated. 



6.5 Summary and Conclusions 

A summary of the issues addressed and studies carried out for spotting the SCV 

segments in continuous speech is given in Table-6.1. 

Table 6.1: Summary of the studies on spotting the SCV 
segments in continuous speech. 

1. An approach based on the detection of vowel onset points and 
scanning around them for spotting SCVs in continuous speech 
has been developed. 

2. A neural network based method for the detection of vowel onset 
points in continuous speech has been developed. 

3. The spotting performance of classifiers trained with the con- 
tinuous speech data for a subset of the SCV classes has been 
illustrated. 

.4 .  The spotting performance of the constraint satisfaction model 
trained with isolated utterance data for all the SCV classes has 
been illustrated. 

5. The spotting approach based on the detection of vowel onset 
points has been shown to give fewer false alarms than the stan- 
dard approach for spotting where the speech signal of a sentence 
is completely scanned. 

In this chapter, we have discussed the main issues in spotting the SCV segments. 

We have proposed an approach in which the vowel onset points are detected first and 

the segments around these points are scanned by classifiers. We have illustrated the 

results of spotting ten frequently occurring SCV classes using the classifiers trained 

with continuous speech data. We have shown that our approach eliminates many 

false alarms given by the standard approach for spotting. We have also illustrated 

the performance of the constraint satisfaction model developed for classification of 

isolated utterances in spotting segments of all the SCV classes. It  is necessary to 



evolve suitable techniques for using the classifiers trained with isolated utterance 

data for spotting subword units in continuous speech. It is also important to explore 

learning algorithms that minimize spotting errors [48] for improving the performance 

of systems for spotting subword units. 

The focus of our studies so far have been on developing models for classification 

and spotting of SCV segments. The results of the studies on classification have 

shown that a significant percentage of errors is due to misclassification of the place 

of articulation of stop consonants. The patterns derived for training and testing 

the classifiers have been based on the weighted cepstral coefficient representation for 

the speech signal of the SCV segments. In the next chapter, we explore suitable 

representations for the transition regions in the SCV segments in order to improve 

the performance for classification of the place of articulation. 



Chapter 7 

PARAMETRIC REPRESENTATIONS 

FOR SCV TRANSITIONS 

7.1 Need for Classification of SCV Transitions 

Our studies on classification of SCVs in Chapters 3 and 4 have shown that a significant 

percentage of errors is due to misclassification of the place of articulation of the 

stop consonants. Parametric representation based on weighted cepstral coefficients 

has been used in these studies. In this chapter, we explore methods for suitable 

representation of transitions in SCVs which contain the information for classification 

of the place of articulation. 

The important clues for identifying the place of articulation of stop consonants 

are: (1) characteristics of the spectrum during the release of the stop consonant 

(burst event) and (2) formant transitions between the stop consonant and its following 

vowel (transition event). These clues are dependent on the adjacent vowels [lo] [83]. 

Therefore, it is difficult to identify the POA without using the contextual vowel 

information. It may be easier to identify the POA along with the context. That is, 

instead of having 'Velar', 'Alveolar', 'Dental' and 'Bilabial' as the classes, it  may be 

advantageous to have classes such as 'Velar in the context of vowel /a/ (Velara)'. 

We attempt to develop a classifier for POA in the context of a vowel. By having a 

separate class for POA in the context of each vowel, what we are trying to do is to 

classify the type of SCV transitions [70]. Our focus is on the design of a classifier for 

the SCV transitions that occur in continuous speech. 



7.2 Issues in Classification of SCV Transitions 

For the design of a classifier for SCV transitions, one has to determine the portion of 

the speech signal to  be analysed. As the important clues for identification of the SCV 

transition are the release spectrum and the formant transitions, it is necessary that 

the analysis region includes the speech signal between the beginning of the release 

of the stop consonant and the steady formant region of the following vowel. The 

beginning of the release can be identified, at least manually. But it is difficult t o  

identify the point a t  which the vowel formants have become steady. This is more so 

in continuous speech, because vowels tend to have short steady formant regions. As 

an approximation, we consider the portion of the speech signal of a fixed duration 

(about 40 ms) from the beginning of the release instant as the transition region. 

Processing of speech signal for classifying the type of SCV transition should aim 

at capturing the characteristics of the release spectrum and the transition. Here, we 

focus on the analysis of the transition. The spectral characteristics vary during the 

transition region. Suitable representation of the dynamic characteristics of the tran- 

sition region is important for recognition of the stop consonants (121. Time varying 

features were identified as important cues for perception of the place of articulation 

of the stop consonants (841. Differences in formant frequencies a t  the beginning and 

end of the transition region and the duration of the transition region were used for 

recognition of the place of articulation of unaspirated stop consonants in Telugu (851. 

Processing methods using analysis based on time larying, data selective models of 

the speech signal in VC transitions have been shown to give improved performance 

compared to the standard processing methods [69]. In our study, we use parametric 

representations based on standard processing methods and also propose parametric 

representations extracted using pitch region analysis to capture the characteristics of 

the transitions in SCV segments. 



7.3 Classes of SCV Transitions 

Stop consonants are characterized by their manner of articulation and place of ar- 

ticulation. There are four different places of articulation and four different manners 

of articulation. The formant transitions are similar for the stop consonants with the 

same POA in the context of a particular vowel. Therefore the SCV transitions of con- 

sonants with the same POA but with different manners of articulation are grouped 

into a single class. Moreover, the formant transitions for a particular POA in the  

context of short and long versions of- a vowel (such as /a/ and /a:/) are not much 

different. Taking these observations into consideration, the following classes of SCV 

transitions were selected for our study. 

(1) Velara (6) Alveolara (11) Denta la  (16) Bilabiala 

(2) Velari (7) Alveolari (12) Dentali  (17) Bilabiali 

(3) Velar-u (8) Alveolar-u (13) Dental-u (18) Bilabial-u 

(4) Velar2 (9) Alveolar2 (14) Dental-e (19) Bilabial-e 

(5) Velara (10) Alveolara (15) Dental-o (20) Bilabial-o 

Only 13 of these classes were considered here as there was not enough speech 

data available for the other 7 classes (5 classes with Alveolar as POA, Bilabial2 and 

Bilabiala). 

7.4 Parametric Represent at ions 

In our approach to the classification of the SCV transition type, we have used eight 

methods to represent the characteristics of the transition region. Four processing 

methods use an arbitrarily placed window of a fixed frame size. These methods are 

not well suited for capturing the spectral changes in the transition region, which are 

important for classifyirlg the SCV transition type. This is because the changes in the 



vocal tract system during the analysis interval and the window effects mask the slow 

changes in the vocal tract shape during the transition region. For classification, it 

is necessary to capture the spectral changes in the transition region. The spectral 

information in the high energy portion of each pitch cycle is likely to provide reliable 

spectral information. The high energy portion is usually around the significant point 

of excitation in the pitch cycle. Therefore, an analysis window centered around the 

high energy region of the pitch cycle is used. We propose pitch region analysis to 

obtain a robust parametric representation for the SCV transitions. We briefly discuss 

implementation details of the processing methods used in our study. 

Formant  Frequencies a n d  Ampli tudes  ( F M T )  

The first three formants were extracted using group delay processing of signal [86] for 

four frames starting a t  the vowel beginning point in an SCV transition region. The 

three formant frequencies and their amplitudes for four frames were normalized and 

used to form a 24-dimensional vector for each SCV transition region. 

Spectra l  Coefficients (SPC)  

Spectral coefficients were extracted for four frames starting at the vowel beginning 

point in an SCV transition region. 16 mel-scale spectral coefficients were computed 

using a 128-point FFT with a frame size of 12.8 ms and an overlap of 9.6 ms be- 

tween successive frames. The normalized spectral coefficients were used to form a 

64-dimensional vector for each SCV transition region. 

Mel-scale Weighted Cepstra l  Coefficients ( M C E P )  

32 mel-scale spectral coefficients were computed using a 512-point FFT with a frame 

size of 12.8 ms and an overlap of 9.6 ms between successive frames. 10 weighted 

cepstral coefficients were derived from these mel-scale spectral coefficients for each of 



the first four frames in the transition region. These cepstral coefficients were used to 

form a 40-dimensional vector for each SCV transition region. 

L P  Derived Weighted Cepstra l  Coefficients ( W C E P )  

Ten weighted cepstral coefficients derived from linear prediction coefficients were ex- 

tracted from each of the first four frames in an SCV transition region. Thus a 40- 

dimensional vector was obtained for each SCV transition. 

P i t ch  Region Analysis based Parameters  

In order to extract the parametric representation from the high energy region of each 

pitch cycle, it is necessary to determine, at least approximately, the significant points 

of excitation in the pitch cycles. We have used a method based on the positions of the 

peaks in the energy curve of a low-pass filtered (with 1 KHz cut-off) linear prediction 
Z 

residual signal. These peaks indicate the significant points of excitations in the pitch 

cycles. For each SCV transition region, significant points of excitation in the first 

four pitch cycles in the beginning of the transition region were determined. A pitch 

region is defined as the region with duration of the pitch period and centered around 

the significant point of excitation in the pitch cycle. For every such pitch region, the 

formant frequencies and amplitudes (PRFMT), spectral coefficients (PRSPC), mel- 

scale weighted cepstral coefficients (PRMCEP) and LP derived weighted cepstral 

coefficients (PRWCEP) were extracted. 

7.5 Studies on Classification of SCV 'Ikansitions 

7.5.1 D a t a  Collection and Preparat ion 

Speech data for SCV transitions was collected from 50 sentences for three male speak- 

ers and three female speakers. 'I'he regions of analysis were manually identified in the 



digitized speech signal. The duration of the analysis region was fixed at 40 ms, with 

10 ms before and 30 ms during the transition region. This duration was arrived at 

from the observation of the durations of SCV transition regions on a spectrograph. 

Data for 300 SCV transition regions was collected for each of the six speakers. 

7.5.2 Classification Model  

A multilayer perceptron model with two hidden layers was used as a classifier in our 

studies. The number of input nodes depends on the parametric representation used. 

The number of nodes in the first and second hidden layers were chosen as 30 and 20, 

respectively. The number of output nodes were 13, representing the 13 classes used. 

7.5.3 Classification Studies and  Results 

Speaker  Dependent (SD) Classification 

In this study, different multilayer perceptron networks were trained for each of six 

speakers. 30% of the total data available for a speaker was used in training the 

network. The remaining 70% of the total data was used as the test data. This 

study was performed for each of the eight different parametric representations. The 

performance for different parametric representations is given in Table-7.1. 

Multispeaker (MS) and  Speaker Independent (SI) Classification 

In this study, a network was trained with 30% of the data from four (two male and 

two female) speakers. The remaining 70% of the total data (853 patterns) for these 

four speakers was used as multispeaker test data. The total data (568 patterns) of 

the other two speakers was used as speaker independent test data. The performance 

for different parametric representations is given in Table-7.1. 



Table 7.1 : Comparison of the performance of different parametric representations for 
classification of SCV transitions. The performance is given for two cases of classifica- 
tion criterion. Case-1 refers to the criterion that the class of a given SCV transition 
pattern is the class of the largest value among the outputs of the classifier. Case-2 
refers to the criterion that the class of a given SCV transition pattern is amongst 
the classes of the largest and the second largest output values of the classifier. The 
performance for each parametric representation is given on data sets of speaker de- 
pendent (SD), multispeaker (MS) and speaker independent (SI) classification. The 
entries in the parantheses indicate the total number of patterns in a data set. It 
can be seen that the pitch region analysis based formants (PRFMT) and spectral 
coefficients (PRSPC) give a better performance compared to the fixed frame size 
analysis based formants (FMT) and spectral coefficients (SPC) respectively. 

(a) Performanc 

Representation 

PRFhlT 
PRSPC 
PRMCEP 
PRWCEP 

for Case-1 of classification criterion. 

FMT 
SPC 
MCEP 
WCEP 
PRFMT 
PRSPC 
PRMCEP 
PRWCEP 

Training Data 
SD I MS 

(b) Performance for Case-2 of classification criterion. 

Test Data 
SD I MS ) SI 

Parametric 
Representation 

Training Data 
SD I MS 

Test Data 
SD I MS I SI 



7.5.4 Analysis of Performance for SCV Transitions 

The results indicate that for formants and spectral coefficient representations, the 

pitch region analysis based processing methods give a better classification perfor- 

mance compared to the standard processing methods. For the cepstral coefficient 

representations, the standard processing methods give a better performance. This is 

because of the short duration segments used in the pitch region analysis. 

The best performance on training data for speaker dependent classification is 

above 99% and that for multispeaker classification is above 97%. The performance 

reported in [85] for classification of the place of articulation of unaspirated stop con- 

sonants in the context of known vowel and using the data collected from isolated 

words for 3 speakers is about 70%. 

On multispeaker test data, the best performance obtained in our studies is about 

58% for Case-1 and is about 78% for C a s e 2  On speaker independent test data, the 

best performance obtained is about 40% for Case-1 and is about 60% for C a s e 2  Con- 

sidering the large number of SCV transition classes used and confusability amongst 

the classes, this accuracy is significantly high. Human performance is also not likely 

to  be high for this data. 

It is observed that the improvement in the performance for the pitch region anal- 

ysis based methods for spectral coefficient representation is significantly higher for 

the male speaker data compared with that for the female speaker data ., as given in 

Table-7.2. The poor performance for the female speaker data can be due to  the short 

(about 3.0 ms) analysis window used in the pitch region analysis based methods. It 

is necessary to explore better methods of processing using short analysis windows to 

improve the performance for the female speaker data. 



Table 7.2: Comparison of performance in classification 
of SCV transitions for male speaker data and female 
speaker data. The pitch region analysis based method 
gives a better performance for male speaker data and a 
poorer performance for female speaker data compared 
to the fixed frame size analysis based method. 

7.6 Fuzzy Nature of Clues for SCV Transitions 

Test data 

Speaker Dependent 
Multispeaker 
Speaker Independent 

In continuous speech the same SCV may occur in different contexts. Therefore there 

may be variability in the features of the utterance due to variability in speech pro- 

duction as well as due to  context. Moreover, there will also be variability in speech 

production due to different speakers. All these factors lead to feature data that can 

best be described in linguistic terms, such as 'low', 'medium' and 'high', which in 

turn can best be expressed as values of membership functions of fuzzy sets. 

It is necessary to represent the production information in the speech signal in 

suitable parameters or features for input to a classifier. Parameters like spectral co- 

efficients and cepstral coefficients are likely to be influenced by the nature of signal 

processing as well, besides the natural variations in the production process. Varia- 

tions due to signal processing operations contribute to distortion a n d  noise, rather 

than fuzziness. Therefore it is preferable to consider articulatory or related acoustic 

parameters like formants as features representing the SCV transitions. Formants are 

relatively easier to extract compared to the articulatory parameters. Formant features 

also reflect the dynamics of the vocal tract system in the form of formant trajectories. 

Therefore the formants were selected as parameters to represent the SCV transitions 

Male Speaker Data 
SPC 
42.4 
40.8 
36.1 

Female Speaker Data 
PRSPC 

57.0 
56.2 
45.6 

SPC 
45.5 
46.2 
32.1 

PRSPC 
49.2 
40.4 
29.9 



in this study. 

Speaker variability is caused due to differences in the dimensions of the vocal 

tract systems. In eider to  compensate this to  some extent, ratios of formants may 

be considered as features. Since we are considering in this study only data from two 

speakers, we have decided to consider only the formant values as features. Formant 

data is collected for successive frames of speech signal data in each SCV transition, 

Formants are resonances of the vocal tract system, and hence any natural varia- 

tions in the  shape of the vocal tract are reflected in these resonances as well. Since 

variability due to  speech, context and speaker are all preserved in the formant trajec- 

tories, the formant data can be assumed fuzzy, and the data is fuzzified before feeding 

it to  a neural network classifier for training and testing. 

Fuzzification of formant data involves several issues. For example, one could 

fuzzify the features individually in the frequency and time domains. But it appears 

more logical if the fuzzification could be done knowing that the three formants should 

occur together as a set in each frame. Also the formants in successive frames are not 

independent. Hence this dependency should also be considered in fuzzifying the input 

data t o  the neural network classifier. 

It is natural to expect that the class labels will not be crisp either, due to  significant 

overlap of features across the different classes of SCV transitions. Therefore, for 

effective classification, it is preferable that the output classes are fuzzy. In the next 

section we describe a fuzzy neural network classifier that takes fuzzy input data. 

7.7 Fuzzy Neural Network Classifier 

It was shown in [38] that fuzzification of input data and the output class label data 

improves the classification performance of a multilayer perceptron network for recog- 

nition of vowels using formants as features. The network takes as input the values 



of fuzzy membership functions for each of the three formants. Each input feature F, 

in quantitative form is expressed in terms of membership values to each of the three 

linguistic properties 'Low', 'Medium' and 'High'. The w membership function is used 

to assign membership values for the input features. The n membership function in 

one-dimensional form, with range [0,1], is defined as given below. 

( 1  - ( )  f 5 < lx - cl < r, 

1 - 2 ( ' 9 ) 2 ,  for 0 < Ix - cl < :, (7.1) 

0, otherwise, 

where x is a pattern point, r is the radius of the n function and c is the central point. 

The fuzzy sets for the linguistic properties 'Low', 'Medium' and 'High' for each 

formant are represented by membership functions n ~ ,  n~ and n~ respectively. The 

parameters of these membership functions are defined below. 

Let Fj,,, and Fj,;, be the upper and lower bounds of feature Fj in all pattern 

points. For the three linguistic property sets, parameters are defined as 

where 'fdenom' is i L  parameter controlling the extent of overlapping. 

The three n membership functions are defined for each of the three formants and 

for each of the N frames in the transition region. Thus a SCV transition is represented 



by an Nx9-dimensional matrix of membership values. Such Nx9-d,imensional patterns 

are used as input to a neural network classifier. 

During the training phase, the desired output vector is expressed as the desired 

membership values, lying in the range [0,1]. To obtain these membership values, the 

distance of a training pattern F from the average pattern Ok for the kth class is 

defined as 

The membership value for the training pattern F to the kth class is defined as 

where the positive constants fd and f, control the amount of fuzziness in the class- 

membership set. The desired output vector for a training pattern is obtained by 

computing the membership values for the pattern to each of the classes and used in 

training the multilayer perceptron network. 

In fuzzification of the input data, the formant features for each frame are fuzzified 

independently. But, there is a sequence of frames in each SCV transition, and the data 

in each frame depends to some extent on the adjacent frames. This fact must be used 

in fuzzification of formant trajectories. Two methods of fuzzification of sequences of 

formant data are presented in the next section. 

7.8 Fuzzification of Formant Trajectories 

The formant data for one frame is dependent on the adjacent frames. This time- 

dependency can be incorporated in the fuzzification of the trajectories by reducing 

the variability allowed for the subsequent frames given the variability of the current 

frame. The reduction in variability allowed for subsequent frames can be realized by 



decreasing the radii of the n membership functions for fuzzy subsets of features in 

those frames, and correspondingly modifying the centers of the functions. 

The parameters of the membership functions for the features in the first frame 

are defined as explained in the previous section. The parameters of the functions for 

subsequent frames are obtained from those of the first frame as follows: 

r i M ( F j )  = (1 - a )  * r(i-l)~(Fj) 

C;M(Fj) = Fj imin  + B * r i ~ ( & )  

r i ~ ( F j ) =  ( l - a ) * r ( i - ~ ~ ~ ( K )  

c;L(F,) = C;M - 0.5 * B * r i ~ ( F ~ )  

r ; ~ ( F j )  = (1 - a )  * r(i-l)~(F,) 

C;H(Fj) = GM +0.5* B * fiH(Fj) 

where i is the frame number and 2 < i < N. The constants a and B are chosen such 

that the distance between the average patterns of the classes is maximum. Typical 

values for the constants a and B are 0.075 and 1.30, respectively. 

Another way of incorporating the time dependency is to  use multidimensional 

membership functions for groups of adjacent frames. The parameters for the mul- 

tidimensional membership functions are obtained from the parameters of the one- 

dimensional membership functions of features for individual frames. The definition 

of one-dimensional n function in equation 7.1 is extended for an n-dimensional n 

function of a group of n adjacent frames as given below: 

I x c  2 2(1 - e) , for  i < I X  - C I  < T, 

x c  2 T ( x : c , ~ ) =  1 - 2 ( e ) ,  for  ~ < l x - c l < i ,  (7.6) 

0, oth,erwise, 

where x is the vector of values of a feature in n adjacent frames, c is the mean vector 

of x's for all patterns, and r is the radius of the n-dimensional n function. The radius 



of the n-dimensional n function is obtained from the radii, r;, of one-dimensional n 

fu~ct ions  of feature in individual frames. 

A twedimensional n function was used in our studies. We present the effects of the 

methods of fuzzification on the classification of SCV transitions in the next section. 

7.9 Performance for Different Fuzzification Methods 

For each SCV transition, a fixed 40 ms portion around the vowel onset point was 

considered. Formants were extracted using group delay technique [86]. The formant 

contours were hand edited and smoothed to remove spurious peaks. From the result- 

ing smooth contours the first three formants were obtained for each of the 10 frames 

a t  a frame rate of 3.2 ms. The formant data is fuzzified using methods discussed in 

the previous two sections. Thus for each SCV transition, a 90-dimensional vector of 

membership values is generated. This representation is used as input to a a. multi- 

layer perceptron network with two hidden layers. The desired output specified during 

training is also fuzzified. The multispeaker data sets for SCV transitions considered 

in the studies on parametric representations were used for training and testing. The 

classification performance on the test data for different methods of fuzzification is 

given in Table-7.3. 

The results show that fuzzification of input and output data improves the classifi- 

cation accuracy. In particular, fuzzification of input data taking into account the fact 

that the formant data is for a sequence of frames, improves the performance signifi- 

cantly. In these studies only a simple method was used to implement the dependence 

of fuzziness on the sequence. But a more sophisticated data dependent approach for 

determining the fuzzy membership values may improve the performance still further. 



Table 7.3: Comparison of performance for different fuzzifica- 
tion methods in classification of SCV transitions. The perfor- 
mance is given for two cases of deciding the class: (1) Correct 
class is the class with the highest output and (2) Correct class 
is amongst the classes with the highest and the second highest 
outputs. 

7.10 Conclusions 

Fuzzification Method 
Non-fuzzy inputs 
Fuzzification of individual frames 
Fuzzification by variability reduction 
Fuzzification using 2-dimensional R function 

A summary of major results of studies carried out on classification of SCV transitions 

is given in Table-7.4. 

Table 7.4: Summary of the results of studies on parametric 
representations for classification of SCV transitions. 

Case-1 
29.5 
62.9 
70.2 
73.5 

1. Classification of SCV transitions accurately is important for correct 
classification of the place of articulation of stop consonants. 

Case2  
46.3 
82.1 
84.8 
85.4 - 

1 2. The performance of parametric representations based on fixed 
I 

I 
frame size analysis and pitch region analysis has been compared. 
The formants and spectral coefficient representations based on ~ pitch region analysis gave a better performance. 

1 3. The pitch region analysis based representations gave a better per- 
I formance for male speaker data and a poorer performance for female 

speaker data. 

4. Different methods for fuzzification of formant features have been 
explored for classification of SCV transitions. 

In this chapter, we have explored methods for suitable representation of SCV 

transitions to improve the performance for classification of the place of articulation 



of stop consonants. The performance of the pitch region analysis based parametric 

representations have been compared with the fixed frame size analysis based repre- 

sentations. The pitch region analysis based methods gave a better performance for 

the male speaker data. Suitable techniques for extraction of parameters from short 

duration segments have to be explored to improve the performance for the female 

speaker data. In order to account for the variability in the characteristics of SCV 

transitions, methods for fuzzification of formant features have been explored. The 

results have indicated that fuzzification of formant trajectories gives an improved 

accuracy in classification. 

Here we have explored suitable representations for the transition regions of SCV 

segments. Methods for using the information in suitable representations for different 

production events to perform classification have to be explored in order to obtain an 

improved performance for recognition of SCV segments. 



Chapter 8 

SUMMARY AND CONCLUSIONS 

Approaches for vocabulary independent continuous speech recognition systems are 

based on models for classification of subword units. Humans recognize speech by dis- 

crimination of sounds and by using different types of knowledge. Acoustic-phonetic 

knowledge is used to resolve ambiguities a t  the level of subword units. Lexical, syn- 

tactic and semantic knowledge sources are used to resolve ambiguities a t  word and 

sentence levels. We believe that the success in exploring methods for improving 

the performance of recognition systems lies in appropriate usage of these knowledge 

sources even when the best available representations and discrimination models are 

used for recognition. In this thesis we have demonstrated the potential of this ap- 

proach by developing a Constraint Satisfaction Model (CSM) for classification of 

Stop Consonant-Vowel (SCV) utterances. The acoustic-phonetic knowledge of the 

SCV classes has been incorporated in the form of constraints in this model, and these 

constraints do provide improved classification over conventional classifiers. The con- 

straints have been used to  enhance even the weak evidences available in the outputs of 

the neural networks (subnets) trained for subgroups of classes and combine multiple 

evidences available in the outputs of the subncts based on different criteria for group- 

ing. Further improvement in the performance of the CSM requires better methods 

for deriving constraints based on the acoustic-phonetic knowledge arid experimental 

evidence. Though the CSM has been developed for the classification of isolated utter- 

ances of SCVs, the approach can be extended for the classification of SCV segments 

in continuous speech. 



Approaches for spotting subword units have been based on scanning the speech 

signal continuously using the classifiers for the units. We have demonstrated that 

the number of false alarms in spotting the SCV units can be reduced significantly 

by limiting the scanning to the segments around Vowel Onset Points (VOPs). The 

computational complexity in spotting is also reduced by limiting the scanning. Our 

approach for spotting can be extended to subword units of all CVs. 

The performance of our approaches for classification and spotting of subword units 

can be improved by using suitable representations for the units and by using models 

with better discrimination capability. We present some additional research issues in 

exploring methods for improving the performance. 

Exploration of suitable parametric representations can be carried out in the follow- 

ing two ways: (1) Signal dependent analysis and (2) Class dependent analysis. Signal 

dependent analysis is based on identification of suitable speech parameters for the 

regions of different significant events in the production of subword units. In the case 

of SCVs, it involves identification of suitable parameters for the closure, burst, aspi- 

ration, transition and vowel regions. A single parametric representation may not be 

suitable for all the regions. It is necessary to evolve representations that can capture 

the discriminatory clues in each of the regions. Multiple parametric representations 

are to be extracted from speech signal of a subword unit segment and given as input 

to the classifiers. 

In the approach based on class dependent analysis, suitable parametric representa- 

tions for subgroups of classes can be identified. The patterns derived from the speech 

signal can be based on different parametric representations for different subgroups. In 

modular neural networks, a separate network is trained for each subgroup. Therefore 

one can use a parametric representation that is suitable for discrimination among the 

classes in a subgroup. For example, in grouping based on the manner of articulation 



(MOA) of the stop consonants, all the SCV classes in a subgroup have the same 

MOA. Therefore one can use parametric representations that focus on capturing the 

clues for discrimination of the place of articulation and the vowel characteristics in 

deriving the patterns. The results of our studies on classification have shown that the 

performance for aspirated SCVs is poor. It is possible to improve the performance 

by using a suitable parametric representation for them. The class dependent analysis 

based approach provides the scope for continuously evaluating the performance for 

different classes and refining the representations to improve the performance. 

In addition to identifying suitable parametric representations, it is important to 

explore met hods for extracting features that can absorb variations in the representa- 

tions due to the contextual effects and different speakers. Fuzzy logic based methods 

can be explored for deriving features from the parametric representations in such a 

way that it is easier for classifiers to perform discrimination in the feature domain. 

The performance of classifiers for large number of similar classes as in recognition 

of subword units is dependent on their ability to form complex decision surfaces in 

the input feature space. The shapes of the decision surfaces vary for different neural 

network models and architectures. They are also dependent on the methods used for 

training. As it is difficult to visualize the shapes of the decision surfaces in a large 

dimensional feature space, it is important to explore analytical methods that can give 

an insight into the discrimination capability of classifiers. 

Modular network architectures have to be necessarily considered for large number 

of classes. Different grouping criteria lead to different subgroups of classes and hence 

the shape of decision surface for a class varies for each grouping. In this context, the 

interpretation of neural networks trained for subgroups of classes as nonlinear filters 

can be used to analyse the performance for each class. The distribution of the outputs 

of filters for a class can be analysed to identify the classes that are close to it. The 



results of this analysis can be used to continuously refine the models and improve the 

performance for each class. 

In our studies on classification of SCVs, fixed duration patterns derived from 

varying duration segments and utterances have been used for training and testing the 

classifiers. It was assumed that these patterns have all the necessary information for 

classification. The performance is dependent on the robustness of the method used for 

the detection of VOPs in SCV segments and the durations of the portions before and 

after VOP used for deriving the patterns. Loss of crucial discriminatory information 

in the process of deriving the patterns can lead to errors in classification. Therefore 

it is important to explore temporal processing neural network models [40] to handle 

varying duration patterns. Another advantage of using temporal processing models 

is that it is possible to train them with isolated utterance data of subword units and 

use them for classification or spotting of segments of units with different durations in 

continuous speech. 

In conclusion, the following is a list of topics that need further study: 

1. Refinement of the constraint satisfaction model to incorporate all the available 

evidence for solving the recognition problem. 

2. Development of robust spotting techniques to take care of the variability in 

continuous speech. 

3. Organization of modular networks to capture the discriminability among the 

classes. 

4. Representation of the speech information taking into account the deterministic, 

stochastic, fuzzy and temporal nature of the features in the input data. 



Appendix A 

Algorithm for Extraction of Weighted 

Cepstral Coefficients 

In this appendix, we present the algorithm used for extraction of weighted cepstral 

coefficient representation from speech signal. This algorithm is taken from [14](pages 

112-117). 

The digitized speech signal, s(n), is preemphasized by implementing the following 

difference equation: 

Let N be the frame size and M be the separation between adjacent frames specified 

in number of speech signal samples. Then the lth frame of speech is denoted by 

q ( n )  = ;(MI + n), n = O , l ,  ...., N - l , I = 0 , 1 ,  ...., L- 1. ( A 4  

where L is the number of frames in the entire speech signal. Each frame is windowed 

using a Hamming window as given below. 

Each frarrle of windowed signal is autocorrelated as follows: 



where p is the order of the linear prediction analysis. Linear prediction coefficients 

are derived from autowrrelation coefficients using Durbin's method given below. The 

subscript 1 is omitted for convenience. 

The above equations are solved recursively for i = 1,2, ...,p, and the final solution 

gives the linear prediction coefficients, am, as follows: 

The cepstral coefficients, cm, are derived from linear prediction coefficients by recur- 

sion of the following equations: 

(A.  14) 

where u2 is the gain term in linear prediction analysis and Q is the number of cepstral 

coefficients. The cepstral coefficients are weighted using a baiidpass filter in the 

cepstral domain as given below to obtain weighted cepstral coefficients, &. 

Cm = W m G t  ( A .  15) 

where 



Appendix B 

Learning Algorithm for Time Delay 

Neural Network 

The instantaneous sum of squared errors, E, in the standard backpropagation algo- 

rithm for multilayer perceptron is defined as: 

where e k  is the error at the output of the kth neuron in the output layer and M is 

the number of nodes in the output layer. The error e k  is defined as: 

where dk is the desired target value of the kth neuron in the output layer and yk is 

the actual output of the kth neuron. 

For TDNN, the output value yk for the kth output node is defined as the average 

of the outputs of the replicas of the Eth output node and therefore is given as: 

where ykl is the actual output of the lth replica of the kth output node, and N is the 

number of replicas for each output node. The error for all the N replicas of the kth 

node is defined as: 



Therefore, the instantaneous sum of squared errors, E, for TDNN is derived as: 

The correction Awijkr applied to the weight w;jkl of the connection between the j t h  

replica of the ith node in the hidden layer and the lth replica of the kth node in the 

output layer is defined as: 

aE 
Awijk! = -7- 

awi jk l  

where the partial derivative of E with respect to w;jkl is the instant gradient and is 

expressed by the chain rule as follows: 

where vkl is the net internal activity level of the lth replica of the kth node. vklis 

given by 

where L is the number of nodes in the hidden layer, Sl is the set of hidden layer 

columns in the receptive field of the lth replica, and y;j is the output of the j t h  

replica of the i th hidden node. 

The expressions for the partial derivatives in (7) are derived as below: 

dvkl -- - Y i j  
awjjkl 

(B.9) 

(B.lO) 

(B. 11) 

(B.12) 



Here @(x) is the activation function of the neurons and at(2)  is the partial derivative 

of the activation function with its argument x. 

Substituting these expressions in (7) and ( 6 ) ,  the correction in the weight wijkl is 

expressed as: 

The local gradient hkl is defined as 

Then Awijkl can be expressed as 

A similar procedure is used to derive the expression for the correct ion in the weight 

w,i, of the connection between the 9th unit of the pth frame in the input layer and 

the j th replica of ith node in the hidden layer. 

(B. 16) 

where hi, is the local gradient for the j t h replica of the i th hidden node and y, is qth 

input value of the pth frame. 6;j is defined as: 

d E  aekl 
- = C C (B.19) 
a ~ i l  k=1 ,rs, ~ Y U  

where S, is the set of columns in the output layer to which there is a connection for 

the j th  replica of the ath hidden node. From equations ( lo) ,  (1 1) and (B), we get 



1 
= --@'(vk1)wijkl 

N 

Substituting this in (19) and and then using (14), we get 

Substituting this expression in (18), 6ij is derived as 

Finally, the expression for AwPqij is obtained as 



Appendix C 

Training and Recognition Algorithms for 

Discrete Hidden Markov Models 

In this appendix, we present the training and recognition algorithms for discrete 

hidden Markov models used in our studies on classification of SCVs. The algorithms 

are taken from [14] (pages 329-370). 

A Discrete Hidden Markov Model (DHMM) is characterized by the following: 

1 .  N, the number of states in the model. 

2. M, the number of distinct observation symbols per state. In our studies, 

M corresponds to the size of the codebook built from vector quantization of 

weighted cepstral coefficient vectors. The individual symbols are denoted as V 

= {v1,v2, ..., vM} and in our case vi's refer to the codebook indices. 

3. The state-transition probability distribution, A = {aij} where aij is the prob- 

ability of making a transition from state i to state j at time t and is given 

by 

Here qt refers to the state of the model at time t. 

4. The observation symbol probability distribution, B = {bj(k)), in which 

bj(k) = P[ot = vkJqt = j], 1 5 k 5 M, (C.2) 



defines the symbol distribution in state j, j = 1,2, ..., N. Here ot refers the 

symbol output by the model a t  time t. 

5. The initial state distribution, ~r = (n;) in which 

~r; = P[ql = i ] ,  1 5 i s N .  (c.3) 

A DHMM A is completely specified by the model parameters N and M, and the 

probability measures A, B and r .  For classification of SCVs, we have used models 

with 5 states (i.e., N = 5) and a codebook size of 256 (i.e., M = 256). The probabil- 

ity measures are estimated from training data using the Baum-Welch method given 

below. 

C. 1 Training Algorithm for DHMM 

The DHMM model parameters are estimated from the patterns in training data set 

using the algorithm given below. 

C. l . l  The Forward Procedure 

The forward variable at (2) is defined as 

that is, the probability of the partial observation sequence, 01 *... 01, and state i at 

time t, given the model A. The forward variable a t ( i )  is computed inductively, as 

follows: 

1. Initialization 



2. Induction 

Here T refers to the length of the.complete observation sequence 0. In our case 

T corresponds to the number of frames in the speech signal. 

3. Termination 

C.1.2 The Backward Procedure 

The backward variable Pt(i) is defined as 

that is, the probability of the partial observation sequence from t+1 to the end, 

given state i at  time t and the model A. The backward variable Pt(i) is computed 

inductively, as follows: 

1. Initialization 

2. Induction 



C.1.3 P a r a m e t e r  Es t imat ion  

Define &(i, j) as the probability of being in state i at  time t ,  and state j at  time t+l, 

given the model X and the observation sequence 0, and is given as follows: 

From the definitions of the forward and backward variables, the following expres- 

sion is derived for &(a, j) : 

Define rt(i) as the probability of being in state i at time t, given the entire obser- 

vation sequence and the model. Then rt(i) is related to &(i, j) as follows: 

(C. 13) 

If we define the current model for DHMM by X = (A, B, K), then the reestimated 

model X = (A, B, jf) is computed using the following formulae: 

(C. 14) 

(C.15) 

Based on the above procedure, X is iteratively used in place of X and the reestima- 

tion is calculated repeatedly until the probability of 0 being observed from the model 

reaches a limiting point. The final result of the reestimation procedure a maximum 

likelihood estimate of the DHMM for the observation sequence 0. 



The above reestimation procedure is extended for training a DHMM with multiple 

observation sequences, i.e., multiple number of patterns, as follows: 

Let us denote the set of I( observation sequences as 

(k) (k) where O(*) = (ol , o2 , ..., OK)) is the kth observation sequence and Tk is the length 

of the kth observation sequence. The modified reestimation formulae are as follows: 

The above reestimation procedure is used for training a DHMM model for each 

of the SCV classes using patterns in the training data set. 

C. 2 Recognit ion Algorithm for DHMM 

To use the DHMM specified by X for recognition of the observation sequence 0 of a 

pattern, the probability P[OIX] is computed using the forward procedure. Given an 

SCV pattern, these probabilities are computed for the models of all the classes and 

the class with the highest probability is assigned to the given pattern. 
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