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ABSTRACT 

The studies presented in this thesis represent an attempt to 

process the Fourier transform (FT) phase of signals for feature 

extraction. Although the FT magnitude and phase spectra are 

independent functions of frequency features of a signal, most 

techniques for feature extraction from a signal are bked upon 

manipulating the the FT magnitude only. 

The phase spectrum of the signal corresponds to time delay 

corresponding to each of the sinusoidal components of the signal. In 

the context of additive noise, the time delay may not be 

significantly corrupted and the phase spectrum might be considered to 

be a more reliable source for estimating the features in a noisy 

signal. Although the importance of phase in signals is realised by 

researchers, very few attempts have been made to process the FT phase 

of signals for the extraction of features. Features of a signal, for 

example, resonance information, is completely masked by the 

inevitable wrapping of the phase spectrum. 

An alternative to processing the phase spectrum is processing 

the group delay function. The group delay function is the negative 

derivative of the (unwrapped) FT phase spectrum. The group delay 

function can be computed directly from the time domain signal.The 

group delay function possesses additive and high resolution 

properties, in that it shows a squared magnitude behaviour in the 

vicinity of a resonance. But the group delay function in general is 

not well behaved for all classes of signals. Zeros in the 

z-transform of a signal that are close to the unit circle cause large 

amplitude spikes to appear in the group delay function. The polarity 

of a spike depends on the location of the zero with respect to the 

unit circle. These large amplitude spikes mask the information about 



resonances. 

The research effort in this thesis focusses on the development 

of algorithms for manipulating the group delay function to suppress 

the information corresponding to the zeros of th signal that are 

close to unit circle in the z-domain and emphasise the features of 

of a signal. To demonstrate the usefulness of the algorithms 

developed, these algorithms are used to estimate (a) formant and 

pitch data from speech signals and ( b )  estimate spectra of 

auto-regressive processes and sinusoids in noise. 

The research effort in this thesis shows that the phase spectrum 

(or rather the group delay function) of a signal can be usefully 

processed to reliably extract features of a signal. 
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CHAPTER 1 

OVERVI EW OF THE THESI S 

1.1 Introduction 

This thesis represents an attempt to extract features of a 

signal by processing the Fourier transform (FT) phase spectrum of a 

signal rather than the conventional FT magnitude spec,trum of a 

signa1.A~ a result, algorithms based on manipulating the FT phase are 

developed and applied in speech analysis and spectrum estimation. 

The Fourier representation of a signal is complete only when 

both the spectral magnitude and phase are specified. However, under 

certain conditions, the signal can be completely specified by the FT 

magnitude (to within a time shift) or by the FT phase (to within a 

scale factor). Information, such as resonance characteristics of a 

sign1 is present both in the FT magnitude and FT phase. But most 

techniques for estimating the parameters of a signal, especially, 

parameters of the source and system in a source-system model for 

signal production are based upon processing the FT magnitude spectrum 

only. 

The phase spectrum of the signal corresponds to time delay 

corresponding to each of the sinusoidal components of the signal. In 

the context of additive noise, the time delay may not be 

significantly corrupted and the phase spectrum might be considered to 

be a more reliable source for estimating the features in a noisy 

signal. In multidimensional signal processing it has been shown that 

features about the signal like edges are preserved better in the 

phase spectrum than that of the magnitude spectrum. 

Although the importance of phase in signals is realised by 

researchers, very few attempts have been made to process the FT phase 

of signals for the extraction of features. The reason for analysis 



techniques being based on processing FT magnitude rather than FT 

phase i s  that it is possible to visually perceive the features Ln a 

signal in the magnitude spectrum. For example, the resonances in a 

signal manifest as peaks of envelope of the magnitude 

spectrum, while they manifest as transitions of phase in the phase 

spectrum. The peaks in the envelope of the magnitude spectrum are 

visible while the phase transitions are completely masked by the 

inevitable wrapping of the phase spectrum. 

Therefore, an alternative to processing the phase spectrum is 

processing the group delay function. The group delay function is the 

negative derivative of the (unwrapped) FT phase spectrum. The group 

delay function can be computed directly from the time domain signal. 

For a minimum phase signal the group delay function shows a squared 

magnitude behaviour around a resonance/antiresonance frequency. In 

addition, the information about a resonance/antiresonance is 

concentrated around the resonant/antiresonant frequency. These 

properties of the group delay function are referred to as the 

additive and high resolution properties. But the group delay 

function in general is not well behaved for many signals. Zeros in 

the z-transform of a signal that are close to the unit circle cause 

large amplitude spikes to appear in the group delay function. The 

polarity of a spike depends on the location of the zero with respect 

to the unit circle. These large amplitude spikes mask the 

information about resonances. 

Speech signal can be modelled as the response of a time varying 

minimum phase digital filter (generally all-pole) to an impulse or 

random noise excitation. The gmup delay function of a segment of 

speech h&s very large amplitude spikes that are caused by the zeros 

due to the excitation and the finite duration of the segment (data 



window). In the context of spectrum estimation, the group delay 

function of an Auto-regressive (AR) process in noise also has very 

large amplitude spikes that are due to the data window and random 

noise excitation. Therefore, if the resonance behaviour of a signal 

is to be studied through group delay functions, the spikes caused by 

the zeros must be eliminated. This suggests that the focus of 

algorithms for processing group delay functions of sienals should be 

(a) the removal of the effects of zeros due to excitation and (or) 

data window and (b) separation of system and source components in the 

group delay domain. 

1.2 Scope of the thesis 

The research effort in this thesis focusses on the development 

of algorithms for processing the processing the FT phase through 

group delay function, in a systematic manner. Because of the manner 

in which the different components of a signal combine in the FT 

phase, the results obtained are not necessarily identical to those 

obtained by processing the FT magnitude spectrum. In some cases, the 

information obtained may reinforce the information obtained from the 

magnitude spectrum. To demonstrate the usefulness of the algorithms 

developed, examples are chosen from (a) analysis of speech (synthetic 

and natural) signals and (b) spectrum estimation. 

If it can be assumed that the system in a source-system model of 

signal production is minimum phase, it should be possible to obtain 

an estimate of the system characteristics by estimating the minimum 

phase component of the signal. Linear prediction (LP) analysis is an 

approach for processing signals, where an attempt is made to estimate 

the parameters of a the model of the minimum phase system from the 

signal. In LP analysis the system is asssumed to be an all-pole 

system while the source may be a train of impulses or random noise. 



The resonance information is then obtained from the estimated 

parameters of the system. Adopting a similar strategy, a signal with 

minimum phase characteristics is derived from the short-time Fourier 

transform (STFT) magnitude spectrum of the signal. The group delay 

function of this signal is then computed in which the information 

about the resonances of the system is preserved. This group delay 

function is henceforth referred to as the minimum-ph-e group delay 

function. This algorithm is then used to extract formants from 

speech. To demonstrate the effectiveness of this technique for 

formant extraction from speech signal the following studies are made: 

(a) Performance of the formant extraction based on the minimum phase 

group delay function is evaluated for a synthetic signal. The 

synthetic signal is obtained using a formant vocoder in which the 

formants are continuously changed to reflect the formant transitions 

that occur in natural speech. 

(b) Comparison of the minimum phase-based group delay method with 

standard linear prediction ( L P )  analysis and cepstrum analysis. 

It was observed that the formant extraction based on the minimum 

phase group delay : 

(i) tracks formant changes well. 

(ii) gives more consistent estimates of formants when compared with 

that of LP analysis and cepstrum Analysis for various choices of 

analysis parameters. 

The technique just described still uses the group delay function 

of a minimum phase signal which is in turn derived from the magnitude 

spectrum. This is because the group delay function suffers from poor 

sampling when the zeros of the signal z-tranform have zeros that are 

close to the unit circle (both inside and outside the unit circle) in 

the z-domain. Ideally it would be desirable to separate the minimum 



and nonmimum phase components of a signal in some domain inorder to 

estimate parameters corresponding to that of the minimum and 

nonminimum phase components of a signal. 

Cepstrum analysis is a method in which it is possible to 

approximately separate the system and source components of a mixed 

phase signal. In this method the system and source components that 

are multiplicative in the FT magnitude spectrum become.additive in 

the cepstral domain. In addition, the source and system components 

are well separated in.cepstrum. This enables the use of a gating 

function in the cepstral domain to separate the system and source 

informat ion. 

Because of the nature of the FT phase spectrum, the system and 

source components are additive in the group delay function. But the 

system and source information is spread over the entire function. 

Therefore it may not be possible to separate them at all in the 

group delay domain. 

Although it may not be possible to completely separate the two 

components of a signal, it may be possible to suppress one while 

favouring the other. This is exactly what is done in the modified 

group delay (MGD) function that is derived from the group 

delay function of the signal. To estimate the components 

corresponding to that of the system, a modified group delay function 

is obtained in which the group delay information corresponding to the 

source is suppressed. To estimate the components corresponding to 

that of the source, another group delay function is derived in which, 

the information corresponding to that of the system is suppressed. 

Properties of the MCD are studied for synthetic and natural 

speech signals. Both MGDs are then used to estimate formants and 

pitch from speech. 



From another viewpoint the MGD may be thought of as an function 

in which the zeros of a signal are suppressed. Additive Gaussian 

noise either introduces new zeros or redistributes existing zeros of 

the signal. If the noise level is not too high, it should be 

possible to estimate the system and source parameters using the MGD. 

Formant and pitch data are estimated using the MGD from noisy speech. 

The formant and pitch data can then be used to synthes,ise speech. 

Application of the MGD for problems in spectrum estimation is 

studied. In particular, in spectrum estimation, two different 

examples are considered, namely. (a) sinusoids in noise and (b) 

autoregressive process in noise. Using the relationship between the 

cepstrum and the group delay function, the power spectrum 

corresponding to the system is derived. It is observed. in the power 

spectra derived for sinusoids both bias and variance are 

significantly reduced in the estimated power spectrum throught group 

delay function compared to that of the periodogram estimates of the 

power spectrum. For the AR process, bias and sidelobe leakage are 

reduced. But the variance around the resonances is higher than that 

of the periodogram approach. 

The research effort in this thesis shows that the phase spectrum 

of a signal can be usefully processed to realiably extract features 

of a signal. 

1.3 Organisation of the thesis 

The thesis is organised as follows. In Chapter 2 we briefly 

discuss the time and frequency domain representations of signals 

giving special emphasis to the FT. We bring out the relationship 

between FT magnitude spectrum and FT phase spectrum of a signal 

through group delay functions. We discuss the properties of the 

group delay function and the problems of processing signals like 



speech using group delay functions. Digital representation of speech 

signals is discussed. Issues in speech analysis and spectrum 

estimation for feature extraction are also discussed. 

We develop a new algorithm for formant extraction from speech 

using a minimum phase-based group delay function derived from the 

STFTmagnitude spectrum in Chapter 3. 

In Chapter 4 we derive a modified group delay function directly 

from the signal. Properties of this modified group delay are studied 

in detail. Algorithms (based on the modified group delay function) 

are developed for formant and pitch extraction from speech. Formant 

and pitch data are also extracted from noisy speech. Application of 

the MGD in spectrum estimation is studied in Chapter 5. 

Finally in Chapter 6 we summarise the results of t.he 

investigations done in this thesis. A brief discussion of the major 

contributions and drawbacks of this thesis are also given in this 

Chapter. 

Some of the relevant derivations used in this thesis are derived 

in the Appendices. 

1.4 Major Contributions of the thesis 

The following are the major contributions of the thesis: 

(a) A new algorithm for formant extraction from speech using a group 

delay function derived from the FT magnitude spectrum. 

(b) A new algorithm for formant extraction from speech using a 

modified group delay function derived from FT phase. 

(c) A new algorithm for pitch extraction from speech using the 

modified group delay function. 

(dl A nes algorithm for spectrum estimation using modified group 

delay function. 



CHAPTER 2 

REPRESENTATIONS OF SIGNALS 

2.1 Introduction 

Signals are basically quantities that fluctuate with time. It 

is natural and convenient for us to think of signals as functions of 

time. An optical image on the other hand may be described by a 

function of spatial coordinates. A familiar representation, in fact 

one that is deeply ingrained by usage, is the graph of a function. 

The graph is a collection of ordered pairs of numbers {t.x(t)). From 

the standpoint of system design, the graphical representation is 

unmanageable simply because it consists of too many individual 

points. 

In contrast to a graphical representation, where signals are 

represented by a collection of points in a simple setting a 

two-dimensional space, a more highly structured setting is the signal 

space, whereby a signal can be considered as a single entity or a 

point in a space. For example, consider, the representation of a 

sinusoid in terms of its frequency components. Representation of a 

sinusoid in the time domain requires an infinite number of points. 

In the frequency domain it can be represented by a single point. 

The primary objective of this Chapter is to examine some of the 

issues involved in digital processing of signals using group delay 

functions. To achieve this in Section 2.2 an introduction tm the 

analysis of signals in terms of the continuous Fourier transform is 

discussec5. Although the continuous Fourier transform is useful in 

giving an interpretation to a signal it is not suitable for practical' 

applications. 

To enable the analysis of signals by computer, the signals are 

sampled and quantised. The signals are represented by a sequence of 



numbers which are obtained by sampling the analog signal at discrete 

time intervals. This has led to a new field of study "Digital Signal 

Processing". Digital signals are analysed by the computer using a 

discrete Fourier transform (or DFT) and inverse DFT. The conditions 

under which the discrete time signal and the DFT are exact 

representations of the continuous time signal and continuous FT are 

also discussed in Section 2.2. 

The Fourier transform is extensively used in signal analysis as 

a tool to resolve a given signal into its sinusoidal/complex 

exponential components. Fourier transform of a signal is in general 

complex. In polar form it consists of two parts, a magnitude part 

and a phase part which are called Fourier transform magnitude 

spectrum and Fourier transform phase spectrum respectively. The FT 

magnitude and phase spectrum are in general distinct functions of 

frequency. Properties of the FT phase and magnitude spectrum that 

are relevant in this study are listed in Section 2.3. 

Relationship between the FT magnitude and FT phase is brought 

out in Section 2.4 through group delay functions. The group delay 

functions have some useful properties, that can be exploited in 

signal analysis. These properties are studied in Section 2.4. 

Although che usefulness of the group delay representation of signals 

has been established in the literature, the standard group delay 

function is not suitable for the representation of natural signals 

like speech. The background for speech processing is given in 

Sections 2.5 and 2.6. The problem of spectrum estimation when no 

apriori information is available about the signal is addressed in 

Section 2.7. The motivation for the work done in this thesis is 

presented in Section 2.8. Issues involved in the application of 

group delay functions to speech processing and spectrum estimation 



are addressed in Section 2.9. 

2.2 Fourier representation of Signals 

2.2.1 Y i A p q m m e  a# U L e s m -  

Fourier transforms play an important part in the theory of many 

branches of science. Mathematically the Fourier transform is a 

functional, i.e. it is a mapping from an arbitrary set of functions 

into another set of functions. The physical meaning of the Fourier 

transform is that it enables analysis of time functions in terms 

of their spectra or frequency content. It basically enables (a) the 

analysis of a signal in terms of its various frequency components and 

(b) the synthesis of a signals from its sinusoidal components. A 

waveform optical, electrical, or acoustical and its spectrum are 

appreciated equally as physically picturable and measurable entities. 

For example, in the theory of speech production, the vocal tract is 

characterised by a cascade of resonators. The frequencies and 

bandwidths of these resonators change continuously with time. This 

leads to the articulation of different sounds. 

Estimation of the power spectral density or simply the spectrum 

of discretely sampled deterministic and stochastic processes is 

usually based on procedures employing the Fourier transform. The 

objective of spectrum estimation is to answer specific questions 

about the data. It is found [S.M.Kay, 1988, S. L.Marple; 19871 that in 

most applications, the frequency distribution of the signal is of 

interest. For example, the presence or absence of a sinusoid in a 

signal can be determined by looking at the frequency distribution of 

the signal. If the spectrum peaks at a particular frequency, it can 

be concluded that this sinusoidal component is present in the signal. 

2.2.2. Eantinuaua 9alniB-t i!mmqAm 

The Fourier transform is a general form of a relation between 



the elements of two different sets in that it is a mapping of 

elements from one set into elements of another set. A mapping is 

simply the rule by which elements of one set say S are assigned to 
1 

elements of the other set say S Symbolically this may be denoted 
2' 

by 

f :  S 1 + S  
2 

which is a compact notation for 

y =  f(x), x E S1 and Y E  S2 

The element y is called the image of x under the mapping f. Th? set 

S is the domain of the mapping and the set of all images of the 
1 

elements of S1 (contained in S is the range of mapping. 2 

If S is the set of bounded energy signals 
1 

S, = { x : x2(t)dt < m 1 I" -a, 
then the Fourier transform 9 : S + S is a mapping into another set 

1 2 

of square integrable functions 

This mapping is described by 

Strictly speaking this is not a one-to-one mapping but a many-to-one 

mapping . 

Similarly, the Inverse Fourier Transform (IFT) is defined by the 

following mapping : 

Waveforms and spectra are transforms of each other. The Fourier 

transform resolves a signal into its complex exponential components. 

The inverse Fourier transform synthesises the signal from its 



exponential components. 

The Fourier transform is a complex function and may be expressed 

as 

X(w) = IX(o) (e 
je(o) 

where Ix(~) 1 is the amplitude or magnitude spectrum and ~ ( w )  is the 

phase spectrum. The FT X(o) of x(t) represents the relative 

amplitudes of various frequency components of x(t) at ,different 

frequencies w. 

2.2.3 I)idcrLete S W  thana&a/un 

The Fourier transform defined in the previous section is of 

great theoretical importance. It is not directly suitable for 

practical applications, however. Continuous time and frequency 

variables are not compatible with the discrete nature of digital 

processing. 

Given the importance of the Fourier transform in signal 

processing, a more practical way to express it is the discrete 

Fourier transform (DFT). We first define the z-transform of a 

discrete time signal which is later used to define the DFT of a 

signal. 

The z-transform representation of a sampled signal x(n) 

(discrete i.n time) is defined by the pair of equations 

where X(z) is in general an infinite power series in the variable 

- 1 
z . The values x(n) play the role of coefficients in the power 

series. 

When the z-transform is represented as a ratio of two 



polynomials N(z) and D(z) (Eq.(2.la)), the roots of N(z) are said to 

correspond to the zeros of the signal while the roots of D(z) are 

said to correspond to the poles of the signal x(n). 

The Fourier transform of a discrete-time signal (sampled signal) 

is given by the equations 

w 
j w - jwn X(e = C x(n)e 

n = - W  

jw jwn X(e )e do x(n) = - 

These equations are a special case of Eqs. (2.1). These equations 

are obtained by restricting the z-transform to the unit circle of the 

Jo z-plane, i. e., by setting z=e . As indicated in Fig. 2.1 the 

frequency variable, w: also has the interpretation as angle in the 

Fig.2.1 Unit circle in the z-plane 

If a sequence is periodic with period N; i.e., 

then G(n) can be represented by a discrete sum of complex sinusoids 

rather than an integral equation as in Eq (2.2b). The Fourier series 

representation for a periodic sequence is [M.Kunt, Ch.3, 19871 

This is an exact representation of a periodic sequence. However, the 



. 
utility of this representation lies in imposing a different 

interpretation upon the above equations. Let us consider a finite 

length sequence x(n1, that is zero outside the interval 0 5 n 5 N-1. 

Then the z-transform is 

If we evaluate the X(z) at N equally spaced points on'the unit 

j 2 R k  
circle, i.e., z = e - , k = 0,1,. . . ,N-1, then we obtain 

k  N 

If we construct a periodic sequence as an infinite sequence of 

replicas of x(n), 

j 2 R k  then, the samples g(e - are easily seen to be the Fourier 
N 

coefficients of the periodic sequence ;(n) in Eq. (2.3). Thus a 

sequence of length of N can be exactly represented by a discrete 

Fourier transform (DFT) representation of the form 

The only difference between Eqs.(2.3) and (2.7) is a slight 

modification to the notation (removing the - symbols which indicates 
periodicity) and the explicit restriction to the finite intervals 0 5 

k s N - l a n d O s n 5  N-1. It is important to bear in mind when using 

the DFT representation that all sequences behave as if they were 

periodic. 

To use digital processing methods on analog signals such as 

speech. it is necessary to represent the signal as a sequence of 



numbers. This is commonly done by sampling the analog signal denoted 

by x (t), periodically to produce the sequence 
a 

x(n) = x (nT) - m < n < m  
a 

(2.8) 

where n takes on only integer values and T is the sampling period in 

seconds. 

The conditions under which the sequence of samples of Eq.(2.8) 

is a unique representation of the original analog signal are well 

known and are often summarised as follows : 

The Y c m p l i q  Theahem : If a signal x (t has a bandlimited Fourier 
a 

transform X (eJo) = 0 for o a 2nFN, then x (t) can be uniquely 
a a 

reconstructed from equally spaced samples xa(nT), -m < n < m, if T Y 

1/2FN. FN is called the Nyquist Frequency. 

Similarly, if X (eJo) is to be obtained from the samples of its 
a 

Fourier transform (obtained by sampling the continuous Fourier 

transform at equally spaced intervals in the z-plane), the signal 

should be time limited. The DFT obtained in the Eq.(2.7a) is 

periodic with a period of 2n. As mentioned earlier, the definition 

of the DFT requires that the time domain signal be of finite length. 

In many filtering and spectral analysis applications, the signals 

do not inherently have finite length. This inconsistency between the 

finite length requirement of the DFT and the reality of indefinitely 

long signals can be accomodated exactly or approximately through the 

concepts of windowing, block processing and the com~utation of the 

time dependent Fourier transform [A.V.Oppenheim and R.W.Schafer, 

Ch. 11. 19891. 

The basic steps in applying the DFT to continuous time signals 

are indicated in Fig.2.2. The anti-aliasing filter is incorporated 

to minimize the effect of aliasing when the continuous time signal is 

converteu to a sequence. The need for the window w(n) in Fig.2.2 is 



CONTINUOUS-TO 
DISCRETE-TIME 

X (t) CONVERS ION 

Fig.2.2(a) Processing steps in the discrete-time Fourier 
analysis of a continuous signal. 

Wit'") 
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Fig.2.2(b) Illustration of the Fourier transforms in the 
system of Fig. 2.2(a). (reproduced from [ A .  V. Oppenheim and 
R.W.Schafer; 19891) (a) Fourier transform of continuous-time 
input signal. (b) Frequency response of anti-aliasing 
filter. (c) Fourier transform of output of anti-aliasing 
filter. (dl Fourier transform of sampled signal. (el Fourier 
transform of window sequence. (f) Fourier transform of 
windowed segment and frequency samples obtained using DFT 
samples. 



a consequence of the finite length requirement of the DFT. 

In the discussion that follows in the rest of this Chapter we 

assume that (a) sampling in the time and frequency domains is done at 

sufficiently close intervals to avoid aliasing and (b) the DFT and 

IDFT are close approximations to the continuous FT and IFT. 

Henceforth we use X(w) and x(eJW) interchangeably to represent the 

discrete time Fourier transform of the discrete time signal (sampled) 

x(n)), and X ( k )  to represent the Discrete Fourier transform of x(n). 

In the rest of this chapter we restrict our discussion to the 

discrete time Fourier transform magnitude and phase spectra of 

signals. 

2.3 Properties of The Fourier transform Magnitude and Phase Spectra 

The Fourier transform Magnitude and Phase spectra ..are 

independent functions of frequency and have some distinct properties. 

The properties of the magnitude and the phase spectrum that are 

relevant in this study are listed below : 

2.3.1 9'r~~~~?/Ltieb.  c# the !YaulLie/L t5uuv@m MagnLtude Ypectruun (FTMS) 

1. For any real x(n) FTMS is an even function of w .  

2. For any x(n) the FTMS is a positive function of w. 

3. The Inverse Fourier Transform (IFTI of the FTMS is a noncausal 

even function of time. This function can be expressed as the 

autocorrelation function of some sequence y(n) 

[ A .  Papoulis; l977,Ch. 71. This signal is also called a zero phase 

signal. 

4. If a signal x(n) is the impulse response of a cascade of 

resonators and antiresonators, the overall FTMS of x(n) is the 

multiplication of the magnitude spectra of the individual resonators 

and antiresonators. The resonances are characterised by peaks in the 

magnitude spectrum while the antiresonances are characterised by 



valleys in the magnitude spectrum. 

2.3.2 PlLaperctLeb C# the 9- han&@m F'ha6e Y'pecOuun (FTPS) : 

1. For any real x(n) the FTPS is an odd function of w. 

2. For any x(n) the phase spectrum is the wrapped phase function, 

i.e. values of the phase function are restricted to +n. 

3. If the signal x(n) is shifted by no in the time domain, a linear 

phase component e-JWno is added to the FTPS for all o: 

4. The IFT of e j8(*) gives an all-pass signal. 

5. If a signal x(n) is the impulse response of a cascade of 

resonators and antiresonators, the overall FTPS of x(n) is obtained 

as : the wrapped phase spectrum of (the sum of the unwrapped phase 

spectra of individual antiresonators - the sum of the unwrapped phase 

spectra of resonators). Owing to the additive property, the 

resolution available in the phase spectrum is generally higher than 

the resolution available in the magnitude spectrum. 

2.4 Relationship between the Spectral Magnitude and Phase of a Signal 

through Group Delay functions: 

Although the FT magnitude and phase spectra are independent 

functions of frequency, there are certain conditions under which the 

two are related. In some situations in communication engineering (as 

in sensor array imaging for example) it is possible that (a) either 

the magniLude or phase spectrum is available, (b) one of the spectra 

is corrupted by noise and is hence unreliable or (c) a few of the 

samples are missing due to some faults in the,receiving elements 

[ B. Yegnanarayana, C. P. Mariadassou and Pramod Sai ni ; 1990, 

B. Yegnanaryana. S. T. Fathima and Hema A. Murthy, 19871. 

In such situations it may be useful to know the relationship 

between the FT magnitude and phase spectra, inorder that one of the 

spectra can be obtained from the other. Once both the spectra are 



available, the time domain signal can be estimated. 

Before we derive the relationship between the FT magnitude and 

the FT phase spectrum we define a classification of signals based on 

the roots of the z-transform of the signal. These definition are 

required to bring out the relationship between the Magnitude and 

Phase spectra. 

The z-transform of a finite length signal x(n) can be 

represented by the mapping (Eqs (2.1) : 

where 

N(z) = (z - z )(z - z 1 . . .  (Z - z 1, r is the 
mo ml mr 

degree of the polynomial N(z) 

and 

D(z) = (Z - z )(z - zdl) . (Z - z 1, p is the 
do dP 

degree of the polynomial D(z) 

then Smin the set of all minimum phase signals is defined by 

smin= {x : x(n) = z-'(x(~)) : v i lz 1 < I .  lzdl / < 1) 
ml 

and Smax the set of all maximum phase signals is defined by 

'max 
= {x : x(n) = z-'(x(~)) : Y i lz 1 > I, Izdl 1 > 1) 

ml 

and Smixthe set of all mixed phase signals is defined by 

'mix = {X : x(n) E S - (Smin u Smax)} 

where S is the set of all signals. 

For a discrete time signal {s(n)) the DTFT is defined as 

m 

S(w) = 1 s(n)e - jwn 
n=O 

= Js(~) le je(w1 

where 8(0) is the unwrapped phase function and IS(w)( is the 

magnitude function. If the z-transform S(z) of s(n) does not have 



any zeros on the unit circle, the continuity of (s(u)~ is guaranteed 

on the unit circle and we can define the complex cepstrum 

[A. V. Oppenheim and R. W. Schafer, Ch. 10. 1975 1 
A 5 , -  
s(n) S(w) = ln(S(w) 1 + je(w). 

A A 

If s(n) is causal then the real and imaginary parts of S(o) 

corresponding,lnl~(w)I and 8(w) are related through the Hilbert 

transform [A. V. Oppenheim and R. W. Schafer, Ch. 7. 19751 

and 

This is nothing but the minimum phase condition [A.V.Oppenheim and 

R.W.Schafer, Ch.7, 19751 i.e. the zeros and poles of the z-transform 

, S(z) lie within the unit circle. Alternative to Eqs(2.11) which 

relate the magnitude and the phase spectra of the Fourier transform, 

group delay functions can be used to relate the magnitude and phase 

spectra. This is the topic of the next Section in this Chapter. 

Definition : If the phase spectrum (€I(@)) of a signal is defined'as a 

continuous function of o, the group delay function is defined as 

The deviation of the group delay function away from a constant 

indicates the degree of nonlinearity of the phase. The group delay 

function is expressed in seconds. 

Let the Fourier transform V(o) of a minimum phase signal {v(n)) 



be represented by 

je (w) V(w) = (V(w) (e v 

Then it can be shown that [A. V. Oppenheim and R. W. Schafer, Ch. 10, 

and the unwrapped phase function 

where c(n) are the cepstral coefficients. A detailed description of 

the cepstrum and its properties can be found in [D.G.Childers, 

D. P. Skinner and R. C. Kemeriat; 1977 1. 

Taking the derivative of Eq(2.14b) with respect to w, we get 

From the above equations (2.14) we note that for a minimum phase 

signal, the spectral magnitude and phase are related through the 

cepstral coefficients. Further the group delay function ~ ( w )  can be 

obtained as the FT of the weighted cepstrum. 

The group delay function can also be obtained directly from the 

discrete time signal as [A. V. Oppenheim and R. W. Schafer; 1975, Ch.71 

where Re stands for the real part. Therefore for minimum phase 

signals using the relations (2.14) and Eq. (2.161, the minimum phase 

signal can be obtained from its group delay function. 

For mixed phase signals we require two sets of cepstral 

coefficients {cl(n)) and {c2(n)) for magnitude and phase functions 

separately as follows : 



and 

where {c (n)) and {c (n)) are the cepstral coefficients of the unique 
1 2 

minimum phase signals derived from the spectral magnitude and phase 

respectively [B.  Yegnanarayana, D. K Saikia and T. R. Krishnan, 19841. 

Using Eqs.(2.17) two different group delay functions are defined 

and 

as the group delay function derived from the magnitude and phase 

respectively. 

2.4.2 F ~ a & ~ ~ ~ ~  

(1) Poles (Zeros) of the transfer function show up as peaks (valleys) 

in the group delay domain (Appendix A). 

(2) Additive property : Convolution of signals in the time domain is 

reflected as a summation in the group delay domain (Fig.2.3 and 

Appendix A). 

(3) High resolution property : The resonance peaks (due to complex 

conjugate pairs of poles or zeros) of a signal are better resolved in 

the group delay domain than in the spectral magnitude (Fig.2.3). 

Furthermore the resonance information is confined to the narrow 

region around the pole or zero location as shown in Fig.2.3. 

(4) For minimum phase signals 

( 5 )  For maximum phase signals 



( 6 )  For mixed phase signals 

t (0) f t (0) 
P m 

( 7 )  If a root is on the unit circle in the z-domain (say o ) 
0 

(8) The group delay function does not suffer from the wrapping 

problen as it can be computed directly from the time. domain signal 

using Eq(2.16). 

2.5 Digital Representation of Speech Signals 

The not ion of a representation of a speech signal is central to 

almost every area of speech communication. In this Section we 

briefly review the speech production process. We also discuss a 

model for speech production which is assumed in most speech 

-20.0 - I  
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Fig.2.3 Illustration of the additive and high resolution . 
property of group delay functions. . 
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processing techniques. In some methods of speech processing this 

model is explicitly used to develop the methods of processing. In 

others although this model is not fundamental to the processing 

methodology developed yet this model is implicit in the methods 

developed for processing speech-like signals. 

2.5.1 1 dL@z-! Ma& &a/r YpeechTrLaductian 

A schematic diagram of the human vocal apparatuspis shown in 

Fig. 2.4 [reproduced from W. A. Ainsworth; Ch. 2, 19881. The vocal tract 

is an acoustic tube that is terminated at one end by the vocal cords 

and at the other end by the lips. An ancilliary tube, the nasal 

tract, can be connected or disconnected by the movement of the velum. 

The shape of the vocal tract is determined by the position of the 

lips, jaw, tongue and velum. 

Sound is generated in this system in three ways. Voiced sounds 

are produced by exciting the vocal tract with quasiperiodic pulses of 

air pressure caused by vibration of the vocal cords. Fricative 

sounds are produced by forming a constriction somewhere in the vocal 

tract, and forcing air through the constriction, thereby creating a 

turbulence which produces a source of noise to excite the vocal 

tract. Plosive sounds are created by completely closing off the 

vocal tract, building up pressure and then quickly releasing it. All 

these sources create a wide band excitation of the vocal tract which 

in turn acts as a linear time varying filter which imposes its 

transmission properties on the frequency spectrum of the sources. 

The vocal tract can be characterised by its natural frequencies (or 

formants) which correspond to resonances in the sound transmission 

characteristics of the vocal tract. 

A typical speech waveform is shown in Fig.2.5 which illustrates 

some of the basic properties of the speech signal. We see for 



Fig.2.4 Articulators used in the production of speech 
sounds. 



Fig.2.5 An illustration of a speech waveform corresponding to the 
utterance "ca: hta: hu:n". 



example, that although the properties of the waveform change with 

time, it is reasonable to view the speech waveform as being composed 

of segments during which the signal properties remain rather 

constant. Such segments are demarked in Fig.2.5 below the waveform. 

These sample segments have the appearance of a low level random 

(unvoiced) signal (as in c or t in Fig.2.5) or a high level quasi 
1. 

periodic (voiced signal) (as in a: or u:) with each period displaying 

the exponential decaying response properties of an acoustic 

transmission system. We note that the dynamic range of the waveform 

is large, i.e., the peak amplitude of a voiced segment is much larger 

than the l~cttk amplitude of an unvoiced segment. 

Because the sound source and vocal tract shape are relatively 

independent, a reasonable approximation is to model them separately 

as shown in Fig.2.6 [ R .  W. Schafer and L. R. Rabiner; 19781. In this 

digital model, samples of the speech waveform are assumed to be the 

output of a time-varying digital filter that approximates the 

transmission properties of the vocal tract and the spectral 

properties of the glottal pulse shape. Since, as is clear in Fig.2.5 

the vocal tract shape changes rather slowly in continuous speech 

(likewise its sound transmission properties) it is reasonable to 

assume that the digital filter in Fig.2.6 has fixed characteristics 

Fig.2.6 A digital model for speech production. 

D I G I T A L  F I L T E R  COEFFICIENTS 
'TRA I  N (VOCAL TRACT PARAMETERS ) 

.I) 
T I M E  VARYING 

D I G I T A L  F I L T E R  SPEECH 
SAMPLES 



over a time interval of the order of 10ms. Thus the digital filter 

may be characterised in each interval by an impulse response or a set 

of coefficients for a digital filter. For voiced speech the digital 

filter is excited by an impulse train generator that creates a 

quasiperiodic impulse train in which the spacing between impulses 

corresponds to the fundamental period of the glottal excitation. For 

unvoiced speech the filter is excited by a random number generator 

that produces a flat spectrum of noise. In both cases an amplitude 

control regulates the intensity of the input to the digital filter. 

This model is the basis for a wide variety of representations of 

speech signals. These are conveniently characterised as waveform 

representations or parametric representations depending upon whether 

the speech waveform is represented directly or whether the 

representation is in terms of time-varying parameters of the basic 

speech model. In the forthcoming discussion on speech processing we 

assume this simplified model for speech production. 

2.6 Speech processing 

In the model for speech production discussed in the previous 

Section it is clear that parameters that are required to be extracted 

from the speech signal are the system and source parameters for 

applications in (a) synthesis of speech and (b) recognit ion of 

speech. The vocal tract changes shape for the articulation of new 

sounds. These changes in shape are characterised by the change in 

the parameters of the digital filter in Fig. 2.6. The closing and 

opening of the glottis and the vibration of the vocal cords are 

described by parameters that characterise the source. The vocal 

tract is also described in terms of its resonances (or formants) 

which may be derived either from the model parameters or from the 



speech signal spectrum. The source information may be derived by 

passing the speech signal through the inverse of the model system. 

In general, the model system is derived so as to represent the 

smoothed short-time spectrum of speech. The fine structure of the 

spectrum is used to derive the excitation information. All-pole or 

pole-zero models are usually assumed for the vocal tract system. 

Linear prediction analysis is an effective method for,determining the 

parameters of an all pole model for the speech signal [J.Makhoul, 

19751-8 Cepstrum analysis [A. V. Oppenheim and R. W. Schafer; 19631 is 

another effective method for determing the formant and pitch 

information from the speech signal. In this section we briefly 

discuss some of the existing methods for the analysis of speech 

signals to obtain parameters of the model that characterise the 

system and source information. 

2.6.1 Eat imcLt ian Q# Y p k m  Pahametena @an Ypeech : 

Experiments in the analysis and perception of speech 

[ J. L. Flanagan; 1956. J. L. Flanagan and L. Cherry; 19691 have shown that 

certain speech sounds, notably the vowels may be identified and 

synthesised primarily from a knowledge of the formant frequencies. 

The formant frequencies, therefore, appear to be important 

information bearing elements of speech. In fact, analytical analysis 

of the vocal mechanism [G.Fant; 19591 has shown that the acoustic 

output during vowel production may be specified rather accurately 

from a knowledge of formant frequencies and the fundamental vocal 

frequency. 

Three effects are of major importance in limiting the accuracy 

with which formant frequencies and bandwidths of vowels may be 

estimated from spectral data [E. N. Pinson; 19631. These are ( 1 )  the 

effect of source periodicity on the spectrum, ( 2 )  the effect of the 



source spectrum envelope and ( 3 )  the effect of time averaging over 

both closed glottis and open glottis condition. 

Because of the periodicity of the source (i.e. the puffs of air 

flowing through the glottis that excite the vocal tract), the 

spectrum of the acoustic waveform consists roughly of lines at a 

fundamental (pitch) frequency and its harmonics (Fig.2.7). Little 

frequency 

Fig.2.7 Illustration of the manifestation of periodicity in 
the time waveform as fine structure on the spectrum. 

. . 
information is available about the spectrum between the pitch 

harmonics so the frequencies of the spectral peaks must be 

interpolated between these lines. A further complication arises if 

the envelope of the source spectrum exhibits rapid variations with 

frequency. Since the measured spectrum is the product of the 

spectrum of the glottal source and the spectrum of the transfer 

function of the vocal tract, the effect of the source spectrum is to 

distort the features of interest. Finally, the effect of relatively 

long averaging times used in any spectrum measurement technique 

(Fourier analysis, for instance) reduces the accuracy with which the 

formants may be obtained. In this context the output at any time 

depends upon both open and closed glottis portions of the speech 

waveform, whereas the vocal tract resonance characteristics are 

different in both these intervals. 



Several methods have been used to estimate the formant 

frequencies for voiced speech data. Almost all these techniques have 

as a common starting point, the transformation of the acoustic data 

into spectral form. The methods used to obtain the spectrum have 

included use of sound spectrograph , bank of bandpass filters and 

pitch synchronous Fourier analysis. 

Most of the techniques that exist for estimating.the vocal tract 

parameters from the speech signal can be classified as model-based 

and non model-based techniques. The technique by Flanagan 

[J.L.Flanagan; 19561 describes an analog approach to estimating 

formants in continuous speech. This paper describes the use of 

peak-picking on a short-time Fourier representation to obtain an 

estimate of Formant frequencies. The paper by Dunn [H.'K. Dunn; 1961 1 

deals with the use of a sound spectrograph for vowel bandwidth 

measurements. Schafer and Rabiner [R. W. Schafer and L. R. Rabiner; 

19701 describe homomorphic processing to the estimation of the vocal 

tract frequency response. Quat ieri IT. F. Quat ieri , Jr. , 19791 has 

developed a technique for the improvement of speech 

analysis/synthesis systems using homomorphic deconvolution in which 

both a minimum and maximum phase reconstruction is addressed. 

Another digressi~n from the traditional homomorphic deconvolver is 

the work due to Verhelst and Steenhaut [W.Verhelst and 0.Steenhaut; 

19861. In this approach a complex model for homomorphic 

deconvolution is suggested in which an approximation to the influence 

of window length is included. Also the spectral sampling inherent in 

voiced speech is explicitly represented. These techniques come under 

the category of nonmodel-based techniques 

Most of the recent methods for the estimation of the vocal tract 

parameters are based on a model-based approach. 



The work by [B. S. Atal and S. L.Hanauer; 19711, [F. Itakura and 

S.Saito; 19701, [ J. D. Markel, 1972a1, McCandless [S. S. McCandless; 

19741, [ B. S. Atal and M. R. Schroeder; 1979 I , [ E. Denoel and 

J. -P. Solvay; 19851, [A. El-Jaroudi and J. Makhoul; 19871, [C. H. Lee; 

1987,19881 and [C. Duncan and M. A. Jack, 19881 are concerned with 

linear predictive analysis methods for estimating the.voca1 tract 

function a.ntl formant frequencies. 

In the work by Atal and Hanauer [B.S.Atal and S.L.Hanauer; 19711 

linear prediction analysis [J.Makhoul; 19751 is used to estimate the 

time-varying parameters of the speech wave, namely the prediction 

coefficients and pitch. Itakura and Saito [F. Itakura and S. Saito; 

19701 discuss a maximum likelihood approach to the estimation of the 

linear prediction .coefficients. Markel [ J. D. Markel; 1972al discusses 

an algorithm based on the digital inverse filter formulation for 

formant trajectory estimation. McCandless [S.S.McCandless; 19741 

suggests a method for formant extraction from linear prediction 

spectra to take into account spurious peaks, merged peaks, etc. Atal 

and Schroeder [ B. S. Atal and M. R. Schroeder; 1979 1 use a subjective 

error criterion to estimate the LP coefficients. Denoel and Solvay 

[E. Denoe! and J. -P. Solvay; 19851 modify the error criterion-. in 

standard linear prediction to estimate the LP coefficients that 

characterise the vocal tract. An absolute error criterion rather 

than the usual squared error criterion is used. 

Song etal. [K. H.Song and C.K. Un; 19831 discuss a method for 

Pole-zero modeling of speech using a higher order pole model fitting 

and decomposition method. The work by [H.Morikawa and H.Fujisaki; 

19841 is based on a state space representation for the speech 

production process. In this technique speech is modeled as an ARMA 

(auto-regressive moving average) process with variable order. 



Kopec [G.E.Kopec; 1986a. 1986bl uses a hidden Markov model and 

vector quantisation to track formants accurately. Other approaches 

include maximum likelihood spectral estimation and its application to 

speech analysis [M.J.McAulay; 19841. Yet another work due to McAulay 

etal. [M.J.McAulay and T.F.Quatieri; 19861 is based on a sinusoidal 

representation of speech. Regoll [G.Regoll; 19861 describes a new 

algorithm based on an extended Kalman filter model for the 

time-varying digital filter in the model for speech production. 

Schroeter etal. [J.Schroeter, J.N.Larar and M.M.Sondhi; 19871 use a 

vocal'tract/cord model for parameter estimation from speech. Lee 

[C.H.Lee; 1987, 19891 develops an algorithm for linear prediction, in 

which the sum of appropriately weighted residuals is minimised to 

estimate the LP coefficients. In the work by [G. Duncan and M. A. Jack; 

19881 a pole-focussing approach is taken to estimate the LP 

coefficients in the filter that characterises the vocal tract 

Although the methods described in these papers take different 

points of view to formulating the analysis methods, the resulting 

methods have much in common and results obtained are comparable in 

that the time complexity of the algorithm is proportional to the 

resolution that can be obtained. 

We now briefly describe two commonly used methods for formant 

estimation, one based on homomorphic processing (a nonmodel-based 

technique, also called cepstrum analysis) and the other based on 

linear prediction analysis (a model-based technique). 

The technique of cepstral processing is used for separating the 

excitation signal of a speech wave from the filter part. This makes 

it easier to estimate both the periodicity of the excitation and the 

frequencies of the formants. 



Based on the model of Fig.2.6 the speech waveform s(n) is 

obtained as the convolution of the excitation signal e(n) and the 

impulse response of the digital filter h(n). 

3[s(n)l = 3[e(n)l3[h(n)l (2. 19a) 

S(w) = E(w)H(w) (2.19b) 

The logarithm of the transform is obtained as 

logS(w1 = logE(w1 + logH(w1 (2.20) 

Finally the inverse DFT of the transform is computed 

3-'[ logs(w) I = 3-'[ log~(w) I + 3-'1 log~(w) I (2.21) 

The resulting spectrum of the log of the frequency spectrum is called 

the cepstrum. The horizontal axis of a cepstrum has the dimensions 

of time and is called quefrency. 

The result of this complex transformation is to .increase the 

effects of the fundamental relative to other frequencies present in 

the original waveform. Consequently, the cepstrum will contain a 

large peak corresponding to the fundamental. The position of this 

peak can be used to obtain an estimate of the fundamental frequency. 

If this peak is removed by cutting of the cepstrum from below this 

quefrency, the ripple on a spectrum caused by the effects of the 

fundamental can be reduced. Taking a DFT of cepstrum with the 

fundamental removed results in a smoothed spectrum. The peaks of 

this spectrum are identified as formants (Fig.2.8~). 

( a )  s ignal  (b) F T  rnagnltude (c )Cel - ' s t ra l ly '  ' ( d )  LP spectrum 
spectrum smoothed spectrum 

Fig.2.8 Ceptrum and Linear Prediction methods of estimating the, 
smoothed spectra for a segment of speech. 



The foregoing analysis of the speech signal based on the 

cepstrum makes no assumption about how the speech was produced. 

Linear prediction analysis, however assumes that the signal being 

analysed is produced by passing an excitation signal through a 

suitable filter. This is a good model for the product,ion of many 

speech sounds. Hence this is an appropriate technique for speech 

signal analysis. 

Suppose that a waveform x(t) has been digitised. If x(t) was 

continuous, then the current sample x(n) can be predicted from the 

previous sample : 

x(n) = a x(n-1) + e(n) 
1 

(2.22) 

where the coefficient a is obtained so as to minimise the error 
1 

signal e(n). This idea can be extended by predicting x(n) from the 

last p samples: 

2 
The coefficients a are obtained by minimising the error E[e(n) I 

k 

where E stands for the expectation operator. This leads to a set of 

simultaneous equations in the a s : 
k 

Replacing EL1 by time averages and defining 

leads to the autcorrelation method of LP analysis. In practice, the 

signal is not known over an infinite range, so as usual it is 
h+N-1 

windowed. Replacing E[1 by the time average C leads to the 

covariance method of LP analysis 



Once the a s  are obtained the smoothed spectrum can be obtained by 
k 

comput i ng 

The peaks of this spectrum correspond to formants as shown in 

Fig. 2.8d. 

2.6.2 Gatimatian 4 Yauhce p a f m m b u  

Accurate and reliable measurement of the pitch period of a 

speech signal from the speech waveform alone is often exceeding 

difficult for several reasons. One reason is that the glottal 

excitation waveform is not a perfect train of periodic impulses. 

Although finding the period of a perfectly periodic waveform is 

straightforward, measuring the periodicity of a speech waveform. 

which varies both in period and in the detailed structure of the 

waveform within a period can be quite difficult. A second difficulty 

in measuring pitch period is the interaction between the vocal tract 

and the glottal excitation. In some cases the formants of the vocal 

tract can alter the structure of the glottal waveform significantly. 

This occurs when the articulatory movements are very rapid. This 

causes rapid changes in formants. A third problem in reliably 

measuring pitch is the inherent difficulty in defining the exact 

beginning and end of each pitch period during voiced speech segments. 

For example, based on the acoustic waveform alone, some candidates 

for defining the beginning and end of the period include the maximum 

value during the period and zero crossing prior to the maximum. The 

only requirement on such a measurement is that it be consistent from 



period to period. Fig.2.9 shows possible estimates of pitch period. 

Both measurements are likely to give different values for the pitch 

period. The pitch period discrepancies are due not only to the 

quasiperiodicity of the speech waveform, but also the fact that peak 

measurements are sensitive to the formants, noise and any dc level in 

the waveform.. A fourth difficulty in pitch detection is 

distinguishing between unvoiced speech and low level 'voiced speech. 

In many cases transitions between unvoiced speech and low level 

voiced speech are very subtle and arethus extremely hard to pin 

point. 

0.0 time in msec 25.6 

Fig. 2.9 Possible est imates of pitch period. 

As a result of the numerous difficulties in pitch measurements. 

a wide variety of sophisticated pitch detection methods have been 

developed. Basically a pitch detector is a device which makes a 

voiced-unvoiced decision and, during voiced speech, 

provides a measurement of the pitch period. However, some pitch 

detection algorithms just determine the pitch during voiced segments 

of speech and rely on some other technique for the unvoiced-voiced 



decision. Pitch detection algorithms can be roughly divided into the 

following categories: 

1) A group which utilises principally the time domain properties of 

speech signals. 

2 )  A group which utilises principally the frequency domain properties 

of speech signals. 

3) A group which utilises both the time and frequencyrdomain 

properties of speech signals. 

Time domain pitch detectors operate directly on the speech 

waveform to estimate the pitch period. For these pitch detectors the 

measurements most often are peak and valley measurements, zero 

crossing measurements, and autocorrelation measurements. The basic 

assumption that is made in all these cases is that if a quasiperiodic 

signal has been suitably processed to minimise the effects of the 

formant structure, the simple time domain measurements will provide 

good estimates of the period. Some of the pitch detection algorithms 

that belong to this category are (a) Modified autocorrelation method 

[J.J.Dubnowski, R.W.Schafer abd L.R.Rabiner; 19761, (b) Average 

magnitude difference function [M. J. Ross, H. L. Shaffer, A. Cohen, 

R. Freudberg and H. J. Manley; 19741 ( c )  Data Reduction Method 

[N.J.Miller; 19751 and (dl Parallel processing method [B.Cold and 

L. R. Rabiner; 19691. 

The modified autocorrelation pitch detector is based on the 

center clipping method due to Sondhi [ M.M.Sondhi; 19681. In this 

method the signal is low pass filtered, the low pass filtered signal 

is then sampled at 10kHz. sectioned into overlapping 30ms sections 

for processing. A clipping level is chosen, the section is center 

clipped and peaks of the autocorrelation function of this signal 

correspond to pitch period. 



The class of frequency domain pitch detectors use the property 

that if the signal is periodic in the time domain, then the frequency 

spectrum of the signal will consist of a series of impulses at the 

fundamental frequency and its harmonics. Thus simple measurements 

can be made on the frequency spectrum of the signal (or a nonlinearly 

transformed version of it as in the cepstral detector, 1 [A.M.Noll; 

1967, R. W. Schafer and L. R. Rabiner; 19701. In the cepstral detector 

due to Noll, the cepstrum is computed. The cepstrurn has a strong 

peak corresponding to the pitch period. The peak is located in the 

cepstrum and taken as an estimate of the pitch period. 

The class of hybrid pitch detectors incorporates features of 

both the time and frequency domain approaches to pitch detection. 

For example, a hybrid pitch detector might use frequenay domain 

techniques to provide a spectrally flattened time waveform, and then 

use autocorrelation measurements to estimate the pitch period as in 

SIFT [J.D.Markel; 1972bl and Spectral Equalisation LPC method using 

Newton's transformat ion [B. S. Atal and L. R. Rabiner; 19761. 

In the SIFT technique, the given signal is low pass filtered, 

the inverse filter coefficients for this signal are computed. The 

inverse filter output is then obtained. The autocorrelation of this 

sequence is computed. The largest peak within specified limits 

corresponds to the pitch period. A comparative of study of some of 

the standard pitch detection algorithms can be found in [L.R.Rabiner, 

M. J. Cheng, A. E. Rosenberg and C. A. McConegal ; 1976 I. 

Recent 1 y Gong and Haton [Y. Gong and J. P. Haton; 1987 I have 

brought about a new formulation for the pitch estimation problem. 

The speech signal is modeled as a sequence of a specified function in 

a time-dependent manner which allows the period and amplitude of the 

exci tat ion signal to be t ime-varying. Andrews et a1 . [ M. S. Andrews, 



J. Picone and R. D. Degroat ; 1990 I introduce a cepstrum based pitch 

estimator which couples the signal enhancement capabilities of MUSIC 

[S.M.Kay; 19881 with the harmonic spectrum estimation capabilities of 

cepstrum. Hodgson et al. [ L. Hodgson, M. E. Jernigan and B. L. Wi 11s; 

19901 develop a new algorithm for cepstrum pitch detection where a 

nonlinear model for the vocal tract is assumed. Slaney's [M. Slaney; 

19901 perceptual pitch detector combines a cochlear model with a bank 

of autocorrelators. An independent autocorrelation is performed for 

each channel, the information is combined to obtain an estimate of 

pitch period. 

In most practical situations signals are contaminated by noise. 

Different approaches may be needed to deal with different types of 

noises such as quantisation, multiplicative, convolutional, 

signal-dependent and additive. The topic that is addressed in this 

thesis is the problem of processing noisy speech where the noise that 

is considered is additive. Even in this limited context, there are a 

variety of situations in which speech enhancement is desired 

[J.S.Lim; 1979bl. In speech processing we observe that accurate 

information about (a) the vocal tract resonances and (b) the 

excitation is essential for synthesising speech of high quality. 

The classical work of Wiener and others gives an approach for 

deriving an optimal filter that tends to suppress the noise while 

retaining the desired signal unchanged IS. S. Haykin; 1986, B. R. Widrow 

and Stear-ns; 19861. The basic assumption in Wiener filter theory is 

that both signal and noise are stationary, which is seldom true in 

the context of speech. Nevertheless several techniques based on the 

approximation of the optimum Wiener filter using tapped delay line 

have been suggested in the literature. An approach based on the 



concept of the adaptive noise canceller due to Sambur 

[ M. R. Sambur; 1978 I uses the Least Mean Squares adaptive f i 1 tering 

approach to remove the effects of additive noise on the speech 

signal. The logic that is used in this approach is that voiced 

portions of the speech signal are periodic and a frame of this 

portion delayed by a few pitch periods will be highly,correlated 

while the noise will be uncorrelated. Another approaah based on the 

is adaptive comb filtering [ J.S. Lim, A. V. Oppenheim and L. D. Braida; 

1978bl. The property that is exploited here is that the energy of a 

periodic waveform is concentrated in bands of frequencies. 

Unfortunately, techniques based on this approach seldom succeed 

bacause neither is the noise stationary noF is the sample 

representative of the noise in the system. Although Sainbur has 

obtained satisfactory results we are still left with the basic 

problem of identifying the voiced and unvoiced portions of a speech 

signal and estimating the periodicity in the waveform. 

A particular class of speech enhancement systems are based on 

the assumption that the short time magnitude spectrum of speech is 

more important than the short time phase spectrum. In such systems 

an estimate of the magnitude spectrum is first made and then combined. 

with that of the phase spectum to produce enhanced speech. The most 

commonly employed procedure is to estimate the noise power spectrum 

and then use spectral subtraction. This requires that some knowledge 

about the statistics of the noise is available[S.F.Boll; 1979, 

S. F. Boll and D. C. Pulsipher; 19801. 

Other approaches to speech enhancement make use of the 

underlying model for speech production. Model based approaches for 

speech enhancement estimate the parameters of the model rather than 

the speech signal. This information is then used in a speech 



analysis/synthesis system. Homomorphic deconvolution is 0- rr-kld 

for estimating the impulse response of the speech producticc l*.lk 

Later systems attempt to model the vocal tract system as - \' 
as possible. The problem of estimating the parameters of t&  -,.. - 

for speech production has been dealt with extensively in t k  

literature. Although the estimation of these parameters is 

for clean speech, it is rather difficult for w.~, 

speech. One such approach (in fact the most successful) is .- . . 
Lim [J.S.Lim and A.V.Oppenheim.1978al where a maxmimum apostcri,-- 

estimation procedure is employed to estimate these p~amet~l-~;. 

the context of noise a set of nonlinear equations are obtained Z ,  

place of Eq (2.24) for autoregressive paWneter estimation. ~ l ~ ~ , ~  

the system suggested is suboptimal, nevertheless the speech is 

good. 

Another class of algorithms enhance speech in various write,:* 

by changing the time scale of speech, i.e. slowing it down or 

speeding it up. Malah [D. Malah; 19791 presents a method in &ic% he 

speech signal is decomposed into complex exponentials, then the 

frequency of each exponential is modified by the same ratio in m,.k 

channel, without affecting the duration and amplitude of the 

exponential. The resulting speech is obtained by combining thew 

exponentials has the same duration but all frequency components euk 

scaled. Portnoff [Portnoff; 1981a, 1981bl presents a method in ,,,h,,,,, 

the short time Fourier transform of speech is modified and speech 

synthesised from the modified Fourier transform. In this kind of 

approach a particular frequency that is important for Lntelliglbl l l t y  

can be independently controlled. 

2.7 The problem of Spectrum Estimation 

Spectrum analysis of signals is performed to extract the 



information about the system that generated the signal. Since the 

signal available for analysis is usually of short duration and also 

noisy, one can only attempt to estimate the spectrum or the system 

characteristics, rather than compute the spectrum, The accuracy of 

the estimated spectrum depends on the bias and variance of the 

estimate, which in turn depends on the nature of the signal, its 

duration type of windowing and noise. 

The main issue in spectrum estimation is to obtain a high 

resolution from short data record and from data combined with noise. 

Effects of short data records, windowing, noise and model order have 

been studied extensively in [S. M. Kay; 1988, S. L. Marple; 19871. In 

all these cases two classes of problems are addressed (i) estimation 

of autoregressive parameters in noise and (ii) estimation of 

component sinusoids from finite duration noisy data. 

Although model-based techniques [D. G. Childers; 1978, S. B. Kesler; 

19861 are gaining popularity over that of nonmodel based techniques, 

it is well known that the biggest drawback of these techniques is 

that they fail miserably when no apriori information is available 

either about the signal of interest or noise. In the absence of any 

apriori information, the Fourier-based methods [C.Bigham, M.D.Codfrey 

and J. W. l'ukey; 1967, P. D. Welch; 19671 are the most successful 

techniques for estimating parameters from the spectrum. 

2.8 Motivation for the Curre~t Research 

It is interesting to notice that all the frequency domain 

techniques discussed so far (both in the context of speech analysis 

and spectrum estimation) whether model based or otherwise use the 

magnitude spectrum as the starting point. The phase spectrum of the 

signal is neither modelled nor estimated. In fact. the phase of the 

signal is not considered at all. This is perhaps due to the 



difficulties encountered in processing the phase 

In many situations it is observed that the phase spectrum of the 

signal rather than the magnitude spectrum of the signal is important 

for preserving the important features of the signal. This 

observation has been made in a number of situations, namely, acoustic 

holography, X-ray crystallography and image analysis [A.V.Oppenheim 

and J. S. Lim; 19811. Several algorithms have been developed to 

reconstruct a signal fromeither Fourier transform phase or 

magnitude. Among them are the algorithms for signal retrieval from 

phase developed by [ M. H. Hayes, J. S. Lim and A. V. Oppenheim; 1980, 

P. L. Vanhove and M. H. Hayes; 1983, J. R. Fienup; 1987, Thomas R. Crimmins; 

1987, N. Nakajima; 1987, S. L. Curt is and A. V. Oppenheim; 19871. In the 

context of speech, the quality and intelligibility of & utterance 

are completely restored when the phase of the signal and a flat 

magnitude spectrum are used as initial estimates in an iterative 

algorithm [ B. Yegnanarayana, S. T. Fathi ma and Hema A. Murt hy, 1987 I. 

Although the phase contains all the information relating to events, 

namely edges in an image, formant transitions in speech and linear 

phase in both one-dimensional and two-dimensional signals, it is 

difficult to capture this information directly from the phase because 

it appears to be noisy and difficult to interpret. 

Manipulation of the Fourier transform Phase directly for 

feature extr.action requires that the phase spectrum of the signal be 

first of unwrapped. Some algorithms for unwrapping of Fourier 

transform phase [Tribolet; 1979, D. G. Ghiglia, G. A. Mast in and Louis 

A. Romero; 19871 are available for unwrapping the phase spectrum. 

These algorithms are computationally intensive and donot work for all 

classes of signals. 

In this thesis, instead of directly processing the Fourier 



transform phase spectrum of signals, we process the group delay 

functions of signals to estimate the features that characterise 

signals. The advantage of processing group delay functions rather 

than the phase function is that the group delay function has all the 

desirable properties of phase (additivity) and it does not suffer 

from the wrapping problem. The topic of the next Section is the 

group delay processing of signals. 

2.9 The Group Delay Approach to Signal Processing 

The group delay function does not suffer from the wrapping 

problem, but possesses all the desirable properties of the phase 

spectrum as was seen in the Section 2.4. Algorithms for computing 

the group delay functions as well as algorithms for deriving the 

signal from the group delay functions are given in [B.Yegnanarayana, 

D. K. Saikia and T. R. Krishnan; 19841. Reddy etal. [S. Reddy and 

M. N. S. Swamy; 19851 use the derivative of phase spectra to reduce the 

inherent windowing problem when using the DFT. [K.V.Madhu Murthy and 

B.Yegnanarayana; 19891 represents the first systematic study of the 

properties of group delay functions for the representation of 

signals. This study emphasises the usefulness of the representation 

of signals through group delay functions. Their observation is that 

the errors in representation can be reduced considerably by taking a 

large number of DFT points provided there are no roots on the unit 

circle in the z-transform of the signal. For any representation to 

be effective, it is desirable that the relevant information in the 

signal be preserved in that representation. If continuous frequency 

and time variables are used throughout there is no loss of 

information in any domain. But digital processing of data 

necessitates discretisation which may result in partial loss of 

informat ion. We saw earlier that when a signal is represented by its 



discrete version it was required that the signal be adequately 

sampled in order to avoid aliasing in the frequency domain. 

Similarly the discretisation of the signal may affect the accuracy of 

signal representation through group delay functions. 

The properties of group delay functions can be exploited for 

many applications such as design of digital filters [B. Yegnanarayana; 

1981al and pole-zero model 1 ing [ B. Yegnanarayana; 1981bf1. The 

properties of group delay functions allow manipulation of signal data 

effectively in many signal processing situations, like waveform 

estimation from an ensemble of noisy measurements [B.Yegnanarayana, 

J.Sreekanth and Anand Rangarajan; 19851. Most of the available 

literature on group delay functions make attempts to estimate signal 

data from the group delay function. Very few attempts have been made 

in which group delay functions or phase spectrum is used for 

parameter est imat ion [ B. Yegnanarayana; 1978, M. T. Manry; 19851 from 

signals. We now discuss some of the problems encountered when an 

attempt is made to estimate parameters from the group delay 

functions of signals. We first discuss the issues in group delay 

processing of speech signals. This is followed by a discussion of 

the application of group delay functions in spectrum estimation. 

2.9.1 Y ~ i n B l ~ a u p I ) e e a y 3 ' ~ ~ Y p e e c h ~  

For ease of explanation we assume the simple source filter model 

for speech production that was discussed in Section 2.5. 

To illustrate the issues involved in group delay processing of 

speech we use the following filter model to represent the vocal tract 

system 

This equation describes a cascade of digital resonators that have 



unity gain at zero frequency. F s represent the frequencies of the 
k 

resonators and B s represent the bandwidths of the resonators. 
k 

For voiced speech we assume that the filter is excited by a 

periodic train of impulses while for unvoiced speech, this filter is 

excited by random noise. Fig.2.10 shows the impulse response of the 

filter and its magnitude phase and group delay spectra, respectively. 

The information about the resonances appear as (i) peas in the 

magnitude spectrum, (ii) phase transitions in the phase spectrum and 

(iii) as peaks in the group delay spectrum. Notice that the 

information about resonances in the group delay domain is 

concent rated around the peak. 

Speech is produced by exciting the filter of Eq.(2.28) with a 

periodic impulse train or random noise. Fig.2.11 shows the impulse 

train and its group delay function. Fig.2.12 shows random noise 

sequence, and its group delay function. The combined response of 

Fig.2.10 and Fig.2.11 and its corresponding group delay are shown in 

Fig. 2.13. This signal is an approximation to voiced speech. The 

combined response of Fig.2.10 and Fig.2.12 and its corresponding 

group delay is shown in Fig.2.14. This signal is an approximation to 

unvoiced speech. Notice that in the group delay domain, the 

information about the formants is completed masked by the group delay 

function corresponding to the source in both the figures (Fig.2.13 

and Fig.2.14). 

The zeros that are generated by the impulse train and finite 

window lie on the unit circle (Fig.2.15a) in the z-domain. The zeros 

that are generated by random noise are very close to the unit circle 

in the z-domain (Fig.2.15b). The poles due to the formants are well 

within the unit circle (Fig.2.15~). The group delay functions assume 

very large values at sampling points that are close to the zeros or 
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Fig.2.15 Distribution of roots in the z-plane for (a) 
impulse train (b) random noise and (c) all-pole filter. 

poles. Since the group delay function is obtained by sampling the 

z-transform on the unit circle, the overall group delay function 

assumes a spiky appearance, due to the group delay taking very large 

values at sampling points close to the zeros due to the excitation in 

the z-domain. The strength of these spikes depends upon the 

proximity of the zeros to the unit circle. Closer the zero to the 

unit circle, larger is its value. The sign of the spike depends upon 

whether it lies inside (positive) or outside (negative) the unit 

circle. The problem in group delay processing of speech signals may 

thus be posed as one of extracting the characteristics of the system 

and source from the combined group delay of Fig.2.13 or 2.14. 

In the estimation of parameters of the speech signal from the 

power spectrum of speech we saw that in all the techniques (without 

exception) an attempt was made (i) to estimate the spectral envelope 

(for estimating formants) and (i) to flatten the spectrum (for 

estimating source parameters). This essentially amounts to 

separating the spectra corresponding to the source and the system. 

If the group delay spectrum of speech' is to be used effectively 

for estimating parameters from the speech signal, the source and 



system group delay functions must be necessarily separated. The 

objective of this thesis is the development of appropriate algorithms 

for the estimation of the underlying characteristics of the source 

and system parameters for speech from the group delay spectrum of the 

given speech signal. 

In Chapter 3 we develop a new algorithm for formant extraction 

from speech using a group delay function derived from the magnitude 

spectrum of speech. In Chapter 4 we develop yet another algorithm 

for estimation of formant and pitch from the speech signal using a 

group delay function (called the modified group delay function) that 

is derived directly from the phase spectrum. 

2.9.2 seprzeccatLan . . Q Bllaup Decay t!.udAm ta Ypectruun 8- 

Spectrum estimation is yet another area of signal processing 

where the dominance of FT magnitude spectrum in most analysis methods 

is evident. The techniques developed for speech signal do not make 

any specific assumptions about the signal. 

In Spectrum estimation there are two major problems, two types 

of signals are considered most often, namely, (a) sinusoids in noise 

and (b) AR Frocssszs ;.A I,L;,~. 'in2 gresence of additive noise either 

introduces new zeros or redistributes the existing zeros. It was 

shown in the previou~ section that the zeros due to random noise lie 

close to the unit circle in the z-domain of the signal. Similarly 

window zeros lie on the unit circle in the z-domain. If the group 

delay functions of such signals is to be processed these zeros must 

be suppressed. The modified group delay function may be thought of 

as a function in which the information corresponding to that of zeros 

in a signal are suppressed. The use of modified group delay 

functions to suppress zeros that are caused by noise in spectrum 

estimation is studied in Chapter 5. 



CHAPTER 3 

MINIMUM PHASE CROUP DELAY FUNCTION AND ITS APPLICATION TO FORMANT 

EXTRACTION FROM SPEECH 

3.1 Introduction 

In this Chapter we derive a minimum phase signal from the given 

signal. The group delay function of this signal is then derived 

which contains information about the location of resonances in the 

signal. This group delay function is then used to extract formants 

from speech signals. The algorithm is similar to the cepstral 

smoothing approach for smoothing the spectrum using homomorphic 

deconvolution [J.S.Lim; 1979al. The significant differences are (i) 

r the logarithmic operation is replaced by ( . I  operation and (ii) the 

additive and high resolution properties of group delay functions are 

exploited to emphasise formant peaks. The group delay function (or 

the negative derivative of the Fourier transform phase) is derived 

for a signal which in turn is derived from the Fourier transform 

magnitude of the signal. If a suitable value of r is used, this 

method gives highly consistent estimates of formants compared to both 

the cepstral approach and the model-based linear prediction (LP) 

approach for smoothing the magnitude spectrum. The effects of the 

parameters, exponent r and window width p on the proposed technique 

of formant extraction are studied. 

3.2. Principle of the proposed method 

We propose a spectral root group delay function approach for 

extracting the parameters of the system. This is similar to the 

spectral root homomorphic deconvolution (SRDS) [J.S.Lim; 1979a1. The 

proposed method involves deriving a signal with the characteristics 

of a minimum phase signal so that the phase spectrum of this signal 

contains the information of the magnitude spectrum. Peaks of the 

group delay function derived from this phase function correspond to 



location of resonances in the signal. 

Table.3.1 gives the algorithm for the new spectral root group 

delay function approach for estimating the group delay function with 

minimum phase characteristics. In the Table DFT and IDFT correspond 

to the forward and inverse Fourier transforms, respectively. w(n) is 

a half Hann window function and is given by 

w(n) = 0.5 + O.Scos(nn/L), 0 5 n 5 L, 

= 0.0, n > L  

where L is the length of the window. This technique is like the 

cepstral smoothing technique, except that (i) rth power operation is 

used in place of the log operation and (ii) the phase group delay is 

computed instead of the smoothed magnitude spectrum. Fig.3.la shows 

a segment of speech (25.6 ms, lOkHz sampling rate). Figs.3.lb.3.1~ 

and 3.ld show the corresponding megnitude, phase and LP spectra. The 

inverse Fourier transform of the magnitude function gives an even 

sequence which is called the spectral root cepstrum (x(n) 1. The even 

sequence is then truncated to include only the causal portion of it. 

Fig. 3.2a shows the causal portion of G(n). The rth power operation 

does not disturb the locations of either the poles or zeros of the 

z-transform of the windowed signal. Therefore the region around n=O 

in the root cepstrum will contain information corresponding to the 

slowly varying component of the spectrum and a peak due the 

periodicity will appear at n=T , where T is the periodicity in the 
0 0 

signal. To estimate the parameters due to system this signal is 

multiplied by a half Hann window to select the first p (corresponding 

to 4.2ms) samples (henceforth referred as G (n)). It is worth noting 
P 

that the magnitude and phase spectra of the original signal are 

unrelated, whereas the magnitude and phase spectra of the signal 

x (n) are related. Not ice that peaks in the magnitude spectra of 
P 

Fig. 3.2b correspond to phase transit ions in Fig. 3.2~. The 





differenced phase corresponds to the group delay function shown in 

Fig.3.2d. The window size p should be taken as large as possible to 

obtain a good resolution of formants, but should be less than the 

periodicity (if it exists) in order to avoid fluctuations due to 

excitation in the magnitude and phase spectra. 

Table.3.1. Algorithm for Computing the minimum phase group delay 
function from the given signal. 

1. Let x(n) be the given N-point sequence. Compute the 
N-point DFT of x(n), X(k), k = 0, . . . ,  N-1. 

2 .  Let ;(k) = /~(k) lexp( j8(k)). Compute the N-point IDFT 
(IX(k)l 1 where r is a value chosen between 0.5 and 1. 

r 
3. Let G(n) = IDFT~ (~(k) 1 1, n = 0,. . . , N-1. Now multiply 
x(n) by the window w(n) to eliminate the noncausal portion 
of the signal and peak due to periodicity. 

4. Let G (n) = G(n).w(n), n = 0,. . . ,p 
P 

= 0, otherwise. 

Compute the N-point DFT of x (n), 2 (k), k = 0,. . . ,N-1. 
P P 

5. Let 2 (k) = IX (k)lexp(j8 (k)). Compute the group delay 
P P P 

function as : 

t(k) = 8 (k+l) - 8 (k), k = 0, . . . ,  N-2 
P P 

= t(k-11, k = N-1. 

The strength of our approach is in the fact that, being not 

model-based, it should provide a better representation of the 

underlying nature of the system than that obtained using model-based 

analysis. The cepstral approach to parameter extraction is also not 

model-based but has the disadvantage that the computation of cepstrum 

involves a logarithm operation. We now give some of the properties 

of the spectral root cepstrum. 

3.3 Properties of the spectral root cepstrum 

Let {x(n)) be a causal, real and stable sequence and let {X(k)) 

be its discrete Fourier transform. 

1. Then IDFT(Ix(~)~) = {x(n)) is an even sequence. 



2. Given that {x(n)) is a sequence with finite support, from the 

Akhiezer-Krein and Fejer-Riesz theorems [A.Papoulis; 1977, Ch.71 it 

can be shown that 

IDFT( IX(k) 1') = IDFT( IX(k) 1°"'~x(k) 1°.5r)p 

where c and * denote complex conjugation and convolution operations, 

respectively. Thus IX(k) 1' can be expressed as the Fourier transform 

of the autocorrelation function of some sequence y(n). 

3. Given that IX(k) 1' is a positive even function and that {x(n)) is 

a non-zero sequence, then IDFT( IX(k) 1') is maximum at the origin 

[R.N. Bracewell; 19861. 

4. Minimum phase property : The above properties suggest that the 

truncated sequence x (n) behaves 1 ike a minimum phase signal in the 
P 

sense that the phase and the magnitude spectra of G (n) are related. 
P 

This is confirmed by computing the roots of the z-transform of 

the sequence G (n) numerically for a number of different frames of 
P 

speech data. It was found without exception that in all the examples 

(=  50) the roots (error < lie inside the unit circle 

(Fig.3.3). We have seen in our studies. that the group delay 

functions derived from the magnitude and phase of the FT of (n) are 
P 

identical (Fig.3.4). Also using the properties 2 and 3, the given 

signal x (n) is a signal in which there is minimum energy delay. 
P 

This is yet another property of minimum phase signals [A.J.Berkhout; 

1973,19741. 

From these empirical observations we conclude that the causal 

port ion of G(n) can be considered as a minimum phase sequence. The 

minimum phase condition ensures that the log magnitude and phase of 

such a signal are related through the Hilbert transform. Thus the 

complete magnitude information is captured in the FT phase of (n). 
P 



Fig.3.3 Distribution of roots in the z-plane for the minimum 
phase signal. 

0.0 Frequenoy SKHx Frequenoy 

Fig.3.4 ~ilustration of T P ( w )  = rm(ol for minimum phase 

signal . 



Because of the minimum phase characteristic, the cepstral 

coefficients and hence the weighted cepstrum can be derived 

- 
recursively from x (n). The group delay function can also be 

P 

computed as the FT of the weighted cepstrum [B.Yegnanarayana, 

D. K. Saikia and T. R. Krishnan; 19841. But in the algorithm discussed 

in this Chapter we compute the group delay function through the 

spectrum using the discrete Fourier transform relation. 

Note that use of the exponent r on Ix(k) 1 does not alter the 
peaks in the smoothed envelope of the magnitude spectrum. Thus the 

peaks locations information is preserved in the computation of the 

magnitude spectrum of the windowed spectral root cepstrum. It is 

generally not possible to model each of the peaks by a simple second 

order all-pole system (resonator) even though they may'correspond to 

a resonance peak in the original magnitude spectrum of X(k). 

Therefore low order (10 to 18) linear prediction analysis of the 

signal (n) will not result in the desired peaks. 
P 

r 
It is important to note that the exponent r in Ix(k) 1 does not 

disturb the location of the peak due to periodicity in G(n). 

Therefore both the spectral peak locations and value of the period 

are not altered by the exponent factor. But the exponent factor 

helps to contain the significant information of the spectral envelope 

in a short window size p for G(n). This helps in the choice of a p 

lower than that of the periodicity to avoid the influence of 

periodicity on estimating the system information. 

3.4 Formant Extraction from Speech Using Uinimm Phase Croup delay 

Spectra 

In this section we demonstrate the effectiveness of the proposed 

group delay function for formant extraction from speech. In the 

context of speech the peaks of the group delay function correspond to 

formants. The usefulness of this approach is established by 



comparing it with the LP and cepstral approaches for formant 

extraction. In each case the raw formant data is obtained and the 

performance is judged by visual inspection of the formant contours. 

In the group delay function approach for formant extraction there are 

a few parameters which decide the resolution and accuracy of the 

formant data that may be obtained. One of them is the window size p. 

This is similar to the cepstral (or LP) smoothing technique in which 

the window size (or model order) chosen in the cepstral domain (or LP 

model) affects the resolution that can be achieved. In addition to 

the window size p, the exponent r also plays a significant role in 

the resolution that can be obtained. We now study the effects of 

varying these two parameters on the formant information obtained from 

the group delay function. To discuss the performance of our method 

we first consider synthetic speech data corresponding to the formant 

contours shown in Fig. 3.5. 

Model for the synthetic signal : 

The synthetic signal chosen is a voiced utterance generated by 

using a simplified model for speech production shown in Fig.3.6. The 

waveshape for the glottal pulse was chosen to be of the form 

[L.R.Rabiner and R.W.Schafer; 1978, p. 1021: 

g(n) = 0.5(1 - cos(nn/N1)), 0 5 n S N1 

= cos(x(n - N1)/2N2), N1 5 n 5 N1+N2 

= 0, otherwise. (3.2) 

The transfer function for the vocal tract was modelled as : 

This equation describes a cascade of digital resonators that have 

unity gain at zero frequency. All the five formants (Fks) vary 

continuously with time as defined by the formant plot shown in 
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Fig. 3.5 Synthetic Formant data. 
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Fig.3.5. T is fixed at 0.0001sec (i.e. lOkHz sampling rate). The 

formant bandwidths (B sl were fixed apriori at 10% of the formant 
k 

frequencies. 

A pitch period of lOms was chosen to generate the excitation 

signal. In the model for the glottal pulse N = 60 and N2 = 10. The 
1 

formant data was designed so as to capture most of the situations 

encountered in practice (in the context of voiced speech), namely, 

proximity of formants, sudden rise in formants, sudden fall in 

formants. 

The effect of the window size p on formant extraction is studied 

by obtaining plots of the raw formant data for different values of 

the window in the spectral root cepstrum domain. Fig.3.7 shows the 

formant data obtained from the synthetic speech signal using the 

group delay (GD) approach for various window sizes (p = 5.0ms to 

8.0ms). The window size is varied uniformly from 5.0ms to 8.0ms in 

steps of l.Oms, with r=0.5. Notice that an increase in window size 

results in an increase in resolution of the peaks. The formant data 

is consistent over a sufficiently large range of window sizes 

(Fig. 3.7a - Fig. 3.7~). But too large a window size (for example 

8.0ms) causes spurious peaks to appear as in Fig.3.7d. The window 

size should be large enough to resolve the peaks that are close to 

each other, but should not be too large to include the effects of 

pitch on formant extraction. 

Fig.3.8 shows the formant data for the same sythetic data using 

LP analysis for various orders (10 to 22) and Fig.3.9 shows the 

formant data obtained using cepstrum analysis for the same window 

widths as used in the GD approach. Comparison of the data in Fig.3.7 

with the raw formant data obtained from LP analysis (Fig.3.8) and the 

raw formant data obtained from cepstrum analysis (Fig.3.9) shows that 

our method gives equally good but more consistent estimates of 
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Fig. 3.7 Raw Formaqt data obtained using thi GD approach for 
different window sizes (low pitched synthetic speech). 

Fig.3.8 Raw Formant data obtained using LP analysis for 
different model orders (low pitched synthetic speech). 

Fig.3.9 Raw Formant data obtained using Cepstrum Analysis 
for different window sizes (low pitched synthetic speech). 



formants over a wide range of window widths for the synthetic data. 

It is to be noted that in the case of LP analysis (Fig.3.8) lower 

order may not bring out all the formant peaks. As the order is 

increased all the peaks get resolved but not many spurious peaks will 

be generated since the data is strictly the output of an all-pole 

system. 

The choice of r (for a particular window size p)  depends upon 

the dynamic range of the signal spectrum. The choice of r basically 

dictates the degree of overlap between the source and the vocal tract 

components in the root cepstrum domain. In the digital 

implementation of the SRDS algorithm the ( .  Ir and ( .  1'" operations 

require two phase unwrapping operat ions J. S. Lim; 1979al. In our 

r 
approach we perform ( . )  only on the positive real function IX(w) 1. 

Hence no phase unwrapping is necessary. Thus there is no constraint 

on r. We have experimentally observed that the choice of r is 

related to the spectral flatness. It appears logical that when the 

dynamic range is low (as in the case of noisy speech) the peaks in 

the spectrum must be emphasized if they have to make a significant 

contribution to G(n). This can be achieved by keeping r > 1. On the 

other hand, when the dynamic range is very large (as in the case of 

normal or high pitch voiced speech) the contribution by the first 

formant dominates the computation of G(n). The effect of the first 

formant must be deemphasized. This is done by keeping r < 1. When r 

< 1 the vocal tract information is concentrated around the origin in 

G(n) and the gating function enables a good separation of the source 

information from the vocal tract response. Fig.3.10 illustrates the 

performance tradeoff for various choices of r and window sizes. The 

effect of r can be visualized by traversing Fig.3.10 vertically from 

bottom to the top along a direction corresponding to a fixed window 

width. 
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It is to be noted that the parameter r and window size p are 

related. A smaller window size produces a poorer resolution, while a 

smaller r produces a better separation of source and excitation. As 

the window size p must be smaller than the pitch period to avoid 

fluctuations, r can be manipulated to obtain a good resolution of 

formants. 

So far we have illustrated the use of this new technique for 

formant extraction on synthetic speech, where the synthetic speech 

has be modelled as the glottal excitation of a truly all-pole model. 

Natural speech may not correspond to a truly autoregressive 

process of a fixed model order. We now compare the GD approach with 

that of LP analysis for formant extraction from natural speech. 

Figs. 3.11, 3.12 and 3.13 shows the formant data obtainkd using GD 

approach, LP approach and cepstrum analysis for the utterance "We 

were away a year ago" as spoken by a male speaker. The comparison 

confirms our earlier conclusions that the GD formant extraction 

technique gives more consistent formant values (for various window 

sizes) than that of the LP approach (for various orders) and cepstrum 

analysis ( for various cepstral windows). 

Figs.3.14 and 3.15 illustrate the formant contours for a high 

pitched synthetic and natural speech data. Here r is chosen to be 

0.5. As long as the window size p is less than the pitch period, the 

proposed method works well even for high pitched speech. The 

synthetic speech was generated using the same procedure indicated in 

Fig.3.5. The pitch period used for this case was 5ms. For natural 

speech the utterance is "We were away a year ago" as spoken by a 

female speaker. In Fig.3.15a. in the region between 0.6 - 0.9s the 

GD method does not resolve the 2nd and 3rd formants as well as that 

of the LP method (Fig.3.15b) because the time window chosen is very 

small (2.4ms). The time window cannot be increased beyond 3.2ms as 



: --/, *.-.-- -*, ib;?!.j 
I& . -*d-.; 

. ' -  -,*-.-- 
a. a r1.0 1.5. 

a : /../-./a<-e-./- !LTijj . './a; 

-.- -. /-. * 

*.a TI.. 1.5. 

Fig.  3.13 

CI --. 
0. b TI.. 1.5- 

Fig. 3.11 Formant extract ioi: Prom natural speech using GD 
approach (male voice). 

Fig.3.12 Formant extraction from natural speech using LP 
analysis [male voice). 

Fig.3.13 Formant extraction from natural speech using 
Cepstrum analysis (male voice). 



Fig. 3.14 Formant extraction from high-pitched synthetic 
speech using (a) GD approach (b) LP analysis and (c) 
Cepstrum analysis. 

Fig.3.15 Formant extraction for natural speech [female 
voice) using (a) GD approach (b) LP analysis and (c) 
Cepstrum analysis. 



the average pitch period for this utterance is about 4ms. It is 

observed that the formants are steady for window sizes ranging from 

1.6ms to 3.2ms. For the LP method in Fig. 3.15b a carefully chosen 

order of 12 seems to be appropriate for this utterance. A lower 

order does not resolve the formants while a higher order generates a 

lot of spurious peaks. The cepstrum analysis (Fig.3:15c) generates 

spurious peaks especially at high frequencies for al18window sizes. 

Fig.3.16 shows the formant contours for an utterance in an 

Indian language Hindi "mai yah ca:hta: hu:n". The sentence contains 

segments of different categories of speech segments such as unvoiced, 

nasals and fricatives. For unvoiced segments the peak locations 

occur at random frequencies. For most voiced segments the formant 

frequencies are extracted well as seen from the continuity of the 

points. 

We have examined the performance of the proposed method for 

noisy speech data also. Fig.3.17~ shows the formant contours 

obtained for an utterance (Fig.3.17a) with an overall SNR = 10 dB, 

using p = 3.2ms and r = 2. The variation of SNR for each frame is 

shown in Fig.3.17b. The formant contour for the clean data is given 

in Fig.3.17d. Comparison of Figs3.17~ and 3.17d show that there are 

spurious peaks at those frames where the SNR is very low ( < 0 d~), 

while for all other frames the formant peaks even for the noisy data 

are located at the appropriate frequencies. For some segments in the 

noisy data in the region 0.9s to 1.2s (in Fig. 3.17~). the fourth 

formant is not extracted as well as that for the clean data. This is 

because for a given frame SNR is a function of frequency also. At 

high frequencies usually the SNR is lower than that at low 

frequencies . 

While the proposed method seems to work well for a wide variety 

of speech signals, computation time is significantly higher than the 
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Fig.3.16 Formant extraction for an utterance in an Indian 
language Hlndl containing different categories of speech 
segments including nasals and unvoiced. 
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LP or cepstral methods. For the utterance "We were away a year ago" 

the computation time for the proposed method is 40 sec, whereas it is 

20 sec fcr LP and 30 sec for the cepstrum method on a microvax 

Vaxstat ion. 

3.5 Summary 

We have proposed a new method of extracting formant information 

from the speech signal. We have demonstrated that the additive and 

high resolution properties of the group delay functions can be used 

for extracting closely spaced and low amplitude formant information. 

This method for formant extraction gives a more consistent 

performance compared to other methods based upon smoothing the 

magnitude spectrum. This method of formant extraction does not 

depend on any model, hence the formant information obtaimed should be 

a better representation of the underlying nature of the signal than 

that obtained from model-based techniques. These studies show that 

there is a relationship between the spectral flatness and analysis 

parameters, which can be exploited to choose appropriate values of p 

and r. 



CHAPTER 4 

MODIFIED GROUP DELAY FUNCTIONS AND ITS APPLICATION TO SPEECH ANALYSIS 

4.1 Introduction 

In this Chapter we propose new methods of processing group delay 

functions to estimate parameters corresponding to the system and 

source in a source-system model for signal production, where the 

system corresponds to that of an all-pole system and the source may 

be a train of impulses or random noise. Generally the estimation of 

periodicity corresponding to the excitation and the resonances 

corresponding to that of the system are treated as two distinct 

problems. In the methods presented in this Chapter, estimation of 

both system and and source parameters involve similar analysis 

methods. Therefore, both the problems are addressed in this Chapter. 

In the previous Chapter, to overcome the problem of wrapping of 

phase, a mimimum phase group delay function was derived from the 

magnitude spectrum to estimate the vocal tract parameters. In this 

Chapter we suggest a new method of processing the group delay 

function directly. The expression for the computation of the group 

delay function is modified to derive a modified group delay ( E D )  

function. In the K D  function, the large amplitude spikes due to the 

source are suppressed. Parameters corresponding to the system, 

namely, frequencies of resonances are extracted from this modified 

group delay function. 

Periodicity in a signal manifests as a sinusoidal component in 

the spectrum. A modified group delay function for this sinusoidal 

component is obtained. Peaks appear at regular intervals in the 

modified group delay function. The distance between two peaks 



measured in seconds corresponds to the periodicity. 

An approximate isolation of source and system characteristics in 

the modified group delay function is possible because of the distinct 

characteristics of the group delay functions of the source and 

system. In Section 4.2 we study the properties of group delay 

functions for speech-like signals. The basis for the'proposed method 

- modified group delay functions - is discussed in Section 4.3. 

Extraction of both system and source parameters is also discussed in 

Section 4.3. In Section 4.4 the performance of this method for 

different choices of parameters is discussed. The modified group 

delay function has some interesting properties which make it a good 

tool for processing noisy speech. In Section 4.5 we address the 

problem of extracting formants and pitch from both clean and noisy 

speech. We also discuss a method of synthesising speech from formant 

and pitch data. 

4.2 Theory and Properties Group Delay functions 

In the theoretical discussion that follows initially we use 

continuous time and frequency variables and express the transfer 

function in terms of the Laplace transform. This helps us to 

visualise the resonance behaviour of the group delay function 

analytically. Later we use digital signals and the z-plane for the 

computation and discussion of the technique. 

To explain the principle of the method, we consider a cascade of 

M resonators. The frequency response of the overall filter is given 

by 

where (ai + j p i )  is the complex pair of poles of the ith resonator. 



The magnitude spectrum is given by 

and the phase spectrum is given by 

n 2wor 
-1 1  e(o) = & [ w )  = C tan 

2 2 
r (4.31 

1  =1 a 1  + ~ : - o  

It is well known that the magnitude of an individual resonator 

2 
has a peak at w  = 8: - 2 and a half-power bandwidth of a . We now 

1  

consider the negative derivative of the phase spectrum (or group 

delay function) 

It was shown in [B.Yegnanarayana; 19781 that around the 

2 2 
resonance frequency o = p1 - al the group delay funct ion behaves 

1  

like a squared magnitude response. The response due to each 

resonator approaches zero asymptotically for w away from the 

resonance frequency. The overall group delay function is a summation 

of the group delay functions due to individual resonators as can be 

seen from Fig. 4. ld. Fig. 4. la shows the windowed impulse response of 

a 10th order all-pole filter. Figs4. lb, 4. lc and 4. ld show the 

corresponding magnitude, phase and group delay spectra. Note that 

the group delay function (Fig.4.ld) has sharp peaks around the 

resonances due to the squared magnitude behaviour and has very small 

values in between two resonance peaks due to the asymptotic behaviour 

for frequencies away from the resonance frequency. 
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It was shown in [ K. V. Madhu Murthy and B. Yegnanarayana; 1989 I 

that the digitally computed group delay functions accurately 

represent the signal information as long as the roots of the signal 

z-transform are not too close to the unit circle in the z-plane. It 

was noticed that adequate sampling based on the Nyquist criterion in 

the time domain does not necessarily result in proper sampling in the 

group delay domain. Therefore if the group delay function of a 

signal is to processed, the signal should be sampled adequately. The 

sampling frequency required being dictated by the locations of the 

zeros of the signal z-transform. In a source-system model for signal 

production (all-pole system and all-zero source) to estimate the 

parameters of the model corresponding to that of the system, if the 

group delay function corresponding to that of the source is 

eliminated in the overall group delay function, then sampling based 

on the Nyquist criterion will result in proper sampling in the group 

delay domain. This is precisely what is attempted in the technique 

proposed in this Chapter. 

4.3 Basis for the Proposed Method : Hodified Group Delay functions 

4.3.1 &a2ha&bm @ Y@em pnnametena 

In digital processing of signals like speech, the vocal tract 

system and the excitation contribute to the envelope and the fine 

structure, respectively to the spectrum. Techniques used to extract 

resonances from the FT magnitude try to capture the spectral envelope 

and disregard the fine structure. Similarly, to derive the system 

characteristics from the group delay function, the component due to 

spectral fine structure must be deemphasised. These spikes form a 

significant part of the fine structure and their effect cannot be 

eliminated by normal smoothing techniques. 

In our previous attempts [Hema A.Murthy, K.V.Madhu Murthy and 



B.Yegnanarayana; 1989a1, the signal was modified prior to the group 

delay computation to reduce the effect of the spikes in the group 

delay domain. In this technique an attempt is made to smooth the 

phase spectrum and then compute the group delay function. This is 

done by taking the average of complex spectral values at three 

points. el -6w,  w and w + 6 w .  The phase of the averaged spectrum is 

first computed. The group delay function corresponding to this phase 

spectrum is then computed. It was observed that the technique worked 

quite well provided a zero is located at w and there are no zeros at 

w 2 6 w .  It also required a different choice of 6 w  for different 

locations of zeros of the signal z-transform. For practical signals 

like speech, the value of 6 w  cannot be decided apriori as the 

locations of zeros in the signal z-transform are determ3ned by both 

the analysis window and source excitation. 

We now suggest a method for reducing the contribution of the 

fine structure to the group delay function by modifying the 

expression for computing the group delay function derived directly 

from the time domain signal. This modification is based on the 

conjecture that the spikes in the group delay function are caused by 

zeros close to the unit circle. Our initial attempts to compensate 

for the zeros involved modifying the expression for computing the 

group delay function in an adhoc manner which was reported in [Hema A. 

Murthy, K. V. Madhu Murthy and B. Yegnanarayana; 1989bl. We now 

substantiate this conjecture with both a theoretical analysis and 

experimental results and suggest a modification which does not 

involve empirical choice of parameters. 

Any signal can be characterised as the response of an all-pole 

filter to an all-zero excitation, the z-transform of the system 

generating the signal can be written as 



The numerator polynomial N(z) corresponds to the contribution by the 

excitation and the denominator polynomial D(z) corresponds to the 

contribution by the poles of the system. The frequency response of 

H(z) is given by 

where H(w), N(w) and D(w) are obtained by evaluating the 

corresponding polynomials on the unit circle in the z-plane. 

The group delay (negative derivative of the phase) function of 

H(w) is given by 

T(W) = t (w) - tD(w), 
N 

(4.7) 

where t (w) and t (w) are the group delay functions corresponding to 
N D 

N(w) and D(w). We have already discussed the shape and properties of 

-t (w) through equation (4.4) earlier. Although it is difficult to 
D 

derive an analytical expression for tN(w), we can study its behaviour 

in terms of the characteristics of the excitation signal. Since N(z) 

corresponds to the z-transform of the excitation signal, the zeros of 

N(z) close to the unit circle produce large amplitude spikes in 

tN(w). The polarity of the spikes depends on whether the zeros are 

lying inside or outside the unit circle in the z-plane. Figs.4.2 and 

4.3 illustrate the behaviour of r (0) for a random noise sequence and 
N 

impulse train respectively. Note that the log magnitude spectra 

(Figs.4.2b and 4.3b) have nearly a flat spectral envelope with rapid 

fluctuations superimposed on it due to zeros close to the unit 

circle. The group delay function (Figs.4.2d and 4.3d) has large 

random fluctuations around zero. The large positive and negative 

spikes of t (w) mask the details of the resonance peaks due to -rD(o) 
N 



in the combined response t(w). This is illustrated in Figs.4.4 and 

4.5. The signal in Fig. 4.4 corresponds to a windowed version of the 

signal generated by convolving the impulse train (Fig.4.2a) with the 

impulse response (Fig.4.la) of an all-pole system. The group delay 

function (Fig. 4.4d), which is simply the sum of the plots of Fig.4. ld 

and 4.2d shows that the resonance peaks are indeed masked by the 

large amplitude spikes. Note that the vertical scales'in Figs4.ld 

and 4.2d are different, the peak amplitudes in Fig. 4.2d being very 

much larger than the amplitudes in Fig.4.ld. Similar behaviour is 

observed in Fig.4.5, where the signal is a windowed version of the 

signal obtained by convolving the random noise in Fig.4.3a with the 

impulse response (Fig.4.la) of an all-pole system. 

The equation for t(w) can be written as 

where X(w) and Y(w) are the Fourier transforms of the discrete-time 

signals x(n) and y(n)=nx(n), and the subscripts R and I stand for the 

real and imaginary parts, respectively. In the expression for 

computing tN(w), IN(o)I~ appears in the denominator. Small values of 

IN(o) l 2  at frequencies near zeros of N(o) contribute to the large 
2 

amplitude spikes. For computing rD(u), the term ID(w)I appears in 

the denominator. Since D(z) has all the roots well within the unit 

2 2 
circle, JD(u)I will not have very small values as in (N(w)l . Hence 

t (0) will not have large amplitude spikes as in r (0). The combined 
D N 

group delay function is now given by 

T(W) = rN(U) - TD(w) 



where a (w) and a (w) are the numerator terms of (4.8) for r (w) and 
N D N 

rD(w), respectively. 

2 
Suppose we multiply r(w) with I~(w)l , then the contribution due 

to the zeros is significantly reduced. Since the envelope of IN(@) 1 2 

is nearly flat, the significant features (resonance peaks) of the 

second term will still show up, with superimposed fluctuations of 

IN(o)12. The modified group delay function is given by 

2 
r (w) = r(w) JN(w) ( 

In equation (4.10) the contribution of the first term a (w) should be 
N 

small compared to the second term in order to emphasise the group 

delay component of the second term. The analytical proof for the 

case where the excitation is a train of two impulses separated by a 

period To and the system is a single resonance is given in Appendix 

B. Fig.4.6a shows the group delay function of an all-pole filter 

with a single resonance at w . Fig.4.6b shows the zero spectrum 
0 

corresponding to two impulses. Fig.4.6~ shows the plot of the group 

delay function obtained by exciting the said all-pole filter with the 

impulses. Fig.4.6d shows the corresponding modified group delay 

function. Notice that the overall peak of the modified group delay 

function coincides with that of the group delay function 

corresponding to that of Fig.4.6a. 

Therefore, the problem of determining the component due to the 

resonances is reduced to the estimation of the function  IN(^) 12. In 

practice  IN(^) l 2  has to be estimated from the given signal. It is 

2 
important to preserve the values of (N(w) 1 around the zeros so that 

it cancels the small values in the denominator of the first term in 

(4.9). Therefore IN(o) l 2  should retain all the sharp fluctuations 
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Fig.4.6 Estimation of the modified group delay function 
corresponding to that of the system in a source-system model 
for signal production. 



of the log magnitude spectrum and should have a flat spectral 

envelope. We wi 11 show that the second condition is not as critical 
A 

2 
as the first one. An approximation Z(w) to IN(o) 1 can be obtained 

by dividing the signal spectrum (S(o) = I H ( ~ )  12) with a cepstrally 

smoothed spectrum V (w) [ L. R. Rabiner and R. W. Schafer; p. 519, 1978 I. 
C 

That is 

where S(w) is the signal spectrum and V (0) is the cepstrally 

smoothed spectrum of S(w). Figs. 4.4e and 4.5e show the results of 
A 

processing the group delay function using an estimate Z(w) for 

2  IN(^)( derived from a cepstrally smoothed spectrum of the signal. 

The figures show that we have indeed obtained a group delay function 

that is close to Fig. 4. ld. Table. 4.1 gives the algorithm for 

computing the modified group delay function for a given sequence 

x(n). Alternatively, r can be computed by modifying equation 
0 

(4.8) for the computation of the group delay as 

where V (w) is the cepstrally smoothed spectrum of S(w). 

That a (w) is small for an impulse train can be seen from 
N 

Fig.4.4e, where the modified group delay function T (w) is plotted 
0 

for the signal in Fig.4.4a. Note that between two resonance peaks 

the value of r (w) is nearly zero (as discussed earlier) due to the 
D 

additive property of the group delay function. That is why the 

modified group delay function resembles the group delay function for 

the impulse response of the all-pole system as can be seen from 

Figs.4.4e and 4.ld. Note that the modified group delay function in 

Fig.4.4e is obtained by multiplying the function in Fig.4.4d with an 



Table.4.1 Algorithm for Computing the modified group delay function 
from the given signal. 

1. Let x(n) be the given M-pt causal sequence. 

Compute y(n) = nx(n). 

2. Compute the N-pt (N >> MI discrete Fourier 

transform (DFT) X(k) and Y(k) of the sequences x(n) and 

y(n) respectively, k = 0,1,. . .  ,N-1. 

3. Compute cepstrally smmothed spectrum V Ik) of 

I x ( ~ )  1 2 .  
4. Compute the modified group delay function r (k) as 

XR(k)YR(k) + XI(k)YI(k) 
r (k) = . k=O, I,. . . , N-1. 

V (k) 

where R and I denote the real and imaginary parts 

respectively. I 
estimate of the excitation spectrum in Fig. 4.2a. Fig. 4.5 i 1 lustrates 

similar results for the random noise excitation. Later in the 

experiments we show that for a variety of excitation functions a (w) 
N 

is small. 

However, it is important to note that the location of a zero 

(due to the excitation) in the z-domain must not coincide with the 

location of a pole corresponding to that of a resonance. It will not 

be possible to suppress the information corresponding to that of 

source using the modified group delay. 

4.3.2 &&um%n 4 Yaumx pahameterccL 

In this Section we show that the characteristics of the modified 

group delay function discussed in the previous Section can be used to 

derive the periodicity in the excitation signal. Assume that the 

excitation is periodic with some period T . Let us consider the 
0 

z-transform of two impulse separated by To. Then 

-T E(z) = 1 + z 0, (4.13) 

IE(u) l 2  = 2 + 2coswTo. (4.14) 



2 
In the frequency domain JE(u) 1 has a periodic component with 

period 1/T (pitch frequency). If a zero spectrum, corresponding to 
0 

the FT magnitude spectrum with a flat spectral envelope, is derived 

for a voiced speech segment, then. the resulting signal contains a 

sinusoidal component with period 1/T. We now replace w by n and T 
0 0 

by w and remove the dc component to obtain a signal 
0 

s(n) = cosnw , n = 0,1,. . . ,N-1. (4. 15) 
0 

The z-transform of this signal is given by 

We use the technique described in Table.4.1 to derive the modified 

group delay function (r (w)) corresponding to this signal s(n). The 

numerator polynomial of (4.16) corresponds to the zeros due to the 

finite window applied in the time domain. The argument used in the 

previous Section applies for the suppression of window zeros also 

Fig.4.4f shows the modified group delay function r (w). 
S 

4.4 Effects of Various Parameters 

While the group delay function has many interesting properties, 

its computation in the digital domain causes some problems. We have 

conducted a series of experiments to study the robustness of the 

proposed technique. The choice of the experiments is based upon the 

discussion given in an earlier paper [K.V.Madhu Murthy and 

B.Yegnanarayana; 19891 and our own experience with the use of group 

delay functions over the past several years. 

Composite signals of the form shown in equation (4.17) below are 

used in these experiments. Each signal is obtained as the response 

of a cascade of five resonances to a train of impulses separated by a 

2 3 
period p. The amp1 itude of the impulses are 1, ;I, ;I , ;I , . . . . The 

composite signal is given by 



where x(n) is the basic signal corresponding to the impulse response 

of the system. Taking the z-transform of the above equation we get 

This signal contains 5 pairs of complex conjugate pole pairs located 

inside the unit circle in the z-plane due to the basic'signal. The 

distributon of zeros and the number of zeros are determined by the 

values ;r and p respectively. If 7 = 0 ,  we only have the basic 

signal. In the following experiments a particular parameter is 

varied, the modified group delay functions, t (w) corresponding to 

the vocal tract system and r (w) corresponding to the source are 

computed. The performance is judged by comparing (i) r (w) with t(w) 
0 

for the system for synthetic signals and (ii) t (0) and the time 

domain signal for source information. 

A few comments are given here to explain the organisation of the 

plots in our studies. For each case we have given the time domain 

signal usually of 256 samples, followed by the log magnitude spectrum 

of the signal. A 16th order LP spectrum is superimposed on the log 

magnitude spectrum. For synthetic signals the LP spectrum 

corresponds to the ideal log magnitude spectrum of the system. Our 

main aim is to show that it is possible to process the Fourier 

transform phase through the group delay functions. Therefore in each 

figure the phase spectral plots are given to illustrate the nature of 

the phase data due to wrapping. This wrapping problem is absent in 

the group delay function plot as the group delay function is computed 

directly from the time domain signal. However, the group delay 

function appears to be featureless due to effect of zeros close to 

the unit circle. In the modified group delay plots, the features 



corresponding to system and source are emphasised. In all the 

figures vertical scale is not explicitly mentioned, since we are only 

looking at the features in the plots. 

Experiment No.1: Effects of various analysis parameters 

We have considered the effect of each of the following 

parameters on the modified group delay function and the resulting 

smoothed log magnitude spectrum : 
A 

(a) Size of cepstral window to derive Z(w) in eq. (4.11) or eq. (4.12) 

to derive Vc(w). 

(b) Size and shape of the analysis window for the signal. 

(c) Proximity of zeros to the unit circle by varying 7 in eq.(4.17). 

(dl Number of zeros by varying p in eq. (4.17). 

(el Proximity of resonances. 

Experiment No.la : We have found that the modified group delay 

function is almost the same over a range 4 to 20 samples of cepstral 

window used to derive V (0) in eq. (4.1.2) (Fig. 4.7). 
C 

Experiment No-lb : Effect of windows : For this experiment we set 7 

= 1 in equation (4.17). The plots for four different windows are 

shown in Fig.4.8. The interesting part of these results is that the 

fluctuations caused by zeros due to windows are practically 

eliminated in r (LO). However, the window effect is reflected in the 
0 

bandwidth of the resonances of the vocal tract system as seen from 

r (w) corresponding to the system. Note that the resonances are 
0 

sharp for the rectangular window compared to that for the Hann 

window. This is a significant result because one of the most 

important problems in signal processing is to overcome the ripple 

effects in the spectrum caused by the window in the time domain. The 

windows do not seem to affect the estimation of the source parameters 

as can be seen from the r (0) corresponding to the source excitation. 
s 

85 







Experiment No.1~ : Effect of varying the proximity of zeros to the 

unit circle : From equation (4.17) it is seen that by changing the 

value of r ,  which is the ratio of the amplitudes of two successive 

impulses, we can move the zeros along a radial line in the z-plane. 

An experiment was conducted in which y was varied from 0.75 to 1.25. 

Fig.4.9 shows the modified group delay functions t (w) and tS(w), for 

different values of r .  Notice that the location of the resonances and 

periodicity are clearly visible in the modified group delay functions 

r (w) and t ( w ) .  
0 s 

Experiment No.ld.: Effect of number of zeros : To study the effect of 

number of zeros on the estimation of system and source information 

we performed the following experiments. The delay p determines the 

number of zeros in the z-plane. Thus by varying p the number of 

zeros in the z-plane can be varied. The value of p is varied from 

50-130. Fig.4.10 shows the results. Notice that the effect of the 

number or zeros on the group delay function is considerably reduced 

in the modified group delay function of t (w) while r (w) is not 
0 s 

significantly altered. 

Experiment No.1e : Proximity of resonances (Resolution properties) : 

In this experiment the resonances F (2nd) and F (3rd) are brought 
2 3 

close to each other. The difference between the resonances is 

reduced from 500 Hz to 100 Hz (Fig.4.11). In all cases the resonances 

are resolved in the modified group delay function. It should be 

noted, however, that the limit on the resolution of the formants 

peaks is governed by the size of the data window, since our starting 

point is still the Fourier transform of the given data for 

computation of the modified group delay function. r ( w )  is not 
s 

plotted here as this experiment is not relevant for estimating the 

periodicity in the signal. 
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Experiment No.2: Different Types of Excitation Functions 

So far we have considered the response of an all-pole system to 

a sequence of periodic impulses. In this experiment we compare the 

modified group delay functions derived from signals generated using 

four different excitation functions : (a) An impulse sequence 

separated by a period (100 samples) (b) Synthetic glottal pulse 

sequence as defined by Rosenberg [ L. R. Rabiner and R. W. Schafer, p. 103. 

19781 and (c) Glottal pulse sequence with radiation load [L.R.Rabiner 

and R. W. Schafer, p. 102, 19781 and (dl Uniformly distributed random 

noise. The choice of these excitation functions is based upon the 

model signals used for the excitation in the speech production 

mechanism. Fig.4.12 shows the results for the different excitation 

functions. We can see that the effect of these excitation functions 

on the modified group delay functions is minimal. This is due to the 

fact that all the excitation functions are finite duration signals 

which introduce zeros in the z-plane. 

Experiment No. 3: Natural Speech 

In this experiment we consider different segments of natural 

speech. Fig.4.13 shows the plots for four consecutive segments of 

speech chosen arbitrarily from an all voiced utterance. The results 

show that the formant and pitch information are preserved in the 

modified group delay functions. 

Experiment No.4: Noisy Speech Data 

In this experiment we consider an arbitrarily chosen segment of 

synthetic speech which is corrupted by additive white Gaussian noise. 

The signal-to-noise ratio (SNR) is progressively decreased. The 

effect on the modified group delay function is shown in Fig.4.14. 

Notice that significant features are preserved even when the SNR is 0 

dB. This point is also illustrated in Fig.4. 15 for natural speech. 
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Experiment No.5: Formant and Pitch Extraction from Speech: 

From the various experiments done so far we can conclude that 

the modified group delay functions derived for the source and system 

can be successfully used to estimate parameters of model 

corresponding to the system and source from natural signals like 

speech. For speech signals the peaks of the smoothed ' K D  (system) 

should correspond to formants and the distance of the first peak from 

the origin measured in seconds of the MCD (source) should correspond 

to pitch. Fig.4.16 shows an utterance "We were away a year ago" as 

spoken by a male speaker and the corresponding pitch and formant data 

obtained using modified group delay functions. 

4.5 Speech Enhancement Using Modified group Delay functions 

4.5.1 &atimatian @ 7- @am N a i s y  Y@ 

In this section we develop the theory and discuss a technique 

for enhancing the characteristics of the vocal tract system from 

noisy speech. The characteristic we are looking for are the 

formants(resonances) of the vocal tract system and the pitch period 

of the glottal excitation. We ignore for the time being the effects 

of data windows. 

We define our problem as follows: 

Given a naisy signal 

x(n) = e(n)*h(n) + u(n) (4.19) 

where h(n) is the impulse response of the all-pole system G/A(z) and 

e(n) is either a periodic train of -pulses or random noise sequence, 

determine the resonances of the all-pole system and periodicities of 

the excitation signal. 

Equation (4.19) can be expressed in terms of z-transform as 

X(z) = E(z)H(z) + U(z)  (4.20) 

H(z) = G/A(z) (4.21) 



The frequency response is given by 

X(w) = V(w)/A(w) (4.23) 

V(w) = GE(w) + A(w)U(w) (4.24) 

The group delay function is defined as the negative derivative 

of the Fourier transform(FT) phase of a signal. Let t.(w), rV(w) and 
X 

t (0) represent the group delay functions corresponding to X(w), V(w) 
A 

and A(w) , respectively. Then 

tX(w) = tV(w) - tA(@) (4.25) 

The additive noise in equation (4.19) introduces new zeros and 

redistributes the zeros of the given signal. If the noise is not too 

high the modified group delay function can be used to estimate the 

pitch period and location of formants from noisy speech also. 

Fig.4.17 shows the utterance of Fig.4.16 corrupted by white Gaussian 

noise and the corresponding pitch and formant data. The overall SNR 

is 3dB. The SNR as a function of time is superimposed on the pitch 

and formant data. 

4.5.2 Y p e d l  9'- 

The formant and pitch data obtained in the previous section are 

used in the formant vocoder (discussed in Chapter 3) to synthesise 

speech. The formant bandwidths are fixed as a percentage of the 

formant. Although there is a significant difference in 

intelligibility it is observed that the naturalness is almost 

completely lost. 

4.6 Summary 

In this Chapter we have proposed a new technique for processing 

the Fourier transform phase spectrum of the speech signal to estimate 

the parameters corresponding to the vocal tract system and excitation 

source. The standard phase spectrum is considered difficult to 





interpret due to the artifacts introduced by the zeros of the 

z-transform of the excitation function and data windows. We have 

proposed a technique to process the phase in which the effect of 

zeros is significantly reduced. The main results of this study are: 

( 1 )  The fluctuations caused by zeros are reduced. 

( 2 )  The effects of time window functions are significantly reduced. 

( 3 )  The most significant result is that it seems possible to estimate 

both formants and pitch from natural speech even at low SNRs. 

(4) Although it is not possible to estimate the bandwidths 

corresponding to formants it is still possible to synthesise 

intelligible speech from formant and pitch data alone. 



CHAPTER 5 

SPECTRUM ESTIMATION USING MODIFIED CROUP DELAY FUNCTIONS 

5.1 Introduction 

Estimation of the power spectral density (PSD) or simply 

spectrum of discretely sampled deterministic and stochastic processes 

is usually based on procedures employing the Discrete Fourier 

Transform (DFT). Specifically the PSD of a discrete time signal may 

be defined as follows : 

Consider a discrete time deterministic signal x(n) which is 

complex valued and absolutely summable, i.e. the signal energy is 

finite, then 

w 

" x(n) l 2  5 w (5.1) 

L 

the DFT exists and is defined by 

w - jwn X(w) = C x(n)e (5.2) - 
n=w 

L 

The square modulus of the DTFT X(w) is often termed the spectrum of 

Parseval ' s theorem 

w 

lx(n) l 2  = ImlX(w) 12dw (5.4) 
n=w - w 

I 

is a statement of the principle of conservation of energy; the energy 

of the time signal is equal to the energy of the frequency domain 

transform S(w)dw. Thus S(w) is an energy spectral density in that r' -w 

it represents the distribution of energy as a function of frequency. 

For the case when x(n) is a realisation of a stationary random 

process, the power spectrum is computed indirectly through the 

autocorrelation function. The Wiener Khinchin theorem states the 

relation between power spectrum S(w) and the autocorrelation 



sequence R (m)corresponding to the discrete time sequence x(n) : 
XX 

R (m) = ~[x(n+m)x*(n)] 
XX 

(5.5) 

w 

S(o) = C R (m)e - jom 
XX 

(5.6) 
m=-IX 

where E is the expectation operator. 

In practice the statistical autocorrelation function is not 

known. An additional assumption that is made is that, the process is 

ergodic in the first and the second moments and equation (5.5) is 

replaced by a time average rather than ensemble average : 
w 

R (m) = 1 x(n+m)x*(n) 
XX 

(5.7) 
n = - w  

For both deterministic and non deterministic signals, the data 

is available only at a finite number of points, namely, x . . . , x 
0' N-1 

and the estimate of S(o) is given by 

N-  1 

S(o) = 1 C R (m)e 
- jom 

- X X  N m=O 

and S(w) is defined in the interval 1-n,+nl. In practice R (m) is 
X X  

replaced by (5.7) for nondeterministic signals and S(w) reduces to 

equation (5.8). 

Thus the estimation of the power spectral density reduces to one 

of esimation of the FT magnitude spectrum. When the discrete Fourier 
A 

transform (DFT) is used to compute the PSD, the estimated PSD S(uk) 

is available only at a discrete set of frequencies i.e. 
A 

S(ok) = S(") (5.10) 

This spectrum estimate is called the periodogram. 

The finite length requirement for practical signals means that 

the signal is multiplied by a rectangular window, and the overall 

transform is a convolution of the true transform with that of the 

window transform. If the true power spectrum is concentrated in a 



narrow bandwidth, this convolution will spread the spectrum into 

adjacent frequency regions. This phenomena is called leakage. Thus 

the data window is a primary factor that determines the frequency 

resolution of the periodogram. Leakage effects are reduced by an 

appropriate choice of windows with non uniform weighting. But the 

price paid for a reduction in the sidelobes is always a broadening in 

the main lobe of the window transform, which in turn decreases the 

resolution of the spectral estimate. 

In the parametric approach to spectrum estimation a model is 

used to extrapolate the data outside the window. It is then usually 

possible to obtain a better spectral estimate based on the model by 

determining the parameter of the model from the observation. 

The spectrum analysis in the context of modelling becomes a 

three step procedure : (i) selection of a model, (ii) estimation of 

parameters for the assumed model and (iii) obtain spectral estimates 

from the model parameters. The degree of improvement in resolution 

and spectral fidelity, if any will be determined by the ability to 

fit an assumed model with a few parameters derived from the measured 

data. 

Although there are a number of performance advantages that may 

be obtained using model based methods, the advantages strongly depend 

upon the signal-to-noise ratio (SNR) as might be expected. In fact 

for low S N k ,  the spectral estimates based on modelling are no better 

than those obtained using conventional DFT processing. 

In this Chapter we suggest an alternative to the periodogram 

approach to spectrum estimation. This method is based on the 

modified group delay function defined in Chapter 4. In Chapter 4 we 

saw that the modified group delay function could be successfully used 

to estimate parameters from natural signals like speech. We also saw 

in Chapter 4 that the modified group delay function was also 



successful in estimating parameters from noisy speech. It is worth 

noting that no assumptions (about the mechanism for generating the 

signal) were explicitly used in the algorithm for estimating the 

modified group delay function. In this Chapter we show that the 

modified group delay functions can be used to address the general 

problem of spectrum estimation. 

In Section 5.2 we discuss the proposed method of spectrum 

estimation using modified group delay functions. In Section 5.3 we 

demonstrate the results of this approach to spectrum estimation 

through several illustrative examples. In particular we consider two 

examples, namely, (i) estimation of sinusoids in noise and (ii) 

estimation of narrow band auto-regressive (AR) processes in noise. 

In Section 5.4 we compare the performance of the proposed method of 

spectrum estimation with that of the periogram approach. Resolution 

is primarily dictated by the size of the data window as per the 

standard time bandwidth product relation. 

5.2 Principle of the Method: 

As mentioned before, our objective is to estimate the spectral 

features of an autoregressive process or a sinusoidal process in 

noise using the properties of Fourier transform phase, or 

equivalently using group delay functions. 

Let us consider the output x(n) of an autoregressive process 

s(n) corrupted with noise u(n). 

That is 

x(n) = s(n) + u(n) 

where S(z) the z-transfrom of s(n) is obtained as 

E(z) is the z-transform of the excitation sequence e(n), where e(n) 

is white Gaussian noise with variance unity, and G/A(z) is the 



all-pole system corresponding to the autoregressive process. Now 

X(z) = 
CE(z) + U(z)A(z) - V(z) - -  (5.13) 

A(z) A(z) 

The group delay function of X(z) in terms of the group delay 

functions of V(z) and A(z) is given by 

Tx(u)*= T (u) - T (w) 
V A 

(5.14) 

The Fourier transform of x(n) is given by 

X(u) = CE(w) + A(w)U(w) 
A(@) 

(5.15) 

For low noise levels the first term CE(w) dominates and hence the 

group delay function t (0) of X(z) behaves almost like the group 
X 

delay function t (w) of S(z) (noise free case). For high noise 
S 

levels two cases have to be considered separately: (a) Regions (say 

E) of frequency where the values of ( A( w) 1 are not small ( i . e, not 

near zero) and also the shape of IA(u) 1 curve is smooth, and (b) 
Regions (say R)  of frequencies where the values of JA(u)( are so 

small that the first term in V(z), namely GE(z), dominates. In 

regions the group delay function t (o) corresponding to the v 

numerator polynomial of Eq (5.13) behaves like for any noise 

sequence. That is, there will be large positive and negative spikes 

depending on the roots of V(z) in the region E. In the regions R the 

group delay function tV(w) still will have large amplitude spikes of 

either polarity, but this time they are contributed by the roots of 

V(z) in the region R, where the first term in V(z) dominates. Thus 

in both the regions and R the group delay function behaves like 

that for a noise sequence, but due to different sources of noise. 

The most important point is that the spiky nature of the group delay 

function t (0) is not affected significantly by the presence of A(z) 
X 

in the numerator. This is the reason why the first term tV(w) in 

T (0) is distinct from the second term t (w). So the characteristics 
X A 



of the second term can still be estimated by suppressing the spikes 

in the overall group delay function rx(o). That this works even for 

very low noise levels is obvious from this argument. 

The basis for our new spectrum estimation procedure is to 

suppress the large amplitude spikes in rX(w) due to ry(u) in order to 

highlight the desired components r (w). To suppress the spikes due 
A 

to noise, it is necessary to identify their locations and then reduce 

their amplitudes. To do this we can take advantage of the modified 

group delay function derived in Chapter 4. The modified group delay 

function in the context of spectrum estimation is used to suppress 

the zeros that are introduced by additive noise and the zeros that 

are introduced by the data window. If the modified group delay 

function can be thought of as an approximate estimate of'the group 

delay function corresponding to that of a minimum-phase system, the 

relationship between group delay functions for minimum phase signals 

can be used to estimate the spectrum of the given signal. 

For minimum phase signals we saw in Chapter 2 that r (w) = 
P 

r (w), where r (w) and r (o) are the group delay functions derived 
m P m 

from the phase and magnitude respectively. Using the relationship 

between the cepstral coefficients and the group delay function, the 

spectrum can be derived. Table.S.l gives the algorithm for computing 

the spectrum using modified group delay functions. 

5.3 I1 lustrations 

We consider two types of problems for illustration. 

Example-:: Autoregressive process in noise (estimation of the AR 

spectrum) 

xl(n) = s(n) + u(n) 

where the excitation e(n) is white Gaussian noise of variance unity 



Table 5.1 Algorithm for computing the spectrum from the Modified 
group delay function ro(k). 

1. Compute the estimate of the weighted cepstrum from 

t (b) as follows. Compute N-pt IDFT of t (k) 
0 A 

c(n) = IDFT[t (k31 ,n = 0,1,. . . ,N-1. 

2. Form the sequence c (n) 
1 

c1 ( 0 )  = 0 

3. Compute the N-pt DFT of cl(n) 

Xl(kl = DR:[cl(n)l, k = 0,1, . . . ,  N-1 
4. Compute 

lnl~~(k) I = Real[Xl(k)l. 

2*ln\xS(k) I is the estimated smoothed spectrum as 

obtained from the modified group delay. 

and u(n) is an additive noise with variance dependent upon the 

desired signal-to-noise ratio (SNR). The values of the coefficients 

are: a = -2.760, a = 3.809, a = -2.654 and a = 0.924. 
1 2 3 4 

Example-2: Two sinusoids in noise (estimation of frequencies of 

the sinusoids) 

x (n) = ~exp[j2~(0.l0)n1 
2 

+ m e x p [  j2~(0. l5)nl + u(n3 (5.18) 

where u(n) is an additive white Gaussian noise with the variance 

dependent upon the SNR. These examples are similaj- to the ones used 

in [S. M. Kay; 19881 for discussion of periodogram estimates. We 

assume a sampling frequency of lOkHz and number of samples N=256 for 

Example-1, and N=100 for Example-2. Different realizations of xl(n) 

and x (n) are obtained by using a different noise sequence each 
2 

time. 

Figs. 5.1, 5.2 and 5.3 give the periodogram, group delay function 

and the new magnitude spectrum estimates of the autoregressive 

process from the noisy signal (SNR = 20dB) of Example-1. Figs. 5.la, 



5.2a and 5.3a show the plots for a single realization of clean the 

data. Figs. 5. lb, 5.2b and 5.3b show the plots for 50 realizations of 

the data. Figs. 5. lc, 5 . 2 ~  and 5 . 3 ~  show the averaged plots. It is 

to be noted that, as expected, periodogram estimate has large 

variance (Fig.5.lb). Reduction of fluctuations by averaging several 

periodograms introduces large bias IS. M. Kay; 1988 I. 'The fluctuation 

is significantly reduced in the estimated group delay'functions and 

the spectra estimated from the group delay function (Figs.5.2b. 

5.3b). Figs. 5. la, 5.2a and 5.3a show that it is possible to reduce 

the fluctuations even by processing a single realization. In fact a 

single realization seems to restore all the information that can be 

obtained from averaged plots (Compare Fig. 5.3a with 5.3~). Note also 

that averaging reduces the dynamic range in periodogram (Figs. 5.la 

and 5.1~) whereas averaging group delay functions does not seem to 

affect the dynamic range (Figs. 5.3a and 5.3~). 

Although we have not discussed the theory, we have applied our 

method for estimating sinusoids in noise. The results are shown in 

the plots given in Figs. 5.4, 5.5 and 5.6 for SNR = 20dB. Our method 

works well even for estimating sinusoids in the presence of noise. 

The same general conclusions as for the autoregressive process hold 

good for sinusoidal process regarding variance and bias of the 

estimates. 

Note that the finite data window also produces large spikes in 

the group delay function. But division by the cepstrally derived 

smoothed magnitude spectrum suppresses the sidelobe effects of the 

window also. This way the estimated magnitude spectrum from the 

group delay function is less dependent on the window. However the 

resolution of the spectral peaks is dependent on the size of the 

window and that effect can be seen in the estimated spectrum from the 

group delay function. Fig.5.7 shows the plots for noise free 
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single realisation (clearsingle realisation (cleannoise (a) single 
data) (b) 50 overlaid data) (b) 50 overlaid realisation (clean data) 

realisations (SNR = 20 realisations and (c) (b) 50 overlaid 

dB) and (c) Average of Average of realisations. realisations and (c) 
real isat ions. Aderage of realisations. 
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sinusoidal data for different types of windows (Rectangular, Hamming, 

Hann and Nuttall) [S.L.Marple;19871. While the sidelobe effects are 

reflected in the periodogram spectrum (Fig.5.7a) in both the dynamic 

range as well as in the width of the mainlobe, the corresponding 

group delay function plots (Fig.5.7b) do not seem to be affected by 

the sidelobes. THe effective window size is reflected in the width 

of the spikes in the group delay function, with smallest width for 

the rectangular window and largest width for Nuttall window. The 

window size effect can be more explicitly seen in Fig.5.8, where the 

plots are given for different sizes (512, 128, 32, 16 and 8 

respectively) of the rectangular window. As before the window size 

seems to affect the width of the peaks in the group delay functions 

But the sidelobe effects are almost suppressed. 

What is achieved by the new method is that we can estimate a 

spectrum with fluctuations suppressed, preserving the resolution 

properties of the periodogram estimate. The frequency resolution 

limit is set by the data window size. We can see the effect of the 

window size on the frequency resolution in Fig.5.9, where the 

periodogram, group delay and derived magnitude spectrum are shown for 

different spacings of frequencies of two sinusoids of equal 

amplitudes using 128 samples of the data. Note that upto 60 Hz 

separation, the two frequencies are resolved with 12.8ms of data. 

Fig. 5.10 shows the plots for the sinusoids with different 

amplitudes. The fluctuations due to sidelobes are reduced even when 

the amplitudes are significantly different. That is, the periodogram 

resolution features are reflected in the group delay function without 

sidelobe effects. 

Figs.5.11 and 5.12 show the results of the estimated spectra for 

different noise levels (SNR = lOdB, SNR = OdB, SNR = -10dB). In 

Figs.5.11 and 5.12 the plots for noisy data are presented as an 
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average of 50 realisations.The features are restored with few 

spurious peaks in the averaged spectral plots shown in Figs 5.11 and 

5.12. The desired spectral features are seen even for SNR = -10dB. 

These results show that the proposed method works even for high noise 

levels. Note that model based AR spectrum estimation will not work 

for noisy data [S.M. Kay; 19881. Fig.5.13 gives a comparison of the 

performance of our method of spectrum estimation with Byrg's 

method[S.M.Kay; 19881. The data consists of 256 samples of AR 

process in noise. The Burg's method uses an 8th order model. Note 

that the group delay function preserves the resolution properties of 

the periodogram, with much less fluctuations, even for low SNR. 

Unlike periodogram spectrum, the group delay method restores the 

dynamic range of the AR spectrum even at high noise levels. Model 

based techniques fail to resolve the peaks at high noise levels (SNR 

< 5dB). If the order of the model is increased, more spurious peaks 

will be generated. Superiority of our method in resolving peaks and 

reducing spurious peaks is evident from the figure even for low 

values of SNR. 

5.4 Bias-Variance Calculations 

It is difficult to obtain analytical expressions for bias and 

variance for the spectrum estimated using modified group delay 

functions. In the spectrum estimated using the modified group delay 

functions the scale factor is lost as the value of c(O), the zeroth 

cepstral coefficient is not available. 

To gzt a feel for the bias the averaged periodogram estimates 

and group delay spectrum estimates are obtained as follows. If SN(u) 

is the estimated spectrum using a datalength of N, the average of 50 

realisation is obtained as 
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where is ~'(wl is the estimated spectrum for a realisation and N is 
N R 

the number of realisations. In the examples given, NR is 50. In the 

examples that follow we only consider the AR process in noise. This 

is because it is possible to compute the true AR spectrum from the 

known AR coefficients. We superimpose the true AR spectrum plot on 

each of the estimated spectra. We consider two different cases for 

illustration (il Comparison of the proposed method with' that of the 

periodogram approach for different datalengths for AR process in 

noise and (ii) Comparison of the proposed method with that of the 

periodogram approach for different noise levels for a fixed 

datalength (256 samples). It is observed that there is hardly any 

significant difference between the group delay method and the 

periodogram method for different datalengths as indicated in 

Fig.5.14. For different noise levels we observe that the bias in the 

estimates for the group delay method are much less than that of the 

estimates obtained using the periodogram approach. This is 

illustrated in Fig. 5. 15. 

For variance calculations, the variance of estimate was computed 

as : 

where S ( w )  is the average of the spectral est imate obtained through 

Eq(5.19). We now superimpose the plots of the estimated variance for. 

the periodogram and group delay spectrum for (i) different 

datalengths of AR process (noiseless case) (ii) AR process in noise 

for a fixed datalength (256 samples) and (iii) sinusoids in noise for 

a fixed datalength (256 samples). For both the cases of the AR 

process we find that the variance of the group delay derived spectrum 

estimates is considerably larger than that of the variance of the 

periodogram estimates especially in the region corresponding to the 
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location of resonances (Figs.5.16-5.17). In fact, the behaviour is 

not consistent in that it seems to be neither dependent on datalength 

or SNR. For sinusoids in noise the variance is significantly lower 

for the MGD estimate than that of the peridogram estimate for low 

noise levels. For high noise levels, for example -10 dB we observed 

that the variance of the estimated spectrum using group delay method 

become larger than that of the periodogram estimates for the same 

noise level as shown in Fig.5.18. 

The difference in the behaviour of the variance for the case 

sinusoids and AR process may be due to the location of the zeros. 

For sinusoids the window zeros are uniformly distributed around the 

unit circle in the z-domain. As long as the window zeros are not 

significantly disturbed, the variance is low. At high'noise levels, 

for examples, -10 dB, there is a possibility that the window zeros 

are significantly disturbed. This results in large variance of the 

spectrum derived from group delay as indicated in Fig.5.18. For the 

AR process, the excitation is Gaussian noise and the zeros are not 

uniformly distributed in the z-domain. As mentioned in Chapter 4 the 

proposed method works provided that a zero (which may be due to the 

excitation, noise and window effects) does not lie close to a 

resonance. For .the case of sinusoids in noise it is possible to 

choose an appropriate window apriori (both shape and size) as the 

location of window zeros in the z-domain does not change for 

different realisations. For the AR process as the excitation is 

Gaussian noise it difficult to choose the window shape and size 

apriori, as the distribution of excitation is quite random in 

z-domain. 

5.5 Summary 

In summary we have proposed a method of spectrum estimation that 

(a) reduces fluctuations caused by the variance of noise and window 
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sidelobes (b) has less effect on the bias, (c) restores the dynamic 

range and preserves the resolution of a periodogram estimate (dl 

works even for high noise levels and (el performs better than 

model-based methods for noisy data, because resolution does not 

depend on factors like model order and spurious peaks are nearly 

absent even at high noise levels. However, comparison with 

model-based methods for short data records is not apt, because 

knowledge of the model definitely gives a better resolution than the 

periodogram estimate. Thus the proposed technique in its present 

form is not suitable for short data record analysis. 



SUMMARY AND CONCLUSIONS 

6.1 Summary 

The studies presented in this thesis represent an attempt to 

process the Fourier transform phase of signals for feature 

extract ion. 

Conventional methods for processing signals for parameter 

extraction rely heavily on the information that is available in the 

magnitude spectrum (or power spectrum (square of magnitude spectrum)) 

of the signal. This is because the features of a signal, for example 

periodicity manifests itself as picket fence harmonics in the 

magnitude spectrum of the signal, while they appear as phase 

transitions in the phase spectrum. But the phase spectrum of a 

signal is available only in wrapped form (restricted to the interval 

2x1. The phase appears to be featureless and is hence difficult to 

interpret. If the phase spectrum of a signal is to be processed it 

should be first of all available in a unwrapped form. Although some 

algorithms are available for unwrapping the phase function, they are 

quite complex and do not work for all kinds of signals. 

An alternative to processing the Fourier transform (FT) phase 

spectrum of the signal is processing the group delay function of the 

signal. The group delay function of the signal is defined as the 

negative derivative of the FT phase spectrum. The group delay 

function is easier to process (when compared to the phase spectrum) 

because it does not suffer from the wrapping problem and can be 

computed directly from the time domain signal. The focus of the 

research effort in this thesis is development of algorithms for 

processing the group delay function in a manner similar to that 

developed for processing the FT magnitude spectrum of a signal. 



The group delay function suffers from the problem of poor 

sampling when the roots of the z-transform of the signal lie close to 

the unit circle in the z-domain. The poles of a signal that is 

generated as the output of a stable system are guaranteed to lie 

within the unit circle in the z-domain. But the zeros may lie 

within, on or outside the unit circle. To estimate parameters from 

the signbl through group delay functions we must first8of all be able 

to remove the zeros in the signal that lie on the unit circle. This 

is no trivial task as it is in general impossible to know the exact 

locations of the zeros apriori. Assuming a restricted task, namely 

estimating the parameters of the system in a source-system model for 

signal production (all-zero source and all-pole system), a group 

delay function with minimum phase characteristics is est'imated from 

the given signal. This is similar linear prediction analysis where 

minimum phase component of the spectrum is computed from the given 

signal. Application of this minimum phase group delay function 

for formar: extraction is studied. 

Another method for processsing the group delay function that is 

developed is the derivation of the modified group delay function 

directly from the standard group delay function. This approach is 

similar to the cepstrum analysis approach for processing the spectrum 

of a signal. In the modified group delay function approach to 

processing the group delay function of a signal, two different group 

delay functions are derived from the signal, one corresponding to 

that of the source and the other corresponding to that of the system. 

Application of these two functions for extraction of the model 

parameters in a source system model for speech, namely, pitch and 

formants is explored. 

The modified group delay function has the property that the 



zeros of a signal are suppressed, irrespective of whether the zeros 

are due to the source or not. Application of modified group delay 

function to process noisy speech is studied (as additive noise can be 

thought of as introduction of new zeros at random locations in the 

signal). Pitch and formant data are extracted from noisy speech and 

they are used used in a formant vocoder to synthesise speech. 

The relationship between the group delay function of a minimum 

phase system and the spectrum is used to estimate the power spectrum 

of the signal from the modified group delay function. Application of 

the modified group delay function to estimate the spectra of random 

processes in noise is studied. 

6.2 Major Contributions of the thesis 

The most important contribution of this thesis is that it 

represents an attempt to process the phase spectrum of a signal for 

parameter extraction. 

At first we are only able to estimate a minimum phase group 

delay function from the signal, but ultimately we arrive at an 

estimate of the power spectrum of the signal from the group delay 

function. 

The strength of the proposed techniques seems to be that no 

model is forced on the signal. Therefore, the parameters estimated 

using the methods developed in this thesis should represent the 

underlying characteristics of the signal more accurately. 

The, following algorithms are developed for speech analysis and 

spectrum est imat ion : 

(a) A new algorithm for formant extraction from speech using a group 

delay function derived from the FT magnitude spectrum. 

(b) A new algorithm for formant extraction from speech using a 

modified group delay function derived from FT phase. 



(c) A new algorithm for pitch extraction from speech using the 

modified group delay function. 

(dl A procedure to enhance speech using the data obtained in (b) and 

(c) for noisy speech. 

(el A new algorithm for spectrum estimation using modified group 

delay function. 

6.3 Criticisms of the work 

The major drawback of the work presented in this thesis seems to 

be the computational requirement. All the techniques developed are 

computationally expensive and therefore their use cannot be justified 

in practice. 

Also most of the results presented are based on conjectures 

about the behaviour of signals. In most cases, we therefore 

substantiate our conjectures by simulation studies rather than 

through sound theoretical analyses. 

To list some of the issues : 

1. The proof of the fact that the signal derived from the magnitude 

spectrum in Chapter 3 is minimum phase is not established 

analyt'ical ly. 

2. To estimate the modified group delay function in Chapter 4 a zero 

spectrum derived. It is observed that the approximate zero spectrum 

obtained is imperfect, in that the information corresponding to the 

resonances of signal is not completely suppressed in this spectrum 

(especially low frequency formants). Therefore, the regions 

corresponding to resonances in the modified group delay function are 

further emphasised by the remnant resonance information in the zero 

spectrum. 

Therefore, estimation of an exact zero spectrum to suppress the 

zeros due excitation is still an issue. 



3. In Chapter 5 most of the explanation are based on conjectures. 

No attempt is made to estimate the scale factor of the spectrum. 

Also analytical expressions for bias and variance are not given to 

evaluate the performance of the proposed method of spectrum 

estimation quantitatively. 

6.4 Directions for future work 

The work presented in this thesis uses a nonmodel based approach 

to processing the Fourier transform phase of signals. No attempt is 

model to phase spectrum corresponding to that of the system or 

source. 

Although it may not be possible to model the wrapped phase, it 

may be possible to model the group delay function corresponding to 

that of the system. The advantage of a model-based approach to 

group delay processing of signals may be that group delay processing 

can be extended to analysis of short-data records. 



A.1 Additive and High Resolution Property of Croup Delay functions: 

Consider a causal, discrete time signal {x(n)) whose z-transform 

X(z) is a si'mple second order polynomial defined by 

(A. 1) 

-0- 
and * indicates complex conjugation. e o determines the proximity 

of the zeros to the unit circle. 

-(a + jo ) -(u - jo 
x(o)= X(Z) 1 jo = (eJo - e 0 0 )(eJo - e 0 

z=e 
0 (A.2) 

e(w) = (A. 3! 
ocosw 

Using the rules of differentiation we can show that 

9' (0) = e'(w) + 9' (0) 
1 2 

where e'(o) is the phase corresponding to that of the first term in 
1 

eq(A.3) and e'(0) is the phase corresponding to that of the second 
2 

term in eq(A.3). Defining 

T(u) = -e*(o) 

it follows that 

T(0) = T (0) + T2(o) 
1 

where r(w) is the overall group delay function and rl(w) and r2(w) 

are the group delay functions of the component group delay functions 

corresponding to the complex conjugate zero pair. Using eq(A. 3) r(w) 

can be obtained as 

(A. 4 )  



Consider 

Equating +;(w) = 0 we get 

-u - 
(e 0 - e 3%) can never be zero unless u = 0. Therefore in general 

eq(A.5) becomes zero when w-w = 0, n, 2n . . . .  Taking the derivative 
0 

of eq(A.5) we get 

Eq(A.6) = 0 when u = 0. 
0 

-IT 
Eq(A.6) is negative when e-3u~ > e 0. 

- -IT 
Eq(A.6) is positive when e 3 u ~  < e o 

When the root is exactly on the unit circle, u =O. 
0 

-IT - 
When the root is inside the unit circle, e o<l, e 3u~<e-u~ and the 

above expresssion is positive and r (w) goes through a minimum at 
1 

- 
When the root is outside the unit circle, d'"">1, e 3u~>e-u~ and 

hence the above is negative and r (w) goes through a maximum at w=w 
1 0. 

The same argument applies for r (w) also. When X(z) is defined 
2 

by the reciprocal of the second order system defined in (A.11, the 

corresponding group delay function is the negative that derived in 

eq(A. 4). Fig. A. 1 is an illustration of the group delay function for 

different first and second order polynomials. The dotted curves 

correspond to the group delay function of poles at the same locations 

as the zeros. 



Z - P L ~ E  ROOT GROUP DELAY Z'PLANE ROOT GROUP DELAY 
FUNCTION r p ( ~ )  LOCATIONS FUNCTION  ha) 

Fig..A,l Illustration of the group delay functions for different first- 
and second-order polynomials. The dotted curves correspond to poles 
in the z-plane at the same locations as the zeros. 



B.l Modified Group Delay function : 

Consider a signal x(n) whose z-transform is given by 

where z is given by zo= e -(%+ 'YO). This system corresponds to the 
0 

excitation of a system which consists of two poles in complex 

conjugate locations by two impulses separated by a period T . The 
0 

amplitude of the first impulse is unity while the amplitude of the 

second impulse is 7 

Now 

The modified group delay function t (0) is defined as 
0 

2 
t (0) = t(w).(l + 7 - 2;rcoswTo) 
0 

Consider the term 

Computing r' (w) we get 
0 1 

t' (w) = - -27coswT + 7 
0 1 [ + 111. 

-0- 
2e-0-~(1 - e ocos(w-wo))sin(w-oo) 

2 
(-2e-0-ocos (o-w + e-2"o + 1 



r" is negative as the second term will be larger than the first term 
0 1 

- u 
since both e o (since we are considering a stable system) and 7 will 

3 
be utmost 1, the second term is negative since T is in samples (TT 

0 0 

> ~TT:, a << T , is some constant). Therefore, r (0) is a maximum at 
0 1 

eo s 
w w  , provided wT =;&A. This essential ly means that the ant iresonance 

0 0 

frequency of a zero must not coincide with resonance frequency of a 

pole. 
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