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ABSTRACT

The studies presented in this thesis represent an attenpt to
process the Fourier transform (FT) phase of signals for feature
extraction. A though the FT nagni tude and phase spectra are
i ndependent functions of frequency features of a signal, nost
t echni ques for feature extractionfroma signal are based upon
nmani pul ati ng the the FT nagnitude only.

The phase spectrumof the signal corresponds to tine del ay
correspondi ng to each of the sinusoidal conponents of the signal. In
the context of additive noise, the tine delay may not be
significantly corrupted and the phase spectrum mght be considered to
be a nore reliable source for estimating the features in a noi sy
signal. A though the inportance of phase in signals is realised by
researchers, very few attenpts have been nade to process the FT phase
of signals for the extraction of features. Features of a signal, for
exanpl e, resonance infornation, is conpletely masked by the
i nevi tabl e wappi ng of the phase spectrum

An alternative to processing the phase spectrumis processing
the group delay function. The group delay function is the negative
derivative of the (unw apped) FT phase spectrum The group del ay
function can be conputed directly fromthe tine domain signal.The
group del ay function possesses additive and high resol ution
properties, inthat it shows a squared magnitude behaviour in the
vicinity of a resonance. But the group delay function in general is
not well behaved for all classes of signals. Zeros in the
z-transform Of a signal that are close to the unit circle cause |arge
anpl i tude spi kes to appear in the group delay function. The polarity
of a spi ke depends on the location of the zero with respect to the

unit circle. These large anplitude spi kes nask the information about



r esonances.

The research effort in this thesis focusses on the devel opnent
of algorithns for nanipul ating the group del ay function to suppress
the information corresponding to the zeros of th signal that are
close to unit circle in the z-domain and enphasi se the features of
of a signal. To denonstrate the useful ness of the al gorithns
devel oped, these algorithns are used to estimate (a) formant and
pitch data fromspeech signals and (b) estimate spectra of
aut o-regressi ve processes and si nusoi ds in noi se.

The research effort in this thesis shows that the phase spectrum
(or rather the group delay function) of a signal can be usefully

processed to reliably extract features of a signal.
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CHAPTER 1

OVERVIEW (5 THE THESIS
1.1 Introduction

This thesis represents an attenpt to extract features of a
signal by processing the Fourier transform (FT) phase spectrumof a
signal rather than the conventional FT nmagnitude spectrum of a
signal.As a result, algorithns based on manipul ating the FT phase are
devel oped and applied in speech anal ysis and spectrum esti nation.

The Fourier representation of a signal is conplete only when
both the spectral magnitude and phase are specified. However, under
certain conditions, the signal can be conpletely specified by the FT
magni tude (to withina tine shift) or by the FT phase (to within a
scale factor). Information, such as resonance characteristics of a
signl is present both in the FT nagnitude and FT phase. But nost
techni ques for estinating the paraneters of a signal, especially,
paraneters of the source and systemin a source-systemnodel for
signal production are based upon processing the FT nagnitude spectrum
only.

The phase spectrumof the signal corresponds to tine del ay
correspondi ng to each of the sinusoidal conponents of the signal. In
the context of additive noise, the tine delay nmay not be
significantly corrupted and the phase spectrumnight be considered to
be a nore reliable source for estinating the features in a noi sy
signal. |In mltidinensional signal processing it has been shown that
features about the signal like edges are preserved better in the
phase spectrumthan that of the magnitude spectrum

A though the inportance of phase in signals is realised by
researchers, very fewattenpts have been nmade to process the FT phase

of signals for the extraction of features. The reason for analysis



t echni ques bei ng based on processi ng FT magni tude rat her than FT
phase is that it is possible to visually perceive the features in a
signal in the magnitude spectrum For exanple, the resonances in a
signal nanifest as peaks of envel ope of the nagnitude
spectrum while they nanifest as transitions of phase in the phase
spectrum The peaks in the envel ope of the nagnitude spectrumare
visible while the phase transitions are conpl etely nasked by the
i nevitabl e wrappi ng of the phase spectrum

Therefore, an alternative to processing the phase spectrumis
processing the group del ay function. The group delay function is the
negative derivative of the (unw apped) FT phase spectrum. The group
del ay function can be conputed directly fromthe tine domain signal
For a mni num phase signal the group delay function shows a squared
magni t ude behavi our around a resonance/antiresonance frequency. In
addition, the informati on about a resonance/antiresonance iS
concentrated around the resonants/antiresonant frequency. These
properties of the group delay function are referred to as the
additive and high resol ution properties. But the group del ay
function in general is not well behaved for many signals. Zeros in
the z-transform Of a signal that are close to the unit circle cause
| arge anpl i tude spi kes to appear in the group delay function. The
polarity of a spi ke depends on the | ocation of the zero w th respect
to the unit circle. These large anplitude spikes nask the
i nfornati on about resonances.

Speech signal can be nodel | ed as the response of a time varying
m ni num phase digital filter (generally all-pole) to an inpul se or
random noi se excitation. The group del ay function of a segment of
speech hzs very |arge anplitude spi kes that are caused by the zeros

due to the excitation and the finite duration of the segnent (data



wndow. In the context of spectrumestimation, the group del ay
function of an Auto-regressive (AR) process in noi se al so has very

| arge anpl i tude spi kes that are due to the data w ndow and random
noi se excitation. Therefore, if the resonance behavi our of a signal
is to be studied through group delay functions, the spi kes caused by
the zeros nust be elimnated. This suggests that the focus of

al gorithns for processing group delay functions of signals should be
(a) the renmoval of the effects of zeros due to excitation and (or)
data w ndow and (b) separation of systemand source conponents in the
group del ay domai n.

1. 2 Scope of the thesis

The research effort in this thesis focusses on t he devel oprent
of algorithns for processing the processing the FT phase through
group delay function, in a systemati c manner. Because of the nanner
in which the different conponents of a signal conbine in the FT
phase, the results obtained are not necessarily identical to those
obt ai ned by processing the FT nagni tude spectrum |In sone cases, the
i nformati on obtai ned nmay reinforce the infornation obtai ned fromthe
nmagni t ude spectrum To denonstrate the useful ness of the al gorithns
devel oped, exanpl es are chosen from {a) anal ysis of speech(synthetic
and natural) signals and {b) spectrumestination.

If it can be assuned that the system in a source-system nodel of
signal production is mnimmphase, it should be possible to obtain
an estimate of the systemcharacteristics by estinating the mni num
phase conponent of the signal. Linear prediction (LP) analysis is an
appr oach for processing signals, where an attenpt is nmade to estinate
the parameters of a the nodel of the m ni mrum phase systemfromthe
signal. In LP analysis the systemis asssuned to be an all-pole

systemwhile the source nay be a train of inpulses or random noi se.



The resonance infornmation is then obtained fromthe estinated
paraneters of the system Adopting a simlar strategy, a signal with
m ni num phase characteristics is derived fromthe short-tine Fourier
transform (STFT) nagni tude spectrumof the signal. The group del ay
function of this signal is then conputed in which the information
about the resonances of the systemis preserved. This group del ay
function is henceforthreferred to as the minimum-phase group del ay
function. This algorithmis then used to extract formants from
speech. To denonstrate the effectiveness of this technique for
formant extraction fromspeech signal the fol |l owi ng studi es are nade:
(a) Performance of the formant extraction based on the m ni num phase
group delay function is evaluated for a synthetic signal. The
synthetic signal is obtained using a formant vocoder in which the
formants are continuously changed to reflect the fornmant transitions
that occur in natural speech.

(b) Conparison of the nini num phase-based group del ay method with
standard linear prediction (LP) anal ysis and cepstrumanal ysis.

It was observed that the formant extraction based on the ninimum
phase group del ay :

(i) tracks formant changes well.

(ii) gives nore consistent estinates of formants when conpared with
that of LP analysis and cepstrum Anal ysis for various choi ces of
anal ysi s paraneters.

The technique just described still uses the group del ay function
of a mnimum phase signal which is in turn derived fromthe magnitude
spectrum This is because the group delay function suffers from poor
sanpl i ng when the zeros of the signal z-tranform have zeros that are
close to the unit circle(both inside and outside the unit circle) in

the z-domain. Ideally it would be desirable to separate the m ni mum



and nonm num phase conponents of a signal in some domain inorder to
estimate paraneters corresponding to that of the m ni mum and
nonm ni num phase conponents of a signal.

Cepstrumanal ysis is a nethod in which it is possible to
appr oxi mat el y separate the systemand source conponents of a nixed
phase signal. In this method the systemand source conponents that
are multiplicative in the FT nagnitude spectrum become, additive in
the cepstral domain. 1In addition, the source and system conponents
are well separated in-cepstrum. This enables the use of a gating
function in the cepstral donmain to separate the systemand source
informati on.

Because of the nature of the FT phase spectrum the systemand
sour ce conponents are additive in the group delay function. But the
systemand source information is spread over the entire function.
Therefore it may not be possible to separate themat all in the
group delay domain.

Al though it nmay not be possible to conpletely separate the two
conponents of a signal, it may be possible to suppress one while
favouring the other. This is exactly what is done in the nodified
group del ay (MGD) function that is derived fromthe group
del ay function of the signal. To estimate the conponents
corresponding to that of the system a nodified group delay function
is obtained in which the group del ay information corresponding to the
source is suppressed. To estinate the conponents corresponding to
that of the source, another group delay function is derived in which,
the information corresponding to that of the systemis suppressed.
Properties of the MGD are studied for synthetic and natural
speech signals. Both MGDs are then used to estinate formants and

pi tch from speech.



From anot her vi ewpoi nt the M nay be thought of as an function
in which the zeros of a signal are suppressed. Additive Gaussi an
noi se either introduces newzeros or redistributes existing zeros of
the signal. |If the noise level is not too high, it should be
possible to estinate the systemand source paraneters using the MD
Formant and pitch data are estimated using the MGD from noi sy speech.
The fornmant and pitch data can then be used to synthesise speech

Application of the MDfor problens in spectrumestimtionis
studied. In particular, in spectrumestimation, two different
exanpl es are consi dered, nanely. (a) sinusoids in noise and (b)
aut or egressi ve process in noise. UWsing the relationship between the
cepstrumand the group del ay function, the power spectrum
corresponding to the systemis derived. It is observed.in the power
spectra derived for sinusoids both bias and variance are
significantly reduced in the estimated power spectrumthrought group
del ay function conpared to that of the periodogramesti mates of the
power spectrum For the AR process, bias and sidelobe | eakage are
reduced. But the variance around the resonances is higher than that
of the peri odogram approach.

The research effort in this thesis shows that the phase spectrum
of a signal can be usefully processed to realiably extract features
of a signal.

1.3 Organi sation of the thesis

The thesis is organised as follows. In Chapter 2 we briefly
di scuss the tine and frequency domai n representations of signals
gi ving speci al enphasis to the FT. W bring out the rel ationship
bet ween FT magni tude spectrumand FT phase spectrumof a signa
through group del ay functions. Ve discuss the properties of the

group del ay function and the probl ens of processing signals |ike



speech using group delay functions. Digital representation of speech
signal s is discussed. |ssues in speech anal ysis and spectrum
estimation for feature extraction are al so di scussed.

V¢ develop a newal gorithmfor formant extraction fromspeech
usi ng a m ni num phase-based group del ay function derived fromthe
STFT. magnitude spectrumin Chapter 3.

In Chapter 4 we derive a nodified group delay function directly
fromthe signal. Properties of this nodified group del ay are studied
indetail. A gorithns(based on the nodified group del ay function)
are devel oped for formant and pitch extraction fromspeech. Fornant
and pitch data are al so extracted from noi sy speech. Application of
the MD in spectrumestinmation is studied in Chapter 5.

Finally in Chapter 6 we summari se the results of the
investigations done in this thesis. A brief discussion of the najor
contributions and drawbacks of this thesis are also giveninthis
Chapt er.

Sone of the rel evant derivations used in this thesis are derived
in the Appendi ces.

1.4 Major Contributions of the thesis

The follow ng are the najor contributions of the thesis:

(a) Anewalgorithmfor formant extraction fromspeech using a group
del ay function derived fromthe FT magnitude spectrum

(b) Anewalgorithmfor formant extraction fromspeech using a

nodi fied group del ay function derived fromFT phase.

(c) Anewalgorithmfor pitch extractionfromspeech using the

nodi fied group del ay function.

(d) A new algorithmfor spectrumestinmation using nodified group

del ay functi on.



CHAPTER 2
REPRESENTATI ONS OF SI GNALS

2.1 Introduction

Signals are basically quantities that fluctuate with tinme. It
is natural and convenient for us to think of signals as functions of
time. An optical inage on the other hand rmay be described by a
function of spatial coordinates. Afamliar representation, in fact
one that is deeply ingrained by usage, is the graph of a function.
The graph is a collection of ordered pairs of nunbers {t,x(t)}. From
the standpoi nt of systemdesign, the graphical representationis
unrmanageabl e si nply because it consists of too many individual
poi nt s.

In contrast to a graphical representation, where signals are
represented by a collection of points in a sinple setting a
t wo- di mensi onal space, a nore highly structured setting is the signal
space, whereby a signal can be considered as a single entity or a
point in a space. For exanple, consider, the representationof a
sinusoid in terns of its frequency conponents. Representation of a
sinusoid in the time domai n requires an infinite nunber of points.
In the frequency domain it can be represented by a single point.

The prinmary objective of this Chapter is to exam ne sone of the
i ssues involved in digital processing of signals using group del ay
functions. To achieve this in Section 2.2 an introduction to the
anal ysis of signals in terns of the continuous Fourier transformis
discussea. Al though the continuous Fourier transformis useful in
giving an interpretationto a signal it is not suitable for practical’
appl i cations.

To enabl e the anal ysis of signals by conputer, the signals are

sanpl ed and quantised. The signals are represented by a sequence of



nunbers whi ch are obtai ned by sanpling the anal og signal at discrete
time intervals. This has led to a newfield of study "D gital S gnal
Processing". Digital signals are anal ysed by the conputer using a
di screte Fourier transform(or DFT) and inverse DFT. The conditions
under which the discrete tinme signal and the DFT are exact
representations of the continuous tine signal and continuous FT are
al so di scussed in Section 2. 2.

The Fourier transformis extensively used in signal analysis as
a tool toresolve a givensignal into its sinusoidal/complex
exponenti al conponents. Fourier transformof a signal is in genera
conplex. 1In polar formit consists of two parts, a nagnitude part
and a phase part which are called Fourier transform magnitude
spectrumand Fourier transformphase spectrumrespectively. The FT
nmagni t ude and phase spectrumare in general distinct functions of
frequency. Properties of the FT phase and magnit ude spectrumt hat
are relevant in this study are listed in Section 2.3.

Rel ati onshi p between the FT nagnitude and FT phase is brought
out in Section 2. 4through group delay functions. The group del ay
functi ons have sonme useful properties, that can be exploited in
signal analysis. These properties are studied in Section 2. 4.

Al t hough the useful ness of the group del ay representation of signals
has been established inthe literature, the standard group del ay
functionis not suitable for the representati on of natural signals
li ke speech. The background for speech processing is given in
Sections 2. 5and 2. 6. The probl emof spectrumestinati on when no
apriori information is avail able about the signal is addressed in
Section 2.7. The notivation for the work done in this thesis is
presented in Section 2. 8. Issues involved in the application of

group del ay functions to speech processing and spectrumesti mation



are addressed in Section 2.9.
2.2 Fourier representation of Signals
2.2.1 %ignificance of the Founien trancfonm

Fourier transforns play an inportant part in the theory of many
branches of science. Mathematically the Fourier transformis a
functional, i.e. it is a mapping froman arbitrary set of functions
into anot her set of functions. The physical neaning of the Fourier
transformis that it enabl es anal ysis of tine functions in terns
of their spectra or frequency content. It basically enables (a) the
anal ysis of a signal in terns of its various frequency conponents and
(b) the synthesis of a signals fromits sinusoi dal conponents. A
wavef ormoptical, el ectrical, or acoustical and its spectrumare
appreci ated equal |y as physically picturabl e and measurable entities.
For exanple, in the theory of speech production, the vocal tract is
characteri sed by a cascade of resonators. The frequenci es and
bandw dt hs of these resonators change continuously with time. This
| eads to the articulation of different sounds.

Estimation of the power spectral density or sinply the spectrum
of discretely sanpled determnistic and stochastic processes is
usual | y based on procedures enpl oyi ng the Fourier transform The
obj ective of spectrumestimationis to answer specific questions
about the data. It is found [S.M.Kay, 1988, S. L.Marple; 19871 that in
nost applications, the frequency distribution of the signal is of
interest. For example, the presence or absence of a sinusoid in a
signal can be determned by | ooking at the frequency distribution of
the signal. |If the spectrum peaks at a particul ar frequency, it can
be concl uded that this sinusoidal conponent is present in the signal.
2. 2. 2. Cantinuaua Faunien tranafoun

The Fourier transformis a general formof a relation between



the el enents of two different sets in that it is a nmapping of
el ements fromone set into el enents of another set. A mapping is
sinply the rul e by which el ements of one set say S1 are assigned to
el enents of the other set say SZ Synbolically this may be denoted
by

f 81 > 82

which is a conpact notation for

y=f(x), x5S, and y € S

i 2

The element y is called the inage of x under the mapping f. The set
S1 is the domain of the mapping and the set of all images of the

el enent s of S, (contained in SZ) is the range of nappi ng.

| f S1 is the set of bounded energy signals

II2
S, =1 X : x“(t)dt < m }

1 a,
then the Fourier transform ¥ : S1 »SZ is a nmapping into anot her set

of square integrable functions

00
—_ . 2 ©
5, ={X .Imx (0)dw < o }

This napping is described by

00

. _ -Jwt
F:S, +S,» X0 = I x(t)e gt

=00

Strictly speaking this is not a one-to-one nmappi ng but a nany-to-one
nappi ng.
Simlarly, the Inverse Fourier Transform (IFT) is defined by the

fol | owi ng mappi ng :

00
1. S, > S, =» x(t) =1Jf X(0)ed“ dw

2"03

Wavef orns and spectra are transforns of each other. The Fouri er
transformresol ves a signal into its conpl ex exponential conponents.

The inverse Fourier transformsynthesises the signal fromits



exponenti al conponents.

The Fourier transformis a conpl ex function and may be expressed
as
X(w) = |X(w)[ej9(w)
where |[X(w)| is the anplitude or nagnitude spectrumand 8(w) is the
phase spectrum The FT X(w) of x(t) represents the relative
anpl i tudes of various frequency conponents of x(t) at ,different
frequenci es w
2.2.3 Dincrete Founien tranoform

The Fourier transformdefined in the previous section is of
great theoretical inportance. It is not directly suitable for
practical applications, however. Continuous time and frequency
vari abl es are not conpatible with the discrete nature of digita
pr ocessi ng.

Given the inportance of the Fourier transformin signa
processing, a nore practical way to express it is the discrete
Fourier transform (DFT). W& first define the z-transformof a
discrete time signal which is later used to define the DFT of a
signal .

The z-transformrepresentati on of a sanpled signal x(n)

(discrete in tine) is defined by the pair of equations

Z:85S5= X2 = [ x(nz "= 355 (2.1a)

-1

2. s s sx(n) = —1§ X(2)2" laz (2.1b)
2 1 21 c

where X(z) is in general an infinite power series in the variable
2!, The val ues x(n) play the role of coefficients in the power

series.

Wien the z-transformis represented as a ratio of two
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pol ynom al s N(z) and D(z) (Eq.(2.1a)), the roots of N(z) are said to
correspond to the zeros of the signal while the roots of D(z) are
said to correspond to the pol es of the signal x(n).

The Fourier transformof a discrete-tine signal (sanpled signal)

is given by the equations

: w . .
X(e¥?) = ¥  x(n)e W - (2.2a)
T
_ Jw, jwn
x(n) = &= L[X(e yel Wy (2. 2b)

These equations are a special case of Egs. (2.1). These equations
are obtained by restricting the z-transformto the unit circle of the
z-plane, i.e., by setting z=e¥”. As indicated in Fig.2.1 the
frequency variable, w, also has the interpretationas angle in the

z-plane. +1

/
_

-1
Fig.2.1 Uhit circle in the z-plane

If a sequence is periodic with period N, i.e.,
x(n) = x(n + N) -® < n<o
then x(n) can be represented by a discrete sumof conpl ex sinusoi ds
rather than an integral equationas in E (2.2b). The Fourier series
representationfor a periodic sequence is [M.Kunt, Ch.3, 1987]

N-1

(k) = px(n)e 12" (2.32)
n=0

~ N1 21k

k(n) = T R()eZEN L (2.3b)
k=0

This is an exact representation of a periodi c sequence. However, the

13




utility of this representation lies in inposing a different
interpretati on upon the above equations. Let us consider afinite
| engt h sequence x(n), that is zero outside the interval 0 = n = N-1.
Then the z-transformis

N-1

X(z) = ¥ x(n)z " (2.4)
n=0

If we evaluate the X(z) at Nequal ly spaced points on'the unit

circle, L&,zEe@%,k:OA“_,NLthmveommn
s, 2Tk N°L -j2MmK
X' = T x(n)eTZ k= 0,1,...,N-1 (2.5)
n=0

If we construct a periodic sequence as an infinite sequence of
replicas of x(n),

foc]

x(n) = ¥ x(n + rN) (2.8)
r=-0
t hen, the sanpl es i(eJ%ﬁk) are easily seen to be the Fourier

coefficients of the periodic sequence x(n) in Ej. (2.3). Thus a
sequence of length of N can be exactly represented by a discrete
Fourier transform (DFT) representati on of the form

N-1

X(k) =% x(n)e 120" (2.7a)
n=0 N
N-1

x(n) =% X(k)ejz—:kn -4 (2.7b)
k=0

The only difference between Egs. (2.3) and (2.7) is a slight
nodi ficationto the notation(removing the ~ synbol s whi ch indicates
periodicity) and the explicit restrictionto the finite intervals 0 =
k s N-1and O s n=<N-1. It is inportant to bear in mnd when using
the DFT representation that all sequences behave as if they were
peri odi c.

To use digital processing nethods on anal og si gnal s such as

speech. it is necessary to represent the signal as a sequence of

14



nunbers. This is commonly done by sanpling the anal og signal denoted
by xa(t), periodically to produce the sequence

x(n) = Xa(nT) -0 <n<ow (2.8)
where n takes on only integer values and T is the sampling period in
seconds.

The condi tions under whi ch the sequence of sanples of Eq.(2.8)
is a unique representation of the original anal og signal are well
known and are often sunmari sed as fol |l ows :

The Pampling Theonem : If a signal xa(t) has a bandlimted Fouri er
transform Xa(e‘jw) =0 for w:=z ZnFN, t hen xa(t) can be uni quel y
reconstructed fromequal | y spaced sanpl es xa(nT), - <N <o ifT«&
1/2F . F is cal | ed the Nyqui st Frequency.

Smlarly, if Xa(e‘jw) is to be obtained fromthe sanples of its
Fourier transform(obtai ned by sanpling the continuous Fouri er
transformat equally spaced intervals in the z-plane), the signal
should be tine [imted. The DFT obtained in the Eq.(2.7a) is
periodic wth a period of 2n. As nentioned earlier, the definition
of the DFT requires that the tine dormain signal be of finite |ength.
In many filtering and spectral anal ysis applications, the signals
do not inherently have finite length. This inconsistency between the
finite length requirenent of the OFT and the reality of indefinitely
I ong signal s can be acconodat ed exactly or approxi natel y through the
concepts of w ndow ng, bl ock processing and the computation of the
time dependent Fourier transform [A.V.Oppenheim and R.W.Schafer,

Ch. 11, 1989L

The basic steps in applying the DFT to continuous time signals
are indicated in Fig.2.2. The anti-aliasing filter is incorporated
to mnimze the effect of aliasing when the continuous time signal is

converteu to a sequence. The need for the window w(n) inFig.2.2is
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Fig.2.2(a) Processing steps in the discrete-tine Fourier
anal ysi s of a continuous signal .
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Fig.2.2(b) |llustration of the Fourier transforns in the

systemof F g.2.2(a).(reproduced from [A. V. Qopenhei m and
R.W.Schafer; 19891) (a) Fourier transformof continuous-time
input signal. (b) Frequency response of anti-aliasing
filter. (c) Fourier transformof output of anti-aliasing
filter. (d) Fourier transformof sanpled signal. (e) Fourier
transformof w ndow sequence. (f) Fourier transform of

w ndowed segnent and frequency sanpl es obtai ned usi ng DFT
sanpl es.



a consequence of the finite length requirement of the DFT.

In the discussion that follows in the rest of this Chapter we
assure that (a) sanpling in the tinme and frequency dormai ns is done at
sufficiently close intervals to avoid aliasing and (b) the DFT and
| DFT are cl ose approxi mations to the continuous FT and | FT.
Henceforth we use X(w) and X(ejw) i nterchangeably to represent the
discrete tine Fourier transformof the discrete tine signal (sanpled)
x(n)), and X(x) to represent the D screte Fourier transformof x(n).

In the rest of this chapter we restrict our discussion to the
discrete time Fourier transform nmagni tude and phase spectra of
signal s.

2.3 Properties of The Fourier transform Mgnitude and Phase Spectra

The Fourier transform Magnitude and Phase spectra are
i ndependent functions of frequency and have some distinct properties.
The properties of the nagnitude and the phase spectrumthat are
relevant in this study are listed bel ow :

2. 3. 1 Propentiea of the Faunien tranoform Magnitude $pectrum (FTMS)

1. For any real x(n) FIMBis an even function of w.

2. For any x(n) the FTM5 is a positive function of w

3. The Inverse Fourier Transform (IFT) of the FTMS is a noncausal
even function of tinme. This function can be expressed as the

aut ocorrel ation functi on of sone sequence y(n)

[A.Papoul i s;1977,Ch.71. This signal is also called a zero phase

si gnal .

4. If asignal x(n) is the inpul se response of a cascade of
resonators and antiresonators, the overall FTM5 of x(n) is the

mul tiplication of the nagnitude spectra of the individual resonators
and antiresonators. The resonances are characterised by peaks in the

magni t ude spectrumwhil e the antiresonances are characterised by



val l eys in the nagnitude spectrum

2. 3. 2 Prapenties of the Founien transform Phase $pectrum (FTPS)

1. For any real x{(n) the FTPS is an odd function of w

2. For any x(n) the phase spectrumis the wapped phase functi on,
i.e. values of the phase function are restricted to tn,

3. If the signal x(n) is shifted hy ng inthe time domain, a |inear
phase conponent e 9% is added to the FTPSfor all w.-

4. The IFT of e9%(®) gives an all-pass signal.

5. If asignal x(n) is the inpul se response of a cascade of
resonators and antiresonators, the overall FTPS of x(n) is obtai ned
as : the wapped phase spectrumof (the sumof the unw apped phase
spectra of individual antiresonators - the sumof the unw apped phase
spectra of resonators). Qning to the additive property, the

resol ution available in the phase spectrumis general ly higher than
the resol ution avail able in the nagnitude spectrum

2.4 Rel ationship between the Spectral Magnitude and Phase of a Signal
t hrough Group Delay functions:

Al though the FT magni tude and phase spectra are i ndependent
functions of frequency, there are certain conditions under which the
two are related. In sone situations in commnication engi neering(as
in sensor array inmaging for exanple) it is possible that (a) either
the magnilude or phase spectrumis avail able, (b) one of the spectra
is corrupted by noise and is hence unreliable or (c) a fewof the
sanpl es are nmissing due to sone faults in the receiving el ements
[B Yegnanar ayana, C P. Mariadassou and Pranod Sai ni ; 1990,

B Yegnanaryana. S. T. Fathima and Hema A. Mirthy, 19871.

In such situations it may be useful to knowthe relationship

between the FT magni tude and phase spectra, inorder that one of the

spectra can be obtained fromthe other. Once both the spectra are



avai l abl e, the time domai n signal can be esti nated.

Before we derive the relationship between the FT magni tude and
the FT phase spectrumwe define a classification of signals based on
the roots of the z-transformof the signal. These definition are
required to bring out the relationship between the Magnitude and
Phase spectr a.

The z-transformof a finite length signal x(n) can be
represented by the mapping (Eqs (2.1):

N-1

. _ -n _ N(z2)
Z : S1 > S2 > X(z) = ,EOX(D)Z = 5z [2.9)
wher e
N(z) =(z-2z )(z-2 ) ... (z-2 ), risthe
mO ml mr
degree of the polynomal N(z)
and
D(z) = (z - zdo)(z - Zdi) . (z - zdp), p is the

degree of the pol ynomal D(z)
t hen Shin the set of all mninmmphase signals is defined by

S . ={{x: x(n) = Z_l(X(z)) Y|z

min , <1 Izdi, <1

nh
and S max the set of all maxi num phase signals is defined by

S ={x:x(n)=Z Xz :vi |z

>1, |z, | > 1}
max di

ol
and Smixthe set of all mxed phase signals is defined by
Snix = {x: x(n) ¢« S - (Smin v Smax)}

where Sis the set of all signals.

For a discrete tine signal {s(n)} the DIFT is defined as

m .
S(w) =% s(n)e” ] W
n=0

= |S(w) |ejo(w) (2.10)
where 8(w) is the unwapped phase function and |S(w)| is the

magni tude function. |If the z-transformS(z) of s(n) does not have
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any zeros on the unit circle, the continuity of |S(w)| is guaranteed
on the unit circle and we can define the conpl ex cepstrum

[ A V. @penhei mand R WSchafer, Ch. 10, 1975]

sn) ¥ S(w = In[Sw)] + jol(w).

If s(n) is causal then the real and i magi nary parts of S(w)

corresponding In|S(w)| and 6(w) are related through the Hilbert

transform[ A V. Qopenhei mand R WSchaf er, Ch.7, 19751

n
— 1 -
0(w) = -5 { 1In|S(w) |cot [“_2 n]dn (2.11a)
=T
n
— A — 1 -
In|S(w)| = s(0) - 5 i*; 6(w) |cot [&E_Q]dn (2.11b)
-
and
A n
(0) = =% J' 1n|S(w) |dw (2.11¢)
S 2n .

had 14

This is nothing but the m ni mum phase condition [A.V.Oppenheim and
R.W.Schafer, Ch. 7, 19751 i.e. the zeros and pol es of the z-transform
S(z) lie within the unit circle. Aternative to Egs(2.11) which
relate the magnitude and the phase spectra of the Fourier transform
group del ay functions can be used to rel ate the magni tude and phase
spectra. This is the topic of the next Section in this Chapter.
2.4.1 :$noup Delay functions :

Definition : If the phase spectrum (8(w)) of a signal is defined as a
continuous function of w, the group delay function is defined as

_d(8(w))
dw

The devi ation of the group delay function away froma const ant

T(w) = (2.12)

i ndi cates the degree of nonlinearity of the phase. The group del ay
function is expressed in seconds.

Let the Fourier transformv(w) of a mninum phase signal {v(n)}



be represented by
Viw) = |V(w) el (@) (2.13)
Then it can be shown that [ A V. Qpenheimand R WSchafer, Ch. 10,
1975]
®

In|V(w) | = c(0)/2 + ¥ c(n)cosnw (2.14a)

n=1
and the unw apped phase function
[+ ]

6(w) = ev(w) + 2nAa(w) = - } c(n)sinnw (2.14b)

n=1

where c(n) are the cepstral coefficients. Adetailed description of
the cepstrumand its properties can be found in [D.G.Childers,
D P.Skinner and R C Keneriat; 19771,
Taki ng the derivative of Eq(2.14b) with respect to w, we get
®

8’ (v) = - ¥ nc(n)cosnw (2.15)

n=1

Fromthe above equations (2.14) we note that for a nm ni num phase
signal, the spectral nagnitude and phase are rel ated t hrough the
cepstral coefficients. Further the group delay function t(w) can be
obt ai ned as the FT of the wei ghted cepstrum.

The group del ay function can al so be obtained directly fromthe
discrete tine signal as[A V. @penhei mand R WSchaf er; 1975, Ch.7]

T(w) = Re[FT(v(n)) ] (2.18)

FT(nv(n})
where Re stands for the real part. Therefore for mninmm phase
signal s using the relations (2.14) and H. (2.16), the m ni mrum phase
signal can be obtained fromits group delay function.

For mxed phase signals we require two sets of cepstral
coefficients {c (n)} and {c,(n)} for magni tude and phase functions

separately as fol |l ows :



In|V(w)| = c,(0)/2 + ch(n)cdsnw (2.17a)

n=1

and

0
8(w) = Bv(w)+2nk(w) =-Y czgn)sinnw (2.17p)

n=1

wher e {cl(n)) and {c,(n)} are the cepstral coefficients of the unique
minimum phase signals derived fromthe spectral magnitude and phase
respectively [B.Yegnanarayana, D K Saikia and T. R Krishnan, 19841.

Using Egs.(2.17) two different group delay functions are defined

rﬁ(w) = 7 ncl(n)cosnw (2.18a)
n=1
and
r”(’w) = nE:lncz(n)sinnw (2.18b)

as the group delay function derived fromthe nagni tude and phase
respectively.
2. 4.2 Propentiea af Snaup delay functicno
(1) Pol es (Zeros) of the transfer function show up as peaks (val |l eys)
in the group del ay donai n(Appendi x A.
(2) Additive property : Convol ution of signals inthe time domain is
reflected as a summation in the group del ay domain(Fig.2.3 and
Appendi x A.
(3) Hghresolution property : The resonance peaks (due to conpl ex
conjugate pairs of poles or zeros) of a signal are better resolved in
the group delay domain than in the spectral nagnitude (Fig.2.3).
Furthernmore the resonance information is confined to the narrow
regi on around the pole or zero location as shown in Fig.2. 3.
(4) For m ni num phase signal s

rp(w) = tm(w)

(5) For naxi num phase si gnal s



T (w) = -1t (w)
p m
(6) For mixed phase signals
7 (@) # 7 (w)
P m
(7) If aroot is onthe unit circle in the z-domain(say w )
o
T(w) =
p o
(8) The group del ay function does not suffer fromthe w appi ng
problen as it can be conputed directly fromthe tine. domai n signal
using Eq(2.18).
2.5 Digital Representation of Speech Signals
The notion of a representation of a speech signal is central
al nost every area of speech communication. In this Section we

briefly reviewthe speech production process. We al so discuss a

nodel for speech production which is assumed in nost speech
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processi ng techni ques. In sone nethods of speech processing this
nodel is explicitly used to devel op the methods of processing. In
others al though this nodel is not fundamental to the processing
net hodol ogy devel oped yet this nodel is inplicit in the nethods
devel oped for processing speech-1ike signals.
2.5.1 4 digital Model for $peech Praduction

A schemati c di agramof the human vocal apparatus.is shown in
Fig.2.4 [reproduced from WA Ainsworth; Ch.2, 19881 The vocal tract
is an acoustic tube that is termnated at one end by the vocal cords
and at the other end by the lips. An ancilliary tube, the nasa
tract, can be connected or disconnected by the noverent of the vel um
The shape of the vocal tract is determned by the position of the
lips, jaw, tongue and vel um

Sound is generated in this systemin three ways. \oiced sounds
are produced by exciting the vocal tract wth quasiperiodic pul ses of
air pressure caused by vibration of the vocal cords. Fricative
sounds are produced by formng a constriction somewhere in the voca
tract, and forcing air through the constriction, thereby creating a
t ur bul ence whi ch produces a source of noise to excite the vocal
tract. P osive sounds are created by conpletely closing off the
vocal tract, building up pressure and then quickly releasing it. Al
these sources create a wde band excitation of the vocal tract which
inturn acts as a linear tine varying filter which inposes its
transm ssion properties on the frequency spectrumof the sources.
The vocal tract can be characterised by its natural frequencies (or
formants) which correspond to resonances in the sound transm ssion
characteristics of the vocal tract.

A typical speech waveformis shown in Fig.2.5which illustrates

some of the basic properties of the speech signal. Ve see for
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Fig.2.5 An illustration of a speech waveform corresponding to the
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exanpl e, that although the properties of the waveformchange with
time, it is reasonable to viewthe speech waveformas bei ng conposed
of segnents during which the signal properties remain rather
constant. Such segnents are demarked in Fig.2.5 bel owthe waveform
These sanpl e segment s have t he appearance of a | ow | evel random
(unvoiced) signal (as inc or t inFig.2.5) or a high level quasi
peri odi ¢ (voi ced si;”nal) (as ina or u:) wth each period displaying
t he exponential decaying response properties of an acoustic
transni ssion system V¢ note that the dynami c range of the waveform
is large, i.e., the peak anplitude of a voiced segment is nuch |arger
than the peuk anplitude of an unvoi ced segment.

Because the sound source and vocal tract shape are relatively
i ndependent, a reasonabl e approxi mation is to nodel themseparately
as shown in Fig.2.6 ([R.WSchafer and L. R Rabiner; 19781. In this
digital nodel, sanpl es of the speech waveformare assuned to be the
output of a tine-varying digital filter that approxinates the
transm ssion properties of the vocal tract and the spectral
properties of the glottal pulse shape. Since, as is clear in Fig.2.5
the vocal tract shape changes rather slowly in continuous speech
(likewi se its sound transm ssion properties) it is reasonable to

assune that the digital filter in Fig.2.6 has fixed characteristics

IMPULSE DIGITAL FILTER COEFFICIENTS

TRAIN (VOCAL TRACT PARAMETERS)
GENERATOR\ U’
| 1]

TIME VARYING
DIGITAL FILTER SPEECH
SAMPLES

RANDOM
NUMBER
GENERATOR

AMPLITUDE

I i1 | I

Fig.2.6 A digital nodel for speech production.
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over a time interval of the order of 10ms. Thus the digital filter
nmay be characterised in each interval by an inpul se response or a set
of coefficients for a digital filter. For voiced speech the digital
filter is excited by an inpulse train generator that creates a
quasi periodic inpul se train in which the spaci ng between i npul ses
corresponds to the fundanmental period of the glottal excitation. For
unvoi ced speech the filter is excited by a random nunber gener at or
that produces a flat spectrumof noise. In both cases an anplitude
control regulates the intensity of the input to the digital filter.

This nodel is the basis for a wide variety of representations of
speech signals. These are conveni ently characterised as wavef orm
representati ons or parametric representations dependi ng upon whet her
the speech waveformis represented directly or whether the
representationis in terns of tine-varying parameters of the basic
speech nodel. In the forthcom ng di scussi on on speech processi hg we
assure this sinplified nodel for speech production.
2.6 Speech processing

In the nodel for speech production di scussed in the previous
Section it is clear that parameters that are required to be extracted
fromthe speech signal are the systemand source parameters for
applications in (a) synthesis of speech and (b) recognition of
speech. The vocal tract changes shape for the articul ati on of new
sounds. These changes in shape are characterised by the change in
the paranmeters of the digital filter in Fig.2.6. The closing and
opening of the glottis and the vibration of the vocal cords are
described by paraneters that characterise the source. The vocal
tract is also described in terns of its resonances (or formants)

whi ch nay be derived either fromthe nodel paraneters or fromthe



speech signal spectrum The source information may be derived by
passi ng the speech signal through the inverse of the nodel system
In general, the nodel systemis derived so as to represent the
snoot hed short-tine spectrumof speech. The fine structure of the
spectrumis used to derive the excitation information. Al-pole or
pol e-zero nodel s are usual |y assumed for the vocal tract system
Linear prediction analysis is an effective nmethod for determining the
paraneters of an all pole nodel for the speech signal [J.Makhoul,
19751® Cepstrumanal ysi s [ A. V. Cppenhei mand R WSchafer; 19631 is
anot her effective nmethod for determng the fornmant and pitch
information fromthe speech signal. In this section we briefly
di scuss some of the existing nmethods for the anal ysis of speech
signals to obtain paraneters of the nodel that characterise the
systemand source infornation.
2. 6. 1 Batimatian of Pystem Parametens from Ppeech -

Experiments in the anal ysis and perception of speech
(J. L. Fl anagan; 1956. J.L.Fl anagan and L. Cherry; 19691 have shown t hat
certai n speech sounds, notably the vowels nay be identified and
synthesised primarily froma know edge of the formant frequencies.
The formant frequencies, therefore, appear to be inportant
i nformation bearing el ements of speech. In fact, analytical analysis
of the vocal nechani sm [G.Fant; 19591 has shown that the acoustic
out put during vowel production nay be specified rather accurately
froma know edge of formant frequencies and the fundanmental voca
frequency.

Three effects are of major inportance in limting the accuracy
with which formant frequenci es and bandw dt hs of vowel s may be
estimated fromspectral data[E. N Pinson; 19631. These are (1) the

ef fect of source periodicity on the spectrum (2) the effect of the



sour ce spectrumenvel ope and (3) the effect of tine averagi ng over
both closed glottis and open glottis condition.

Because of the periodicity of the source (i.e. the puffs of air
flowing through the glottis that excite the vocal tract), the
spect rum of the acoustic wavef ormconsi sts roughly of lines at a

fundanmental (pitch) frequency and its harnmonics (Fig.2.7). Little

i

Log magnitude
T

el 0t 0t .t & 3 3 1. 1 3 ) ¢

0.0 frequency 5KHz

Fig.2.7 Illustration of the nanifestation of periodicity in
the time waveformas fine structure on the spectrum

information is avail abl e about the spectrum bet meén the pitch

har noni cs so the frequenci es of the spectral peaks nust be

interpol ated between these lines. A further conplication arises if

t he envel ope of the source spectrumexhibits rapid variations wth
frequency. Since the measured spectrumis the product of the
spectrumof the glottal source and the spectrumof the transfer
function of the vocal tract, the effect of the source spectrumis to
distort the features of interest. Finally, the effect of relatively
| ong averagi ng tines used in any spectrum measur enent techni que
(Fourier analysis, for instance) reduces the accuracy w th which the
formants may be obtained. In this context the output at any tine
depends upon both open and closed glottis portions of the speech
wavef orm whereas the vocal tract resonance characteristics are

different in both these intervals.



Several nethods have been used to estimate the fornant
frequenci es for voi ced speech data. A nost all these techni ques have
as a comon starting point, the transformation of the acoustic data
into spectral form The methods used to obtain the spectrum have
i ncl uded use of sound spectrograph , bank of bandpass filters and
pi tch synchronous Fourier anal ysis.

Mbst of the techniques that exist for estimating.the vocal tract
paraneters fromthe speech signal can be cl assified as nodel - based
and non nodel - based techni ques. The techni que by Fl anagan
[J.L.Flanagan; 19561 describes an anal og approach to estinating
formants in continuous speech. This paper describes the use of
peak- pi cking on a short-time Fourier representation to obtain an
estimate of Fornmant frequencies. The paper by Dunn [H.K.Dunn; 19611
deal s with the use of a sound spectrograph for vowel bandw dth
nmeasurenents. Schafer and Rabi ner [R.WSchafer and L. R Rabi ner;
19701 descri be hornomor phi ¢ processing to the estimation of the vocal
tract frequency response. Quatieri [T.F. Qatieri, Jr., 19791 has
devel oped a techni que for the inproverment of speech
analysis/synthesis systens using hononorphi c deconvol ution in which
both a mni numand naxi num phase reconstruction is addressed.

Anot her digression fromthe traditional hononorphic deconvol ver is
the work due to Verhelst and Steenhaut [W.Verhelst and O.Steenhaut;
19861. In this approach a conpl ex nodel for hononorphic

deconvol ution is suggested in which an approxinationto the influence
of windowlength is included. A so the spectral sanpling inherent in
voi ced speech is explicitly represented. These techni ques cone under
the category of nonmodel - based t echni ques

Mbst of the recent nethods for the estination of the vocal tract

paraneters are based on a nodel - based appr oach.



The work by [B.S Atal and S. L.Hanauer; 19711, (F.ltakura and
S.Saito; 19701, [J.D Markel,1972a]l, MCandl ess [S.S MCandl ess;
19741, [BS Aa and MR Schroeder; 1971, [(E Denoel and
J.-P.Sol vay; 19851, [ A H -Jaroudi and J. Makhoul ; 19871, (C.H Lee;
1987,19881 and (G.Duncan and M A Jack, 1988] are concerned wth
linear predictive analysis nmethods for estimating the .vocal tract
function and formant frequencies.

Inthe work by Atal and Hanauer [B.S.Atal and S.L.Hanauer; 19711
linear prediction anal ysis [J.Makhoul; 19751 is used to estinate the
time-varying paraneters of the speech wave, nanely the prediction
coefficients and pitch. Itakura and Saito (F.ltakura and S Saito;
19701 di scuss a nmaxi num | i kel i hood approach to the estination of the
linear prediction.coefficients. Markel [J.D Markel; 1972a] di scusses
an algorithmbased on the digital inverse filter fornulation for
formant trajectory estinati on. McCandless [S.S.McCandless; 19741
suggests a nethod for formant extraction fromlinear prediction
spectra to take into account spurious peaks, nerged peaks, etc. Aal
and Schroeder [B'S Atal and MR Schroeder; 19791 use a subjective
error criterionto estimate the LP coefficients. Denoel and Sol vay
[E.Cenoe! and J.-P. Sol vay; 19851 nodify the error criterion.in
standard |inear prediction to estimate the LP coefficients that
characterise the vocal tract. An absolute error criterionrather
than the usual squared error criterionis used.

Song etal. [K.H.Song and C K Un; 19831 di scuss a method for
Pol e- zero nodel i ng of speech using a higher order pole nodel fitting
and deconposition nethod. The work by [H.Morikawa and H.Fujisaki;
19841 is based on a state space representationfor the speech
production process. In this techni que speech is nodel ed as an ARMA

(aut o-regressive noving average) process wth variabl e order.



Kopec [G.E.Kopec; 1986a, 1986b] uses a hi dden Markov nodel and
vector quantisationto track fornants accurately. Qher approaches
i ncl ude maxi num | i kel i hood spectral estimation and its applicationto
speech anal ysis [M.J.McAulay; 19841. Yet another work due to McAulay
etal. [M.J.McAulay and T.F.Quatieri; 19861 is based on a sinusoi dal
representationof speech. Regoll [G.Regoll; 19861 describes a new
al gori thm based on an extended Kal man filter nodel for the
time-varying digital filter in the nodel for speech production.
Schroéter etal. [J.Schroé&ter, J.N.Larar and M.M.Sondhi; 19871 use a
vocal tract/cord nodel for paraneter estination fromspeech. Lee
[C.H.Lee; 1987, 19891 devel ops an al gorithmfor linear prediction, in
whi ch the sumof appropriately weighted residuals is mnimsed to
estimate the LP coefficients. |In the work by [G.Duncan and M A Jack;
19831 a pol e-focussi ng approach is taken to estimate the LP
coefficients inthe filter that characterises the vocal tract

Al though the nethods described in these papers take different
points of viewto formulating the anal ysis nethods, the resulting
nmet hods have much in common and results obtained are conparabl e in
that the time conplexity of the algorithmis proportional to the
resol uti on that can be obt ai ned.

V¢ now briefly describe two commonly used net hods for fornmant
estimation, one based on honomor phi ¢ processi ng (a nonnodel - based
techni que, al so call ed cepstrumanal ysis) and the ot her based on
l'inear prediction analysis (a nodel -based techni que).
2.6.1.1 Cepotwm dnalysis

The techni que of cepstral processing is used for separating the
excitation signal of a speech wave fromthe filter part. This nakes
it easier to estinmate both the periodicity of the excitation and the

frequenci es of the formants.



Based on the nodel of Fig.2.6 the speech waveforms(n) is

obt ai ned as the convol ution of the excitation signal e(n) and the
i npul se response of the digital filter h(n).

¥(s(n)] = Fle(n)]¥[h(n)] (2.19a)

S(w) = E(w)H(w) (2.19b)
The logarithmof the transformis obtained as

logS(w) = logE(w) + logH(w) (2.20)
Finally the inverse DFT of the transformis conputed

F '[1logS(w)] = F'[logE(w)] + ¥ '(logH(w)]  (2.21)
The resul ting spectrumof the log of the frequency spectrumis called
the cepstrum The horizontal axis of a cepstrumhas the di mensi ons
of time and is called quefrency.

The result of this conplex transformation is to.increasethe
effects of the fundanmental relative to other frequencies present in
the original waveform Consequently, the cepstrumw !l contain a
| arge peak corresponding to the fundanental. The position of this
peak can be used to obtain an estimate of the fundanental frequency.
If this peak is renoved by cutting of the cepstrumfrom bel owthis
guefrency, the ripple on a spectrumcaused by the effects of the
fundanental can be reduced. Taking a DFT of cepstrum with the
fundamental renoved results in a snoot hed spectrum The peaks of

this spectrumare identified as formants (Fig.2.8c).
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2.6.1.2 finean Prediction analysio

The foregoi ng anal ysi s of the speech signal based on the
cepstrum makes no assunpti on about how t he speech was produced.

Li near prediction anal ysis, however assunes that the signal being
anal ysed is produced by passing an excitation signal through a
suitable filter. This is a good nodel for the production of nany
speech sounds. Hence this is an appropriate techni que for speech
signal anal ysis.

Suppose that a waveformx(t) has been digitised. If x(t) was
conti nuous, then the current sanple x(n) can be predicted fromthe
previ ous sanpl e :

x(n) = alx(n—l) + e(n) (2.22)
where the coefficient a, is obtained so as to mnimse the error
signal e(n). This idea can be extended by predicting x(n) fromthe
last p sanpl es:

P

x(n) =} a x(n-k) + e(n) (2.23)
k=1

The coefficients a are obtained by mninmsing the error Ele(n)?]
where E stands for the expectationoperator. This leads to a set of

si mul t aneous equations in the as :

P

Y a Elx(n-j)x(n-k)] = E[x(n)x(n-j)1, j=1,2,...,p

k=1

(2.24)

Repl acing E[] by time averages and defini ng

R(m) = ¥ x(n)x(n+m) (2.25)

n

leads to the autcorrelation nmethod of LP analysis. In practice, the

signal is not known over an infinite range, so as usual it is
h+N-1
w ndowed. Replacing E[] by the time average } leads to the

n=h

covari ance nethod of LP anal ysis



P h+N-1 h+N-1
Y a Y x(n-jix(n-k})= ¥ x(n)x(n-j), j=1,2,...,p (2.26)
k=1 n=h n=h

Once the as are obt ai ned the snoot hed spectrumcan be obtai ned by

conput i ng

(2.27)
e—ka

The peaks of this spectrumcorrespond to formants as shown in
Fig.2.8d.
2. 6. 2 Batimation of Pounce parametens

Accurate and reliabl e neasurenment of the pitch period of a
speech signal fromthe speech waveformal one is often exceedi ng
difficult for several reasons. One reason is that the glottal
excitation waveformis not a perfect train of periodic inpulses.
Al though finding the period of a perfectly periodic waveformis
straightforward, nmeasuring the periodicity of a speech waveform
whi ch varies both in period and in the detailed structure of the
waveformwithin a period can be quite difficult. Asecond difficulty
in measuring pitch period is the interaction between the vocal tract
and the glottal excitation. In some cases the formants of the voca
tract can alter the structure of the glottal waveformsignificantly.
This occurs when the articul atory novenents are very rapid. This
causes rapi d changes in formants. Athird problemin reliably
measuring pitch is the inherent difficulty in defining the exact
begi nning and end of each pitch period during voi ced speech segnents.
For exanpl e, based on the acoustic waveform al one, some candi dat es
for defining the beginning and end of the period include the maximum
value during the period and zero crossing prior to the maximum The

only requirenent on such a neasurenent is that it be consistent from



period to period. Fig.2.9shows possible estimtes of pitch period.
Both neasurenents are likely to give different values for the pitch
period. The pitch period discrepancies are due not only to the
quasi peri odi city of the speech waveform but also the fact that peak
nmeasurenents are sensitive to the formants, noise and any dc level in
the waveform. A fourth difficulty in pitch detectionis

di sti ngui shi ng between unvoi ced speech and |ow | evel 'voi ced speech

In nany cases transitions between unvoi ced speech and | ow | evel

voi ced speech are very subtle and are thus extremely hard to pin

poi nt .
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Fig.2. 9 Possibl e estimtes of pitch period.

Jypes of pitch detectors
As a result of the numerous difficulties in pitch measurenents.

a wde variety of sophisticated pitch detection nethods have been

devel oped. Basically a pitch detector is a device whi ch nakes a

voi ced- unvoi ced deci si on and, during voi ced speech,

provi des a measurenent of the pitch period. However, some pitch

detection al gorithns just determne the pitch during voi ced segments

of speech and rely on sone other technique for the unvoi ced-voi ced
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decision. Pitch detection algorithns can be roughly divided into the
fol l owi ng categori es:

1) Agroup which utilises principally the tinme donain properties of
speech si gnal s.

2) Agroup which utilises principally the frequency domai n properties
of speech signal s.

3) Agroup which utilises both the time and frequency: domain
properties of speech signals.

Ti me domai n pitch detectors operate directly on the speech
waveformto estimate the pitch period. For these pitch detectors the
neasurenents nost often are peak and val | ey neasurenents, zero
crossi ng measurenents, and autocorrel ati on measurenents. The basic
assunptionthat is nmade in all these cases is that if a quasiperiodic
signal has been suitably processed to mninmse the effects of the
formant structure, the sinple time donain neasurenents wll provide
good estimates of the period. Sone of the pitch detection algorithns
that belong to this category are(a) Mdified autocorrel ation method
[J.J.Dubnowski, R.W.Schafer abd L.R.Rabiner; 1976), (b) Average
magni tude di fference function (M.J. Ross, H L. shaffer, A Cohen,

R Freudberg and H J. Manley; 19741 (c) Data Reducti on Method
[N.J.Miller; 19751 and (d) Parallel processing nethod [B.Gold and
L. R Rabi ner; 19691

The nodi fied autocorrelation pitch detector is based on the
center clipping method due to Sondhi { M.M.Sondhi; 19681. In this
net hod the signal is low pass filtered, the | ow pass filtered signa
is then sanpl ed at 10kHz, sectioned into overl appi ng 30ns sections
for processing. Aclipping level is chosen, the sectionis center
cli pped and peaks of the autocorrel ationfunction of this signal

correspond to pitch period.



The cl ass of frequency donai n pitch detectors use the property
that if the signal is periodic in the tine donain, then the frequency
spectrumof the signal wll consist of a series of inpulses at the
fundarmental frequency and its harnonics. Thus sinple neasurenents
can be nade on the frequency spectrumof the signal (or a nonlinearly
transforned version of it as in the cepstral detector,) [A.M.Noll;
1967, R WSchafer and L. R Rabiner; 19701. In the cepstral detector
due to Nol |, the cepstrumis conputed. The cepstrurn has a strong
peak corresponding to the pitch period. The peak is |located in the
cepstrumand taken as an estinate of the pitch period.

The class of hybrid pitch detectors incorporates features of
both the time and frequency donai h approaches to pitch detection.

For exanple, a hybrid pitch detector night use frequency domai n
techni ques to provide a spectrally flattened tine waveform and then
use autocorrel ati on neasurements to estinmate the pitch period as in
SI FT [J.D.Markel; 1972b] and Spectral Equalisation LPC nethod using
Newton's transformation (B.S Aal and L. R Rabi ner; 19761.

In the SIFT techni que, the givensignal is |ow pass filtered,
the inverse filter coefficients for this signal are conputed. The
inverse filter output is then obtained. The autocorrelation of this
sequence is conputed. The largest peak within specified linits
corresponds to the pitch period. A conparative of study of sone of
the standard pitch detection al gorithns can be found in [L.R.Rabiner,
M J. Cheng, A E Rosenberg and C A McGonegal; 19761.

Recent ly Gng and Haton [Y.Gong and J. P. Haton; 1987] have
brought about a newfornulation for the pitch estination problem
The speech signal is nodel ed as a sequence of a specified function in
a tinme-dependent manner which allows the period and anplitude of the

excitation signal to be tine-varying. Andrews et al. [MS Andrews,



J.Picone and R D Degroat; 1990/ introduce a cepstrum based pitch

esti mat or whi ch coupl es the signal enhancenment capabilities of MJSIC
[S.M.Kay; 19881 with the harnoni c spectrumestimation capabilities of
cepstrum Hodgson et al. [L. Hodgson, ME Jernigan and B L. Wills;
19901 devel op a new al gorithmfor cepstrum pitch detection where a
nonli near nmodel for the vocal tract is assumed. S aney's [M.S aney;
19901 perceptual pitch detector conbi nes a cochl ear nmodel with a bank
of autocorrelators. An independent autocorrelationis performed for
each channel, the information is conbi ned to obtain an esti mate of

pi tch peri od.

2.6.3 The problem of Fpeech Enhancement

In nost practical situations signals are contam nated by noi se.
D fferent approaches nmay be needed to deal with different types of
noi ses such as quantisation, miltiplicative, convol utional,
si gnal -dependent and additive. The topic that is addressed in this
thesis is the probl emof processing noi sy speech where the noi se that
is considered is additive. Even inthis limted context, there are a
variety of situations in which speech enhancerment is desired
[J.S.Lim; 1979bl. In speech processing we observe that accurate
i nformation about (a) the vocal tract resonances and (b) the
excitation is essential for synthesising speech of high quality.

The cl assical work of Wener and ot hers gi ves an approach for
deriving an optinal filter that tends to suppress the noise while
retai ning the desired signal unchanged [S.S. Haykin; 1986, B R Widrow
and Stearns; 19861. The basic assunption in Wener filter theory is
that both signal and noi se are stationary, which is seldomtrue in
the context of speech. Neverthel ess several techniques based on the
appr oxi mation of the opti num Wener filter using tapped delay |ine

have been suggested in the literature. An approach based on the



concept of the adaptive noi se cancel l er due to Sanbur
(MR Sanbur;1978| uses the Least Mean Squares adaptive filtering
approach to renove the effects of additive noise on the speech
signal. The logic that is used in this approach is that voi ced
portions of the speech signal are periodic and a frame of this
portion del ayed by a few pitch periods will be highly correlated
while the noise will be uncorrelated. Another approaah based on the
is adaptive conb filtering {J.S Lim, A V. Qpenhei mand L. D Braida;
1978b]. The property that is exploited here is that the energy of a
periodi c waveformis concentrated in bands of frequencies.
Unfortunately, techni ques based on this approach sel domsucceed
bacause neither is the noise stationary nor is the sanple
representative of the noise in the system A though Sambur has
obt ai ned satisfactory results we are still left with the basic
probl emof identifying the voi ced and unvoi ced portions of a speech
signal and estinating the periodicity in the waveform

A particul ar cl ass of speech enhancenent systens are based on
the assunption that the short tine magnitude spectrumof speech is
nore inportant than the short time phase spectrum |In such systens
an estinate of the magnitude spectrumis first nade and t hen conbi ned.
with that of the phase spectumto produce enhanced speech. The nost
commonl y enpl oyed procedure is to estinate the noi se power spectrum
and then use spectral subtraction. This requires that sone know edge
about the statistics of the noise is available[S.F.Boll; 1979,
S.F.Boll and D C Pul si pher; 1980].

Q her approaches to speech enhancerment nake use of the
under | yi ng nodel for speech production. Mdel based approaches for
speech enhancenent estimate the paranmeters of the nodel rather than

the speech signal. This information is then used in a speech



analysis/synthesis system Hononor phi ¢ deconvol ution is ome e g
for estinmating the inpul se response of the speech productict wmmas
Later Systens attenpt to nodel the vocal tract systemas accrscs |
as possible. The problemof estimating the parameters of the wmsas _
for speech production has been dealt with extensively in the
literature. A though the estination of these paraneters is
straightforward for clean speech, it is rather difficult for nc:g.
speech. (ne such approach (in fact the nost successful) is Jwe .
Lim [J.S.Lim and A.V.Oppenheim, 1978a] where a maxmimum aposter:.s~
estimation procedure is enployed to estinate these parameters. =
the context of noise a set of nonlinear equations are obtained : =
place Of Eq(2.24) for autoregressive parameter estimation.

Al \\ngh
the systemsuggested is suboptinal, neverthel ess the speech cutng:

is
good.

Another cl ass of al gorithns enhance speech in various contexsy
by changing the time scal e of speech, i.e. slowing it down or
speeding it up. Mal ah (D.Malah; 19791 presents a nethod in whicxn :he
speech Signal is deconposed into conpl ex exponentials, then the
frequency of each exponential is nodified by the sane ratio in eacx
channel , without affecting the duration and anplitude of the
exponential . The resulting speech is obtained by conbining these
exponentials has the same duration but all frequency components ape
scal ed. Portnoff [Portnoff; 1981a, 1981b] presents a nethod ip whicn
the short tine Fourier transformof speech is nodified and speech
synthesised fromthe nodified Fourier transform In this kind of
approach a particul ar frequency that is important for 1nte111g1blluy
can be independently controll ed.

2.7 The problem of Spectrum Estimation

Spectrumanal ysis of signals is performed to extract the



i nfornation about the systemthat generated the signal. S nce the
signal available for analysis is usually of short duration and al so
noi sy, one can only attenpt to estinate the spectrumor the system
characteristics, rather than conpute the spectrum The accuracy of
the estinmated spectrumdepends on the bias and variance of the
estimate, which in turn depends on the nature of the signal, its
duration type of w ndow ng and noi se.

The nmain issue in spectrumestimation is to obtain a high
resol uti on fromshort data record and from data conbi ned w th noise.
Effects of short data records, w ndow ng, noi se and nodel order have
been studi ed extensively in [S.M Kay; 1988, S. L. Marple; 19871. In
all these cases two cl asses of problens are addressed (i) estimation
of autoregressive paraneters in noise and (ii) estimation of
conponent sinusoids fromfinite durati.on noi sy dat a.

Al t hough nodel -based t echniques [D.G Childers; 1978, S. B. Kesl er;
19861 are gai ning popul arity over that of nonnmodel based techni ques,
it is well known that the biggest drawback of these techniques is
that they fail mserably when no apriori information is avail abl e
ei ther about the signal of interest or noise. In the absence of any
apriori information, the Fourier-based nethods [C.Bigham, M.D.Godfrey
and J. WTukey; 1967, P.D VWl ch; 19671 are the nost successf ul
techni ques for estinating paraneters fromthe spectrum.

2.8 Mdtivation for the Current Research

It is interesting to notice that all the frequency domain
t echni ques di scussed so far (both in the context of speech anal ysis
and spectrumesti mati on) whet her nodel based or ot herw se use the
nmagni t ude spectrumas the starting point. The phase spectrumof the
signal is neither nodelled nor estimated. |In fact. the phase of the

signal is not considered at all. This is perhaps due to the



difficulties encountered in processing the phase

In many situations it is observed that the phase spectrumof the
signal rather than the nagnitude spectrumof the signal is inportant
for preserving the inportant features of the signal. This
observation has been nade in a nunber of situations, nanely, acoustic
hol ography, X-ray crystall ography and i mage anal ysi s [A.V.Oppenheim
and J. S Lim 19811. Several algorithns have been devel oped to
reconstruct a signal from either Fourier transform phase or
magni tude. Anong themare the algorithns for signal retrieval from
phase devel oped by [MH Hayes, J. S Lim and A V. openhei m 1980,
P. L. vanhove and M H Hayes; 1983, J. R Fi enup; 1987, Thonas R Crimmins;
1987, N Nukajima; 1987, S L Qurtis and A.\. Cppenheim 19871. In the
context of speech, the quality and intelligibility of an utterance
are conpletely restored when the phase of the signal and a fl at
nmagni t ude spectrumare used as initial estimates in an iterative
al gori thm [B Yegnanarayana, S T.Fathina and Hema A. Mrt hy, 1987,
Al t hough the phase contains all the informationrelating to events,
nanely edges in an image, formant transitions in speech and |inear
phase in both one-di nensi onal and two-di mensional signals, it is
difficult to capture this information directly fromthe phase because
it appears to be noisy and difficult to interpret.

Mani pul ation of the Fourier transformPhase directly for
feature extraction requires that the phase spectrumof the signal be
first of unwapped. Sone algorithns for unw appi ng of Fourier
transf orm phase [Tribolet; 1979, D G Ghiglia, GA. Mstin and Louis
A. Ronero; 19871 are avail abl e for unw appi ng the phase spectrum
These al gorithns are conputationally intensive and donot work for all
cl asses of signals.

Inthis thesis, instead of directly processing the Fourier



transf or m phase spectrumof signals, we process the group del ay
functions of signals to estinate the features that characterige
signals. The advantage of processing group del ay functions rather
than the phase function is that the group delay function has all the
desirabl e properties of phase (additivity) and it does not suffer
fromthe wapping problem The topic of the next Section is the
group del ay processing of signals.
2.9 The Group Delay Approach to Signal Processing

The group del ay function does not suffer fromthe w apping
probl em but possesses all the desirable properties of the phase
spectrumas was seen in the Section 2.4. A gorithns for conputing
the group delay functions as well as algorithns for deriving the
signal from the group delay functions are given in [B.Yegnanarayana,
D.K Sai kia and T. R Krishnan; 19841. Reddy etal. [S.Reddy and
M.N S Swamy; 19851 use the derivative of phase spectra to reduce the
i nherent w ndowi ng probl em when using the DFT. [K.V.Madhu Murthy and
B. Yegnanarayana; 19891 represents the first systematic study of the
properties of group delay functions for the representation of
signals. This study enphasi ses the useful ness of the representation
of signals through group delay functions. Their observation is that
the errors in representati on can be reduced considerably by taking a
| arge nunber of DFT points provided there are no roots on the unit
circle in the z-transform of the signal. For any representation to
be effective, it is desirable that the relevant information in the
signal be preserved in that representation. If continuous frequency
and time variabl es are used throughout there is no |oss of
information in any domain. But digital processing of data
necessitates discretisation which may result in partial loss of

information. V€ sawearlier that when a signal is represented by its
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discrete version it was required that the signal be adequately
sanpled in order to avoid aliasing in the frequency domai n.

Simlarly the discretisation of the signal nay affect the accuracy of
signal representation through group del ay functions.

The properties of group delay functions can be exploited for
many appl i cations such as design of digital filters [B.Yegnanarayana,
1981a] and pol e-zero nodel 1ing [B Yegnanarayana; 1981b]l. The
properties of group delay functions allow mani pul ation of signal data
effectively in many signal processing situations, |ike waveform
estimation froman ensenbl e of noi sy neasurenents [B. Yegnanarayana,
J.Sreekanth and Anand Rangaraj an; 19851. Mst of the avail abl e
literature on group delay functions nake attenpts to estinate signal
data fromthe group delay function. Very fewattenpts have been nade
in which group del ay functions or phase spectrum is used for
paranet er estination [B Yegnanarayana; 1978, MT. Manry; 19851 from
signals. W now di scuss sone of the probl ens encountered when an
attenpt is made to estimate parameters fromthe group del ay
functions of signals. Ve first discuss the issues in group del ay
processi ng of speech signals. This is followed by a discussion of
the application of group delay functions in spectrumestination.
2.9.1 %oouea in Snoup Delay Pnacessing of ¥peech signala

For ease of explanation we assume the sinple source filter nodel
for speech production that was discussed in Section 2.5.

To illustrate the issues involved in group del ay processing of
speech we use the following filter nodel to represent the vocal tract
system

1 - 2e-anTcos(2anT) + éankT

5
Viz) = q _ (2.28)
k=1 1 - 2e anTcos(ZanT)z_1+ e ansz-z

Thi s equation describes a cascade of digital resonators that have



unity gain at zero frequency. st represent the frequencies of the
resonat ors and Bks represent the bandw dths of the resonators.

For voi ced speech we assume that the filter is excited by a
periodic train of inpulses while for unvoiced speech, this filter is
excited by randomnoi se. Fig.2.10shows the inpul se response of the
filter and its magnitude phase and group del ay spectra, respectively.
The information about the resonances appear as (i) peaks in the
magni t ude spectrum (ii) phase transitions in the phase spectrumand
(iii) as peaks in the group del ay spectrum Notice that the
i nformati on about resonances in the group delay domain is
concentrat ed around the peak.

Speech is produced by exciting the filter of Eq.(2.28) with a
periodic inpulse train or randomnoi se. Fig.2.11 shows the inpul se
train and its group delay function. Fig.2.12shows random noi se
sequence, and its group delay function. The conbi ned response of
Fig.2.10and Fig.2.11 and its correspondi ng group del ay are shown in
Fig.2.13. This signal is an approximationto voi ced speech. The
conbi ned response of Fig.2.10 and Fig.2.12 and its correspondi ng
group delay is shown in Fig.2.14. This signal is an approxination to
unvoi ced speech. Notice that in the group del ay domain, the
i nformati on about the formants is conpl eted nasked by the group del ay
function corresponding to the source in both the figures(Fi g.2. 13
and Fig.2.14).

The zeros that are generated by the inpulse train and finite
window lie on the unit circle (Fig.2.15a) in the z-domain. The zeros
that are generated by random noi se are very close to the unit circle
in the z-domain (Fig.2.15b). The poles due to the formants are wel |
within the unit circle (Fig.2.15¢c). The group del ay functions assure

very large values at sanpling points that are close to the zeros or
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(a)

Fig.2.15 D stributionof roots in the z-plane for (a)
i mpul se train (b) random noi se and (c) all-pole filter.

poles. Since the group delay function is obtained by sanpling the
z-transform on the unit circle, the overall group delay function
assunes a spi ky appearance, due to the group delay taking very large
val ues at sanpling points close to the zeros due to the excitation in
the z-domain. The strength of these spi kes depends upon the
proximty of the zeros to the unit circle. doser the zero to the
unit circle, larger is its value. The sign of the spike depends upon
whether it lies inside(positive) or outside(negative) the unit
circle. The problemin group delay processing of speech signals nay
thus be posed as one of extracting the characteristics of the system
and source fromthe conbi ned group del ay of Fig.2. 13 or 2.14.

In the estinmation of paraneters of the speech signal fromthe
power spectrumof speech we sawthat in all the techni ques(w thout
exception) an attenpt was nade (i) to estinate the spectral envel ope
(for estimating formants) and (i) to flatten the spectrum(for
estimating source paraneters). This essentially anmounts to
separating the spectra corresponding to the source and the system

If the group del ay spectrumof speech’ is to be used effectively

for estimating paraneters fromthe speech signal, the source and



systemgroup delay functions nust be necessarily separated. The
objective of this thesis is the devel opment of appropriate al gorithns
for the estination of the underlying characteristics of the source
and system paraneters for speech fromthe group del ay spectrumof the
gi ven speech signal .

In Chapter 3 we devel op a new al gorithmfor formant extraction
fromspeech using a group delay function derived fromthe nagnitude
spectrum of speech. In Chapter 4 we devel op yet another al gorithm
for estimation of fornmant and pitch fromthe speech signal using a
group delay function(called the nodified group delay function) that
is derived directly fromthe phase spectrum
2. 9. 2 dpplication of Snoup Delay functions ta Ppectum Eatimation

Spectrumestimation is yet another area of signal processing
where the dom nance of FT nagni tude spectrumin nost anal ysis met hods
is evident. The techni ques devel oped for speech signal do not nake
any speci fic assunptions about the signal.

In Spectrumestinmation there are two najor probl ens, two types
of signals are considered nost often, namely, (a) sinusoids in noise
and (b) AR processes in ucise. 12 presence Of additive noise either
i ntroduces new zeros or redistributes the existing zeros. It was
shown in the previouz section that the zeros due to randomnoise lie
close to the unit circle in the z-domain of the signal. Smlarly
wi ndow zeros lie on the unit circle in the z-domain. |If the group
del ay functions of such signals is to be processed these zeros nust
be suppressed. The nodified group del ay function nay be thought of
as a function in which the infornation correspondi ng to that of zeros
in a signal are suppressed. The use of nodified group del ay
functions to suppress zeros that are caused by noi se in spectrum

estimation is studied in Chapter 5.

SPERCH AND VISION LABORATORY
CSE, HIT. Madras - 600 036



CHAPTER 3

M N MUM PHASE CROUP DELAY FUNCTI ON AND I TS APPLI CATI ON TO FCRVANT
EXTRACTI ON FRCOM SPEECH

3.1 Introduction

Inthis Chapter we derive a m ni mum phase signal fromthe given
signal. The group delay function of this signal is then derived
whi ch contains infornation about the |ocation of resonances in the
signal. This group delay function is then used to extract formants
fromspeech signals. The algorithmis simlar to the cepstral
snoot hi ng approach for snoot hi ng the spectrumusi ng hormonor phi c
deconvol ution [J.S.Lim; 1979al. The significant differences are (i)
the logarithmic operation is replaced by (. )F operation and (ii) the
addi ti ve and high resol ution properties of group delay functions are
expl oited to enphasi se formant peaks. The group del ay function(or
the negative derivative of the Fourier transformphase) is derived
for a signal which inturn is derived fromthe Fourier transform
magni tude of the signal. |If a suitable value of r is used, this
nmet hod gi ves highly consistent estinmates of fornants conpared to both
the cepstral approach and the nodel -based |inear prediction (LP)
approach for snoot hi ng the magni tude spectrum The effects of the
par anet ers, exponent r and w ndow w dth p on the proposed techni que
of formant extraction are studi ed.
3.2. Principle of the proposed nethod

V¢ propose a spectral root group delay function approach for
extracting the parameters of the system This issimlar to the
spectral root hononorphi c deconvol uti on (SRDS) [J.S.Lim; 197%a}. The
proposed nethod invol ves deriving a signal with the characteristics
of a mni num phase signal so that the phase spectrumof this signal
contains the informati on of the nagnitude spectrum Peaks of the

group delay function derived fromthis phase function correspond to



| ocation of resonances in the signal

Tabl e. 3. 1 gives the algorithmfor the new spectral root group
del ay function approach for estimating the group delay function wth
m ni num phase characteristics. |n the Table DFT and | DFT correspond
to the forward and inverse Fourier transforns, respectively. w(n) is
a half Hann wi ndow function and is given by

w(n) = 0.5 + 0.5cos{nn/L), 0 s n = L,
= 0.0, n > L

where L is the length of the window This technique is like the
cepstral snoot hing techni que, except that (i) rth power operationis
used in place of the log operation and (ii) the phase group delay is
conput ed instead of the snoot hed nagnitude spectrum Fig. 3. 1a shows
a segnent of speech (25.6 ns, 10kHz sanplingrate). Figs.3.1b,3.1c
and 3. 1d show the correspondi ng negni tude, phase and LP spectra. The
i nverse Fourier transformof the magnitude function gives an even
sequence which is called the spectral root cepstrum (x(n)). The even
sequence is then truncated to include only the causal portion of it
Fi g.3.2a shows the causal portion of x(n). The rth power operation
does not disturb the | ocations of either the poles or zeros of the
z-transformof the w ndowed signal. Therefore the region around n=0
inthe root cepstrumwll contain informati on corresponding to the
slow y varyi ng conponent of the spectrumand a peak due the
periodicity wll appear at n=T;, wher e T; is the periodicity in the
signal. To estimate the paraneters due to systemthis signal is
miltiplied by a half Hann wi ndowto select the first p(correspondi ng
to 4.2ms) sanpl es (henceforth referred as §P(n)). It is worth noting
that the magni tude and phase spectra of the original signal are
unrel at ed, whereas the nagni tude and phase spectra of the signa
§P(n) are related. Notice that peaks in the nmagnitude spectra of

Fig.3.2b correspond to phase transitions in Fig.3.2c. The
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di fferenced phase corresponds to the group delay functi on shown in
Fig.3.2d. The w ndow size p should be taken as large as possible to
obtain a good resol ution of formants, but should be |ess than the
periodicity (if it exists) in order to avoid fluctuations due to

excitation in the magni tude and phase spectra.

Table.3.1. Algorithmfor Conputing the mni num phase group del ay
function fromthe given signal.

1 Let x(n) be the given N point sequence. Conpute the
N poi nt DFT of x(n), X(k), k = 0,...,N-1.

2. Let t)g(k) = [X(k) |exp(je(k)). Conpute the N-point |DCFT
(|X(k)| ) where r is a value chosen between 0.5 and 1.

3. Let X(n) = IDFT{|X(x)|™), n=0,...,N-1. Now miltiply
x(n) by the window w(n) to elininate the noncausal portion
of the signal and peak due to periodicity.

4. Let >~<P(n) = %(n).w(n), N =0,...,p
=0, ot her wi se.
Conput e the N-point DFT of §P(n), )~(P(k), k = 0,...,N-1.

5. Let )N(P(k) = |XP(k)|exp(jGP(k)). Conput e the group del ay
function as :

n
? o
-

T(k) = Gp(k+1) - Gp(k), k v N2

= t(k-1), k

The strength of our approach is in the fact that, being not
nodel -based, it shoul d provide a better representati on of the
underlying nature of the systemthan that obtai ned using nodel - based
anal ysis. The cepstral approach to parameter extraction is al so not
nodel - based but has the di sadvant age that the conputation of cepstrum
i nvol ves a logarithmoperation. Ve now give sone of the properties
of the spectral root cepstrum
3.3 Properties of the spectral root cepstrum

Let {x(n)} be a causal, real and stabl e sequence and let {X(k)}
be its discrete Fourier transform

1. Then IDFT(|X(k)|) = {x(n)} is an even sequence.



2. Gventhat {x(n)} is a sequence with finite support, fromthe
Akhiezer-Krein and Fejer-Riesz theorens [A.Papoulis; 1977, Ch.7] it

can be shown that

0.5r O.Sr)

IDFT( |X(k)|7) = IDFT(|X(k) |~ 7" |X(k) |

IDFT{Y(k)}{YC(X)},

{y(n)}*{y(-n)} : (3.1)

where ¢ and * denote conpl ex conjugation and convol uti on operati ons,
respectively. Thus |X(k) |P can be expressed as the Fourier transform
of the autocorrelation function of sone sequence y(n).

3. dventhat |X(k)|" is a positive even function and that {x(n)} is
a non-zero sequence, then IDFT(|X(k) |r) is maxinumat the origin

[ R N. Bracewel | ;19861.

4. Mninumphase property : The above properties suggest that the

truncat ed sequence x_(n) behaves like a ninimum phase signal in the

P
sense that the phase and the magnitude spectra of >~<P(n) are rel at ed.
This is confirmed by conputing the roots of the z-transform of
t he sequence >~<P(n) nurerical ly for a nunber of different frames of
speech data. |t was found w thout exceptionthat in all the exanples
(= 50) the roots (error < 107*%) lie inside the unit circle
(Fig.3.3). W& have seen in our studies. that the group del ay
functions derived fromthe magnitude and phase of the FT of >~<P(n) are
identical (Fig.3.4). Aso using the properties 2 and 3, the given
si gnal ;P(n) is asignal in which there is mnimumenergy del ay.
This is yet another property of m ni num phase signal s [A.J.Berkhout;
1973, 19741.
Fromthese enpirical observations we conclude that the causal
portion of x(n) can be considered as a m ni num phase sequence. The
m ni num phase condi ti on ensures that the |og nmagnitude and phase of

such a signal are related through the Hlbert transform Thus the

conpl ete magnitude information is captured in the FT phase of >~<P(n).



Fig.3.3 Distribution of roots in the z-plane for the minimum
phase signal.
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Because of the m ni num phase characteristic, the cepstral
coefficients and hence the weighted cepstrumcan be derived
recursively fron]ip(n]. The group del ay function can al so be
conputed as the FT of the wei ghted cepstrum [B.Yegnanarayana,

D K Saikia and T. R Krishnan; 19841. But in the al gorithmdi scussed
in this Chapter we conpute the group del ay function through the
spectrumusi ng the discrete Fourier transformrel ation.

Note that use of the exponent r on |X(k)| does not alter the
peaks in the snmoot hed envel ope of the nagni tude spectrum Thus the
peaks | ocations information is preserved in the conputation of the
magni t ude spectrumof the w ndowed spectral root cepstrum It is
general Iy not possible to nodel each of the peaks by a sinpl e second
order all-pole system(resonator) even though they nay' correspondto
a resonance peak in the original mnagnitude spectrumof X(k).
Therefore |loworder (10 to 18) linear prediction analysis of the
si gnal ;P(n) wll not result in the desired peaks.

It is inportant to note that the exponent r in |X(k)|" does not
disturb the location of the peak due to periodicity in x(n).
Therefore both the spectral peak |ocations and val ue of the period
are not altered by the exponent factor. But the exponent factor
hel ps to contain the significant infornation of the spectral envel ope
in ashort windowsize p for x(n). This helps in the choice of a p
lower than that of the periodicity to avoid the influence of
periodicity on estinating the system i nfornation.

3.4 Formant Extraction from Speech Using Minimum Phase Croup del ay
Spectra

In this section we denonstrate the effectiveness of the proposed
group delay function for formant extraction fromspeech. 1In the
context of speech the peaks of the group delay function correspond to

formants. The useful ness of this approach is established by



conparing it with the LP and cepstral approaches for formant
extraction. In each case the rawfornant data is obtai ned and the
perfornmance is judged by visual inspection of the formant contours.
In the group del ay function approach for formant extraction there are
a few paraneters which decide the resol ution and accuracy of the
formant data that nmay be obtained. ne of themis the w ndow size p.
This is simlar to the cepstral (or LP) snoothing technique in which
the wi ndow si ze (or nodel order) chosen in the cepstral domain(or LP
nodel ) affects the resolution that can be achieved. In additionto
the w ndowsi ze p, the exponent r also plays a significant role in
the resolution that can be obtained. Ve nowstudy the effects of
varying these two parameters on the formant information obtained from
the group del ay function. To discuss the perfornance of our mnethod
we first consider synthetic speech data corresponding to the fornant
contours shown in Fig.3.5.
Mbdel for the synthetic signal

The synthetic signal chosen is a voi ced utterance generated by
using a sinplified nmodel for speech production shown in Fig.3.6. The
waveshape for the glottal pul se was chosen to be of the form

[L.R.Rabiner and R.W.Schafer; 1978, p. 1021:

g(n) 0.5(1 - cos(nn/Nl)). 0Osns=N

1

cos{n(n - N)/2N ), N = n s N+N
1 2 1 1 2
=0, ot herwi se. (3.2)

The transfer function for the vocal tract was nodell ed as :

5 1 - 2e_anTcos(2anT) + e_ankT
vViz) =71 . (3.3)

k=14 - 2e_anTCOS(2anT)Z_1 + e—ansz—2

Thi s equation describes a cascade of digital resonators that have
unity gain at zero frequency. Al the five formants (st) vary

continuously with tine as defined by the formant plot shown in
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Fig. 3.5 Synthetic Formant data.
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Fig.3.6 Mdel used for speech production in generating
synthetic speech.



Fig.3.5. Tis fixed at 0.0001sec (i.e. 10kHz sanpling rate). The
formant bandwi dt hs (Bks) were fixed apriori at 10% of the fornant
f requenci es.

A pitch period of 10ms was chosen to generate the excitation
signal. In the nodel for the glottal pulse N1 = 60 and N2 = 10. The
formant data was designed so as to capture nost of the situations
encountered in practice (in the context of voiced speech), nanely,
proximty of formants, sudden rise in formants, sudden fall in
formants.

The effect of the wi ndowsize p on formant extraction is studied
by obtaining plots of the rawforrmant data for different val ues of
the window in the spectral root cepstrumdomain. Fig.3.7 shows the
formant data obtai ned fromthe synthetic speech signal using the
group del ay (GD) approach for various w ndowsizes (p = 5.0ms to
8.0ms). The windowsize is varied uniformy from5.0ms to 8.0ms in
steps of 1.0ms, with r=0.5. Nbdtice that an increase in w ndow si ze
results in an increase in resolution of the peaks. The formant data
is consistent over a sufficiently large range of w ndow si zes
(Fig. 3.7a - Fig.3.7¢c). But too large a wi ndow si ze (for example
8.0ms) causes spurious peaks to appear as in Fig.3.7d. The w ndow
si ze shoul d be | arge enough to resol ve the peaks that are close to
each other, but should not be too large to include the effects of
pitch on formant extraction

Fi g. 3.8 shows the fornmant data for the sane sythetic data using
LP anal ysis for various orders (10 to 22) and Fig. 3. 9shows the
formant data obtai ned using cepstrumanal ysis for the sane w ndow
wi dths as used in the GD approach. Conparisonof the data in Fig.3.7
with the rawformant data obtained fromLP analysis (Fig.3.8) and the
raw formant dat a obtai ned fromcepstrumanal ysis (Fig.3.9) shows that

our nethod gives equally good but nore consistent estinmates of
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Fi g. 3. 9 Raw Formant data obtai ned usi ng Cepstrum Anal ysi s
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formants over a wde range of w ndow wi dths for the synthetic data.
It is to be noted that in the case of LP analysis (Fig.3.8) |ower
order nay not bring out all the formant peaks. As the order is
increased all the peaks get resolved but not nmany spurious peaks wll
be generated since the data is strictly the output of an all-pole
system

The choice of r(for a particular wi ndowsize p) depends upon
the dynamic range of the signal spectrum The choice of r basically
dictates the degree of overl ap between the source and the vocal tract
conmponents in the root cepstrumdonain. In the digital
i npl ement ati on of the SRDS algorithmthe (. ) and ()T oper at i ons
requi re two phase unw appi ng operations {J. S Lim 1979al. |n our
approach we perform (. )T onl y on the positive real function |X(w)]|.
Hence no phase unw apping is necessary. Thus there is no constraint
onr. V¢ have experinental |y observed that the choice of r is
related to the spectral flatness. |t appears |ogical that when the
dynamc range is low(as in the case of noi sy speech) the peaks in
the spectrum nust be enphasi zed if they have to nake a significant
contributionto X(n). This can be achieved by keeping r > 1. On the
ot her hand, when the dynamc range is very large(as in the case of
normal or high pitch voi ced speech) the contribution by the first
formant dom nates the conputation of x(n). The effect of the first
formant nust be deenphasi zed. This is done by keeping r < 1. Wen r
< 1 the vocal tract information is concentrated around the origin in
x(n) and the gating function enabl es a good separation of the source
information fromthe vocal tract response. Fig.3.10 illustrates the
per f or nance tradeoff for various choi ces of r and wi ndow si zes. The
effect of r can be visualized by traversing Fig.3.10 vertically from
bottomto the top along a direction corresponding to a fixed w ndow

W dt h.
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It is to be noted that the paraneter r and w ndow size p are
related. A snaller w ndowsize produces a poorer resolution, while a
smal l er r produces a better separati on of source and excitation. As
the windowsize p nust be smaller than the pitch period to avoid
fluctuations, r can be nanipul ated to obtain a good resol ution of
formants.

So far we have illustrated the use of this new techni que for
formant extraction on synthetic speech, where the synthetic speech
has be nodel led as the glottal excitation of a truly all-pol e nodel.

Natural speech nmay not correspond to a truly autoregressive
process of a fixed nodel order. Ve now conpare the GD approach wth
that of LP analysis for formant extraction from natural speech.

Figs. 3.11, 3.12 and 3. 13 shows the fornmant data obtai nkd usi ng GD
appr oach, LP approach and cepstrumanal ysis for the utterance "W
were away a year ago" as spoken by a nal e speaker. The conpari son
confirns our earlier conclusions that the G formant extraction

t echni que gives nore consi stent formant val ues (for various w ndow

si zes) than that of the LP approach (for various orders) and cepstrum
analysis ( for various cepstral w ndows).

Figs.3.14and 3. 15 illustrate the formant contours for a high
pi t ched synthetic and natural speech data. Here r is chosen to be
0.5. As long as the windowsize p is less than the pitch period, the
proposed nethod works well even for high pitched speech. The
synt heti ¢ speech was generated using the same procedure indicated in
Fig.3.5. The pitch period used for this case was 5ns. For natural
speech the utterance is "W were away a year ago" as spoken by a
fenal e speaker. In Fig.3.15a, in the region between 0.6 - 0.9s the
@& et hod does not resolve the 2nd and 3rd formants as well as that
of the LP nethod (Fig.3.15b) because the tine w ndow chosen is very

small (2.4ms). The tine w ndow cannot be increased beyond 3.2ms as
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the average pitch period for this utterance is about 4ns. It is
observed that the formants are steady for w ndowsizes rangi ng from
1.6ms to 3.2ms. For the LP method in Fig.3.15b a carefully chosen
order of 12 seens to be appropriate for this utterance. A |ower
order does not resolve the formants while a higher order generates a
lot of spurious peaks. The cepstrum anal ysis (Fig.3.15c) generates
spurious peaks especially at high frequencies for all-window Sizes.

Fi g.3. 16 shows the fornant contours for an utterance in an
I ndi an language Hndi "nai yah ca:hta: hu:n". The sentence contains
segnents of different categories of speech segments such as unvoi ced,
nasal s and fricatives. For unvoiced segnments the peak |ocations
occur at randomfrequencies. For nost voiced segnents the formant
frequencies are extracted well as seen fromthe continuity of the
poi nt s.

V¢ have exam ned the performance of the proposed nethod f or
noi sy speech data al so. Fig.3.17c shows the formant contours
obtai ned for an utterance (Fig.3.17a) with an overall SNR = 10 dB,
using p = 3.2ms and r = 2. The variation of SNR for each frame is
shown in Fig.3.17b. The fornmant contour for the clean data is given
in Fig.3.17d. Conparison of Figs3.17c and 3.17d showthat there are
spurious peaks at those franes where the SNR is very low ( < O dB),
while for all other frames the formant peaks even for the noi sy data
are located at the appropriate frequencies. For sone segnents in the
noisy data inthe region 0.9sto 1.2s(in Fig.3.17c), the fourth
formant is not extracted as well as that for the clean data. This is
because for a given franme SNR is a function of frequency al so. A
hi gh frequencies usually the SNR is |ower than that at |ow
f requenci es.

Wil e the proposed nethod seens to work well for a wide variety

of speech signals, conputationtime is significantly higher than the
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LP or cepstral nethods. For the utterance "W were away a year ago"
the conputation tinme for the proposed method is 40 sec, whereas it is
20 sec fcr LP and 30 sec for the cepstrum nethod on a microvax
Vaxst at i on.
3. 5 Summary

V¢ have proposed a new nethod of extracting formant infornation
fromthe speech signal. V¢ have denonstrated that the additive and
hi gh resol ution properties of the group del ay functi ons can be used
for extracting cl osely spaced and | ow anplitude formant information.
This nethod for fornant extraction gives a nore consi stent
per f or mance conpared to ot her nethods based upon snoot hi ng t he
magni t ude spectrum This nethod of formant extraction does not
depend on any nodel, hence the fornmant infornation obtained shoul d be
a better representation of the underlying nature of the signal than
that obtai ned from nodel - based techni ques. These studi es show t hat
there is a rel ati onshi p between the spectral flatness and anal ysi s
par anet ers, which can be expl oited to choose appropriate val ues of p

and r.
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CHAPTER 4

MODI FI ED GROUP DELAY FUNCTI ONS AND | TS APPLI CATI ON TO SPEECH ANALYSI S

4.1 Introduction

In this Chapter we propose new et hods of processing group del ay
functions to estinate paraneters correspondi ng to the systemand
source in a source-systemnodel for signal production, where the
systemcorresponds to that of an all-pol e systemand the source nay
be a train of inpulses or randomnoise. Generally the estimnation of
periodicity corresponding to the excitation and the resonances
corresponding to that of the systemare treated as two distinct
problens. In the nethods presented in this Chapter, estimnmation of
bot h systemand and source paraneters involve sinlar anal ysis
nmet hods. Therefore, both the problens are addressed in this Chapter.

In the previous Chapter, to overcomre the probl emof wapping of
phase, a mimimum phase group del ay function was derived fromthe
magni t ude spectrumto estimate the vocal tract parameters. In this
Chapter we suggest a new net hod of processing the group del ay
functiondirectly. The expression for the conputation of the group
delay function is nodified to derive a nodified group del ay (MGD)
function. In the MGD function, the |arge anplitude spi kes due to the
source are suppressed. Paraneters corresponding to the system
nanel y, frequenci es of resonances are extracted fromthis nodified
group del ay function

Periodicity in a signal manifests as a sinusoidal conponent in
the spectrum A nodified group delay function for this sinusoida
conmponent is obtained. Peaks appear at regular intervals in the

nodi fied group delay function. The di stance between two peaks



nmeasured in seconds corresponds to the periodicity.

An approxi mat e isol ati on of source and systemcharacteristics in
the nodified group delay function is possi bl e because of the distinct
characteristics of the group del ay functions of the source and
system In Section 4.2 we study the properties of group del ay
functions for speech-like signals. The basis for the' proposed net hod
- nmodified group delay functions - is discussed in Section 4. 3.
Extraction of both systemand source parameters is al so di scussed in
Section 4.3. In Section 4.4 the perfornance of this nethod for
different choi ces of parameters is discussed. The nodified group
del ay function has sonme interesting properties which make it a good
tool for processing noi sy speech. In Section 4.5 we address the
probl emof extracting formants and pitch from both cl ean and noi sy
speech. W al so discuss a nethod of synthesising speech from formant
and pitch data.

4. 2Theory and Properties Goup Delay functions

In the theoretical discussionthat follows initially we use
continuous tine and frequency variabl es and express the transfer
function in terns of the Laplace transform This helps us to
visual i se the resonance behaviour of the group delay function
analytically. Later we use digital signals and the z-plane for the
conput ati on and di scussion of the technique.

To explain the principle of the nethod, we consider a cascade of

Mresonators. The frequency response of the overall filter is given
by
M

Hw) =

1=1 (a? + B? - w? - ijax)

1 (4.1)

wher e (oc1 £ jBl) is the conplex pair of poles of the ith resonator.
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The nagni tude spectrumis given by

x

1
Hw) |2 = | , (4.2)
and the phase spectrumis given by
M 1 2w
elw) = MHlw) = Y tan > > > (4.3)
1=1 at + Bi - w

It is well known that the nagnitude of an individual resonator
has a peak at W= Bf - af and a hal f - power bandw dth of a . V¢ now
consi der the negative derivative of the phase spectrum (or group

del ay function)

M 2a£af + Bf + W
= ¥ > 5 " > (4.4)
1=1 (al + Bi - w)" + 4w @

2)

[t was shown in [B.Yegnanarayana; 19781 that around the
resonance frequency wlz = Bf - af the group delay function behaves
li ke a squared magni tude response. The response due to each
resonat or approaches zero asynptotically for » away fromthe
resonance frequency. The overall group delay function is a sunmati on
of the group del ay functions due to individual resonators as can be
seen fromFig.4.1d. Fig.4.la shows the w ndowed i npul se response of
a 10th order all-pole filter. Figs4.lb, 4.1c and 4.1d show the
correspondi ng magni t ude, phase and group del ay spectra. Note that
the group del ay function (Fig.4.1d) has sharp peaks around the
resonances due to the squared magnitude behavi our and has very snal |

val ues in between two resonance peaks due to the asynptotic behavi our

for frequencies anay fromthe resonance frequency.
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It was shown in (K V. Madhu Mirthy and B. Yegnanar ayana; 1989]
that the digitally conputed group del ay functions accurately
represent the signal information as long as the roots of the signa
z-transformare not too close to the unit circle in the z-plane. It
was noticed that adequate sanpling based on the Nyquist criterion in
the.tine dormai n does not necessarily result in proper sanpling in the
group del ay dormain. Therefore if the group del ay function of a
signal is to processed, the signal should be sanpl ed adequately. The
sanpl i ng frequency required being dictated by the | ocations of the
zeros of the signal z-transform In a source-systemnodel for signa
production(all-pole systemand all-zero source) to estimate the
paraneters of the nodel corresponding to that of the system if the
group del ay function corresponding to that of the source is
elimnated in the overall group delay function, then sanpling based
on the Nyquist criterionwll result in proper sanpling in the group
delay domain. This is precisely what is attenpted in the technique
proposed in this Chapter.

4.3 Basis for the Proposed Method : Hodified Goup Delay functions
4.3.1 Exthaction of Pyolem parametenos

In digital processing of signals |ike speech, the vocal tract
systemand the excitation contribute to the envel ope and the fine
structure, respectively to the spectrum Techni ques used to extract
resonances fromthe FT magnitude try to capture the spectral envel ope
and disregard the fine structure. Sinmlarly, to derive the system
characteristicsfromthe group del ay function, the conponent due to
spectral fine structure nust be deenphasi sed. These spi kes forma
significant part of the fine structure and their effect cannot be
elimnated by nornmal snoot hi ng t echni ques.

In our previous attenpts [Hema A.Murthy, K.V.Madhu Mirthy and



B. Yegnanarayana; 19839a], the signal was nodified prior to the group
del ay conputation to reduce the effect of the spikes in the group
delay domain. In this technique an attenpt is made to snooth the
phase spectrumand then conpate the group delay function. This is
done by taking the average of conpl ex spectral values at three
points. w-dw, w and w+dw. The phase of the averaged spectrumis
first conmputed. The group delay function correspondingto this phase
spectrumis then conputed. |t was observed that the techni que worked
quite well provided a zero is located at w and there are no zeros at
wtdw. It also required a different choice of éw for different
| ocations of zeros of the signal z-transform For practical signals
| i ke speech, the val ue of sw cannot be decided apriori as the
| ocations of zeros in the signal z-transformare determined by both
the anal ysi s wi ndow and source excitation

V¢ now suggest a nethod for reducing the contribution of the
fine structure to the group delay function by nodifying the
expression for conputing the group delay function derived directly
fromthe tine dormain signal. This nodification is based on the
conjecture that the spikes in the group delay function are caused by
zeros close to the unit circle. Qur initial attenpts to conpensate
for the zeros invol ved nodifying the expressionfor conputing the
group delay function in an adhoc manner which was reported in [Hema A
Murthy, K V. Madhu Mirthy and B. Yegnanar ayana; 1989b]. \é now
substantiate this conjecture with both a theoretical anal ysis and
experinmental results and suggest a nodification which does not
i nvol ve enpirical choice of paraneters.

Any signal can be characterised as the response of an all-pole
filter to an all-zero excitation, the z-transformof the system

generating the signal can be written as
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N(z)
D(z)’ (4.5)

H(z) =

The nunerator pol ynomal N(z) corresponds to the contribution by the
excitation and the denom nator pol ynomal D(z) corresponds to the
contribution by the poles of the system The frequency response of

H(z) is given by

D(w)’ " (4.8)
where H(w), N(w) and D(w) are obtained by eval uating the
correspondi ng pol ynomals on the unit circle in the z-pl ane.
The group del ay (negative derivative of the phase) function of

H(w) is given by

-r(w)='cN(w) - ‘rD(w), (4.7)
wher e rN(w) and rD(w) are the group delay functions corresponding to
N(w) and D(w). We have al ready di scussed the shape and properties of
—rD(w) through equation (4.4) earlier. Athough it is difficult to
derive an anal ytical expression for rN(wJ, we can study its behavi our
interns of the characteristics of the excitation signal. Since N(z)
corresponds to the z-transformof the excitation signal, the zeros of
N(z) close to the unit circle produce | arge anplitude spikes in
TN(w). The pol arity of the spi kes depends on whether the zeros are
lying inside or outside the unit circle in the z-plane. Figs.4.2and
4.3 illustrate the behavi our of rN(w) for a random noi se sequence and
inpul se train respectively. Note that the |og nmagnitude spectra
(Figs.4.2b and 4.3b) have nearly a flat spectral envel ope with rapid
fluctuations superinposed on it due to zeros close to the unit
circle. The group delay function (Figs.4.2d and 4.3d) has |arge
randomf |l uctuations around zero. The large positive and negative

spi kes of rN(w) nask the details of the resonance peaks due to -TD(w)



in the conbi ned response t(w). This is illustrated in Figs.4.4and
4.5. The signal in Fig.4.4 corresponds to a w ndowed version of the
signal generated by convolving the inpulse train (Fig.4.2a) with the
i npul se response (Fig.4.1a) of an all-pole system The group del ay
function (Fig. 4.4d), which is sinply the sumof the plots of Fig.4.1d
and 4.2d shows that the resonance peaks are indeed nasked by the

| arge anplitude spikes. Note that the vertical scales'in Figs4.1d
and 4.2d are different, the peak anplitudes in Fig.4.2d being very
much larger than the anplitudes in Fig.4.1d. Simlar behaviour is
observed in Fig.4.5, where the signal is a w ndowed version of the
signal obtained by convol ving the randomnoi se in Fig.4.3a with the
i npul se response (Fig.4.1a) of an all-pol e system

The equation for t(w) can be witten as

XR(w)YR(w) + XI(w)YI(w)
T(w) = 5 , (4.8)
|X(w) |

where X(w) and Y(w) are the Fourier transforns of the discrete-tine
signal s x(n) and y(n)=nx(n), and the subscripts Rand | stand for the
real and inaginary parts, respectively. 1In the expression for

conput i ng T (W), IN(w) |2 appears in the denomnator. Small val ues of
|N(w)|2 at frequencies near zeros of N(w) contribute to the large
anpl i tude spi kes. For conputing rD(w), the term |D(w) |2 appears in
the denomnator. Since D(z) has all the roots well within the unit
circle, |D(w)|® will not have very small values as in |N(w)|®. Hence
tD(w) wll not have large anplitude spikes as in TN(w). The conbi ned

group del ay function is now gi ven by

T(w) = TN(w) - tD(w)
) oy (@) B o, (w) (4.9)
|N(w)|2 |D(w)|2
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wher e aN(w) and aD(w) are the nunerator terns of (4.8) for rN(w) and
rD(w), respectively.

Suppose we multiply t(w) with |N(w) |2, then the contribution due
to the zeros is significantly reduced. Since the envel ope of |N(w) |2
is nearly flat, the significant features (resonance peaks) of the
second termw !l still show up, wth superinposed fl uctuations of
|N(w) |2. The nodified group delay function is given by

T (w)

T(w) |N(w)|2

aD(w) |N(w)|2
|D(w)|2
In equation (4.10) the contribution of the first term aN(w) shoul d be

a (w) - (4.10)

N

snal | conpared to the second termin order to enphasise the group
del ay conponent of the second term The anal ytical proof for the
case where the excitation is a train of two inpul ses separated by a
peri od T and the systemis a single resonance is given in Appendi X
B. Fig.4.6a shows the group delay function of an all-pole filter
with a single resonance at w. Fig.4.6b shows the zero spectrum
corresponding to two inpul ses. Fig.4.6c shows the plot of the group
del ay function obtained by exciting the said all-pole filter with the
i mpul ses. Fig.4.6d shows the correspondi ng nodi fied group del ay
function. Notice that the overall peak of the modified group del ay
function coincides with that of the group delay function
corresponding to that of Fig.4.6a.

Therefore, the probl emof determning the component due to the
resonances is reduced to the estimation of the function |N(w)|?. In
practice |N(w) |2 has to be estimated fromthe given signal. It is
inportant to preserve the val ues of |N(w) |2 around the zeros so that
it cancel s the small values in the denomnator of the first termin

(4.9). Therefore |N(w)|2 should retain al the sharp fluctuations



100

0 i dt—tes—s—i— (2) system group del ay

-100
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(two inpul ses)
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0 (c) group del ay of
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At (d) nodified group
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Fig.4.6 Estimation of the nodified group delay function
corresponding to that of the systemin a source-system nodel
for signal production.
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of the log magnitude spectrum and should have a flat spectral

envel ope. V¢ w 11 show that the second conditionis not as critical
as the first one. An approxi mation 2(w) to |N(w) |2 can be obt ai ned
by dividing the signal spectrum (S(w) = |H(w) |2) with a cepstrally
snoot hed spectrumV_(w) (L. R Rabiner and R WSchafer; p.519, 19781,
That is

S(0) = SW) . (4.11)

where S(w) is the signal spectrumand V (w) is the cepstrally

snoot hed spectrumof S(w). Figs.4.4e and 4.5e show the resul ts of
processing the group del ay function using an estimate é(w) for

IN(w) ‘2 derived froma cepstral |y snoot hed spectrumof the signal.
The figures showthat we have indeed obtained a group delay function
that is close to Fig.4.1d. Table.4.1 gives the algorithmfor
conputing the modified group delay function for a given sequence
x(n). Aternatively, T_can be conputed by nodifying equation

(4.8) for the conputation of the group del ay as

X (0)Y () + X ()Y (w)
t (w) = -2 R I r (4.12)
° V (w)

where V (w) is the cepstrally snoothed spectrumof S(w).

That aN(w) is small for an inpulse train can be seen from
Fig.4.4e, where the nodified group delay function ro(w) is plotted
for the signal in Fig.4.4a. Note that between two resonance peaks
the val ue of TD(“’) is nearly zero (as discussed earlier) due to the
additive property of the group delay function. That is why the
nmodi fi ed group del ay function resenbles the group delay function for
the inpul se response of the all-pole systemas can be seen from
Figs.4.4e and 4.1d. Note that the nodified group delay function in

Fig.4.4e is obtained by multiplying the function in Fig.4.4d with an



Table. 4.1 Algorithmfor Conputing the nodified group delay function
fromthe given signal.

1 Let x(n) be the given Mpt causal sequence.

Comput e y(n) = nx(n).

2. Conpute the Npt (N >> M) discrete Fourier

transform (DFT) X(k) and Y(k) of the sequences x{(n) and

y(n) respectively, k =0,1,...,N1.

3. Conpute cepstrally smmothed spectrum V (k) of

Xk | 2.

4. Conpute the nodified group delay function = (k) as
X (k)Y (k) + XI(k)YI(k)

T (k) = B : k=0,1,...,N1.
v (k)

where Rand | denote the real and imaginary parts

respectively. J

estimate of the excitation spectrumin Fig.4.2a. Fig.4.5 illustrates
simlar results for the randomnoi se excitation. Later in the
experinments we showthat for a variety of excitation functions aN(w)
is small.

However, it is inportant to note that the location of a zero
(due to the excitation) in the z-donmain nmust not coincide with the
| ocation of a pole corresponding to that of a resonance. It wll not
be possible to suppress the infornmation corresponding to that of
source using the modified group del ay.
4.3.2 8atraction of founce parametena

In this Section we showthat the characteristicsof the modified
group del ay function di scussed in the previous Section can be used to
derive the periodicity in the excitation signal. Assune that the
excitation is periodic wth some period To. Let us consider the
z-transformof two inpul se separated by T. Then

E(z) = 1 + 2 Lo, (4.13)

|E(w) |2 =2 + 2cosz°. (4.14)



In the frequency domai n |E(w)|2 has a periodi c conponent with
peri od 1/1}(pitch frequency). If a zero spectrum corresponding to
the FT magnitude spectrumwith a flat spectral envel ope, is derived
for a voi ced speech segment, then.the resulting signal contains a
si nusoi dal conponent with period /T . Ve now repl ace » by n and T
by w and renove the dc conmponent to obtain a signa

s{(n) = cosrw%, n==o0,1,...,N1. (4.15)
The z-transformof this signal is given by

1 - Zcoswo(N—l)z_" + z"2N

S(z) = - s (4.18)
1 - 2cosw z + z

W use the techni que described in Table.4.1 to derive the nodified
group del ay function (t (w)) corresponding to this signal s(n). The
nurrer at or pol ynom al of (4.18) corresponds to the zeros due to the
finite windowapplied in the time domain. The argunent used in the
previ ous Section applies for the suppression of w ndowzeros al so
Fig.4.4f shows the nodified group delay function T_(w).

4. 4 Effects of Various Paraneters

Wi | e the group delay function has many interesting properties,
its conputation in the digital domai n causes sone problens. W have
conduct ed a series of experiments to study the robustness of the
proposed techni que. The choice of the experinments is based upon the
di scussion given in an earlier paper [K.V.Madhu Murthy and
B. Yegnanarayana; 19891 and our own experience with the use of group
del ay functions over the past several years.

Conposi te signal s of the formshown in equation (4.17) bel ow are
used in these experinents. Each signal is obtained as the response
of a cascade of five resonances to a train of inpulses separated by a
period p. The amplitude of the inpulses are 1, 7, 32, 73, .... The

conposite signal is given by



y(n) = x(n)+yx(n - p)+72x(n - 2p)+73x(n - 3pl+.... (4.17)
where x(n) is the basic signal corresponding to the inpul se response
of the system Taking the z-transformof the above equation we get

Y(z) = —22) (4.18)

1 - 7z*p
This signal contains 5 pairs of conpl ex conjugate pole pairs |ocated
inside the unit circle in the z-plane due to the basic'signal. The
di stributon of zeros and the nunber of zeros are determ ned by the
val ues y and p respectively. If y = 0, we only have the basic
signal. In the follow ng experiments a particular parameter is
varied, the nodified group delay functions, T (w) corresponding to
the vocal tract systemand T (w) corresponding to the source are
conputed. The perforrmance is judged by conparing (i) ro(w) wth t(w)
for the systemfor synthetic signals and (ii) T (w) and the tine
domai n signal for source information.

A few coments are given here to expl ain the organi sation of the
plots in our studies. For each case we have given the tine donain
signal usually of 256 sanples, followed by the |og nmagnitude spectrum
of the signal. A 16th order LP spectrumis superinposed on the |og
magni t ude spectrum For synthetic signals the LP spectrum
corresponds to the ideal |og nagnitude spectrumof the system Qur
nmain aimis to showthat it is possible to process the Fourier
t ransf or m phase through the group delay functions. Therefore in each
figure the phase spectral plots are given to illustrate the nature of
the phase data due to wapping. This wapping problemis absent in
the group delay function plot as the group delay function is conputed
directly fromthe tine donain signal. However, the group del ay
function appears to be featurel ess due to effect of zeros close to

the unit circle. In the nodified group delay plots, the features
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correspondi ng to systemand source are enphasised. In all the
figures vertical scale is not explicitly mentioned, since we are only
looking at the features in the plots.
Experiment No.1: Effects of various anal ysis paraneters

V€ have considered the effect of each of the follow ng
paraneters on the nodified group delay function and the resulting
snoot hed | og nagni tude spectrum :
(a) Size of cepstral w ndowto derive Z(w) in eq. (4.11) or eq.(4.12)
to derive V_(w).
(b) Size and shape of the anal ysis w ndow for the signal.
(c) Proximty of zeros to the unit circle by varying ¥ in eq.(4.17).
(d) Nunber of zeros by varying p in eq. (4.17).
(e) Proximty of resonances.
Experi ment No.1a : V& have found that the nodified group del ay
function is al nost the same over a range 4 to 20 sanpl es of cepstral
w ndow used to derive Vc(w) ineq.(4.12) (Fig.4.7).
Experiment No.1b : Effect of windows : For this experinent we set ¥
=1 in equation (4.17). The plots for four different w ndows are
shown in Fig.4.8. The interesting part of these results is that the
fluctuations caused by zeros due to windows are practically
elimnated in ‘Co(w). However, the wi ndoweffect is reflected in the
bandwi dt h of the resonances of the vocal tract systemas seen from
ro(w) corresponding to the system Note that the resonances are
sharp for the rectangul ar w ndow conpared to that for the Hann
window. This is a significant result because one of the nost
important problens in signal processing is to overcone the ripple
effects in the spectrumcaused by the windowin the time domain. The
wi ndows do not seemto affect the estimation of the source paraneters

as can be seen fromthe ‘Cs(w) correspondi ng to the source excitation.
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Experinent No.1c : Effect of varying the proximty of zeros to the
unit circle : Fromequation (4.17) it is seen that by changing the
value of ¥, which is the ratio of the anplitudes of two successive

i npul ses, we can nove the zeros along a radial line in the z-pl ane.
An experinent was conducted in which ¥y was varied from0. 75 to 1. 25.
Fi g. 4. 9 shows the nodified group del ay functions T {w).and rs(w), for
different values of ¥. Notice that the |ocation of the resonances and
periodicity are clearly visible in the nodified group del ay functions
"co(w) and Ts(w].

Experinent No.1d : Effect of nunber of zeros : To study the effect of
nunber of zeros on the estination of systemand source information
we perforned the follow ng experinments. The delay p determnes the
nunber of zeros in the z-plane. Thus by varying p the nunber of
zeros in the z-plane can be varied. The value of p is varied from
50-130. Fig.4.10shows the results. Notice that the effect of the
nunber of zeros on the group del ay function is considerably reduced
in the nodified group delay function of -ro(w) whi | e 'rs(“’) is not
significantly altered.

Experinent No.1e : Proximty of resonances(Resol ution properties) :
In this experinent the resonances F2 (2nd) and F3 (3rd) are brought

cl ose to each other. The difference between the resonances is
reduced from500 Hz to 100 Hz (Fig.4.11). In all cases the resonances
are resolved in the nodified group delay function. It should be

not ed, however, that the [imt on the resolution of the fornmants
peaks is governed by the size of the data w ndow, since our starting
point is still the Fourier transformof the given data for

conput ati on of the nodified group del ay function. rs(w) is not
plotted here as this experinent is not relevant for estimating the

periodicity in the signal.
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Experinent No.2: Different Types of Excitation Functions

So far we have consi dered the response of an all-pole systemto
a sequence of periodic inpulses. In this experiment we conpare the
nodi fi ed group del ay functions derived fromsignal s generated usi ng
four different excitation functions : (a) An inpul se sequence
separated by a period (100 sanples) (b) Synthetic glottal pul se
sequence as defined by Rosenberg (L. R Rabi ner and R WSchaf er, p. 103.
19781 and (c) Qottal pul se sequence with radiation |oad [L.R.Rabiner
and R WSchafer, p. 102, 19781 and (d) Wniformy distributed random
noi se. The choice of these excitation functions is based upon the
nodel signals used for the excitation in the speech production
nmechanism Fig.4.12shows the results for the different excitation
functions. V& can see that the effect of these excitation functions
on the nodified group delay functions is minimal. This is due to the
fact that all the excitation functions are finite duration signals
whi ch introduce zeros in the z-plane.
Experiment No. 3 Natural Speech

In this experinent we consider different segments of natural
speech. Fig.4.13 shows the plots for four consecutive segnments of
speech chosen arbitrarily froman all voiced utterance. The results
show that the formant and pitch infornation are preserved in the
nodi fi ed group del ay functions.
Experiment No.4: Noi sy Speech Dat a

In this experiment we consider an arbitrarily chosen segnment of
syntheti ¢ speech which is corrupted by additive white Gaussi an noi se.
The signal -to-noiseratio (SNR) is progressively decreased. The
effect on the nodified group delay function is shown in Fig.4. 14.
Notice that significant features are preserved even when the SNRis 0

dB. This point is also illustrated in Fig.4.15 for natural speech.
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Experinment No.5: Formant and Pitch Extraction from Speech:

Fromthe various experinments done so far we can concl ude that
the nodified group del ay functions derived for the source and system
can be successful |y used to estinate paraneters of nodel
correspondi ng to the systemand source fromnatural signals |like
speech. For speech signals the peaks of the snoothed MGD (systen)
shoul d correspond to formants and the di stance of the first peak from
the origin neasured in seconds of the ™GD (source) shoul d correspond
to pitch. Fig.4.16shows an utterance "W were away a year ago" as
spoken by a nal e speaker and the corresponding pitch and formant data
obt ai ned usi ng nodi fied group del ay functions.

4.5 Speech Enhancenent Using Mdified group Delay functions
4.5.1 Eotimation of Parametens fram Noioy Ppeech

Inthis section we develop the theory and di scuss a techni que
for enhancing the characteristics of the vocal tract systemfrom
noi sy speech. The characteristic we are looking for are the
formants(resonances) of the vocal tract systemand the pitch period
of the glottal excitation. V& ignore for the tine being the effects
of data w ndows.

W define our problemas follows:

G ven a noisy signal

x(n) = e(n)*h(n) + u(n) (4.19)
where h(n) is the inpul se response of the all-pole systemGrAa(z) and
e(n) is either a periodic train of pul ses or random noi se sequence,
determne the resonances of the all-pol e systemand periodicities of
the excitation signal.

Equation (4.19) can be expressed in terns of z-transformas

X(z) E(z)H(z) + U(z) (4.20)

H(z)

G/A(2) (4.21)
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A(z) =1 + kEiakz (4.22)

The frequency response is given by

X(w) V(w)/A(w) (4.23)

V(w)

GE(w) + A(w)U(w) (4.24)

The group delay function is defined as the negative derivative
of the Fourier transform(FT) phase of a signal. Let Tx(w), -rv(w) and
T,(w) represent the group delay functions corresponding to X(w), V(w)
and A(w), respectively. Then

tx(w) z tv(w) - TA(U) (4. 25)

The addi tive noi se in equation (4.19) introduces new zeros and
redistributes the zeros of the givensignal. If the noise is not too
high the nodified group del ay function can be used to estimate the
pitch period and | ocation of formants from noi sy speech al so.

Fi g.4.17 shows the utterance of Fig.4.16corrupted by white Gaussi an
noi se and the corresponding pitch and formant data. The overall SNR
is 3dB. The SNRas a function of tinme is superinposed on the pitch
and fornant data.

4.5.2 $peech Pynthesis

The formant and pitch data obtained in the previous section are
used in the formant vocoder (di scussed in Chapter 3) to synthesise
speech. The formant bandw dths are fixed as a percentage of the
formant. Al though there is a significant difference in
intelligibility it is observed that the natural ness is al nost
compl etely |ost.

4.6 Summary

In this Chapter we have proposed a new techni que for processing
the Fourier transform phase spectrumof the speech signal to estinate
the paraneters corresponding to the vocal tract systemand excitation

source. The standard phase spectrumis considered difficult to
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interpret due to the artifacts introduced by the zeros of the
z-transformof the excitation function and data w ndows. V¢ have
proposed a techni que to process the phase in which the effect of
zeros is significantly reduced. The nain results of this study are:
(1) The fluctuations caused by zeros are reduced.

(2) The effects of time windowfunctions are significantly reduced.
(3) The nost significant result is that it seens possible to estinate
both formants and pitch fromnatural speech even at | ow SNRs,

(4) Athough it is not possible to estimate the bandwi dt hs
corresponding to formants it is still possible to synthesise

intelligible speech fromformant and pitch data al one.
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CHAPTER 5

SPECTRUM ESTI MATI ON USI NG MODI FI ED CROUP DELAY FUNCTI ONS

5.1 Introduction

Estinmation of the power spectral density (PSD) or sinply
spectrumof discretely sanpled deterninistic and stochastic processes
is usual |y based on procedures enpl oying the D screte Fourier
Transform (DFT). Specifically the PSD of a discrete tinme signal nay
be defined as foll ows :

Consider a discrete time determnistic signal x(n) which is
conpl ex val ued and absol utely summabl e, i.e. the signal energy is
finite, then

®

&€ = T [x(m]® =w (5.1)

n =LW

the DFT exists and is defined by

0

X(0) = T x(n)ed W (5.2)
=

The square nodul us of the DIFT X(w) is often termed the spectrum of
x(n) or

S(w) = |X(w)|? (5.3)
Par seval ’'s theorem

®

00
|x(n)|2 :J |X(w)|2dw (5.4)

n=0 -
Iy

is a statenent of the principle of conservation of energy; the energy
of the tine signal is equal to the energy of the frequency domain

00
t ransf ormI S(w)dw. Thus S(w) is an energy spectral density in that
0

it represents the distribution of energy as a function of frequency.
For the case when x(n) is a realisation of a stationary random

process, the power spectrumis conputed indirectly through the

autocorrel ation function. The Wener Khinchin theoremstates the

rel ati on between power spectrumS(w) and the autocorrelation



sequence Rxx(m)corresponding to the discrete tine sequence x(n) :

R (M) = E[x(n*m)x" (n)] (5.5)

j om

S(w) =F R _(me (5.8)

n=—0
where E is the expectation operator.

In practice the statistical autocorrelationfunction is not
known. An additional assunptionthat is made is that, the process is
ergodic in the first and the second nonents and equation (5.5) is
repl aced by a time average rather than ensenbl e average :

Rxx(m) :% x(n+m)x" (n) (5.7)

For bot h det e?r=n'_°r:i stic and non determnistic signals, the data

is available only at a finite nunber of points, nanely, Xy wres X

and the estimate of S(w) is given by

S(w) = 1|X(w) |? (5.8)
or
N -j om
S(w) =1 YR (me
N oo (5.9)
and S(w) is defined in the interval [-n,+r]. In practice Rxx(m) is

replaced by (5.7) for nondetermnistic signals and S(w) reduces to
equation (5.8).

Thus the estimation of the power spectral density reduces to one
of esimation of the FT nagnitude spectrum Wen the di screte Fouri er
transform (DFT) is used to conpute the PSD, the estinated PSD é(wk)
is available only at a discrete set of frequencies i.e.

e (5.10)
Thi s spectrumestimate is called the periodogram

The finite length requirenent for practical signals neans that

the signal is multiplied by a rectangul ar wi ndow, and the overall

transformis a convol ution of the true transformwi th that of the

wi ndow transform If the true power spectrumis concentrated in a



nar row bandwi dth, this convolutionwll spread the spectruminto

adj acent frequency regions. This phenonena is called | eakage. Thus
the data window is a prinary factor that determnes the frequency
resol ution of the periodogram Leakage effects are reduced by an
appropri ate choi ce of wi ndows with non uniformweighting. But the
price paid for a reduction in the sidel obes is al ways a broadening in
the main | obe of the w ndowtransform which in turn decreases the
resol ution of the spectral estinate.

In the paranetric approach to spectrumestimation a nodel is
used to extrapol ate the data outside the window It is then usually
possible to obtain a better spectral estimate based on the nodel by
determ ning the paraneter of the nodel fromthe observation

The spectrumanal ysis in the context of modelling becones a
three step procedure : (i) selection of a nodel, (ii) estimation of
paraneters for the assunmed nodel and (iii) obtain spectral estinates
fromthe nmodel parameters. The degree of inproverment in resol ution
and spectral fidelity, if any wll be determned by the ability to
fit an assunmed nodel with a few paraneters derived fromthe neasured
dat a.

Al though there are a nunber of performance advant ages that nay
be obtai ned using nodel based nethods, the advant ages strongly depend
upon the signal-to-noise ratio (SNR) as mght be expected. In fact
for low sSNRs, the spectral estinates based on nmodelling are no better
than t hose obtai ned using conventional DFT processing.

In this Chapter we suggest an alternative to the periodogram
approach to spectrumestimation. This nethod is based on the
nodi fied group del ay function defined in Chapter 4. In Chapter 4 we
saw that the nodified group delay function coul d be successful |y used
to estimate paranmeters fromnatural signals |ike speech. W also saw

in Chapter 4 that the nodified group del ay function was al so



successful in estimating paranmeters fromnoi sy speech. [t is worth
noting that no assunptions (about the mechani smfor generating the
signal) were explicitly used in the algorithmfor estimating the
nodi fied group delay function. In this Chapter we show that the
nodi fi ed group del ay functions can be used to address the general
probl em of spectrumesti nation.

In Section 5.2 we discuss the proposed nethod of spectrum
estimation using nmodi fied group delay functions. In Section5.3 we
denmonstrate the results of this approach to spectrumestimation
through several illustrative exanples. In particular we consider two
exanpl es, nanely, (i) estimation of sinusoids in noise and (ii)
estimation of narrow band auto-regressive (AR) processes in noise.
In Section 5.4 we conpare the performance of the proposed method of
spectrumestimation with that of the periogramapproach. Resol ution
is primarily dictated by the size of the data w ndow as per the
standard tine bandw dth product relation.

5.2 Principle of the Method:

As nentioned before, our objective is to estimate the spectral
features of an autoregressive process or a sinusoidal process in
noi se using the properties of Fourier transform phase, or
equi val ently using group delay functions.

Let us consider the output x(n) of an autoregressive process
s(n) corrupted with noise u(n).

That is
x(n) = s(n) + u(n) (5.11)

where S(z) the z-transfromof s(n) is obtained as

GE(z)
Alz)

E(z) is the z-transformof the excitation sequence e(n), where e(n)

S(z) (5.12)

is white Gaussian noise with variance unity, and G/A(z) is the



al | - pol e systemcorrespondi ng to the autoregressive process. Now

_ GE(z) + U(z)A(z) _ V(z) (5.13)
X(z) = A(Z) = &(z)

The group del ay function of X(z) in terns of the group del ay
functions of V(z) and A(z) is given by
rx(w)‘= tv(w) - rA(w) (5.14)
The Fourier transformof x(n) is given by
GE(w) + Alw)U(w)

Alw)
For low noise levels the first term GE(w) dom nates and hence the

X(w) = (5.15)
group del ay function ‘cx(w) of X(z) behaves al nost |ike the group

del ay function ts(w) of S(z) (noise free case). For high noise

| evel s two cases have to be consi dered separately: (a) Regions (say
R) of frequency where the values of |A(w)| are not small (i.e, not
near zero) and al so the shape of |A(w)| curve is snmooth, and (b)
Regions(say R) of frequencies where the values of |A(w)| are so
small that the first termin v(z), nanely GE(z), domnates. In
regions R the group del ay function rv(w) corresponding to the
nurer at or pol ynomal of Ej (5.13) behaves |ike for any noise
sequence. That is, there will be large positive and negative spi kes
dependi ng on the roots of V(z) inthe region R In the regions R the
group del ay function rv(w) still wll bhave |large anplitude spi kes of
either polarity, but this tine they are contributed by the roots of
V(z) intheregion R, where the first termin V(z) donminates. Thus
in both the regions R and R the group del ay function behaves |ike
that for a noi se sequence, but due to different sources of noise.
The nost inportant point is that the spiky nature of the group del ay
function -cx(w) is not affected significantly by the presence of A(z)
in the nunerator. This is the reason why the first termz () in

‘tx(w) is distinct fromthe second term rA(w). So the characteristics



of the second termcan still be estinated by suppressing the spikes
in the overall group delay function T (0). That this works even for
very low noise |evels is obvious fromthis argunent.

The basis for our new spectrumestimati on procedure iS to
suppress the large anplitude spikes in T (@) due to T, () in order to
hi ghl i ght the desired conponents 'cA(w). To suppress the spi kes due
to noise, it is necessary to identify their |ocations and then reduce
their anplitudes. To do this we can take advantage of the nodified
group delay function derived in Chapter 4. The nodified group del ay
function in the context of spectrum estinmation is used to suppress
the zeros that are introduced by additive noise and the zeros that
are introduced by the data window |If the nodified group del ay
function can be thought of as an approxi mate estinate of 't he group
del ay function corresponding to that of a mni num phase system the
rel ati onshi p between group del ay functions for mni num phase signal s
can be used to estimate the spectrumof the given signal.

For m ni mum phase signals we saw in Chapter 2 that rp(w) =
rm(w), wher e Tp(w) and ‘Em(w) are the group del ay functions derived
fromthe phase and magni tude respectively. Wsing the relationship
bet ween the cepstral coefficients and the group delay function, the
spectrumcan be derived. Table.S. | gives the al gorithmfor conputing
the spectrumusing nodified group del ay functions.

5.3 Illustrations

W consider two types of problens for illustration.
Exanpl e-: : Aut or egressi ve process in noi se(estimation of the AR
spect r un
x (n) = s(n) + u(n) (5.18)
4
s(n)=- % a s(n-k)+Ge(n) (5.17)
k=1 k

where the excitation e(n) is white Gaussi an noi se of variance unity



Table 5.1 Algorithmfor conputing the spectrumfromthe Mdified
group delay function ro(k).

1. Conpute the estinate of the weighted cepstrum from
T_(k) as follows. Conpute Npt |DFT of 7 (k)

c(n) = IDFT[z (k)] ,n=0,1,..., N1
2. Formthe sequence Cl(n)
c (0) = 0
1
cl(n) = c(n)/n
, 1<n<N/2.
cl(N—n+1) = cl(n)

3. Conpute the Npt DFT of cl(n)

Xl(k) = DFT[cl(n)], k =0,1,...,N1
4. Conpute
1n|XS(k)| = Reall[X (k)].
2*1n|xs(k)| is the estimated snoothed spectrum as

obtai ned fromthe nodified group del ay.

and u(n) is an additive noise with variance dependent upon the
desired signal -to-noise ratio (SNR). The values of the coefficients
are: a = -2. 760, a= 3. 809, a= -2. 654 and a,= 0. 924.
Exanpl e-2: Two sinusoids in noise(estination of f requenci es of
t he sinusoi ds)

x,(n) = v10expl j2n (0. 10)n]

+ v20expl[ j2m(0.15)n] + u(n) (5.18)

where uln) is an additive white Gaussi an noise with the variance
dependent upon the SNR These exanpl es are similar to the ones used
in [S.MKay; 19881 for discussion of periodogramestimtes. V¢
assume a sanpl i ng frequency of 10kHz and nunber of sanpl es N=256 for
Example-1, and N=100 for Exanple-2. Different realizations of x1(n)
and xz(n) are obtained by using a different noi se sequence each
time.

Figs.5.1, 5.2 and 5. 3 give the periodogram group delay function
and the new magni t ude spectrumesti mates of the autoregressive

process fromthe noi sy signal (SNR = 20dB) of Exanple-1. Figs. 5.1a,



5.2a and 5.3a showthe plots for a single realizationof clean the
data. Figs. 5. 1b, 5.2b and 5.3b showthe plots for 50 realizations of
the data. Figs. 5.1c, 5.2c and 5.3c showthe averaged plots. It is
to be noted that, as expected, periodogramestinate has |arge
variance (Fig.5.1b). Reduction of fluctuations by averagi ng several
periodograns introduces |arge bias [S.M Kay; 1988|. ' Thefluctuation
is significantly reduced in the estimated group del ay' functions and
the spectra estinated fromthe group delay function (Figs.5.2b,
5.3b).Figs. 5.la, 5.2a and 5.3a showthat it is possible to reduce
the fluctuations even by processing a single realization. Infact a
single realization seens to restore all the infornation that can be
obt ai ned fromaveraged plots (Conpare Fig. 5.3a with 5.3c). Note al so
that averagi ng reduces the dynam c range in periodogram(Figs. 5.1a
and 5.1c) whereas averagi ng group del ay functions does not seemto
affect the dynamc range (Figs. 5.3a and 5.3c).

Al though we have not discussed the theory, we have applied our
nmet hod for estimating sinusoids in noise. The results are shown in
the plots given in Figs. 5.4, 5.5 and 5.6 for SNR = 20dB. Qur net hod
works well even for estimating sinusoids in the presence of noise.
The sane general concl usions as for the autoregressive process hol d
good for sinusoidal process regarding vari ance and bias of the
esti nat es.

Note that the finite data w ndow al so produces |arge spikes in
the group delay function. But division by the cepstrally derived
snmoot hed nagni t ude spect rumsuppresses the sidelobe effects of the
wi ndow al so. This way the estimated nmagnitude spectrumfromthe
group del ay function is |ess dependent on the w ndow However the
resol ution of the spectral peaks is dependent on the size of the
wi ndow and that effect can be seen in the estinated spectrumfromthe

group del ay function. Fig.5. 7shows the plots for noise free
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sinusoi dal data for different types of w ndows (Rectangul ar, Hamm ng,
Hann and Nuttall) [S.L.Marple;1987]. Wile the sidelobe effects are
reflected in the periodogramspectrum (Fig.5.7a) in both the dynam c
range as well as in the width of the nainl obe, the correspondi ng
group delay function plots (Fig.5.7b) do not seemto be affected by
the sidel obes. THe effective windowsize is reflected in the wdth
of the spikes in the group delay function, with snallest width for
the rectangul ar windowand largest width for Nuttall wi ndow The

wi ndow si ze effect can be nore explicitly seen in Fig.5.8, where the
plots are given for different sizes (512, 128, 32, 16 and 8
respectively) of the rectangul ar window As before the w ndow size
seens to affect the width of the peaks in the group delay functions
But the sidelobe effects are al nost suppressed.

Wat is achieved by the new nethod is that we can estinate a
spectrumw th fluctuati ons suppressed, preserving the resol ution
properties of the periodogramestimate. The frequency resol ution
limt is set by the data w ndowsize. V& can see the effect of the
wi ndow si ze on the frequency resolution in Fig.5.9, where the
peri odogram group del ay and derived nagnitude spectrumare shown for
different spacings of frequencies of two sinusoids of equal
anpl i tudes using 128 sanpl es of the data. Note that upto 60 Hz
separation, the two frequencies are resolved wth 12.8ms of data.

Fig.5.10 shows the plots for the sinusoids wth different
anpl itudes. The fluctuations due to sidel obes are reduced even when
the anplitudes are significantly different. That is, the periodogram
resolution features are reflected in the group delay function w thout
sidelobe effects.

Figs.5.11 and 5. 12 showthe results of the estinated spectra for
different noise levels (SNR = 10dB, SNR = 0dB, SNR = -10dB)}. In

Figs.5.11 and 5. 12 the plots for noisy data are presented as an
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average of 50 realisations.The features are restored with few
spurious peaks in the averaged spectral plots shown in Figs 5.11 and
5.12. The desired spectral features are seen even for SNR = -10dB.
These results show that the proposed method works even for high noi se
levels. Note that nodel based AR spectrumestinmation wll not work
for noisy data [S.M.Kay; 19881. Fig.5.13gives a conparison of the
per for mance of our nethod of spectrumestinmation with Burg's
method[S.M.Kay; 19881. The data consi sts of 256 sanpl es of AR
process in noise. The Burg' s nethod uses an 8th order nodel. Note
that the group delay function preserves the resol ution properties of
the periodogram, with much | ess fluctuations, even for |ow SNR
Unl i ke periodogramspectrum the group delay nethod restores the
dynamic range of the AR spectrumeven at high noise levels. Model
based techniques fail to resolve the peaks at high noi se | evel s (SNR
< 5dB). |If the order of the nodel is increased, nore spurious peaks
will be generated. Superiority of our nethod in resol ving peaks and
reduci ng spurious peaks is evident fromthe figure even for |ow
val ues of SNR
5. 4 Bi as- Vari ance Cal cul ations

It isdifficult to obtain analytical expressions for bias and
vari ance for the spectrumestimated using nodified group del ay
functions. In the spectrumestinated using the nodified group del ay
functions the scale factor is lost as the value of c(0), the zeroth
cepstral coefficient is not avail abl e.

To gat a feel for the bias the averaged periodogram esti mates
and group del ay spectrumestinates are obtained as follows. |[f S, (©)
is the estimated spectrumusing a datal ength of N, the average of 50

realisation is obtai ned as

= 1 N
S(w) =— F S, (@) (5.19)

N 1=1
R
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where is S,:(w) is the estimated spectrumfor a realisation and NR is
the nunber of realisations. |In the exanpl es given, NR is 50. In the
exanpl es that follow we only consider the AR process in noise. This
is because it is possible to conpute the true AR spectrumfromthe
known AR coefficients. Ve superinpose the true AR spectrumplot on
each of the estimated spectra. V¢ consider two different cases for
illustration (i) Conparison of the proposed nethod wth' that of the
peri odogr am appr oach for different datal engths for AR process in
noi se and (ii) Comparison of the proposed nethod with that of the
peri odogram approach for different noise |levels for a fixed
datal ength (256 sanples). It is observed that there is hardly any
significant difference between the group del ay method and the
peri odogram nethod for different datal engths as indicated in
Fig.5.14. For different noi se | evel s we observe that the bias in the
estimates for the group del ay method are nuch less than that of the
estimates obtai ned using the periodogram approach. This is
illustrated in Fig.5. 15.

For variance cal cul ations, the variance of estimte was conput ed

as :
2

N
[ 5! (w) - §(w)] (5.20)

o'z(w) = _1_
N 1=1
R
where S(w) is the average of the spectral estimate obtained through
Eq(5.19). V¢ nowsuperinpose the plots of the estimated variance for
t he periodogramand group del ay spectrumfor (i) different
dat al engt hs of AR process (noi sel ess case) (ii) AR process in noise
for a fixed datal ength (256 sanples) and (iii) sinusoids in noise for
a fixed datal ength (256 sanples). For both the cases of the AR
process we find that the variance of the group del ay derived spectrum

estimates is considerably larger than that of the variance of the

peri odogramestimates especially in the region corresponding to the
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| ocation of resonances (Figs.5.16-5.17). In fact, the behaviour is
not consistent in that it seens to be neither dependent on datal ength
or SNR For sinusoids in noise the variance is significantly |ower
for the MD estinate than that of the peridogramestinate for |ow
noi se levels. For high noise |levels, for exanpl e -10 dB we observed
that the variance of the estimated spectrum using group del ay method
becone | arger than that of the periodogramestimates for the sane
noi se level as shown in Fig.5.18.

The difference in the behaviour of the variance for the case
si nusoi ds and AR process nmay be due to the location of the zeros.
For sinusoi ds the wi ndow zeros are uniformy distributed around the
unit circle in the z-domain. As long as the w ndow zeros are not
significantly disturbed, the variance is low A high' noiselevels,
for exanples, -10 dB, there is a possibility that the w ndow zeros
are significantly disturbed. This results in large variance of the
spectrumderived fromgroup delay as indicated in Fig.5.18. For the
AR process, the excitation is Gaussi an noi se and the zeros are not
uniformy distributed in the z-donain. As nentioned in Chapter 4 the
proposed nethod works provided that a zero (which nay be due to the
excitation, noise and w ndow effects) does not lie close to a
resonance. For .thecase of sinusoids in noise it is possible to
choose an appropriate w ndow apriori (both shape and size) as the
| ocation of w ndowzeros in the z-donai n does not change for
different realisations. For the AR process as the excitationis
Gaussi an noi se it difficult to choose the w ndow shape and si ze
apriori, as the distribution of excitation is quite randomin
z- domai n.
5.5 Summary

In summary we have proposed a nethod of spectrumestimation that

(a) reduces fluctuations caused by the variance of noi se and w ndow
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si del obes (b) has less effect on the bias, (c) restores the dynamc
range and preserves the resol ution of a periodogramestinate (d)

wor ks even for high noise levels and (e) perforns better than

nodel - based met hods for noi sy data, because resol uti on does not
depend on factors |ike model order and spurious peaks are nearly
absent even at high noise levels. However, conmparison with

nodel - based met hods for short data records is not apt, because

know edge of the nodel definitely gives a better resolution than the
peri odogramestimate. Thus the proposed technique in its present

formis not suitable for short data record anal ysis.
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CHAPTER B

SUMVARY AND CONCLUSI ONS
6.1 Summary

The studies presented in this thesis represent an attenpt to
process the Fourier transform phase of signals for feature
extraction.

Conventional nethods for processing signals for paraneter
extractionrely heavily on the informationthat is available in the
magni t ude spectrum(or power spectrum(square of nagnitude spectrun))
of the signal. This is because the features of a signal, for exanpl e
periodicity manifests itself as picket fence harmonics in the
magni t ude spectrum of the signal, while they appear as phase
transitions in the phase spectrum But the phase spectrum of a
signal is available only in wrapped form(restricted to the interval
tn). The phase appears to be featureless and is hence difficult to
interpret. |If the phase spectrumof a signal is to be processed it
shoul d be first of all available in a unwapped form A though sone
algorithns are avail abl e for unwappi ng the phase function, they are
quite conplex and do not work for all kinds of signals.

An alternative to processing the Fourier transform (FT) phase
spectrumof the signal is processing the group delay function of the
signal. The group delay function of the signal is defined as the
negative derivative of the FI phase spectrum The group del ay
function is easier to process (when conpared to the phase spectrum
because it does not suffer fromthe wapping problemand can be
conputed directly fromthe time domain signal. The focus of the
research effort in this thesis is devel opment of al gorithns for
processing the group delay function in a r.ranner simlar to that

devel oped for processing the FT nagnitude spectrumof a signal.



The group delay function suffers fromthe probl emof poor
sanpl i ng when the roots of the z-transformof the signal lie close to
the unit circle in the z-donain. The poles of a signal that is
generated as the output of a stable systemare guaranteed to lie
within the unit circle inthe z-donain. But the zeros nay lie
within, onor outside the unit circle. To estinate parameters from
the signal through group delay functions we nust first-of all be able
to renove the zeros in the signal that lie on the unit circle. This
isno trivial task as it is in general inpossible to know the exact
| ocations of the zeros apriori. Assuning a restricted task, nanely
estinmating the paraneters of the systemin a source-system nodel for
signal production(all-zero source and all-pol e system), a group
del ay function with mni num phase characteristics is est'inmatedfrom
the given signal. This is simlar linear prediction anal ysis where
m ni num phase conponent of the spectrumis conputed fromthe given
signal. Application of this m ni numphase group del ay function
for formar. extraction is studied.

Anot her net hod for processsing the group delay function that is
devel oped is the derivation of the nodified group delay function
directly fromthe standard group del ay function. This approach is
simlar to the cepstrum anal ysi s approach for processing the spectrum
of asignal. In the nodified group del ay function approach to
processi ng the group delay function of a signal, two different group
del ay functions are derived fromthe signal, one corresponding to
that of the source and the other corresponding to that of the system
Application of these two functions for extraction of the node
paraneters in a source system nodel for speech, namely, pitch and
formants is expl ored.

The nodified group delay function has the property that the
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zeros of a signal are suppressed, irrespective of whether the zeros
are due to the source or not. Application of nodified group del ay
function to process noi sy speech is studied (as additive noi se can be
thought of as introduction of newzeros at random | ocations in the
signal). Pitch and fornant data are extracted from noi sy speech and
they are used used in a formant vocoder to synthesi se speech.

The rel ati onshi p between the group delay function of a nmni num
phase systemand the spectrumis used to estinate the power spectrum
of the signal fromthe nodified group delay function. Application of
the nodified group delay function to estimate the spectra of random
processes in noise is studied.

6. 2 Major Contributions of the thesis

The nost inportant contribution of this thesis is that it
represents an attenpt to process the phase spectrumof a signal for
paraneter extraction.

A first we are only able to estinate a mni num phase group
del ay function fromthe signal, but ultimately we arrive at an
estinmate of the power spectrumof the signal fromthe group del ay
function.

The strength of the proposed techni ques seens to be that no
nodel is forced on the signal. Therefore, the parameters estinated
using the met hods devel oped in this thesis shoul d represent the
under | yi ng characteristics of the signal nore accurately.

The, fol l owi ng al gorithns are devel oped for speech anal ysis and
spectrumest i nat i on :

(a) Anewalgorithmfor fornmant extraction fromspeech using a group
del ay function derived fromthe FT magnit ude spectrum
(b) Anewalgorithmfor fornmant extraction fromspeech using a

nodi fied group delay function derived fromFT phase.



(c) Anewalgorithmfor pitch extraction fromspeech using the
nodi fied group del ay function.

(d) A procedure to enhance speech using the data obtained in (b) and

{c) for noisy speech.

(e) Anewalgorithmfor spectrumestination using nodified group
del ay functi on.

6.3Citicisns of the work

The maj or drawback of the work presented in this thesis seens to
be the conputational requirement. Al the techni ques devel oped are
conput ational |y expensive and therefore their use cannot be justified
in practice.

A'so nost of the results presented are based on conjectures
about the behaviour of signals. In nost cases, we therefore
substanti ate our conjectures by simul ation studies rather than
t hrough sound theoretical anal yses.

To list sone of the issues :

1. The proof of the fact that the signal derived fromthe magnitude
spectrumin Chapter 3 is mninumphase is not established

anal yt'ically.

2. To estimate the nodified group delay function in Chapter 4 a zero
spectrumderived. It is observed that the approxi mate zero spectrum
obtained is inperfect, inthat the information corresponding to the
resonances of signal is not conpletely suppressed in this spectrum
(especially lowfrequency formants). Therefore, the regions
correspondi ng to resonances in the nodified group delay function are
further enphasi sed by the remant resonance information in the zero
spectrum

Therefore, estinmation of an exact zero spectrumto suppress the

zeros due excitation is still an issue.



3. In Chapter 5 nost of the explanation are based on conj ect ures.
No attenpt is nade to estimate the scal e factor of the spectrum
A'so anal ytical expressions for bias and variance are not given to
eval uate the perfornance of the proposed nethod of spectrum
estimation quantitatively.
6.4 Directions for future work

The work presented in this thesis uses a nonnodel based approach
to processing the Fourier transformphase of signals. No attenpt is
nodel to phase spectrumcorrespondi ng to that of the systemor
sour ce.

Al though it may not be possible to nodel the wapped phase, it
nay be possible to nodel the group delay function corresponding to
that of the system The advantage of a nodel - based approach to

group del ay processing of signals nay be that group del ay processing

can be extended to anal ysis of short-data records.



APPENDIX A

A.1 Additive and H gh Resolution Property of Croup Delay functions:
Consi der a causal, discrete tine signal {x(n)} whose z-transform
X(z) is a simple second order pol ynom al defined by
X(z) = (z-z)(z-2), 2z =e (%" I%) (A 1)

and * indicates conpl ex conjugati on. e % deternines the proxi mty

of the zeros tothe unit circle.

X(w)= X(2)| _ g0 = (eJ? _ o (ot Ju )y e _ R C S S NS
1[éinw - e %sinw ] [sinw + e %osinw ]

6(w) = tan | - °! + tan~ 21 (A 3)
lFosw - e 0COSM/| |cosw - e %cosw |
°J o}

Wsing the rules of differentiation we can show that
6’ (w) = Gl(w) + eé(w)
wher e e'l(w) is the phase corresponding to that of the first termin

eq(A 3) and 8, (w) is the phase corresponding to that of the second
termin eq(A.3). Defining

T(w) = -8 (w)
it follows that

T(w) = tl(w) + Tz(w)
where T(w) is the overall group delay function and T1(w) and Tz(w)
are the group del ay functions of the conponent group del ay functions
correspondi ng to the conpl ex conjugate zero pair. sing eq(A.3) t(w)
can be obtai ned as

1 - e—qocos(w-wo) 1 - e—vocos(w+w°)

T(w) = - -

-20 -0 -20 -0
1 + e o — 2¢ ocos(w-w ) 1+ e o — 2e ocos(wtw )
[o] [+

(A 4)
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Consi der

-0
1 - e ocos(w-w )
(o]

tl(w)= - oo =
1+e "0 - 2e ocos(w-wo)
Equat i ng r;(w) =0 we get

(e % - e-SOQ)sin(w-wo) =0 (A.5)

(e_cro - e_svo) can never be zero unless o= 0. Therefore in general

eq(A.5) becones zero when Ww=0, 1, 21 .... Taki ng the derivative

of eq(A.5) we get
(W] = (6% - e %) (A.6)
1 w—wo

Eq(A.68) = 0 when o= 0.

Eq(A.8) is negative when e 3% 5 e™%.
Eq(A.6) is positive when e >% < e %

Wien the root is exactly on the unit circle, o =O.
Wien the root is inside the unit circle, e o<1, e 3%<e ™% and the

above expresssion is positive and rl(w) goes through a m ni mum at

W=w .
o

Wien the root is outside the unit circle, @ %>1, e 3%>e % and

hence the above is negative and rl(w) goes t hrough a maxi num at w=0_
The same argunent applies for rz(w) also. Wen X(z) is defined
by the reciprocal of the second order systemdefined in (A.1), the
correspondi ng group delay function is the negative that derived in
eq(A.4). Fig.Alis anillustration of the group delay function for
different first and second order polynomals. The dotted curves

correspond to the group del ay function of poles at the sane | ocations

as the zeros.
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e
Z-PLANE ROOT  GROUP DELAY Z~PLANE ROOT GROUP DELAY
FUNCTION TJw) LOCATIONS FUNCTION r#w)
Fig.A, 1 Illustration of the group delay functions for different first-

and second-order polynonmials. The dotted curves correspond to poles
in the z-plane at the same |ocations as the zeros.



ArPENDIX B

B.l Mdified Goup Delay function :

Consi der a signal x(n) whose z-transformis given by

1 - WZ-TO

X(z) = (B.1)

(z -z )(z - z')
wher e z, is given by z = e_("f ‘j“fo). Thi s systemcorresponds to the
excitation of a system which consists of two poles in conplex

conj ugate | ocations by two inpul ses separated by a period T_. The
anplitude of the first inpulse is unity while the anplitude of the

second inpulse is ¥

Now

7T coswT - WZTO 1 - e_vocos(w-wo) 1

[} [o]

T(w) = - 2 * -20 -0

1 + y° - 2ycoswT 1 +e o - 2e ocos(w-wo)

[+]
1 - e %ocos(wtw )
+ ° . (B.2)

1+ e—2¢° - 2e_¢ocos(w+wo)

The nodi fied group del ay function To(w) is defined as
To(w) = t(w). (1 + 72 - Zycoszo) (B.3)

Consi der the term
2
T (w) = - [7T coswT -y T ] +
ol o o o

o
1 - e ocos(w-w )
o

1 + e-Zco - 2e—¢ocos(w~w°)

.[1 + 72 - choszo] (B.4)
Conput i ng ‘t(’ﬂ(w) we get
rél(mb = —[-Zycosz +y + 1)].

2e %o(1 - e_cocos(w—wo))sin(w-wo)

- =20
(-2e omocos(w—m ) + e o + 17



-0 .
e osin(w-w ) }
o

(-2e_oocos(w-w°) + e—2ao + 1)

-0
1 - e ocos(w-w)
. o T.
- 2¥sinwT ps o o
°l(-2e “ocos(w-w ) + e o + 1)
Q
- 7Tzsian
o o
2 e ¢ r(1 + e %)
T" (w)|_ =_(1_7) o [+
or W=y (1 - e 7)1 - e %)
uT°=*(z""9 -
+7T2 _2?_2_ T
° (1 - e "o) OJ

rc‘)’l is negative as the second termw |l be larger than the first term

since both e™% (since we are considering a stable system) and ¥ wll

be utnost 1, the second termis negative since T is in sanples (7;T3
o o

> ho:, a «T, is sone constant). Therefore, = 1(m) is a maxi num at
(o]

_ cos _ . .
w=w , provi dedeT°=:*i. This essential ly means that the antiresonance

frequency of a zero nust not coincide wth resonance frequency of a

pol e.
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