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ABSTRACT

Keywords: Language identification; speaker verification; vowel onset point; consonant-
vowel units; autoassociative neural network models; multilayer feedforward neural net-

works; prosody; intonation, stress; rhythm, tilt.

Human beings recognize language and speaker using features in the speech at
various levels. It is difficult to identify and describe these features. Hence these
features can be viewed as implicit features. Speech signal carries characteristics of
both the language and the speaker, and it is difficult to distinguish features specific to
language and speaker separately. Human beings seem to combine evidence obtained
from features at multiple levels to arrive at a decision. In general, the levels, and the
combination of evidence at these levels, are difficult to articulate. This thesis is an
attempt to identify, extract and represent some implicit features at multiple levels of

speech signal for language and speaker recognition.

In this work, we explore language-specific features at three different levels of speech
signal, namely, frame, syllabic and multisyllabic levels, for automatic language iden-
tification (LID). At the frame level, the features explored for LID are weighted linear
prediction cepstral coefficients (WLPCC), linear prediction (LP) residual and phase of
the LP residual. At the syllable level, language-specific variations in the realization of
syllables are represented using spectral features. At the multisyllabic level, prosodic
characteristics such as rhythm, intonation and stress are used. Prosodic characteris-
tics are represented using features derived from duration, Fj contour and energy. The
effectiveness of these multilevel features for language identification are discussed (a)
for an Indian language database and (b) for the Oregon Graduate Institute (OGI)
multi-language telephone-based speech (MLTS) corpus.



For speaker verification, speaker differences in excitation source, vocal tract dimen-
sions and prosodic characteristics are examined. These characteristics are represented
using residual, spectral and prosodic features derived from subsegmental, segmental
and suprasegmental levels, respectively. The vulnerability of spectral features due to
the effects of channel characteristics and noise, motivated us to explore the use of
prosodic features for speaker verification. We propose a method for modeling speaker-
specific prosody, which is based on capturing the distribution of prosodic features.
The effectiveness of the proposed prosody-based speaker verification system is evalu-
ated using National Institute of Standards and Technology (NIST) speaker recognition
evaluation (SRE) 2003 extended data.

The major contributions of this work are:

e An approach to language identification based on features derived from speech

signal at different levels

e A method based on vowel onset point (VOP) for extraction and representation

of the prosodic features directly from the speech signal
e A prosody-based approach for language discrimination and speaker verification

e A speaker verification system combining evidence from spectral features and

prosodic features
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CHAPTER 1

MULTILEVEL IMPLICIT FEATURES FOR LANGUAGE

AND SPEAKER RECOGNITION - AN INTRODUCTION

1.1 OBJECTIVES OF THE THESIS

Speech is primarily intended to convey some message. It is conveyed through a se-
quence of legal sound units in certain language, and this sequence has to obey the
constraints imposed by the language. Hence speech and language can not be delinked.
Since each speaker has unique physiological characteristics of speech production and
speaking style, speaker-specific characteristics are also embedded in the speech signal.
Thus speech signal contains not only the intended message, but also the characteristics

of the language and speaker.

The message part of speech is mostly conveyed as a sequence of legal sound units,
where each unit corresponds to a particular manner and place of speech production.
Extracting the message part of information in speech constitutes speech recognition.
Typically in speech recognition, the speech signal is represented as a sequence of
acoustic-phonetic features derived from analysis frames. These sequences of features
are used to determine the boundaries and the class of each of the sound units present
in the sequence. Here the feature extraction and representation is based on the char-
acteristics of speech signal rather than on the characteristics of production. These
features may be called ezplicit features, in the sense that they can be derived from
the signal and can be interpreted in terms of production process. There will be some
ambiguity in the recognition of the class of a sound unit from these features. This

ambiguity is resolved most of the time by the production and linguistic constraints on



the sequence of units.

The language and speaker part of the information contained in the speech signal is
inferred using features at several levels. It is difficult even for a listener to describe the
language-specific and speaker-specific features that he/she will be using for recognition.
Thus these features are somewhat ambiguous and not unique. They also depend on the
listener. But the class label (language or speaker) is unique. These features, spread
over different levels typically referring to the different time span of the speech, are
implicit rather than explicit as for the case of speech recognition. It is difficult to
distinguish the language-specific and speaker-specific parts in these implicit features.
Usually in human listening, the evidence from multiple levels are combined to arrive
at a decision. But in general, the levels, and the combination of evidence at these
levels, are difficult to articulate. It is a challenging task to identify and extract the
implicit features for a language or speaker from the speech signal. As the features
derived from the acoustic speech signal are both language and speaker-specific, their
representation is crucial to highlight the language or speaker-specific part depending
on the task. This thesis is an attempt to identify, extract and represent some implicit

features at multiple levels for language and speaker recognition.

The existing language and speaker recognition systems rely on features derived
through short-time spectral analysis. But spectral features are affected by channel
characteristics and noise. This motivated us to explore the use of additional fea-
tures, for the presence of language or speaker-specific information. These features
may provide complementary evidence to the spectral-based systems. To make use of
the language-specific or speaker-specific information present at larger span of speech,
most of the existing language/speaker recognition systems use segment boundaries and
text labels obtained using speech recognizers. For building a speech recognizer, several
man hours are needed for preparing a manually labeled corpora. We aim for language
and speaker recognition using features derived directly from the acoustic speech signal,

without the use of transcription of the signal.



The general area of language or speaker recognition can be classified as identifi-
cation and verification. Language identification or speaker identification is the task
of determining the language or speaker from a set of known languages or speakers.
Verification is the task of determining whether the claim regarding the language or
speaker is valid or not (a yes/no decision). In this thesis, we address the issues related
to language identification and speaker verification, focusing on features extracted from

multiple levels of speech signal.

This chapter is organized as follows: Next section discusses the significance of
automatic language and speaker recognition systems. Section 1.3 describes the cues
used by the human beings for recognizing a language or a speaker. In Section 1.4,
language-specific and speaker-specific aspects of speech is discussed. Representation
of language-specific and speaker-specific characteristics, embedded at multiple levels
of speech signal, used in this study are discussed in Section 1.5. In Section 1.6, issues
in automatic language identification and speaker verification are discussed. Section
1.7 describes the issues addressed in this thesis. Section 1.8 gives an overview of the

thesis.

1.2 SIGNIFICANCE OF LANGUAGE AND SPEAKER RECOGNITION

The research area of speech processing emerged as a result of one’s desire to implement
an intelligent machine that can recognize the speech and comprehend the meaning in
it. In spite of the research effort in this direction, we are far from achieving the desired
goal of a machine that can understand spoken discourse on any subject by any speaker

in a language of his or her preference.

Automatic language identification (LID) is the task of identifying the language of
a given utterance of speech using a machine [1,2]. Applications of LID fall in two main
categories [1]: Pre-processing for machines and pre-processing for human listeners. A

multilingual voice-controlled information retrieval system is an example of the first



category. Language identification system used to route an incoming telephone call to
a human operator at a switchboard, fluent in the corresponding language, is an exam-
ple of the second category [1,2]. Multilingual interoperability is an important issue
for many applications of modern speech technology [3]. In a multi-lingual country like
India, the development of multi-lingual speech recognizer and spoken dialog systems
is very important. Applications such as spoken dialog systems, database search and
retrieve systems, automatic call routing, and language translation need to address the
possible presence of multiple languages in the input [4]. For such multilingual applica-
tions, the machine should be capable of distinguishing among languages. Identification
of language of the input speech is a tool to adapt a recognizer suitable to a specific type
of speech. An approach for a multilingual system is to integrate several monolingual

recognizers with a front-end for identifying the language [5].

Person authentication or verification systems are useful in applications where ac-
cess to a facility need to be controlled. Biometrics, which bases the person authentica-
tion on the intrinsic aspect of a human being, appears as a viable alternative to more
traditional approaches (such as alphanumeric codes or passwords). It could be done
with various modalities, such as face, voice, iris, gait and fingerprints, among others.
A person’s identity is embedded in his or her voice, and can be recognized using auto-
matic speaker recognition systems. Voice-based access control systems are attractive,
since speech is inexpensive to collect and analyze, and hard to mimic. Automatic
speaker verification systems are useful for applications such as transaction authentica-
tion, access control to systems, monitoring of telephone usage and voice matching for
forensics. In the next section, the human way of recognizing language and speaker are

discussed.

1.3 LANGUAGE AND SPEAKER RECOGNITION - THE HUMAN WAY

An insight into the ability of human beings to identify language or speaker from speech

may offer clues for developing an automatic recognition system. Having certain degree



of familiarity with a given language or a speaker, human beings can extract specific
cues for identifying the language or speaker. Human beings are endowed with the
ability to integrate knowledge from various sources for recognizing a language or a

speaker.

1.3.1 Language Recognition by Humans

Human beings learn a language over a period of time, and the level of his language
knowledge may vary depending on whether it is his native/first language, whether
he has sufficient exposure and formal education in it. He uses knowledge of vocabu-
lary, syntax, grammar and sentence structure to identify a language, in which he is
proficient. It has been observed that humans often can identify the language of an
utterance even when they have no working linguistic knowledge of that language, sug-
gesting that they are able to learn and recognize language-specific patterns directly
from the signal [6]. In the absence of higher level knowledge of a language, listener
presumably relies on lower level constraints such as phonetic repertoire, prosody and
phonotactics. Perceptual studies have revealed the importance of prosodic character-
istics such as rhythm, intonation and stress, for language recognition by humans [7,8|.
Besides these cues from speech, human beings also use contextual knowledge about

the speaker, to identify the language spoken.

1.3.2 Speaker Recognition by Humans

Human beings use several levels of perceptual cues for speaker recognition, ranging
from high-level cues such as semantics, pronunciations, idiosyncrasies and prosody to
low-level cues such as acoustic aspects of speech [9]. The high-level features such as
prosody and idiolect are the behavioral attributes of the speaker, different from physio-
logical characteristics of the speech production system. Human beings derive evidence
regarding the identity of a speaker from certain prosodic cues such as pitch gestures,

accents, and speech rate. It is generally recognized that human listeners can better



recognize those speakers who are familiar to them, than those who are relatively less
familiar. This increased ability is due to speaker-specific prosody and idiosyncrasies
that are recognized by the listener, either consciously or otherwise [10]. “Familiar-
speaker” differences, however, surely relate to long term speech characteristics, such
as the usage of certain words and phrases, and to the features such as intonation, stress

and timing.

Speaker recognition is one area of artificial intelligence where machine can exceed
human performance [9]. Using short test utterance and a large number of speakers,
machine accuracy often exceeds that of humans. This is especially true for unfamiliar
speakers, where the training time for humans to learn a new voice well is very long
compared with that of machines [11]. The language-specific and speaker-specific cues

present in the speech are examined in the next section.

1.4 LANGUAGE-SPECIFIC AND SPEAKER-SPECIFIC ASPECT OF

SPEECH

Speech signal contains characteristics of sound units, speaker, language and channel.
For recognizing the language or speaker, the differences among languages or speakers
need to be identified and these differences should be brought out using appropriate

features.

1.4.1 Language-specific Aspects of Speech
The following aspects of speech may differ among languages:

(a) Acoustic-phonetics: Each sound corresponds to a unique articulatory configu-
ration of the vocal tract. Even though there is significant overlap in the set of
sound units in languages, the same sound unit may differ across different lan-
guages due to coarticulation effects and dialects. This variations in the acoustic

realization of phoneme, forms the basis for the acoustic-phonetic studies.



(b) Phonotactics: Phonotactic rules, governing the way different phonemes are com-
bined to form syllables or words, differ among languages. The sequence of allow-
able phonemes or syllables are different from one language to another. Certain
phoneme or syllable clusters common in one language may be rare or illegal in

some other language.

(c) Prosody: Prosodic features such as rhythm, stress, and intonation vary among
languages. The manifestation of prosodic constraints in speech, conveys some

important information regarding the language.

(d) Vocabulary and lexical structure: The word roots and lexicon are usually dif-
ferent between languages. Each language has its own vocabulary, and its own
manner of forming words. Even when two languages share a word, the set of
words that may precede or follow the word may be different. At higher levels,

the sentence pattern and grammar are different between languages.

1.4.2 Speaker-specific Aspects of Speech

Speaker characteristics vary due to difference in:

(a) Physiological characteristics of speech production organs

(b) Acquired or learned habits

Physiological difference include the differences in the shape and size of oral tract,
nasal tract, vocal folds and trachea. This can lead to difference in the vocal tract
dynamics and excitation characteristics. The acquired habits are characteristics that
are learned over a period of time, mostly influenced by the social environment and
also by the characteristics of the first or native language in the ‘critical period’ (lasting
roughly from infancy until puberty) of learning. The way prosodic characteristics are
manifested in speech give important information regarding the identity of a speaker.
Idiosyncrasies of a speaker are reflected in the usage of certain words and phrases and

it is present even at the semantic level.



Differences in speaker characteristics may be summarized as follows:

a) Vocal tract size and shape

b

Excitation characteristics

(
(

)

)

(c) Prosody

(d) Idiolect
)

(e) Semantic

Fig. 1.1 illustrates various language and speaker-specific cues and their levels of
manifestation in speech. Language and speaker-specific cues are present at low level as
well as high level of speech. Low level cues are directly derivable from the speech signal
whereas high level cues are present in the textual content. Therefore transcription of

speech is required for representing high level cues.

Language Speaker
High level cues High level cues
o Lexical Structure o Semantic | Text-
Text- ) based
o Vocabulary based o Idiolect
o Phonotactics o Prosody
Signal-
o Prosody Signal- o Vocal tract » pased
|| o Acoustic—phonetics based || o Excitation
Low level cues Low level cues

Fig. 1.1: Various language and speaker-specific cues and their levels of manifes-
tation.

1.4.3 Signal-based Versus Text-based Recognition

Language identification can be text-based or speech signal-based. While text-based

LID is a solved problem, the signal-based language identification remains an active area
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of research. Researchers have approached spoken language identification in two differ-
ent ways. In one approach, phoneme recognizers are used as the front-end, and the
transcription generated by the phoneme recognizers are used for modeling phonotactic
constraints of a language using statistical language models. This approach requires
large amount of labeled speech data in different languages for training the phone rec-
ognizers, which may not be available for many languages. Therefore, developing an
LID system using this approach can be as complex as multilingual speech recognition
systems. On the other hand, there is another approach which rely on features derived
from speech signals, and do not need labeled speech data at any stage of identification.
Similarly most of the existing speaker verification systems make use of segment bound-
aries and transcriptions for the extraction and representation of prosody and idiolect.
Systems which use text transcriptions directly or indirectly for automatic recognition
systems are referred as explicit systems, in this thesis. Systems which rely on features
derived from speech signal, and do not use any text-based information, are referred
as implicit systems. The present study focuses on the use of signal-based features for

developing an implicit language and speaker recognition system.

In order to represent language and speaker-specific aspects of speech, features need
to be extracted and represented from different time spans of speech signal. Next we

discuss the levels of representation of implicit features used in this study.

1.5 MULTILEVEL IMPLICIT FEATURES FOR LANGUAGE AND

SPEAKER RECOGNITION

Characteristics of sound units, language, speaker and that of channel are embedded in
the speech signal. In language or speaker recognition, the task is to extract language-
specific or speaker-specific features from speech. In order to represent the acoustic
variations among languages or speakers, features should be derived from short win-

dows of speech typically a few (< 20 msec) milliseconds duration. But to represent



pronunciation variation of subword units like syllables, features should be represented
at the syllabic level. Variations in prosody and phonotactics should be represented at

a level higher than a syllable.

1.5.1 Language Identification

In this work, we focus on lower level cues such as acoustic-phonetics and prosody di-
rectly derived from speech signal for identifying a language. We do not try to model
subword units separately and therefore do not use any labeled corpora for the develop-
ment of LID system. This precludes us from looking into the higher level features such
as vocabulary, grammar, and also phonotactics up to some extent. In this study, we
represent the variations due to acoustic-phonetics and prosody using language-specific
features derived at different levels of speech signal. Even though there is less clarity

regarding the levels of representation of features, it is approximated as the following:

(a) Frame Level: A short window of speech, < 20 msec duration, is referred to as
frame. In the context of language identification, the frame level features mainly
represent production level constraints imposed by the language. Since produc-
tion level constraints may be sound-specific and speaker-specific, the language-

specific part should be emphasized by reducing the effect of others.

(b) Syllabic Level: Features derived from subword units such as syllables are referred
to as syllable level features. Syllables are often represented by a collection of
frame level features derived from corresponding speech regions. These features
can be used to develop models of language. Syllabic level features aim to model

the acoustic variations in the realization of syllables among languages.

(c) Multisyllabic Level: Features corresponding to a larger span of speech which
go beyond syllables are referred to as multisyllabic features. To study the role
of phonotactic constraints and prosody of a language, features should be repre-

sented at a multisyllabic level.
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1.5.2

Speaker Verification

In order to represent differences among speakers in terms of characteristics of excitation

source, vocal tract system and prosody, features should be extracted from levels of

speech at which these characteristics are manifested. In our study, the approximated

levels

(a)

1.6

1.6.1

of representation of speaker-specific features are the following:

Subsegmental: The main source of excitation for production of speech is the
glottal vibration. In each glottal cycle, the instant of glottal closure is the instant
at which significant excitation of vocal tract takes place. Hence a small region
around the instant of glottal closure contains significant information about the
speaker. In order to represent the excitation source characteristics of a speaker,
excitation sequence corresponding to a duration of 1-5 msec, which is less than

one pitch period, can be considered.

Segmental: Vocal tract system characteristics are extracted from a window of
speech signal that contains a few pitch periods (10-30 msec). Time varying
nature of the vocal tract system is taken into account by sliding the window by

about 5-10 msec.

Suprasegmental: Features corresponding to a larger span of speech (> 100 msec)
which go beyond segments are referred as suprasegmental features. Prosodic
characteristics such as intonation, duration and stress are visible only for a large
span of speech. Therefore to model the prosodic characteristics of a speaker,

features are represented at the suprasegmental level.

ISSUES IN LANGUAGE AND SPEAKER RECOGNITION

Issues in Automatic Language Identification

The LID system should identify the language of a speech utterance independent of the

message spoken, speaker characteristics and channel characteristics. The challenge

11



in language identification is the identification and extraction of features which will

bring out the difference among languages. The following are some issues in automatic

language identification:

(a)

Variability in Speaker Characteristics: Within the constraints of a language,
speakers can have their own speaking styles giving rise to a large amount of
speaker variability. Therefore it is necessary to capture the speaker variability

while modeling a language.

Variability in Accents: Accent is primarily about pronunciation. A person’s
accent is a good indicator whether he is a native speaker of a given language or
not. For example, a native of English fairly fluent in Spanish may speak Spanish

with an English accent. But difference in accents are difficult to describe.

Variability in Environment and Channel Characteristics: Characteristics of
speech signal are influenced by the environment in which it is collected and
channel through which it is transmitted. These factors can significantly change
the features derived from short time spectrum analysis. It is important to have
features which are less affected by channel and environment characteristics to

achieve the robustness needed for a language identification system.

Extraction and Representation of Language-specific Prosody: Prosodic features
such as rhythm, stress, and intonation vary among languages. But the nature of
these characteristics is not well-defined. For example, the rhythm of a language
may be felt due to succession of syllables, vowels, amplitude bursts, or rise or
fall in pitch, which is not well-understood. Moreover, the techniques available
for speech processing are not adequate to represent higher sources of knowledge
such as prosody. Therefore, extraction and representation of language-specific

prosody is difficult.

12



1.6.2 Issues in Automatic Speaker Verification

(a) Variability in Environment and Channel Characteristics: The anatomy and

physiology of speech production organs that is manifested in speech can be
well represented using features derived through spectral analysis. But the spec-
tral features are also influenced by the channel characteristics which may ad-
versely affect the speaker recognition performance. For example, a speaker
model trained using speech collected over a microphone may not give correct
result for a genuine test utterance collected over land line or cellular environ-

ment.

Variability in Language: In a multi-lingual environment, it is natural for a
human being to use more than one language. Since the spectral characteristics
are also language-specific, speaker models should be trained to capture this

variability.

Extraction and Representation of speaker-specific Prosody: The exact nature
of the speaker-dependent prosodic cues are not fully understood. Also there is

less clarity regarding the level at which it should represented.

1.7 ISSUES ADDRESSED IN THIS THESIS

In this thesis, we explore language-specific features at three levels of speech, namely,

frame, syllabic and multisyllabic levels, for language identification. The issue of speaker

and channel variability in spectral-based LID is addressed using separate models of

speakers within the same language. For using syllable level variations among lan-

guages, fixed regions around the vowel onset points (VOP) are used for representing

the consonant-vowel (CV) type of syllables.

The existing techniques of feature extraction are not sufficient to represent infor-

mation such as prosody, which should be represented for a larger span of speech. We

propose a method for extraction and representation of prosodic features with syllable

13



as the basic unit. Continuous speech is segmented into syllable-like regions using the

knowledge of VOPs. Prosodic features are derived for each syllable-like regions.

Another issue addressed is the representation of prosodic features for language
identification. Language-specific prosodic characteristics such as intonation, rhythm
and stress are linked to the syllable sequence rather than individual syllables. Therefore
prosodic features are represented at a multisyllabic level. The systems proposed for

language identification do not require labeled corpora for training and testing.

Finally, we address the issues in the development of prosody-based speaker verifi-
cation system. Prosodic features are less affected by channel characteristics and noise.
Evidence from prosodic features and spectral features are combined to improve the

accuracy of speaker verification system.

1.8 ORGANIZATION OF THE THESIS

The evolution of ideas reported in this thesis is given in Table 1.1.

The thesis is organized as follows: In Chapter 2, a review of automatic language
and speaker recognition is given. Chapter 3 gives a probabilistic formulation to the
problem of language and speaker recognition. In Chapter 4, features at the frame
level are examined for possible presence of language-specific characteristics. The de-
tails of language database, and the results of experimental studies based on frame
level features are described in this chapter. Chapter 5 describes the use of features
derived at the level of syllables for language identification. The goal is to make use
of the acoustic variation in the realization of syllables, which is language-specific. In
Chapter 6, the role of phonotactics and prosody are studied using manual segmen-
tation and labeling information obtained from an Indian language database. Later,
a method is proposed for the extraction and representation of prosodic features from
speech signal, and its effectiveness is demonstrated in case of Oregon Graduate Insti-

tute (OGI) multi-language telephone speech corpus. Chapter 7 describes multilevel

14



features examined for speaker verification, and explains the need for incorporation
of the prosodic features. The prosodic characteristics of speakers are captured using
distribution capturing techniques. The effectiveness of prosodic features for speaker
verification is illustrated using National Institute of Standards and Technology (NIST)
2003 extended data task. We also demonstrate that, by combining evidence from
spectral and prosodic features, the performance of speaker verification system can be
improved. Finally, we summarize the contributions of this research work, and discuss

some directions for further work in Chapter 8.
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Table 1.1: Evolution of ideas presented in the thesis.

Features for language and speaker recognition
- Implicit and are at multiple levels
Language-specific and speaker-specific cues
- Language-specific: acoustic-phonetics, prosody, phonotactics and vocabulary
- Speaker-specific : excitation, vocal tract, prosody and idiolect
- Issue: Extraction and representation at appropriate levels
Multilevel implicit features for LID
- Frame level and syllabic level for capturing acoustic-phonetic variations
- Multisyllabic level for capturing prosody and phonotactics
- Issue: Speaker variability within a language
Prosodic features in the speech signal
- Hypothesis: Prosody is linked to the underlying syllable sequence
- Segmentation of speech into syllable-like regions using VOPs
- Issue: Representation of F contour, energy and syllable durations
Prosodic features for LID
- Rhythm, intonation and stress
- Issue: Representation of language-specific prosody
Multilevel implicit features for speaker verification
- Subsegmental level for excitation source characteristics
- Segmental level for vocal tract characteristics
- Suprasegmental level for prosodic characteristics
- Issue: Identification and extraction of implicit features
Prosodic features for speaker verification
- Physiological : Distribution of F values
- Acquired habits: Dynamics of Fj contour
- Issue: Representation of speaker-specific prosody
Combining evidence from multiple levels for improving robustness

in speaker verification
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CHAPTER 2

REVIEW OF AUTOMATIC LANGUAGE AND SPEAKER

RECOGNITION

2.1 INTRODUCTION

This chapter provides a review of existing approaches to language and speaker recog-
nition, categorized according to the characteristics and features used for these tasks.
Approaches to automatic language identification (LID) systems range from simple
systems based on acoustic-phonetics to complex systems based on large vocabulary
continuous speech recognition. It has been shown that, by using higher level informa-
tion such as phonotactics and vocabulary, better performance can be achieved. But
better performance in such systems is achieved with the transcriptions obtained using
an automatic speech recognizer (ASR). A large manually labeled corpora is required
for building such an ASR. Implicit LID systems which use features extracted directly
from the speech signal are attractive in many practical applications as they do not
require any labeled corpora at any stage.

Current speaker recognition systems are dominated by the vocal tract character-
istics represented using spectral features such as Mel-frequency cepstral coefficients
(MFCC) and linear prediction cepstral coefficients (LPCC) derived through short-
time spectral analysis. Systems based on spectral features perform well in acoustically
matched and noise-free conditions. However, they fail to model information about
the speaker at many other level that might contribute to speaker recognition. It
has been shown that spectral features are affected by channel and noise. Therefore

researchers try additional features to capture the speaker-specific characteristics of
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excitation source, prosody and idiolect.

This chapter is organized as follows: Review of automatic language identification
is discussed in Section 2.2. Approaches for LID, categorized as systems based on
spectral similarity, prosody, phoneme, vocabulary and continuous speech recognition
are described. In Section 2.3, we discuss approaches to speaker recognition, categorized
as systems based on vocal tract, excitation source, prosody, phone pronunciation and
idiolect characteristics for modeling. Finally in Section 2.4, we discuss the challenges

in language and speaker recognition that motivated the present work.

2.2 APPROACHES TO AUTOMATIC LANGUAGE IDENTIFICATION

An LID system must exploit the primary differences which exist among languages,
while still being robust for variations due to speaker, channel and vocabulary. The
system also needs to be computationally efficient. Thus, it is desirable to determine
language discriminating characteristics which are easy to extract from the acoustic

signal and are relatively free from variations due to speaker, channel and vocabulary.

An understanding of the characteristics of spoken language is essential to the
development of an LID system. Each language has a set of phonemes. Phonemes
are combined to form syllables. As the vocal apparatus used for the production of
languages is universal, there is considerable overlap of the phoneme and syllable sets.
Also there are differences in the way the same phoneme or syllable is pronounced
in different languages. Such variations can be represented using acoustic-phonetic

features.

The frequency of occurrence of phonemes differ significantly among languages. The
rules govern the way different phonemes are combined to form larger units are referred
as phonotactics. The sequence of allowable phonemes are different from one language
to another. Certain syllables common in one particular language may be rare in some

other language. These variations in phoneme statistics and phonotactics are normally
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represented using the sequence of phoneme labels obtained using phoneme recognizers.

Prosody refers to a collection of characteristics which makes human speech sound
natural. Prosodic characteristics are acquired over a period of time. In spoken com-
munication, we use and interpret prosody without conscious effort. But it is difficult
to describe them. Prosodic characteristics such as rhythm, intonation and stress vary
among languages. The variations in prosodic characteristics are represented using fea-
tures derived from duration, fundamental frequency (Fp), Fy contour and amplitude

contour.

Each language has its own vocabulary, and its own manner of forming words. At
higher levels, the sentence structure and grammar vary among languages. Even when
two languages share a word, the set of words that may precede or follow the word will
be different. Table 2.1 lists some language discriminating cues and their representation

normally used by the researchers.

Table 2.1: Language discriminating cues and their representations for LID.

Cues for LID Representation

Acoustic-phonetics Spectral features (MFCC, LPCC)
Prosody Features from duration, Fyy and amplitude
Phonotactics Sequences of subword labels

Vocabulary and lexical structure | Sequences of word transcriptions

It has been observed that human beings often can identify the language of an ut-
terance even when they have no strong linguistic knowledge of that language [6]. This
suggest that they are able to learn and recognize language-specific patterns directly
from the signal [6]. In the absence of vocabulary and sentence level knowledge of a
language, a listener presumably relies on characteristics such as acoustic-phonetics,
phonotactics and prosody [12]. Automatic LID can make use of any one or a combina-
tion of the above cues [1]. The LID approaches reviewed in this chapter are categorized

as systems based on the following:
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(a) Spectral similarity
(b) Prosody

(c) Phonemes or syllables
(d) Words

(e) Continuous speech

We review some research efforts in language identification according to this catego-

rization.

2.2.1 Systems Based on Spectral Similarity

Languages differ from each other with respect to their typical short-time acoustic
features. This is caused by the difference in phoneme inventory, and also due to
differences in the realization of similar phones. Modeling of languages using short-time
spectral vectors was implemented by several researchers using a variety of techniques

and approaches as summarized in Table 2.2 [13-16].

Table 2.2: Summary of major LID efforts based on spectral similarity.

Feature Technique Reference

Linear prediction o ‘

coefficients (LPC) Vector quantization (VQ) | Sugiyama 1991 [13]
Mel-frequency cepstral | Gaussian mixture Nakagawa 1992 [14]
coefficients (MFCCQ) models (GMM) Zissman 1993 [15]

LP features Speaker similarity using .

for syllable nuclei nearest neighbor algorithm Li 1994 [17]

Shifted delta Support vector Torress

cepstral features machines (SVM) -Carassquillo 2003 [16]
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2.2.2 Systems Based on Prosody

The prosody offers an enhancement to spectral, phoneme or word-based LID system
by being an additional source of information, robust to noise [18]. Language-specific
prosodic cues include stress, rhythm and intonation. Each cue is a complex language
dependent perceptual entity expressed primarily as a combination of three measurable

parameters: fundamental frequency, amplitude and duration.

LID researchers in the early era found that inclusion of prosodic features such as
speech rate, Fj and syllable timing offered little to improve the performance of their
systems [2,12]. The most direct study on the utility of prosodic features is attempted to
derive parameters to capture F; and amplitude contours on a syllable-by-syllable basis
[18]. It computes inter-syllable (timing related) relationships in the Fy and amplitude
information, collects histogram of various features or feature-pairs. Then log likelihood
ratio functions of histograms are computed to evaluate the unknown utterances in a
pairwise discrimination task. The results showed that prosodic parameters are useful

in discriminating one language from another.

Comparison of 10 languages in OGI database was done using prosody features
namely AF; (first differenced pitch estimate) and AEnv (first differenced amplitude
envelope of band-limited speech) [19]. In another effort, the rhythmic characteristics
of languages are represented using syllable structure and durations of consonants and
vowels [20]. It also used stress-related features in terms of pitch and energy [21]. In
another approach [22], the stylized Fj, trajectories are quantized and labeled into a
small set of classes that describes the dynamics of pitch and energy. The n-gram
models based on these labels are formed to capture the prosodic characteristics of a
language. F{ contour represented using coefficients of Legendre polynomial is also

shown to be useful for language discrimination [23].
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Table 2.3: Summary of various efforts toward modeling prosody for LID.

Modeling
Feature . Reference
technique
Fj, and duration Neural network | Muthusamy 1993 [2]
Fy values HMM Hazen 1993 [12]
Fy and amplitude on Hi Thyme-Gobbel
a syllable-syllable basis Istogram and Hutchins 1996 [18]
Differenced Fy and Recurrent
. Cummins 1999 [19]
amplitude envelope neural network
Rhythmic and stress GMM Rouas 2003 [20, 21]
Fjy and energy contour | n-gram model | Adami 2003 [22]
F, contour GMM Lin 2005 [23]

2.2.3 Systems Based on Phones or Syllables

Given that different languages have different phone inventories, researchers have built
LID systems based on phoneme/syllable recognizers that hypothesize the phoneme
or syllable as a function of time. The likelihood scores emanating from language
dependent phone recognizers can be used to discriminate languages [24]. Also, by
labeling the input speech to sequence of phones, the phonotactics of the resulting phone
sequence can be used to perform language identification [4,25]. The phonotactics are
modeled using statistical language models such as bigrams or trigrams. Systems which
try to model phones, phone frequencies and phonotactics perform better than models
based only on the acoustic information.

In speech recognition systems, language models in the form of stochastic grammar
will give the likelihood of certain words or subword units appearing together. This will
help to reduce many of the errors of the word recognizer or subword unit recognizer. For

text independent language identification, it is generally not feasible to construct word
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models for each of the target languages, as it would be difficult to obtain dictionaries
with sufficient coverage in each of the languages. However it is possible to create
models which represents the sequential statistics of more basic units such as phonemes,

or broad categories of phonemes in each of the languages.

In one approach, a neural network was used for classifying speech to seven broad
phonetic categories such as silence, fricative, pre-vocalic-stop, vowel, pre-vocalic sono-
rant, inter vocalic sonorant and post-vocalic sonorant [2]. The main reason for the
choice of broad categories is that they are language-independent, and thus can be used
even for languages for which labeled training data is not available. A stochastic gram-
mar is then used to compute the likelihoods of co-occurrence of those units, which will

capture some of the so-called phonotactic regularities in the target languages.

Bigram models can be employed to capture the likelihood that a phoneme is fol-
lowed by any other phoneme. The language of an utterance is determined by succes-
sively decoding the test utterance using phone recognizer and bigram model of each
of the target languages. The decoding with the highest likelihood is taken to indicate
the language to which the utterance belongs. Since the likelihood computed during
the decoding process is a product of both acoustic and phonotactic components, this
score actually incorporates both acoustic and phonotactic information [12]. There are

three different variations for this phone-based approach [15].

_»| Language-A Language-A
n-gram Model Log likelihood

Speech  Acoustic Phone
— . > .
Preprocessing Recognizer

Language-B Language-B
n-gram Model Log likelihood

Fig. 2.1: Block schematic of PRLM - Single language phone recognition followed
by language-dependent n-gram modeling.

(a) PRLM: As shown in Fig. 2.1, single language phone recognition followed by
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language-dependent n-gram language modeling is abbreviated as PRLM. In this
system, phones present in training data are recognized using a front end phone
recognizer. The resulting symbol sequence is analyzed, and an n-gram language

model is obtained for each language.

(b) Parallel PRLM: Although PRLM is an effective means of identifying the lan-
guage of a speech, it is difficult to train a phone recognizer which works well for
all the languages. Alternatively, parallel PRLM uses multiple single language
phone recognizers as shown in Fig. 2.2. Separate phone recognizers are trained
for languages in which labeled data is available. This is followed by phonotactic

analysis using language models.

—» Modéd for Fars
English
—»  Phone Modd for French
Recognizer
"= Modd for Tamil
™ Modél for Farsi k\
eech : Japanese Combine
Speech Acoustic » Phone Model for French » ad
Preprocessing Recognizer / Pick Max
1 Modéd for Tamil /
1 Model for Farsi (
Spanish Average the Corresponding
—»  Phone Model for French el
Recognizer Likelihood
"= Modd for Tamil

Fig. 2.2: Block schematic of parallel PRLM - Multiple phone recognizer followed

by n-gram modeling.

(c) PPR: Language-dependent parallel phone recognition (PPR) is preferred when
labeled training speech is available in each language to be identified. In PPR
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several language-dependent phone recognition front-ends are used in parallel as
shown in Fig. 2.3. The likelihood of the parallel phone recognizers are compared,
from which language is hypothesized [15]. The prior knowledge of the language

in terms of n-gram models is in-built in each of the language-dependent phone

recognizer.
Language—-A Language—-A
* Phone Recognizer|— ™ Log likelihood
&n —gram Model
Speech Acoustic
—_— .
Preprocessing Language-B
» Phone Recognizer| Langl_Jagg—B
o Log likelihood

&n —gram Model

Fig. 2.3: Block schematic of PPR - Language dependent phone recognizers

running in parallel.

Researchers have also focused on the problem of identifying and processing only
those phones or syllables that carry the most language discriminating information [26].
These language dependent phones are called mono phones in the literature, and such
phones need to be identified in each language. It is possible to use pair-wise contrastive

monophones alone for language identification [26].

In a parallel subword recognition (PSWR) approach, speech is segmented in terms
of subword units. This is followed by segment clustering using k-means clustering and
modeling using hidden Markov models (HMM) [27]. This PSWR based LID system
operates in a PPR framework, but without requiring manually labeled phonetic data in
any of the languages. An input utterance is classified by maximum likelihood decision
obtained by the front-end subword recognizer or by the back-end language model score,
or jointly by both.

In another parallel syllable-like unit recognition approach, speech is segmented into

syllable-like units. Similar syllables are grouped together to train HMM-based syllable
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Table 2.4: Summary of phoneme or syllable-based LID systems

Unit recognized

Method

Reference

Broad class

Broad phonetic

Muthusamy 1991 [2]

of phoneme statistics
Zissman 1993 [15],
PRLM Hazen 1993 [25]
Phoneme ;
Parallel PRLM Zissman 1993 [15],
Jiri 2001 [4]
PPR Zissman 1993 [15],
Lamel 1994 [24]
Monophone Language-specific phones Berkling 1998 [26]

Subword unit

Parallel subword recognition

Sai Jayaraman 2003 [27]

Syllable-like unit

Parallel syllable recognition

Nagarajan 2004 [28]

models [28]. After the initialization of the selected syllable models, the parameters of
the models are re-estimated by a process called incremental training. These language-
dependent syllable models are then used for identifying the language of the unknown

test utterance. Table 2.4 summarizes various phoneme or syllable-based approaches.

2.2.4 Systems Based on Words

LID systems based on words employ sequence modeling at word level, but do not use
full speech-to-text systems. This is an approach to the LID problem where phones are
recognized first, followed by words, and eventually language. It uses lexical modeling

for language identification [29]. An incoming utterance is processed by parallel lan-
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guage dependent phone recognizers. Hypothesized language-specific word occurrences

are identified from the resulting phone sequences.

2.2.5 Systems Based on Continuous Speech

LID systems based on continuous speech recognition use more language-specific knowl-
edge to obtain better performance [30,31]. It employs one continuous speech recognizer
per language. While testing, all these recognizers are run in parallel. The language of
the recognizer which yields the highest likelihood is hypothesized as the language of the
test utterance. Such systems hold the promise of high-quality language identification,
because they use higher-level knowledge (words and word sequences) to make the LID
decision. Furthermore, one obtains a transcription of the utterance as a byproduct of
the LID. On the other hand, they require several hours of labeled training data for

each language to create separate continuous speech recognizers.

Next we review systems used for automatic speaker recognition. The systems are

broadly categorized based on the characteristics that are used for modeling the speaker.

2.3 REVIEW OF AUTOMATIC SPEAKER RECOGNITION

The objective of speaker recognition is to recognize a person from his or her voice.
Speaker characteristics are manifested in speech signal as a result of anatomical differ-
ences inherent in the speech production organs, and differences in the learned speaking
habits of individuals [32]. Research on automatic speaker recognition has been under-

taken for well over four decades, and it continues to be an active area [33,34].

The general area of speaker recognition can be classified as speaker identification
and speaker verification. Speaker identification is the task of determining who is
talking from a set of speakers. The unknown person makes no identity claim, and
so the system must perform a 1 : NV classification. Generally it is assumed that the

unknown voice must come from a fixed set of known speakers, thus the task is often
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referred to as closed-set identification. Speaker verification (also known as speaker
authentication or detection) is the task of determining whether a person is who he or
she claims to be (a yes or no decision) [35]. Since it is generally assumed that impostors
are not known to the system, this is referred to as an open-set task. In general, most

applications of speaker recognition technology use open-set speaker verification [36].

The speaker recognition is also classified as text-dependent and text-independent.
In text-dependent speaker recognition, a speaker speaks the same text during enroll-
ment and verification, and the recognition system has prior knowledge of the text.
The prior knowledge and constraint of the text can greatly improve the performance
of the recognition system. In text-independent system, there is no prior knowledge by

the system of the text to be spoken.

In speaker recognition systems, the first step is to identify the possible charac-
teristic variation among different speakers. Speech is generated by the excitation of
vocal tract system with a time varying input. Speaker-specific information is present
in both vocal tract system as well as excitation source components of speech produc-
tion mechanism. Characteristics of speakers vary due to difference in physiology of
vocal tract and excitation source. Speakers also have difference in certain acquired
speaking habits learned over a period of time. The learned characteristics are reflected
in prosody and idiolect of a speaker. Speaker recognition systems are now reviewed,

based on the speaker-specific characteristics used for recognition.

2.3.1 Systems Based on Vocal Tract Characteristics

The vocal tract system can be considered as a cascade of cavities of varying cross
sections. These cavities assume varying size and shape depending on the sound unit
that is uttered. Also there are some variations in the physiology of vocal tract among
speakers. The resonant frequencies or formants of vocal tract vary in frequency, band-
width and relative amplitude depending on both the sound unit and the speaker. The

magnitude of the frequency spectrum encodes this information and is useful for repre-

28



senting the physiology of speaker’s vocal tract system. Short-time analysis, typically
with 20 msec frame size and 5 to 10 msec frame shift, is used to compute a sequence
of magnitude spectra using either linear prediction (LP) analysis or discrete Fourier

transform (DFT) analysis.

First, some form of speech activity detection is performed to remove non-speech
portions from the signal. Next, features conveying speaker information are extracted
from the speech. Linear prediction analysis of speech [37] provides an approximation
to short-time spectrum of the vocal tract filter. Different parametric representation
of speech derived from the LP analysis were investigated for their effectiveness for
automatic speaker recognition [38]. Linear prediction cepstral coefficients (LPCC)
were shown to be effective for speaker recognition [39]. Baseline speaker recognition
system of Indian Institute of Technology (II'T) Madras uses weighted linear prediction
cepstral coefficients (WLPCC) for modeling speakers [40]. The Mel-frequency cepstral
coefficients (MFCC) have been used for speaker recognition [35,41]. The MFCCs
are obtained by warping the frequency scale in such a way to resolve the magnitude
spectrum finely at lower frequencies and relatively coarsely at higher frequencies [42].
The magnitude spectra are then converted to cepstral features, and time-differential
(delta) cepstrals are appended. Finally, some form of channel compensation technique,

most commonly cepstral mean subtraction, are applied to the features.

2.3.2 Systems Based on Excitation Source Characteristics

During the production of speech, the vibration of vocal folds provides quasi-periodic
impulse-like excitation to the vocal tract system. Inverse filtering in LP analysis results
in LP residual, which is an approximation to the excitation signal [43,44]. It has been
shown that combining evidence from spectral features and excitation source features

improves the overall performance of the IITM speaker recognition system [45].

Liljencrants-Fant (LF) model has been used as a parametric model to characterize

glottal flow derivative [46]. Estimate of glottal flow derivative was obtained using LF
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model to capture the coarse structure, while fine structure was represented by energy
and perturbation measures [47]. Both coarse and fine structure resulted in reduction

of error when used with MFCCs.

2.3.3 Systems Based on Prosody

Pitch is a perceptual attribute of sound. The physical correlate of pitch is the fun-
damental frequency (Fp) of vibration of vocal folds. Fundamental frequency reflects
speaker-specific characteristics due to the differences in physical structure of the vocal
folds among speakers. Variation of pitch as a function of time is called intonation, and
is represented by the Fy contour. The dynamics of the Fy contour can be different

among speakers due to different speaking style and accent.

The distribution of Fj values is speaker-specific. The global statistics of F values of
a speaker is captured using appropriate distributions for speaker verification task [48].
It has been shown that the dynamics of F; contour which reflect the speaking style
of a person can also contribute to speaker verification task. In [49], the speaker’s Fj
movements are modeled by fitting a piecewise linear model to the Fj track to obtain a
stylized F{y contour. Each linear Fj segment is represented using median Fj, slope, and
duration. These features are modeled by log-normal, normal and shifted exponential

distributions, respectively.

In order to incorporate prosodic features, speaker recognition systems generally
require significantly more data for training. In 2001, in response to the growing in-
terest in the use of prosody and idiolect for speaker recognition, NIST introduced the
extended data task, based on switchboard corpus of conversational telephone speech
[50]. Unlike the traditional speaker recognition tasks, the extended data task provide
multiple whole conversation sides for speaker training (4-side /8-side /16-side), where
each conversation side contains approximately 2.5 minutes of speech, and tested on

one side conversation.
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A workshop was conducted at the John Hopkins University (JHU), USA to explore
a wide range of features for speaker recognition using the extended data task as its
testbed [51]. The usage of various prosodic features were explored in this workshop
[62,53]. The dynamics of linear stylized F and energy trajectories of each speaker are
modeled using bigram models [52]. In [53], the focus is on investigations of a diverse

collection of prosodic features based on Fj, segment duration, and pause duration.

In [54], duration, pitch and energy features are computed for each estimated syl-
lable regions. The syllable boundaries are obtained from automatic speech recognizer
(ASR) output. These features are quantized and it is used to form N-grams which is
referred as SNERF-grams (N-grams of Syllable-based Non-uniform Extraction Region
Features). Duration characteristics, namely, word features (sequence of phone dura-
tions in the word), duration of phones, and sequence of HMM state durations have

been used for modeling duration [55,56].

2.3.4 Systems Based on Phone Pronunciations

The phone-based system is a text-independent speaker recognition system based on
difference among speakers in the dynamic realization of phonetic features [57]. Pro-
nunciation variation among speakers are used here, rather than the difference in the
distribution of spectral features. System based on phone pronunciations uses the time
sequence of phones obtained from a bank of open-loop phone recognizers to capture
some information about the speaker-dependent pronunciations. This is followed by
the “bag-of-n-grams” classifier [57]. A binary tree is also shown to be useful instead
of an n-gram model [58]. Speaker-dependent pronunciations are learned by compar-
ing constrained ASR phone streams with open-loop phone streams. The conditional

probabilities of phones are computed for each speaker [59].
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2.3.5 Systems Based on Idiolect

It is generally recognized that human listeners can distinguish between speakers who
are familiar to them better than those who are unfamiliar. This increased ability is
due to speaker idiosyncrasies that are recognized by the listener, either consciously or
subconsciously [10]. “Familiar-speaker” differences, however, surely relate to long term
speech patterns, such as the usage of certain words and phrases, and to the features
tied to these patterns, such as intonation, stress and timing. The use of such patterns
helps to improve the performance of speaker recognition systems.

Idiolect refers to the way a particular person uses language. It has been proved
that n-gram models have the potential to capture idiolect of a speaker [10]. The n-
gram language models are conventionally used for improving the performance of speech
recognition system, and these models are made speaker-independent by including data
from various speakers. While using it for speaker recognition, language model is trained
for a specific speaker, assuming that sufficient data is available. In this approach,
transcriptions of speech data at levels of words (or phrases) are used as input for
training the language models. Table 2.5 summarizes the speaker discriminating cues

and the features used by the researchers.

Researchers also use output from a speech recognizer to allow application of classic
text-dependent template matching techniques to the text-independent speech. For
example, for Fj contour matching, the Fy contour from an enrollment phrase is used
as the reference template for a speaker. This is matched to the Fj contour of the same
phrase using dynamic time warping (DTW). Dynamic modeling using HMM has been

suggested for modeling Fy contours of selected words and phrases [9].

The review of approaches for language and speaker recognition discussed here is
from the perspective of characteristics and features. Motivation for the present work

is discussed in the next section.
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Table 2.5: Summary of speaker discriminating cues and features for

speaker recognition.

Cue

Feature

Reference

Vocal tract

Spectral features

Atal 1974 [38]

system (MFCC, LPCC) Furui 1981 [39]
Reynolds 1995 [35,41]
Excitation LP residual ITTM system 2001 [45]
source Glottal flow derivative | Plumpe 1999 [47]
F, values Sonmez 1998 [48]
Sonmez 1998 [49]
Prosody

Fy dynamics

Adami 2003 [52]
superSID 2003 [51,53]

Prosody (using ASR)

Shriberg 2005 [54]

Phone pronunciations

Spectral features

Andrews 2002 [57]

Idiolect

Text transcription

Doddington 2001 [10]

2.4 SUMMARY AND MOTIVATION FOR THE PRESENT WORK

This chapter gives a brief review of language and speaker recognition. The LID system
range from a single acoustic model per language, to a complex multilingual speech rec-
ognizer. Better recognition performance is obtained by using language-specific knowl-
edge at the subword and word levels. Automatic speaker recognition systems range
from systems which use physiological difference to systems that try to model the ac-

quired speaking habits.

This review on language and speaker recognition systems reveals the similarity in
approaches for language and speaker recognition. Spectral features encodes informa-
tion regarding the physiology of the vocal tract system, and hence useful for speaker
modeling. As the vocal tract size and shape is also decided by the sound unit spoken,
the spectral features are also language-specific. Prosodic features convey information

regarding the physiological constraints as well as acquired speaking habits of a person.
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It also conveys the prosodic constraints of the language. As spectral and prosodic
features are both language and speaker-specific, their representation should be in a
manner that highlights the language-specific part or speaker-specific part, depending
on the task. We hypothesize that both language and speaker characteristics are present
in speech signal and it is difficult to separate the language part and speaker part from
features derived from speech signal. The focus of this work is on the extraction and rep-
resentation of language-specific and speaker-specific features for recognizing language
or speaker.

To use vocabulary and phonotactics for LID, a multilingual recognizer is needed.
Building a multilingual recognizer may be impractical due to several reasons. It re-
quires knowledge about the acoustic-phonetic, lexical and linguistic rules for each
language of interest [12], and hours of manually labeled database is required for this.
Developing such systems for a number of languages would be laborious and time con-
suming. Preparing manually labeled database for all languages to be identified requires
human experts in those languages and substantial amount of supervision. As labeled
corpora is not available for most of the Indian languages, identifying language using
features derived from speech signal is important. Though the explicit LID systems out-
perform implicit systems, the nonavailability of labeled database in many languages
make the implicit systems attractive for many practical applications. Similarly for
speaker recognition, to make use of prosody, some of the existing systems use seg-
ment boundaries obtained using an automatic speech recognizer. Extracting features
directly from the speech signal is important for tasks like language and speaker recog-
nition. In this work, we focus on the extraction of features directly from the speech
signal, and its representation suitable language and speaker recognition.

A language or speaker recognition system based on acoustic-phonetics uses spec-
tral vectors for modeling. The accuracy of recognition systems using spectral features
reaches a saturation for a fairly long test speech. Spectral-based systems may perform
well in acoustically matched and noise-free conditions. The current speaker recogni-

tion systems are dominated by the short-time spectral features. These systems ignore
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speaker-specific patterns in prosody and idiolect. Due to the susceptibility of spectral
features to channel, noise and environment, researchers have realized the importance of
non-spectral features for increasing the reliability of recognition systems. The prosodic
features derived from pitch contour, amplitude contour, duration etc. are less affected
by channel characteristics, environment and noise. Therefore systems which com-
bine evidence from prosodic features along with spectral features may be robust than
systems using spectral features alone. This motivated us to consider prosody as an

additional feature for language and speaker recognition.

In the next chapter, we discuss formulation of the problem of language and speaker

recognition using probabilistic approach.
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CHAPTER 3

ANN MODELS FOR LANGUAGE AND SPEAKER
RECOGNITION

3.1 INTRODUCTION

In this chapter, we discuss formulation of the problem of language and speaker recog-
nition using probabilistic approach, and the implementation of various stages using
artificial neural network (ANN) models. Probabilistic approaches have received atten-
tion in various domains such as speech processing and image processing. According to
this approach, language/speaker recognition problem is treated as the estimation of
a posteriori probability. It is further simplified to the estimation of likelihood proba-
bility, assuming equal a priori probabilities of occurrence to all languages or speakers
included in the task. We propose neural network models for obtaining an estimate

similar to these probabilities.

Language or speaker recognition task mainly involve three stages namely, feature
extraction, modeling and evaluation. Feature extraction deals with extraction of lan-
guage or speaker-specific features from the speech signal. Appropriate models are
developed using features obtained from the training data. The models are evaluated
using the features derived from a test utterance for recognizing the language or speaker.
The performance of language or speaker recognition systems are influenced by all the
three stages, namely, feature extraction, model building and evaluation strategies.

This chapter discusses the modeling strategies used in this work.

This chapter is organized as follows: The next section describes the probabilistic
formulation for language and speaker recognition. Section 3.3 describes neural network

models, namely, multilayer feedforward neural network and autoassociative neural net-
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work used for modeling. In Section 3.4, we discuss features derived at various levels of
speech, namely frame level, syllable level and multisyllabic level, useful for language
identification. In Section 3.5, we discuss the probabilistic approach for speaker recog-
nition using features derived at three different levels, namely, subsegmental, segmental

and suprasegmental. Section 3.6 summarizes the chapter.

3.2 PROBABILISTIC APPROACH FOR LANGUAGE AND SPEAKER
RECOGNITION

Language (or speaker) recognition can be expressed as a problem of finding the most
likely language (or speaker) C* of the input speech, from a set of known languages
(or speakers). Let {C;}, 1 < i < M denote the set of classes representing languages
(or speakers), and let O denotes the observations derived from input speech. The

recognition problem can be formulated in probabilistic terms as follows:
C* = arg max P(C;|O) (3.1)

where P(C;|O) is the a posteriori probability of the class C; for the given speech
utterance expressed in terms of 0. Let us assume that the observation O belongs to
one of M classes C;,1 < i < M. According to the rule given in (3.1), the objective is
to choose the class C* for which the a posteriori probability P(C;|O) is maximum for
a given 0. By Bayes rule,

P(O|Ci)P(C;)

(3.2)

where P(O|C;) represents the likelihood probability of O corresponding to the class
C;, and P(C;) denotes the a priori probability of the class C;. The problem can be

reformulated as follows:

C* = arg m?x P(Oﬁi)oli(ci)

If there is no reason to prefer one class over another, P(C;) can be assumed equal for

(3.3)

all the classes [60]. P(O) being a common term for all the classes, the problem can be
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simplified to:
C* = arg max P(O|C;) (3.4)

The probabilities of different classes can be compared by evaluating P(O|C;), 1 <i <
M, and it can be used for selecting a particular class for which the probability is the
largest. Thus the task of language (or speaker) recognition is treated as the estima-
tion of a posteriori probability, and can be simplified to the estimation of likelihood

probability under certain assumptions.

In our work, we use neural network models for obtaining estimates similar to these
probabilities. The types of neural network models used in this study are explained in

the next section.

3.3 NEURAL NETWORK MODELS FOR LANGUAGE AND SPEAKER
RECOGNITION

Artificial neural network (ANN) models with different topologies can perform different
pattern recognition tasks [61,62]. A multilayer feedforward network can be designed
to perform the task of pattern classification. A special class of feedforward neural
networks called autoassociative neural network (AANN) is useful for capturing the

distribution of the feature vectors from the given training data [63].

3.3.1 Multilayer Feedforward Neural Network Classifier

The main objective in pattern classification is to assign a label to a given pattern,
often represented as a feature vector. Let us represent the output of a multilayer
feedforward neural network (MLFFNN) by the function f(z,6) where z is the input
vector, and 6 represents the values of all parameters that define the network. For
simplicity of notation, consider a two class problem for which the desired output of
the neural network takes on the value a, if x corresponds to class C, or the value b,
if © corresponds to class Cs. Typical structure of MLFFNN for a two class problem

is shown in Fig. 3.1. The performance of the network is measured using the mean
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squared error defined as:

Fig. 3.1: Structure of a multilayer feedforward neural network with single output.

B= (3 0) —af + 3 (£ 6) ~ b)) (35

zeC1 zeCso

where N is the total number of training samples. If we assume that N is large,
and the number of samples from each of the classes is in proportion to the a priori

probabilities of the two classes, we can approximate the above summation by integrals

[64] as follows:

E= / (f(2,0) — a)’ (e, C1)dz + / (f(2,0) = b)2P(, Cs)da (3.6)
where P(xz,C;), i = 1,2, is the joint probability density function of the observations x

and the class C;. Equation (3.6) can be rewritten as
E = / 12(@,0)(P(z, Cy) + P(, Cs))da (3.7)
—Q/f(x,ﬁ)(aP(x,Cl) + bP(z,Cs))dx

+a2/P(x,Cl)dx+b2/P(x,Cg)dac
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Let P(x) = P(x,C1)+P(z,Cs) denote the unconditional probability of an observation.
Defining the term

d(z) = aP(x,Cll)D—(;;)P(x, Cy)

Substituting d(z) error E becomes
B = / (2, 0)p(z)dz — 2 / (@, 0)d(2)p(z)dz (3.9)

+a2/P(x,C’1)dx+b2/P(x,Cz)dx

= aP(Ci|z) + bP(Cs|z)

This can be written as follows:
E = /[f(x, 0) — d(z)]’p(z)dz + a®>P(C,) + b*P(Cy) — /dQ(x)p(x)da: (3.9)

Only the first term in the above equation depends on the parameters of the net-
work. Therefore adjusting the network parameters # to minimize E is equivalent to
minimizing the mean square error between the network output f(z,#) and d(x). When
x € C1, we choose a = 1 and b = 0 as desired output and then d(z) = P(C1|x). There-
fore when x € C}, the network parameters are adjusted to minimize the first term in

equation (3.9), the network output is expected to be
f(z,0) = P(Ci|x) (3.10)

where P(C|z) is the a posteriori probability of class Cy , the probability that the class
Cy has occurred given that = has been observed. The Eqn. (3.10) indicates that the
network is trained to approximate the a posteriori probability in a mean square sense
[64].

In many applications a neural network is designed to discriminate between M
classes (M > 2). In this case network will have M outputs f;(z,6), j = 1,2,..., M.
The desired output of the neural network will be 1 for the class to which the input
training class belongs and 0 for all the other outputs. It can be proved that minimizing

the squared error criterion in this case is equivalent to minimizing the term
M
Sy / [f(z,0) — P(Cj|z)]’p(z)dx
j=1
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This shows that the parameters of network are being used to simultaneously approxi-

mate M different functions, such that average of the squared errors is minimized.

3.3.2 Autoassociative Neural Networks

For a pattern classification problem, it is necessary to capture the characteristics of
each class from the features derived from the training data for that class. This involves
estimation of probability density function of the feature vectors for each class. Conven-
tionally parametric models such as Gaussian mixture models (GMM) have been used
to capture the distribution of the feature vectors for each class. While using GMM,
the components of the distribution are assumed to be Gaussian and the number of
mixtures is generally fixed a priori [65]. In applications such as speech processing,
feature vectors can have any arbtrary distribution and hence can not be adequately
be described by a GMM. Autoassociative neural network (AANN) models provide an
alternate modeling technique which does not impose any constraint on the shape of
the distribution of the feature vectors. AANN models can capture arbitrary shape of
distribution, including the patterns that can be captured by GMM [63]. Since AANN

is more general, we have adopted it for capturing the distribution of data.

When a feedforward neural network is trained with an output equal to the input
feature vector, then it is said to operate in an autoassociation mode. The network
is called an autoassociative neural network, because it is trained (or expected) to
reproduce its input [61,62]. It consists of an input layer, an output layer and one
or more hidden layers. A typical structure of a five layer AANN model is shown in
Fig. 3.2. The number of units in the input and output layers is equal to the size of
the input vectors. The number of units in the middle hidden layer is less than the
number of units in the input and output layers, and this layer is called the dimension
compression hidden layer. The activation function of the units in the input and output
layers are linear, whereas the activation function of the units in the hidden layers can

be either linear or nonlinear. The AANN model, with a dimension compression layer
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in the middle, is used primarily for capturing the distribution of input features in the
feature space. The ability of AANN models to estimate arbitrary densities has been
demonstrated [63]. It was illustrated experimentally that a network can be designed
to capture the distribution of the given data, depending on the constraints imposed
by the structure of the network [63,66]. The details of this study on AANN models is

given in Appendix A.

INPUT
OUTPUT

HIDDEN LAY ERS

Fig. 3.2: Structure of five layer AANN model.

To capture the distribution of the input feature vectors in the feature space, the
feature vectors are extracted from the signal, and are presented in a random order
to the AANN. The weights of the network are adjusted using the backpropagation
training algorithm. As the mean square error between the actual and desired outputs
are minimized, the clusters of points in the input space determine the shape of the

hypersurface obtained by the projection onto the lower dimensional space.

While testing, the output of the AANN model is computed with input test vector,
and the squared error with respect to the output vector is calculated for each input test

vector. The error E; for it" test vector is transformed into confidence value by using
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C; = exp(—E;). If the error is small, the resulting C; will be close to 1, and when the
error is large, C; will be small. When the error is zero, C; will take the maximum value
of 1. Though C; is not strictly a probability value, it may be interpreted as similar
to the log likelihood probability. The average confidence value for a test utterance is
computed as C, = 1/N Y.~ | C;, where N is the total number of feature vectors in the

test utterance [40].

3.4 MULTILEVEL FEATURES FOR LANGUAGE IDENTIFICATION

Let L ={L4, Lo, Ls, ...., L) } represent the set of M languages. When a speech utter-
ance is given, the LID system must derive features represented by O from the utterance
to decide which of the M languages in L was spoken. The problem can be expressed

as:

L* = argmax P(L;|O) (3.11)

In this study, we use three levels of feature representation, namely, frame, syllabic
and multisyllabic levels. In order to represent variations in acoustic-phonetics, features
are derived at the frame level. Features are represented at the level of syllable, to use
the difference in the realization of syllables in various languages. Difference among
languages in terms of phonotactics and prosody extend beyond the level of syllables
and hence should be represented at multisyllabic level. Let F', S and T be the sequence
of feature vectors derived from the test utterance at frame, syllabic and multisyllabic
levels, respectively. With this information, the most likely language L* is found using

the following expression:

L* = argmax P(L;|F,S,T) (3.12)

P(L;|F,S,T) can be written as:
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P(F7 SaTaLz)

P(L;|F,S,T) = 1
(LIR.S.T) = s (3.13)
Assuming that F, S and T are independent [12], this gets simplified to
P(F|L,))P(S|L;)P(T|L;)P(L;
P(LF.5.1) — PEILPSIL)PTIL)P(L) _

P(F)P(S)P(T)
Assuming equal a priori probability P(L;) for all the languages and assigning constant
values for P(F), P(S) and P(T), the language recognition problem can be represented

as

L* = argmax P(F|L;)P(S|L;)P(T|L;) (3.15)

The information obtained from frame, syllabic and multisyllabic levels may be mod-
eled separately, and the three likelihood components in Eqn. (3.15) may be computed
independently, where P(F'|L;), P(S|L;) and P(T|L;) refers to the likelihood probabili-
ties obtained using features represented at the frame, syllabic and multisyllabic levels,

respectively.

3.4.1 Frame Level Features

Let F = {f}, f,, 15, ..., f; } represent the sequence of feature vectors derived at the frame

level. The likelihood probability P(F'|L;) is given by
P(F|L;) = P(fi, £, f3, ..., f| L) (3.16)

Assuming that each frame is independent, it can be represented as

PFIL) = [[ PEIL) (3.17)

Jj=1

This is equivalent to accumulating the log likelihood probability

k
logP(F|L;) =) logP(f;|L;) (3.18)
j=1
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3.4.2 Syllabic Features

Let S = {si,s9,83,---,8,} represent syllable level features derived from the test ut-

terance consisting of n syllables.

Considering each syllable as an independent unit, the p(S|L;) is computed as

P(SIL) = [ plssl) (319
7j=1
which is equivalent to accumulating the log-likelihood probability
log[P(S|Ls)] = log[p(s;| L;)] (3.20)
j=1

Autoassociative neural network models are used for capturing the distribution of both
the frame level and syllable level features. The average confidence score obtained
for a test utterance using AANN model is used in place of log likelihood probability
log[P(S|Ly)]

3.4.3 Multisyllabic Features

We hypothesize that, in order to capture prosodic characteristics such as stress, rhythm
and intonation of a language, features need to be extracted from a level higher than
syllable. At a normal rate of conversation, it is not possible to give stress to two
successive syllables. The stress assigned to one syllable is achieved at the expense of
the syllable immediately preceding or following. In words with more than two syllables,
it is possible to contrast the extreme syllables relative to the intermediate syllable [67].
Also the tones of adjacent syllables influence the shape and height of the pitch contour
of a particular syllable. To model the phonotactic variations among languages, the
co-occurrence of subword units need to be captured. As an approximation, features
derived from three consecutive syllables are chosen to form a basic unit for representing

prosodic and phonotactic features.

Let T = {ty,ts,.....t,} represent feature vectors obtained from the test sequence

containing ¢ trisyllabic units. Assuming that each trisyllabic unit is independent,
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P(T|L;) can be represented as

q
P(T|L;) = [ [ P(t;1L) (3.21)
7j=1

3.5 MULTILEVEL FEATURES FOR SPEAKER RECOGNITION

The problem of speaker recognition can be expressed as:
S* = arg max P(S;|0) (3.22)

where P(S;|O) is the a posteriori probability of a speaker S; and O denotes the ob-
servations/features derived from the given speech utterance. Here the objective is to
choose the speaker S* for which the posterior probability P(S;|O) is maximum for a
given O.

In this work, the observation O is represented using three different components.
The speaker-specific characteristics present in excitation signal is represented at sub-
segmental (1-5 msec) level, which is less than a pitch period. The vocal tract sys-
tem characteristics are obtained using short-time spectral analysis of windows or
segment containing a few pitch periods (20-30 msec). The prosodic characteristics
are represented at suprasegmental (>100 msec) level. Let R = {ri,ro,---,r,},
F = {f,f,--- £} and X = {x1,x9, -+ ,%,} denotes the subsegmental, segmental

and suprasegmental features, respectively, for a given test utterance.

According to the definition of class conditional probability
P(R,F, X, S;)

P(S;|R,F, X) = PR, F, X) (3.24)
Assuming that R, F and X are independent, we get
P(R|S;)P(F|S;)P(X|S;)P(S;
p(s . Fx) - PUISIP(FIS)P(X|S)P(S) 529

P(R)P(F)P(X)
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Assuming equal a priori probability P(S;) for all the speakers, and assigning constant
values for P(R), P(F') and P(X), the speaker recognition problem can be represented
as

S* = argmax P(R|S;)P(F|S;)P(X|S;) (3.26)

Effectively, there are three likelihood probability components which can can contribute
for speaker recognition. Assuming that observations R, F' and X are independent, each
likelihood components can be computed separately. Assuming independence among
values of R, F' and X, the individual likelihood components can be computed as

follows:

P(R|S;) = H p(r;]S:) (3.27)
P(F|S;) = Hp(flez-) (3.28)
P(X|8) = [ [ p(xi1$) (3:2)

These likelihood components may be combined by adding them in the logaithmic

domain, to get improved speaker recognition performance.

m k n
S* = arg max Z logP(r;|S;) + ZlogP(fj\Si) + ZlogP(xﬂS,-) (3.30)

=1 =1 =1

3.6 SUMMARY

In this chapter, we have presented a probabilistic formulation for language and speaker
recognition. Here the recognition problem is interpreted as the estimation of a poste-
riori probability, which is again simplified to estimation of likelihood probability. For
capturing various language and speaker-specific characteristics, features from multiple
levels of speech are modeled separately. The likelihood from various levels may be

combined to improve the recognition performance.
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In the next chapter, we explore various features derived at frame level for language

recognition.
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CHAPTER 4

FRAME LEVEL FEATURES FOR LANGUAGE
IDENTIFICATION

4.1 INTRODUCTION

From the review of language identification discussed in Chapter 2, it is clear that
the choice between explicit and implicit systems for language identification (LID) is a
compromise between complexity and performance. The explicit LID systems that make
use of phonotactics and word level knowledge perform better than implicit systems
which rely on acoustic-phonetics and prosody. But the higher performance of explicit
LID systems is achieved at the cost of additional complexity of using a subword unit
recognizer at the front end. For building such a subword unit recognizer, invariably one
requires manually labeled corpora for number of languages. Such a corpora may not
be available in many languages. This is especially true for Indian languages, where a
large number of languages are spoken even within a small geographical area. Therefore
the LID system that operates on features derived directly from the speech signal is

useful.

In this chapter we explore various frame (< 20 msec) level features for the possible
presence of language-specific information. As the linguistic content of the speech in-
fluences the vocal tract shape, the distribution of vocal tract system features may be
unique for a language. The vocal tract features are represented using spectral features.
The distribution of the spectral feature vectors for each language is captured to model
the language. From the review of the existing approaches for LID, we notice that no
specific attempt has been made so far in exploring the language-specific information

present in excitation source signal. Excitation source characteristics are represented
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using the residual signal obtained using LP analysis. As the second order relations
are removed in the LP analysis, we hypothesize that language-specific information is
present in the higher (> 2) order relations in the samples of the LP residual. This
higher order relation need to be captured by the models. The complementary evi-
dence obtained by the spectral and source features may be combined to improve the

performance of the combined LID system.

This chapter is organized as follows: In the next section, we describe three dif-
ferent frame level features and their representation used in this study. In Section
4.3, we discuss the performance of the spectral-based LID system for a database of
Indian languages. In this section, the issue of speaker variability within the same lan-
guage is addressed. A method using on multiple speaker models is suggested to deal
with speaker variability within the language and the effectiveness of the method is
demonstrated using OGI database. In Section 4.4, LID systems based on LP residual
and phase of the LP residual are discussed. The performance of different approaches
and the performance of the combined system for the database of Indian languages is
discussed in Section 4.5. Section 4.6 summarizes the work on LID using frame level

features.

4.2 FRAME LEVEL FEATURES FOR LANGUAGE IDENTIFICATION

Each sound unit corresponds to a particular articulatory configuration of the vocal
tract. For different languages, the articulatory configuration corresponding to even
same sound units may slightly vary due to the difference in pronunciation and effects of
coarticulation. This acoustic-phonetic variations among languages can be represented
using short-time spectral features. Due to the nonstationary nature of speech pro-
duction mechanism, the spectral features are extracted over short (typically 20 msec)
quasistationary segments of speech data. The excitation corresponding to sound units
also may be sound-specific and hence may contain language-specific information. We

study the presence of language-specific information in spectral and excitation charac-
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teristics using features derived from short spans (< 20 msec) of speech signal. For
representing these characteristics, features are derived using linear prediction (LP)

analysis [37].

4.2.1 Weighted Linear Prediction Cepstral Coefficients

Speech is produced as a result of excitation of time-varying vocal tract system with
time-varying excitation. The information corresponding to the vocal tract system and
the excitation source may be separated approximately from the speech signal using
LP analysis [37]. In the LP analysis each sample is predicted as a linear combination
of the past p samples, where p is the order of the prediction. The predicted sample of
5(n) is given by

§(n) = — Z ags(n — k). (4.1)

In Eqn.(4.1), {ax} are termed as LP coefficients, and they are obtained by minimizing
the squared error between the actual and predicted samples. This leads to solving a

set of normal equations given by

ZakR(n—k) =—R(n), n=12,...,p (4.2)
N—(p—1)
Rk)= Y s(n)s(n—k), k=1,2...,p (4.3)

The cepstral coefficients may be derived from the LPCs using the following relations

[42]:

c = Ino? (4.4)
n—1 ]{3
= — <n<
Cn ay + Z <n>ckan_k, 1<n<p (4.5)
k=1
n—1 k
Cp, = — | Crlp_g, N >p (4.6)
n
k=1

where o2 is the gain term in the LP analysis. The weighted linear prediction cep-

stral coefficients (WLPCC) are used for representing the spectral features for language

ol



identification tasks.The algorithm used for the extraction of WLPCCs is described in

Appendix B.

4.2.2 LP Residual

It is known that the excitation signals of speech are unique for each sound unit and
hence it may contain language specific information. However, this information is usu-
ally ignored in most of the applications like language identification. The prediction

error referred as the LP residual is given by
r(n) = s(n) — §(n). (4.7)

The residual signal obtained after removing the short-time spectral features, contains
significant amount of information about the excitation source [43,44] both at the
micro (1-3 msec), and at the macro level (>100 msec). As shown in Fig. 4.1, at
the macro level, the LP residual contains the intonation and duration information.
The significance of these prosodic characteristics for language identification will be
discussed in Chapter 6. At the microlevel, excitation source characteristics represent

the sequence information present in excitation signal.

Figure 4.2 shows a 25 msec segment of speech, its 10?* order LP spectrum and
corresponding LP residual. The LP spectrum and the residual signal can be viewed as
decomposition of the signal into approximate vocal tract system and excitation source
components. The excitation represented using samples of LP residual may be specific
to a particular sound and hence may contain language-specific characteristics. Since
the second order correlations in the speech signal are already captured by the LP
spectrum, excitation source information is expected to retain the higher (> 2) order
relations among the samples. From Fig. 4.2 (¢), it can be seen that prediction error
is large around the instant of glottal closure. So the LP residual around the region
of glottal closure has higher signal-to-noise ratio (SNR), and thus may contain useful
excitation source characteristics. We use the LP residual corresponding to high SNR

regions to capture the information present in the sequence of excitation.
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Fig. 4.1: (a) A speech signal and its (b) LP residual.

4.2.3 Phase of LP Residual

Intuitively we believe that the phase of the analytic signal derived from the linear
prediction (LP) residual of speech may also contain information about the language.
In this work we show experimentally that language-specific information is present even
in the phase of the LP residual of speech. But, extraction of the phase information
is a difficult task due to phase warping problem. Also the phase of the speech signal
may be degraded due to various factors like background noise and channel effects.
The knowledge of the Hilbert envelope of the LP residual is used to derive the phase
information [68, 69].

The phase information can be obtained from the LP residual (r(n)) using the
knowledge of the Hilbert transform (r,(n)), which is a 90° phase-shifted version of

r(n). The Hilbert envelope of the LP residual is computed from r(n) and r,(n) as
he(n) = y/72(n) + 12 (n), (4.8)

where 7(n) is the LP residual of the speech signal, and 7, (n) is the Hilbert transform

93



I
)

Amplitude
o

|
Q
()

5
Time (msec)

T T T T T T T (b)

N
o

Amplitude (dB)
N
o o
T 1 T
f

o
a1
o
o

1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

o
[N}
T
s

Amplitude
o
5 ]

I
o
N

O
|

Time (msec)

Fig. 4.2: (a) A segment of voiced speech, its (b) 10" order LP spectrum and (c)
LP residual.

of r(n) where the Hilbert transform is defined as
rn(n) = IDFT[Ry(w)], (4.9)

where
R(w), —nmT<w<0
Ra(w) =4 7 (w) (4.10)
—jR(w), 0<w<T
where IDFT refers to the inverse discrete Fourier transform; R(w) is the discrete
Fourier transform of r(n). Since the Hilbert envelope h.(n) represents the magnitude

information of the LP residual signal, we can obtain the cosine of the phase from r(n)

by dividing it with h.(n). Therefore the phase information (6(n)) is given by
cosf(n) =r(n)/he(n). (4.11)

The phase information extracted from the LP residual signal is represented through

cosf(n), and it is used to represent the language-specific information [69].
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Fig. 4.3: (a) A segment of voiced speech and its (b) LP residual, (c) Hilbert
envelope of the LP residual and (d) cosf(n) derived from the LP residual.

A segment of voiced speech, the corresponding LP residual, the Hilbert envelope of
the LP residual and the cosf(n) of the LP residual are shown in Fig. 4.3. Since the LP
residual and the phase of the LP residual do not contain any significant second order
correlations, we conjecture that the language-specific information may be present in
some higher order relations among the samples of the LP residual, and among the

samples of cosf(n) of the LP residual.

4.3 SPECTRAL FEATURES FOR LANGUAGE IDENTIFICATION

The spectral similarity approach for language identification concentrates on the acoustic-
phonetic variations among languages. This exploits the fact that languages have dif-
ferent phonetic repertoire. The acoustic realization of even the same phoneme may
be slightly different across various languages. Therefore the distribution of short-time
spectral feature vectors in the feature space is considered to be unique for speech of a
given language.

The preprocessing of speech signal for deriving WLPCC is as shown in Fig. 4.4.
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The silence frames are removed using an amplitude threshold. The differenced speech
signal is segmented into frames of 20 msec with a shift of 5 msec, and samples in each
frame is multiplied with Hamming window. An 8" order LP analysis is used to capture
the properties of the signal spectrum [37]. The recursive relation between the predictor
coefficients and cepstral coefficients is used to convert the 8 LP coefficients into 12
cepstral coefficients. The cepstral coefficients for each frame are linearly weighted,

and cepstral mean subtraction is done to reduce the effect of channel variability.

Speech | Silence | | | feature | | CepstralMean | | AANN
| Remova > Diffrencing |—> (E\AX}[%%'S? | Subtraction - M%?grﬁgdbe

Fig. 4.4: Block schematic showing the steps involved in deriving spectral features
for language identification.

The weighted linear prediction cepstral coefficients (WLPCCs) extracted from the
training data of a language are used to train an AANN model. Separate AANN models
are used to capture the distribution of feature vectors of each language. The structure
of the AANN model used in the present studies is 12L 38N 4N 38N 12L, where L
denotes linear units, and N denotes nonlinear units. The activation function of the
nonlinear units is a hyperbolic tangent function. The network is trained using error
backpropagation learning algorithm for 200 epochs [62]. The number of epochs for
training was chosen using cross-validation for verification, to obtain the best perfor-
mance. The learning algorithm adjusts the weights of the network to minimize the
mean squared error obtained for each feature vector. Once the AANN model is trained,
it is used as a model for the language.

The choice of prediction order p is very important from language identification
point of view. Fig. 4.5 compares LP spectra for two different orders of prediction
along with short-time DFT spectra. It is clear that lower order (say p=8) LP spec-
trum captures the gross features of the envelope of speech spectrum. Due to the

absence of higher formants, speaker information may be lost in such a representation,
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Fig. 4.5: Comparison of linear prediction analysis with different order of prediction.
(a) A voiced region of speech. (b) Short-time DFT spectrum and LP log-spectrum
for p=8. (c) Short-time spectrum and LP log-spectrum for p=14.

but linguistic information may be preserved. In contrast, a higher order (p=14) LP
analysis captures both the gross and finer details of the envelope of the spectrum, thus
preserving both linguistic and speaker-specific information. Hence for implementing a
speaker independent LID system, lower order analysis is preferable. An 8 order LP

analysis is used to capture the properties of the signal spectrum.

4.3.1 Performance Evaluation on Indian Language Database

The database used in this study consists of speech segments excised from continu-
ous speech in broadcast TV news bulletins for Indian languages. It contains four
different languages, namely, Hindi, Kannada, Tamil and Telugu. Training data for
each language are obtained by concatenating speech data of different male and female
speakers to make the model speaker-independent. For each language, speech data of
duration 200 sec is used for training. Forty test utterances in each language are used

for evaluating the performance.
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The block diagram of the LID system used for this experimental study is shown
in Fig. 4.6. The LID system consists of one AANN model per language. For identifi-
cation, features extracted from the test utterance are given as input to all the AANN
models. The output of each of the model is computed with its input to calculate the
squared error for each frame and it is transformed into confidence value. A given test
utterance is passed through each of the language models and average confidence value
is obtained [40]. The model which gives the highest confidence value is hypothesized

as the language of the test utterance.

AANN Language
Models

. Evidence for Hindi
Hindi

y

Evidence for Kannada
p- Kannada

Speech Hypothesised

Feature

Decision Logi

Utterance | Extraction Language

YYVY

. Evidence for Tamil
- Tamil

»|  Teugu Evidence for Telugu

Fig. 4.6: Block diagram of the LID system used for Indian language database.

The performance of the AANN based LID system for varying test duration is given
in Table 4.1. Tt is seen that the LID system gives better performance when the duration
of the test utterance is of 10 sec duration. But even for test utterances of 5 sec and
1 sec duration, identification accuracy is reasonably good. This experimental study
shows that the duration of speech required for training and testing is less for frame
level features, compared to larger span features. The lower performance for Tamil

and Kannada may be due to the large number of speakers present in the database,
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Table 4.1: Performance of AANN based LID system for four languages. The
entries from columns 2 to 4 represent the percentage of language identification.

Test duration
Language
10 sec | 5 sec | 1 sec
Hindi 100 100 95
Kannada 80 775 | 57.5
Tamil 77.5 75 60
Telugu 95 95 75

indicating that the framework used for this database may not be sufficient to capture

the variability of large number of speakers within a language.

4.3.2 OGI Database - Issue of Speaker and Channel Variability

The Oregon Graduate Institute (OGI) multi-language telephone-based speech (MLTS)
corpus consists of telephone speech from 11 languages. This data was collected by
Yeshwant Muthusamy for his PhD research, included 90 telephone calls each in 10
languages [70]. The languages are: English, Farsi, French, German, Japanese, Korean,
Mandarin, Spanish, Tamil and Vietnamese. This corpus was used by the National
Institute of Standards and Technology (NIST) for evaluation of automatic language
identification in 1996. Later the corpus was extended with additional recordings for
each of the ten above, and 200 Hindi calls were added, making a total of 11 languages.

For collecting the data, each caller was asked a series of questions designed to

elicit:
(a) Fixed vocabulary speech

(b) Domain-specific vocabulary speech

(c) Unrestricted vocabulary speech

The unrestricted vocabulary speech was obtained by asking callers to speak on any
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Table 4.2: Comparison of OGI MLTS database and the Indian language database
used in LID studies.

Sl. Property OGI MLTS Indian language
no. database database
No. of languages 11 4
2. No. of speakers/language | Average of 90 Average of 10
3. Type of speech Casual Well articulated
conversation read speech
4. Environment of recording | Realistic Studio quality
Noise Background noise | No background noise
Channel characteristics Different Similar

topic of their choice. Table 4.2 shows the comparison of OGI database and the Indian

language database used in LID studies.

While working with the OGI database, the framework which worked well for In-
dian language database with limited number of speakers was found ineffective. It was
observed that one AANN model per language is not sufficient to capture the variability
due to large number of speakers and channels for the same language. Considering the
influence of speaker characteristics on spectral features, it is necessary to reduce the ef-
fect of this variability. To address this issue we propose multiple models corresponding

to different speakers for a single language.

4.3.3 Proposed Method for Handling Speaker and Channel Variability

As in the case of OGI database, when the number of speakers is large and the variability
among speakers is high, it is difficult for a single AANN model to capture all the
variability of a language. Since each call is collected over a unique telephone circuit,
channel characteristics also vary. Considering the influence of speaker and channel

characteristics on spectral features, it is necessary to capture this variability within a
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Fig. 4.7: Framework of the proposed LID system using frame level spectral
features for OGIl database.

language. This is done by building speaker-specific AANN models for each language.
Training file for each speaker is used to build a separate AANN model, and these
models are grouped according to the language as shown in Fig. 4.7. For identification,
the spectral features derived from a test utterance are applied to all the models, and
average scores are computed. Majority of the models in the genuine language are
likely to give high scores, though a few models may give low scores due to poor match
in speaker and channel characteristics. The other languages may have some models
giving high scores due to similar speaker and channel characteristics, but it is unlikely

to give large number of high scores.
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Table 4.3: Performance of AANN based LID system using various scoring strate-
gies for a six language subset of OGl database. Entries in columns 2 to 5 represent
the identification accuracy in percentage for various scoring strategies.

Identification accuracy (in %)

A
Language | Average | Maximum verage-+ 20-best

Maximum
English 95 15 95 95
French 100 45 70 90
Hindi 37 21 42 58
Japanese 12 41 30 41
Korean 6.25 20 50 44
Mandarin 16.7 25 42 17

To illustrate the effectiveness of the proposed method, initially we have chosen
a subset of 6 languages from OGI database. The unrestricted vocabulary speech of
each speaker with average duration of 45 sec alone was used for training as well as
testing in this study. For all languages, 40 speech files corresponding to 40 different
speakers were used for training. An average of 20 speech files from different speakers
were tested using the proposed LID system. The training and testing speaker sets
were different. Various scoring strategies, namely average (average of all the 40 model
scores), maximum (maximum among the 40 model scores), average+maximum (sum
of average and maximum scores) and N-best score (average of N-best scores), were
experimented for identifying the language of the test utterance. The results are given

in Table 4.3.

Best results are obtained through the N-best scoring. In N-best scoring, we con-
sider the average of 20-best scores among the 40 model scores to compute the effective
score of a particular language. This approach resulted in an overall identification ac-
curacy of 61.5%. The effect of LP order on the identification accuracy in this study

is shown in Fig. 4.8. The best results are obtained for an LP order of 10. Similar
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Fig. 4.8: Performance of frame level spectral-based LID system for varying LP

order (using N-best scoring, evaluated on six language subset of OGI database)

study for all eleven languages in the OGI database resulted in an overall identification

accuracy of 40%.

4.4 RESIDUAL FEATURES FOR LANGUAGE IDENTIFICATION

For developing models based on source features, our hypothesis is that the characteris-
tics of a language may be present in the higher (>2) order relations among the samples
of the speech data. Extraction and representation of these relations may be difficult
due to nonlinear nature of the relations among the samples in the residual, although
these can be perceived by the human listener. Nonlinear models may be required to
extract features for language identification task from the residual. The AANN models
may provide better choice compared to linear parametric models. When an AANN is
presented with raw data such as samples of speech or LP residual, the explanation of
the behavior of AANN is different from distribution capturing. This is because adja-
cent frames in the residual signal are not feature vectors. The frames of the residual

may have similar features reflected in some higher order relations among samples of
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the residual signal. Speech signal contains both the second order and higher order re-
lations among samples. If the signal is directly given to the network, then, the system
features may dominate the training of the network. If the second order relations are
removed using the LP analysis, then the network is expected to capture the implicit

higher order relations in the LP residual signal.

LP residual of the speech signal with sampling frequency of 8 kHz is computed
using 12" order LP analysis to remove the second relations among the samples. Frames
of 40 samples of the LP residual are used as input to the AANN. Successive blocks
are formed with one sample shift. Each block of 40 samples is normalized to unit
magnitude before applying as input to the network. The structure of the AANN
model used for source features is J0L 48N 12N 48N 40L. One model per language is
created by training each network for 200 epochs using backpropagation algorithm. For
testing, block of 40 samples normalized to unit magnitude is given as input to each

AANN model. The confidence value is calculated as in the previous case.

The LP residual obtained after removal of the spectral features is shown in Fig.
4.3(b). It contains information about the strength and sequence of excitation. The
model trained using the LP residual will be dominated by the strength of excitation.
This strength of excitation is removed in the residual phase as shown in Fig. 4.3(d),
and hence the model built using residual phase as input can capture the sequence
information present in samples. Blocks of 40 samples of cosf(n) values are given as
input to train the AANN model. One model is trained for each language. Results
of the experimental study given in Table 4.4 shows better performance for phase of
the LP residual compared to LP residual. This is may be due to the absence of more

speaker-specific strength excitation in phase of the LP residual.
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Table 4.4: Performance of language identification system for four languages. The
entries from columns 2 to 5 represent the percentage of identification accuracy for
the spectral, source, phase and combined systems, respectively.

Identification accuracy (in %)

Language || Spectral | Source ‘ Phase ‘ Combined

Hindi 100 65 90 100
Kannada 80 52.5 52.5 87.5
Tamil 77.5 77.5 75 80

Telugu 95 72.5 100 100

4.5 COMBINING EVIDENCE FROM SPECTRAL AND RESIDUAL
FEATURES

To make use of the complementary information present in spectral and residual fea-
tures, the evidence may combined. In the training phase, three AANN models per
language are created, based on spectral (WLPCC), source (LP residual) and phase
(phase of LP residual) features. While testing, spectral, source and phase features
extracted from the test utterance are given to the corresponding AANN models as
shown in Fig. 4.9. The average confidence value is computed for the given test utter-
ance. The scores of the spectral, source and phase models of each language are added
to get the combined evidence. The language of the model which gives the highest
evidence is hypothesized as the language of the test utterance. The performance of
different features and their combination for 10 sec test utterances is given in Table
4.4. The performance is better when the scores of all the three models are combined

by addition.
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Fig. 4.9: Block diagram of LID system based on spectral, source and phase
features.

4.6 SUMMARY AND CONCLUSIONS

In this chapter, we have explored various features derived from short frames of the
speech signal for the purpose of language identification. To model the language, dis-
tribution of spectral features represented by WLPCCs were captured using AANN
models. In order to capture the speaker and channel variability, use of multiple mod-
els for single language is suggested. Additional features explored in this study are

excitation source characteristics represented by the LP residual and the phase of LP

residual.

A detailed review of approaches to LID reveals that improved performance of
majority of the LID systems are due to their use of higher level linguistic information.

This is achieved by using large corpora of transcribed training speech which may not
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be available in all languages required by a specific application. In this chapter, we have
shown that it is possible to implement an LID system with reasonable performance,
which requires only speech samples. By examining the various frame level features for

LID, the following observations are made:

(a) Difference among languages are not obvious at the frame level. But difference
in phoneme/syllable realizations and vocabulary are reflected in the frame level

features.

(b) Frame level features are derived from short frames (< 20msec) of speech, and

therefore duration of speech required for training as well as testing is less.

(d) When speaker variability is more, one model per language is not enough to
capture all the variability in a language. Multiple speaker models and N-best

scoring help to reduce the effect of speaker variability.

Features represented at the frame level do not reflect the sound variations directly.
The acoustic features represented at the level of phonemes/syllables, may help to
capture the variation in realizations in a better way. In the next chapter, we study
the syllable level spectral features, derived directly from the speech signal for language

identification.
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CHAPTER 5

SYLLABIC FEATURES FOR LANGUAGE
IDENTIFICATION

5.1 INTRODUCTION

In the previous chapter, frame level features were explored for language identification.
Features at frame level corresponds to smaller span of speech, and hence do not directly
represent variations of sound units among languages. To represent variations of sound
units, features need to be derived from larger spans of speech signal corresponding
to these units. In this chapter, an approach is proposed for using variations in the
realization of syllables among languages, for the purpose of language identification
(LID). To extract and model the syllable level features, the following issues need to be

addressed:
(a) Identifying the regions corresponding to syllables automatically from continuous
speech

(b) Deriving fixed dimensional representation from varying length pattern of sylla-

bles
(c) Speaker variability within each language
(d) Limited syllable samples for training and testing

In the remaining part of the chapter, we will discuss these issues, and propose methods

for addressing them.

This chapter is organized as follows: Section 5.2 discusses the choice of consonant-
vowel (CV) units for syllable-based language identification studies. Section 5.3 de-

scribes how the CV units can be located in continuous speech using the knowledge of
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vowel onset points (VOP). This section also describes the representation of the CV
units. Section 5.4 discusses the need for reducing the effect of speaker and channel
variability, and also outlines the framework of the proposed LID system. The results
of language identification experiments using CV-based features are also discussed in

this section. Section 5.5 gives a summary of this study.

5.2 CHOICE OF CONSONANT-VOWEL AS BASIC UNIT

Each language has a finite set of phonemes and syllables. Since the vocal appara-
tus used in the production of languages is universal, there is a significant overlap in
these sets. There may be differences in the realization of the same unit in different
languages. We hypothesize that the acoustic realization of the same syllable may
differ among languages due to the difference in pronunciation and vocabulary. Since
each sound corresponds to a unique articulatory configuration of the vocal tract, it is
possible to represent these acoustic-phonetic variations with the help of spectral fea-
tures. Syllables are chosen as the basic unit for representing this variations as they are
context-dependent units. Syllables typically include multiple phonemes, and therefore

may capture some significant co-articulation effects, that may be language-specific.

To make use of the syllable level differences among languages, ideally we should
have separate models for all the syllables in a language, and these models should
be speaker independent. In order to train such syllable models, sufficient number of
occurrences of each of the syllable from different speakers should be available. This
may require several hours of manually labeled speech data, which may not be available
in practice. In this study, we use an alternative approach for LID, using the variations

at the syllable level.

Syllables in general can be of the form C™V C"™, m,n > 0, indicating that a syllable
invariably contains a vowel (V) unit with zero or more consonants (C) preceding and/or

succeeding the vowel. The possible syllable structures includes CCV, CV, V, CVC,
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CcvVCee, Ve, VCC etc. A study conducted on an Indian language database [71]
revealed that a major proportion of the syllables were of CV types. A cross-lingual
study found that CVs are the most common type of syllable in the world languages
[72]. The articulatory movements for the vowel in CV starts at the same time as
the movements for the initial consonant [73]. The characteristics of the consonant
part is influenced by the succeeding vowel, and therefore CV units capture significant

coarticulation effects.
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Fig. 5.1: VOP as an anchor point for automatic spotting of CV units in continuous speech.

In CV-based language identification, the first step is to identify CV regions directly
from speech signal. The patterns of CV units consist of three main regions, region
before the onset of vowel, the region of transition and the region of vowel as shown in
Fig. 5.1. Studies have demonstrated that a CV type of syllable can be represented
using features corresponding to a fixed region around an important event called vowel

onset point (VOP) [74-76]. Now we discuss a method for identifying the regions
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corresponding to CV units from continuous speech.

5.3 EXTRACTING CV UNITS FROM CONTINUOUS SPEECH

In implicit LID, transcribed corpora will not be available, and hence it is important
to select tokens from speech signal automatically. It is difficult to have a language-
independent algorithm for segmentation of continuous speech. On the other hand,
if certain events of significance for each unit can be identified and detected, feature
extraction can be anchored around such events. Vowel onset point is one such event

helpful for locating the CV patterns automatically from continuous speech.

5.3.1 Acoustic Cue for Detection of Vowel Onset Point

Vowel onset points are the instants at which the consonant part ends and the vowel
part starts in a CV type of syllable. It is an important event in speech production,
which may be described in terms of changes in the vocal tract system and excitation
source characteristics [75]. Fig. 5.2 shows one such acoustic cue, which enables the
detection of VOP from continuous speech. It shows the speech waveform corresponding
to a syllable, the LP residual and Hilbert envelope of the LP residual. As shown in
Fig. 5.2(c), Hilbert envelope of the LP residual represents the strength of excitation.
The strength of excitation shows a significant change at the transition from consonant
to vowel, and hence can be used as an acoustic cue for detecting the VOP event. The
strength of excitation for voiced sound is generally higher compared to that of unvoiced
sound. In particular, the strength of excitation for vowels is higher compared to the
strength of voiced consonants. Therefore the places with significant change in strength

of excitation gives the evidence for the detection of VOPs.

5.3.2 Residual Based Approach for Locating VOP

In this study, a technique based on the excitation source information is used for auto-

matically locating VOPs from continuous speech [77]. This VOP evidence is obtained
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Fig. 5.2: (a) Speech waveform for a syllable with manual marked VOP, (b) LP residual
and (c) Hilbert envelope of LP residual.

from the Hilbert envelope of the LP residual, by convolving it with the impulse re-
sponse of a Gabor filter. A Gabor filter with spatial spread o = 100, angular frequency
of the sinusoidal component w = 0.0114 and filter length n = 800 is used. The Gabor
filter is shown in Fig. 5.3. The peaks in the VOP evidence plot are located using a
peak picking algorithm. A few spurious peaks can be eliminated as shown in Fig. 5.4,
using the fact that there exist a negative region in VOP evidence plot between two

true successive VOPs due to the presence of vowel.

The steps for the detection of VOPs in speech signal is summarized in Table 5.1.
Once the VOPs are detected automatically from continuous speech, the next step is

to extract features for representing the CV units.
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Fig. 5.3: A Gabor filter with 0 = 100, w = 0.0114 and n = 800.

Table 5.1: Steps for detection of VOPs.

Preemphasize input speech.

Compute LP residual using 10" order LP analysis.
Compute Hilbert envelope of the LP residual.

Obtain the VOP evidence plot from the Hilbert envelope
by convolving it with the Gabor filter.

Identify peaks in the VOP evidence plot.

Eliminate the spurious peaks based on the following conditions.

Ll

For two consecutive peaks, eliminate the first peak if there is
- no negative region in the VOP evidence plot

- distance of separation less than 50 msec

7. Hypothesize the remaining peaks as the VOPs.

5.3.3 Representation of CV Units

The important characteristics of a CV utterance lie in the region around the VOP.
It was shown that a region of fixed duration around VOP, typically 25 msec to the
left and 40 msec to the right of VOP, is sufficient to represent the characteristics of a
CV unit [76]. For feature extraction, 10 overlapping frames around the VOP, with 20
msec frame size and 5 msec frame shift is considered. Feature vector corresponding
to each frame consists of 13 Mel-frequency cepstral coefficients (MFCC), 13 delta

and 13 acceleration coefficients leading to a dimension of 39. Such feature vectors

73



2 ]

1 (0

400 F : : : : =
M *
: (©

(e)

0.5 1 1.5 2
Time(s)

Fig. 5.4: (a) Speech waveform with manual marked VOPs, (b) Hilbert envelope
of LP residual, (c) VOP evidence plot, (d) Output of peak picking algorithm and
(e) Hypothesized VOP after eliminating few spurious peaks.

corresponding to 10 consecutive frames constitute 390 dimensional feature vector to
represent a CV utterance. The algorithm used for deriving MFCCs is described in
Appendix C. In this approach, all syllables are treated as CV type, and if they are
of other type, only the CV part is processed for feature extraction. This enables us
to have a fixed pattern representation irrespective of varying duration. In the next
section, we discuss the modeling of CV-based features to capture the characteristics

of a language.
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5.4 MODELING FEATURES OF CV UNITS FOR LANGUAGE
IDENTIFICATION

The spectral features derived from a CV unit contain characteristics of the unit,
speaker, language, environment and channel. To enhance the language-specific part
in the spectral features, the effect due to other factors should be reduced. One way
is to train separate models with features derived from several occurrences of similar
CV units corresponding to different speakers and channels. But this require several
hours of speech for training. Unfortunately most of the time, as in the case of OGI
database, there may not be sufficient number of occurrences of the same unit in a
limited training data to capture the variability. To deal with the issues of limited data
and speaker variability, we propose multiple speaker-specific AANN models as shown
in Fig. 5.5, which is similar to the framework used for frame level spectral features.
While testing, suitable scoring techniques are used to reduce the influence of speaker

and channel characteristics, thereby enhancing the evidence of the language.

The CV based features derived from each training speech (corresponding to a
unique speaker) is used to train a separate AANN model. These multiple speaker-
specific models in each language help to capture the speaker variabilities within a
language. During identification, each language is scored using the framework shown in
Fig. 5.5. The CV based features derived from test utterance are tested against all the
models which are grouped in terms of languages. Due to limited duration of speech
available for training, models get trained only for those CV units present in the training
speech. Therefore, instead of considering the average score of a model for the entire
test utterance as in case of frame level features, each CV unit in the test utterance
is scored separately. The output of each model for each feature vector is computed,
and the squared error is calculated. The error is transformed to a confidence value,
which indicate the similarity in terms of identity of unit, speaker, language and channel
characteristics. Considering the scores of all the models in a language for calculating

effective score may not be a good idea, as the models are trained only for those units
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Fig. 5.5: Framework of the proposed CV based LID system.

present in training speech. Considering more than one model score may help to reduce
the effect of speaker variability. Therefore for each CV unit in the test utterance, the
N-best model scores are used for computing the effective score. The effective scores

for all the CV units in the test utterance are added resulting in a high score for the

genuine language.

5.4.1 Performance Evaluation on OGI Database

As described in Section 5.3, VOPs are detected first, and the MFCC features are ex-
tracted from the CV regions anchored around the VOPs in speech. To capture the

76



distribution of 390-dimensional CV based feature vectors, AANN models with struc-
ture 390L 580N 40N 580N 390L are used, where L and N represent the neuron with
linear and nonlinear activation functions, respectively. Separate models are trained for
40 different speakers in each language. The top five scores among the 40 model scores
in each language group is considered for each CV unit in the test utterance. Scores for
all the CV units present in the test utterance are accumulated and the language with

the highest score is hypothesized as the language of the test utterance.

Table 5.2: Performance of CV based LID system for eleven languages in OGI
database.The entries from columns 2 to 4 represent the identification accuracy (in
%) considering cases where model of genuine language secured (i) first rank (k=1)
(ii) first or second rank (k=2) (iii) first, second or third rank (k=3), respectively.

Language || k-best performance
k=1 | k=2| k=3
En 90 90 95
Fa 65 85 90
Fr 70 80 90
Ge 50 75 92
Hi 47 65 82
Ja 82 94 94
Ko 75 81 88
Ma 24 47 59
Sp 47 88 88
Ta 60 80 80
Vi 38 63 69

The performance of the CV based LID system considering all the eleven languages
in OGI database, namely, English (En), Farsi (Fa), French (Fr), German (Ge), Hindi
(Hi), Japanese (Ja), Korean (Ko), Mandarin (Ma), Spanish (Sp), Tamil (Ta) and
Vietnamese (Vi), are given in Table 5.2. Identification accuracy is good in the case
of English, French, Japanese and Korean. Poor performance for Mandarin and Viet-

namese may be due to the lesser syllable examples and variability in channel char-
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acteristics. The overall identification accuracy for 1-best, 2-best and 3-best cases are
59%, 77% and 84%, respectively. The improvement in identification accuracy while
considering 2-best and 3-best cases indicate scope for further enhancement. The use

of complementary features may be helpful to improve the performance.

5.5 SUMMARY AND CONCLUSIONS

The effectiveness of CV based features for LID was demonstrated in this study. The
LID system described here utilizes the language-specific variations of most frequently
occurring CV type syllables. Regions corresponding to CV units were automatically
identified with the help of VOPs, eliminating the need for any transcribed corpora.
Since CVs are the most frequently occurring units in most of the languages, the system
is expected to work well for short durations of training as well as test speech. The
system addresses the issue of speaker variability by building speaker and language-
specific AANN models. By considering top N scores while testing, the influence of
speaker variability is reduced. The proposed system does not use any prior language-
specific knowledge, therefore it is easy to introduce a new language into the system. By
examining the CV based features for language identification, the following observations

are made:

(a) Spectral features corresponding to CV units are useful for representing their

variations, and it is effective for LID.

(b) Syllables being context-dependent units, syllable level features are more effective
for language identification compared to the frame level features explored in the

previous chapter.

(c) Multiple speaker dependent models and suitable scoring technique help to ad-

dress the issues of speaker variability and limited amount of training data.

(d) The increase in performance while considering the 2-best, and 3-best cases sug-

gest the use of other features, for further resolving the top ranked languages.
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The prosodic features, being an additional source of information, may provide
some complementary evidence to spectral-based LID system. In the next chapter, we
discuss the use of prosodic and phonotactic features represented at multisyllabic level,

for language identification.
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CHAPTER 6

MULTISYLLABIC FEATURES FOR LANGUAGE
IDENTIFICATION

6.1 INTRODUCTION

The studies in Chapters 4 and 5 have been on the use of features represented at frame
level and syllable level for identifying language. In Chapter 4, spectral and residual
features were explored to find the possible presence of language-specific characteristics.
In Chapter 5, the acoustic variations in the realization of syllables, represented using
spectral features, were used for language identification. In this chapter, we examine
the usefulness of phonotactic and prosodic features represented at multisyllabic level
for language identification (LID).

Human beings apply some constraints on the sequence of sound units while pro-
ducing speech. These are characteristics that lend naturalness to speech. Therefore
speech can not be merely characterized as a sequence of sound units. The variation of
the pitch provides some melodic properties to speech, and this controlled modulation
of pitch is referred as intonation. The duration of sound units are varied (shortened or
lengthened) in accordance to some underlying pattern, giving some rhythm to speech.
Some syllables or words are made more prominent than others, resulting in stress.
The information gleaned from the melody, timing and stress in speech increases the
intelligibility of spoken message, enabling the listener to segment continuous speech
into phrases and words with ease [78]. These properties are also capable of conveying
many more lexical and nonlexical information such as lexical tone, accent and emotion.
The characteristics that make us perceive these effects are collectively referred to as

prosody.
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Much of the LID research so far has placed its emphasis on spectral information,
mainly using the acoustic features of sound units (referred as acoustic phonetics),
and their alignment (referred as phonotactics). Such systems may perform well in
similar acoustic conditions [4,15]. But their performance degrade due to noise and
channel mismatch. Prosodic features derived from pitch contour, amplitude contour
and duration are relatively less affected by channel variations and noise. Though the
systems based on spectral features outperform the prosody-based LID systems, their

combined performance may provide the needed robustness.

This chapter is organized as follows: In Section 6.2, details of some perceptual
experiments are described to illustrate the importance of prosody and phonotactics.
Section 6.3 and Section 6.4 describe the phonotactic and the prosodic differences among
languages, respectively. In Section 6.5, a study on three Indian languages regarding
the possible use of phonotactics and prosody for LID is discussed. In Section 6.6, we
propose an approach for deriving prosodic features directly from the speech signal.
Section 6.7 describes the language-prosodic features derived using the proposed ap-
proach. The experimental study conducted on OGI multi-language telephone-based
speech (MLTS) corpus to demonstrate the effectiveness of the derived prosodic fea-
tures are discussed in Section 6.8. Final section gives a summary of the study on

multisyllabic features for language identification.

6.2 HUMAN LANGUAGE IDENTIFICATION - DETAILS OF PER-
CEPTION EXPERIMENTS

Prosody has a great deal to offer for effective human language identification. Many hu-
man perception studies have demonstrated that language identification is possible even
when segmental /spectral information is reduced or degenerated. The results of exper-
iments on human language identification confirm that prosodic information are used
for language identification when the intelligibility of sound units are less. Perception

studies were conducted using signal obtained after spectral envelope removal (SER)
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[8,79]. In SER signal, the spectral envelope is removed using inverse filtering. Human
beings could still identify languages fairly successfully from SER signals, indicating

the capability of humans to identify languages using nonspectral information.

Ramus and Mehler [7] examined the ability of native French speakers to dis-
criminate between English and Japanese-like stimuli, where the stimuli were con-
structed by resynthesizing original utterances with all consonants and vowels replaced
by archetypes. The resulting stimuli were designed to preserve (1) intonation (all seg-
ments replaced by /a/, original pitch contour preserved), (2) rhythm (all consonants
by /s/ and all vowels by /a/, flat intonation contour), (3) both rhythm and intonation
(all consonants by /s/ and all vowels by /a/, original pitch contour preserved) and
(4) rhythm, intonation and broad phonotactics (by replacing all fricatives with /s/,
all stop consonants with /t/, all liquids with /1/, all nasals with /n/, all glides with
/j/, and all vowels with /a/). They found good discrimination in all cases except (1),
which has an interesting implication that suprasegmental cues are sufficient to dis-
criminate these languages. The differences among languages in terms of phonotactics

and prosody are discussed in the next two sections.

6.3 PHONOTACTIC DIFFERENCES AMONG LANGUAGES

Phonotactics deals with restrictions in a language on the permissible combinations of
phonemes. It defines the permissible syllable structure, consonant clusters and vowel
sequences by means of phonotactic constraints. Each language has its own rules on
forming sequences, based on the permissible sound sequences in the spoken language.
Certain phoneme/syllable clusters which are very common in a particular language
may not be legal in some other language [80]. For example, in Japanese, consonant
clusters like /st/ are not allowed, but they are common in English. In Japanese, a
liquid (/r/) can never follow a stop consonant (/p/, /b/, /k/), unlike in English or
French. It is safe to say that no two languages in the world have exactly the same rules

about this. Many languages, such as Japanese, never put more than one consonant

82



before a vowel. On the other end, there are many languages which allow very elaborate
consonant clusters. Consonant clusters can be reliable pointers for identifying language

of a particular text [1].

Among the language-specific features, the phonotactic constraints are shown to be
the most powerful feature for LID [2,15]. LID researchers make use of this property by
recognizing the phonemes using language independent/dependent front-end phoneme
recognizer. These phoneme labels are then used for building separate statistical models
for each of the language to model the phonotactic constraints. Explicit LID systems
such as PRLM, PPLM, and PPR described in Chapter 2 make use of the phonotactics
for identifying language.

6.4 PROSODIC DIFFERENCES AMONG LANGUAGES

The similarities in the prosodic aspects of neutral sentences in different languages are
mostly due to identical constraints of the production and perception apparatus. There
are similarities in the nature and position of pauses, and fundamental frequency (Fj)
variations at sentence/phrase levels. The similarity in Fj variations at sentence/phrase
levels include the tendency of Fy values to fluctuate between two abstract lines, dec-
lination tendency of Fj range, resetting of base line and the tendencies to repeat the
succession of Fj rises and falls [78,81,82]. But in spite of these natural tendencies,
there are some prosodic characteristics that make a particular language different from

others.

Languages can be broadly categorized as stress-timed and syllable-timed, based on
their timing/rhythmic properties. In stress-timed languages like English and German,
duration of the syllables are mainly controlled by the presence of stressed syllables
which may occur at random. In stress-timed languages, roughly constant separation
(in terms of time) is maintained between two stressed syllables. Syllables that occur in
between two stressed syllables are shortened to accommodate this property. In syllable-

timed languages such as French and Spanish, the durations of syllables remain almost
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constant. Languages are also classified as stress-accented and pitch-accented, based on
the realization of prominence. In pitch-accented languages like Japanese, prominence
of a syllable is achieved through pitch variations, whereas in stress-accented language,
pitch variation is only one factor that helps to assign prominence. There is yet another
categorization of languages as tonal and nontonal, based on the tonal properties of a
language. We can identify languages which employ lexical tone such as Mandarin
Chinese or Zulu (tonal languages), those which use lexically based pitch accents like
Swedish or Japanese (pitch accented languages), and stress accented languages such as
English or German [83]. There are many other languages which strictly do not follow
the rules of a class, which means that these classifications are rather a continuum.

Therefore languages may differ in terms of intonation, rhythm and stress.

6.4.1 Intonation

Pitch is a perceptual attribute of sound which can be described as a sensation of
the relative “altitude” of sound. The physical correlate of pitch is the fundamental
frequency (Fy). The direction of Fy change, either rising or falling, is determined by
the phonological patterns of the constituent words, which are language-specific. The
difference in Fj contour between languages is illustrated for the case of two languages,
namely Farsi and Mandarin in Fig. 6.1. It can be observed that in general Mandarin
has large variations in Fj values compared to Farsi, in spite of the variations in speaker

characteristics.

In this study, our goal is to represent these pitch contour with suitable features to
bring out the language-specific information present in it. It has been observed that
certain Fj events, such as Fj peaks and valleys, maintain a relatively stable alignment
with the onset or offset of a syllable. In English, Greek and Dutch, it is found to occur
quite regularly at the onset of the accented syllable. In Mandarin, peaks of F are
found to be consistently aligned with the offset of the tone-bearing syllable in certain

situations [84].
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Fig. 6.1: Variation in dynamics of Fj contour for utterances in Farsi and Mandarin,
spoken by three male speakers each. (a), (b) and (c) correspond to Farsi (d), (e)
and (f) correspond to Mandarin utterances (taken from OGI MLTS database).

6.4.2 Rhythm

Rhythmic properties of speech are felt when speech in different languages are con-
trasted. The ability to distinguish languages based on rhythm has been documented
in infants as well as in adults [7]. According to the frame/content theory of speech
production [85], all spoken utterances are superimposed on successive syllables which
constitute a “continual rhythmic alternation between an open and a closed mouth (a
frame) on the production process”. In [86], a consonant-vowel (CV) type of syllable
is characterized as the basic rhythmic unit, beginning with a tight constriction and
ending with an open vocal tract, resulting in a kind of rhythm. Two (correlated)
variables defined over an utterance, namely the proportion of vocalic intervals and the

standard deviation of the duration of consonantal intervals, are identified as correlates
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of linguistic rhythm [87]. Both these measures will be directly influenced by segmental

inventory and the phonotactic regularities of a specific language.

6.4.3 Stress

In all languages, some syllables are in some sense perceptually stronger than other
syllables, and they are described as stressed syllables. The way stress manifests itself
in the speech stream is highly language-dependent. The difference between strong and
weak syllables is of some linguistic importance in every language. However, languages
differ in the linguistic function of such differences. It is necessary to consider what
factors make a syllable count as stressed. It seems likely that stressed syllables are
produced with greater effort than unstressed. This effort is manifested in the air
pressure generated in the lungs for producing the syllable, and also in the articulatory
movements in the vocal tract. A stressed syllable can produce the following audible

changes:

(a) Pitch prominence, in which the stressed syllable stand out from its context.

Often a pitch glide such as a fall or rise is used for pitch prominence.

(b) Stressed syllable tend to be longer. The length of the vowel in stressed syllable
is longer than that of unstressed syllable. This syllable lengthening effect is

noticeable in languages like English, and it is less in certain other languages.

(c) Stressed syllable is powerful, intensive and loud in pronunciation than un-

stressed.

In most of the languages, higher intensity, larger pitch variation and longer dura-
tion help to assign prominence to stressed syllables. But the position of stressed syl-
lable in a word varies from language to language. English is a stress-timed language,
where stressed syllables appear roughly at a constant rate, and unstressed syllables
are shortened to accommodate this. In some languages, stress is always placed on a

given syllable, as in French, where the words are always stressed in the last syllable.
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In English and French, a longer duration syllable carries more pitch movements. But
such a correlation may not hold equally well for all languages. Therefore, it is possible
that, the specific interaction between the suprasegmental features, and relation be-
tween suprasegmental and segmental aspects, are the most salient characteristics that

differentiate languages [67].

6.5 PHONOTACTIC AND PROSODIC FEATURES FOR LID
- A STUDY ON THREE INDIAN LANGUAGES

As preliminary step toward understanding the significance of prosody and phonotac-
tics for language identification, a study was conducted on a database of three Indian
languages. This database is chosen due to the availability of manual segmentation and
syllable level transcription. Features are derived using this segmentation and tran-
scription information. This study is conducted for understanding and verifying the

effectiveness of phonotactic and prosodic features for LID.

6.5.1 Description of Continuous Speech Corpus

Speech corpus consisting of recording of television broadcast news bulletins for three
Indian languages namely, Tamil, Telugu and Hindi are used in this study. It con-
tains 19 Hindi, 20 Telugu and 33 Tamil broadcast news bulletins, where each bulletin
(session) contains 10 to 15 minutes of speech from a single (male or female) speaker.
The bulletins in the corpus are segmented into phrases, each approximately of 3 sec
duration, and labeled manually. This is further parsed into syllables by human experts

using Indian language transliteration (ITRANS) code [88].

6.5.2 Feature Representation

The characteristics explored in this study are the following:

(a) Phonotactics
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(b) Broad phonotactics
(c) Prosody along with phonotactics

(d) Prosody alone

The role of phonotactics for LID is studied using the syllable transcription available
in the database. The identity of each syllable is represented using a unique code. For
syllable coding, each syllable is assumed to have four constituents (consonants and
vowels), and each constituent is given a unique numerical code (ranging from 10 to
69), so that each syllable is represented by a distinct four digit code [89]. Word
boundary is represented by a unique code which indicates the absence of syllable. In
this study, the feature vectors are formed by concatenating the identity code of three

consecutive syllables, for representing the phonotactics.

Studies have shown that phonotactics represented in terms of broad category of
phonemes (such as vowels, nasals, fricatives, semivowels, stop consonants etc.) is ef-
fective for representing the phonotactic differences among languages [6,7]. Syllable
constituents are labeled in terms of eight broad phonetic categories namely vowels,
nasals, semivowels, fricatives, unvoiced unaspirated stop, unvoiced aspirated stop,
voiced unaspirated stop and voiced aspirated stop, using the transcription informa-
tion available in the database. The stop consonants are classified as aspirated and
unaspirated, based on the manner of articulation. The syllable identity is represented
by this broad phonetic labels of the constituents, and the feature vector is obtained

by concatenating the features of three consecutive syllables.

Later phonotactic features are clubbed with some prosodic features to see improve-
ment due to the addition of prosodic knowledge. Rhythmic features of languages are
represented by the structure of syllable and its duration. Syllable structure is rep-
resented by the number of constituents N;, number of constituents before and after
vowel N1, N, respectively [89]. Since it is difficult to compute the durations of syl-

lable constituents (consonants and vowels) separately, duration of the syllable is used
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instead. As rhythm is perceived due to succession of syllables, a syllable in isolation
can not represent the rhythmic characteristics. In this study, it is approximated to a
sequence of three consecutive syllables, and represented by concatenating the features
derived from them. In natural speech, the prosody of a syllable also depends on its
position with respect to the word and phrase [90]. The positional details of the sylla-
ble with reference to the particular phrase and word [89] as used in this study are the
following:

Syllable position in the phrase:

(a) Position from starting of the phrase
(b) Position from ending of the phrase

(c) Total number of syllables in the phrase
Syllable position in the word:

(a) Position from starting of the word
(b) Position from ending of the word

(c) Total number of syllables in the word
The intonation characteristics are represented by the following:

(a) The change AFj of pitch within the syllable
(b) The distance of Fy peak with respect to the onset of syllable
(c) The mean pitch Fj, of the syllable
In order to account for the local variations of pitch, the above measures of the pre-

ceding and following syllable are concatenated for representing intonation. Table 6.1

summarizes various features used in this experimental study.
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Table 6.1: Summary of phonotactic and prosodic features used in the experimental

study on three Indian languages.

Characteristics Variable # Para- | Representation | Dimen-
meters sion
Phonotactics Syllable identity 4 trisyllabic 12
Broad phonotactics || Category of syllable 4 trisyllabic 12
Syllable identity 4 trisyllabic
Phonotactics Syllable structure 3 trisyllabic
and prosody Intonation 3 trisyllabic 39
Duration 1 trisyllabic
Positional 6 monosyllabic
Syllable structure 3 trisyllabic
Intonation 3 trisyllabic
Prosody
Duration 1 trisyllabic 27
Positional 6 monosyllabic

6.5.3 Neural Network Classifiers for Language Identification

Human beings acquire the prosodic and phonotactic knowledge of a language over a
period of time. The process by which this happens can not be explained or formulated
in terms of rules. In this study, we propose the use of multilayer feedforward neural net-
work (MLEFFNN) classifiers for LID, using the phonotactic and prosodic features. The
MLFFENN classifier as shown in Fig. 6.2, is trained using phonotactic and/or prosodic
features derived from training speech of all the three languages. When features derived
from the test utterance are applied at the input of the MLFFNN classifier, its output

indicate evidence of different languages.

6.5.4 Phonotactics

The identity of three consecutive syllables is used to capture the phonotactic regular-

ities of languages. The syllable identity obtained from the transcription information
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Fig. 6.2: Neural network classifier for language identification using phono-
tactic and prosodic features.

Table 6.2: Performance of LID system based on phonotactic features. The

entries from columns 2 to 5 represent the percentage of the identification

accuracy (in %).

Test duration=20 syllables | Test duration=>50 syllables
Language | Rank based ‘ Accumulation | Rank based | Accumulation
Tamil 99 98.5 100 100
Telugu 72.4 85.8 83.8 95.6
Hindi 96.2 98.5 100 100

is uniquely represented using four codes [89]. These feature vectors (normalized to -1

to +1) are used for training the MLFFNN classifier as shown in Fig. 6.2. The output

corresponding to the language of the training speech is set to +1 and other outputs

to -1. The network is trained using backpropagation algorithm. For each language,

approximately 40,000 examples of syllables are used for training the classifier. An aver-

age of 600 test utterances (each having length of 20 syllables), and 250 test utterances

(each having length of 50 syllables) are used for performance evaluation.

The performance of the neural network based classifier using phonotactic features is

given in Table 6.2. When a feature vector (obtained from three consecutive syllables)

derived from the test utterance is applied to the classifier, output of the classifier

indicate evidence of different languages. Methods such as accumulation of evidence and
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majority voting (rank-based) have been used for computing the evidence of languages.
In rank-based method, number of first ranks obtained for each language is counted
for all the feature vectors of the test utterance. The language having maximum first
ranks is decided as the winner. In the second method, evidence (classifier output) are
accumulated for all the feature vectors of the test utterance. The language having
highest accumulated score is hypothesized as the language of the test utterance. In

this study, identification accuracy is better for evidence accumulation.

6.5.5 Broad Phonotactics

The syllable constituents are represented using their broad phonetic category instead
of their exact identity. The categories used in this study are vowels, nasals, semivowels,
fricatives, unvoiced unaspirated stop, unvoiced aspirated stop, voiced unaspirated stop
and voiced aspirated stop. The broad phonotactic features are obtained by coding the
syllables in terms of its broad classification, and it is modeled using the MLFFNN clas-
sifier. The performance of the LID system based on broad phonotactic features is given
in Table 6.3. The good identification accuracy obtained from the broad phonotactic
features suggests that labeling of syllables in terms of broad categories is sufficient
to represent the phonotactic constraints of languages. This will eliminate the need
for proper transcribed speech for training as well as for testing of the neural network.
The broad phoneme categories used for labeling the syllable constituents should be
optimized for languages included in the identification task. The stop consonants are
categorized in terms of manner of articulation, namely aspirated and unaspirated. As
given in Table 6.3, due to the absence of aspirated sounds in Tamil, identification

accuracy is better for Tamil compared to other two languages.

6.5.6 Phonotactics and Prosody

Prosodic features along with phonotactic features are used to train the MLFFNN based

classifier as shown in 6.3. Rhythm is represented by the structure of syllable and its

92



Table 6.3: Performance of LID system on broad phonotactic features. The

entries from columns 2 to 5 represent the identification accuracy (in %).

Test duration=20 syllables | Test duration=50 syllables
Language | Rank based | Accumulation | Rank based | Accumulation

Tamil 99.8 99.25 100 100
Telugu 47.65 82.7 49.86 92.6
Hindi 29.6 88.3 81.71 96.34

duration. Intonation is represented by the average pitch of syllable, range of pitch and
location of maximum pitch. Since the features corresponding to a single syllable alone
are not sufficient for representing the prosodic pattern, sequence of three syllables is
taken as the basic unit. The feature vector is obtained by including features from the

preceding and succeeding syllables along with the features of the present syllable.

For each language, features derived from approximately 25,000 syllables are used
for training the classifier. The results in Table 6.4 show that by including the prosodic
features along with the phonotactic features, the classifier shows an improvement in
performance, even though the training is done with fewer syllable examples. It can be
observed from Table 6.4 that the identification accuracy of Hindi has improved after
the inclusion of prosodic features. Hindi belongs to the Aryan group of languages
where as Tamil and Telugu are Dravidian languages. Therefore prosodic features can

be significant while discriminating languages belong to different classes.

6.5.7 Prosody

In this case, prosodic features alone are used to train a MLFFNN classifier. The
evaluation results in Table 6.5 indicate the potential of prosodic features for language
identification. But in implicit LID systems, it is important to extract features directly
from the speech signal without using manual segmentation and transcription. There-

fore as a next step, a subset of prosodic features obtained without any transcription
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Fig. 6.3: The phonotactic and prosodic features modeled using MLFFNN
classifier for language identification.

information are used for LID, and the results are given in Table 6.6. The encouraging
results of this system motivated us to device an approach for deriving prosodic features

automatically from the speech signal.

6.6 PROSODIC FEATURE EXTRACTION FROM SPEECH SIGNAL

Approaches for extraction of prosodic features can be broadly categorized based on
the use of automatic speech recognizer (ASR) as (1) ASR-based approach and (2)
ASR-free approach. The ASR-based approach uses segment boundaries obtained from
ASR, for extracting the prosodic features [54]. But for applications like language and
speaker recognition, the use of ASR may not be needed. In the second approach,
inflection points and start or end of voicing of pitch are used for segmentation [22].

The pitch contour dynamics is then represented using parameters derived from linear
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Table 6.4: Performance of LID system based on phonotactic and prosody

features. The entries from columns 2 to 5 represent the identification accu-

racy (in %).

Test duration=20 syllables

Test duration=50 syllables

Language | Rank based | Accumulation | Rank based | Accumulation
Tamil 95.15 96.46 99.53 100
Telugu 67 82 90 100
Hindi 99.40 100 100 100

Table 6.5: Performance of LID system based on prosodic features alone.

The entries from columns 2 to 5 represent the identification accuracy (in %).

Test duration=20 syllables

Test duration=50 syllables

Language | Rank based | Accumulation | Rank based ‘ Accumulation
Tamil 91 97.4 99.5 99.5
Telugu 59.8 68.6 70 82
Hindi 91.6 93 98 98.5

Table 6.6: Performance of LID system based on prosodic features derived

without using transcription information available in the database. The entries

from columns 2 to 5 represent the identification accuracy (in %).

Test duration=20 syllables

Test duration=50 syllables

Language | Rank based | Accumulation | Rank based | Accumulation
Tamil 86.6 93 97.5 97
Telugu 41.2 60.6 49.5 74
Hindi 87.8 89.8 95 95
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stylized pitch segments [49,51-53]. This approach has the advantage that prosodic
features can be derived directly from the speech signal. In both the approaches, the
segmented trajectories are quantized and represented using a small set of labels that
describe the dynamics of pitch and energy. The n-grams of these labels are formed to

model the characteristics of a speaker or a language.

In this work, we propose a new technique for extraction and representation of
prosodic features. The proposed method utilizes the location of vowel onset points
(VOP) for identifying the syllable-like regions in continuous speech. This method
combines the salient features of the existing approaches mentioned above, namely, the
association with the syllabic pattern as in the first approach, and the extraction of

features without using ASR as in the second approach.

6.6.1 Choice of Syllable as the Basic Unit

Studies have shown that prosodic characteristics such as tone and stress are strongly
linked to the underlying syllable structure [84]. All spoken utterances can be considered
as sequence of syllables which constitute a continual rhythmic alternation due to the
opening and closing of mouth while speaking [85]. Syllable of CV type provides an
articulatory pattern beginning with a tight restriction, and ending with an open vocal
tract, resulting in a kind of rhythm that is especially suited both to the production
and perception mechanisms [86]. Because syllable has a basic timing structure for
speech sounds, a tone can be aligned only relative to the syllable rather than to any
individual segments in the syllable [84]. It was demonstrated that the tonal events
are aligned to the segmental events such as the onset and/or offset of a syllable [91].
Since syllable by definition invariably consists of a vowel, it will have associated pitch
contour and high energy corresponding to the syllable nucleus. Prosody is linked to
the underlying syllable sequence [84], and it is meaningful to associate the prosodic
pattern to the syllabic sequence. Therefore, syllable appears to be a natural choice for

the basic unit for representing prosody.
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6.6.2 Association of Prosody with Syllable Sequence

For representing syllable-based rhythm, intonation and stress, the speech signal should
be segmented into syllables. Segmenting speech into syllables is typically a language-
specific mechanism, and thus it is difficult to develop a language independent algorithm
for this. In this work, it is accomplished with the knowledge of VOPs as illustrated in
Fig. 6.4, where the VOP refers to the instant at which the onset of vowel takes place
in a syllable. The availability of pitch values helps in further reduction of spurious
VOPs. For example, the absence of voicing between two VOPs numbered as ‘10’ and

‘11’ shown in Fig. 6.4(b), helps to eliminate the spurious peak ‘10’.
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Fig. 6.4: (a) Segmentation of speech into syllable-like units using automatically detected
VOPs. (b) Fj contour associated with VOPs.

To represent the dynamics of Fy contour, it should be segmented in a linguistically
meaningful manner. This is done by segmenting the speech into syllable-like regions.
The association of syllable sequence with Fy contour, as used in this study is shown

in Fig. 6.5. After hypothesizing the locations of VOP, these locations are associated
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with pitch contour for feature extraction. The continuous portion of the F, contour
with nonzero values, located within the region of two consecutive VOPs, is treated as
one segment of Fy contour. A set of parameters derived from Fj contour, intensity

and duration are used for representing each segment.

Frames —
Speech signal , Smoothing of Association of Feature Features
Extraction of F VOPand F, —
F, Contour Contour Extraction
Extraction of

VOP

Fig. 6.5: Association of locations of VOP with F{; contour for prosodic feature
extraction.

6.7 PROSODIC FEATURES FOR LANGUAGE IDENTIFICATION

The term prosody refers to certain properties of speech signal such as audible changes
in pitch, loudness and syllable length. Prosodic events appear to be time-aligned
with syllables or group of syllables [92]. The acoustic manifestation of prosody can
be measured from Fj contour, energy and duration. At the perceptual level, these
acoustic measurement correspond to pitch, energy and length [92]. At the linguistic
level, prosody of an utterance is represented at the level of sequences of syllables.
We hypothesize that prosody is governed by the underlying syllable sequence, and

measurement of prosodic characteristics involve segmentation into syllables. In this
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work, the locations of VOP are used for segmenting speech into syllable-like units. The
locations of VOP are then associated with pitch contour for extracting the prosodic
features. Features corresponding to the syllable-like regions are derived to represent

syllable-based intonation, rhythm, and stress.

6.7.1 Representation of Intonation

Pitch analysis generates Fj curves with finer variations. But the finer variations re-
ferred as microprosody cannot be perceived and have no function in intonation. There-
fore Fy contour obtained using pitch extraction algorithm is smoothed to remove the
finer variations. Since it is unnatural to have an abrupt variation of Fy, a simple

median filtering is sufficient for smoothing the Fy contour as illustrated in Fig. 6.6.

Pitch
N
Q
e}

T
i
Il

P @

o 20 a0 60 80 100 120 140 160 180
b

Pitch

200l . . ) E . 1 ®

o 20 a0 60 80 100 120 140 160 180
b

Fig. 6.6: Median filtering for smoothing the I, contour. (a) Raw Fj contour.
(b) Smoothed Fj contour obtained using 7-point median filtering.

As illustrated in Fig. 6.1, the dynamics of the Fjy contour reflects language-specific
characteristics. Therefore it is important to represent it using suitable parameters.
The Fj contour between two consecutive VOPs (as shown in Fig. 6.7) corresponds
to the Fy movement in a syllable-like region, and it is treated as a segment of Fj
contour. The nature of Fj variations for such a segment may be a rise, a fall, or a rise
followed by a fall in most of the cases. We assume that more complex Fj variations

are unlikely within a segment. To represent the dynamics of the Fj contour segment,
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some parameters are derived.

With reference to Fig. 6.7, tilt parameters [93], namely amplitude tilt (A4;) and

duration tilt (D;) for a segment of F contour are defined as follows:

|Ar| - |Af|
= = 1] (6.1)
' |Ar| + ‘Af‘
and
|D;| — |Dy|
S el Bl a1 (6.2)
"~ |D,[+ |Dy]

where A, and Ay represent the rise and fall in F; amplitude, respectively, with re-
spect to peak value of fundamental frequency Fp,. Similarly D, and Dy represent the
duration taken for rise and fall respectively. It can be observed from Figs. 6.8 (e)
and (f) that the tilt parameters are not sufficient to reflect the swing of the Fj values.
Studies have shown that, speakers can vary the prominence of pitch accents by varying
the height of the fundamental frequency peak, to express different degrees of empha-
sis. Likewise, the listener’s judgment of prominence reflect the role of Fj variation in
relation to variation in prominence [94]. To express the height of the F, peak, the

difference between peak and valley fundamental frequency (AFy = Fy, — Fp,) is used
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in this study. It has been observed that the length of the Fy peak (length of onset)
has a role in the perceptual prominence [94]. In this study, this is represented using

the distance of F peak location with respect to VOP (D,).
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Fig. 6.8: lllustration of Fy contours with various tilt parameters. (a) A; =-1,
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In summary, the intonation features used for this language identification study are

the following:

(a) Change in Fy (AFy)

(b) Distance of Fy peak with respect to VOP (D,)

(c) Amplitude tilt (A¢)

(d) Duration tilt (Dy)
Absolute values of the frame level Fj, are dependent on the physiological constraints,
and hence are more speaker-dependent. Therefore absolute Fy values are not included

in the feature set for language discrimination studies. Positional details of syllables are

not used in this study, as it is difficult to segment conversational speech into phrases.
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6.7.2 Representation of Rhythm

In this work, we hypothesize that rhythm is perceived due to closing and opening of
the vocal tract in the succession of syllables. The proportion of voiced intervals within
each syllable region gives a measure of this transition. Segmenting continuous speech
into syllable-like units enables representation of the rhythmic characteristics. We use
the duration of syllable (D;) (approximated to the distance between successive VOPs)
and the duration of voiced region (D,), to represent rhythm.

As the voicing information obtained from the pitch extraction algorithm is highly
smoothed, we use a technique based on excitation information for voice activity de-
tection [95-97]. As shown in Fig. 6.9, whenever there is a significant excitation of the
vocal tract system, it is indicated by a large amplitude in the Hilbert envelope of the
LP residual. This is clearly evident in the voiced speech, where significant excitation
within a pitch period coincides with the glottal closure (GC) event. The instants of
significant excitation show periodic nature in the voiced regions, and this is not present
in unvoiced regions. This periodicity property along with the strength of excitation
at the instants of glottal closure (strength of instants) is used for detecting the voiced
regions.

The following features are used to represent rhythm:

(a) Syllable duration (Dj)

(b) Duration of voiced region (D,) within each syllable

6.7.3 Representation of Stress

The syllable carrying stress is prominent with respect to the surrounding syllables, due
to its loudness, large movement of Fj, and/or longer duration [92]. Therefore along
with F, and duration features mentioned above, we use change in log energy (AE)

within voiced region to represent the stress.
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Fig. 6.9: Detection of voiced regions in speech using the strength and periodicity
of excitation at the instants of glottal closure showing (a) Speech signal, (b) Hilbert
envelope, and (c) Binary waveform having unity amplitude corresponding to the

voiced regions.

6.7.4 Modeling of Language-specific Prosody

It has been observed that tones of adjacent syllables influence both the shape and
height of the Fj contour of a particular syllable [98], and prominence of a syllable is
estimated based on the pitch characteristics of the contour around it [94]. Similarly,
rhythm is formed by a sequence of syllables, and a syllable in isolation cannot be asso-
ciated with rhythm. Therefore temporal dynamics of these parameters are important
while representing the prosodic variations among languages. The context of a syllable,
i.e., the characteristics of preceding and succeeding syllable is used to represent up-
down movement of F curve. When the distance of separation between two successive
VOPs exceeds certain threshold, the region is hypothesized as a probable word /phrase
boundary or as a long pause. Features corresponding to such regions are not included

in the set of training/testing examples. Since the specific interaction between pitch
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movements, intensity and duration play an important role in determining the prosody,
these parameters together are used to form a feature vector for modeling, as shown in

Fig. 6.10.

Duration Features {

(Trisyllabic)
Intonation Features | ———— MLFENN Evidencefor
(Trisyllabic) e—
Energy Features
(Trisyllabic)

Fig. 6.10: Prosody-based neural network classifier for language identification.

6.8 PERFORMANCE EVALUATION ON OGI DATABASE

To demonstrate the effectiveness of prosodic features mentioned above, a study was
conducted using the OGI database. For all the languages, 40 speech (unrestricted
spontaneous) files (each with an average duration 45 sec) corresponding to 40 different
speakers are used for training. An average of 20 speech files from different speakers are
used for evaluating the proposed LID system. The training and testing speaker sets
are different. Separate MLFFNN models are trained for each language pair in the OGI
database. For example, to build a model for discriminating English from Mandarin, an
MLFFENN classifier is trained with examples from English and Mandarin, with output
set to {+1,—1}, and {—1,+1}, respectively as shown in Fig. 6.10. For evaluating the
performance of this model, features derived from three consecutive syllables in the test
utterance are applied to the classifier, and the evidence from output are accumulated

to obtain the evidence of languages.
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Evaluation is done with different combinations of prosodic features and represen-
tation to determine the suitable feature set. The results for four pairs are given in

Tables 6.7 and 6.8.

Table 6.7: Effectiveness of various prosodic features at trisyllabic level for lan-
guage discrimination in case of four different language pairs. Entries from columns
3 to 6 represent the percentage of utterance identified correctly.

Prosodic Feature Model
Features Dimension | En-Ge ‘ Fr-Ma ‘ Ge-Sp ‘ Ja-Sp
AFy, Ay, Dy, D, (4) 12 67 84 72 76
AFy, Ay, Dy, D,, D, D, AE (7) 21 69 84 79 85

Table 6.8: Monosyllabic vs trisyllabic features for prosody based language dis-
crimination. Entries from columns 3 to 6 represent the percentage of utterance
identified correctly.

Feature Feature Model

Representation | Dimension | En-Ge ‘ Fr-Ma ‘ Ge-Sp ‘ Ja-Sp
Monosyllabic 7 50 84 45 53
Trisyllabic 21 69 84 79 85

The feature vector of dimension 21 corresponding to three consecutive syllables,
consisting of 7 parameters from each syllable gave the best performance as shown in
Table 6.7. These are syllable duration (D), duration of voiced region (D,), change
in Fy (AFp), distance of Fy peak with reference to VOP (D,), amplitude tilt (A;),
duration tilt (D;) and change in log energy (AFE). To illustrate the effectiveness of
trisyllabic feature representation, a study was conducted using the same features at
monosyllabic vs trisyllabic level. The results given in Table 6.8 show better perfor-

mance for the case of trisyllabic representation in most of the cases.

The results of pair-wise language discrimination task on OGI database are given in

Table 6.9. The results of two recent studies are given in square bracket for comparison
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Table 6.9: Performance of pair-wise language discrimination task on OGI database.

The entries from column 2 to 11 denote the percentage of test utterances identified

correctly, for a model corresponding to the languages in first column and first row. For

comparison, results of Rouas’s and Lin's work are given in square brackets.

|Lang. [ Fa | B | Ge |[Hi| Ja | Ko | Ma | S Ta Vi

En 63 85 69 73 70 78 78 57 90 70
[76][62] | [52][54] | [60][56] | [-][-] | [68][84] | [79][75] | [75][76] | [68][53] | [77][64] | [68][80]

Fa _ 67 78 58 76 67 81 60 7 61
69][87] | [72][73] | [-][-] | [67][85] | [75][70] | [76][82] | [67][73] | [70][71] | [67][69]

Fr ] - 60 85 90 86 84 84 90 78
[56][42] | [][-] | [56][65] | [55][54] | [61][69] | [64][57] | [60][44] | [58][76]

Ge _ - _ 88 86 86 72 79 90 71
[IF-] | [66][77] | [71][65] | [62][84] | [59][49] | [70][59] | [66][69]

Hi - - _ - 89 67 92 60 7 78

] [F] []-] ] [F] [F]

Ja - - - - - 76 62 85 85 88
[66][75] | [50][78] | [63][81] | [59][79] | [69][89]

Ko - - _ - _ _ 91 70 81 81
[74][80] | [76][59] | [62][58] | [56][73]

Ma - - _ - _ _ - 82 89 85
[81][71] | [74][69] | [50][79]

Sp - - - - - - - - 85 85
[65][48] | [62][61]

Ta - - - - - - - - - 88
[71][77]

[21,23]. It is observed that prosodic features are more effective for discriminating

languages that fall into different categories based on rhythm or tonal characteristics.

For example, Japanese and Mandarin are discriminated very well from other languages,

whereas, discrimination between them is somewhat poor. Due to the limited size of

the speech data available in the OGI database, it was difficult to extend this study to

multi-class LID problem, as noted by the other researchers [19,21,23].
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6.9 SUMMARY AND CONCLUSIONS

The effectiveness of prosodic and phonotactic features for LID was demonstrated in the
preliminary study on three Indian languages. The MLFFNN classifier, trained using
the phonotactic features and/or prosodic features was shown to be effective for LID.

The phonotactic features in terms of broad phonetic categories were also examined for

LID.

A new technique is proposed for deriving the prosodic features from the speech
signal. The effectiveness of the derived prosodic features was demonstrated. The re-
sults on the OGI database shows that prosodic features are effective for discriminating
languages. The performance is better for discriminating languages that fall into dif-
ferent categories based on rhythm/tonal characteristics. But it was difficult to extend
the pair-wise language discrimination to a multi-class LID problem, due to the limited
size of the speech data available in the OGI database. A summary of the LID studies

carried out in this chapter are given in Table 6.10.

The inclusion of phonotactic features to this framework along with prosodic fea-
tures may be helpful for extending the results for more languages. Phonotactic features
may be in the form of pre-linguistic form such as cepstral coefficients or code book
indices. Adding information of syllable structure to the prosodic features may provide

better representation of the rhythmic characteristics.

In the next chapter, we address some issues in speaker verification. In particular,

we examine the use prosodic features for modeling speakers.
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Table 6.10: Summary of the studies on language identification using multisyllabic fea-

tures.

1. A preliminary study was conducted on three Indian languages using
features derived from manual segmentation and transcription information.
The role of following characteristics for LID were examined in this study:
(a) Phonotactics
(b) Broad phonotactics
(c) Prosody along with phonotactics
(d) Prosody

2. A VOP based method is proposed for the extraction of prosodic features
from the speech signal.

3.  An experimental study was conducted on selected pairs of languages in
OGI database to optimize the set prosodic features and their represent-
ation (monosyllabic vs. multisyllabic) to highlight the language-specific
characteristics.

4. A pair-wise language discrimination study was conducted on OGI data-
base to demonstrate the effectiveness of the prosodic features derived

using the proposed approach.
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CHAPTER 7

PROSODIC FEATURES FOR SPEAKER VERIFICATION

7.1 INTRODUCTION

Speech signal contains information about the message, speaker characteristics and
language characteristics, besides emotional state of the speaker and the environment
in which the signal is collected. Short-time (10-30 msec) spectrum analysis is per-
formed to extract the time-varying spectral envelope characteristics, attributing them
to the shape of the vocal tract system. Generally the residual of the speech signal,
obtained after removing the spectral envelope information, is considered not useful
for many speech applications. But the residual signal contains information, both at
the subsegmental (less than a pitch period) level and at the suprasegmental (>100
msec containing several pitch periods in voiced segments) level. The information at
the subsegmental level corresponds to the excitation, mainly due to glottal vibration.
The information at the suprasegmental level is mostly contributed by the prosodic
characteristics. Since it is difficult to extract and represent the information at the
suprasegmental levels for speech applications, the information present at this level is
generally ignored. In this chapter we show that it is indeed possible to extract the
speaker-specific information present at the suprasegmental level, and represent it in
a manner useful for speaker verification. The main focus is on the use of prosodic

features for speaker verification task.

In Section 7.2 we discuss features relevant for speaker verification task. Speaker-
specific features manifested at various levels of speech signal are also discussed in this
section. In Section 7.3, speaker-specific aspect of prosody is discussed. Section 7.4 de-

scribes the extraction and representation of prosodic features for speaker verification.
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In Section 7.5, the results of prosody-based speaker verification studies on National
Institute of Standards and Technology (NIST) 2003 extended data are discussed. In
Section 7.6, we study the use of subsegmental, segmental and suprasegmental features
for speaker verification. We demonstrate that combining evidence from spectral fea-
tures and prosodic features, represented at segmental and suprasegmental levels of
speech signal, respectively, improve the speaker verification performance in case of

NIST extended data task. Section 7.7 summarizes the speaker verification studies.

7.2 FEATURES FOR SPEAKER VERIFICATION

The objective of speaker verification is to accept/reject a person’s claim on his/her
identity, using features derived from his/her speech. Speaker characteristics are man-
ifested in speech signal as a result of anatomical differences inherent in the speech
production organs and differences in the learned speaking habits of individuals [32].

Speaker characteristics differ in:

(a) Vocal tract size and shape
(b) Excitation
(c) Prosody

(d) Idiolect

The magnitude of the frequency spectrum encodes information about the speaker’s
vocal tract shape via resonances (formants) [33,35,37,39,99]. Most current speaker
verification systems rely on spectral features which exploits the spectral difference.
Apart from the characteristics of the vocal tract, information from the excitation
source and learning habits of the speaker are known to be exploited by the humans
for identifying speakers. The main source of excitation for production of speech is the
glottal vibration. In each glottal cycle, the instant of glottal closure is the instant
at which significant excitation of vocal tract takes place. Hence a small region (1-

5 msec) around the instant of glottal closure contains significant information about
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the speaker, which may be exploited for developing speaker verification systems. It is
known that human beings use certain higher level features such as prosody and idiolect
to identify a familiar speaker. These are the habitual attributes of the speaker rather
than physiological characteristics of the speech production system. Speaking habits
are reflected in characteristics such as the usage of certain words and phrases, and to
the features such as intonation, stress and timing. The idiolect-based system, models
the speaker idiosyncrasies by identifying speaker-specific phrases/words obtained from
the output of an automatic speech recognition system. We consider only implicit
features, and not the information that can be derived from text transcriptions. Thus

idiolect-based features are precluded in this study.

The differences among speakers in terms of characteristics of the excitation source,
vocal tract and prosody can be represented by features at three different levels, namely,

subsegmental, segmental and suprasegmental levels, respectively.

1. Subsegmental Features

In order to represent the excitation source characteristics of a speaker, a window
of size which is less than one pitch period (1-5 msec) is considered. The infor-
mation corresponding to the vocal tract system and the excitation source may
be separated approximately from the speech signal using LP analysis [37]. Since
in the LP residual the vocal tract features are removed, it contains mostly the
information about the excitation source [43,44]. Hence the LP residual is used
in this study for representing the excitation source characteristics for speaker

verification.
2. Segmental Features

Vocal tract characteristics are obtained assuming quasi-periodic assumption for
a segment that contains a few pitch periods (10-30 msec). Features derived from
such a segment is referred as segmental features. In this study, the weighted
linear prediction cepstral coefficients (WLPCC) at segmental level are used for

representing the spectral characteristics.
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3. Suprasegmental Features

Features corresponding to a larger span (> 100 msec) of speech which go beyond
segments are referred to as suprasegmental features. To model speaker-specific

aspects of prosody, features are represented at the suprasegmental level.

7.3 SPEAKER-SPECIFIC ASPECTS OF PROSODY

It is not just the physiological aspects of speech production organs of a speaker that
influence the way an utterance is spoken. It is also influenced by the habitual aspect of
a particular speaker. The acquired speaking habits are characteristics learned over a
period of time, mostly influenced by the social environment, and also by the character-
istics of the first/native language in the ‘critical period’ (lasting roughly from infancy
until puberty) of learning. The prosodic characteristics as manifested in speech give

important information regarding the speaking habits of a person.
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Fig. 7.1: Variation in histogram of Fj for (a), (b) Two female and (c), (d) Two

male speakers.

The physical correlate of pitch is the fundamental frequency (Fp) of vibration of
vocal folds. Fundamental frequency reflects speaker-specific characteristics due to the
difference in physical structure of vocal folds among speakers. The Fj distribution is

specific to a speaker [100] as illustrated in Fig. 7.1. The global statistics of Fy values
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Fig. 7.2: Variation in dynamics of F{y contour of two different male speakers while

uttering Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

of a speaker can be captured using appropriate distributions for speaker verification

task [48].

The variation of Fj as a function of time (intonation) reflects certain speaking
habits of a person. The local dynamics of the F; contour can be different among
speakers due to different speaking style and accent. It has been shown that the dy-
namics of Fy contour can contribute to speaker verification task [49,52]. Dynamics
of Fy contour corresponding to a sound unit is influenced by several factors such as
the identity of sound unit spoken, its position with respect to phrase/word, context
(the units that precede and succeed), speaking style of a particular speaker, intonation
rules of the language, type of sentence (interrogative or declarative), etc. The dynam-
ics of Fy contour are different for two speakers, even when they utter the same text as
illustrated in Fig. 7.2. But when the same text is repeated by the same speaker, Fj
contour characteristics are consistent as in Fig. 7.3. The speaker-specific information
present in F contour can be used for characterizing a speaker. This property is used
in text-dependent speaker verification, by comparing Fy contours using dynamic time

warping (DTW).

Dynamics of Fy contour is useful for characterizing speakers even when the text
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Fig. 7.3: Variation in dynamics of F, contour (a) A child (b), (c) Two different
males and (d) A female speaker while repeating the same text Sunday, Sunday,

Sunday.

spoken are different (text-independent) as illustrated in Fig. 7.4. But to capture
these characteristics for speaker modeling, more speech data may be required for text-

independent tasks.
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Fig. 7.4: Variation in dynamics of Fj contour of two different male speakers for

different texts.
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7.4 PROSODIC FEATURES FOR SPEAKER VERIFICATION

Human beings use several levels of perceptual cues for speaker recognition ranging
from high-level cues such as semantics, pronunciation, idiosyncrasies and prosody, to
low-level cues such as acoustic cues of speech [9]. Prosodic cues such as pitch gestures,
accents and stress reflect the physiological as well as habitual aspect of a speaker.
Current text-independent speaker verification systems rely mostly on spectral features
derived through short-time spectral analysis. This approach does not attempt to model
the long-term speaker-specific characteristics present in the speech signal. The long-
term features are relatively less affected by channel mismatch and noise. In order to
incorporate long-term features, system generally require significantly more data for
training. Hence in 2001, NIST introduced the extended data task which provides
multiple conversation sides for speaker training [50]. This helps in the study of long-
term features for speaker recognition. A workshop was conducted at the John Hopkins
University (JHU) to explore a wide range of features for speaker identification using

NIST 2001 extended data task as its testbed [51,101].

7.4.1 Robustness of Prosodic Features

The Fy contour characteristics are attractive due to its robustness to channel vari-
ations. The effect of channel variations on Fj contour and spectral feature vectors
are illustrated in Figs. 7.5 and 7.6. The same sentence Don’t carry an oily rag like
that spoken by the same speaker, collected over different channels available in Texas
Instruments and Massachusetts Institute of Technology (TIMIT) database, is used for
comparing the effect channel variations. Channels correspond to TIMIT, NTIMIT
and CTIMIT represent speech collected over close-speaking microphone, noisy chan-
nel, and cellular environment, respectively. Fig. 7.5 shows the shift of LPCC features
in the feature space due to variability in the channel characteristics, whereas Fig. 7.6
illustrates the robustness of Fj contour characteristics against channel variations. In

Fig. 7.6, the Fj contours remain same for all the cases except some change in duration

115



of voiced region in (b) and (c) compared to (a).
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Fig. 7.5: Euclidean distance of LPCC feature vectors on a frame to frame ba-
sis for the same speaker and text Don’t carry an oily rag like that. The solid
line corresponds to the distance of NTIMIT data and dashed line corresponds to

CTIMIT data with respect to TIMIT data.
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Fig. 7.6: F, contours of (a) TIMIT (b) NTIMIT, and (c) CTIMIT sentence of
the same speaker for the same sentence Don’t carry an oily rag like that showing

its robustness against channel variations.

7.4.2 Extraction and Representation of Speaker-specific Prosody

Segmentation into syllable-like regions is accomplished with the knowledge of vowel
onset points (VOP) as illustrated in Fig. 7.7(a). The locations of VOP are then asso-

ciated with Fy contour as in Fig. 7.7(b) for feature extraction. The continuous portion
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of the Fy contour with nonzero values, located within the region of two consecutive

VOPs, is treated as one segment of Fy contour for feature extraction.
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Fig. 7.7: (a) Segmentation of speech into syllable-like units using automatically
detected VOPs. (b) Fp contour associated with VOPs.

As demonstrated in Figs. 7.2, 7.3 and 7.4, the dynamics of the Fj contour re-
flects certain learned habits of a speaker. Therefore it is important to represent it
using suitable parameters. We use tilt parameters [93] for representing the dynamics
of the Fy contour. An investigation on the role of articulatory constraints in shaping
the Fy contour has revealed that the maximum speed of Fy change limits how fast
the Fy movements can be produced [102]. The coordination of laryngeal and suprala-
ryngeal movements controls the alignment of syllables and tone [102]. Studies have
also indicated that listeners are more sensitive to variations in Fj peak (Fop) than Fj
valley (Fp,) [94]. Hence change in Fy (AFp), distance of Fyy peak (D,) and the peak
value of pitch (Fp,) for each Fj segment may be useful for speaker recognition. An
increase in pitch may be obtained by increasing the vocal fold tension, by increasing
the subglottal pressure, or a combination of them. Therefore Fy peak (Fy,) and Fj

mean (Fp,) of each segment of Fy contour may reflect some physiological as well as
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habitual aspects of a speaker. The change in log energy (AE) along with AFy gives a
quantitative measure of stress characteristics, therefore may be specific to a particular
speaker. The Fj and energy related parameters used in this study for characterizing

the speaker-specific aspect of prosody are the following:

(a) Mean value of Fy (Fp,)

(b) Maximum value of Fy (Fq,)

(c) Change in Fyy (AFy)

(d) Distance of Fy peak with respect to VOP (D,)
(e) Amplitude tilt (A;)

(f) Duration tilt (Dy)

(g) Change in log energy AE

Thus each segment corresponding to the voiced region of a syllable is represented using

a 7-dimensional feature vector.

We hypothesize that the distribution of prosodic feature vectors form a unique
cluster in the feature space. Fig. 7.8 shows the nonlinearly compressed prosodic fea-
ture vectors, derived from speech corresponding to two male speakers in NIST 2003
database. The nonlinear compression of the 7-dimensional prosodic feature vector has
been obtained using AANN model with a structure 7L 14N 3N 14N 7L , where L rep-
resents linear activation function, N represent nonlinear activation function, and the
numerals represent the number of units in the layers. The compressed feature vector
is obtained from the dimension-compression hidden (middle) layer having three units.

Next section discusses the prosody-based speaker verification studies.
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x Speaker-1 (male)

O Speaker-2 (male)

Fig. 7.8: Compressed prosodic feature vectors for two male speakers (taken from

NIST 2003 extended data).

7.5 EXPERIMENTAL STUDIES ON PROSODY-BASED SPEAKER
VERIFICATION

7.5.1 Database - NIST 2003 Extended data

To demonstrate the significance of prosodic features, we use the first subset of NIST
2003 extended data task [103]. Unlike the traditional speaker recognition tasks, the
extended data task provides larger amount of speech data for training the models.

This task consists of 16-side, 8-side, and 4-side cases providing 16, 8 and 4 conversation
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sides, respectively, for training the target speaker model. Duration of a conversation
is about 5 minutes, and one side of it will be approximately 2.5 minutes. Each target
model is tested with a set of 1 side test utterance where the task is to find out whether
the particular test utterance belongs to the target speaker or not. The subset chosen
for our study consists of 137, 54 and 74 speaker models for the 16-side, 8-side and
4-side cases, respectively. The models are evaluated using 1076, 1238 and 1258 test
utterances for the 16-side, 8-side, and 4-side cases, respectively. We use equal error
rate (EER) and detection error tradeoff (DET) curves as measures for evaluating the

performance of our system [104].

7.5.2 Performance Evaluation on NIST 2003 Database

The block diagram of the proposed speaker verification system is shown in Fig. 7.9.
To capture the speaker-specific distribution of the prosodic feature vectors, AANN
models are used. For each target speaker, an AANN model is developed to capture
the distribution of the prosodic features. A set of background (BG) models built from
a known set of impostor speakers helps to fix a global threshold for verification, to
decide whether the test utterance belongs to the target speaker or not [105-107]. The

background models consists of a set of male and female models.

The structure of the AANN model used for capturing the distribution of the
speaker-specific prosodic features is 7L 28N 2N 28N 7L, where L represents linear
activation function, N represent nonlinear activation function and the numerals repre-
sent the number of units in the layers. The background models consists of 15 female
speaker models and 15 male speaker models, trained using a different subset in the
database. During testing, each prosodic feature vector derived from the test utterance,
is applied to the target speaker model as well as background models. The error be-
tween the output and the input of AANN models is converted into a confidence value
C;. The average confidence for each model is computed as C' = % Zfil C;, where C;

is the confidence value for the i** syllable, and N is the number of prosodic feature
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Fig. 7.9: Block diagram of prosody-based speaker verification system, showing
the testing of an unknown utterance against target speaker model and a set of

background models.

vectors in the test utterance.

Score normalization is used for scaling the likelihood scores, which helps to find a
global speaker independent threshold for the decision making process. Feature vectors
obtained from the test utterance is presented to the target speaker model as well as to
a set of background models as shown in Fig. 7.9. For each test utterance, the decision
on the gender is made based on the average score of male/female background model
set. The raw score obtained from target speaker model is test normalized [106] using

scores of the background models. The normalized score C), is computed as:
Cn=C —pg/og (7.1)

where 1, and o4 represent mean and standard deviation of BG scores corresponding
to the hypothesized gender of test utterance.

Pitch related features seems to carry more speaker-specific information. Addition

of AF slightly improves the EER from 15.8 to 12.4 as given in Table 7.1. Performance
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Table 7.1: Performance of prosodic features, for cases where 16 conversation
sides are available for training the model of target speaker.

Features

EER

Pitch (6 dimension)

15.8

Pitch+Energy (7 dimension)

12.4

of 16-side conversational cases is shown using DET curves in Fig. 7.10. Prosody based

system resulted in an EER of 12.4, 15, 26 for 16-side, 8-side, and 4-side conversational

cases of the particular data set, respectively.
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Fig. 7.10: DET curve showing the performance of prosody-based speaker verifi-

cation system for 16-side conversational case.

7.6 MULTILEVEL FEATURES FOR SPEAKER VERIFICATION

7.6.1

Subsegmental and Segmental Features for Speaker Verification

For the LP residual, the AANN model is used as a nonlinear model to capture the

implicit speaker-specific characteristics. The structure of the AANN model used is
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40L 48N 12N 48N 40L. Blocks of 40 samples from the voiced regions are used as input
to the AANN. Successive blocks are formed with a shift of one sample. Each block
is normalized to the range -1 to 1. One AANN model is trained per speaker using
200 epochs. Since the block size is less than a pitch period, only the characteristics
of the excitation source within each glottal pulse are captured. For testing, blocks of
40 samples of the LP residual from the voiced regions of speech are given as input to
the AANN models. The output of each model is compared with its input to compute
the squared error for each block. LP residual-based system resulted in an EER of 33,
33.5, 34.5 for 16-side, 8-side, and 4-side conversational cases of the particular data set,

respectively.

AANN model trained using WLPCCs are expected to capture the distribution of
spectral feature vectors which is unique for a language or a speaker. The structure of
the AANN model used for capturing the distribution of the speaker-specific spectral
features is 19L 38N 4N 38N 19L. One AANN model is trained for each speaker, using
the features from all the conversation sides available. Using single AANN model
(trained using all the conversation sides) per target speaker gives an EER of 12.6

for the 16-side cases.

The EER is further improved by reducing the effects of channel mismatch between
training and testing speech. A similar technique used for spectral-based LID is used
for reducing the channel variability. In case of 16-side conversation, all the 16-sides
available for the target speaker may not be collected over similar channels. Therefore
instead of using all the 16 conversation sides to train a single model, sixteen sepa-
rate AANN models are trained using single conversation side of 2.5 minutes duration.
During verification, test utterance is tested against all the 16 target speaker models as
well as background models. If the test utterance belongs the target speaker, majority
of the models may give high scores, but a few models may still give low scores due to
the mismatch in channel characteristics. Therefore, out of 16 target speaker scores,

only N-best scores are considered for computing effective score of target speaker. We
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have taken average of best eight confidence scores as the score of the target speaker.
This score is normalized as shown in Fig. 7.9. The spectral-based system employing
multiple models resulted in an EER of 9.5 for 16-side conversation case for the same
data set giving a reduction of 3.1 in EER compared to the single model per target
speaker approach. For 8-side and 4-side cases, this approach resulted in an EER of

11.6 and 14, respectively, for the particular data set.

7.6.2 Combining Evidence from Multilevel Features

As spectral features are affected by channel mismatch and noise, the use of prosodic
features can play important role in improving the robustness of the speaker verification
system. The evidence of the speaker from different features may be combined in several
ways to achieve better performance. One simple approach is the addition of evidence
from different systems. Prosody-based evidence provide complementary information,
while combining with the spectral-based evidence. Combining by addition (giving
equal weight to spectral and prosodic features) results in an EER of 6.8 for 16-side
showing the effect of complementary information in these features as illustrated in

Fig. 7.11.

Combining evidence from spectral and prosodic features by addition result in an
EER of 9.3 and 11 for 8-side and 4-side, respectively. Even though the performance
of prosodic features is inferior to spectral features in 4-side case, the combination of
evidence significantly improve the performance as shown in Fig. 7.12, illustrating their

complementary nature for speaker verification task.

Speaker verification system based on spectral features still appears to be per-
forming better than other systems. Since spectral features are affected by channel
mismatch and noise, use of prosodic features become important in speaker verifica-
tion task. The contribution of prosodic features becomes significant when amount of
speech data available for training is sufficient to capture the speaker-specific prosodic

characteristics, as for the 16-side cases. The residual features represent the excitation
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Fig. 7.11: DET curve showing the performance of spectral-based system,
prosody-based system and combined system for 16-side conversational case.

source characteristics, and it is helpful for modeling the speaker from limited size of

speech data.

7.7 SUMMARY AND CONCLUSIONS

The goal of this study was to explore the usefulness of prosodic features extracted from
the suprasegmental levels of the speech signal for speaker verification task. Prosodic
features derived from Fj contour and energy variation reflect both physiological and
learned aspect of a speaker. We demonstrate that the distribution of prosodic feature
vectors is speaker-specific, and is useful for speaker verification. We have demon-
strated using experimental studies that, apart from the spectral features and excita-
tion features, prosodic features also contain significant speaker-specific information.
It was observed that excitation characteristics represented at the subsegmental level
contribute to the speaker verification, especially when the size of speech data avail-

able for training is less. A few seconds (10-20 sec) of speech is all that is required
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Fig. 7.12: DET curve showing the performance of spectral-based system,
prosody-based system and combined system for 4-side conversational case.

for modeling excitation characteristics of a speaker. Prosodic features represented at
suprasegmental level can play an important role in speaker verification when large
amount of speech data is available for training, and also when there is likely to be
channel /handset mismatch between training and testing. In such situations, combin-
ing evidence from spectral-based and prosody-based systems improve the robustness
of speaker verification system. A summary of the speaker verification studies carried

out in this chapter is given in Table 7.2.
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Table 7.2: Summary of the studies on speaker verification.

An approach is proposed for the extraction and representation of speaker-
specific prosodic features from speech signal.

Prosodic features derived using the proposed method is modeled by capturing
their distribution.

The role of excitation, vocal tract and prosodic characteristics represented at
subsegmental, segmental and suprasegemntal levels, respectively, are examined
for the task of speaker verification for different size of training data.
Demonstrated that combining evidence from prosodic features and spectral

features improve the overall performance of the speaker verification system.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 SUMMARY OF THE WORK

In this thesis, we have focused on the extraction and representation of language and
speaker-specific features at multiple levels of speech signal, for the purpose of lan-
guage/speaker recognition. We hypothesize that features derived from the speech
signal reflect both language as well as speaker characteristics, and it is difficult to sep-
arate the language and speaker parts in these features. For recognizing a language or a
speaker, different cues are available in speech. Languages differ in acoustic-phonetics,
prosody, phonotactics and vocabulary. Speaker characteristics vary due to difference
in the excitation source, vocal tract dimensions, prosody and idiolect. These charac-
teristics are manifested at different time spans of the speech signal. To represent these

characteristics, features should be derived from multiple levels of speech signal.

In this work, the problem of language/speaker recognition has been formulated
using a probabilistic approach. The observations from speech signal has been split
into different components based on the level of manifestation. These components
represented in terms of different feature vectors were modeled separately using artificial
neural network. The evidence obtained from different levels was later combined to

arrive at a decision.

For automatic language identification, language-specific features at three different
levels of speech signal, namely, frame, syllabic and multisyllabic levels are explored. At
the frame level, spectral features and source features derived from lower span of speech

signal (< 20 msec) were used for language identification. Features such as weighted
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linear prediction cepstral coefficients (WLPCC), linear prediction (LP) residual and
phase of LP residual are examined. The presence of language-specific information in
these features was demonstrated using four Indian languages. It was observed that the
frame level features are dominated by the physiological characteristics of the speaker.
Multiple speaker models and the N-best scoring are proposed to reduce the effect of
speaker variability on language identification. Effectiveness of the proposed approach

is demonstrated using OGI database.

To represent variations in realization of syllables among languages, features are
represented at the syllable level. Spectral features corresponding to CV type of syl-
lables has been used in this study. Regions corresponding to CV type of syllables
are automatically identified with the help of vowel onset points, eliminating the need
for any explicit segmentation and transcription. It was observed that more language-
specific evidences are obtained while representing spectral features at the syllabic level
compared to the frame level representation, as demonstrated for eleven languages in

OGI database.

As a first step towards using prosodic features for language identification, seg-
ment boundaries from manually labeled corpora were used. The study on three Indian
languages revealed the usefulness of prosodic features for language identification. To
extract prosodic features automatically from the speech signal, a VOP based approach
is proposed. In this approach, syllable has been used as the basic unit for extracting
prosodic features. This approach do not require automatic speech recognizer for the
extraction of prosodic features, but still gives association of prosodic features with the
corresponding syllable sequence. This is done with the knowledge of VOPs, detected
automatically from the Hilbert envelope of the LP residual of the speech signal. The
region between two successive VOPs is considered as a syllabic region, and parame-
ters are derived to represent duration, dynamics of Fy contour and energy variations

corresponding to each region.
The prosodic characteristics of languages differ in terms of rhythm, intonation
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and stress. These characteristics are manifested in acoustic speech signal in terms of
duration, Fj contour and energy. It is hypothesized that the notion of rhythm and
stress are generated from the succession of syllables. Therefore prosodic features should
be represented at multisyllabic level to highlight the language-specific part. This was
approximated to a level of three consecutive syllables, and the prosodic feature vectors
were obtained by concatenating the features from them. The effectiveness of prosodic

features for language discrimination is demonstrated using OGI database.

Features such as excitation, vocal tract and prosody, represented at multiple levels
of speech signal, namely, subsegmental, segmental and suprasegmental, were studied
in the context of speaker verification. The vocal tract system and excitation source
characteristics reflects the physiological differences among speakers. Prosodic differ-
ences are attributed by both physiological and learned aspects of speakers. In spite of
the difference in the spoken message and language, speaker characteristics are present
in the dynamics of Fj contour and energy. It was hypothesized that the distribution
of prosodic feature vectors are specific to a speaker. The study on speaker verification
using NIST 2003 extended data demonstrated the potential of prosodic features for
modeling the speaker characteristics. Performance of the prosody based speaker veri-
fication system is significant, especially for cases having large training data. Also the
prosodic features derived from Fj contour and energy, are less affected by the variations
in channel characteristics and noise. We have demonstrated that, the performance of
speaker verification system can be improved by combining the evidence from spectral

and prosodic features.

8.2 KEY IDEAS PRESENTED IN THE THESIS

The following are the key ideas presented in this thesis:

1. Differences among languages and speakers are manifested at multiple levels of
speech. It is represented using features derived from appropriate spans of acous-

tic speech signal.
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2. An approach based on multiple speaker-specific models and N-best scoring is

proposed for minimizing the effect of speaker variability in spectral-based LID.

3. A new method is proposed for extracting prosodic features directly from the
speech signal, for language and speaker recognition. In this method, syllable
has been treated as the basic unit for deriving prosodic features. Instead of
using automatic speech recognizer for obtaining the segment boundaries, the
locations of vowel onset points are used for segmenting continuous speech into

syllable-like regions.

4. Prosodic features are effective for both language identification and speaker ver-
ification. But the level of representation is crucial for highlighting the language
part and the speaker part. Language-specific prosody is better represented at a

larger span of speech compared to that of speaker-specific prosody.

5. Prosody-based speaker evidence can enhance the robustness of the speaker ver-

ification system in combination with spectral-based evidence.

8.3 SCOPE FOR FUTURE WORK

The following are some directions for future work:

Multilevel implicit features used in this study have shown to carry both language
and speaker-specific characteristics. Therefore it is possible to combine language and
speaker recognition tasks in a unified framework. This was not explored in the present
study due to the nonavailability of suitable database (in which same speaker speaking
multiple languages). The framework proposed for syllable-based language identifica-
tion may be useful for this. In this framework, the speaker-specific model giving the
highest likelihood will indicate the speaker identity, whereas the language having high-
est N-best score will give evidence for the language identity. Further studies may be

carried out to enhance these evidence.

This work has attempted the use of implicit acoustic-phonetics and prosody for
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language identification. Implicit phonotactic features are not explored in this work. It
may be possible to represent the phonotactics of a language without explicitly identify-
ing the subword units. There is scope for exploring the representation of phonotactics
(alignment of subword units) by implicit means, in a manner useful for language iden-

tification.

Prosodic features give rise to grouping of syllables and words into larger chunks.
There are prosodic features that indicate the relation between such groups, indicating
that two or more groups of syllables are linked in some way. This linguistic aspect of
intonation is a part of the structure of language and specific to any given language [92].
It may be possible to employ prosodic features corresponding to groups of syllables,
instead of using features of a syllable and its context for language identification. This
possibility may be studied using a database having large size of speech data in multiple

languages.

The present study uses rhythm represented in terms of durational features to
discriminate languages. In natural conversation, duration characteristics also convey
some speaker-specific evidence. The usefulness of duration features such as syllable
duration and pause characteristics may be explored along with other prosodic features

for speaker verification task.

For a language, there can be different accents. Accent variations are felt due to
variations in pronunciations and prosodic gestures. Therefore, the difference in accents
may be represented using acoustic-phonetic and prosodic features. There is scope for

extending the approach used in this study for accent identification studies as well.
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APPENDIX A

AUTOASSOCIATIVE NEURAL NETWORK FOR
PATTERN RECOGNITION TASKS

Autoassociative neural network (AANN) is a special class of FFNN architecture, hav-
ing some interesting properties which can be exploited for some pattern recognition
tasks. Studies on AANN models have been reported extensively in the literature [108].
In an AANN model the input and output layers have the same number of units, and
all these units are linear. It was shown that a three layer network with a middle
compression layer (# units < # units in the input/output), do not have any specific
advantage over normal linear PCA analysis. Even nonlinear units in the compression
layer do not provide any advantage for obtaining a better estimation of PCA com-
ponents [109]. In fact, the nonlinearity may result in suboptimal solutions due to
local minima problems in the optimization of network weights using the backpropaga-
tion learning. Even using more than three layers also do not provide any significant

advantage, if the compression layer is the last but one layer in the network [108].

However, if the AANN has five or more layers, with nonlinear compression layer
in the middle with at least two layers after the compression layer, then such a network
has interesting properties which can be exploited for many pattern recognition tasks
[66]. We focus on two such properties, namely, distribution capturing of the feature
vectors, and capturing the second and higher order relations among the samples in the
input data. If the input data is speech, say, like a frame of speech, and the network
is trained with frames shifted by one sample, then the network captures primarily the
significant correlation among the samples, usually the second order correlations. When
we give as input and output a signal with significant correlation removed, like in the

linear prediction (LP) residual, then the network can be used to extract features in



the higher order relations among the samples, and thus the network can be used as a
feature extractor. If feature vectors belonging to a single class are used for training,
then the network can be used to capture the distribution of the feature vectors in the
feature space. The distribution capturing ability of the AANN model, is demonstrated
through an experimental study. The details of the study given here is taken from [110].

Let us consider the five layer AANN model shown in Fig. A.1, which has three
hidden layers. The processing units in the first and third hidden layer are nonlinear,
and the units in the second compression/hidden layer can be linear or nonlinear. As
the error between the actual and the desired output vectors is minimized, the cluster
of points in the input space determines the shape of the hypersurface obtained by the
projection onto the lower dimensional space. Fig. A.2 shows the space spanned by the
1-dimensional compression layer for the 2-dimensional data shown in Fig. A.2(a) for
two different network structures. The structures of the two networks are 2L 4N 1IN 4N
2L and 2L 10N 1N 10N 2L, where L denotes a linear unit, and N denotes a nonlinear
unit. The numbers denote the number of units for each layer. The nonlinear output
function for each unit is tanh(Az), where A is arbitrarily chosen to be equal to 0.66.
The networks were trained using backpropagation algorithm [61,62]. The solid lines
shown in Figs. A.2(b) and A.2(c) indicate mapping of the given input points due to
the 1-dimensional compression layer. The second network having more hidden units
seems to represent the data through the 1-dimensional compression better, as shown
in Fig. A.2(c), compared to Fig. A.2(b) for the network with fewer units in the hidden
layers. Thus, one can say that the AANN captures the distribution of the data points
depending on the constraints imposed by the structure of the network, just as the

number of mixtures and Gaussian functions do in the case of GMMs.

In order to visualize the distribution better, one can plot the error for each input
data point in the form of some probability surface as shown in Fig. A.3 for the cases
in Figs. A.2(b) and A.2(c) [110]. The error E; for the data point ¢ in the input space is

plotted as f; = e(="i/®) where o is a constant. Note that f; is not strictly a probability
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Compression
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Fig. A.1: A five layer AANN model.

density function, but we call the resulting surface as probability surface. The plot of
the probability surface shows a large amplitude for smaller error E;, indicating better
match of the network for that data point. The constraints imposed by the network
can be seen by the shape the error surface takes in both the cases. One can use the
probability surface to study the characteristics of the distribution of the input data
captured by the network.
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Fig. A.2: (a) Artificial 2-dimensional data. (b) 2-dimensional output of AANN model
with the structure 2L 4N IN 4N 2L (c) 2-dimensional output of AANN model with the
structure 2L 10N 1IN 10N 2L.
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Fig. A.3: Probability surfaces realized by two different network structures (b) 2L 4N IN
4N 2L (c) 2L 10N 1IN 10N 2L, for the 2-dimensional data shown in (a).
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APPENDIX B

WEIGHTED LINEAR PREDICTION CEPSTRAL
COEFFICIENTS ANALYSIS

In this appendix, we present an algorithm used for extraction of Weighted Linear
Prediction Cepstral Coefficient (WLPCC) representation from speech signal. This
algorithm is taken from [42].

The digitized speech signal s(n), is preemphasized by implementing the following

difference equation:

5(n) = s(n) —0.95%s(n —1) (B.1)

Let N be the frame size and M be the separation between adjacent frames specified

in number of speech signal samples. Then the I frame of speech signal is denoted by:

x(n) =5Ml+n), n=0,1,...,.N—-1,1=0,1,...,L—1 (B.2)

where L is the number of frames in the entire speech signal. Each frame is windowed

using a Hamming window as given below:

2nm

=0.54-04 o
w(n) =0.54 -0 6(:os(N_1

), 0<n<N-1 (B.4)



Each frame of windowed signal is autocorrelated as follows:

m

7i(m) = 2 Zi(n)Z(n+m), m=0,1,...,p (B.5)

1—
=0

3

where p is the order of the linear prediction analysis. Linear prediction coefficients
are derived from autocorrelation coefficients using Durbin’s method given below. The

subscript [ is omitted for convenience.

E©® =r(0) (B.6)

k; = T , 1<i<p (B.7)

ol = k; (B.8)

ag-i) — oD kiaz(i:jl) (B.9)

EW = (1 - k2)EY (B.10)

The above equations are solved recursively for 2+ = 1,2, ..., p, and the final solution

gives the linear prediction coefficients a,,, as follows:

am=0®, 1<m<p (B.11)

The cepstral coefficients, c¢,,, are derived from linear prediction coefficients by

recursion of the following equation:
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co = Ino? (B.12)

k
Crn = Gy, + <—> Chlm-r, 1<m<p (B.13)
p=1 \'
m—1 ]i'
m = —_ m—k> < < B.14
c ; (m) Chlmt, P<mM<Q ( )

where o2 is the gain term in linear prediction analysis and Q is the number of cepstral
coefficients. The cepstral coefficients are weighted using a bandpass filter in the cepstral

domain as given below to obtain weighted cepstral coefficients ¢,,.

Crn = WnCm, (B.15)
where
Q . (mn
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APPENDIX C

MEL-FREQUENCY CEPSTRAL COEFFICIENTS
ANALYSIS

In this appendix, we present an algorithm used for extraction of Mel-Frequency
Cepstral Coefficient (MFCC) representation from speech signal. This algorithm is
taken from [111].

The human ear resolves frequencies non-linearity across the audio spectrum and
empirical evidence suggests that designing a front-end to operate in a similar non-
linear manner may improve recognition performance. A popular alternative to linear
prediction based analysis is therefore filter bank analysis since this provides a much
more straightforward route for obtaining the desired non-linear frequency resolution.
Mel-Frequency Cepstral Coefficients (MFCCs) are calculated using the following steps:

The output speech sampling rate of the analog-to-digital converter is assumed to
be 8 kHz. The speech samples are divided into overlapping frames. The frame length
is 20 msec (160 samples) and the frame rate is 5 msec (40 samples).

Each frame is windowed using the Hamming window function:

2nm
N -1

&mn:{aw—omn%< )}*s@% 0<n<N-1. (C.17)

Here N is the frame length and s(n) and s,(n) are the input and output of the
windowing block, respectively.

A Fast Fourier Transform (FFT) of block length L (L=256) is used to compute
the magnitude spectrum for each windowed frame. The first 129 bins from the mag-

nitude spectrum are retained for further processing.

by = . k=0,1,...,L—1. (C.18)

L—1
S sulment
n=0




Here S, (n) is the input to the FFT block, L is the block length (256), and by is the

absolute value of the resulting complex vector.

The power spectrum is computed by taking the square of the magnitude spectrum.
Complete frequency range (0-4000 Hz) is used for computing the Mel-warped spectrum.

This band is divided into 23 channels equidistant in Mel-frequency scale.

m(f) = 2595 x log, <1 + %) (C.19)

foo=m! (z*m(%» i=1,2,...,23 (C.20)

¢; = floor <% * L) (C.21)

S
where floor(.) stands for rounding downwards the nearest integer.

The output of the Mel-filter is the weighted sum of the FF'T power spectrum values

(b;) in each band. Triangular, half-overlapped windowing is used as follows:

Ck Ci+1

VAR S A SUAS S (C.22)

_ Ck — Ci— Ck+1 — C
i Gk T k1 o Ck+1 — Gk

where k = 1,2,...,23 and M, is the k" MFCC coefficient.

co and co4 denote the FF'T bin indices corresponding to the starting frequency and

half of the sampling frequency, respectively,

coa = floor (f}_/Z * L) =L/2 (C.24)

S
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