
UNCERTAINTY-BASED PATTERN

CLASSIFICATION BY MODULAR NEURAL

NETWORKS

A THESIS

submitted by

MANISH SARKAR

for the award of the degree of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

CHENNAI 600036, INDIA

OCTOBER 1998

THESIS CERTIFICATE

This is to certify that the thesis entitled Uncertainty-Based Pattern Classification by Mod-

ular Neural Networks, submitted by Manish Sarkar, to the Indian Institute of Technol-

ogy, Madras, for the award of the degree of Doctor of Philosophy, is a bonafide record of

the research work done by him under our supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Place: Madras 600036

Date:

Place: Madras 600036

Date:

(B. YEGNANARAYANA)

(DEEPAK KHEMANI)

ACKNOWLEDGEMENTS

First and foremost, I wish to place on record my gratitude to all the members of Neural
Networks Laborato y (alias Microprocessor Laboratory), Department of Computer Science

& Engineering, IIT Madras. I am grateful to them for maintaining a stimulating research

environment in the laboratory. Discussions and brainstorming sessions with various mem-

bers of the laboratory like Appan, Devarajan, Gayathry, Hashim, Ilango, Murthy, Nallu,

Neeharika, Pavan, Poongudi, Prakash, Raghu, Ramkrishna Reddy, Sanjay, Sridharan,

Usha and Vijaya during the course of my research was very productive. I am grateful to

the institute for extending to me the facilities of the Neural Networks Laboratory without

which my research would have been stillborn.

I express my gratitude to Prof. B. Yegnanarayana and Dr. Deepak Khemani who have

inspired me during my association with them. I am thankful to my doctoral committee

members for their time and effort in reviewing the progress in this work. I would like to

thank Dr. Sukhendu Das for the helpful discussions that I had with him.

I am indebted to the Department of Atomic Energy, Government of India, for s u p

porting me in my research work with the Dr. K. S. Krishnan Senior Research Fellowship.

I express my gratitude to the Department of Computer Science and Engineering for
giving me an opportunity to carry out my research. I shall remember Anitha, Hariram,
Hemant, Iqbal, Joshi, Karna, Mathew, Murthy, Sain, Sankara Raman, Sudha, Sudhakar,

Tamil, Yaji for their kind cooperation and friendship.

It has been real fun staying at IIT Madras. The sylvan surroundings, "quark", the

endless sessions at Velacheri and Taramani tea shops will be etched into my memory

forever. I shall never forget the constructive/destructive chats that I had with Sids, Bijon

and Prabir while sipping tea at midnight.

I cherish the great time I had with the Tapti Hostel people; Soumen for our countless

hours of discussion on every topic in the universe, Sanjay for all the fun and excitement

we had together, Arunachalam for his magic with mathematics, Sids without whom life

would have been a bore.

Finally, I would never have been able to survive the N years this endeavour took
without moral support (+ perturbation) of my good friends staying outside the institute.

These are the people who made my life a controlled stochastic process.

ABSTRACT

The objective of this study is to demonstrate the significance of incorporating a pn'ori
knowledge of the problem in a pattern classification task. The issues of identification,
representation and application of knowledge in the form of fuzzy, rough and probabilistic
uncert ainities are addressed to develop a new pat tern classification methodology. This
thesis demonstrates the significance of modular classification approach to deal with un-
certainties effectively in pattern classification tasks. The performance of the proposed
approach is illustrated for the opening bid problem in the game of Contract Bridge.

Building classifiers involves capturing the similarity among the training patterns and
assigning labels for the group of similar patterns. Capturing the similarity among patterns
becomes complicated when a training pattern belongs to more than one class, i.e., the
output classes are overlapping. Thus fuzzy uncertainty appears in form of similarity and
overlap. Due to the lack of details, two input patterns may appear similar whereas the
class labels may not be same. The one-temany relationship between the inputs and
outputs results in rough uncertainty. If the occurrence of the training patterns in the
neighborhood region is small, then due to probabilistic uncertainty assigning the class
labels is difficult. Thus building classifiers essentially involves dealing with fuzzy, rough
and probabilistic uncertainties. In the opening bid problem of Contract Bridge game,
the input is a hand pattern and the output is the class label for the input hand. In
this problem, obtaining a particular hand pattern is probabilistic. The output classes are
fuzzy. The absence of unique class labels for input hands creates rough uncertainty.

In this thesis artificial neural networks are employed as classifiers. Experimentally it
was observed that it is difficult to deal with the issues in uncertainties for the opening bid
problem. Hence, modular neural networks are explored. Modular approach partitions the
classification task into three subclassification tasks, solves each subclassification task, and
eventually integrates the results to obtain the final classification result. In other words,
partitioning of the classification task is carried out such that each subproblem can be
solved in a module by exploiting the local uncertainities and the results of all the modules
can be combined by exploiting the global uncertainities.

The performance of each module can be improved by giving importance to the features
based on their class discrimination capability for the output classes present in the module.
Since both roughness and fuzziness are present and the input features are discrete, the
uncertainity in assigning class labels for a given pattern based on each feature is treated
as rough- fuzzy uncertainty. The more important a feature is for classification, the less is
the rough-fuzzy uncertainty associated with that feature. A rough-fuzzy entropic measure
is proposed to quantify the importance of each feature. Using the importance measure,
the input hands are biased to generate modified feature vectors corresponding to each

module.

One approach of assigning class labels for the modified feature vectors is through direct
classification. It involves partitioning the modified feature space of a module into several
fuzzy output classes. Feedforward neural networks are used to obtain the class labels.
Backpropagation learning algorithm with fuzzy objective functions are used to train the
networks. The networks are configured optimally using evolutionary programming. After
training if a new input pattern is presented to the network, then the network yields the
output as the fuzzy membership value of the input to the output classes.

An alternative approach to assign the class labels on the modified feature vector is
clustering. In this approach, modified feature vectors are clustered, and each cluster
is labelled with class labels. Since the clusters are fuzzy, the modified feature vectors
are clustered using an evolutionary programming-based fuzzy clustering algorithm. The
labelling of the clusters is complicated because two patterns from the same cluster may
belong to entirely different classes. The labelling of the clusters is done using a fumy-
rough neural network. It captures the fuzzy uncertainty present in the clusters and rough
uncertainty between the clusters and the class labels. If a new input pattern is presented to
the network after training, it yields the output as a class confidence value in terms of fuzzy-
rough membership value corresponding to the input pattern. In the opening bid problem,
experimentally it was decided to use feedforward neural networks with backpropagation
algorithm to construct the module for the first level bids and fuzzy-rough neural networks
to construct the remaining two modules for the second and third level bids.

When the original classification task is distributed among modules, the modules have
been trained and configured to deal with the uncertainities locally. But the final class
labels, indicated by the outputs of the modules, may be conflicting. To arrive at the
classification result from the conflicting outputs, Sugeno 's fuzzy integral is used. The
outputs of the modules are treated as evidence, and they are fused in a nonlinear fashion
based on their importance. The importance of each evidence is determined using the
fuzzy-roughness associated with the evidence. The final class label of an input is the
output class corresponding to the maximum value of the fuzzy integral.

The main contribution of the thesis are: (1) Demonstrating the significance of uncer-
tainty in pattern classification problems, (2) providing a review on issues in uncertainty-
driven pattern classification tasks, (3) application of modular neural networks to deal with
fuzzy, rough and probabilistic uncertainties, (4) use of rough-fuzzy sets to determine the
importance of each feature for classification, (5) development of backpropagation learning
algorithms based on various fuzzy objective functions, (6) proposing rough-fuzzy mem-
bership functions and fuzzy-rough membership functions to construct fuzzy-rough neural
networks, and (7) use of fuzzy-rough sets in fuzzy integral to measure the importance of
each module.
Keywords: Classification, uncertainty, modular neural networks, feedforward neural net-
works, fuzzy sets, rough sets, evolutionary programming, clustering, fuzzy-rough mem-
bership functions, fuzzy-rough neural networks and fuzzy integral.

CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES iix

LIST OF TABLES x

NOTATIONS xii

ABBREVIATIONS xiv

1 INTRODUCTION 1
. 1.1 Background: Problem Solving with Uncertainty 1

. 1.2 Issues in Pattern Classification 2
1.3 Scope: Study of Uncertainties in Opening Bid Problem in Bridge Game . . 4

1.4 Proposed Approach for Capturing the Reasoning Process in Opening Bid
. Problem 6

. 1.5 Organization of the Thesis 7

2 MODELING PATTERN CLASSIFICATION PROBLEMS 11
. 2.1 Introduction 11

. 2.2 A Review on Pattern Classification 12

2.2.1 How Human Classification Mechanism is Mimicked on Machines . . 12
. 2.2.2 Process Description 16

. 2.2.2.1 Symbolic process description 17

. 2.2.2.2 Numerical process description 18
. 2.2.3 Feature Analysis 19

. 2.2.4 Structure Analysis 20
. 2.2.5 Abstraction: Search for Structure 22

. 2.2.5.1 Deterministic classifiers: Crisp rule base 23
. 2.2.5.2 Statistical classifiers 25

. 2.2.5.3 Fuzzy classifiers 31

. 2.2.5.4 Rough classifiers 37

. 2.2.5.5 Hybrid classifiers 38
. 2.2.6 Generalization 46

. 2.2.7 Conclusion 50
2.3 Modular Classifiers . 53

. 2.3.1 Background of Modular Classifiers 53
. 2.3.2 Advantages of Modular Classifiers 54

. 2.3.3 Issues in Modular Approach 55

. 2.3.4 Types of Modular Classifiers 56

2.4 Opening Bid Problem in Contract Bridge as a Pattern Classification Problem 62

3 PRELIMINARY STUDIES ON BIDDING PROBLEM USING ARTI-
FICIAL NEURAL NETWORKS 64

. 3.1 Introduction 64
. 3.2 Representation of Opening Bid Problem on Machines 66

. 3.2.1 Data Generation and Collection 66
. 3.2.2 Representation of Input Patterns 67

. 3.3 Studies on Network Architecture and Training 71
. 3.4 Summary 79

4 IMPORTANCE OF INPUT FEATURES IN CLASSIFICATION: ROUGH-
FUZZY SET THEORETIC APPROACH 81

. 4.1 Introduction 81
. 4.2 Background of Fuzzy K-Nearest Neighbors Algorithm 83

. 4.3 Proposed Method 85
. 4.3.1 Criterion Function 85

4.3.2 Possibilistic K-Nearest Neighbors Algorithm 89
. 4.3.3 Optimization Technique and Weight Update 90

. 4.4 Results and Discussion 91
. 4.5 Summary 98

5 DESIGN OF CLASSIFIER MODULES THROUGH DIRECT CLAS-
SIFICATION 102

. 5.1 Introduction 102
5.2 Feedforward Neural Network Classifiers: Backpropagation Learning Alg*

. rithm with Fuzzy Objective Functions 103

. 5.2.1 Architecture of Feedforward Neural Networks 104
. 5.2.2 Training of Feedforward Neural Networks 104
. 5.2.3 Testing of Feedforward Neural Networks 111

. 5.2.4 Results and Discussion 112

5.3 Configuration of Feedforward Neural Networks Using Evolutionary Programming-
. Based Hybrid Technique 115

. 5.3.1 Evolutionary Programming in Network Configuration 118
. 5.3.2 Implementation Issues 119

. 5.3.2.1 Fitness function 119
. 5.3.2.2 Replication of parents 119

. 5.3.2.3 Mutation 121
. 5.3.3 Results and Discussion 124

. 5.4 Summary 129

6 DESIGN OF CLASSIFIER MODULES THROUGH CLUSTERJNG 132
. 6.1 Introduction 132

. 6.2 Evolutionary Programming-Based Fuzzy Clustering 133
. 6.2.1 Background of Fuzzy K-Means Clustering 135

. . . . 6.2.2 Embedding Evolutionary Programming in Fuzzy Clustering 138
. a 6.2.3 Implementation Issues 140 '. ..

. L- . 6.2.3.1 Fitness function 140
. +y 6.2.3.2 Replication of parents 140

. 6.2.3.3 Mutation 141
. 6.2.3.4 Modified fuzzy K-means algorithm 143

. 6.2.4 Results and Discussion 143

. 6.3 Fuzzy-Rough Neural Networks 149
. 6.3.1 Root of Fuzzy-Rough Neural Networks 150

. 6.3.2 Architecture of Fuzzy-Rough Neural Networks 150
. 6.3.3 Training and Testing of Fuzzy-Rough Neural Networks 152

. 6.3.4 Results and Discussion 153
. 6.4 Summary 154

7 FUSION OF CLASSIFICATION RESULTS 157
. 7.1 Introduction 157
. 7.2 Background 159

. 7.2.1 Fuzzy Measure 159
. 7.2.2 Fuzzy Integral 159

. 7.3 Modular Networks with Proposed Fusion Technique 162
. 7.3.1 Architecture of Modular Networks 162

. 7.3.2 Training of Modular Networks 162
. 7.3.2.1 Training of subnetworks 163

. 7.3.2.2 Pattern matching 164
. 7.3.3 Testing of Modular Networks 167

. 7.4 Results and Discussion 169
. 7.5 Summary 171

8 SUMMARY AND CONCLUSIONS 173
. 8.1 Summary of the Thesis 173

. 8.2 Contribution of the Thesis 176
. 8.3 Conclusion of the Thesis 176

. 8.4 Issues Related to This Thesis Work for Further Study 177

APPENDIX

A CONTRACT BRIDGE GAME: ISSUES 179

B EVOLUTIONARY PROGRAMMING AND ROUGH SETS: BASICS 182
. B.l Background of Evolutionary Programming 182

. B.2 Background of ~ o u ~ h Sets 183

C ROUGH-FUZZY MEMBERSHIP FUNCTIONS 186
. C.l Basics of Rough-Fuzzy Sets 187

. C.2 Definition of Rough-Fuzzy Membership Functions 187

. C.3 Properties of Rough-Fuzzy Membership Functions 187

D FUZZY-ROUGH MEMBERSHIP FUNCTIONS 191
. D.1 Background of Fuzzy-Rough Sets 192

. D.2 Definition of Fuzzy-Rough Membership Functions 192

. D.3 Properties of Fuzzy-Rough Membership Functions 192

BIBLIOGRAPHY 198

PUBLICATIONS 210

LIST OF FIGURES

. 1.1 A typical modular neural network with S modules 7
. 1.2 Flow of ideas across the thesis 8

2.1 Relationships among different topics discussed in pattern classification
. 2.2 Different steps involved in pattern classification

. 2.3 A three layered feedforward neural network
. 2.4 A typical radial basis function neural network

. 2.5 A typical probabilistic neural network

. 2.6 Fuzzy membership functions for fuzzy sets and fuzzy numbers
. 2.7 Possibilistic vs constrained fuzzy and crisp membership assignments

. 2.8 Psychological uncertainty
. 2.9 Types of modular classifiers

2.10 Construction of modular classifiers based on the concept of problem decompo-
. sition

2.11 Construction of modular classifiers based on the concept of class decomposition
2.12 Different varieties of modular classifiers .

. 3.1 Input representations for opening bid problem 70

. 4.1 Fuzzy K-nearest neighbors algorithm 84
. 4.2 Flow diagram to determine the weightages of the features 91

4.3 Algorithm to determine the importance of input features using rough-fuzzy
. entropy 92

. 4.4 Artificially generated input data set for the first experiment 94

4.5 Change of total rough-fuzzy entropy with the number of iterations for the data
. set shown in Fig . 4.4 95

. 4.6 Artificially generated input data set for the second experiment 96
4.7 Change of total rough-fuzzy entropy with the number of iterations for the data

. set shown in Fig . 4.6 96

. . . 4.8 Change of total rough-fuzzy entropy for the data set with first level bids 99

. 5.1 A typical fully connected feedforward neural network 104
5.2 Top: No . of iterations vs . fuzzy mean square error of an FFNN . Bottom: NO .

. of iterations vs fuzzy cross entropy of an FFNN 114

5.3 Configuration of feedforward neural networks using evolutionary programming 120
. 5.4 Spread vs . diversity of a population of networks 125

Top: No . of generations vs . fuzzy mean square error of an FFNN . Bottom:
No . of generations vs . no . of hidden nodes 127

. Two equivalent networks with different genotype representations 130

Fuzzy K-means algorithm . 137

. Evolutionary programming-based fuzzy clustering algorithm 139
Modified fuzzy K-means algorithm . 144
Top: Eight different Gaussian distributions are used to generate a data set

artificially . Bottom: Clustered output by the proposed clustering algorithm 146

Top: No . of iterations vs . fitness curve for the best set of clusters in the
proposed clustering algorithm . Bottom: No . of iterations vs . no . of
clusters for the best member of the population 147

Clustered output by fuzzy K-means algorithm for the data set shown in
Fig . 6.4. 148

A typical fuzzy-rough neural network with three input nodes. four hidden
. nodes and two output nodes 151

Equivalent sets of clusters with different genotype representations 155

A modular network with S modules or subnetworks 163
Training of the proposed modular neural network 168

Testing of the proposed modular neural network 169

Rough sets in one and two dimensional domains 184

LIST OF TABLES

2.1 Reiative merits of artificial neural networks. fuzzy logic. evolutionary com-
putation and rough sets . 39

2.2 Variations in players' bids . 63

3.1 Distribution of hand patterns . 68

3.2 Sample hands generated by the shuffling program 69

3.3 Mean square error of the 1-Level network after training 72

3.4 Bids made by the 1-Level network . 73

3.5 The bids made by the 1-Level and 2-NT networks for some hands 75

3.6 Mean square error of the 2-NT network after training 78

3.7 Bids made by the 2-NT network . 78

3.8 Classification performance of FFNNs with BP algorithm for first level bids 80

3.9 Classification performance of FFNNs with BP algorithm for second level bids 80

3.10 Classification performance of FFNNs with BP algorithm for third level bids 80

4.1 Importance of features against the number of iterations for the data set
. . shown in Fig . 4.4 93

4.2 Importance of features against the number of iterations for the data set
shown in Fig . 4.6 . 97

4.3 Classification performance of FFNNs with BP algorithm for first level bids .
The inputs are modified feature vectors 98

4.4 Classification performance of FFNNs with BP algorithm for second level
bids The inputs are modified feature vectors 99

4.5 Classification performance of FFNNs with BP algorithm for third level
bids . The inputs are modified feature vectors 99

5.1 Classification performance of FFNNs with the BP algorithm for first level
bids . Both crisp and fuzzy objective functions are used 113

5.2 Classification performance of FFNNs with the BP algorithm for second
level bids . Both crisp and fuzzy objective functions are used 113

5.3 Classification performance of FFNNs with the BP algorithm for third level
bids . Both crisp and fuzzy objective functions are used 115

5.4 Classification performance of FFNNs with the BP algorithm for first level
bids . Classification results for both configured and nonconfigured FFNNs

. are shown 128

5.5 Classification performance of FFNNs with the BP algorithm for second
level bids. Classification results for both configured and nonconfigured
FFNNs are shown . 128

5.6 Classification performance of FFNNs with the BP algorithm for third level
bids. Classification results for both configured and nonconfigured FFNNs
are shown . 128

6.1 Relationship between the parameters used in fuzzy-rough neural networks
and input space . 152

6.2 Comparative classification performance of FFNNs and FRNNs for first level
bids . 154

6.3 Comparative classification performance of FFNNs and FRNNs for second
. level bids 154

6.4 Comparative classification performance of FFNNs and FRNNs for third
. level bids 154

. 7.1 Final classification results for opening bid problem 171

NOTATIONS
English Symbols

3C
h
K
Mhc

Mf c
MPC
m
N
Af
n
net

9
P
Q k

Number of classes
cth output class
Distance between two clusters
Euclidean distance between two vectors
Mean square error
Average dispersion
Fuzzy clusters
Fuzzy integral
Output function for hidden and output nodes
of a feedforward neural network
Fitness of a member of a population
Fuzzy measure
Number of equivalence classes or number of
clusters or number of hidden nodes
Entropy
Output of the modules in a modular network
Number of clusters
Hard classification
Fuzzy classification
Possibilistic classification
Mean 4

Dimension of input pattern vectors
Normal random number
Number of patterns
Activation value
Output of a node for pth input
Probability
Probability density
Number of clusters in the kth class
Index of fuzziness
Set of real numbers
Radius of a cluster
Number of modules
Number of patterns from kth class
Temperature
Target or desired output of a network
Fuzzy partition of X
Uniform random number
Total fuzzy hypervolume
OWA operator

English Symbols
(Continuation)

Greek Symbols

Miscellaneous Symbols

: Weight vector
: Universal set
: Input pattern
: Modified feature vector

Set of outputs generated by all modules
Covariance matrix
Subset of E
Constants lying in between 0 and 1
Learning rate constant in feedforward neural networks
Parameters used in parametric estimation
Rough-fuzzy membership function
of x for the output class A
Bandwidth of a membership function
Constant used in Sugeno's measure
Fuzzy membership value of x in the set A
Number of ofhprings
Output of a module
Standard deviation or width of a cluster
Fuzzy-rough membership function of x
for the output class A
Empty set
Output vector from all classifier modules
Weights given in OWA operators

: Cardinality of x
: Distance between the origin and x
: Upper approximation of the set A
: Lower approximation of the set A
: Equivalence class in X I R that contains x
: Transpose of x
: Ofkpring of x

ANN
B P
EC
EP
FFNN
FKM
FRNN
FKNN
FMLE
KNN
OWA
PKNN

ABBREVIATIONS

: Artificial Neural Network
: Backpropagation
: Evolutionary Computation
: Evolutionary Programming
: Feedforward Neural Network
: Fuzzy K-Means
: Fuzzy-Rough Neural Network
: Fuzzy K-Nearest Neighbours
: Fuzzy Modification of Maximum Likelihood Estimation
: K-Nearest Neighbours
: Ordered Weighted Average
: Possibilistic K-Nearest Neighbours

Chapter 1

INTRODUCTION

Human beings apply their classification ability to perceive patterns in natural scenes,

stock market analysis, mental processes and in many other fields. It would be possible to

build a new breed of intelligent machines if the human classification mechanism can be

successfully emulated on machines. However, this goal appears to be difficult. One major

reason behind it is the presence of uncertainties at different stages of the classification

process. Presence of uncertainties may affect the classification process. The problem is

made simpler by ignoring the uncertainties at every stage of the pattern classification

process, but it results in an inevitable loss of information. The objective of this study is

to demonstrate that incorporation of the knowledge in form of the uncertainties indeed

enables us to design better pattern classifiers. In this thesis, the role fuzzy, rough and

probabilistic uncertainties in a given classification task are discussed. This work illus-

trates the use of modular classification approach to handle the uncertainties efficiently

in complex pattern classification tasks. The modular approach breaks the classification

task into several subclassification tasks, solves each subclassification task, and eventually

integrates the subclassification results to obtain the final classification result. In other

words, partitioning of the classification task is carried out such that each subproblem

can be solved in a module by exploiting the local uncertainities and the results of all the

modules can be combined by exploiting the global uncertainities. The performance of the

proposed approach is illustrated for the opening bid problem in Contract Bridge game.

1.1 Background: Problem Solving with Uncertainty

Importance of pattern recognition: Intelligence implies the ability to think, reason,

learn and memorise. It is generally related to the human cognitive process. The fact

that the human cognition process is marvellously efficient and effective poses a question

to the scientists: Can some of the functions and attributes of the human reasoning be

emulated on a machine? The reasoning can be for the tasks like classification, grouping,

and prediction. The issues involved in these reasoning tasks are discussed in the field of

pattern recognition.

Exploitat ion of uncertainties may improve the pat tern recognit ion process:

Many pattern recognition tasks in real life involve uncertainties at various stages. For

instance, the input data to a pattern recognition system may have uncertainties due to

randomness in the system generating the data or due to errors in the measurement of the

data. Uncertainties may also arise in the selection and extraction of the features from the

input data. The output of a recognition task may be vague too. Finally, the knowledge

captured in the form of cause and effect relation is generally soft because the relationship

between the input features and the output can be imprecise or only partially correct.

However, human reasoning process is able to deal with these uncertainities effortlessly to

obtain satisfactory solutions to many pattern recognition problems. Moreover, the deci-

sions based on the soft relations or constraints seem to be robust against small variations

in the parameters or features at every stage. In fact, these variations or uncertainties may

be helping the human beings with updating the acquired knowledge, and thus, helping in

the process of learning.

Unsolved aspects and objective: For solving pattern recognition problems on a

machine, normally crisp quantities are derived from the uncertain data or information

available at every stage. The problem itself is solved using an algorithm consisting of

unarnbigious sequence of processing steps. It is likely that the performance of a pat-

tern recognition system may improve significantly in terms of accuracy, robustness and

learning ability, if the system is designed to deal with ambiguities at different stages of

processing the information. This requires identification of the sources of uncertainties

and capturing the uncertainties in a suitable form for incorporating them for solving the

pattern recognition problem on a machine. The objective of this study is to demonstrate

the significance of incorporating the knowledge of the uncertainties for some real world

pat tern recognition problems.

1.2 Issues in Pattern Classification

Pattern classification is chosen for the study: There are several pattern recognition

tasks, which are relevant for this study, such as pat tern classification, pat tern storage,

pat tern clustering, associative memory recall and pat tern mapping. This thesis considers

pattern classification tasks for discussion throughout the study. The task of pattern clas-

sification is defined as a search for structures in a pattern set, and subsequent labelling of

the structures into categories such that the degree of association is high among the struc-

tures of the same category and low between the structures of different categories [Bez81].

Pattern classification finds extensive applications in script recognit ion, face recognition,

speech recognition, speaker recognition, ECG analysis, radar and sonar signal detection,

weather forecasting, data mining, etc. [TG74] [Fuk89] [BP92].

Presence of uncertainty in pa t te rn classification: In a pattern classification task,

the input data is generated by a source, and the data is measured by a set of sensors. The

sensed data is used to extract some relevant features, which in turn are used to associate

class labels corresponding to the problem. To implement the pattern classification task

on a machine, one needs to characterize the associated uncertainties at different stages.

Some of the uncertainties may be identified as resolution, probabilistic, fuzzy and rough

uncertainties. Resolution uncertainty is due to sensors, probabilistic uncertainty is due to

the randomness in physical system generating the data. Fuzzy uncertainty [KY95] [PM86]

is due to the vagueness in the human interpretation of the data at the feature level,

class labels or may be at some intermediate levels. Rough uncertainty [Paw911 is due to

incomplete information or knowledge at various stages.

Example: Let us consider an example of a pattern classification task to illustrate these

uncertainties. Suppose an artificial vision system analyzes a digital image of a dice. Based

on the evidence gathered, the system might suggest that the top face of the dice is either

a 5 or 6, but cannot. be more specific. This kind of uncertainty, known as resolution

uncertainity, arises from the limitations (for example, sensor resolution) of the evidence

gathering system. Again, randomness is involved when the outcome of a dice is predicted

before the dice is cast. This uncertainty, which arises due to the chance or randomness,

is called probabilistic uncertainty. On the other hand, if one is asked to interpret the top

face of the dice as, say high, the uncertainty appears due to vagueness. This is called

fuzzy uncertainty. In this example, rough uncertainty is absent.

Issues: The issues involved in modeling human classification mechanism on a machine

are

(a) Identification of the uncertainties involved in the chosen classification task.

(b) Representation of the problem with uncertainties on a machine. It involves repre-

sentation of the input, output and the knowledge of the problem at various stages.

(c) Development of a methodology to exploit the uncertainties for solving the classifi-

cation problem.

1.3 Scope: Study of Uncertainties in Opening Bid Problem in Bridge Game

Contract Bridge Problem is chosen to illustrate the efficacy of the proposed

approach: In order to demonstrate the significance of the uncertainties for solving a

pattern classification problem on a machine, the "opening bid" problem in the game of

Contract Bridge has been chosen. Contract Bridge [Khe88] is a card game played in two

stages (for more details see the Appendix A). The aim is to maximize the points gained,

which depend directly upon the number of tricks a side can win. In the first stage, both

the players of each side make bids. Finally, through a bid the player stakes a claim for

the denoted number of tricks. In practice the first few bids are used by the players to

convey information about their hands. In the second stage, the cards are played out to

see if the highest bidder can fulfill the contract.

In Contract Bridge a player makes a bid to convey information about the thirteen

cards in his hand. The bid made by the first player in the game is called the 'opening bid'.

He makes one of the permitted bids based only on the patterns of the cards in his hand,

as he has no a prion' knowledge of the cards in the hands of the other three players. In

the opening bid problem, the input is the distribution of the thirteen cards in the player's

hand, and the output is the legal bid the player makes. It is assumed that the bid is to

be made according to standard conventions, so that no artificial conventions are involved.

The aim is to capture the human reasoning process in the opening bid problem based on

the real input-output pairs of the data collected from players of the Bridge game.

Reason for choosing Contract Bridge Game: One reason for choosing this particular

problem for illustration is that it is easy to collect the data. Moreover, the input is the

crisp data of the thirteen cards pattern, and hence, there is no resolution uncertainty in

the problem. In addition, there is no noise in the input representation. In many pattern

classification problems, preliminary processing of the data (e.g., speech signal) is essential

to extract parameters or features. This in turn may result in loss of information a t the

input stage itself. Expert behavior in games, on the other hand, does not depend on any

of these sensory interactions. This is particularly important if one is to generate faithful

reproductions of human cognition. This is relevant if the objective is not only to attempt

a task typical of humans, but to also try and mimic the human way of doing it. When

the goal is to emulate human expertise, one has to be careful in selecting those areas that

can best be modeled without too many simplifying assumptions [KR89].

In spite of the simplicity in the representation, the opening bid problem is still very

complex. For example, all the hands are not equally likely, and hence, learning all the

hands equally well is not possible. This is true especially, since the hands corresponding

to the higher level bids are very rare. Therefore, one problem is how to learn the rare

hands along with the frequently available hands. In addition, for a given hand, the same

player may make a different bid at a different time, which illustrates the variability in

his reasoning process. This variability is present because the player changes his strategy

based on his experience, vulnerability, etc. Since it is impossible to quantify the influence

of these subjective qualities, two hands may appear same or similar, although they are

not if the unaccounted features are also considered. Two hands with same or similar

patterns may be classified to two different classes. This implies the presence of rough

uncertainity in the bidding process. The output bid can be fuzzy. For example, the bid

can be neither completely one "Diamond" nor one "Spade". In this thesis the following

issues are addressed:

1. How to represent the input hand pattern on a machine and how to interpret the

output bid.

2. How to develop methods to effectively model and classify the input hand pattern to

an output bid. In particular, how to take care of the rough, fuzzy and probabilistic

uncertainty while modeling the bidding system.

In Bridge game, hand patterns containing seven cards or longer suit constitute less

than 5% of the total possible number of hands. Therefore, to make the problem simpler,

the study is kept limited only up to third level bids. However, it must be noted that this

work is not intended to solve the bidding problem. Rather it illustrates the development

of a pattern classification methodology based on the uncertainties associated with the

given classification process.

Portabil i ty t o o ther problems: The uncertainty-based pattern classification method-

ology may also be relevant for problems in vision, speech and other decision making fields,

where a large part of the information is lost in representing the problem on a machine.

1.4 Proposed Approach for Capturing the Reasoning Process in Opening Bid

Problem

The goal of this study is to develop a pattern classification technique based on uncer-

tainties a t different stages to capture the human reasoning process. Initially, we survey

various existing techniques for pattern classification. We focus on the role of uncertainties

in these classification techniques. Then an attempt is made to build a feedforward neural

network [Yegg81 for the opening bid problem. Artificial neural network is chosen as a

tool because it offers various advantages like incremental learning, robustness, universal

approximation capability, etc. However, experimentally it has been found that a single

monolithic neural network model may not be suitable for the complete classification task.

Therefore, based on domain specific knowledge, the monolithic classifier is broken into

several modules such that equiprobable classes and overlapping classes are kept in the

same module. It aids, 1) to learn hands with less frequent patterns and highly frequent

patterns equally well, 2) to deal with fuzziness among the close classes locally, and 3) to

deal with roughness within each module locally. A post-processor treats the fuzzy and

rough uncertainities globally, and it combines the results from all the modules to yield

the final classification result.

Following the above track, the input representation has been fine tuned separately

for each module using the concept of rough-fuzzy sets [DP92]. Each module can be a

classifier that relies on the principle of direct classification or classification through clus-

tering [BezSl]. In the direct classification approach, the whole feature space is directly

analysed to delineate the output classes. Classification through clustering approach in-

volves initial clustering of a subset of patterns from the original feature space, and sub-

sequent partitioning of the whole feature space based on the clusters obtained. Following

the first approach, a feedforward neural network is used for each module. These networks

are trained by backpropagat ion algorithm with fuzzy objective functions. Thereafter, each

such network is configured using evolutionary programming [Fog951 technique. Following

the second approach, i.e., classification through clustering, the input data set is optimally

classified using evolutionary programming-based fuzzy clustering technique. Next, using

these clusters a fuzzy-rough neural network is evolved to establish the input-output rela-

tionship. Thus, several modules are constructed either by the direct classification method

or by the clustering method. The evidence supplied by these modules are aggregated by a

post-processor which is based on fuzzy integral. Finally, a modular network consisting of

feature analysers, subclassifier modules and a post-processor (Fig. 1.1) is obtained. The

4 ,

x +.

flow of the ideas described in this thesis is depicted in Fig. 1.2.

Module 1

1.5 Organization of the Thesis

y,
b.

t

Module S

*

F A S

The organization of the rest of the thesis is as follows:

\

+.

4 ,

4 s 1
* +

Fig. 1.1: A modular network with S different modules for the opening bid

problem. Initially, the input feature vector (x) is modified separately for

each module through a feature analyser (FA). The modified feature vector

yi, i = {1,2, . . . , S) is fed to the module connected to the ith feature anal-

yser. Each module can be a feedforward neural network or a fuzzy-rough neural

network. The out puts of all the modules, i.e., {el, e,, . . . , c,), are fused by a

fuzzy integrator (FI) to obtain the final classification result.

Ys
. b.

Chapter 2 is devoted to review different classification stages involved in pattern clas-

sification. It also delineates different paradigms used for the classification stages.

Specifically, attention has been paid on the manipulation of the various uncertaini-

ties present in the classification process. In a complex pattern classification task,

modular approach is an attractive approach to handle the uncertainties efficiently.

Later part of this chapter reviews several varieties of modular classifiers.

Chapter 3 explores the possibility of capturing the implicit relationship in bidding a

Bridge hand using an artificial neural network. Issues like the role of uncertaini-

FA 1

Module 2
y,

C

I

4 F A 2
b

Motivation:
Pattern Recognition

uncertainties in
pattern classification

bid game in Contract
Bridge Bidding

I Comprehensive review
of pattern classification

techniques I
opening bid problem

(modular neural

I
-

Feature representation
using rough-fuzzy sets I

Direct classification by Classification based

neural network modules on clustering

I I

with fuzzy objective
function

Clustering using
evolutionary

Design of optimal Design of optimal
modules using
evolutionary modules by

FRNN

I Integration of results
by fuzzy integral

Fig. 1.2: Flow of ideas across the thesis. The terms ANN, BP, FFNN and
FRNN mean artificial neural networks, backpropagation, feedforward neural
networks and fuzzy-rough neural networks, respectively.

ties, input representation, possible architectures for the network are studied. It

was found experimentally that it is difficult to train a monolithic neural network

for the opening bid problem. This chapter suggests the use of a modular neural

network for attacking the bidding problem. The opening bid classification problem

is partitioned into three subclassification tasks, and one module is assigned for each

subclassification task.

Chapter 4 focuses on fine tuning the input representation for a module based on the

class discriminatory capability of the features for the output classes present in

the module. Since both roughness and fuzziness are present in the opening bid

problem, a rough-fuzzy entropic measure is proposed to quantify the rough-fuzzy

uncertainty associated with each feature. The rough-fuzzy entropy corresponding to

each feature is iteratively minimized to quantify the class discriminatory capability

of the feature. These quantified values are used to derive the modified feature

vectors for each module.

Chapter 5 describes one approach of capturing the relationship between the modified

feature vector and the output classes of a module through direct classification. It

involves partitioning the modified feature space of a module into several decision

regions or output classes. The boundary between any such two regions is fuzzy. This

chapter employs feedforward neural networks to capture the relationship between

the modified feature vector (crisp) and the output classes (fuzzy) present in each

module. Backpropagation learning algorithm with fuzzy objective functions are

used to train the networks. In addition, evolutionary programminpbased technique

is applied to configure each network optimally.

Chapter 6 examines clustering-based approach to capture the input-output relation in

each module. In this approach clustering of the modified feature vectors is followed

by labelling of each cluster with a class label. This chapter proposes a technique

to construct a classifier module in presence of fuzzy and rough uncertainties. The

modified feature vectors are clustered using an evolutionary programminpbased

fuzzy clustering algorithm. The relationship between a cluster and the output class

labels are estimated through the fuzzy-rough membership functions associated with

each input pattern. Using the fuzzy-rough membership functions, a fuwy-rough

neural network is constructed to relate the input and output.

Chapter 7 combines the information supplied by all the modules using a fusion technique

based on Sugeno's fuzzy-integral. In the earlier chapters, the original classification

task is distributed among small modules, and the modules have been trained and

configured to deal with the uncertainities locally. Here, the outputs of all the

modules are treated as evidence, and they are fused in a non-linear fashion based

on their importance. The importance of each evidence is determined using the

fuzzy-roughness associated with the evidence. The final class label of an input is

the output class corresponding to the maximum fuzzy integral value.

Chapter 8 concludes the thesis, by summarising the work and indicating the future

directions of using uncertainties in modular neural network classifiers.

Chapter 2

MODELING PATTERN

CLASSIFICATION PROBLEMS

2.1 Introduction

In the last few years, there has been a large upswing in research activities in the prob-

lems of pattern classification [DH79] [Fuk89] [Bow84]. Although far away from human

classification ability, machine classification techniques attempt to mimic the human clas-

sification mechanism in several stages. In this chapter we discuss the functions performed

by these stages, the uncertainities pertaining to them, and the working principle of the

various techniques used for these stages. This discussion includes some uncertainty driven

techniques like statistical, fuzzy and rough approaches. When the classification problem

is complex, one greedy approach to solve the problem is modular classification approach.

Following the principle of 'divide and conquer, modular approach breaks the classification

task into several subclassification tasks, solves each subclassification task, and eventually

integrates the subclassification results to obtain the final classification result. In other

words, partitioning of the classification task is carried out such that each subproblem can

be solved in a module by exploiting the local uncertainities, and the results of all the

modules can be combined by exploiting the global uncertainities. Later part of this chap

ter summarises the architecture and working principle of some of the existing modular

classifiers.

The organization of the chapter is as follows: In section 2.2 we describe how machines

are used to mimic human classification mechanism. It reviews several methods to perform

classification process on a machine. Section 2.3 analyses issues and architectures of mod-

ular classifiers. Section 2.4 attempts to frame the Contract Bridge opening bid problem

as a pattern classification problem.

2.2 A Review on Pattern Classification

A pattern is a description of an object [TG74]. A pattern can be a concrete item which

can be recognized by human sensory organs, like eyes and ears [TG74]. Image pattern,

speech pattern, hand pattern of a Bridge player, etc., are the examples of concrete items.

On the other hand, a pattern may be an abstract item, like a pattern of thought process,

which we can recognize with our sensors like eyes and ears closed [TG74]. The task

of pattern classification is defined as a search for the structures in a pattern set, and

subsequent labelling of the structures into categories such that the degree of association

is high among the structures of the same category and low between the structures of

different categories [Be28 11 [KY95]. In this chapter we address the pat tern classification

problem based on the concrete patterns only.

In section 2.2.1 we describe how machines are used to mimic human classification

mechanism. Section 2.2.2 discusses several methods to represent the classification pro-

cess on a machine. It also describes the basic five stages involved in a machine-based

pattern classification technique. Section 2.2.3 analyses several aspects of the first stage,

i.e., feature extraction stage. Section 2.2.4 reviews a few methods used for the second

stage, i.e., how to interpret the structures present in the input data set. Section 2.2.5

discusses various current methodologies to discover the structure present inside the data.

Issues involved in the last stage, i.e., generalization, are discussed in section 2.2.6. The

relationships among the topics discussed in this section are illustrated in Fig. 2.1.

2.2.1 How Human Classification Mechanism is Mimicked on Machines

Let us take a real life pattern classification example. Suppose, one is asked to determine

whether a particular person is a European or an Asian. He cannot do it unless he has

already seen a set of European and Asian people, or someone has told him about the

difference explicitly. While observing a set of European or Asian people, he gathers

some experience about them. In other words, gathering experience means, based on

certain characteristics of these people, he extracts some common property from them.

For instance, he watches their height, eye color, etc., and based on that he realizes most

of the Europeans are tall and their eye colours are not black. The opposite is true for

the Asians. Now, he tries to find whether a new person is tall or his eye color is black,

and based on that he can determine that person's identity (assuming that the person can

come only from any one of those two classes). If he can decide the identity of most of

Pattern Classification on Machines

I rn Mimicking Human Classification on Machines

1 rn Process Description

I - Symbolic Process Description

1 - Numeric Process Description

* Relational data
* Object data

1 rn Feature Analysis

- Preprocessing

- Feature Selection
- Feature Extraction

1 rn Structure Analysis

- Direct Classification
- Classification Through Clustering

I 1 rn Abstraction: Search for the Structure

- Search During Training

* Supervised
r Reinforcement
* Unsupervised 1 - Search During Testing

1 rn Classifier Types

- Deterministic Classifiers: Crisp Rule Base System

- Statistical Classifiers
* Parametric
* Nonpararnetric
* Semiparametric

- Fuzzy Classifiers

* Fuzzy relation
+ Fuzzy pattern matching
+ Fuzzy clustering
t Fuzzy K-nearest neighbors

- Rough Classifiers

- Hybrid Classifiers

Neuro-Fuzzy
* Neuro-Rough
* Neuro-Evolutionary

Fuzzy-Rough
1 Fuzzy-Evolutionary

I
1 Rough-Evolutionary

I rn Generalization
I

Fig. 2.1: Relationships among different topics discussed in the context of
pat tern classification (section 2.2).

persons he encounters, then he is called intelligent. It is because his ability to extract the

common property out of these two classes is good.

In order to mimic the above mentioned human classification mechanism on a ma-

chine, several instances (e.g., a set of Europeans and Asians) of the problem are collected.

Care should be taken to collect the sample data randomly from the whole population.

To represent these instances on a machine, typical properties, termed as features (e.g.,

height and eye color), are extracted from each instance. These features represent the

given problem in a higher dimensional feature space. Feature extraction is a difficult

task as less number of features may not be sufficient to represent the problem, whereas

too many features can affect the classifier system (this phenomenon is known as curse of

dimensionality [Bis95]). In addition, we do not know how many features are sufficient, or

which feature is necessary (e.g., in the above example color of each person's cloth need not

to be noted). The features form some structures in the feature space. The interpretation

of the structures depends on the pattern recognition task and situation. For instance, in

recognizing English characters, twenty six different class structures are present. On the

other hand, in distinguishing English characters from Arabic characters, only two struc-

tures are interpreted [Fu68]. Now, the task of pattern classifier is to search the structure.

This search becomes complicated because of the presence of uncertainties associated with

the structure. Thus, the whole pattern classification process involves manipulation of

the information supplied by the instances. The instances contain the information about

the process generating them, and the extracted features reflect this information. The

structures present inside the features represent the information in an organized manner

so that the relationship among the variables in the classification process can be identified.

Finally, in the last step, a search process recognizes the information from the structure.

Now, if a new pattern is encountered, the machine detects the structure in which the input

pattern belongs, and based on the structure the pattern is classified. Therefore, once the

structure is found, the machine is capable of dealing with new situations to some extent.

The ability to deal with new situations can be evaluated by testing the ciassifier with

several new examples, for which we know the answers for comparison. If the performance

of the pattern classifier with this so called test data is good, then we say that the machine

has generalized well.

An important assumption in the pattern classification task (for humans as well as

machines) is that nature is by and large stable-what is known yesterday is true for today

and tomorrow. In other words, it means that to some extent today's experience is valid

tomorrow. This assumption is essential; otherwise, there would have been no meaning of

gathering experience through learning and using this experience further for generalization.

Realizing the pattern classification task by a machine becomes complicated due to

various uncertainties. A few of them are known, among them fewer we can model. Some

of them are

Resolution uncertainty: Caused by inaccurate measurement in measuring in-

struments.

Probabilistic uncertainty: Caused by randomness in physical systems.

Fuzzy uncertainty: Caused by vagueness in human reasoning.

Rough uncertainty: Caused by our incomplete knowledge about the classification

system we are trying to model.

Although all the above four are uncertainties, they are basically different from each

other. The fuzzy uncertainity differs from the probabilistic uncertainty and resolution

uncertainty, because it deals with situations where set-boundaries are not sharply de-

fined. The probabilistic uncertainity and resolution uncertainity are not due to the am-

biguity about the set-boundaries; rather about the belongingness of elements or events

to crisp sets [PB94]. Specifically, fuzziness deals with vagueness between the overlap

ping sets [Be2941 [KY95], while probability concerns the likelihood of randomness of

the phenomenon. On the other hand, rough sets deal with coarse nonoverlapping con-

cepts [DP90] [DP92]. Both roughness and fuzziness do not depend on the occurrence

of the event; whereas probability does. Fuzziness lies in the subsets defined by the lin-

guistic values, like tall, big, whereas indiscernibility is a property of the referential itself,

as perceived by some observers, not of its subsets [DP92]. In fuzzy sets each granule of

knowledge can have only one membership value to a particular class. However, rough

sets assert that each granule may have different membership values to the same class.

Fuzzy sets deal with overlapping classes and fine concepts; whereas rough sets deal with

nonoverlapping classes and coarse concepts. In a pattern classification problem, all or

some of the above uncertainities may be present.

For simplicity, most of the pattern classification problems can be decomposed into five

different stages. f iom an abstract point of view, the division of the classification problem

into five different stages may seem to be quite arbitrary. The entire process can be viewed

as a single mapping from the object space to the decision space. Optimum mapping is

the one for which the probability of error is minimum. In practice, this leads to a very

Fig. 2.2: Relationships among different steps involved in pattern classifica-

tion. In many cases certain stages can be skipped. For instance, from process

description we can go to generalization directly without going through feature

analysis and structure analysis.

Process
description

A

complicated calculation, which is in fact currently impossible to solve [Dud70]. In many

cases depending upon the given problem certain stages can be skipped (Fig. 2.2). For

instance, in a few applications it is possible to consider the raw input data as features,

and hence, there is no need of any separate feature analysis stage. The five stages are

discussed in the next five subsections.

1
Feature
analysis

A

2.2.2 Process Description

The first stage concerns the way the classification process will be represented. The fol-

1

Structure

y

lowing are some of the methods for this stage:

c

4

for

structure
Generrlimtion

2.2.2.1 Symbolic process description

The classification process can be represented in terms of different symbols. In the decade

of the 1980s symbolic approach became a dominant theory to explain how intelligence

is produced and how it can do certain useful tasks. Using this method it is possible to

write programs that work with symbols rather than numbers. Symbols can be equal or

not equal, and that is the only relationship defined between the symbols. Hence, it is

not possible to know if one symbol is less than another symbol. Of course, in symbol

processing programs, the symbols do get represented by numbers. Besides the use of

symbols, the symbol processing programs consists of a large number of rules. The most

significant outcome of the symbolic approach is the development of the knowledge-based

ezpert systems [LS95]. It tends to capture the higher level human reasoning functions in

the form of a set of if-then rules or knowledge. A typical set of two symbolic rules in

chromosome identification can be

If the input is then the output class is C1

If the input is c then the output class is C2

If a new chromosome is encountered, then the structure of the chromosome is matched

with the if part of each rule. The class label of the new chromosome is the class label

corresponding to the then part of the matched rule.

Eventhough in symbolic approach symbols can only be equal or not equal, and there

are no other relations defined for them, quite often "symbolic" programs end up using

integers or reds as part of the program, and it is called symbolic anyway eventhough by

the strictest standard doing so no longer makes the program completely symbolic, only

partly symbolic. Drawbacks of the symbolic approach are the following: (a) It does not

take care of pattern variability, (b) it needs large number of rules when the inputs are

continuous, and (c) it does not employ efficient learning mechanisms to acquire the rules.

Symbolic approach is useful in syntactic pattern recognitaon technique [Fu82]. This a p

proach deals with the patterns which are rich in structural information, i.e., the patterns

that contain most of their information in their structures, rather than in numeric values.

In this approach the input patterns are divided into several parts, and one symbol, called

primitive, is assigned to each part. Each primitive has no direct relationship to the struc-

ture of the pattern. A pattern is represented by the knowledge about how primitives must

be combined to make up the entire pattern, and how primitives are related to each other.

In the syntactic met hods, building classifiers consist of constructing rules for combining

primitives to obtain the structure of a given object. The methods are formulated around

the concept of formal languages with each primitive represented as a terminal symbol and

a grammar inferred for each pattern class. When a new pattern comes, it is represented

as a set of primitives, and the primitives are matched against the antecedent parts of the

rules to determine the output class. The pattern grammar used for these rules can be

made more effective by using stochastic grammar (in presence of randomness) or fuzzy

grammar (in presence of vagueness). It should be noted that existence of a recognizable

physical structure is essential for the success of the syntactic approach. Syntactic pattern

recognition research has been largely confined to pictorial patterns, which are character-

ized by recognizable shapes, such as characters, chromosomes, finger prints, etc. Many of

the major problems associated with the design of a syntactic pat tern recognition system

have been only partially developed. For instance, not much progress has been achieved

in deriving general training algorithms for syntactic systems [TG74] [PM86] [Fu68].

2.2.2.2 Numerical process description

The most familiar choice of representing objects or patterns are by numbers. Unlike

symbolic approach, in numerical approach, the information about the classification process

is extracted from the following types of numerical data:

Object data: Object data can be the numerical representation of some physical

entities, like images and hand patterns of a card game.

Relational data: It may happen that, instead of an object data set, we have

access to a set of numerical relationships between pairs of objects; that is, the

relationship represents the extent to which the objects are related. For example, in

numerical taxonomy, the relationship between species families can be assigned by

human experts. Here, we do not have any access to the object or species, rather the

relationship among them. Relational data are found in diverse application fields,

e.g., cognitive maps, influence diagrams, etc. [Bez96].

In this review, we shall discuss the other stages of pattern classification process as-

suming the representation is numeric. In addition, the word "data" will always imply the

object data.

2.2.3 Feature Analysis

Feature analysis can be defined as a method that is used to explain and improve the data

collected during the process description. It consists of the following three steps:

Preprocessing: A preprocessor is used in this step to perform some or all of the follow-

ing functions: (a) Strengthening features, i.e., edges, specific frequencies, etc., (b) pro-

vide invariance to translations, rotations, and scale changes of the input data, (c) noise

suppression, and (d) formatting the processed data for acceptance by the recognition

device [Vig7O].

Feature selection: Feature selection seeks a small number of features by obtaining a

subset from the original set, either by discarding poor features or selecting good ones.

Feature selection can take place by minimizing some objective function. The choice of

the objective function may be classifier independent, or it may be based on particular

classifier's accuracy to judge whether a feature subset is superior to another subset. The

former approach is known as absolute feature selection approach or filter approach and

the later approach is known as perfomzance-dependent feature selection approach or m a p -

per approach [BL98] [SB97] [WAM97]. The objective functions are carefully designed so

that interclass distance of the input data set decreases, but the intraclass distance in-

creases [DH79]. The distances may be Euclidean, Mahalonobis or some other standard

distance measure, or it may be the distance between two probability distributions. The

objective function like mean square error is based on Euclidean distance, and the objective

functions like entropy and divergence are based on the distance between two probability

distributions [Fuk89]. It is also possible to transform or rotate the axes of the input data

set so that the interclass distance decreases and the intraclass distance decreases. Prin-

cipal component analysis and Karhunen Loeve transform are based on this idea [DH79].

Note that in these cases the transformation of axes is actually a linear mapping. A natural

extension of this scheme is nonlinear mapping [Fuk89]. Till now, nonlinear mapping has

not become popular as it is very difficult to handle.

Feature extraction: It deals with developing some new features based on the already

selected features. From preprocessing and feature selection steps, the designer of classifier

obtains the features that he knows or suspects are important. These may prove to be

inadequate, or may provide a format not suitable for the decision mechanism. For exam-

ple, in statistical feature extraction, a sample set of preclassified pat terns is analyzed, and

the statistical information collected from this sample set is used to augment the known

feature list and to reformat the feature profile [Vig70].

The presence of noise, missing attributes, missing attribute values, etc., can make the

feature analysis difficult [FSW97]. In addition, the presence of uncertainties can make

this stage more complex. For instance, the input features may be vague in terms like tall,

almost 5, etc. The features that are present may be insufficient for a particular class.

This creates rough uncertainty in the classification task.

Practically, the methods by which initial features are obtained are often intuitive and

empirical, drawing upon the designer's knowledge about and experience with the problem.

The main guideline here is that the features should be invariant to (or, at least insensitive

to) irrelevant variations, such as limited amount of translation, rotation, scale change,

etc., while emphasizing differences that are important for distinguishing between patterns

of different types. These features are ranked to select only the most important features

(feature selection), and then some new features may be augmented with the extracted

features (feature extraction).

Feature analysis serves several functions. Firstly, by reducing the input patterns to

its essential features, the memory requirement to store the input patterns can be reduced.

Secondly, by reducing the input data to more independent features, a considerable amount

of invariance to exact form is obtained. Finally, by extracting more than the minimum

number of features required, a degree of invariance to noise and background may be

achieved [DL97].

2.2.4 Structure Analysis

The structure (spatial) present in the feature space represents certain common properties

of the feature. Building classifiers may be impossible if such common property is not

present in the data; then even a look-up table scheme would be sufficient. For instance, it

is impossible to capture any common property from a set of names while classifying them

into two classes, below 50 years and above 50 years. Moreover, the feature selection may

not be proper when the feature is deep hidden due to many surface features. In this case

there may not exist any structure a t all. For example, if we represent a large dimensional

parity problem by a string of 0 and 1, then each character of the string does not carry

any common property, which can be utilized to classify the input strings to even or odd

parity. On the other hand, if we extract a feature that represents the sum total of all 0's

and 1's present in the string, then there is certainly a structure. It is because, when this

sum total is odd, it represents an odd parity, and when it is even it represents an even

parity.

Interpretation of the structure in the feature space depends on the method followed in

classification. Let X denote the original population of the data from which the example

data set X has been drawn, i.e., X c X. A C-class classification can be carried out in

the following two ways:

1. Direct classification: X is used to train the classifier, i.e., to delineate the output

classes in X into different decision regions [Bez81]. Therefore, the stmcture in the

space X is directly analysed.

2. Classification through clustering: This technique involves initial grouping or

clustering of X , and subsequent partitioning of the set X based on the obtained

structure. Therefore, the st mcture in the training data space X is analysed. Later,

based on this structure, the structure of the space X is analysed.

In the classification through clustering, the structure is analysed in the space formed by

X. Since this step needs clustering as a prerequisite, we will discuss the basic concepts

of clustering in brief. Clustering can be defined as follows [Bez81] [DJ87] [Har75]: Given

a set X = {x,,x,, . . . ,x,) of feature vectors, find an integer K (2 5 K < n) and a

K number of partitions of X which exhibit categorically homogeneous subsets. There

exists many clustering algorithms. Among them, the simplest and popular one is K-

means clustering algorithm [DH79]. It starts with K random initial cluster centers. The

algorithm considers each input pattern sequentially, and assigns the input pattern to the

nearest (in Euclidean distance sense) cluster center. After the assignment is over for all the

input patterns, each cluster center is updated so that it becomes the mean of the patterns

that are associated with it. Same procedure is repeated for several iterations until there is

no appreciable change in the position of the cluster centers. After clustering, each pattern

belongs to only one cluster, and a structure evolves in the training set X. Most of the

clustering algorithms assume that K is known a priori. To find the approximate value of

K for a given set of data, various methods based on cluster validity exist [DJ87].

Presence of uncertainities may make the boundaries of the classes or clusters over-

lapping. It may also happen that the same cluster represent patterns from more than

one class. It is because the relation between the input structure and the output class la-

bels is one-to-many. Thus, uncertainities make the structure analysis difficult, and these

difficulties are manifested in the next stage.

2.2.5 Abstraction: Search for Structure

This stage involves exploring structures using all the available information so that the

obtained structure can be used for classifying a new sample with unknown class. Math-

ematically, let X denote the feature space from which X has been drawn, i.e., X c X.

A classifier for X is a device or means whereby X itself is partitioned into C decision

regions. Explicit representation of these regions depends on the nature of X (i.e., data),

the way in which the regions are formed (i.e., structure), and the model we choose for

searching [Bez8:1]. X is often employed to "train" the classifier, that is, to delineate the

decision regions in X. The resulting structure may enable the machine to classify subse-

quent observations rapidly and automatically. The training method adopted in this stage

can take place mainly in the following two ways:

1. Supervised: In this process a known set of input-output pairs is used to teach

the classifier system first how to classify, and then let the system go ahead freely

classifying other new patterns. In this case we usually need some a priori informa-

tion, i.e., a training set consisting of a set of input-output pairs, to form the basis

of teaching.

2. Reinforcement: In many classification problems, it is not possible to obtain a

known set of input-output pairs. The output may be known only partially. This

partial information may state that the actual output is "too high" or "50% cor-

rect". Unlike the supervised learning, here the teacher signal only says how bad

a particular output is, and provides no hints on what the right answer should

be [LL96].

It is possible, but not necessary, to conduct the search by first clustering the patterns in

X. The clustering can take place in supervised or unsupervised fashion. In the supervised

clustering, all the training data from a particular class are collected, and the clustering is

carried out on this set of data. In the unsupervised clustering, the clustering is done on

the whole training set.

In some search operations, there is no training. The search operation is left for the

testing phase. Hence, the testing becomes time consuming, and thus, it makes these

algorithms unsuitable for online testing. Some of these algorithms are called lazy algo-

rithms [WAM97].

When a new input comes, it is classified based on in which part of the structure it falls.

However, the boundaries among the different parts of the structure may be ambiguous.

Due to this uncertainty, classifiers can be of the following types:

2.2.5.1 Determinist ic classifiers: Cr isp rule base

If the boundaries of the different parts of the structure are not ambiguous, then the test

pattern can be classified without any uncertainty. It happens in deterministic class$ers.

An example of deterministic classifiers is a crisp rule base system.

Instead of representing knowledge in a relatively declarative, static way (as a set of

things that are true), crisp rule base systems represent knowledge in terms of a set of

if-then rules, a set of facts, and some interpreter controlling the application of the rules

when the facts are given. A typical rule in the rule base is

If the input is 23, then the output class is Cz

Note that this rule is different from the symbolic rule describe in section 2.2.2.1. Here the

input is a number, but in a symbolic rule the input must be a symbol. There are numer-

ous techniques to construct a rule base from a set of data. Among them one important

approach is evolutionary computation (EC) theoretic approach [Fog94b] [BHS97] [Fog98].

EC is a technique to encompass a variety of population-based problem solving techniques

that mimic the natural process of Darwinian evolution. Current research in the evolu-

tionary computation has resulted in powerful and versatile problem solving mechanisms

for global searching, adaptation, learning and optimization in a variety of pattern recog-

nition domains. The main avenues for research in evolutionary computation are genetic

algorithms [Ho175] [Go1891 [Davg 11, genetic programming [Koz92], evolutionary strate-

gies [Sch81] and evolutionary programming [FOW66] [FogSlb] [Fog95]. Genetic algo-

rithms deal with chromosomal operators, while genetic programming stresses on opera-

tors of more general hierarchical structures. Evolutionary strategies emphasize behavioral

changes a t the level of the individuals, whereas evolutionary programming focuses on be-

havioral changes at the level of the species. The common factor underlying all these

approaches is the emphasis on an ensemble of solution structures, and the evaluation

and evolution of these structures through specialized operators that mimic their biolog-

ical counterparts, in response to an ever changing environment. Specifically, all of them

maintain a population of trial solutions, impose random changes to those solutions, and

incorporate the use of selection to determine which solutions are to be maintained into

future generation and which are to be removed from the pool of trials.

From a mathematical point of view, all the EC techniques are controlled, parallel,

stochastic search and opt imizat ion techniques. There are, two different training a p

proaches for exploiting these optimization techniques to evolve the classification rules.

In one method (also known as Pitt 's approach in genetic algorithm community [Mic92]),

each element of the population represents one complete classification rule set. Conse-

quently, the complete population is an ensemble of many rule sets. In the process of

evolution the rules compete among themselves, the weak individual dies, the strong sur-

vives and reproduces. In the other approach (also known as Michigan approach in genetic

algorithm community [Mic92]), the whole population represents only one rule base, i.e.,

each member of the population represents a single rule. The second method is more time

and space efficient. But, it needs, (a) delicate credit assignments , for which a heuristic

method should distribute positive or negative credits among the members of the p o p

ulation, and (b) the members of the population, i.e., different parts of the network, to

cooperate with each other so that they can build the complete rule base [Mic92] [WC96].

For both the training approaches, generally supervised or reinforcement learnings are

used. The difficulties that most of the EC algorithms face are the optimal balance in

exploration and exploitation, and premature convergence. EC keeps a balance between

what already has worked best and exploring possibilities that might evolve into some-

thing even better [CHL96]. But, the balance is not optimal in practice. Moreover, in

spite of the in-built stochasticity, EC algorithm may get stuck in local minima. This kind

of premature convergence takes place mainly when all the new offsprings are similar to

the existing offsprings (thus virtually stops the exploration of new space in the search

domain). In order to reduce these problems, there are various strategies like modification

of EC operators, increasing population diversity, etc.

Crisp rule base can be applied to a classification problem provided the input features

are discrete. To accommodate the continuous features, one approach is to discretize the

input feature with inevitable loss of information. When the input features are distorted

due to noise and measurement errors, the variation in the input features increases rapidly.

If discretization is carried out on this feature set, then the distortion may become very

high, and eventually the classification performance may decrease significantly. Note that

EC does not use any uncertainity inherent to the problem; it introduces probabilistic

uncertainty externally to make the search operation more efficient.

2.2.5.2 Statist ical classifiers

In many classification problems, which deal with measuring and interpreting physical

events, statistical considerations become important in pattern recognition because of the

randomness in the pattern generation process. Here the randomness comes from the

physical process which generates it. For instance, in the Asian-European example, if we

have certain statistical ideas about the occurences of the persons in the two differnt classes,

we can derive a classification technique which is optimal in the sense that, on the average,

its use yields lowest probability of committing errors, provided the cost of misclassification

is equal for all the classes and no cost is associated with correct classification. This

statistically optimal classification technique is a generally accepted standard for classifiers

where the outputs come from [0, 1) and sum of them is equal to 1. Henceforth, these

kinds of classifiers will be called probabilistic classifiers. One such classification technique

is Bayes classification technique. The assumption needed for using the Bayes classifier is

that the feature vectors are random vectors whose conditional density function depends

on its class. Let the class conditional probability density function, p(x(i) , along with a

priori probability (P,) of each class be known. The Bayes classification rule states that

the input x belongs to the class i with probability

The Bayes classifier is defined as the classifier which computes p(i)x), where i =

1,2, . . . , C. The output class label is determined by maximum a posteriori probability.

That is, the class label is c, if p(c)x) = maxi{p(i(x)). While implementing Bayes classi-

fiers, in many cases, we do not have any idea about the input distribution. There are the

following three methods to estimate the class conditional distribution of the inputs.

Paramet r ic estimates: In this approach a functional form p(xli, 8) for the probabil-

ity density p(x1i) is assumed, where 8 is a parameter vector. The parameter vector is

then optimized by fitting the model to the data set. It leads to the parametric estima-

tion of the Bayes classifier. Unsupervised maximum likelihood classifier and supervised

maximum likelihood class~jier are the two classifiers that are based on this idea [Bez96].

The drawback of this method is that the chosen form of parametric function may not be

able to provide a good representation of the true probability density, and the number of

parameters in the model grows with the size of the data set.

Nonparametric estimates: In many pattern classification problems the classification

of an input pattern is based on the training data, where the respective sample size of each

class is small, and possibly not representative of the actual probability distributions. In

these situations, nonparametric models are attractive as they do not assume any particular

form of the density function.

There are mainly two types of nonparametric classifiers. One type consists of proce-

dures for estimating the density function p(x(i) from the sample patterns. The approach

based on Parzen Window falls in this category [DH79]. Another type consists of proce-

dures for directly estimating the a posterion' probabilities p(i1x). It is accomplished by

collecting a set of correctly classified samples, and by classifying each new pattern using

the evidence of the nearby sample observations. One such approach, popularly known as

K-nearest neighbours (KNN) algorithm [DK82], is used as a simple nonparametric super-

vised method for the assignment of a class label to the input pattern based on the class

labels represented by the K-closest (in some distance sense) neighbors of the input. It

can be shown that the error rate of 1-NN (i.e., K = l) is bounded above by no more than

twice the optimal Bayes error rate, and moreover, when K increases with infinite number

of training data, the error rate approaches the Bayes optimal rate asymptotically [CH67].

This algorithm is also a typical example of lazy algorithm mentioned in section 2.2.5. The

advantage of this algorithm is that it does not need any a priori knowledge about the

structure present in the training data. Like other nonparametric techniques, in KNN also

the number of samples is greater than the number that would be required if we know the

form of the density. The demand for a large number of samples grows exponentially with

the dimension of the feature vector. Consequently, when the number of test data is large

or K is large, KNN takes large amount of time.

Semiparametric estimates: This approach is a compromise between parametric and

non-parametric approaches, and it tries to enjoy the advantages of both parametric and

non-parametric approaches [Bis95]. It allows a general class of of functional forms in which

the number of adaptive parameters can be varied independently from the size of the data

set. Artificial neural networks can be regarded as typical examples of this approach.

The Bayes classifier gives optimal classification performance for the probabilistic clas-

sifiers [Bez96], provided the parameters of the input distribution are estimated from the

inputs collected over the whole input space. In practice, the parameters of input distri-

bution are estimated based only on a finite number of training data. As a result, the

performance of the resultant Bayes classifier is no longer optimal, but its performances

approaches the optimal one as the number of input data is made very large (theoretically,

it is infinity). Nevertheless, the Bayes classifier, based on a finite number of training

samples, is used to compare the performance of the other probabilistic classifiers.

Artificial neural network (ANN) [Arb95], a semiparametric model, needs special at-

tention, and in what follows we will describe it in detail. An ANN is an interconnected

assembly of simple processing units or nodes, whose functionality is loosely based on the

biological neuron. The processing ability of the network is stored in the inter-unit con-

nection strengths, or weights, obtained by a process of adaptation to, or learning from, a

set of training patterns [BL96:I [Rip96]. Some of the advantages of using ANNs are [RY95]

1. Any continuous input-output function can be captured by ANNs.

2. ANN models can learn the statistical distributions underlying the input patterns.

Hence, ANN-based classifiers do not need to know the input probability distribution

explicitly.

3. Certain ANN models can act as constraint satisfaction models. Such networks can

be used to represent different domain-specific constraints [RY96], [RY97] [RPY97].

4. Information stored in an ANN is not represented locally, rather it is distributed

over the entire network through synaptic weights. Hence, ANNs are fault tolerant

in the sense that even if some connections are snapped or some of the processing

elements are damaged, performance of the networks is not affected significantly.

5. ANNs take care of pattern variability. Moreover, ANNs do not need any input-

output rule to be known.

6. ANNs can learn incrementally, and hence, they do not need a huge data storage.

7. Other advantages like parallel computation, robustness, etc., make ANNs attrac-

tive.

Based on the architectures, ANNs can be classified into the following three groups:

1) Feedforward, 2) feedback, and 3) feedforward and feedback. Although all these three

types of networks can be used for classification, generally feedforward networks are used

for classification. Here, we shall describe the following three feedforward neural networks

that are useful for classification.

Feedforward neural networks with backpropagation algorithm: A feedforward

neural network (FFNN) with backpropagation (BP) algorithm consist of elementary p r s

cessors arranged in a distributive fashion so that the whole network can classify patterns

in an autonomous manner. Specifically, the network consists of several layers where each

layer contains several processing units (Fig 2.3). There is a complete connection between

the layers, but there is no connection within the layers. The input-output relation is c a p

tured through the change of weights associated with the connections. Given a training

set of input-output pairs {(xl , yl), (x2, y2), . . . , (x,, y,)), the backpropagation algorithm

provides a supervised procedure for changing the weights in an FFNN to classify the

given input patterns correctly. It uses supervised learning mechanism implemented in

two phases. In the forward phase, the input pattern xi is propagated from the input layer

to the output layer, and as a result, it produces an actual output 0,. Then, in the second

phase, the error signal resulting from the difference between yi and oi is backpropagated

from the output layer to the previous layer to update the weights. The weight updating

continues until the error becomes very small [SY96]. Note that the classification mech-

anism adopted here is direct classification. The advantage of this method is that it can

partition the input space X even when the class boundary is very complicated. But the

disadvantage with this approach is that it takes a long time to train, and in many cases

the training may not converge. ..

Radial basis function neural networks: A radial basis function neural network [HH93]

is a three-layer network (Fig. 2.4)) whose output nodes form a linear combination of the

basis functions computed by the hidden layer nodes. The basis functions in the hidden

layer produce a localized response to input stimulus. Hence, they produce a significant

nonzero response only when the input falls within a small localized region of the input

space. Popularly used basis function is of the following type:

where of is the output of the jth hidden node, x is the input pattern of dimension N, m,

and 0; are the center and variance (assume that the variance is same along all dimensions)

Fig. 2.3: A three layered feedforward neural network. It has three input

nodes, three hidden nodes and two output classes. The input is x and the

output is the class confidence values for the classes C1 and C2.

of the Gaussian functions of the j th hidden node, respectively. The hidden node outputs

are in the range from zero to one such that the closer the input is to the center of the

Gaussian, the larger is the response of the node. The output layer node equations are

given by

where oi is the output of the kth output node and wk, is the weight from the j th hidden

node to the kth output node. The class label of the input x is assigned as c where

og = max{o~, oi, . . . , o$). In radial basis function neural networks, the parameters used

in the hidden layer are generally obtained through supervised clustering. The weights

between the hidden and output layer are learned in a supervised fashion using Widrow-

Hoff learning rule [Hay94]. Note that here classification is carried out through clustering.

The advantage of this method is that the training is fast. However, if the estimated number

of clusters and the cluster structure are not close to the original one, the classification

result may be poor.

Probabilistic neural networks: A probabilistic neural network is a three layered feed-

forward network [Spe9O] [RY98] consisting of an input layer, a pattern layer and a summa-

tion layer (Fig. 2.5). The input layer contains N nodes to accept an N-dimensional input

pattern. The pattern layer consists of C pools of pattern units, where Kth pool contains

Sk number of pattern units. Here, C is the number of classes, and Sk is the number of

training patterns for the class Ck. Each node in the pattern layer is connected from every

m4 9%

Fig. 2.4: A typical radial basis function neural network. It has three input

nodes, four hidden nodes and two output classes. The input is x and the

output is the class confidence value corresponding to the classes C1 and C2.

node in the input layer. The summation layer consists of C number of summation units,

one unit for each pool in the pattern layer. Pattern units of the kth pool in the pattern

layer are connected to the corresponding kth summation unit in the summation layer.

Training of the network consists of storing each training vector x j (1 5 j 5 Sk)
of the class Ck as the weight W k j connecting the input layer and the j th pattern unit

in the kth pool of the pattern layer. The connection weight from each pattern unit in

the kth pool and the summation unit for the kth class is assigned as . Note that

the training is a one-pass supervised algorithm, and hence, it is trivial in this case.

For any input vector x, output of the j th pattern unit belonging to the kth pool is * exp (- Ilx - wkj112 /2cij), where c k , is a smoothing parameter for the Gaussian

activation function of that unit. Output of the kth summation unit is [RY95]

The class label of the input x is assigned as c where o: = max{o';, o:, . . . , o 3 -

The problem with this network is that the testing time is very high. To alleviate it,

supervised clustering scheme can be adopted. But, if the estimated number of clusters

and the cluster structure are not close to the original one, then the classification result

may decrease significantly.

Fig. 2.5: A typical probabilistic neural network. It has three input nodes,

four hidden nodes and two output classes. The input is x and the output is

the class confidence value corresponding to the classes Cl and C2.

There exist various other interesting neural networks classifiers like Hopfield networks,

Kohonen's self-organization map (SOM) networks [Hay941 [RY95], adaptive resonance

theory (ART) networks [Hay94], etc.

2.2.5.3 Fuzzy classifiers

The concept of fuzzy sets was first introduced by L. Zadeh in 1965 [Zad65], as a mathe-

matical way to represent the vagueness present in the human reasoning. Fuzzy sets can

be considered as a generalization of classical set theory. In the classical set, an element

of the universe either belongs to or does not belong to a set. That is, the belongingness

of the element is crisp-it is either yes (in the set) or no (not in the set). In fuzzy sets,

the belongingness of the element can be anything in between yes or no; for instance, a

set of tall persons. We cannot identify a person as tall in a yeslno manner, as there

does not exist any well-defined boundary for the set tall [PP96] [ESY92]. A fuzzy set

is mathematically a mapping (known as membership function) from the universe of dis-

course to [0, 11. The higher the membership value of an input pattern to a class, the more

is the belongingness of the pattern to the class [DPSO] [Kan82] [Kan86] [KF93]. There-

fore, any concept that uses fuzzy sets requires the membership function to be defined.

This function is usually designed by taking into consideration the requirements and con-

straints of the problem. Fig. 2.6(a) shows one possible membership function for the set

tall. There are many other possible membership functions for the set tall. Nonuniqueness

I Height (in feet) I

Fig. 2.6: Fuzzy membership functions for (a) fuzzy set tall and (b) fuzzy

number close to 4.

of membership functions may raise a question: How does a designer know which one to

use? In fact, the designer can obtain the membership function from an expert (subjective

computation) or from the data (objective computation) [PP96] [Bezgl] [BP92] [Bez96].

Following the idea of fuzzy sets, the concept of crisp numbers has been generalized to

fuzzy numbers [KG851 (Fig. 2.6(b)). The reasoning with fuzzy sets and fuzzy numbers is

known as fuzzy logic [Kos93].

Since many classical pattern recognition techniques are based on conventional set

theory, fuzzy sets can be fruitfully used to generalize these techniques. In traditional

two-state classifiers, where a class A is defined as a subset of a universal set X , any input

pattern x E X can either be a member or not be a member of the given class A. This

property of whether or not a pattern x of the universal set belongs to the class A can be

defined by a characteristic function : X + {0,1) as follows:

1 : if and only if x E A
PAW =

0 : if and only if x $ A

In real life situations, however, boundaries between the classes may be overlapping. Hence,

it is uncertain whether an input pattern belongs totally to the class A. To take care of such

situations, in fuzzy sets [BezSl] the concept of characteristic function has been modified

to membership function PA : X + [O, 11.

The training of a C-class classifier for a set of input patterns K = {XI, x2, . . . , x,,)

is basically an assignment of the membership values pc(x,) on each x, E X, Vc =

1,2, . . . , C, V i = 1,2, . . . , n. If the membership values are crisp, then X is partitioned into

C subgroups during the training process. In the fuzzy context, C subgroups of X are the

set of values {pc(xi)) that can be conveniently arranged on a C x n matrix U = [p,(xi)].

Based on the characteristic of U, classification can be of the following three types [PB95]:

1. Crisp classification:

2. Constrained fuzzy classification:

3. Possibilist ic classification:

It is obvious Mhc c Mfc c Mpc. The implementation of the crisp classifiers has been

discussed in the context of crisp rule base system (section 2.2.5.1). If we replace the

membership values by probabilities, then the constrained fuzzy classifiers become the

probabilistic classifiers (discussed in section 2.2.5.2). The interpretations of the output

(say a) for the two classifier models are different. The probabilistic interpretation means

that the probability that the input pattern belongs to the class Cc is a. On the other hand,

the fuzzy interpretation is as follows: The grade of membership of the input pattern to the

class Cc is a. The first statement implies that if we take the same input pattern n times,

cm times it belongs to the class Cc [PedSO] [Bez94]. In contrast, the second statement

expresses that the input is close to the center of the class prototype Cc with a degree a ,

that is, the input is similar to the class Cc with a degree a. The user is not interested in

repeating the experiments but in the class assignment. Therefore, in many cases it may

be appealing to consider the output of the classifiers as fuzzy membership values rather

than a posteriori probabilities. In these cases fuzzy sets can be used to implement the

classifiers based on the constrained fuzzy classification and possibilistic classification.

Fig. 2.7 examines the role played by crisp, constrained fuzzy and possibilistic*classifi-

cation approaches in a 2-class problem. Here, both the patterns A and B are equidistant

from the two classes. In crisp classification, the membership value of A in one class will

be 1, and in the other class it will be 0. It is true for the pattern B also. Obviously, this

kind of membership assignment does not reflect the actual classification situation as A

and B partially belong to both the classes. In constrained fuzzy membership assignment,

both the patterns A and B will be assigned the membership values equal to 0.5. Although

this membership assignment is better than the crisp counterpart, it fails to consider the

pattern A as a more typical one than the pattern B. It is because, here the member-

ship assignment is a relative one, and it depends on the membership values to both the

classes. In possibilistic membership assignment, the pattern A will receive equal mem-

bership values to both the classes. It is true for B also. But, the membership of B to any

class will be always less than that of pattern A. Therefore, the possibilistic assignment

may not be summed up to one, and thus, it can distinguish between equal evidence and

ignorance [Zad78] [KK93] [Sha76] [DP88]. This property of the possibilistic assignment

makes it attractive compared to the crisp membership assignment and constrained fuzzy

membership assignment.

Broadly speaking, there are the following four ways to apply the fuzzy classification

techniques:

Fuzzy relation approach: The input and output of any classifier system is s u p

posed to be related by some relation. If there is no such relations, it is impossible to

build any classifier. On the other hand, if there exists any relation, in a crisp case,

any two points (one from input space and another from output space) from the

input-output space are either related or not. In fuzzy relations, these two points

can be related with a varying degree. The value of the degree is expressed as a

membership value that lies in between 0 and 1. Therefore, the fuzzy relation sub-

sumes the crisp relation. The search for a structure involves discovering the fuzzy

relation. One scheme to realize the fuzzy relation is construction of a fuzzy rule

base system [DHR93]. A fuzzy rule base system consists of a set of fuzzy if-then

rules like

If a person is very tall and ve ry fair, then he is a European with high confidence.

If a person is very tall and faa'r, then he is an African with low confidence.

Fig. 2.7: (a) The crisp membership values of pattern A and B in both the

classes are either 0 or 1. The constrained fuzzy membership values of the

pattern A and B in both the classes are about 0.5, which does not consider

the fact that B is much less representative of either class than A is. (b) The

crisp membership values of pattern A in both the classes are either 0 or 1. The

constrained fuzzy membership values of the pattern A in both the classes are

about 0.5. On the other hand, possibilistic membership values of the pattern

A in both the classes are 1 as it belongs to both the classes completely.

where the terms tall, fair are called fuzzy linguistic values. The fuzzy rule-base

system is useful where it is difficult or impossible to model the given classification

system with classical approach. In this case a set of fuzzy if-then rules along with

the fuzzy linguistic values are collected from experts. If a new input comes, the

input is matched against the if part of each if-then rule, and the response of each

rule is obtained through fuzzy implication. The response of each rule is weighed

according to the extent to which each fuzzy rule fires. The response of all the

fuzzy rules for a particular output class are combined to obtain the confidence with

which the input is classified to that class. The final class label can be determined

by taking the class with maximum confidence. It can be observed that there is

no learning associated with the fuzzy-rule base system. Consequently, the designer

has to rely completely on the expert's opinions to build the rule base, which may

be difficult in some cases.

a Fuzzy pattern matching approach: A slightly different way of classification

is the information fusion approach offered by fuzzy integrals. Here, a decision

to associate an input pattern to a class is accomplished through the fusion of

the information coming from several sources in form of features. Fuzzy integral

combines the objective evidence supplied by the features in a nonlinear way with

the importance of that feature set for recognition purpose. Instead of treating

each feature identically, it stresses those features or sets of features which provide

the most evidence toward the determination of class memberships. Therefore, it

results in a convenient framework to produce different nonlinear classification rules

for different classes within the same problem and with the same over all feature

set [KQ88] [Gra96]. However, when the number of features is N, this technique

may need 0(2N) computations.

a Fuzzy clustering approach: Fuzzy clustering is similar to the conventional clus-

tering as described in section 2.2.4. However, unlike the conventional one, in fuzzy

clustering each input pattern belongs to all the clusters with different degrees or

membership values. Thus, each cluster is a fuzzy set. If the sum of memberships

of a pattern to all the clusters is equal to one, then it is called constrained fuzzy

clustering. If the sum is not necessarily equal to one, then it is called possibilistic

clustering. There is fuzzy K-means clustering algorithm which realizes the con-

strained fuzzy clustering method. Modifications of this algorithm form possibilistic

angle are known as possibilistic K-means algorithm [KK93] and mixed K-means

clustering algorithm [PPB97]. If the value of K is not close to the actual number of

clusters, then the clustering result may be far away from the reality. To know the

approximate number of clusters present in the data set, various indices like partition

coefficient and entropy indices [Bez81], Xi+Beni index [XB91], Fukuyama-Sugeno

index [FS89] [PB95], fuzzy hypervolume [GG89], etc., exist. The clustering algo-

rithms can be used to group the input data set. Then a class label (crisp or fuzzy)

is assigned to each cluster. Thus, a classifier can be constructed through fuzzy

clustering.

Other approaches: Among the other methods, fuzzy K-nearest neighbors algo-

rithm [KGG85] and fuzzy decision trees are popular. In the conventional K-nearest

neighbors algorithm, each neighbor is considered equally important to assign the

class label to the input sample. However, when two classes overlap each other, a

more typical neighbor should be given more weightage. In fuzzy K-nearest neigh-

bors algorithm, this philosophy is implemented. Thus, fuzzy K-nearest neighbors

algorithm subsumes the conventional K-nearest neighbors algorithm, and in many

cases the first one becomes more powerful than the later one. Like the conventional

crisp K-nearest neighbors algorithm, the fuzzy counterpart also suffers from the

problem of long testing time.

2.2.5.4 Rough classifiers

In any classification task the aim is to form classes of objects which are not noticeably

different. These indiscernible or indistinguishable objects can be viewed as basic building

blocks (concepts) used to build up a knowledge base about the real world. For instance,

if the objects are classified according to color (red, black) and shape (triangle, square

and circle), then the indiscernible objects are red triangles, black squares, red circles, etc.

Thus, these two attributes make a partition in the set of objects and the universe becomes

coarse. If two red triangles with different areas belong to different classes, it is impossible

for anyone to classify these two red triangles based on the given two attributes. This

kind of uncertainty is referred to as rough uncertainty [Paw821 [PBSZ95] [Paw95]. The

rough uncertainty is formulated in terms of rough sets [Paw821 [PBSZ95]. Obviously, the

rough uncertainty can be completely avoided if we can successfully extract the essential

features so that distinct feature vectors are used to represent different objects. But, it

may not be possible to guarantee as our knowledge about the system generating the data

is limited [SS93].

Let us consider a 2-class problem where each input pattern has only one feature. Two

input patterns xl and 2 2 are called related if xl = 22. This is obviously an equivalence

relation. From linear algebra we know that this equivalence relation partitions the input

space into (say m) equivalence classes. If all the patterns from an equivalence class (say

[x]) have the same label (let C1), then we can allot a single rule to describe the input-

output relationship for all the patterns that belong to the equivalent class. The rule

is

If the input is x, then the output class label is C1

Thus, by partitioning the input space into m equivalence classes, it is possible to obtain a

rule base consisting of m deterministic rules. However, in presence of rough uncertainity,

i.e., when more than one pattern from the same equivalence class carries a different label

(let Cz), a one-to-many relationship exits between the equivalence class and the class la-

bels. Hence we cannot use the deterministic rules any more. One possible way to describe

the inpu t-output relationship is to construct nondeterministic rules such as [Paw911

If the input is x, then the output class label is C1 with confidence factor rl

If the input is x, then the output class label is C2 with confidence factor r2

where rl and r2 can be determined from the input data. Note that here more than one

rule is present with the same if part. Let &(C1) represent the set of all equivalence

classes, where each equivalent class contains patterns only from the class C1. Let R(C1)
represent all the equivalence classes, where each equivalent class contains some pat tern

from C1. In X(C1) some equivalence class may contain patterns from classes other than

Cl as well. Now, one simple scheme of assigning the value of r1 is r1 = a. Similarly,
R(C1)

r2 can be assigned. This concept can be extended for an input with more than one

feature. Thus, in general, any classification problem can be mapped onto two sets of

rules-one set is deterministic and another set is nondeterministic. If there is no rough

uncertainty, then the nondeterministic rules do not exist. In other words, the deterministic

and nondeterministic rules are needed for the equivalence classes where the class labelling

is not unique. When a new input comes, the input is matched with the if part of each

deterministic rule. A rule fires if there is a match. The class label corresponding to the

input is decided by the rule that fires. If the input does not match with the if part of

any deterministic rule, then the input is matched with the if part of the nondeterministic

rules. The class label is decided based on the confidence factor associated with each

nondeterministic rule.

One problem with the rough approach is that it is mainly applicable when the number

of equivalence classes is small. When the features are continuous, the number of equivalent

classes may be very high. To circumvent this problem, continuous features are usually

transformed to discrete features with inevitable loss of information. Moreover, approaches

based on rough set cannot be used where the input features or the output classes are fuzzy.

2.2.5.5 Hybrid classifiers

Table 2.1 summarises the relative merits and demerits of artificial neural networks, fuzzy

logic, rough sets and evolutionary computation techniques for pattern classification tasks.

To exploit the rough and fuzzy uncertainities present in a classification process, it is ben-

eficial to incorporate the concepts of rough sets and fuzzy logic in the framework of neural

networks. This kind of model is useful, because these three methods approach the design

of classifiers from quite different angles. Neural networks supply the brute force method

necessary to accommodate and interpret large amount of input data. Rough sets and fuzzy

logic provide a structural framework that utilises and exploits these low level results. For

efficient implementation of this kind of hybrid model, we need a good search and optimiza-

tion strategy. For this purpose, one can use evolutionary programming, which represents

a potentially powerful pathway to machine learning and self organization [AH95]. In what

follows, we are focussing on these hybrid techniques from the pattern classification angle.

Table 2.1: Relative merits of artificial neural network (ANN), fuzzy logic

(FL), evolutionary computation (EC) and rough set (RS). The symbols B,

SB, SG and G represent bad, somewhat bad, somewhat good and good, respec-

tively [JSM97]

Neuro-Fuzzy classifiers: It has been recognized that the areas of neural networks

and fuzzy logic are strongly interconnected [LL96]. An important connection between

ANN and fuzzy logic-based systems is that both of them can approximate continuous

functions [JSM97]. Use of fuzzy concepts in ANNs is also supported by the fact that the

psycho-physiological process involved in the human reasoning does not employ precise

mathematical formulation [PM86]. There are the following two approaches to fuse these

Property

Mathematical modeling

Learning ability

Knowledge representation

Expert knowledge

Nonlinearity

Optimization ability

Fault tolerance

Uncertainty tolerance

Real- time operation

RS

SG

G

ANN

B

G

B

B

G

FL

SG

G

S G B G B

EC

B

B S G B

SB

G B S G

G G B

two approaches:

Fuzzy-neural networks: This type of classifier consists of an ANN equipped

with the capability of handling fuzzy information. Specifically, fuzziness can be

incorporated in an ANN at the following levels: (a) At output and target levels,

(b) at input level, and (c) at each neuron level in terms of weight value, basis

function and, output function. The appropriate level of incorporation of the theory

of fuzzy logic depends on the given problem.

Neural-fuzzy systems: This type of classifier consists of a fuzzy system aug-

mented by ANNs to enhance the flexibility, speed and adaptability of the fuzzy

system. For instance, neural networks can be used to tune the membership values

or fuzzy rules. Thus, neural network learning can reduce the development time and

cost while improving the performance of a fuzzy system.

While training an ANN for a classification task, we generally use crisp target values,

which can be either zero or one. This kind of target assignment can be generalized by

exploiting fuzzy sets, where target values can be anything in between zero and one. In

[PM92] ANN outputs are interpreted as fuzzy membership values, and using this idea

the conventional mean square error objective function has been extended to various fuzzy

objective functions. The learning laws are derived by minimizing the fuzzy objective

functions in a gradient descent manner. It has been found that incorporation of fuzziness

in the objective functions leads to better classification rate.

ANNs adopt numerical computations for learning. But numerical quantities suffer

from lack of representative power [Pao89]. There are many applications where information

cannot be obtained in terms of numerical values. Instead it is possible to represent the

information in linguistic values only [LL95] [KL79]. In [WM97] Wang et al. have proposed

fuzzy basis functions to design a radial basis function network [Hay94], which can accept

both numerical inputs as well as fuzzy linguistic inputs. In [Ped92] Pedrycz has proposed

an ANN model based on fuzzy logical connectives. Instead of using linear basis functions,

he has utilized fuzzy aggregation operators. In [PR93] and [HP94], this technique has

been extended to a more general one where inhibitory and excitatory characteristics of

the inputs are captured by employing direct and complemented, i.e., negated input signals.

The advantage of this approach is that problem-specific fuzzy a pn'ori knowledge can be

incorporated into the network easily. In [IFT93] Ishibuchi et al. have proposed an ANN

learning algorithm where expert's a priori knowledge, in terms of fuzzy if-then rules, can

be exploited to learn the information supplied by the numerical data.

Fuzzy logic can be employed to speed up the training of an ANN. In [CAMC92] a

fuzzy rule base is used to dynamically adapt the learning rate and momentum parameters

of a feedforward neural network with backpropagation learning algorithm. In a similar

approach [COB92], Choi et al. have proposed an incremental updating scheme to control

the value of vigilance parameters of ART networks.

The difficulty in constructing fuzzy rule base systems is that the membership func-

tion, number of rules and precedent parts of the rules can be supplied only by the experts.

In many cases, it is difficult to get an expert, and in some cases, even for the experts it

becomes difficult to construct the rules. This problem can be reduced if ANNs learning

mechanism can be incorporated in the fuzzy rule base systems to construct fuzzy neural

systems. Since ANNs can approximate continuous functions, ANNs (for example, feedfor-

ward neural networks with backpropagation algorithm) can be used to realise membership

functions with arbitrary shape. If the membership function has a regular shape like bell

shape or triangular shape, it can even be modeled by a simple neuron with sigmoidal

function [LL96]. Fuzzy OR and fuzzy AND need min and max operators. Since they

are nondifferentiable, it is difficult to learn them. Hence, the concept of differential min-

imum and maximum operators, i.e., softmin and softmax, have been introduced [LL96].

Thus, fuzzy logic connectives, i.e., fuzzy NOT, fuzzy OR and fuzzy AND, are modeled by

ANNs. Keller et al. have proposed [KKR92] fuzzy inference network, where membership

functions and fuzzy logic connectives are implemented through ANNs. This network is

made more powerful by incorporating learning facilities. The resultant network is called

fuzzy aggregata'on network [KT92].

In many cases, it is possible to view the same classifier as a neural network and

a fuzzy rule base system. For instance, feedforward neural networks with backpropa-

gation algorithm and radial basis function network can be seen as fuzzy rule base sys-

tems [BCR97] [JS93] [HHMS96]. In these networks the output functions present in the

hidden nodes act as the membership functions for some linguistic values.

Neuro-Rough classifiers: In ANNs one critical problem is to determine how many

input units are necessary. Obviously, it depends on the number of features present in the

input data. Using rough sets, it may be possible to decrease the dimension of the input

data without losing any information. A set of features is sufficient to classify all the input

patterns if the rough ambiguity for this set of features is equal to zero. If we know the

amount of rough ambiguity present, then using it as a criterion we can select a proper

set of features from the given set of data [PWZ88]. In [PBSZ95] it is claimed that for

a classification task the number of hidden units needed in a feedforward neural network

is equal to the minimal number of features required to represent the data set without

increasing the rough uncertainty. One way to accelerate the training of a network is to

initialize the weights of the networks in such a manner that the initial decision region is

closer to the desired one. For that, a set of training data is collected, and the knowledge

extracted from them through rough sets is used to initialize the ANN [BMP97].

Neuro-Evolutionary classifiers: From a mathematical point of view, all the evolu-

tionary computation (EC) techniques are controlled, parallel, stochastic search and op-

timization techniques. Since different learning techniques used in ANNs hinge on the

optimization of various objective functions, it is possible to employ EC for learning

weights, learning network architectures, learning the learning laws, input feature selection,

etc. [Yao93]. For instance, in a feedforward neural network, gradient-based local search

methods [Hay941 can be substituted by EC for weight training [SF951 [MTH89] [Has95].

In some cases, a more ambitious approach may be to exploit local search methods like grac

dient descent, and global search methods like EC, simultaneously [RF96]. The advantages

of local search methods are better accuracy and fast computation. The disadvantages of

the local search methods are stagnation at the suboptimal solutions and sensitiveness to

the initialization. On the other hand, EC is a global search method which can avoid

local optima, and does not have the initialization problem. However, EC can suffer from

extremely slow convergence before arriving at the accurate solution. This is because, EC

uses minimal a prior2 knowledge, and does not exploit available local information [RF96].

In fact, in the search space EC is good for exploration, whereas the gradient descent is

good for exploitation. Therefore, by utilizing both of them, merits of both methods, i.e.,

speed, accuracy, reliability and fast computation, can be achieved. Yao e t al. [YL97]

have proposed one such method to evolve the topology (weights and architecture) of

a feedforward neural network, where they exploit both evolutionary programming and

backpropagation algorithm, simultaneously. In EC techniques, the whole population set

evolves over and over again, generations after generations. At the last generation, the

network which has the highest fitness is considered to be the desired optimal network for

the given task. Instead of choosing a single network as the desired network, in [YL98]

all the networks in the population are considered as the desired networks. The final re-

sult is obtained by combining all the individuals in the last generation to make best use

of all the information contained in the whole population. This result confirms the fact

that a population contains more information than a single individual, and EC is used

to exploit that information. In particular, in [YL98] the outputs of all the networks in

the population are combined, and the output class is determined by a majority voting

method. In [WC96] [Whig61 [BZ95], EC-based techniques are used successfully to opti-

mally configure radial basis function networks so that the networks generalize well. In

another development, Angeline et al. [ASP941 have used EC to configure recurrent neural

networks. It should be noted that, gradient-based approach is not useful here as it needs

the objective function to be differentiable. Using EC, Jockusch et al. [JR94] have intro-

duced a training strategy for self-organizing maps [Koh89] [Koh9O], where it is possible

to find the number of output units for the self-organizing maps automatically. In their

scheme the training of the self-organizing maps is less likely to be stuck in local optima.

Currently, researchers are working on different evolutionary methods which can be uti-

lized to learn weights, architectures and learning laws, simultaneously [Yao93]. The search

space for these problems are prohibitively large, and they need a large computing time.

These drawbacks may be reduced if parallel machines are used to implement the search

operation [BR94], or the search operation is made more efficient and less time consuming

by using adaptive EC operators [SP94] [LD95].

Fuzzy-Rough classifiers: Rough set theory was proposed as a mathematical tool in

order to deal with inexact, noisy or incomplete information. It aims to provide a formal

framework for automated transformation of data into classification knowledge. The start-

ing premise is that the universe is coarse and some object in the data set may become

indiscernible, resulting in a partition of the universe. In contrast, fuzzy set theory pro-

vides an effective means of handling uncertainty in various systems, including those in the

application of rough set theory. But the premise of granularity in knowledge is absent in

fuzzy set theory, and the focus is on the fact that concepts in the universe of discourse tend

to be gradual rather than crisp. Therefore, rough sets are a calculus of partitions, while

fuzzy sets are a continuous generalization of set-characteristic functions [DP92] [Sl092].

Hence, it is possible to integrate roughness and fuzziness, and the resultant model of

uncertainty is expected to be stronger than either. These hybrid notions develop in a

natural way when a linguistic category, denoting a set of objects, must be approximated

8

in terms of already existing labels, or when the indescernibility relation between objects

no longer obeys the ideal laws of equivalence, and the relation is a matter of degree.

Direct application of rough sets to minimize a fuzzy rule base classifier was proposed

by Tanaka et al. [TI921 [TIS92]. They extracted a fuzzy rule base for a given medical

classification problem. They also proposed a method to reduce significantly the number

of input variables of the fuzzy rule base. The advantage of their method is that the

inconsistency of the test data and experts' diagnoses can be clarified, and inconsistent

data can be removed. In addition, unlike the rule base generated by rough approach (see

section 2.2.5.4), the fuzzy rule base is applicable to inputs with continuous features.

Fuzzy-Evolutionary classifiers: Currently, the combination of EC and fuzzy logic is

taking place mainly along the following two directions [HHVLV94] [CHL96] [HM97]:

1. The use of fuzzy logic-based techniques for either improving EC behavior and mod-

eling EC components, or to manage problems in an imprecise environment, where

the imprecision is modeled by fuzzy sets.

2. The application of ECs in various optimization and search problems involving fuzzy

systems.

Several techniques related to fuzzy logic have been used for improving EC behavior

and modeling EC components (like using fuzzy connectives to design crossover in genetic

algorithm, fuzzy population diversity measure, etc. [CHL96]). These techniques concern

different parts of EC development in the following ways:

1. Expert knowledge (represented as fuzzy rules) is used to compute dynamically the

EC parameters. The aim is to obtain suitable exploitation/exploration relationships

throughout the EC execution. In this way, a knowledge base is used for controlling

the evaluation process and for avoiding the undesired behavior, like premature

convergence.

2. A fuzzy stop criterion forces the EC to reach optimal solutions with a user-defined

accuracy.

There are two main directions for applying ECs in a fuzzy environment. The first one

exploits an EC to manage fuzzy valued variables. In the second approach, the variables

consist of associated fuzzy sets, and hence, the fitness is actually a fuzzy valued fitness.

The first proposal considers variables with fuzzy values in the representation, and the

second proposal considers nonfuzzy value variables but with a fuzzy evaluation (e.g.,

fuzzy fitness).

In [BH94] [FS93] [YKSS95] attempts are made to develop EC-based clustering tech-

niques. These algorithms are less prone to get stuck in local minima. Moreover, they do

not suffer from the initialization problems as observed in the fuzzy K-means algorithm.

These clusters are used to construct fuzzy rules. In [INYT95] [NIT961 genetic algorithm

is used to evolve a fuzzy rule base system suitable for a given classification task. A good

bibliography on fuzzy-evolutionary techniques is provided in [OC97].

Rough-Evolutionary classifiers: One major difficulty in a classification problem is

to find the optimal number of features. It can be viewed in rough set domain as to

discover the minimum number of features necessary for the classification problem without

increasing the rough uncertainity associated with the classification task. Although it is

possible to apply brute force method to find all possible combinations of the features,

and subsequently take the best one as the optimal one, it may involve large amount of

computation. This problem may be reduced if we use EC to find the minimum number

of features [PBSZ95]. Here, rough set theoretic measure acts as a guideline to choose the

correct set of features [Wro95] [HPA'97].

In addition to the above techniques, hybrid techniques like neuro-fuzzy-rough, neuro-

fuzzy-evolutionary, fuzzy-rough-evolutionary, neuro-fuzzy-rough-evolutionary, etc., are

also possible. These integration techniques are based on partnerships, in which each

of the partners contributes a distinct methodology for solving the problem [AH95]. There

are several other attractive paradigms which can be used for the hybrid techniques. For

instance, artificial ant system [DMC96], cultural evolution [Be189], immunity net [HC96],

cellular automata [TM87] and DNA computing [Ad1941 seem to be attractive and viable

approaches.

2.2.6 Generalization

A great deal of episodic evidence has been presented in the literature to support the claim

that, once a classifier has been trained on a sufficient number of samples, it can then label

a new and previously unseen input. It should be noticed that, without the ability to

generalize, much of the cases for using classifiers would simply collapse. A simple look

up table would suffice if one were interested merely in constructing a classifier that could

reproduce the known input-output pairs [Nee961 [Vid97]. The training of a classifier with

a data set leads the classifier to learn the input-output relationship. When a test set is

applied, this relationship is extended so that it holds for the test data. However, there

can be more than one relationship if the training data sequence, classifier size, learning

algorithm, etc., are varied. All these relationships may be valid on the given training set,

however, when extended on a different test set many of them may not be valid. Hence,

the task of the generalization is to choose the relationship which holds for most of the

test data [HKPgl]. In order to choose the best relationship, we should be able to impose

certain constraints on all possible input-output relationships. It can be accomplished if

there is a structure present in the feature space, and the relationship between this structure

and the class labels is not random. Since the parameters for classifier design depend on

the structure in the feature space and the input-output relationship, the generalization

capability of a classifier is largely influenced by the following three factors:

1. Training data: This refers to how well the training set consisting of input-output

pairs represent the input-output relationship. Obviously, if the input-ou tpu t rela-

tionship is noisy or random, then the generalization ability of the classifier becomes

very poor.

2. Size and structure of the classifier: If the size of the classifier is large, then it

needs a large number of parameters. It may lead to memorisation of the training

examples if the training set size is not large. Moreover, while training a large

classifier, all the parameters may not get involved in the training process as they

balance each others effect on the output. Consequently, training error becomes low.

However, such free parameters may result in a large variation of the classification

efficiency for different test sets [Sus92]. As a consequence, the structure present in

the data set is not captured and the generalization ability remains low. In contrast,

if the classifier size is small, then it may not be sufficient enough to capture the

input-output relationship.

3. Training methodology: The training algorithm, the presentation of the input

data during training, the stopping criterion, all affect the performance of the clas-

sifier. Use of improper stopping criteria may cause overtraining which may lead to

memorisation.

In order to study the generalization capability, we must be able to quantify it. That

is, it should be possible to evaluate a classifier, and decide whether its generalization is

"good" or not. However, the notion of "good" or "reasonable" themselves are not well-

defined. It varies from person to person and is problem dependent. For instance, when

the desired output is obtained on most occasions, it is considered as "good" generalization

in certain cases. On the other hand, in certain other types of problems, generalization is

considered to be "good" if the classifier yields the desired output for a very rare situation

which never occurred before. Various methods of measuring generalization are used in

practice [Liu95], [MCHK94]. We can classify them into two categories: measure of model

fit and measure of performance. The first one measures how close the actual classifier

function is to the desired one based on the training result. The second one focuses on the

difference between the actual classification rate and the desired classification rate after

the final class label is assigned to each test pattern with inevitable loss of information.

Therefore, the first one measures how good the approximation is, based on the training

and when there is no loss of information. The second one stresses on how good the

approximation is after the information is lost due to crisp labelling on the test patterns.

Let n be the number of patterns in the training set X = {(xl, yl), (XZ, YZ) , . . . ,
(x,, y,)), C be the number of output classes and y be the desired output corresponding

to the input x. Then, some measures based on the model-fit criterion are

1. Kullback-Leibler measure: This measure of generalization quantifies the differ-

ence between the actual classification function and the classifier function obtained

by training [Hay94]. The Kullback-Leibler measure (ekl) is given mathematically

by the following equation:

f (~ , x) f (~ 1 ~) ~ dxdy (2.4)
eki = - / p(xj Y P O ~ [rn] dxdy = - /p(xl y)iog [p(y x)p(x)]

where p(ylx) is the conditional probability distribution of the sample x given the

output y , p(x) is the probability distribution of the input x, f (ylx) is the probabiI-

ity distribution approximated by the classifier after training and the integral is over

the whole input-output space. Since p(x) = f (x) for a given input distribution, we

can redefine ekl as

The Kullback-Leibler measure is difficult to calculate as it requires prior knowledge

about the actual classification function p being realized.

2. Cross-Validation measure: Cross-validation measure estimates generalization

error by making use of the training data [Liu95]. In this method, generalization

error ekl given by equation (2.5), is estimated as follows:

3. Mean square error measure: One of the the most commonly used measure of

generalization for the pattern classification task is how large the Euclidean distance

is between the actual output of the classifiers (after the training is over) and the

desired one. Like the previous two cases, this measure depends on the training set

only. The measure is

where o; is the actual output when the training pattern is applied to the classifier.

4. An information criterion (AIC): This measure [Aka741 is also known as

Akaike's information criterion. Although memorisation trend in a classifier is re-

lated to the size or the number of the free parameters (k f) of the classifier, the above

three measures do not consider the classifiers size. AIC is a measure which consid-

ers mean square error measure as well as the size of the classifier. It is formulated

as

emse e ~ ~ c = n log (T) + 2kf

A popular measure based on the performance criterion is error rate measure. The

easiest way to assess the error rate is to choose a misclassification count on the test set.

I
e,, = - z (n o . of misclassifications for class c)

72°C c=l

where nu is the number of test samples. This measure is extensively used because it is

simple and easy to implement. It can be viewed as a variation of the cross-validation

measure. If we have some idea about the a prion' probability PC for the cth class, the

above measure can be modified as

1
e,, = - Pc(no. of misclassifications for class c)

nuC c=l

Note that in all the above cases the less the measure is, the better is the generalization

capability. Other than the above measures, there exist many other measures, e.g., leave-

one-out measure, entropic measure, BIC, etc. [Rip96].

Although a relatively small fraction of the overall work done on the pattern classifiers

is on the theoretical analysis of generalization, these studies are marked by a variety of a p

proaches. Some of the issues like how much training data is needed, i.e., sample complezity,

and how much time is needed for a particular level of generalization, i.e., computational

complezity, are formalised and investigated within the field of computational leaning the-

ory. One popular approach in computational learning theory is probably approximately

correct (PAC) learning theory approach [Hau92] [BEHW89] [Natgl]. Most of the theoret-

ical studies assume noiseless synthetic input data, where the raw data represent features.

The input-output relationships are assumed to be random. Application of the theoretical

results are still limited because the results inferred based on these assumptions are far

from the real life situations. Despite these limitations, the theoretical results indeed give

us some idea about the extent of the influence of the classifier size, classifier architecture

and the training set size on generalization. Due to the limitations of the theoretical stud-

ies, there are several heuristics adopted to enhance the generalization capability of the

classifiers. These techniques can be broadly classified into two parts:

1. Problem-independent techniques: These methods deal with the functioning

of the classifiers, methods of presentation of the data, etc. They include pruning

of the extra parameters used in the classifiers, generating more training data by

introducing noise, accelerating the training algorithms (so that large data set can be

used for training), stopping training after some point (so that overtraining cannot

take place).

2. Problem-dependent techniques: These methods include special design of the

classifiers after taking care of the problem-specific knowledge. For example, if we

know that the clusters formed in the input space is of shell type, then we can cluster

the input by using fuzzy shell clustering algorithm [FK96]. Classification can be

achieved subsequently by labelling the clusters. We may also incorporate domain

specific constraint to limit the classification function realizable by the classifier. In

other words, we can bias the classifier to have less variance in the performance of

the classifier [Bis95].

2.2.7 Conclusion

From the review presented in this chapter, it is quite obvious that the stages of pattern

classification are involved. As Bezdek rightly pointed out in [Bez81] that if we could

choose "optimal" features, clustering and classification would be trivial. But we often

attempt to discover the optimal features by clustering the feature vectors. Also, if we

could design an "optimal" classifier, then the features selected would be immaterial. The

current state of research in pattern classification can be characterized as follows:

1. Basic concepts of pattern classification are being used in many real life applications.

2. Theoretical foundation have gained substantial base.

3. Most of the current research methods use numerical representation. This trend is

growing because of the availability of the computing power.

4. Efforts are being made to combine the symbolic and numerical approach for prob-

lems in which such information can be obtained from physical systems.

5. The role of uncertainties in a given problem is being examined to avoid possible

loss of information. The uncertainities captured in the initial stages are exploited

for problem solving till the final stage of solution.

However, the pattern classification ability of the existing machines is still far away

from the human classification ability for the following reasons:

1. Humans perceive everything as a pattern, whereas for machines everything is data.

Even in a routine data consisting of integer numbers (like telephone numbers, bank

account numbers, car numbers), humans tend to perceive a pattern peg98].

2. Functionally also humans and machines differ in the sense that humans understand

patterns, whereas machines can be said to recognize patterns in data. In other

words, humans can get the whole object in the data eventhough there is no clear

identification of subpatterns in the data. For example, consider the name of a

person written in a handwritten cursive script. Eventhough the individual patterns

for each letter may not be evident, the name is understood due to the visual hints

provided in the written script [Yeg98].

3. Human beings are capable of making mental patterns in their biological neural

network from an input data given in the form of numbers, text, picture, sounds,

etc., using their sensory mechanisms of vision, sound, touch, smell and t a t e . These

mental patterns are formed even when the data is noisy or deformed due to varia-

tions such as translation, rotation and scaling. The patterns are also formed from

a temporal sequence of data as in the case of speech and pictures. Another major

characteristic of a human being is the ability to learn continuously from examples.

These aspects are not at all well understood in order to implement them efficiently

in an algorithmic fashion in a machine [Yeg98].

4. Human beings have the capability to gather information from both data and rule,

simultaneously. Still most -of the machine classification techniques are based on

either data or rules.

5. For classification, human beings generalize most of the common objects and memo-

rise uncommon objects. Moreover, in human classification there is a smooth transi-

tion from memorisation to generalization and vice versa. These abilities are totally

absent in the techniques adopted by machines.

6. In pattern classification on machines, we face the problem of inductive bias or the

a priori bias of the designer. The problem of inductive bias is that the resulting

representation and search strategies provide us a medium for encoding an already

interpreted world. They do not offer us any mechanism for questioning our in-

terpretation, generating new viewpoints or changing perspectives when they are

unproductive [LS95].

7. In pattern classification several uncertainties exist, We still do not know how to

model these uncertainities. For instance, Fig. 2.8(a) can be classified to any one

of the two classes as shown in Fig. 2.8(b) and Fig. 2.8(c). The classes are not

fuzzy. It appears that rough uncertainty is also not present. Moreover, there are

no probabilistic and resolution uncertainties involved. Still, the exact classification

result may not be known!

The above issues will continue to motivate researchers to explore methods to match

the performance of human classification.

Fig. 2.8: The psychological uncertainty which we do not know how to model.

(a) A cube, and (b) and (c) are its two different interpretations. Apparently no

fuzzy, rough and probabilistic uncertainties are involved in the interpretation.

Still it is uncertain which interpretation we should follow.

2.3 Modular Classifiers

2.3.1 Background of Modular Classifiers

In the last section we have discussed the role of uncertainties in pattern classification.

In many problems, it is difficult to deal with uncertainties in a monolithic classifier.

Therefore, it is useful to divide the classification task among several small subclassifiers,

and then combine their individual solutions to obtain the final classification result. In

this section, we review various modular approaches,'which are based on the divide and

conquer technique.

Human brain consists of about 10'' neurons and 1015 connections. Due to its highly

organized architecture, the brain manages to execute a myriad of functions and yet main-

tains a compact size. Execution of mental functions are allocated to different parts of

the brain. Split brain patients in which the connection between the two hemispheres is

completely severed can live an almost normal life, which shows that the hemispheres in-

deed function to a large extent independently. It has been found that in each hemisphere,

part of the brain has a regular structure in layers, streams and many microscopic levels.

Modules containing little more than a hundred cells, also known as minicolumns, have

been proposed as the basic functional modular unit of the cerebral cortex.

A functional advantage of the anatomical separation of different areas of the brain

might be minimization of mutual interference between simultaneous processing and exe-

cution of different tasks. For example, we have no problem in driving a car while listening

to the radio. Studies with multiple tasks can easily be performed in parallel, while the

simultaneous execution of similar tasks (e.g., presentation of two auditory or two visual

messages) causes more interference. Some tasks are processed in distinct streams of mod-

ules and do not interfere with each other. Other tasks require simultaneous access to a

single module, and are, therefore, much more likely to interfere mutually. This evidence

suggests that modular approach is not merely advantageous, but essential.

In many complex pattern classification tasks (e.g., script recognition [CK95b], speech

recognition [SY96], etc.), where the number of classes is large and the similarity amongst

the classes is high, a monolithic classifier, also known as all-class-one-classifier, either

may not converge or may take large amount of time to converge during training. But

the all-class-one-classifier needs lesser storage and leads to better generalization if they

converge. It is also possible to develop a classifier based on the concept of one-class-

one-classifier [Kun93] architecture, where a separate classifier is trained for each class.

This kind of local approach offers the following advantages: (a) fast learning, (b) r e

quires a few training examples, and hence, it can operate in real time. This approach

requires a large number of subclassifiers, and also the discrimininatory capability of the

one-class-one-classifier is poor [SY96]. Therefore we need something in between these two

extremes, where advantages of both all-class-oneclassifier and oneclass-oneclassifier can

be enjoyed. Motivated by the biological evidence, pattern recognition in real life prob-

lems can be approached using classifiers that are in between oneclass-oneclassifier and

all-class-oneclassifier. In this approach, modularity is viewed as a manifestation of the

principle of divide and conquer. In [Hay94], [JJ93], modular classifier is defined as follows:

" A classifier is called a modular classifier if the computation performed by the classifier

can be decomposed into two or more modules that operate on distinct inputs without com-

municating with each other. The outputs of the modules are mediated by an integrating

unit that is not permitted to feed information back to the modules". Thus the principle

of modular classifiers can be thought as Some Class One Classifier. Modular classifiers

have the advantages of both all-class-one-classifier and one-class-oneclassifier approaches,

like quick convergence, parallel training, better generalization, etc. The use of modular

classifier systems was discussed as far back as the mid 1980's by Barto and Hinton. Jacob

in [JJ93] presented a taxonomy for a class of modular hierarchical connectionist mod-

els. Modular approaches find applications in handwritten character recognition, texture

recognition and speech recognition [SY98e].

2.3.2 Advantages of Modular Classifiers

The main advantages of the modular approach are as follows ??:

1. The modules can be constructed using different techniques. For example, some

modules can be based on ANN, where the input-output relationship can be ex-

plained only through input-output patterns. Some other modules can be based on

fuzzy rule base systems, where expert's knowledge is easy to obtain in form of rules.

2. Generally modularity results in an architecture of lesser complexity, and hence, is

easier and faster to train. The generalization capability may also enhanced due to

the reduction in complexity [CK95a].

3. Training of the modules can be done in parallel. Therefore, it takes less time to

train a modular classifier.

4. Different feature sets can be used to train different modules. This flexibility allows

us to use the appropriate set of features for each module so that within-class dis-

tance decreases and between-class distance increases. Therefore, the training time

decreases and generalization ability increases.

5. Each module can be trained on different input data set. It decreases the training

time and increases the generalization capability.

6. If the modular classifier is built carefully, then it can capture discontinuous input-

output functions [JJ93]. In contrast, the monolithic counterpart does not have this

capability.

7. In a modular approach existing modules can be retrained easily. If a new pattern

is added, only the related modules need to be retrained. In the modular approach,

new modules can also be appended easily.

2.3.3 Issues in Modular Approach

In order to construct a modular classifier systematically, we need to consider mainly three

points. Firstly, the given classification task has to be decomposed into subtasks. Secondly,

an appropriate classification task has to be assigned for each module. Finally, intermodule

communication has to be evolved. The following are some of the issues in constructing a

modular classifier:

1. Depending on the decomposition criterion: The classes can be grouped based

on the closeness of the class prototypes in the feature space. A clustering algorithm

can be employed for this purpose. Another way is to employ domain-specific knowl-

edge to partition the classification task.

2. Choice of classifiers for each module: Various types of classifiers, e.g., feedfor-

ward neural networks with backpropagation learning algorithm, radial-basis func-

tion neural networks, probabilistic neural networks, fuzzy rule base system, etc.,

can be used in each module.

3. Interpretation of the outputs of each module: The output of each module

can be interpreted as an a posten'ori probability, belief or fuzzy membership values.

4. Choice of the preprocessor or postprocessor: It depends on which principle

we are adopting to make a module active. In other words, the task may be SO

distributed that only one module is active or all the modules are active. The first

method needs a preprocessor to decide which module should be active, and the

Categorization of Modular Classifiers

(a) Depending on Task

Functional

Categorical

(b) Depending on Decomposition Criterion

Problem decomposition

Class decomposition

(c) Depending on Topology

Preprocessor-based

Postprocessor-based

Hierarchical

(d) Depending on Fusion Criterion

Maximum output approach

Weighted output approach

Dempster-Shepherd approach

Fuzzy integral approach

Fig. 2.9: Types of modular classifiers.

later method needs a postprocessor so that the results of all the modules can be

fused.

2.3.4 Types of Modular Classifiers

It is possible to group modular classifiers based on various criteria. They are as follows

(Fig. 2.9):

1. Depending on the task: One way to decompose a classifier is to create modules

that serve very different functions, not different versions of the same function. The

top-down structure of a large software projects is an example, where each procedure

has its own function. This is called functional modularisation [DY97]. Another way

is to decompose the classifier such that the modules perform different versions of

the same job. It is called categorical modularisation. This can be thought of as a

set of experts giving their individual opinions on the same subject.

2. Selection of grouping criterion:

(a) Problem decomposition: The designer decomposes the modules based on

his knowledge about the classification problem (Fig. 2.10). Sufficient prior

knowledge is essential when this is carried out before the learning takes

place [TMBC92]. Another variation is to perform the decomposition a u t s

matically when the learning takes place [J JNH911.

(b) Class decomposition: The original classification problem is divided into

several sets of subproblems according to the inherent relations among the

training data [AMMR93] (Fig. 2.11). It can be done before learning or during

learning [LI98]. If it is done before learning, domain specific knowledge is

needed. Compared to the problem decomposition, the class decomposition

approach needs more computation. But, the later one becomes attractive

when there is no prior knowledge about the problem.

3 Depending on the topology: Architecturally, modular classifiers can also

be subdivided as follows: 1) Preprocessor-based, 2) hierarchical-based and

3) postprocessor-based. In Fig. 2.12, these three variations along with a monolithic

classifier are shown. The Fig. 2.12(a) depicts a monolithic classifier. Here only one

module is present. In Fig. 2.12(b), the selector or preprocessor analyzes the input,

and decides which module should be used to classify the input. As a result, only

one module will be active for each input pattern. This type of topology needs the

preprocessor to be highly accurate. Fig. 2.12(c) employs a set of modules arranged

in a hierarchical fashion. Although the input goes to all the modules directly, the

top one becomes active first. If it can classify the input, then the classification of

the input is over. Otherwise, it triggers the module just below it. In this way, the

control flows from the top to the bottom. It is as if a set of experts are present

and we are asking them the same question sequentially, and the whole session is

over as soon as someone is able to provide an answer. Note that in some cases the

answer given by a particular expert may be wrong also, and there is no scope for

the experts, who are hierarchically below him, to rectify the answer. Hence, the

drawback of this kind of approach is that if the higher level modules fails to trigger

&4 E Classifier

Fig. 2.10: Construction of modular classifiers based on the concept of problem

decomposit ion.

I

Fig. 2.11: Construction of modular classifiers based on the concept of class

decomposition.

or mistakenly triggers any lower level module, then the whole classification prob-

lem becomes erroneous. Hence, the accuracy of this model largely depends on the

classification accuracy of the higher level modules. Since it is difficult to train each

module such that it fires correctly for all the test examples, the efficiency of the

whole classifier is not usually high. In Fig. 2.12(d), a postprocessor or integrator

combines the results of all modules. When some test input is used, all the modules

become active in parallel, and the output result of all of them are fused by the in-

tegrator. Note that, in the hierarchical and postprocessor-based modular classifier,

the feature set for each module can easily be made different from others. It is also

possible to house both selectors and integrators in the same system [RRM+96].

4 Depending on the fusion method: For the task of catagorization, the following

fusion methods exist:

(a) Maximum output approach: The class label of the input can be decided

based on the winner-take-all policy. It means that the class label of the input

pattern is assigned to j, where oj = max ok, and ok is the output corre-
k=1,2, ..., C

sponding to the kth output class. Although this is the simplest method, this

kind of assignment may not be justified, as all the subclassifiers are indepen-

dently trained on different sets of data.

(b) Gating or weighted output approach: Compared to the above approach, a

better approach is to declare the j th class winner, if the j th class corresponds

to max {gkok), where gk is the importance associated with the class Ck.
k=1,2, ..., C

One possible choice for gk is the a posteriori probability of the class Ck. The

drawback of this method is that the probability constraint C gk = 1
k=1,2, ..., C

cannot discriminate between lack of evidence and ignorance [K096].

(c) Dempster-Shafer theoretic approach: Dempster-Shafer's theory [Sha76]

replaces the additivity requirement of probability measure theory with either a

superadditivity or subadditivity requirements. Therefore, Dempster-Shafer's

theory can distinguish between lack of evidence and negative evidence. In

Dempster-Shafer's theory, each information source, i.e., module, generates a

belief function over the power set of the hypotheses (i.e., output classes), which

are then combined using Dempster-Shafer's rule [Sha76]. The calculation can

have exponential complexity with large number of output classes.

Integrator v
Fig. 2.12: Four types of modular classifiers: (a) monolithic, (b) preproces-

sor-based, (c) hierarchical and (d) postprocessor-based. Y, C and M denote

the input feature vector, the output classes and the subclassifiers, respectively.

(d) F'uzzy integral theoretic approach: In the fuzzy integral approach, the

outputs of the modules are processed further so that the interactions among

the outputs are also exploited for the final classification result. For an input

pattern x, each module (say sth) generates a partial evidence hk({<,}) to

support the kth class, where <, denotes the output of the sth module. The

term gk may be replaced by a more specific term gk({<,}), where gk({<,})

denotes the importance of <, in characterizing the class Ck, With the help of

gk({<,)), s = 1,2, . . . , 5, the fuzzy integral Fk for the class Ck combines all

the partial evidence, i.e., hk(ts) VS = 1 ,2 , . . . , S, in a nonlinear fashion. The

final class label corresponding to the input is j , if Fj = max (3k).
k=1,2, ..., M

Like Dempster-Shafer approach, fuzzy integral-based approach also can distin-

guish between equal evidence and ignorance. In the fuzzy integral, the frame of

discernment contains the information sources related to a particular hypothe-

sis (i.e., an output class) under consideration, whereas in the Dempster-Shafer

theory, the frame of discernment contains all possible hypotheses (i.e., all pos-

sible output classes). Thus, the fuzzy integral approach has a means to assess

the importance of all groups of information sources towards supporting a par-

ticular hypothesis as well as the degree to which each information source s u p

ports the hypothesis. In contrast, the Dempster-Shafer theory does not have

this advantage [KGT+94]. In addition, the fuzzy integral is computationally

more efficient than a strict Dempster-Shafer approach. In the Dempster-Shafer

theory, each information source generates a belief function over the power set

of the hypotheses, which are then combined using Dempster-Shafer's rule. The

calculation can have exponential complexity with the number of hypotheses,

i.e., with the number of output classes (C). In the fuzzy integral, the measure

needs to be calculated only for S subsets, where S is the number of modules

involved with each hypothesis [KGT+94]. Fuzzy integral is beneficial because

in many modular classifiers, C >> S.

For the task of functional modularisation the following methods exist:

(a) Majority voting: The simplest linear combination method is majority vat-

ing. That is, the output of the most number of modules will be the output of

ensemble. If there is a tie, then the output of the module (among those in the

tie) with the lowest error rate on a test set will be selected as the ensemble

output. Another method is to keep the number of modules odd so that the

conflict cannot arise.

(b) Weighted averaging: The weights are fixed in proportion to how each mod-

ule performs on a test set. When the weights summed up to one, the weights

can be viewed as a priori probability of the module to classify an input ac-

curately. When t his additivity constraint is relaxed, Dempster-Shafer ap-

proach and fuzzy integral-based approach become suitable tools to use. The

advantages and disadvantages of Dempster-Shafer and fuzzy integral-based

approaches are similar to that of categorical modularisation.

2.4 Opening Bid Problem in Contract Bridge as a Pattern Classification

Problem

The opening bid problem is an exercise of high level perception. It involves classifying the

pattern in a hand to a single output corresponding to the bid for the hand. A classifier

does precisely this. Given a set of input hands and the corresponding opening bids,

the classifiers try to capture the implicit relation between the two. Once the classifier

has been trained to generalize, 'then it can respond meaningfully to a new hand. In

the opening bid problem we can immediately spot the presence of probabilistic, fuzzy and

rough uncertainties. The card pattern, what one gets after shuffling is purely probabilistic;

on the other hand, whether the player will classify a particular input hand as an 1D or

1H is basically fuzzy. Here the classes corresponding to 1D and 1H are overlapping. The

relation between the input pattern and the corresponding output bid is not unique even

among the expert players (see Table 2.2). Some player may consider the hand pattern

"97-5AKQ8754-AK2" as ID or some may consider it as 2C. It is because the playing

strategy of the players for the remaining part of the play, vulnerability, etc., are different

and are difficult to model. Hence the same input hand may belong to different classes,

although the classes are not overlapping. This situation creates rough uncertainty. It is

to be noted that in the card problem resolution uncertainty is absent. It may be present,

if one is asked to classify the input hand based on the image of the input hand taken by

a camera. It is because there may be some ambiguity in identifying, for example, a card

as a Heart or a Club due to the poor resolution of the image. In this thesis we are not

considering resolution uncertainty.

For the opening bid problem, we have chosen numerical representation of the object

data. The raw input acts as a feature vector which is later refined. The structure present

Table 2.2: Variations in players' bids. Sets of 80 hands were bid by human

players. It can be observed that for every set, the players differed on a signifi-

cant number of hands, suggesting that more than one correct bid may exist.

in the feature space can be interpreted in terms of direct classification and classification

through clustering. For the opening bid problem, we need to have some classifier with fast

learning and quick classification capability in the presence of fuzzy, rough and probabilis-

tic uncertainties. ANNs seem to be a possible candidate for this purpose. Conventional

ANNs are not suitable to deal with fuzzy and rough uncertainties efficiently. Hence,

in this thesis an attempt is made to develop hybrid learning models, where the neuro-

computing paradigm is integrated with fuzzy and rough paradigms. Following this line,

modular classification approach is adopted to deal with the uncertainties in the opening

bid problem. The performance of the resultant model is evaluated in terms of error rate

measure.

No. of No. of hands for which

who bid In numbers In %

The next chapter explores the possibility of capturing the implicit relationship in

bidding a Bridge hand using an artificial neural network. We study issues like the role of

uncertainities in the opening bid problem, input representation, possible architectures for

the network.

1

2

3

4

5

6

7

8

2

3

2

2

2

2

2

2

14

17

26

24

14

13

17

29

17.50

21.25

32.50

30.00

17.50

16.25

21.25

36.25

Chapter 3

PRELIMINARY STUDIES ON BIDDING

PROBLEM USING ARTIFICIAL

NEURAL NETWORKS

3.1 Introduction

The objective of this chapter is to study different issues like the role of uncertainities, in-

put representation, possible classifier architectures for the opening bid problem. Since it

is not easy to find a recognizable structure in a hand pattern, we opted for numerical r e p

resentations, rather than symbolic representations, to describe the classification process.

Initially we at tempted to construct a deterministic classification model for the opening

bid system. It is because the deterministic model can be simple, and the representation

problem for this type of model is the least. As a deterministic model, a crisp rule base

approach is considered. To construct the rule base, we need to extract the rules of the

following type from the expert bidders:

If the input hand pattern is A J 9 3, K 8 4, K 7 4 3, A 9, then the output bid is 1 s

When an input hand is used for testing, the hand is matched against the if part of each

rule. The class label is indicated by the output class of the rule that fires.

Extracting the rules from the experts are difficult because players normally use these

rules only as a guideline, and often they make bids for which they cannot articulate their

reasoning in terms of the given rules. For instance, for a hand containing 4 Spades and 4

Diamonds, a rule may suggest opening IS, or possibly ID. But for the two hands given

below, which are only slightly different, a player may choose different bids as

This change comes because the player uses subtle reasoning process, and he is also con-

cerned about his next bid. There are other patterns too in the hand for such a reasoning.

For example, "K84" is a "support" for a possible bid of 2H by partner, while "K8" is not.

"A94" in Clubs, on the other hand, is an openable suit if the hand has no five carder. One

could possibly list all such possibilities as rules, but the number of rules will be too many

(it is approximately the number of possible hands, i.e., 6.35 x 10"). Constructing, such a

large rule base is an impossible task. If the size of the rule base is decreased to a moderate

one, then the rule base cannot cover many hand patterns and situations. Consequently,

when a hand pattern outside the rule base is encountered, the rule base approach fails to

indicate the output. In other words, the system is not generalizable; it works just like a

look-up table.

The above drawback of the deterministic model motivated us to exploit uncertainities

such that the classification system becomes robust and generalizable. The rule base

works as long as the input comes only from the points of the input space at which the

input-output relationship is defined. Let us call these points reference points. The model

can be made more powerful, if we can assign some certainty factors (to belong to the

output classes) on the neighborhood points of the reference points. Thus the input-

output relation becomes defined for all the points in the input space. In this work, the

neighborhood points are viewed as similar to the reference point, and hence, the certainty

factors associated with the neighborhood points are expected to be close to that of the

reference point. Thus fuzzy uncertainty is introduced in terms of similarity to make the

problem generalizable.

In order to incorporate the fuzzy uncertainty in the opening bid problem, we have

used artificial neural networks (ANNs). The reasons behind choosing ANNs over other

possible classifiers are various benefits like incremental learning, robustness, universal

approximation capability. From section 2.2.4, we know that there are the following two

possible schemes to use ANNs as classifiers: Direct classification and classification through

clustering. We first experiment ANNs with direct classification techniques. For this study,

we explore the possibility of training a multilayer feedforward neural network (FFNN)

with backpropagation (BP) training algorithm [RHW86]. It tries to capture the implicit

reasoning involved from several examples of input (pattern)-output (bid) pairs of data.

In order to perform this study the following issues need to be considered:

1. Collection of data.

2. Representation of the hand.

3. Interpretation of the output bid.

4. Architecture of the network.

5. Training of the network.

The first issue deals with the collection of input data that have to be used for training

as well as for testing. To collect variety of inputs, the collection of data should be random.

Moreover, care should be taken to partition the data for training and testing so that both

have similar probability distribution. Second issue is how to represent the input data on

a machine. Although we have decided numerical representation for the input hands, there

exist several possible numerical representations. The exact choice will be dictated by the

classification performance with the representation. The third issue is the interpretation

of the output results. It is quite possible that during testing the network produces a bid

which is different from a player's bid. But, then the player should also decide whether the

network bid is reasonable for the given hand. The fourth and fifth issues are regarding

the type of the network and the training methodology that have to be used. These issues

are discussed in this chapter.

Initially, we at tempted to train a monolithic ANN for all the classes. But the network

did not converge. One possible reason may be that the network was unable to handle,

resolve and exploit the associated uncertainties globally. This problem may be reduced if

the classification task is partitioned. Partitioning should be such that each subproblem is

solved in a module by exploiting the local uncertainities and the results of all the modules

are combined by exploiting the global uncertainities. To verify it empirically, we break the

monolithic classifier into several modules using some domain specific knowledge, and test

the classification performance of each model. The experiments conducted in this chapter

advocate the use of a modular network instead of a monolithic network.

The organization of the chapter is as follows: Section 3.2 discusses the representation

of the problem. Section 3.3 demonstrates the performance of the feedforward neural

networks with different architectures.

3.2 Representation of Opening Bid Problem on Machines

3.2.1 Data Generation and Collection

The hands used for training the network were generated by a program which simulates

shufEling of the cards. The distribution of the hand patterns generated by the program

matches the distribution given in Table 3.1. A representative set of 19 hands are given in

Table 3.2. Note that the hands which contain suits of maximum length 5 constitute about

80% of all the hands. On the other hand, for the bids of 2H and 2S, the input may require

the following features: A six card suit, with no singleton or void in the hand, about 8 to

10 high card points, with most of the high cards in the bid suit. To successfully learn

these bids, it is necessary to have a large number of these samples in the training set.

It would mean a correspondingly large training set, and hence, a large training period.

We have used a generating program to produce the hands according to a given set of

constraints, for example, the length of the Heart suit should be at least 6 and the number

of points should be at least 6. In this way, we can produce more hands for which we want

the system to learn the patterns. The expert's bids were collected from the experts in

IIT open Bridge Tournament, 1994.

3.2.2 Representation of Input Patterns

The inputs can be represented as a fifty-two dimensional raw data as shown in Fig. 3.l(a).

Each component of this vector is either 0 or 1. The value 0 and 1 indicate the pres-

encelabsence of the card in the hand. Since each player has thirteen cards, the number

of 1's in the raw data is equal to thirteen. For example, the first hand in Table 3.2 and

the corresponding input pattern vector are given by

Hand: K753-K J8-K87-K76

Input Pattern: 0100000101010010100100000001000011000000100000110000

The input can also be represented in the form of feature patterns as shown in Fig. 3.l(b).

These patterns are based on the evaluation of the strength of the hands by a bidding

system. In this representation there are 16 components of the raw data vector, which can

take values between -1 and +4. Thirteen components are used to represent the cards,

while three are used as markers (-1) between suits. In this representation an attempt was

made to feed some feature information in the form of relative weights given to various

cards. For example, on the cards Ace, King, Queen, Jack, 10, 9, 8, . . . , 2 we have assigned

the following weights: +4, +3, +2, +1, +0.9, +0.8, +0.7, +0.6, . . . , +0.1. These weights

were close to the points given to the cards in most bidding systems.

Our initial experiments showed that the first representation is preferable. During

training we found that the network converged with the first representation, whereas the

Table 3.1: Distribution of hand patterns. Numbers under total sum up the

values for all possible ways of choosing suits for the given pattern or shape.

lnder spe

Specific

(in %)

1.796

2.634

0.748

1.293

0.539

0.882

0.264

0.104

0.075

0.470

0.196

3.448

0.055

0.059

0.027

0.006

0.078

0.128

0.033

0.015

0.022

0.005

0.0005

Values listed
No. Pattern 1 1 4-4-3-2

:zfic are fi
Total

(in %)

21.5512

10.5361

2.9932

15.5165

12.9307

10.5797

3.1739

1.2433

0.8952

5.6429

4.7021

0.287

1.3262

0.7053

0.6511

0.0723

1.8808

0.5129

0.3918

0.3617

0.2652

0.1065

0.0056

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

n a n -
No.

- -
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4-3-3-3

4-4-4-1

5-3-3-2

5-4-3-1

5-4-2-2

5-5-2-1

5-4-4-0

5-5-3-0

6-3-2-2

6-4-2-1

6-3-3-1

6-4-3-0

6-5-1-1

6-5-2-0

6-6-1-0

7-3-2-1

7-2-2-2

7-4-1-1

7-4-2-0

7-3-3-0

7-5-1-0

7-6-0-0

2d suits h
Pattern Specific

(in %)

0.016

0.010

0.005

0.002

0.0003

0.001

0.0004

0.0007

0.00008

0.00004

0.0004

0.00001

0.000002

0.000001

0.0000003

0.000000002

length.

0.1924

0.1176

0.1085

0.0452

0.0031

0.0178

0.0100

0.0082

0.0010

0.0011

0.0001

0.00015

0.00002

0.00001

0.000003

0.0000000009

Table 3.2: Sample hands generated by the shuffling problem. Bids are made

by the authors, to illustrate the preparation of the training set. In this training

set some less frequent hands are present which are generated specially to ease

learning. "T" im

r"
lies the card number 10.
Hands I points

QT-76-AQJ752-AJ3 14

A-KQ J9873-J98-T6 11

AK842-AKT93-6-82 14

Desired bid

(by authors)

Hand 1 - S : K753
H : KJ8
D : K87
C : K76

4

(a) Representation 1 (b) Representation 2

Fig. 3.1: Illustration of input layer patterns for two hands. In representa-

tion 1 the input is in raw form, while in representation 2 some features (high

card points) have been extracted. The networks perform better with the raw

information.

feature based representation failed to converge in some cases. This is interesting because

the information in the second case is in an interpreted or an abstracted form. It appears

that abstraction from raw data, if not done properly, may not be useful for generalising

the network. Experiments described in this chapter therefore use the first representation.

3.3 Studies on Network Architecture and Training

This section describes the development of the network architecture by trial and error

procedure. The training algorithm was the BP algorithm. The input layer has 52 nodes,

one for each card. Each node has a value 1, if the card is present, or 0, if the card is not

present in the given hand. In the following, we describe our trial experiments for evolving

a suitable ANN architecture for the bidding problem.

Experiment with monolithic networks: An approach using 13 output nodes to c a p

ture all the bids from Pass to 3s was explored. Three nodes were assigned to the three

levels of bids, five were assigned to the suits and one node was kept for "Pass" bid. Thus,

for each input, except for a "Pass" hand, two output nodes are expected to be active, one

for the level of the bid, and the other for the suit. The training set consists of 1000 hands.

Different network architectures were examined. Two of them are (a) 30 and 20 nodes in

the first and second hidden layers, and (b) 30 and 6 nodes in the first and second hidden

layers. It was found that the network did not converge. This was probably because there

were a large number of bids (some 2 level bids and all 3 level bids) for which very few

training patterns were available. For the subsequent experiments, we decided to use a

simpler format for output nodes with one output node for each bid. Therefore, we used

fifteen output nodes to study the network behaviour. This time also the network failed

to converge.

Experiment with 1-Level networks: To resolve the convergence problem, we reduced

the number of output nodes to seven, by restricting the bids to 1 level only, including

"Pass1' (P) and the "Unknown" (U) category bids. When the input is not from the first

level bids, then the class label "Unknown" is assigned as the desired class label. The

resulting network consists of 52 input nodes, 7 output nodes and one hidden layer. The

number of nodes in the hidden layer was varied to study its effect on the performance.

A training set of size 1000 is chosen. Table 3.3 gives the total sum of squared error for

40, 45, 50, 55 and 60 hidden nodes. We observed that the network converged for various

number of hidden nodes. The network with 50 hidden nodes gave the highest accuracy of

Table 3.3: Mean square error of the 1-Level network after training. Here 52

input nodes and 7 output nodes are used. The number of iterations is 5000,

I hidden nodes I error I

and the number of hands is 1000.

69% correct bids on the test set, when compared with the bids made by an expert player.

The test data consisted of 500 randomly generated hands. Some test results are given

in Table 3.4 and 3.5. It should be noted that while evaluating the performance, if the

output of the network was also acceptable by the expert player as a possible bid, then it

was taken as a correct output.

Experiment with 2-NT networks: We consider a network to include 2 level bids.

Here, the number of output nodes is 12, one each for P, lC, ID, lH, IS, IN, 2C, 2D, 2H,

2S, 2N and U. Initially we attempted to train the network with a training set conforming

to the theoretical distribution of hand patterns. But the network could not be trained.

The network was unable to learn the patterns for 2C, 2D, 2H, 2S, 2N bids since they are

very rare. Obtaining suitable samples of such hands require large amount of training set.

Instead we decided to selectively insert the patterns, which are rare, into the training set.

Nearly 600 hands from the 2 level bids were added along with nearly 1000 hands from the

1 level bids. As a result we obtained 1600 hands to train the network. This network was

trained using five different architectures having 40, 45, 50, 55, and 60 hidden nodes. The

mean square error of the network for this training set is shown in Table 3.6. The network

with 50 hidden nodes gave the best performance. Results produced by the network are

given in Table 3.5 and 3.7. The network has bid correctly for about 72% of the test hands,

which were not part of the training set. Initially we planned to give only positive samples

of hands for the bids which we wanted the system to make. But we found that for the

system to perform well, we also had to give a large number of hands for which we did

not want the system to make a bid. Hence, we introduced all those hands under the bid

No. of Mean square

Table 3.4: Bids made by the 1-Level network. Strong imbalanced hands

are labelled "Unknown" for training purpose. However sometimes (e.g., the

sample no. 2) the system did better by opening 1C. Also, in the sample no. 3,

the network's bid seems to be better! The discrepancy in the last example is

bids I network I

also typical of human players.
No. Hands Points Expert's 1-Level

"Unknown" .

Expe r imen t w i t h modula r networks: In the bidding problem we have observed that

a) large networks are difficult to train, b) a 1-Level network performs well, and c) a 2-

NT network does not learn well because of lack of data for 2-Level bids. But, if specific

data are added for the 2-Level bids, then it may perform well. From these results, it

can be clearly observed that smaller networks are easier to train, and consequently they

also perform better. Looking at the task environment, one can see that all the bids

made at higher levels are specialized. In addition, they deal with hands that are less

frequent. Hands with four card and five card suits are most common (80%) and the

bidding systems are designed to use the cheaper (low level) bids for these hands. To

design a complete ANN system would require sufficient training samples. I t appears

reasonable to consider the high level specialized bids as exceptions, and train different

networks to deal with them. Thus one would have a modular structure of the network,

each module catering to a specialized situation. Following this line, we employed one

module for each level of output bids. Since output bids upto third level are present, we

used total three modules. The first module is for the first level bids. It can classify Pass,

lC , ID, lH , 1s and IN. Similarly, the second module is for 2C, 2S, 2H, 2D and 2N. The

third module is supposed to classify 3C, 3D, 3H and 3s. Note that none of the module

has the output class "Unknown". For each module we used FFNN with one hidden layer.

All the modules have fifty hidden nodes. Let the training sets for the first, second and

third modules be called "Trainingset 1" , "TrainingSet2" and '"I'rainingSet3", respectively.

The size of 'TrainingSetl7', "TrainingSet2" and 'TrainingSet3" are 1200, 700 and 400,

respectively. These training sets will be used again in the subsequent chapters for the

experiments. For all the modules the convergence was achieved during training. Three

test sets "TestSetl" , "TestSet2" and "TestSet3" are formed to test the performance of

the first, second and third modules, respectively. These test sets will be used again in

the subsequent chapters to compare the performance of other networks. When the test

data sets are presented to the first, second and third modules, the classification results

are shown in Table 3.8, 3.9, and 3.10, respectively. The overall classification result of the

third module is quite high compared to the other modules. I t is because if the hand is

strong, then Bridge players have less problem in giving the higher level bids.

Table 3.5: The bids made by the 1-Level and 2-NT networks for some hands

are shown. Bids made by two experts are also included. Bids marked "**" are

incorrect.

I 1 - I 1 bids 1 network I network I

- - " T implies the card number 10.
No. Expert's Hands 1-Level Points 2-NT

No.

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

3.5:
Points

16

16

16

14

11

11

22

11

15

10

9

16

10

14

16

12

15

9

11

15

Table
Hands

(s)-(H)-(D)-(c)

97-5-AKQ8754-AK2

96542-AQJ2-AKQ7

A J75-4K JT6-AKT8

AgQJ86494KQJ9

T8-AT5K976A874

KQ-QJ7642-QJ92-T

K87- J8-AKQ&AKQ2

KT84KQT7-K63-T2

AJ-Q64J42-AKJ85

A632-3-96-KQJ863

965-AT8762- J7-A9

Q7-A74-A2-KQJ972

3-T6-KT74AQ JT74

AKJ3-982-J85-KQ5

92-KQ6-Ag3-AQJ73

94KQ3-AQT2-J632

-A874-A JT52-AQT5

2-JT86-AQT9864-Q

K95-94-A852-AT83

Q-A743-AJ5-A8732

(Continuation)
Expert's

bids

2C, 1D

IS, 1D

ID, 1C

lH, 1C

IN, P

P, 1H

lC, 2N

P, 1s
IN, 1C

P, 1C

lH, P

ID, 1C

P, 1C

IS, 1C

IN, 1C

P, 1D

lC, 1D

P, 3D

P, ID

lH, 1C

1-Level

network

1D

1 S

1C

1C

1C

1H

U

P

1C

1C

P

1C

P

1 S

1C

1D

ID

U

P

1C

2-NT

network

1D

1C

1D

1C

1C

1H

2N

P

1C

P

P

1C

P

1C

1C

1D

1D

P

P

1H

Table 3.5: (Continuation)

No. Hands

(S)-(H)-(D)-(C)

Points

12

12

10

11

12

14

11

11

18

2 1

17

9

18

14

17

12

12

14

14

10

11

18

15

11

Expert's

bids

1-Level

network network 2-NT I

'Ihble 3.6: Mean square error of the 2-NT network after training. 52 input

nodes and 12 output nodes are used. The number of iterations and the number

of hands are 5000 and

I hidden nodes 1 error 1

1600, respectively.

'Ihble 3.7: Bids made by the 2-NT network. Many experts would open the

No. of

sample no. 4 with 2H, because the key feature - long solid suit is present. In

Mean square

the sample no. 8 the system has in fact done better by opening ID. In the

sample no. 9 it possibly had to choose between "Unknown" and lC, since it

does not know the 3N bid, which is very specialized.
No.

1

Hands 1 Points / Expert's I 2-NT

(s)-(H)-(D)-(c)

K JT4QT9762-A-T3 10

bids

P

network

1H

3.4 Summary

The aim of the work reported in this chapter is to explore the possibility of capturing

the reasoning process used in bidding an opening bid in Bridge game using an ANN. The

network captures the implicit mapping in bidding a Bridge hand adopting a standard

convention (bidding system) which acts as a guide or a weak constraint on the mapping

function. We used an FFNN with BP algorithm as a classifier, whose input is a hand and

the output is the corresponding opening bid. The input is represented as a series of 52

onelzero where presence or absence of a card is denoted by 1 or 0. While experimenting,

it turned out that the training of the whole network is time consuming. Moreover, in

many cases the network do not converge at all. Possible reason may be that the network

is not able to tackle the uncertainties. We adopted a modular structure to deal with the

uncertainties. Three modules are used to deal with the first three levels of opening bids.

The studies reported in this chapter demonstrate that a neural network can be trained

to capture the implicit reasoning used for bidding a hand in the Bridge game. The

present study clearly brings out several interesting research issues. The first issue is the

representation of the input data. In situations like card games, representation in raw form

appears preferable, as any feature representation is likely to be subjective and may result

in loss of information. In contrast, in problems dealing with image and speech data, it is

essential to represent the data in a manner that reflects the visual and auditory sensory

processing, respectively. Errors in the feature representations are usually responsible for

poor generalization performance in the pattern recognition tasks involving image and

speech. The second major issue is training a network with patterns occurring with widely

different probabilities. This is a difficult issue in many practical problems. For example, in

optical character recognition different characters occur with widely different probabilities.

Similarly, in speech recognition different speech sounds occur with different probabilities.

This chapter demonstrates that modular networks can be used for the opening bid

problem. The classification efficiency may further be improved if the feature vectors

corresponding to each module are modified depending on the output classes present in the

module. The discussion in chapter 4 is along this line. Chapter 5 and 6 will concentrate on

how to design each module. In chapter 7 we will combine the results of all these modules.

Table 3.8: Classification performance of FFNNs with BP algorithm for first

level bids.

'Pable 3.9: Classification performance of FFNNs with BP algorithm for second

level bids.

Pass

85.12%

'Pable 3.10: Classification performance of FFNNs with BP algorithm for third

level bids.

1C

66.83%

2C

61.04%

1D

63.13%

2D

75.71%

3C

75.17%

1 S

71.82%

2s

77.56%

3D

77.28%

1H

77.16%

2H

72.33%

3s

83.54%

IN

64.52%

2N

74.34%

3H

84.97%

Overall

71.43%

Overall

72.19%

Overall

80.24%

Chapter 4

IMPORTANCE OF INPUT FEATURES IN

CLASSIFICATION: ROUGH-FUZZY SET

THEORETIC APPROACH

4.1 Introduction

In the last chapter a modular network architecture is advocated for complex pattern

classification problems like opening bid problem. This chapter attempts to fine tune the

input features specifically for each module so that the class discriminatory capability of

the input patterns are enhanced. In order to accomplish it, the importance of each feature

is quantified, and the input representation is biased accordingly. Therefore, this chapter

deals with feature analysis. Ln actual Bridge game, players impose different weightages

on each card. These weightages depend on the player, level of the game and many other

factors, e.g., experience of the player, characteristics of the player, vulnerability, etc. This

fact also justifies the quantisation of the importance of each feature for each module in

the opening bid problem.

In the modular structure, each module exploits the uncertainties locally, and spe-

cialises to classify only a group of output classes. Since the class discriminatory property

of all the input features are not same for different sets of output classes, the repre-

sentation of each pattern for a particular module should be fine tuned based on the

output classes present in the module. One way to accomplish it is to put different impor-

tance on each feature. The input representation for each module can be biased so that

the feature with higher importance gets more weightage. Determination of the impor-

tance [SB97] [WAM97] is generally based on a criterion function and a search strategy.

The search strategy chooses a set of importance among many possible sets of importance,

while the criterion function decides whether a set of importance is superior to another

set. The search techniques, that exist in literature, can be broadly classified into filter

approach and wrapper approach [SB97] [WAM97]. The filter approach depends on a crite-

rion function which is classifier independent. In contrast, the wrapper approach uses the

classifier accuracy to judge whether a particular set of importance is superior to another

set. The wrapper approach can be used only with the classifiers of low comp'utational cost

like K-nearest neighbours (KNN) algorithm, decision tree, etc. In addition, the wrapper

approach may cause overfitting as the learning algorithm is fitted by the change of input

features [JK95]. We prefer the filter approach as this technique is generally applicable, and

can be used with complex classifiers like feedforward neural networks with BP algorithm.

Most of the classifiers classify a test input based on the fact that the more similar the

test input is to the set of training patterns, the higher is the possibility that this test input

belongs to the same class: Therefore, the similarity between the inputs is a crucial one.

The input represent ation, leading to a reinforcement of similarities between the inputs

from the same class and detoriation of the similarities between the inputs from different

classes, may lead to enhancement of the classification performance. Following this line,

in pattern recognition literatures [PC86], [TG74], an input feature s is considered to be

important if the compactness and interclass distance of all the classes along the sth axis

is high. In this chapter we attempt to exploit this criterion to measure the importance of

each feature. The compactness of the classes are affected when the classes are overlapping

and the patterns with the same sth feature have different class labels. In card games it

indeed happens because the output bids are fuzzy and the output bids are not unique

for the same card. It implies that the compactness of the classes can be estimated if

we can quantify the roughness and fuzziness associated with the sth feature. In this

spirit, a rough-fuzzy set [DP92] theoretic measure rough-fuzzy entropy is proposed as a

criterion function. To measure the rough-fuzzy entropy, it is essential to know the fuzzy

membership values of the training data in the output classes. Possibilistic K-means

algorithm is proposed to accomplish it.

As a search technique, an iterative method is adopted here. The iterative procedure

starts assuming equal importance for all the features. At the first iteration, the value of

rough-fuzzy entropy is calculated, and using it the set of importance is updated. In the

next iteration the input features are weighted by this set of importance. The rough-fuzzy

entropy is further calculated for this modified feature vector, and the importance are

updated accordingly. The iterative method goes on until the criterion function attains

a local minimum. Subsequently, the resultant set of weights is used to bias the input

representation of each hand so that more important features get more weightages, and

eventually result in a better classification.

The organization of the chapter is as follows: Section 4.2 discusses fuzzy K-nearest

neighbors algorithm. Section 4.3 embodies the proposed method. Section 4.4 illustrates

the efficacy of the proposed method through some experiments. The basics of rough sets

and rough-fuzzy sets can be found in Appendix-B and Appendix-C.

4.2 Background of Fuzzy K-Nearest Neighbors Algor i thm

Fuzzy K-nearest neighbors algorithm (FKNN) classifies an input pattern x by assigning

it a fuzzy membership value. The membership of x depends on a) the vector distance

between x and the K-nearest (K is a positive integer) input training patterns, and b) the

memberships of those neighboring training patterns in the possible classes. Let X =

{xl, xa, . . . , x,) be a set of input training patterns for whom the corresponding member-

ship assignments are already known. Let p,(xi) be the membership of the i th training

pattern in the cth class and 1 5 K 5 n. The initial memberships on each training pattern

can be assigned in the following two ways [KH85]:

1. C r i sp membership: Each training pattern can have complete membership in

their known class and nonmembership in all other classes.

2. Const ra ined fuzzy membership: h he K-nearest neighbors of each training

pattern are found, and the membership in each class is assigned according to the

following equation:

, = { 0.51 + n j / K if j = i

0.49 otherwise

The value nj is the number of the neighbours found which belong to the j th class.

This initialization technique fuzzifies the memberships of the labelled samples that

are in the overlapping class regions. Moreover, the samples that are well away from

the overlapping area, are assigned with complete membership in the known class.

Consequently, an unknown sample lying in the overlapping region will be influenced

to a lesser extent by the labelled samples that are also in the overlapping area.

The algorithm to find the membership of a test pattern x in the cth class, i.e., p,(x),

is shown in Fig. 4.1 [KH85]. In Equation (4.2) of Fig. 4.1, q determines how strongly the

distance is weighted when calculating each neighbour's contribution to the membership

value. Generally, the value of q is taken as 2.

Set i=1.

DO UNTIL (K-nearest neighbors of x are found)

Determine the distance between x and xi.

IF (i 5 K)

Include xi i n the s e t of K-nearest neighbors.

ELSE IF (xi is c loser t o x than any previous nearest

neighbor)

Delete the f a r thes t of the K-nearest neighbors.

Include xi i n the s e t of K-nearest neighbors.

END IF

Set i = i + l .

END DO UNTIL

Set c = 1.

DO UNTIL (x is assigned membership i n a l l classes)

Determine pc(x) using

Set c = c + 1.

END DO UNTIL

Fig. 4.1: Fuzzy K-nearest neighbors algorithm. The input consists of a set

of labelled patterns and a test pattern. The output is the class membership

value of the test pattern.

Lemma 4.1: In a C-class classification problem, the class membership assignments on

the test patterns b y the FKNN are constrained fuzzy.

Proof. The membership of the test patterns are constrained fuzzy because the initial

class membership values for the training patterns are constrained fuzzy. It can be formally

shown by the following steps:

Since cF=~ ~ (x k) = 1'

Consequently, the membership values assigned on each test pattern cannot distinguish

between equal evidence and ignorance.

4.3 Proposed Method

4.3.1 Criterion Function

In an N dimensional input pattern x E X, the sth feature is considered to be important

if the compactness and the interclass distance of all the classes along the s th (1 5 s 5 N)

axis is high. A measure of compactness and interclass distance can be a criterion to

measure the importance of the s th feature. This measurement becomes complicated

because two patterns x, and x, may be identical based on their s th feature; but they

may belong to two different classes. That is, the relationship between the s th feature and

the class labels may be a one-to-many mapping. This lack of discriminatory power of the

feature is due to the fact that we are not considering'other features like the player's past

experience, vulnerability, etc., into our account. In other words, we do not have sufficient

amount of information about the problem. To determine the importance of the sth feature

with such incomplete knowledge, the concept of rough set is helpful. In the terminology

of rough set, two input patterns xu and x, are called indiscernible or indistinguishable

with respect to the sth feature when the sth component of these two patterns have the

same value. Mathematically, it can be stated as

xURSx, iff xus = xVs (4.4)

where R V s a binary relation over X x X. Obviously, R V s an equivalence relation.

Therefore, Rs partitions X into a set of equivalence classes, namely {X:, Xi , . . . , X;).

The sth feature alone is sufficient to classify all the input patterns to the cth class iff

X/Rs, i.e., {X,9 , Xi, . . . , X i) , approximates the boundary of Cc accurately. In this case

BNDR(Cc) = 0 or R' (c,) = R" (C,). It implies each X;, 1 < i 5 H, either belongs to the

positive region of C, or negative region of C,. If this condition holds, the output class

C, achieves a high degree of compactness and large interclass distance along the sth axis.

Therefore, the extent to which X/Rs approximates the output class C, can be a measure

of importance of the sth feature to classify the patterns to that class.

In the opening bid problem the output classes are overlapping, and hence, C, is a

fuzzy set. This brings the concept of a rough-fuzzy set. In the current context, a rough-

fuzzy set (W(C,), &(c,)) is defined as follows: Lower approximates E (C c) and upper

approximates Rs(Cc) of Cc are fuzzy sets of X/R" with membership functions defined

by [DP92]

PR.(c,) (Xi) = inf {PC, (x) I x E Xi) (4.5-a)

Here, pE(cc)(X,) and pB(cc)(Xi) are the membership values of Xi in Bs(Cc) and 7;i'(cC),

respectively. Since the number of training patterns is finite for all practical purposes, we

can substitute inf by min and sup by max in (4.5-a) and (4.5-b), respectively.

To measure the importance of the sth feature to classify all the input patterns into

the cth class, we define rough-fuzzy entropy for the sth feature and the cth class as

1 RE= -- C [Pi in pi + (1 - pi) ln(1 - pi)]
H l n 2 . c = l

where pi represents either ~ R J (~ ,) - (Xi) or p ~ (~ ~) (Xi) throughout the equation. From (4.6),

it can be noticed that 31: increases monotonically in [O, 0.51 and decreases monotonically

in [0.5, 11. It reaches the maximum value when pi = 0.5 Vi, and minimum value when

pi = 0 or 1 Vi [PB95]. The lower the value of 74: is, the greater is the number of

Xi's having pi x 1 or pi x 0, i.e., less is the difficulty in deciding whether X, can be

considered a member of Cc or not. In particular, when pi x 1, greater is the tendency of

Xi to form a compact class C, along the sth axis, resulting in less internal scatter along

the sth axis. Moreover, when pi x 0, Xi is far away from the cth class, and hence, the

interclass distance increases along the sth axis. On the other hand, when pi x 0.5, Xi
lies in between Cc and the other classes along the sth axis. Hence, both compactness

and interclass distance along the sth axis decrease. The reliability of a feature s, in

characterizing the class C,, increases as the corresponding 3C: value decreases. Therefore,

31; quantifies the importance of the sth input feature for the class Cc. We introduce total

rough fuzzy entropy for the sth feature to quantify the importance of the sth input feature

for all the classes. It is defined as

Here PC is the weightage that has to be given to the cth class. One possible choice for

PC is the a prion' probability of the cth class. Note that R q i e s in [0, 11. Evidently, the

more the value of 3C3 is, the less is the importance of the sth feature.

The value of 31, depends on the choice of pi. When we take p; = p r (~ ,) (Xi), we are

basically pessimistic as (4.5-a) involves min operator. Similarly, when we assume pi =

p ~ i " [~) (X ~) , we become optimistic as (4.5-b) involves m a operator. In (4.7) these two

choices result in the two extreme bounds for %*. It indeed depends on the application

which one we should take as the importance [PP92], because (4.5-a) and (4.5-b) are

equivalent to asking the question "to what extent {xJx E Xi) as a whole belongs to C,?".

For example, in a quiz team if pi is the ability of the ith member, the ability of the team

as a whole is m q (p i) , because if one member succeeds the whole team succeeds [PP92].

On the other hand, suppose a group of acrobats are standing in such a manner that all of

them fall if any one of them falls. If p, is the stability of the ith member, the stability of

the team as a whole is rnin,(pi). However, our concern also may be to obtain a measure

in between these two extreme cases. Hence, we need some kind of aggregation operator

in between min and max to generalize the definition of ?is. It can be conveniently done

by Yager's ordered weighted average (OWA) operator [Yag93].

The term min in (4.5-a) measures the degree to which all the Xi's are classified to

C,. Similarly, the term m a in (4.5-b) measures the degree to which at least one X, is

classified to C,. It is natural to consider other t-norm and t-conorm operators [KY95] in

place of min and max, respectively. Using OWA operator "softening" is done by changing

all to most and at least one to some. A mapping W: [0, :[IU +- [O, 3.1 is called an OWA

operator if there exists a weighting vector w = [wl , w2, . . . , w,]' associated with W. The

characteristics of the weighting vector w are

1. wi E [0, 11,

3. W(a1, a2, . . . , a,) = wl bl + w2b2 + . . + w,b,, where bi is the ith largest element in

the collection al l a2, . . . , a,.

In [Yag93] Yager illustrated how different assignments of the weights allow implementation

of different quantifiers. For example, wl = 1 and wi = 0, Vi i # 1, provides the m u

operator. On the other hand, w, = 1 and wi = 0, Vi i # u gives the min operator.

Moreover, wi = Vi yields the average. It shows that the more the weights are near the

bottom, the more AND-like the aggregation is, and the more the weights are near the

top, the more OR-like the aggregation is.

There are two special types of OWA operators wag931 [Cho95], which are useful for

extending the concept of rough-fuzzy set. They are called S-OWA-AND and S-OWA-OR

operators. The S-OWA-AND operator is defined by

The parameter cr lies in the unit interval. The closer cr is to one, the more AND-like the

aggregation becomes. In (4.5a) we can obtain the effect of S-OWA-AND operators by

replacing min{pcC (x) I x E X i) with

On the other hand, the S-OWA-OR operator is for an OR like aggregation. This operator

Here again the parameter /3 lies in the unit interval and the closer /3 is to 1, the more like

a pure OR the operation is. In (4.5-b) we can obtain the effect of S-OWA-AND operators

by replacing max(pcc (x) 1 x E Xi) with

Thus the OWA operators generalize the definitions given in (4.5-a) and (4.5-b). Conse-

quently, the definition of the criterion function given in Equation (4.7) is also generalized.

4.3.2 Possibilistic K-Nearest Neighbors Algorithm

To calculate (4.7), we need to determine the membership values pc(x) Vc Vx. Since

the membership assignment should be possibilistic to extract the maximum advantage of

fuzzy sets, we modify the FKNN algorithm to possibilistic K-nearest neighbors (PKNN)

algorithm. Other than Equation (4.2), the steps of the PKNN algorithm are exactly

similar to that of the FKNN algorithm. In the PKNN algorithm Equation (4.2) is modified

as

where tc is a parameter that decides the bandwidth of the membership, i.e., the point a t

which pc(x) attains the value 0.5. One way to assign the value of n is by making it equal

to the average distance between any two training patterns. The initial memberships can

be assigned in the following three ways: a) Crisp initialization: As done in the case of

FKNN. b) Constrained fuzzy initialization: As done in the case of FKNN. c) Possibilistic

initialization: The initialisation can be possibilistic if certain domain specific knowledge

is present.

Lemma 4.2: For a C-class classification problem, the membership assignments of the

test patterns in the PKNN are possibilistic even if the initial class memberships for the

training patterns are crisp or constrained fuzzy.

Proof.

Since c:==, (a) needs not to be equal to a constant, the resultant classification proce

dure is possibilistic [KY95] [PB95].

In the opening bid problem, the membership values of all the training patterns can be

obtained in crisp form. The sole purpose of using the PKNN algorithm is to fuzzify the

. crisp membership values of the training patterns in a possibilistic manner. All training

pat terns are used to construct the PKNN algorithm. Now a training pattern is considered

as a test pattern for the PKNN. The PKNN algorithm is used for only one iteration.

The closest neighbor of any test pattern will be the pattern itself. The output of the

PKNN algorithm will give the possibilistic class membership values of the test pattern.

The possibilistic membership value corresponding to each training pattern can be found

similarly. This technique is similar to obtaining a blurred image from a noisy image (i.e.,

image smoothing).

Experimentally it is observed that the performance of the PKNN is comparable to

that of the FKNN. However, the PKNN has an edge over the FKNN as the membership

values generated by the first one is possibilistic, whereas the membership values generated

by the later one is constrained fuzzy.

4.3.3 Optimization Technique and Weight Update

Depending on the importance of a feature, the feature is biased by assigning some weigh-

tage on it. If the j th feature is very important, then the importance of the feature Ij is

assumed to be close to 1. On the other hand, if the feature is redundant, then the value

of Ij is taken as 0. The importance is found using an iterative procedure (see Fig. 4.2).

The iterative process starts with the original input x = [xl, x2,. . . , xN]. The importance

of each input feature is initially assigned as 1, i.e., at starting I = [I , 1,. . . , 11. In the first

iteration, the input features are weighted by I such that the modified feature vector be-

comes y = I * x. Here the operation * signifies a component wise multiplication between

the two vectors, i.e., I * x = [Ilxl, 12x2,. . . , I N X ~) The PKNN algorithm is applied on

the modified feature vector (which is discrete) to determine the fuzzy class membership

values. The change of importance AI1 = [AI:, AI;, . . . , AI;~ for the modified feature is

determined using

AI: = (1 - 317 Vs (4.14)

Now the value of importance is updated as I = I*AI1. In the next iteration, the input

features are weighted again using y = I * x. Since this modified input set is not dis-

Feature
biasing

Fig. 4.2: Flow diagram to show how the feature weightages are determined

iteratively using rough-fuzzy method. The training patterns are the inputs to

the flow diagram. The importance I is the output of the of the flow diagram.

I * x implies [I ~ X ~ , I ~ X ? , . . . , INXNj .

I

crete, it cannot be used directly to calculate the rough-fuzzy entropy. It is discretized by

Input
x

rounding each feature value to the closest integer value. The fuzzy membership values

Possibilistic KNN

Weight update

corresponding to the modified feature vectors are reevaluated from the PKNN algorithm.

Discretisation

C

These membership values are used to calculate the rough-fuzzy entropy. Again the change

of importance (A12) is determined, and the importance is updated as I = I * A12. The

iterative process is continued until a local minimum is reached, i.e., there is no significant

----b. -+

change in the value of

Determination of
rough-fmy

entropy

3

Finally the modified feature vector is y = I * x , where I is the importance af-

ter the final iteration. The complete algorithm is shown in Fig. 4.3. Appli-

cation of this method will result in more impact on the distance measure by

the important features. For instance, the distance between the modified feature

vectors yi and yj is d(yi, yj) = J (w ~ - yjl)? + (yi2 - yj2l2 + . . . + (yiN - yjN)2 =
J~;(xil - ~ ~ 1) ~ + 1;(xi2 - ~ ~ 2) ~ + . . . + I&(xiN - z ~ ~) ~ . If Iu >> I" VV # u and U, v E

{1,2, . . . , N), then the value of d(yi, yj) will be dictated by the uth feature only.

4.4 Results and Discussion

Before using the proposed method on the opening bid problem, we will show the ef-

fectiveness of the proposed method on some artificially generated two-dimensional data

sets.

Initialize I as an N-dimensional vector [1, 1, . . . , 11.
Set i = 1.

Assign the maximum possible value of H, i .e., N to H.
DO

%old = %

Find modified feature vectors using y=x*I.

Discretize the modifies feature vector.

Use PKNN to determine the fuzzy memberships of the

training patterns to all the classes.

FOR feature s = 1 to N

FOR class c = 1 to C

Compute H: from (4.6) .
Calculate the a pra'ori probability PC.

END FOR

Compute 31' from (4.7)

Determine AIi using (4.14) .
END FOR

Compute I = l*AIi.

Set i = i + l .

Compute 31 from (4.15) .
END DO UNTIL abs(?i0ld - H) is larger than certain prespecif ied
constant

I stores the importance of all the features.

Fig. 4.3: The proposed algorithm to determine the importance of input fea-

tures using the rough-fuzzy entropy. The input to the algorithm is the set

of training patterns and the output of the algorithm is the importance of the

features. The term abs(x) represents the absolute value of x.

Table 4.1: Importance of features against the number of iterations for the
data set shown in Fig. 4.4.

1 No. of I Importance I Importance /

For the first experiment we use the 2-Class data set shown in Fig. 4.4. The data is

discrete. The number of inputs is 120, and the dimension of each input is two. In the

data set, some patterns from the class C1 and C2 are present with the same x1 value.

Hence the classes are indistinguishable based on XI. It creates rough uncertainty. On the

other hand, the feature 22 is sufficient for classification. We used PKNN to determine the

possibilistic membership values of the inputs. Since the overlaps between the classes are

minimum, the generated memberships are almost crisp. The parameter PC of the PKNN

is made equal to the fraction of the number of training patterns in the cth class to the

total number of patterns. The importance of each feature is found by using a! = 0.5.

Fig. 4.5 shows the change of total rough-fuzzy entropy against the number of iterations.

The iterative process converged within 5 iterations. The importance of both the features

after each iteration are normalized. Otherwise after a certain number of iterations, the

importance will be so small that roundoff error will take place in digital computers. The

change of importance (normalized) is shown in Table 4.1. The final importance for xl

and 22 are 0 and 1, respectively. The final importance for xl (or x2) is obtained by

multiplying all the entries present in the first (second) column of Table 4.1. The value of

final importance indicates that the feature x l is redundant and the feature x2 is essential.

It tallies with our visual observation also.

iterations

1

The next experiment is on the data set of a 2-class problem. The number of inputs

is 140, and the dimension of each input is 2 (see Fig. 4.6). The features are all discrete.

In this problem the output classes are indistinguishable with respect to the feature XI.

The classes are quite separable with respect to the feature xl. Unlike the data set shown

in Fig. 4.4, here the output classes are overlapping to some extent. The possibilistic

membership values are determined using the PKNN. The importance of each feature is

of x1

1 .oooo
of 22

1.0000

Fig. 4.4: Artificially generated input data set for the first experiment. The

horizontal and vertical axes represent the feature xl and x2, respectively. The

points with the symbols '+' and '.' represent the patterns from the classes

C1 and C2, respectively. The classes are indistinguishable with respect to the

feature XI. But the classes are distinguishable with respect to the feature 22.

No. 01 itetaticns

Fig. 4.5: Change of total rough-fuzzy entropy with the number of iterations
for the data set shown in Fig. 4.4.

found by using a = 0.5. Fig. 4.7 shows the change of total rough-fuzzy entropy against the

number of iterations. The iterative process converges within 25 iterations. The change

of importance after each iteration is shown in Table. 4.2. The final importance of the

features xl and xz are 0.0511 and 1.0000, respectively. It implies that the feature XI is

not an important feature.

Next we apply the proposed method on the opening bid problem. We initially collected

a set of patterns with class labels corresponding to first level bids. The crisp membership

value corresponding to each pat tern is known. The possibilistic membership of each input

pattern is determined by using the PKNN algorithm. In the PKNN, PC is taken as the

fraction of the number of training patterns in the cth class to the total number of patterns.

The importance of each feature is found by using a = 0.7. Instead of a = 0.5, we have

kept cu = 0.7 so that the calculation becomes slightly optimistic. The iterative process

was continued for 25 iterations. The value of rough-fuzzy entropy against the number

of iterations is shown in Fig. 4.8. The ranking of the features, as given by the proposed

method, in a decreasing order is: UA, OK, /A, UA, OA, 4 Q , 4 K , 49 , OK, 07 , OQ,
O9 ,4T , 4 2 , 0 5 , U4,/5, . . . , 03, 4T, . . . , 08, /8 ,04,)2 (here 'T" represents 10). It

implies that for the first level bids, Ace, King, Queen, Jack cards are more important,

which is also as per the notion of Bridge players. Thereafter, we took "TrainingSetl"

Fig. 4.6: Input data set for the second experiment. The horizontal and

vertical axes represent the features x l and 22, respectively. The points with

the symbols '+' and '.' represent the patterns from the classes Cl and C2,
respectively. The classes are indistinguishable with respect to the feature XI.

But the classes are distinguishable with respect to the feature x2.

5 10 15 20 25
No. d ilarabons

Fig. 4.7: Change of total rough-fuzzy entropy with the number of iterations

for the data set shown in Fig. 4.6.

Table 4.2: Importance of features against the number of iterations for the

data set shown in Fig. 4.6.
p Importance

of XI

Importance

of x2

Table 4.3: Classification performance of FFNNs with BP algorithm for the

to train to train a three layered FFNN by backpropagation algorithm. This is the same

training set that we used in chapter 3 to train the FFNNs for first level bids. Each

component of a pattern of this set is multiplied by the corresponding importance. The

number of input nodes, hidden nodes and output nodes are 52, 50 and 6, respectively. We

used the set "TestSetl" for testing. While testing also we use the modified representation

for the test patterns. The class corresponding to a test pattern is chosen as the label

corresponding to the output node with the highest output. With the original input

representation, the network takes 2000 iterations to converge, whereas with the modified

representation the same network takes 1650 iterations to converge, which is significantly

better. Overall classification performance on the same test set with the original (raw)

and modified representation are given in the first and second rows of Table 4.3.

first level bids.

Similarly the proposed method is used for the bids of second and third levels. The

training sets "TrainingSet2" and "TrainingSet2" are again considered to train the modules

for the second and third level bids, respectively. The importance are used to weight the

patterns of the training sets. These weighted patterns are used to train FFNNs with BP

algorithm. The FFNN for the second level bids has 52 input nodes, 50 hidden nodes

and 5 output nodes. The FFNN for the third level bids has 52 input nodes, 50 hidden

nodes and 4 output nodes. The classification results for the second and third level bids

on "TestSet2" and "TestSet2" are given in the second row of Table 4.4 and 4.5. The first

row of Table 4.4 and 4.5 show the classification results when the original input (raw)

is fed to the network. The comparative results show a significant improvement of the

classification results.

Input

Raw

Modified

4.5 Summary

This chapter proposes a filter-type feature weighting method. Since the class discrimina-

tory property of all the cards are not same to classify an input hand, the representation

Pass

85.12%

85.82%

1C

66.83%

69.94%

1H

77.16%

78.25%

1D

63.13%

72.13%

1 S

71.82%

70.01%

1N

64.52%

69.92%

Overall

71.43%

74.34%

01 I f I
I I

5 10 15 20 25
No. of iterations

Fig. 4.8: Change of total rough-fuzzy entropy for the data set with first level

bids.

Table 4.4: Classification performance of FFNNs with BP algorithm for the

second level bids.
I Input 1 1 2C 1 2D 1 2s I 2H (2N I Overall 1

Table 4.5: Classification performance of FFNNs with BP algorithm for the

Raw

Modified

third level bids.
I Input 1 1 3C I 3D I 3s I 3H I Overall 1

61.04%

67.45%

I Raw 1 1 75.17% 177.28% 83.54% '0 84.97% '0 80.24% 1
I Modified 1 1 85.14% 1 79.43% '0 82.46% '0 85.11% I 83.03% I

75.71%

76.88%

77.56%

78.19%

72.33%

75.43%

74.34%

74.98%

72.19%

74.59%

of each input pattern should be biased based on the importance of each card. This ne-

cessitates a way to measure the importance of each card, i.e., each feature, individually.

A filter type approach, which does not depend on the classifier being used, is employed.

As a criterion function, rough-fuzzy entropy is used. The criterion function is optimized

iteratively. To determine the fuzzy membership values of the training patterns, other

than the PKNN algorithm we could have used other fuzzy classifiers that do not need any

a prion' information about the structure of the data.

For different values of a and P we get some interesting results. For example, if
1 a = 0 or P = 0 in (4.9) and (4 - l l) , then PR~(C.)(X,) - = p ~ (~ =) (X i) = iq pcC(x)

VX E X,. R o m Equation (C.2) in Appendix-C, it can be observed that CxEXi pcC (x)

is equal to the rough-fuzzy membership function of x for the output class C,. Therefore,

the rough-fuzzy entropy in Equation (4.6) is equal to the rough-fuzzy entropy proposed

in [SY] [SY98d]. In the absence of roughness, each input will be labelled always with

unique class label. In this case, if there is no repeatation of any input, then the num-

ber of equivalence classes will be equal to the number of input da ta and pg.(cC) (Xi) =

~ R (~ ~) (X ~) = pcC(xi). Thus, the rough-fuzzy entropy for the cth class and the s th feature

becomes

I t is explicitly the fuzzy entropy proposed for feature selection in [PC861 [Pa192]. If no

fuzziness but roughness is present, then pBd (cc) (Xi) is actually the rough membership

function for any pattern x E Xi (see Equation (B.l) in Appendix B). Then the pro-

posed rough-fuzzy entropy can be compared with the definition of rough entropy given

in [PWZ88] and [SY].

The advantages of the proposed method are

1. I t exploits roughness and fuzziness simultaneously.

2. I t is moderately fast.

3. If we seek to find the importance of the features in terms of intervals, then we

have t o run the algorithm twice with p, =pE(cc) (Xi) and pi= pK(c,) (Xi). The

importance of the sth feature is an interval [u, v], where u and v are the importance

with pa (cC) (Xi) and (Xi), respectively. Appropriate point in the interval

can be chosen based on the given problem. Instead of an interval, by taking a

specific value as an importance of the feature, we lose some information. In this

chapter we have adopted a specific value as an importance as processing of the

interval may be complicated in the next stages.

4. For feature selection, a threshold value can be chosen for the importance. All

features with importance lesser than this threshold value will be ignored.

5 . I t does not depend on the type of the classifier used in the feature analysis stage.

It does not need significant domain dependent knowledge.

The drawback of the method is that the resultant importance may not be globally opti-

mum.

For the sth module, the derivation of the modified feature vectors using the proposed

method is a mapping from an N dimensional discrete space to an N dimensional con-

tinuous space. For the sth module, we need to find the relation from the continuous N

dimensional space to n, dimensional continuous space (assuming that the sth module

has n, output classes). In the next two chapters we propose two alternative schemes to

capture this relation.

Chapter 5

DESIGN OF CLASSIFIER MODULES

THROUGH DIRECT CLASSIFICATION

5.1 Introduction

In this chapter an attempt has been made to build a module using direct classification

techniques. The aim is to capture the relationship between the modified feature vectors

and the fuzzy output classes of the module. For each module, this chapter proposes FFNNs

with the BP learning algorithm that minimizes certain fuzzy objective functions from

possibilistic classification viewpoint. After training, if a new input pattern is presented

to the network, it yields the outputs as class membership values corresponding to the

input pattern. The classification performance of the FFNNs can be improved further if

the networks are configured optimally. To configure the FFNNs, the BP algorithm with

the fuzzy objective functions is embedded into a stochastic search operation.

When the output classes are fuzzy, an input pattern may not necessarily belong to

a single class; rather it may belong to more than one class with different degrees of

belongingness. The conventional BP learning algorithm is not tailored to this type of

fuzzy classification problem. Section 5.2 makes an FFNN powerful by proposing a method

to embed fuzzy classification properties into the conventional BP learning algorithm. In

section 5.3 we use evolutiona y programming (EP), a multipoint, controlled, stochastic

search and optimization technique, for finding the optimal configuration of the FFNN.

Training and configuring the FRNN involves local as well as global search in the parameter

space. EP is good for global search, whereas it is slow for local search. Although gradient-

based search techniques like BP algorithms are quite fast for local search, they may get

stuck in local minima while exploring a search space globally. We combine the BP and EP,

and exploit the advantages of both. Efficiency of this hybrid method is further enhanced

by incorporating the concepts of adaptive structural mutation.

5.2 Feedforward Neura l Network Classifiers: Backpropagat ion Learning Al-

gorithm w i t h Fuzzy Objective Functions

A major drawback of the conventional BP algorithm is that it assigns each input pattern

exactly to one of the output classes, assuming well-defined class boundaries. In real life

situations boundaries between the classes may be overlapping. This section proposes a

met hod of incorporating fuzzy classification properties into the conventional BP learning

algorithm. In the opening bid problem, the inputs are modified feature vectors (crisp)

and the output classes are fuzzy. An input pattern may not necessarily belong to a single

class; rather it may belong to more than one class with different degrees of belongingness.

Unlike the conventional BP, here the number of target classes corresponding to each input

training pattern may be more than one. The aim of the proposed learning algorithm

during training is to minimize an error term, henceforth termed as fuzzy mean square

error. The fuzzy mean square error is the overall weighted sum of the square error

between the actual network output and all possible target outputs, where the weight

signifies the level of belongingness of the input pattern into the corresponding target

class. If a modified feature vector is presented to the network after training, it yields the

output as class membership values corresponding to the input pattern. We also propose

another learning algorithm that tries to minimize an alternative error term, called fuzzy

cross entropy, which is a fuzzy counterpart of crisp cross entropy [Hay94]. Although the

learning algorithms for the fuzzy mean square error and fuzzy cross entropy differ, the

basic philosophy of introducing the concept of fuzzy classification into the crisp error

measure is same.

The sum of one's belief that a particular bid is from the class 1C or ID is not neces-

sarily equal to one. Hence the proposed learning algorithm is derived in such a manner

that the sum total of the membership values for a particular pattern to all the classes

need not necessarily be equal to one. It implies that the membership assignment is not

constrained fuzzy [PB95]; on the other hand, it is possibilistic [PB95]. In the case of

constrained fuzzy membership assignment, we show that the learning algorithm, given by

Pal and Mitra [PM92], is equivalent to the proposed algorithm. In addition, when the

classification is crisp, the proposed learning algorithm reduces to the conventional BP al-

gorithm. Thus, ' the possibilistic approach of the proposed algorithm leads it to encompass

both constrained fuzzy classification and crisp classification.

sth Module

Fig. 5.1: A typical fully connected feedforward neural network with two input

nodes, three hidden nodes and two output nodes.

5.2.1 Architecture of Feedforward Neural Networks

Let the training set in a C-class problem consists of vector pairs {(y 1, z l) , (y2, z2), . . . ,
(yn,zn)) , where y, E RN refers to the uth modified feature vector and z, E {t,l c =

1 ,2 , . . . , C; t, E 9Ic) refers to the target output of the network corresponding to this input.

Specifically, if y, is from the kth class, then z, = tk, where tkk = 1 and td = 0 Qc, c # k.

The network used here is a multilayer feedforward network, which can have several

hidden layers. Without loss of generality, the number of the hidden layers can be assumed

to be one with H hidden nodes. When a modified feature vector y, = [yul, yu2,. . . , yuN]

is applied a t the input layer of the network, the input units distribute the values to the
1 hidden layer units. The output of the j th hidden unit is okj= f)(netkj) = l+exp(-nn:,),

N
where netkj = C w:,yUi+8:. w:, is the weight of the link from the ith input node to the j th

i=l

hidden node. Here, 8: and f) are the bias term and transfer function of the j t h hidden
1 node. Similarly, the output of the kth output node is o:, = f;(net:,) = l+,p(-ne,,k),

where net:, =C;=, w& fT(net4) + 8;. The superscripts h and o refer to the quantities in

the hidden and output layers, respectively (see Fig. 5.1).

5.2.2 Training of Feedforward Neural Networks

The adaptive parameters of FFNNs consist of all weights and bias terms. The sole purpose

of the training phase is to determine the optimum setting of the weights and bias terms

so as to minimize the difference between the network output and the target output. This

difference is referred to as training error of the network. The error measure can be fuzzy

mean square error, which is a fuzzy counterpart of the mean square error [Hay941 used in

the conventional BP algorithm.

In the conventional BP algorithm, the mean square error for the uth input pattern is
C

defined as Eu = k , l (t u k - o:,)~. The use of Eu as an error term is justified when each

input pattern belongs to only one class. But, in fuzzy classification the input pattern

may belong to more than one class with different degrees of belongingness. It implies

that the target value of an input pattern may be more than one. In other words, each

input pattern can have all possible target values with different membership values (certain

membership values may be zero also). Through training, the network attempts to reach

those target values weighted by different membership values. In other words, the problem

of training can also be conceptually viewed as a fuzzy constraint satisfaction problem.

Here the constraint is that each input pattern should belong to a particular class, and the

associated membership value signifies to what extent this constraint should be satisfied. In

the training phase, the proposed network adapts the parameters so that these constraints

are resolved optimally. For the uth input pattern the constraints can be mathematically

expressed as the fuzzy mean square error. It is defined as

Here the index of p , i.e., q E [0, oo) controls the amount of fuzziness present in the

classification. Different values of q signifies to what extent the constraints should be

satisfied. When q is equal to zero, each input pattern tries to attain all the target outputs

with equal importance, and ultimately the network learns the mean of all the class centers.

When q is greater than one, the constraints associated with the high membership values

get more importance to be resolved. When q tends to be infinity, only the input pattern

that belongs to a class completely, i.e., with membership one, is learned. That means, at

q oo and 0 5 pc(yu) < 1 Vc, E,f is equivalent to the conventional mean square error

Eu. Specifically, the larger the value of q is in [0, CQ), the less fuzzier are the membership

assignments. As a consequence, E,f decreases strictly towards zero as q increases in [I , oo)

for 0 < pc(yu) < 1 VC.

Lemma 5.1: E,f i s a monotonically decreasing function for 0 < pc(yu) < 1 Vc and

Q E [l l 4 .

Proof. Differentiating &,f with respect to q we get

With the usual convention that x ln(x) = 0 if x = 0, we have [pc(yu) ln(pc(yu))] 5 0 and

[pz-l (Y.) (tck-o;k)2] >_ 0 Vc, k. Both the inequalities being strict whenever 0 < pc(y,) < 1.

Hence, when 0 < pc(yu) < 1, strictly decreases [Bez81] on every finite interval of the

form [I, b] with 1 < b.

On the other hand, when q is less than 1, the constraints associated with the high

membership values get less importance to be resolved. Thus, q controls the extent of the

membership sharing between the fuzzy classes. This can be good; on the other hand, one

must choose q to actually implement it. In our work q is assumed to be one. The role

of q is quite similar to the index of fuzziness in the concentration and dilation operators

(found in fuzzy hedge) [KF93], and the index of fuzziness in fuzzy K-means clustering

algorithm [Bez81].

Next, we derive the learning laws for the network following the same method as

followed in the conventional BP algorithm [Hay94]. Here, we assume that the weight

updating Aw takes place after the presentation of each input pattern. Assuming the use

of same learning-rate parameter 7 for all the weight changes made in the network, the

change of weights for wkj and wj; are calculated in accordance to the gradient-descent
a ~ f rules: A w b = - 7 + - and Aw:, =
&kj -7%.

C
Lemma 5.2: A W ~ = 7 6 ~ ~ 4 ~ and AW:; = 76tj yui where 6tk= pi(yu) - c p!(y,)o~~

c=l

otk (1 - oEk) and 6tj =f:(nettj) Cf=, 6Ekwij.
I

Proof. The expression for & can be derived as

Since tkk = 1 and td = 0 Vc # k,

Therefore,

I C
where 'Ek = P ~ (Y U) - C P : (Y U) ~ ; ~ 0Ek(1 - oEk).

c= 1

h j i

I
Again, the expression for % can be found as follows:

Following the steps involved in deriving Equation (5.8) from Equation (5.5), we can write

Hence,

Finally we can state

where btj = /)(nettj) cF=~ 6Ekwe.

Therefore,

Now, we generalize the other error measure, i.e., cross entropy. For the uth input

pattern, the cross entropy is defined as

Since tuk is either zero or one, we can rewrite the above definition as

C

Following the same logic, as we used to justify the use of the fuzzy mean square error in

the place of mean square error, we can generalize 31, to its fuzzy counterpart, called fuzzy

cross entropy. The fuzzy cross entropy is defined as

It is trivial to show that for 0 5 pc(yu) 5 1, 31; reduces to 31, at q z oo. Here, q controls

the amount of fuzziness in a similar way as it does in Equation (5.1). Consequently, like

Lemma 5.1, 3tf decreases strictly to zero as q increases in [I, oo) for 0 < pc(yu) < 1 Vc.

Lemma 5.3: 3tf is a monotonically decreasing function for q E [I , oo) and 0 < pc(yu) <
1 vc.

Proof. For q > 1,

With the usual convention that xln(x) = 0 if x = 0, we have pc(yu) ln(pc(yu)) 5 0 and

(-tck ln(otk) - (1 - tck) ln(1 - o&)) 2 0 Vc, k. It implies, 31; decreases monotonically in

q E [I , oo). First inequality becomes strict when 0 < pC(yu) < 1. For the fuzzy cross

entropy to be a well-defined criterion, we must have the additional constraint 0 < oEk < 1

on the outputs of the neural networks. Therefore, 31; can be zero only when tck is equal

to zero and one, simultaneously; which is impossible. Therefore, when 0 < pc(yu) < 1,

31; decreases monotonically in a strict manner on every finite interval of the form [I , b]

w i t h l < b .

Lemma 5.4:

ax; C

(5.23-a)
c= 1

ax; C C
nwh. = 7- - '' awfi - 7f(netkj)iiui k= C 1 [P;(Y.) - C= 1 1 pz(yu)o:k 1 wi j (5.23-b)

Proof. To find $, we differentiate Equation (5.21) with respect to w b .

Using the identity (5.14),

ax; C - = - [awe, Y - ouj
c= 1 l h

The value of % can be calculated as

ax; c C

k=l c=l
h(net:k)w~i;"(net$)y~i (3.28)

Applying the identity (5.14),

Therefore, by introducing the fuzzy concepts in the usual BP error measures, we can

obtain a large class of learning equations. Although the exact formulation of the learning

equations for the fuzzy mean square error and fuzzy cross entropy differ, the underlying

concept of introduction of fuzziness into the usual error measures is same.

To make the learning faster, the learning rate can be increased or decreased dynami-

cally as the learning algorithm progresses. In addition, momentum term can be used for

faster learning.

Now, we illustrate the following particular cases of the proposed learning algorithms.

I . Crisp classification: In the case of crisp classification only one component of

p:(yu) Vc = 1 , . . . , C is one and the remaining components are zero. Thus, the

expression for EL reduces to the following expression:

i c c

which is the mean square error term found in the conventional BP algorithm. Con-

sequently, in a crisp case the learning equations based on the mean square error

and fuzzy mean square error become identical. It can be verified easily by makicg

the membership assignments in Equation (5.18-a) and (5.18-b) crisp.

Similarly, in the case of crisp classification, the fuzzy cross entropy reduces to the

conventional cross entropy, and consequently, the learning equations for the cross

entropy and fuzzy cross entropy become same.

2. Constrained fuzzy classification: When C p c (y u) = 1 Vu and q = 1, the
C

learning equations (5.18-a) and (5.18-b) achieve simpler forms as follows:

L
where d:, = [W(Y.) - otk] otk(l -o:~) and btj = f:(net:j) C d:,wij. This particu-

k = l
lar version of the proposed algorithm is available as the learning algorithm proposed

by Pal et al. in [PM92]. Note that we are not considering Pal et al.'s algorithm

with fuzzy linguistic inputs; rather we are considering it with crisp inputs.

For Cc pc(y,) = 1 Vu and q = 1, the learning equations (5.23-a) and (5.23-b) can

be simplified to

This particular case of the learning algorithm is derivable from a variant of Pal et

al.'s cross entropy [PM92], i .e., '+l,Pa' = (pk (yu) ln(otk) + (1 - pk (yu)) ln(1 - o;,)).

This result is quite obvious as the definition of the fuzzy cross entropy reduces to

Pal et al.'s cross entropy when q = 1 and Ccpc(yu) = 1 Vu. This claim can be

proved from the following Lemma.

Lemma 5.5: 'H,f = X,pa' when Ccpc(yu) = 1 Vu and q = 1

Proof. When q = 1 and c:=, pc(yu) = 1,

Since tkk = 1 and tck = 0 Vc # k,

In the case of constrained fuzzy approach, pk(xU) + C~=llc,k pc(yu) = 1, and hence,

Thus, being possibilistic in nature, the proposed algorithm encapsulates various BP

algorithms based on crisp as well as constrained fuzzy classification.

5.2.3 Testing of Feedforward Neural Networks

The network learns the fuzzy boundaries between the classes after training. Ln this stage,

a separate set of test patterns is given as the inputs to the network. Generated outputs

are the class membership values corresponding to the test inputs.

Note that, the network with the proposed learning algorithm is a universal approxi-

mator [HSW89].

5.2.4 Results and Discussion

We employed the BP learning algorithms with the fuzzy mean square error (or fuzzy cross

entropy) to train FFNNs for first, second and third level bids. The inputs are modified

feature vectors. The number of input nodes for all the FFNNs are 52. The number

of hidden nodes for all the FFNNs are chosen as 50. We have chosen the number of

hidden nodes as 50 because we have observed in chapter 3 that the performance of the

networks is good with.50 hidden nodes. The value of q is chosen as 1. The learning-rate is

adaptively changed in the following way: If the error decreases during training, then. the

learning-rate is increased by a predefined amount. In contrast, if the error increases, then

the learning-rate is decreased and the new weights and errors are discarded. As a result,

the error always decreases or stays as it is. The momentum is kept 0.5 throughout the

process. We adopted the strategy of picking the output node with the highest activation

value as the output class corresponding to an input.

For the first level bids, the FFNN has 6 output nodes. We used the same training

and test sets as we used in chapter 3 and 4 (i.e., "TrainingSet 1" and "TestSet 1"). While

using the fuzzy mean square error, the convergence was achieved within 1570 iterations

(Fig. 5.2Top). Using the fuzzy cross entropy, the network took 1400 iterations to converge

(Fig. 5.2Bottom). The error values shown in Fig. 5.2Top and Bottom are the average of the

error values with five different network initializations. From these figures, it appears that

the convergence property of FFNNs with fuzzy cross entropy is slightly better than that

of fuzzy mean square error. In chapter 4, we found that FFNNs with crisp BP converge

within 1650 iterations. Therefore, the BP algorithm with fuzzy objective functions offers

slight improvement in the convergence property for the first level bids. In the first row

of Table 5.1, we have rewritten the classification performance of the conventional BP

algorithm with crisp mean square error (from Table 4.3). Classification efficiency of

the network with fuzzy objective functions is depicted in the second and third rows of

Table 5.1. In this table, we can observe the better classification performance of the BP

algorithm with fuzzy objective functions compared to the conventional BP algorithm.

This improvement takes place because the proposed method takes care of the fuzziness

involved in the classification from the possibilistic angle. The proposed algorithms can

find the fuzzy decision boundary more accurately as some input patterns (especially,

a t the borders or away from the classes) may not satisfy the condition Cc pc(%) = 1.

In Table 5.1, we can observe that the BP algorithm with the fuzzy mean square error is

showing marginally better results compared to the fuzzy cross entropy. Therefore, training

Table 5.1: Classification performance of FFNNs with the BP algorithm for

first level bids. The inputs are modified feature vectors. The symbols Obj. fn.,

cmse, fmse and fce imply objective function, crisp mean square error, fuzzy

I I I I I I I I

1 fmse 1 77.14% 1 81.98% 1 71.03% 92.61% 1 59.33% 1 75.02% 1 76.18% 1

mean square error and fuzzy cross entropy, respectively.

I I I I I I I I I

fce 1 87.31% 71.74% 1 82.12% 1 87.33% 1 59.27% 1 65.04% 1 75.46%

Table 5.2: Classification performance of FFNNs with the BP algorithm for

second level bids. The inputs are modified feature vectors. The symbols Obj.

fn., cmse, fmse and fce imply objective function, crisp mean square error, fuzzy

Obj. fn.

cmse

1 C

69.94%

Pass

85.82%

mean square error and fuzzy cross entropy, respectively.

an FFNN with the fuzzy cross entropy may be easier compared to the FFNN with the

fuzzy mean square error (Fig. 5.2); but the generalization capability of the FFNN with

the fuzzy mean square error is better than the FFNN with the fuzzy cross entropy.

1 D

72.13%

4

In a similar manner, the proposed method trains an FFNN for the second level bids

using "TrainingSet2". The inputs to the networks are the modified feature vectors. This

network has 5 output nodes. The FFNN for the third level bids was trained by "Training

Setl" and tested on "TestSet3". This network has 4 output nodes. The classification

performance of these two FFNNs are given in Table 5.2 and 5.3. These tables show the

improvements in the classification results of the proposed method compared to the BP

algorithm with crisp objective functions. Note that FFNNs with the fuzzy mean square

error are consistently performing better than FFNNs with the fuzzy cross entropy.

Overall

74.59%

76.42%

Obj. fn.

cmse

fmse

fce 1 80.23% 1 75.72% 1 67.43% 1 80.55% 76.02% 1 75.99% 1

1s
70.01%

1H

78.25%

2N

74.98%

74.17%

2C

67.45%

71.01%

1N

2D

76.88%

77.23%

Overall

69.92% 74.34%

2 S

78.19%

78.57%

2H

75.43%

81.12%

No. ol ilefatims

Fig. 5.2: Top: No. of iterations vs. fuzzy mean square error of an FFNN.

Bottom: No. of iterations vs. fuzzy cross entropy of an FFNN. In both the

cases, the FFNN has fifty-two input nodes, fifty hidden nodes and six output

nodes. All training patterns are from first level bids.

Table 5.3: ~lassification>erformance of FFNNs with the BP algorithm for

third level bids. The inputs are modified feature vectors. The symbols Obj.

fn., cmse, fmse and fce imply objective function, crisp mean square error, fuzzy

(fce 1 1 87.12% 1 87.36% 1 86.73% 1 82.66% 1 85.96% 1

mean square error and fuzzy cross entropy, respectively.

5.3 Configurat ion of Feedforward N e u r a l Networks Using Evolut ionary

Programming-Based H y b r i d Technique

Obj. fn.

cmse

fmse

Use of FFNNs with fuzzy objective functions improves the classification performance of

the modules. But the training process may be slow or in some cases it may halt due to

the presence of local minima. Even if the network converges, the generalization capability

of the trained network may not be high because of the improper choice of the network

size. This section proposes a method to configure FFNNs in terms of optimum structure

and optimum parameter set so that the resultant network generalizes well. The proposed

method uses the BP algorithm with fuzzy objective functions as a local search operation.

In addition, it employs evolutionary programming (EP) technique as a global search

operation.

In many classification problems, it has been proved that learning in general, as well

as choosing an optimal network configuration, are NP complete [Man93]. The selection of

an appropriate number of hidden nodes and weights is so difficult because small number

of hidden nodes and weights may hamper convergence of the network on a training set;

on the other hand, large number of hidden nodes and weights may affect the generaliza-

tion [Hay941 capability of the network. Large size of a network affects the generalization

capability mainly in two ways. Firstly, the large size of a network may cause overfit-

ting [Hay94], i.e., the network simply memorises the training patterns. Secondly, while

training a large network, all the weights may not get involved in the training process as

they balance each others effect on the output. Consequently, training error becomes low.

However, such free weights may result in a large variation of the classification efficiency

for different test sets [Sus92]. Other than the generalization issue, smaller networks are

3C

85.14%

90.11%

3D

79.43%

84.51%

3 S

82.46%

88.23%

3H

85.11%

86.15%

Overall

83.03%

87.25% 1

better because they are usually faster and cheaper to build. Moreover, the operation of

smaller networks is easier to understand where users need to know how the system works.

But it not is always true that the smaller a network is, the better is its generalization

capability. It is because, sometimes small networks may cause underfitting [Hay94] of

the data. In addition, there may exist certain networks of optimum size just complex

enough to generalize the data but very sensitive to the initial conditions [Ree93]. These

two problems, i.e., underfitting and sensitiveness to the initial condition, may result in a

low classification rate on the test sets, and thus these networks, although they are small,

are not useful.

In order to have an optimal network architecture, we need an objective function and

an advanced search and optimization method. The search method should necessarily look

for the following:

1. How to determine the optimum number of hidden nodes of the network after avoid-

ing locally optimal solutions.

2. How to determine the optimum set of weights and bias of the network after avoiding

locally optimal solutions.

3. How to make the network configuration to be less sensitive to the initial choice of

the weights and bias values.

4. How to reduce the configuration time.

In light of these requirements we can formulate an objective function, whose minimiza-

tion will generate an optimum network configuration that generalizes well. The choice of

the objective function should be such that minimization of it should not lead to memori-

sation of the input patterns. One such objective function in neural networks training can

be the fuzzy mean square error or fuzzy cross entropy on a validation set. The validation

set consists of a set of input-output pairs which do not occur in the training set.

A potential candidate for the optimization method is gradient descent algo-

rithms [Hay94]. The advantages of the gradient descent algorithm are: (a) It uses the

local information in an efficient way resulting in better accuracy, provided it does not get

stuck in local optima or saddle points, and (b) it is quite fast to find the local optima or

saddle points. The disadvantages of this method are: (a) It may stagnate at certain po-

tentially suboptimal solutions, rendering the network incapable of sufficient performance,

(b) it is sensitive to the initial values of the weights and bias, and (c) it.cannot be used

when the objective function is not differentiable at certain points. Another candidate for

the optimization process is EP [FOW66] [Fogglb] [Fog95], which is a stochastic search

and optimization technique. EP optimizes the objective function by using a controlled

stochastic search, and it performs the search parallely from more than one point. In other

words, while searching for the global minimum, this technique explores many paths simul-

taneously. Certain search paths may be less promising at the initial stage, whereas due to

the random perturbation of the search parameters these search paths may become highly

promising after some time. In the EP-based approach, these less promising solutions are

kept along with highly promising solutions, hoping that they would lead new search paths

towards the global minima after some time. These new paths enable the search process

to avoid locally optimal solutions. Also, by adding or deleting hidden nodes or by small

perturbation of the weights and bias terms, the search operation may jump over local

minima. Due to these two reasons, EP can avoid a locally minimal solution, whereas the

gradient-based approach cannot. In EP-based approach more than one solution is gener-

ated initially, and the solutions are repeatedly adapted by adding and deleting the hidden

nodes, or by small perturbation of the weights or bias values. Thus the problem of proper

initialization of the weights and bias values is also reduced. However, EP can suffer from

extremely slow convergence before arriving at the correct solution. It is because EP does

not exploit available local information [RF96]. Therefore, a clever approach is to go for

a trade off where merits of both the methods, i.e., speed, accuracy, reliability and fast

computation can be achieved. EP is good for exploration in the search space, whereas the

BP is good for exploitation. Inspired by biology and especially by the manner in which

living beings adapt themselves to their environment, the hybrid method adopted in this

section involves two interwoven levels of optimization, namely evolution (EP) and indi-

vidual learning (BP), which co-operate in a global process of optimization. The evolution

of individuals are carried out to minimize certain global objective function. The global

objective function is the fuzzy mean square error or fuzzy cross entropy on a validation

set. The local search method, i.e., minimization of the fuzzy mean square error or fuzzy

cross entropy on a training set, is used to guide the global search method [PIL96].

By fusing gradient descent and evolutionary algorithm, the search method becomes

faster than a pure evolutionary approach. However there is a further scope to accelerate

the proposed method by accelerating EP. Although EP is based on random search, it

is not totally random - rather it is a controlled random search. This control action is

provided by certain mutation parameters. The proper choice of mutation parameters

has a profound impact on the convergence and performance of the proposed method. In

accordance with this requirement, another issue that is addressed in this section is the

dynamic adaptation of the mutation parameters.

5.3.1 Evolut ionary Programming in Network Configuration

While designing a feedforward network for a particular problem, the aim is to find the

optimum number of hidden nodes and a set of optimum parameters. Formally, it can be

written as a problem of finding the global maxima of the following function:

where y represents a modified feature vector with dimension N, 8 consists of weights and

bias terms, and G(y, 8) signifies how good the network for the particular classification

problem is. In the proposed method, 4 is maximised such that EP is able to find the

optimum value of 8 as well as the optimum value for the dimension of 8.

The above idea to configure a network is implemented through the following sequence

of events (Fig. 5.3). Initially, EP creates a population of networks. EP initializes the

population with fully connected networks of randomly (uniform distribution) generated

hidden nodes. Thus, v such networks are formed with each network having any number

of hidden nodes between one to some prespecified positive integer. The number of hidden

nodes in each network is determined randomly from a uniform distribution. These net-

works are called parents. Each parent network is trained for a fixed number of iterations

using the BP algorithm with the fuzzy mean square error or fuzzy cross entropy. Fitness

value (a measure to indicate how good the network is for the given classification task) of

each parent network is measured. Each parent is now allowed to create an offspring. Thus,

v offspring networks are generated. The method to create the offspring is described in

the next section. Each offspring network is trained for a fixed number of iterations using

the BP algorithm with the fuzzy mean square error or fuzzy cross entropy. The fitness

value of each offspring network is measured. Thus 2v networks, comprising of parents as

well as offsprings, are generated. Next in the competition phase, pairwise comparison of

fitness values of all the networks (parents as well as offsprings) are conducted. For each

solution, the algorithm chooses 10 randomly selected opponents from all the parents and

offsprings with uniform probability. In each comparison, if the conditioned network offers

as good performance as the randomly selected opponent, it receives a win [Fog95]. Based

on the wins, networks scoring in the top 50% are designated as parents. -411 the networks,

other than the parents, are discarded. Again, these parents create offsprings, and thus,

the whole procedure is continued until the number of generations becomes greater than

some prespecified constant. Finally, the network with the highest fitness is considered as

the desired network.

It is to be noted that while embedding the BP algorithm in the E P paradigm, we

have employed Lamarckian principle [RF96]. In this case the properties learned by the

individuals are transferred to the next generation. The life of each individual spans the

number of iterations used in the BP algorithm.

5.3.2 Implementat ion Issues

5.3.2.1 Fitness function

Fitness value of a network decides how good it is in the competition phase. Specifically, a

network with higher fitness value has higher chance of survival and vice versa. The fitness

function of a network is
1

where E is equal to either Cu E,f or xu 7-l: on a validation set. It is important to note

that although Xu E,f or xu 3 ~ , f is differentiable with respect to the connection weights,

it is nondifferentiable with respect to the number of hidden nodes. Thus, gradient-based

optimization methods cannot be applied here to determine the optimal number of hidden

nodes.

An alternative fitness function could be the inverse of Akaike's information criterion

(AIC) [Aka741 [Foggla] [BZ95] or network information criterion (NIC) ['IMYA94]. Since

the AIC (or NIC) value is supposed to be used only after the network is completely

evolved, AIC (or NIC) value calculated from a network which is not evolved completely

may not reflect the generalization capability of the network at the current generation.

In order to generate offsprings, the following steps are needed:

5.3.2.2 Replication of parents

In our work, each parent is typically represented combinedly by the number of hidden

layers, number of input, output and hidden nodes, set of weight values and set of bias

values. Since the number of hidden layers is one, and the number of input and output

nodes are fixed, a network is actually represented by the number of hidden nodes, weight

values and bias values. In this step, these values are copied from the parent to generate

a new offspring.

Randomly generate a population of v networks (c a l l them

parents) .
FOR each parent

Train t h e parent network f o r a f ixed number of i t e r a t i o n s

by t he BP algorithm with fuzzy object ive funct ions .

Find t he f i t n e s s value of the parent network.

END FOR

WHILE (the number of generations is l e s s than a spec i f i c number

o r t h e f i t n e s s of t he bes t parent i s l e s s than a spec i f i c value)

FOR each parent network

Create an offspr ing of the parent network.

Train the offspr ing network f o r a f ixed number of

i t e r a t i o n s by t he BP algorithm with fuzzy object ive

funct ions .

Find t he f i t n e s s value of the offspr ing network.

END FOR

Competition starts among a l l parent and offspr ing networks

based on t he f i t n e s s values.

Survival of the f i t t e s t networks (c a l l them paren t s) .

END WHILE .
The parent networkwith the highest f i t n e s s is considered a s t h e

des i red network.

Fig. 5.3: Configuration of feedforward neural networks using evolutionary

programming.

5.3.2.3 Mutation

The aim of creating offsprings is to minimize the global objective function. Basically

creation of an offspring is searching one step forward or backward in the search space.

But the length of a step size and the corresponding step direction are unknown. The

step size cannot be too big as well as too small, because it may result the search process

to jump over the global minimum or to take long time to reach the global minimum. It

necessitates the use of mutation operators to decide the stepsize and step direction of

the search method probabilis tically. The nondeterminism associated with the selection

of step size and step direction enables the search process to avoid local minima. To

search an optimum set of weights and bias terms, we encounter local minima which we

call parametric local minima, and to find an optimum number of hidden nodes we come

across local minima which we call structural local minima. Parametric locaI minima and

structural local minima are alleviated by parametric mutation and structural mutation,

respectively.

In the parametric mutation, each weight w is perturbed using a Gaussian noise. Hence,

w = w + N (0 , T). The mutation step size N (0 , T) is a Gaussian random number with

mean 0 and variance T . The intensity of the parametric mutation should be high when

the fitness vaIue of the parent is low and vice versa. It can be accomplished if we consider

T of a particular network as its temperature, and define it as

minimum fitness
T = a U (0 , l)

fitness of the network 1
where U (0 , l) is a uniform random number over the interval [0, 11 and a is a constant

(0 5 a 5 1). Obviously, the range of T lies in between 0 and 1. This temperature in fact

determines how dose the network is to the solution for the task [ASP94], and the amount

of the parametric mutation is controlled depending on that. Like simulated annealing, the

temperature is used to anneal the mutation parameters. Initially when the temperature

is high, the mutation parameters are annealed quickly like coarse grains, and a t low tem-

perature they are annealed slowly like fine grains. Large mutations are needed to escape

parametric local minima; but many times large mutations adversely affect the offspring's

ability to perform better than its parent [ASP94]. Hence, to lessen the frequency of large

parametric mutations, we have multiplied right hand side of Equation (5.42) by d (0 , l) .

In Equation (5.42) we need to know the minimum value of the fitness function. The

maximum value of ~f is 0.5nC2. Therefore, from Equation (5.41), the minimum fitness

corresponding to Ef is
1

Gmin = A
0.5C2n

Similarly, the minimum fitness corresponding to 'Hf is kin = nC:ln2.

In the proposed method, the structural mutation is used to obtain an optimum number

of hidden nodes after avoiding structural local minima. Using the structural mutation,

hidden nodes are added or deleted during the creation of offsprings. Determination of

the optimum number of hidden nodes can be considered as a search problem in a struc-

ture space where each point represents a particular network. If some performance index

like fuzzy mean square error on the validation set is assigned to each network, then the

performance levels of all possible networks form a surface in the structure space. Thus,

determination of the optimum number of hidden nodes is equivalent to finding the lowest

point on this surface. However this search operation becomes complicated as the surface

has the following typical characteristics [Yao93] [MTH89]:

1. The surface is very large since the number of possible networks can be very high.

2. The surface is nondifferentiable as the number of hidden nodes and weights are

discrete.

3. The surface is multimodal as performance of two networks with different number

of hidden nodes and weights may be same.

Due to the structural mutation, sometimes one hidden node is added or deleted during

the creation of offsprings. The specific instants of hidden node addition or deletion in a

network depend upon the probability of the structural mutation, which further depends on

the fitness of the network. The hidden node, which is added to or deleted from the network,

is selected randomly (uniformly). The amount of structural mutation depends on the

probability of the structural mutation (p,). Large value of p, makes E P a purely random

search algorithm, while some amount of mutation is needed to prevent the premature

convergence of E P to suboptimal solution [SP94]. Therefore, a scheme is adopted here to

change p, adaptively.

The value of p, is increased when the population tends to get stuck in local minima,

and it is decreased when the population is scattered in the solution space. Let the average

fitness value of the population and the maximum fitness value of the population be denoted

by Gav and G,,,, respectively. (G,,, - Gav) is likely to be less for a population that has

converged to an optimal solution than that for a population scattered in the solution

space [SP94]. It can be expressed as

1
Pm rn (5.44)

Gmax - Gav

In order to preserve the good solutions of the population, pm of a network with lower

fitness must be greater than p , of a network with higher fitness. It results in the following

relation:

~m rn (Gmax - G) (5.45)

Accommodating Equation (5.44) and (5.45) simultaneously, we can write

Gmax - G
Pm = km

Gmax - Gav

where km is a proportionality constant. F'rom this relation, it appears that for solutions

with subaverage fitness values, i.e., G < Gav, pm may assume value larger than 1. In order

to make pm for the subaverage solutions always less than or equal to one, the expression

for pm is modified as

Gmax - G
P , = km if G L Gav (5.47-a)

Gmax - Gav
= km if G < Gav (5.47-b)

To keep pm in [0, I], km should be less than or equal to 1. In fact, solutions with

fitness values less than or equal to Gav should be disrupted completely. Hence, the value

of k , is taken as 0.5. This assignment always makes pm of the best network zero. But the

best network should also be allowed to undergo through the structural mutation process.

Obviously, the amount of mutation for the best network should be the lowest. This

observation modifies the above equations as

Gmax - G
~m = kml + km2 if G L Gav

Gmax - Gav
= km if G < Gav

where k , ~ and km2 are two constants. After this modification, pm for the above average

networks increases linearly from km2 to kml + km2.

In the above relations, we have considered the spread of the population through

(Q,,, - G); but we did not consider whether the members of the population are diverse

in the population space [LD95]. It may happen that the spread is high, but the diversity

is low (Fig. 5.4(a)) and vice versa (Fig. 5.4(b)). We indeed seek both spread and diversity

should be high (Fig. 5.4(c)). Higher spread allows the search to be carried out in a wider

space, and higher diversity allows uniform exploration in that space.

To take the diversity factor into account, p, should be high when the diversity is

low and vice versa. In order to measure the diversity of a population, the concept of

probabilistic entropy [Hay941 can be used over the fitness values. To measure the entropy,

the interval. [Gmi,, G,,] is divided into L subintervals [Gmin + jD , 4min + (j + l)D] , where

j = 0,1,2, .., L - 1 and D = (Gm, - Gmi")/L. $j is defined as 2, where 4 is the number

of members of the population in the j th interval and 2v is the size of the population (v

parents + v offsprings). With these introduced notations, the probabilistic entropy is

defined as

If the members are uniformly distributed, then E N attains the maximum value 1. On

the other hand, if all the members are grouped around a few values, the entropy value is

close to 0. So, we can write, pm oc (1 - E W) where s is a weighing factor. Combining

this result with Equation (5.48-a and b), we can write

5.3.3 Results and Discussion

In section 5.2.4, we have already observed the classification performance of the BP algo-

rithm with the proposed fuzzy objective functions. There we chose the number of hidden

nodes arbitrarily. In the following experiments we choose the number of hidden nodes

dynamically using the EP-based network configuration strategy. To configure the FFNN

for first level bids, "TrainingSetl" was used. We first generated randomly 25 FFNNs

(each with the number hidden nodes in between 1 and 100). In each generation, each par-

ent network was trained for 100 iterations using the BP algorithm with the fuzzy mean

square error. The fitness value of each parent was determined by calculating the fuzzy

mean square error of the network for a validation set of size 200. For each parent, an

offspring was created. During the structural mutation, between 1 to 3 hidden nodes were

added or deleted at a time. The exact number of hidden node addition or deletion was

decided randomly. If more number of hidden nodes are added or deleted, the fitness of

Fig. 5.4: Each circle represents a solution in the population space. E and H

and the number of hidden nodes in the solution, respectively. represent fitness
Three figures represent three different cases: (a) Spread of the population is

low, but diversity is high, (b) spread of the population is high, but diversity is

low, and (c) both spread and diversity are high.

the network decreases drastically. It is because the behavioural gap between the parent

and the offspring becomes too high. To enhance the structural mutation, we used Equa-

tion (5.50-a and b). The value of s was chosen as 2. kml and km2 were taken as 0.3 and

0.2 such that p, varies linearly from 0.2 (for the best set) to 0.5 (for the average set).

Fig. S.STop illustrates the number of hidden nodes in the best network for first level bids

against the number of generations. The resultant network has 45 hidden nodes. This fig-

ure demonstrates the self-organization capability of the proposed algorithm, due to which,

it is able to find better structure eventhough it starts with inappropriate number of hid-

den nodes. "Plot 1" in Fig. 5.5Bottom exhibits the fuzzy mean square error of the best

networks, while trained by the proposed method. This error value is the average of the

error values of the best network in ten runs. "Plot 1" is obtained when Equation (5.50-a

and b) are used for adapting the parameters of structural mutation. "Plot 2" represents

another curve when Equation (5.50-a and b) are not used for adapting the parameters

of the structural mutation. This comparative study clearly demonstrates how effectively

Equation (5.50-a and b) enhance the performance of the search process. Using "Plot 1"

the convergence was achieved at the 20th generation. Since each generation needs 100

iterations for each parent network, the proposed method requires a long time on sequen-

tial computer. This drawback can be reduced if we use parallel machines. Actually this

amenability to asynchronous parallel computation has made E P popular [BR94]. Classi-

fication efficiency of the FFNN on 'TestSetl" is shown in the third row of Table 5.4. The

fourth row of Table 5.4 depicts the classification performance of the EP-based method

with the fuzzy cross entropy. The first and second rows of this table are reproduced from

Table 5.1. Table 5.4 demonstrates the better generalization capability of the network

while configured by the proposed method. We can observe that the FFNN trained with

the fuzzy mean square error is giving better result (overall) compared to the FFNN with

the fuzzy cross entropy.

Similarly the proposed technique was used for the second and third level bids. The

number of hidden nodes of the FFNNs for the second and third level bids are 32 and 23,

respectively. The classification results are illustrated in Table 5.5 and 5.6. We can observe

that in the configured architectures, the network with the fuzzy mean square error shows

better performance than that of fuzzy cross entropy. Hence, in the subsequent experiments

with FFNNs, we shall use only the fuzzy mean square error.

5 10 15 M 25 30
No. of gmeralims

Fig. 5.5: Top: No. of generations vs. fuzzy mean square error of an FFNN.

Bottom: No. of generations vs. no. of hidden nodes. "Plot 1" represents

a curve when Equation (5.50-a and b) are used for adapting the parameters

of the structural mutation. In contrast, "Plot 2" represents another curve

when Equation (5.50-a and b) are not used for adapting the parameters of the

structural mutation.

127

Table 5.4: Classification performance of FFNNs with the BP algorithm for

first level bids. The inputs are modified feature vectors. The symbols Arc.,

Obj. fn., F , Dl fmse and fce imply architecture, objective function, fixed

architecture, configured architecture, fuzzy mean square error and fuzzy cross

1 F 1 1 fce 1 87.31% 1 71.74% 1 82.12% '0 87.33% 1 59.27% 1 65.04% 1 75.46% 1

entropy, respectively.

I C I fmse 1 80.64% 75.14% 79.38% 1 85.63% 70.44% 1 73.02% 1 77.37% /

Arc.

F

1 C 1 1 fce 1 72.90% 78.45% 81.23% 1 78.01% 78.81% 1 72.23% 1 77.60% 1

Table 5.5: Classification performance of FFNNs with'the BP algorithm for

Obj. fn.

fmse

second level bids. The inputs are modified feature vectors. The symbols Arc.,

Obj. fn., F , Dl fmse and fce imply architecture, objective function, fixed

Pass

77.14%

architecture, configured architecture, fuzzy mean square error and fuzzy cross

entropy, respectively.
A r c . I I O b j . f n . 2C I 2D I 2s I 2H I 2N IOveralll

1C

81.98%

I F 11 fmse 1 71.01% 1 77.23% 1 78.57% 1 81.12% 74.17% 76.42% I
1 F 1 1 fce 80.23% 1 75.72% 1 67.43% 80.55% 76.02% 75.99% 1

1 D

71.03%

-- I C I fmse I 75.82% 1 77.57% I 80.24% I 78.12% I 76.68% I 77.68% /
C fce 78.13% I 75.42% I 81.23% 1 79.12% I 74.12% 1 77.60% 1

1s

92.61%

Table 5.6: Classification performance of FFNNs with the B P algorithm for

third level bids. The inputs are modified feature vectors. The symbols Arc.,

1H

59.33%

Obj. fn., F, Dl fmse and fce imply architecture, objective function, fixed

architecture, configured architecture, fuzzy mean square error and fuzzy cross

1N

75.02%

entropy, respectively.
I Arc. / Obj. In. 3C 1 3D 3s 1 3H 1 Overall 1

Overall

76.18%

I F 1 fmse I 90.11% 1 84.51% 1 88.23% 86.15% I 87.25% 1
F

C
C

fce

fmse

fce 1 82.18% 81.14% 93.12% 1 93.54% 87.49% ~
87.12%

89.23%

87.36%

88.52%

86.73%

93.15%

82.66%

85.63%

85.96%

89.13%

5.4 Summary

In this chapter, we applied feedforward neural networks to construct each module by

capturing the relationship between the feature vectors and the output classes present in

the module. Since the output bids are fuzzy, the network is trained by the B P learn-

ing algorithm with fuzzy objective functions. The proposed training algorithm has the

possibilistic classification ability, and hence, it can encompass various BP learning algo-

rithms based on crisp and constrained fuzzy classification. To increase the generalization

capability of the network, we configure FFNNs using a hybrid search operation consisting

of both deterministic and stochastic search operations. As a deterministic search, the

proposed BP algorithm with fuzzy objective functions is used. As a stochastic search, E P

is employed. The BP algorithm uses local information efficiently, whereas E P exploits

global information. The efficiency of the whole search process is further enhanced by

dynamic adaptation of the structural mutation. If a modified feature vector is presented

to the configured network, the output of the network is produced as class membership

values corresponding to the input pattern.

As a global search method, in place of EP, we could have chosen constructive and de-

structive pruning techniques [Ree93], [SM93]. Constructive pruning techniques [ST931

initially assume a simple network, and add nodes and links as warranted, while destructive

techniques [MS89a] start with a large network and prune off superfluous components. The

aim of the pruning techniques is to evolve a near optimal neural network architecture.

However the problems associated with the pruning techniques are [ASP94]: (a) These

methods get stuck in local minima very easily. (b) In these methods, once an architecture

is explored and determined to be insufficient, the old one becomes topologically unreach-

able. Thus, they investigate only restrictive topological subsets of networks rather than

the complete class of network architectures [ASP94].

While configuring neural networks, EP is considered to be more powerful optimization

tool than simulated annealing [KJV831 and genetic algorithm [Go189], [Mic92], [Davgl.].

In particular, simulated annealing is a sequential search operation, whereas EP is a paral-

lel search algorithm. In fact, we can say that EP is more than a parallel search algorithm.

Parallel search starts with a number of different paths (say v where v > 1) and continues

until all the search paths get stuck in blind alleys 6 any one of them finds the solution.

EP also starts with v different paths. But, it tries to generate new paths which are always

better than the current paths. Due to this inherent parallelism, in many cases EP-based

Fig. 5.6: (a) and (b) are two equivalent networks, which order their hid-

den nodes differently. The genotype representations of the networks become

different, although the networks are equivalent.

search operation becomes more efficient and faster than simulated annealing-based oper-

ation [PFF95]. Although both EP and genetic algorithm are parallel search operations,

the EP-based optimization approach is more attractive for the network configuration. It

is due to the following reasons:

1. E P manipulates networks directly. So it does not need any dual representation. Ge-

netic algorithm needs coding which may not represent the problem itself [ASP94].

2. While creating offsprings, E P avoids recombination between networks. It helps to

keep the individuality of the network intact [ASP94].

3. One major problem with genetic algorit hm-based approach is permu tation prob-

lem [Yao93]. The permutation problem stems from the fact that in genetic algo-

rithm two functionally identical networks which label their hidden nodes differently

(Fig. 5.4) will have two different genotype representations. Therefore, the proba-

bility of producing a highly fit offspring from them by crossover will be very low.

EP-based optimization method does not suffer from this problem.

4. Asymptotic convergence property of E P is better than that of genetic algo-

rit hm [Fog94a], [FS93].

The EP-based network configuration technique can also be seen from Markov-chain

perspective [Fog95]. Each state of the Markov chain consists of all possible networks with

the same fitness value. Since the fitness representation is finite on digital computers, the

number of states is finite. The starting state depends on the initialisation. The state with

the highest fitness acts as an absorbing state. The probability of jumping from one state

to another state is dictated by the probability of mutation.

In the next chapter, we will employ clustering to capture the relationship between the

modified feature vectors and the output class labels.

Chapter 6

DESIGN OF CLASSIFIER MODULES

THROUGH CLUSTERING

6.1 Introduction

This chapter proposes a classifier module that uses clustering to capture the relationship

between the modified feature vectors and the output classes of a module. Construction

of such a classifier can be carried out in two phases. First phase is necessary to perform

clustering, and the second phase is needed to establish the relationship between each

cluster and the class labels. When a modified feature vector is presented as an input,

the classifier detects the belonginness of the input into the clusters. The output class

label corresponding to the pattern is determined depending on the relationship between

each cluster and the output classes. In the opening bid problem, the clusters generated

by the feature vectors are generally overlapping or fuzzy. In addition, the class labels of

the patterns from the same cluster may not be similar. This one-t*many relationship

between the clusters and the output class labels creates rough uncertainty. This chapter

proposes a classification technique in presence of fuzzy and rough uncertainties.

It is possible to use the conventional fuzzy K-means (FKM) clustering algorithm

to cluster the modified feature space. However, to apply the FKM user has to know

a priori the number of clusters present in the given set of input patterns. Moreover,

the solution obtained from the FKM may be locally optimal or too much dependent on

the initializations. To reduce some of these limitations, in section 6.2, an evolutionary

programming-based fuzzy clustering algorithm is proposed. This algorithm effectively

groups a given set of input patterns into an optimum number of clusters. The algorithm

determines the number of clusters and the cluster centers in such a way that there is a

high chance of avoiding locally optimal solutions. The clustering results of the algorithm

do not depend critically on the choice of the initial cluster centers.

After clustering, the next task is to label each cluster with an appropriate class label.

The main assumption of the clustering-based classification is that similar inputs produce

similar outputs. It means that any two input patterns from the same cluster must be from

the same class. Generalization is possible in such classifiers due to this similarity property.

In the bidding problem, however, two patterns from the same cluster may belong to

different classes, and hence, classification based on mere similarity property is inadequate.

This problem arises because the available features are not sufficient to discriminate the

classes. It implies that the fuzzy clusters generated by the modified feature vectors have

rough uncertainty. To exploit the fuzziness and roughness, section 6.3 proposes fuzzy-

rough neural networks. For any modified feature vector, the network determines the

classification result in terms of fuzzy-rough membership values.

6.2 Evolut ionary Programming-Based Fuzzy Cluster ing

Clustering a set of patterns provides a systematic approach for partitioning the set of pat-

terns into different groups such that patterns with similar features are grouped together,

and patterns with different features are placed in different groups [DJ87]. Formally, clus-

tering can be defined as follows: [Bez81]: Given a set y = {yl, yz, . . . , y,) of feature

vectors, find an integer K (2 5 K < n) and the K partitions of y which exhibit cat-

egorically homogeneous subsets. An important requirement for resolving this issue is a

suitable measure of clusters - what clustering criterion should be used? Specifically, what

mathematical properties - e.g., distance, angle, curvature - possessed by the members

of the data should be used, and in what way, to identify the clusters in y ? In fact,

each observation may have infinite number of variations. In addition, the data set may

be a mixture of different shapes, sizes and geometries. Therefore, infinite varieties of

structures are possible. It is evident that clustering criterion must be problem-specific,

and it cannot be universally applicable. Three types of clustering approaches are com-

monly used [Bez81]. They are (1) hierarchical approach, (2) graph theoretic approach and

(3) objective function-based approach. Among them, the objective function approach is

well-known. One extensively used objective function type clustering algorithm is hard K -

means algorithm [TG74] [Bez81]. It involves assigning each pattern exactly to one of the

clusters, assuming well-defined boundaries between the clusters. It is used for clustering

where clusters are crisp and spherical. In the hard K-means algorithm, clustering is based

on minimization of the overall sum of the squared errors between each pattern and the

corresponding cluster center. That is

n

Here, K is the number of clusters and mk is the closest cluster center to the pattern

yj. In real life situations, boundaries between groups may be overlapping. In particular,

there may be some patterns that completely belong to one cluster, but partially belong

to other clusters also. In order to overcome this problem, the idea of fuzzy K-means

(FKM) algorithm has been introduced [Bez81]. Incorporation of fuzzy theory in the

FKM algorithm makes it a generalized version of the hard K-means algorithm.

In the FKM, clustering is based on minimization of the overall weighted sum of squared

error between each pattern and each cluster center, where the weight signifies the level

of belongingness of the pattern into the cluster. It can be treated as minimization of the

following objective function:

where U = [pk(yj)] is a fuzzy partition of y and m={ml, . . . , mK), with mk desig-

nating the center of the cluster Fk. In this equation, q E (1, m) and djk is a distance

measure between y j and mk. Although the FKM algorithm is extensively used in liter-

ature [DJ87] [SS91], it suffers from several drawbacks. Firstly, to apply the algorithm,

the user has to know a priori the number of clusters present in the given input data set.

Secondly, the objective function is not convex, and hence, it may contain local minima.

Therefore, while minimizing the objective function, there is a chance of getting stuck in

local minima (also in local maxima and saddle points). Finally, the performance of the

FKM algorithm depends on the choice of the initial cluster centers.

In this section we propose a clustering algorithm to address the following issues:

1. How to determine the optimum number of clusters.

2. How to avoid local minima solutions.

3. How to make the clustering less dependent on the initial choice of the cluster centers.

Since human ability to cluster data is far superior to any of the clustering algorithms,

we examine some of the aspects of human way of clustering to address the above issues.

For example, when we see a picture, we try to cluster the elements of the picture into

different groups. It is interesting to note that, immediately after observing a picture

we can find how many clusters there are, and it is done without looking at each point

within the clusters. It appears that clustering depends on the global view of the observer.

After deciding the number of clusters, we try to see which point belongs to which cluster.

Hence, we gather global information first, and then we look for local properties. Now the

question is, what criterion do we use to gather the global information? Possibly we collect

this global information from the isolation and compactness of the clusters in the whole

picture. Although the FKM considers the local properties of the picture, it does not take

the global view into its account.

We propose a clustering algorithm that tries to mimic the above mentioned features

of the human way of clustering. In this algorithm, two objective functions are minimized

simultaneously. The global view of the input data set is considered by an objective

function called fuzzy hypervolume [GG89]. Minimization of this objective function takes

place by randomly merging and splitting the clusters. The objective function E~ (given

in Equation (6.2)) is minimized to consider the local property, i.e., to determine which

input pattern should belong to which cluster. It turns out that minimization of the global

performance index, i.e., the fuzzy hypervolume, gives the optimum number of clusters,

whereas minimization of ~f leads to proper positioning of the cluster centers. In other

words, the task of minimizing the fuzzy hypervolume can be considered as a major one,

while the task of minimizing Ef can be regarded as a minor one. The role played by

the fuzzy hypervolume and Ef is quite similar to the role played by the fuzzy mean

square error on a validation set and the fuzzy mean square error on a training set (see

configuration of FFNNs in section 5.3). Minimization of both the objective functions

may yield locally optimal solutions. To circumvent the local minima problem, we propose

an optimization technique based on evolutionary programming (EP) [Fog95]. EP-based

search operation tries to escape locally minimal solutions by splitting and merging the

clusters or by small perturbation of the cluster centers. In this approach, more than one

solution is generated, and the solutions are repeatedly adapted by splitting and merging

the clusters or by small perturbations of the cluster centers. Therefore, the initial choice

of the cluster centers is not very critical in the proposed EP-based clustering algorithm.

6.2.1 Background of Fuzzy K-Means Clustering

The fuzzy K-means algorithm uses iterative optimization procedure to minimize the ob-

jective function Ef (U, m) (given in Equation (6.2)). This objective function is minimized

such that the following constraints are satisfied.

(i) pk(yj) E [O 11 vj, k; (ii) C pk (yj) > o tlk; (iii) C pk (yj) = 1 vj; (6.3)

The steps of the algorithm are stated in Fig. 6.1. The FKM algorithm can be made more

powerful by using fuzzy modification of maximum likelihood estimation (FMLE) [GG89].

The intention of using the FMLE is to obtain better clustering results [GG89] when it

is applied after using the FKM. Other than using different form of the distance measure

djk, the steps of the FMLE algorithm are exactly similar to that of the FKM algorithm.

The distance function used in Equation (6.7) is modified here as follows:

djk = [det (~k) 1 ' f -1

P k
exp [(yj - m t j (~ k) (yj - mk)]

where
1 n

and EL is the fuzzy covariance matrix for the cluster Fk. C! is defined as [GG89]

where dkj = y j - mk, q = (1, oo), mk is the cluster center of Fk and pk(yj) is the fuzzy

membership of y j in Fk.

1. Fix t h e va lue of q and a s s ign t h e number of c l u s t e r s a s K .

Define a d i s t a n c e measure between y j and mk a s

where C is a p o s i t i v e d e f i n i t e mat r ix .

2 . Assign i = 0.

3 . I n i t i a t e t h e fuzzy K- p a r t i t i o n U'.

4. DO

(a) S e t i = i + 1.

(b) Ca lcu la t e K c l u s t e r c e n t e r s {mk} of U':

(c) Update u('+') by c a l c u l a t i n g Il" as fo l lows :

i . Determine t h e content of t h e fol lowing s e t s :

ii. Compute t h e new membership va lues as fo l lows :

e l s e pk(yj) = 0 Vk E I;; and C pk(yj) = 1
k € I k

(6.12)

END DO UNTIL norm(Ui - u('+')) > 77

Fig. 6.1: Fuzzy K-means algorithm. Here 77 is a constant with small value

and norm() is an appropriate matrix norm.

6.2.2 E m b e d d i n g Evolut ionary Programming i n Fuzzy Clus te r ing

The objective of the proposed clustering algorithm is to find the optimum number of

clusters and the optimum position of each cluster center. Formally, i t can be treated as

the problem of finding the global maximum of the following function:

where 3 is an nK dimensional vector representing [ml , mz, . . . , m K] and B(z) signifies

how good the clustering is. Therefore, EP should be able to find the optimum value of z

as well as the optimum value of K.

Now we describe how the above idea can be used in a practical situation (see Fig. 6.2).

To cluster an input data set, initially E P needs to create a population of sets of clusters.

EP initializes the population using sets of clusters with randomly generated (uniform

distribution) cluster centers. Thus v such sets of cluster centers are formed. Each set

has any number of cluster centers between two and some prespecified positive integer.

The number of cluster centers in each set is determined randomly. These sets are called

parents. Modified fuzzy K-means (MFKM) algorithm clusters the entire da ta set using

the set of parent cluster centers. The MFKM algorithm is described in the next section.

A fitness value is assigned on each parent set. Each parent is allowed to create one

offspring. Thus, v offspring sets of cluster centers are generated. The method of creating

the offsprings is described in the next section. The MFKM clusters the entire data set

using the set of offspring cluster centers, and then the fitness value of each offspring set

is measured. As a result, we obtain 2v sets of clusters comprising of parents as well as

o&prings. Now the competition phase starts. In this phase, the fitness values of all sets

(parents as well as offspring) are compared. For each solution, the algorithm chooses 10

randomly selected opponents from all parents and offsprings with uniform probability.

In each comparison, if the conditioned set offers as good performance as the randomly

selected opponent, it receives a win [PFF95], [SF95]. Based on the wins, sets scoring

in the top 50% are designated as parents. All other sets are discarded. Again these

parents are used to create offsprings. The whole procedure is continued until the number

of generations becomes larger than some prespecified constant. Finally, the set with the

maximum fitness value is considered as the desired clustered output.

Randomly generate a population of v s e t s of c lu s t e r cen te rs

(c a l l them paren ts) .

FOR each parent

Cluster t h e parent s e t using the MFKM.

Find t he f i t n e s s value of the parent s e t .

END FOR

WHILE (the number of generations is l e s s than a spec i f i c number

or t he f i t n e s s of t he best parent is l e s s than a spec i f i c value)

FOR each parent s e t

Create an offspr ing of the parent s e t .

Cluster t h e offspring s e t using the MFKM.

Find t he f i t n e s s value of the offspring s e t .

END FOR

Based on t he f i t n e s s values competition s t a r t s among a l l

parent s e t s and offspr ing s e t s .

Survival of t he f i t t e s t s e t s (c a l l them parents) .

END WHILE

The parent with t he highest f i t n e s s is considered a s t he desi red

s e t of c l u s t e r s .

Fig. 6.2: The proposed evolutionary programming-based fuzzy clustering

algorithm.

6.2.3 I m p l e m e n t a t i o n Issues

6.2.3.1 Fi tness funct ion

In our work the following fitness function is chosen:

1
fitness value =

total fuzzy hypervolume (6.14)

where total fuzzy hypervolume (V 1 0) is an index to signify how good the clustering is.

The smaller is the total fuzzy hypervolume [GG89], [KNF92], the better is the clustering.

Since V may have any positive value, it appears from Equation (6.14) that the fitness

value may be more than one. It is not objectionable as the fitness value is used here for

relative comparison only.

The fuzzy hypervolume [GG89] of the cluster Fk is given by

The total fuzzy hypervolume, occupied by all the clusters, is defined as

Note that we have two objective functions Ef (in Equation (6.2)) and the total fuzzy

hypervolume (in Equation (6.16)) to minimize. Of these two, we are treating only the

inverse of the fuzzy hypervolume as the fitness function. The reason is that the evaluation

of Ef in Equation (6.2) requires K to be predefined and fixed. When K varies, Ef for a

set with the optimal number of clusters may not attain the minimum value. For example,

if the number of clusters of a set is very close to the number of data, then the value of

Ef is close to zero. Obviously, this kind of situation may not signify optimal clustering.

Instead of minimizing both objective functions, we could have minimized only the fuzzy

hypervolume. But, our search for a better set of clusters becomes more efficient when

minimization of Ef is viewed as a clue to minimize the fuzzy hypervolume. In other

words, the fuzzy hypervolume and Ef are used for exploration and exploitation in the

search space, respectively [RF96].

The next three sections describe the three steps to generate the offsprings:

6.2.3.2 Repl ica t ion of parents

In the first step, each parent is represented by the number of clusters and cluster centers.

In this step these values are copied from the parent to generate a new offspring.

6.2.3.3 Mutation

The aim of creating offsprings is to minimize Ef and the fuzzy hypervolume. To minimize

Ef, we come across parametric local minima, and to minimize the fuzzy hypervolume we

encounter structural local minima. Parametric local minima and structural local minima

are overcome by the parametric mutation and structural mutation, respectively. Using

the parametric mutation, each cluster center mk, 1 < k < K , is perturbed with Gaussian

noise. It can be expressed as

mk = mk + n/(o, T) (6.17)

Specifically, the mutation step size n/(0, T) is a Gaussian random vector with each com-

ponent having mean 0 and variance T.

The intensity of the parametric mutation should be high when the fitness value of the

parent is low and vice versa. It can be accomplished if T is defined for the parent set as

I minimum fitness
T = aU(0 , l)

fitness of the set of clusters 1
where U(0, l) is a uniform random variable over the interval [0,1] and a is a constant

(a < 1). Actually, this equation is already used in Equation (5.42).

The minimum value of fitness function is determined as follows: The fuzzy hypervol-

ume of each cluster is always less than the crisp hypervolume of the cluster comprising of

all the input patterns. Hence, we can write

1 n where Soj = yj - and mo = ;; zj=, yj. Since V = EL, Vk, the upper bound for the

total fuzzy hypervolume V is - - -

Kdet [E:=I &j&j 1
Therefore, the minimum fitness value is given by

The structural mutation is used to avoid structural local minima and to obtain the

optimum number of clusters. The determination of the optimum number of clusters can

be considered as a search problem in a structure space where each point represents a

particular set of clusters. If a performance index like fuzzy hypervolume is assigned to

each set of clusters, the performance level of all possible sets of clusters forms a surface in

the structure space. Thus, determination of the optimum number of clusters is equivalent

to finding the lowest point on this surface. However, this search operation becomes

complicated as the surface has the following characteristics pa0931 [MTH89]:

1. The surface is very large since the number of possible sets of clusters can be very

high.

2. The surface is nondifferentiable a s the change in the number of clusters is discrete.

In order to find the proper number of clusters, i.e., to find the global minimum in the

structure space, sometimes one cluster is added to or deleted from an offspring [TG74].

These addition and deletion operations are controlled by the structural mutation. The

addition of one cluster to an offspring set is done by splitting an existing cluster of the

offspring. To identify a cluster for splitting, it is required to find the cluster (say Fk)

with the maximum fuzzy hypervolume Vk. In order to break this cluster into two parts,

the center of this cluster, i.e., mk, is split into two new cluster centers m l and m;, and

then mk is deleted [TG74]. As a result, the number of clusters for this set, i.e., K is

incremented by one. Here, the cluster center m l is formed by adding a certain quantity

yk to the component of mk which corresponds to the maximum component of a k (variance

of the kth cluster), i.e., ak,,,; and in a similar way m i is formed by subtracting yk from

the same component of mk. One simple way of specifying yk is to make it equal to some

fraction of ak,,, , that is

yk = a o k m a z where 0 < a 5 1 (6.22)

Deletion of one cluster from an offspring set is executed by merging two existing clusters

of the set. In order to accomplish it, the two closest clusters with centers mk, and mk2 are

identified for merging. Thereafter, these two clusters are merged by a lumping operation

as mi = L [n k , m k l + nk,mk2], where m; is the center of the new cluster and nk, is
n k l + n k 2

the number of patterns in the cluster with center mk,. Next, mk, and mk, are deleted,

and the number of clusters K is reduced by one. The amount of the structural mutation

can be adaptively controlled using Equation (5.50-a and b).

It is important to note that the splitting and merging operations employed in the

proposed scheme are quite similar to that of in ISODATA [TG74]. However, unlike in

ISODATA, here cluster merging and splitting are executed in a nondeterministic fashion.

This inherent nondeterministic property plays a key role in avoiding local minima while

finding the optimum number of clusters, and eventually it guarantees the asymptotic con-

vergence of the EP-based fuzzy clustering scheme towards the global minimum [Fog94a].

6.2.3.4 Modified fuzzy K-means a lgor i thm

By exploiting the mutation in a particular offspring, we obtain the number of clusters and

the perturbed cluster centers. However, to calculate the fitness value of this offspring,

the input data set needs to be clustered using the perturbed cluster centers. In addition,

if the perturbed cluster centers are updated based on the clustered output, then the

minimization of ~f takes place, and as a result, the minimization of the fuzzy hypervolume

becomes easy. We exploit the modified fuzzy K-means (MFKM) algorithm to accomplish

this task. For an offspring, the MFKM is executed for a certain number of iterations (say

j) at each generation. Consequently, if the offspring survives g generations, then it passes

through g j iterations. The steps associated with the MFKM algorithm are described in

Fig. 6.3.

The MFKM algorithm basically remembers the cluster centers at the last generation,

and updates the old cluster centers in the current generation. This updating process,

however, may get stuck in certain parametric local minima. In order to avoid it, the cluster

centers of the offspring at the last generation are perturbed by applying Equation (6.17),

and then the cluster centers are used in the current generation for further updating.

Although both MFKM and FKM are iterative in nature, the difference between them

is that the FKM never uses the old cluster centers in perturbed form. This difference

makes the FKM algorithm a deterministic search operation, and thus vulnerable for the

parametric local minima.

6.2.4 Resul t s and Discussion

Before using the proposed clustering technique on the opening bid problem, we show the

performance of the proposed clustering technique on an artificially generated simple data

set. For the sake of visual observation, the dimension of each data is taken as two. We

generated 387 data from 9 Gaussian distributions (Fig. 6.4Top). The value of v is set to

4. To enhance the parametric mutation, we used Equation (5.50-a and b). The values of q

and s are taken as 2 and 2, respectively. kml and km2 are taken as 0.3 and 0.2 such that pm

varies linearly from 0.2 (for the best set) to 0.5 (for the average set). During the structural

mutation only one cluster is added or deleted at a time. cr (used in Equation(6.22)) is

1. If t h e current generation is the f i r s t generation follow

t h i s s t e p , e l s e sk ip i t . For each parent s e t randomly

,genera te t he number of c lu s t e r s , and randomly determine

t he c l u s t e r centers within the range of input pa t t e rn s .

Assume t h a t t h e number of c lu s t e r s generated i s K , where

K is i n between two and some prespecified in teger .

2. Set i=O.

3. Find a fuzzy p a r t i t i o n Ui of y by using Equation (6 .11) ,

(6.12) and t he already known c lu s t e r cen te rs .

4. DO

(a) Assign i = i + 1 .

(b) Calculate the K c lus te r centers {mk/l 5 k 5 K) using

t he following r e l a t i on :

(c) Update U' by using Equation (6.11) and (6 .12) .

END DO UNTIL norm(ll' - u('+ '1) > q

5. Repeat s t ep 4 with t he distance measure given i n

Equation (6 .4) . This s t e p helps t o obtain b e t t e r

c lu s t e r i ng .

Fig. 6.3: Modified fuzzy K-means algorithm. Here q is a constant with small

value and norm () is an appropriate matrix norm.

chosen as 0.6. If the value of a is varied slightly, then the clustering results remain same.

Fig. 6.4Bottom depicts the clustered data after using the proposed clustering algorithm.

Number of generations and the corresponding fitness of the best set of clusters is shown in

Fig. 6.5Top. In fact, this fitness value is average of the fitness values of the best set in ten

runs. Here "plot 1" represents a curve when Equation (5.50-a and b) are used for adapting

the parameters of the structural mutation. In contrast, "plot 2" represents another curve

when Equation (5.50-a and b) are not used for adapting the parameters of the structural

mutation. This comparative study demonstrates that Equation (5.50-a and b) enhances

the performance of the search process. But it also shows that the enhancement of the

performance is not as much as it was while configuring FFNNs in chapter 5. The proposed

algorithm finds the optimum number of clusters after 12 generation (see Fig. 6.5Bottom).

The clustered output is close to the desired one. The proposed algorithm self-organizes to

find the proper number of clusters and proper cluster centers automatically. This figure

illustrates the self-organization capability of the proposed algorithm, due to which, the

proposed algorithm does not find any problem in clustering, eventhough it starts with

wrong number of clusters and incorrect position of the cluster centers. This figure also

shows that sets with different structural variation always come during the whole process.

In fact, it exhibits that search for better set of clusters (structurally) is carried out all

round the process. Even after assigning the number of clusters as nine, the FKM (followed

by FMLE) failed to cluster the data set properly. Fig. 6.6Top and Fig. 6.6Bottom show

the results of using the FKM (followed by FMLE) on the data set with two different

initializations. The clustering results with both the initializations are bad. Apparently

the FKM, FMLE combination was stuck in local minima due to improper initializations. If

only the FKM algorithm is used, clustering result becomes worse than this result. After

the proposed algorithm converges on this data set, the value of Ef is calculated from

Equation (6.2). It is found to be 5% less than the value of Ef obtained after the FKM

(followed by FMLE) converges on this same data set. It a demonstrates the usefulness of

the proposed method to avoid parametric local minima.

Next we use the proposed method on the opening Bid problem. We considered the

training sets "TrainingSetl", "TrainingSet2" and "TrainingSet3" for first, second and

third level bids. From "TrainingSetl", we collected the inputs only for Pass bids. We

used the proposed clustering scheme to cluster these patterns. Twelve clusters were

evolved after 23 generations. Using the similar procedure, we got 8, 6, 7, 5, 6, 3 clusters

for the input patterns corresponding to IC, ID, IH, 1s and IN, respectively. From

"TrainingSet2", we obtained 5 , 4, 5, 2 and 3 clusters corresponding to 2C, 2D, 2H, 2s

Fig. 6.4: Top: Eight different Gaussian distributions are used to generate

a data set artificially. Bottom: Clustered output by the proposed clustering

algorithm. The clustered output is close to the desired one.

pbll 1

I I
2 4 6 8 10 12 14 16 18 20

No. of ileratiwrs

1 1 , , , I I I
2 4 6 8 10 12 14 16 18 20

No. of ilerabns

Fig. 6.5: Top: No. of iterations vs. fitness curve for the best set of clusters in

the proposed clustering algorithm. The data set for these clusters are shown

in Fig. 6.4. "Plotl" and u P l ~ t 2 1 7 represent the curve with and without using

Equation (5.50-a and b), respectively. Bottom: No. of iterations vs. no. of

clusters for the best member of the population.

Fig. 6.6: Fuzzy K-means algorithm is used on the data set shown in Fig. 6.4.

Top and Bottom: Clustered outputs with two different sets of random initid

cluster centers. Due to improper initidizations the clustered outputs are not

close to the desired one.

and 2N, respectively. clusters. From "TrainingSet3", we obtained 2, 2, 3 and 2 clusters

corresponding to 3C, 3D, 3H and 3S, respectively. We will use these clusters in the next

section while constructing the fuzzy-rough neural networks.

Note that in some cases the fuzzy hypervolume does not attain the minimum value

with the optimal number of clusters. In this cases, the clustering output may not be good.

Moreover, in some cases the clustering is highly subjective. More than one possible way

may be present to cluster the input. Moreover, in the proposed clustering algorithm we

are assuming that the clusters are ellipsoidal. However, the proposed method may not

give good results when this assumption is not valid. For instance, if the clusters are of

shell type, the proposed algorithm will not work. The advantage of the proposed method

is that one can do other modifications in the given framework.

6.3 Fuzzy-Rough Neural Networks

After clustering the next step involves labelling of each cluster. To accomplish it , a

three-layer feedforward network can be constructed, where each node in the hidden layer

represents the cluster centers and the weights between the hidden and the output nodes

represent the class labels attached to the clusters. The main idea of using the fuzzy

clustering is that if two input patterns are similar, i.e., close neighbors in the input

pattern space, then the class labels associated with them will be same. Since each cluster

in the pattern space represents certain common property, it is logical that the patterns

from the same cluster will also belong to the same class. When a new pattern is presented

a t the input layer, the network classifies precisely based on the similarity or neighborhood

property. Thus the inherent similarity or neighbourhood property of the clusters leads

the network to generalize. In real life cases, however, we cannot extract all the relevant

features necessary for the classification. Consequently, two patterns may have the same

or similar feature values, but they are not same or similar if the other features, including

the existing ones, are accounted for. Therefore, when the input patterns are clustered

based on the available features, two apparently similar or neighboring patterns may have

different class labels. It makes the output classes indescernible or indistinguishable based

on the given set of features. Consequently, the relationship between each cluster and

the class labels becomes rough. One way to completely avoid the rough uncertainity is

to extract the essential features so that distinct feature vectors are used to represent

different objects. But, it may not be possible to guarantee as our knowledge about the

system generating the data is limited [SS93]. Another way to avoid rough uncertainity is to

break the clusters further so that they do not contain any pattern from the other clusters.

This is difficult as each fuzzy cluster to some extent covers pat terns from the other clusters.

Moreover, the breaking of clusters means destruction of the similarity property, which in

turn means the destruction of the generalization property of the network. In addition, if

the clusters are broken too much, then the network training may need large space and

high time complexity.

In this section, we attempt to reduce the effect of rough uncertainity, while keeping the

similarity property intact. To tackle the similarity property we need fuzzy sets [KY95], and

to tackle roughness we need rough sets [Paw82]. Both fuzziness and roughness associated

with each modified feature vector is captured using fuzzy-rough membership functions.

The fuzzy-rough membership function is further exploited to construct a fuzzy-rough neu-

ral network (FRNN). Basically, the FRNN uses the fuzzy uncertainity involved in the

input data set and the roughness present in the input-output relationship. One advan-

tage of the classification procedure used in the FRNN is that it is possibilistic [KY95].

It is useful because the output of the FRNN will be used again while combining the

classification result. Theoretically the FRNN is a powerful classifier as it is a universal

approximator [SY98b].

6.3.1 Root of Fuzzy-Rough Neural Networks

The FRNN is designed such that the outputs of the networks are fuzzy-rough membership

values corresponding to the input. The fuzzy-rough membership function of a pattern

captures both fuzziness and roughness associated with the pattern. Let, rcc(y) represent

the fuzzy-rough uncertainity of y in the class C,. rc,(y) is defined as

H T i z j = l p ~ (~) ~) C I (~) if 3j w i t h w j (y) > O

0 otherwise

where {Fl, F2, . . . , FH) are the fuzzy clusters generated by evolutionary programming-

based fuzzy clustering algorithm, H is the number of cluster in which y has non zero

membership and L& (y) = F'nccl. Appendix-D contains a detail description about the
lFj l

fuzzy-rough membership functions.

6.3.2 Archi tec ture of Fuzzy-Rough Neura l Networks

The proposed FRNN is a three layered feedforward network with one hidden layer

(Fig. 6.7). The number of nodes in the input, hidden and output layers are equal to

sth module

Fig. 6.7: A typical fuzzy-rough neural network with three input nodes, four

hidden nodes and two output nodes.

the dimension of the input pattern (= N) , number of the fuzzy clusters present in the

input da ta (=H) and number of the classes (=C), respectively. When an input pattern

y = [yl, yz, . . . , y N] is applied at the input layer of the network, the output of the j t h

hidden node is

where mj and aj (assuming the spread is same along all directions) are the center and

spread of the Gaussian function used in the j th hidden node. The center and spread of

the hidden nodes can be determined by making them equal to the mean and variance of

the clusters. The mean and variance of each cluster are determined using the evolutionary

programming-based fuzzy clustering algorithm, which is described in the previous section.

The outputs of the hidden nodes can also be interpreted as the fuzzy membership values.

The parameters necessary for the FRNN can be obtained from the parameters defined in

the input space (Table 6.1). The output of the kth output node is

where wjk is the weight from the j t h hidden node to the kth output node. The output

value og lies in between 0 and 1 (from Property D.l of Appendix-D) as the output is the

fuzzy-rough membership value corresponding to the input. Moreover, from Property D.6

of Appendix D, og is possibilistic.

Table 6.1: The relationship between the parameters used in fuzzy-rough neu-

ral networks and input space.

I Fuzzy-Rough neural networks Input Space

I No. of the input nodes = Dimension of the input patterns 1
1 No. of the hidden nodes = No. of the clusters 7
I No. of the output nodes = No. of the classes 1
1 Center of the j th hidden node = Center of the j th cluster I
I Width of the j th hidden node = Width of the j th cluster 1

6.3.3 Training and Testing of Fuzzy-Rough Neural Networks

To design the FRNN, the last task is to adjust the weights between the hidden layer and

the output layer through training. Precisely, the weights between the hidden and the

output layer reflect the rough-fuzzy membership values. For training, all the weights,

wjk(0) V j , k are initialised to zero. For each input training pattern, the weight adjustment

is carried out as

A w j k (l) = o f * i Vj , k (6.27)

where i = 1 if y E Ck else i = 0. It is interesting to note that the training process

takes exactly one iteration. After the whole cycle is over, wjk represents I Fj r l Ck 1 ,
i . . , p (y). TO make wjk = L&, wjk is normalized as (since 1 Fj 1 =

k w j k

Ck CYECk p~~ (y) = Ck wjk) Since all the hidden nodes are using Gaussian clusters,

each input pattern belongs to all the clusters, and hence, H = H. Finally, the weights

are set as wjk = to take care of the term H involved in Equation (6.24). Note that

no bias term is involved here with any node.

In the testing st age, a separate set of test pat terns is given as the inputs to the network.

For the test input y , the generated output at the cth output node is the fuzzy-rough

membership value rc,(y). Since the fuzzy-rough membership functions are possibilistic

(see Property D.6 of Appendix-D), the outputs of the FRNN are also possibilistic.

It can be shown that architecturally (although functionally not) FRNNs are equiva-

lent to radial basis function neural networks [SY98'b]. Since radial basis function neural

networks are universal approximators [JSM97], FRNNs are also universal approximators.

6.3.4 Results and Discussion

Through clustering we have obtained the clusters corresponding to the fifteen classes

present in the opening bid problem. This cluster information is used to construct an

FRNN. We used "TrainingSetl" to train the network for the first level bids. From sec-

tion 6.2.4, the number of clusters is 21 (5 for 'P', 5 for 'lC', '6' for 'ID'). Hence for the

first level bids we used 21 hidden nodes. The resultant FRNN has fifty input nodes,

twenty-nine hidden nodes and six output classes. The first row of Table 6.2 shows the

classification performance of FFNNs on the first level bids. This result is reproduced from

Table 5.1. The second row of Table 6.2 exhibits the performance of the FRNN. While

comparing with the FFNN for first level bids, we can observe that the performance of the

FRNN is better than that of the FFNN. The time needed to configure the FRNN is also

less.

Similarly, FRNNs were constructed for the second and third level bids. The data

sets "TrainingSet217 and "TrainingSet3" were used to construct the FRNNs. To test the

performance of these two FRNNs, we used "TestSet2" and "TestSet3". The FRNN for

the second level bids consist of fifty-two input nodes and five output nodes. Since the

total number of clusters for the second level bids is 19, the number of hidden nodes is

chosen as 19. The comparative classification performance of the FRNN and the FFNN

is given in Table 6.3. For the third level bids, the FRNN has fifty-two input nodes, nine

hidden nodes and four output nodes. The classification performance of the FRNN and

the FFNN is compared in Table 6.3.

It can be observed that for first and second level bids, the performance of FRNNs are

better than the FRNN. In contrast, the FFNN for third level bids perform better than the

FRNN. In lower level bids roughness is very high. FRNNs take roughness into account,

and hence, they perform better than FFNNs for lower level bids. The role of rough

uncertainty is less for the inputs corresponding to the higher level bids. Hence, in this case

the FFNN can approximate the class boundaries more effectively than the FRNN. Some

differences between the FFNN approach and the FRNN approach are: 1) FRNNs utilise

the structure present in the data explicitly, whereas in FFNNs the use of the structure is

implicit. 2) FFNNs with the fuzzy objective functions do not consider rough uncertainity.

In contrast, FRNNs take care of rough uncertainty. 3) FFNNs with the fuzzy objective

functions perform well when the decision boundary is very complicated. However, the

performance degrades as soon as the roughness in the data set becomes high. On the

other hand, although the performance of FRNNs is poor in presence of complex decision

Table 6.2: Comparative classification performance of FFNNs and FRNNs for

first level bids.
1 Network 11 Pass I 1C 1 1D 1 IS 1 1~ I I N I overall 1

Table 6.3: Comparative classification performance of FFNNs and FRNNs for

FFNN

FRNN

Table 6.4: Comparative classification performance of FFNNs and FRNNs for

third level bids.

(80.64%

8 6 . 0 5 %

second level bids.
Network

FFNN

FRNN

boundaries, FRNNs exploit rough uncertainty to enhance the classification performance.

The effectiveness of these two approaches depend on the type of the decision boundary

and the roughness present in the classification task.

75.14%

78.30%

Network

FFNN

FRNN

6.4 Summary

2C

75.82%

88.18%

In this chapter, an evolutionary pi-ogramming-based clustering algorithm is proposed.

The algorithm effectively groups a given set of data into an optimum number of clusters.

The algorithm determines the number of clusters and the cluster centers in such a way

that locally optimal solutions are avoided. The result of the algorithm does not depend

critically on the choice of the initial cluster centers. The clusters are used to construct

an FRNN. The parameters for the hidden nodes and the number of hidden nodes are

determined from the clusters. The weight between each hidden node and the output class

79.38%

81.62%

3C

89.23%

91.76%

2D

77.57%

76.12%

85.63%

79.63%

3D

88.52%

79.88%

2 S

80.24%

81.57%

70.44%

77.23%

3s

93.15%

89.54%

2H

78.12%

90.01%

73.02%

86.75%

3H

85.63%

78.87%

-

77.37%

81.42%

2N

76.68%

82.51%

Overall

89.13%

85.01%

Overall

77.68%

83.67%

Fig. 6.8: (a) and (b) are two equivalent sets of clusters, which order their

clusters differently. Although phenotype representation for both the sets are

same, genotype representations are different.

is determined using the rough-fuzzy membership functions. The outputs of the network

are fuzzy-rough membership values corresponding to the modified feature vectors.

Like FFNN configuration, in the clustering problem also, an EP-based optimization

approach is advantageous over a genetic algorithm-based approach. Here, the permutation

problem stems from the fact that in genetic algorithm two functionally identical sets of

clusters, which order their clusters differently, have two different genotype representations

(see Fig. 6.8). Therefore, the probability of producing a highly fit offspring from them by

crossover will be very low.

The difference between FRNNs and radial basis function networks should be noted.

The working principle of radial basis function neural networks is similar to that of FRNNs.

But, FRNNs consider the rough uncertainty present in the clusters, whereas the radial

basis functions do not take roughness into its account. In particular, the use of rough-fuzzy

membership functions makes FRNNs more powerful than radial basis function neural

networks. Detail comparison between these two networks is given in [SY98b].

When both the input clusters and the output classes are crisp, the outputs of the

FRNN are rough membership values (see Property D.4 of Appendix-D). Hence, the re-

sultant FRNN architecture is reduced to a modified architecture, called rough neural

networks. The architectural difference between FRNNs and rough neural networks is in

the transfer function used in each hidden node. In particular, the transfer function used in

the FRNN is of Gaussian type, whereas in the case of rough neural networks the transfer

function is a unit gate function, i.e.,

o: = 1 if (y - m j) (y - m j) < 2 0 ;
0 otherwise

Evidently, the 110 option used in the gate function makes the generalization capability of

rough neural networks limited.

When the input clusters are crisp and fine, and the output classes are crisp, then

the outputs of the FRNN are the crisp class membership values (see Property D.5 of

Appendix-D). The resultant network can be called crisp neural network. The number of

hidden nodes of the crisp neural network is equal to the number of inputs. Since the

width of each cluster approaches towards zero, the transfer function of each hidden node

becomes a unit impulse function, i.e.,

1 if y = yj
oj =

0 otherwise

As a result, the weight calculation becomes very simple, i.e., wjk =1 if y j E Ck else

wjk = 0. Thus, the resultant crisp neural network needs a large amount of space, and it

works like a look-up table, which does not have any generalization capability, but has a

very good memorising power.

Chapter 7

FUSION OF CLASSIFICATION RESULTS

7.1 Introduction

Till now we have divided the original classification task among small feedforward sub-

networks, and we have built modules to accomplish the subclassification tasks. In this

chapter we combine the individual solution provided by the modules to obtain the final

classification result. The proposed method interprets each subnetwork as a nonlinear filter

tailored to the subgroup. The outputs of all the filters can be viewed as a feature vector

representing the input. We may call these features secondary features to distinguish it

from the features that we obtained in chapter 4. In fact, the features what we obtained in

chapter 4 undergoes nonlinear filtering and generates the secondary feature vectors. For

the sake of brevity we will call the secondary features also features as long as no confusion

exists. Each module classifies the input pattern from different angles. Each feature, i.e.,

the output of each module, can be considered as an evidence in classifying the input. Since

the modules are trained locally and the modules cannot resolve the global uncertainties,

each of the evidence may support or contradict one another. For instance, the following

two conditions may arise:

1. If the classes of two modules are close or overlapping, then for an input, outputs of

both the modules will be high. In other words, each of these two modules claims

that the input can be classified by the module alone.

2. Due to roughness, an input may completely belong to two different classes. If

these classes are from two different modules, then for a similar test input, both the

modules will produce high outputs. It indicates that the input belongs to both the

modules.

Some modules may cooperate each other also. For instance, the low output value of

a module may automatically indicate the high output in some other modules. Due to

the presence of conflicts and cooperations, each feature would have a different degree of

importance in classifying the input to a particular class.

To fuse the information supplied by each module, various methodologies like

winner-take-all [Hay94], probabilistic (Bayesian) reasoning [J 5931, Dempster-Shafer the-

ory [Sha76], fuzzy integral [CK95a] [CK95b] [Yag93] [Cho95] [YF93] [Gra97] [WK92] exist.

In the winner-take-all technique, outputs of all the subnetworks are combined by simply

choosing the class with the largest output value. This method does not consider the im-

portance of each feature. Since each module is not trained to discriminate all the classes

and all the modules are not trained upto the same accuracy, the performance of this

scheme is poor [CK95a] [Cho97]. For the information fusion, Bayesian reasoning utilises

the importance of each feature. But, while combining the importance of more than one

evidence, it relies on probability theory, which cannot discriminate between lack of evi-

dence and negative evidence [K096]. On the other hand, Dempster-Shafer's theory and

the fuzzy integral can distinguish between lack of evidence and negative evidence. As we

have discussed in section 2.3.4, the fuzzy integral approach has a way to assess the im-

portance of all groups of information sources towards supporting a particular hypothesis

as well as the degree to which each information source supports the hypothesis. In con-

trast, the Dempster-Shafer theory does not have this advantage [KGTS94]. In addition,

fuzzy integral is computationally more efficient than the Dempster-Shafer approach. Due

to these merits, this chapter applies a fuzzy integral-based fusion method in combining

the subnetworks. In particular, a special type of fuzzy integral, known as Sugeno 's fuzzy

integral, is used. Henceforth, we use the term fuzzy integral to mean Sugeno's fuzzy

integral.

The behavior of the fuzzy integral in an application depends critically on the impor-

tance of the subsets of the features. Therefore, determination of the worth of each feature

is very important. In some applications of the fuzzy integral, the importance is s u p

plied subjectively by an expert or it is estimated directly from the data [TK90] [SY98e].

These methods require some kind of prior knowledge about the behavior of the outputs

generated by the modules. In many applications, it may be difficult to obtain the prior

knowledge. However, it is interesting to note that in the fuzzy integral approach, influence

of the other features on a given feature is not considered. Hence, determination of the

importance of a particular feature is based on the partial information supplied by the

feature itself. A feature is important for a particular class when all the input patterns can

be classified correctly to that class only using this feature value. This is possible when all

the input patterns are clustered based only on this feature value and all the input patterns

from each cluster have the same class label. When it does not happen, the relationship

between the clusters and the output class labels becomes onet+many. It results in rough

ambiguity [Paw82]. In most of the cases, the clusters formed in the input space based on

each feature value is fuzzy. Therefore, in this article, an attempt is made to determine

the importance of each feature using fuzzy-rough set [DP92] theoretic technique.

The chapter is organized as follows: In section 7.2 we discuss the basics of fuzzy

measure, fuzzy integral and rough sets. In section 7.3 the proposed method is described.

Section 7.4 demonstrates the experimental results.

7.2 Background

7.2.1 Fuzzy Measure

Let E be a finite set of elements. A set function g : 2" -+ [O, 3.1 with the following

properties is called a fuzzy measure [Sug74]:

PI: g(4) = 0

P2: g(E) = 1

PJ: If U C V, then g(U) E g(V), where U, V C E

The fuzzy measure generalizes the classical measure which plays a crucial role in

probability and integration theory. A probability measure P is characterized by the

property of additivity: For all sets U and V, if U n V = 4, then P (U U V) = P(U) +
P(V) . In the fuzzy measure, this property of additivity is weakened by the more general

property of monotonicity (property P3). Sugeno's gx measure is a special type of fuzzy

measure [Sug74] which satisfies all the properties of the fuzzy measure, in addition to the

following:

g(U u V) = g(U> + g(V) + Xg(U)g(V) (7.1)

where X > -1, U, V E E and U n V = 4. By varying the values of A, one can obtain

different types of fuzzy measure. For example, X = 0 produces the probability measure.

7.2.2 Fuzzy Integral

Let 2 = { E l , E 2 , . . . , (S) be a finite set of elements, h : Z -+ [O, 11 be a mapping and g be

a fuzzy measure on Z. Then the fuzzy integral (over Z) of the function h with respect to

the fuzzy measure g is defined as

where 1 5 s 5 S. Since both h and g map to [0, I.], 3 also lies in [0, 11. The above integral

can be seen as an extension of Lebesgue integral if product and summation operators are

substituted for rnin and max, respectively. 'Intuitively the interpretation of the above

relation is as follows: Let us suppose, an object is evaluated using a set of information

sources E. Let h(6,) E [0, 1) denote the decision for the object when a single information

source (, E E is considered. Moreover, suppose g({€,)), known as fuzzy density, denotes

the importance of the source 6,. Instead of a single information source, if a set of sources,

namely R S, is taken to evaluate the object, then it is reasonable to consider rnin h((,)
€.En

as the largest security decision. Evidently, g(R) expresses the degree of importance or

the expected worth of the set R. Therefore, min min (h((,)) , g(R) denotes the grade
(€ .En 1

of agreement between the real possibility h and the expectation g. Thus, the fuzzy

integral can be interpreted as a search for the maximal grade of agreement between the

objective evidence and the expectation. However, the definition can further be simplified

if h((,), s = 1,2, . . . , S are ordered in a decreasing manner. Let h(<,) 2 h((,) 2 . . . 2
h(<,) (if not, E is rearranged so that this relation holds). Then Equation (7.2) is simplified

t 0

where 0, = . . . ,€,).
In order to evaluate the fuzzy integral, i.e., 3, we should have some way to determine

g(R,) from g({€,)). For that, we need to use the concept of fuzzy measure. In the

next section we will show how to determine the individual fuzzy densities g({€,)), s =

1,2, . . . , S for each information source from the given data. For the time being, let us

suppose that we know the fuzzy densities of the individual sources. But, g(n,) is not

necessarily equal to g({€,)) +g({(,)) + . . . + g({€,)). The simple additive property

may not hold because there may be some interactions among c,. If the interactions are

cooperative, then g(Rs) >_ g({(,)) +g({(,)) + . . . + g({(,)). On the contrary, if the

interactions are noncooperative, then g(Rs) < g({(,)) +g({(,)) + . . . + g({€,)) [MS89b].

From this discussion, note that probability theory cannot be used to determine the value

of g(Rs). However, the concept of Sugeno's g~ fuzzy measure can be exploited here to

find the value of g(Rs). The procedure is as follows:

One problem remains still unresolved; that is, how to determine A, which is the key

term to decide the amount of interactions among the information sources. In order to find

A, we use Equation (7.4), and we express g(E) in terms of the individual fuzzy densities

as follows:

where X # 0
s=l

(7.7)

From (PZ), we know that the value of g over the whole set E must be one as no uncertainty

is involved. Hence, using g(E) = 1 and Equation (7.5)

It is possible to find the value of X after solving the above (S - 1)th degree equation.

In [TK90], it has been shown that X has a unique value in (-1, 0) U (0, +m) when

7.3 Modular Networks with Proposed Fusion Technique

7.3.1 Architecture of Modular Networks

In third chapter, the given pattern classification task is subdivided into three subtasks,

and one subnetwork is assigned for each subtask. We make this statement slightly general

by assuming that the original problem has M output classes {C1, C2, . . . , CM), and these

classes are divided into S subnetworks (Fig. 7.1). The sth subnetwork is assigned to

classify a group of classes, represented by {Cc,-,+l,. . . , C,,) with c,-, = 0 and cs = M.

The output of the sth subnetwork is {y,,-,+I,. . . , y,,), which is expressed in a vector

notation as <, = [yc8-,+l,. . . ,y,,]. The proposed method interprets each subnetwork as a

nonlinear filter tailored to the subgroup. Thus, the outputs of all the filters corresponding

to an input x is viewed as an S dimensional feature vector. This feature vector is presented

as an input to a fuzzy integrator, which computes the value of the fuzzy integral with the

help of fuzzy densities. The class label of the input x is the class index that yields the

maximum value of the fuzzy integral corresponding to +.

7.3.2 Training of Modular Networks

When a modular network is used for classification, a given training pattern is input to all

the subnetworks and the outputs of the subnetworks are processed to determine the class

label. We can decide the class label of the input based on winner-take-all policy. It means

that the class label of the input pattern is assigned as j, 1 5 j 5 M , if yj = max {yk).
k=1,2, ..., M

However, this type of assignment is not proper as all the subnetworks are independently

trained on different sets of data. A better approach is to declare the j th class winner, if the

j th class correspondences to max {gkyk), where gk is the importance associated with
k=1,2, ..., M

the class Ck . One possible choice for gk is the a priom' probability of the class Ck. However,

the constraint C gk = 1 used in probability theory cannot distinguish between lack
k=1,2, ..., M

of evidence and ignorance. Therefore, the concept of fuzzy integral is appealing here.

In the fuzzy integral approach, the outputs of the modules are processed further so that

the interactions among the outputs are also exploited for the final classification result.

Hence, the term gk is replaced by a more specific term gk({<s)), where gk({<s)) denotes the

importance of <, in characterizing the class Ck. With the help of gk({c,)), s = 1 ,2 , . . . , S,

the fuzzy integral Fk for the class Ck combines the outputs of all the modules, i.e.,

& , s = 1 ,2 , . . . , S , in a nonlinear fashion. The final class label corresponding to the

Ys
FA S b. Module S

4 s

4 ,

x +.

Fig. 7.1: A modular network with S modules or subnetworks. Initially the

input pattern is fed to S different feature analysers (FA). The feature analy-

sers modify the input by providing different weightage on each feature. The

modified feature set is passed to the module connected to the feature analyser.

The output of the s th module is represented by t,. All the outputs are com-

bined in a nonlinear manner by a fuzzy integrator (FI). @ denotes the vector
, ,

r&,G7...7c~.

Module 1 FA 1

input is j, if Fj = max {Fk) . The training of the modular network is comprised of
k=1,2, ..., M

the following two stages:

Y,
E-.

7.3.2.1 Training of subnetworks

.
r

For this stage, separate data sets are prepared to train the subnetworks independently.

The training data set for a subnetwork generally consists of the patterns belonging to

the classes in its subgroup only. Then, each subnetwork is trained to form the decision

surfaces for the classes in its subgroup. Training of the subnetworks varies depending on

whether the network is FFNN or FRNN. Both the training strategies are discussed in

chapter 5 and chapter 6.

Y2
b 4 F A 2 Module 2

4 1

7.3.2.2 Pattern matching

This stage of training is needed to compare the kth class prototype and the feature

vector @. Here the partial evaluation hk(es) implies how good the feature 6, alone is to

classify the patterns from the class Ck, and the individual fuzzy density gk({e3)) signifies

the importance of the feature e3 for the class Ck. Hence, the comparison between the

prototypes of Ck and @ can be accomplished in terms of closeness. Roughly speaking,

the closeness can be as hk ((1)gk ((€1)) f hk(€2)gk({€2)) f - - . f hk(<s)gk({€s)).
When the domain is continuous and the continuity of the function hk(e3) is not guaranteed,

the closeness can be represented more comfortably by the fuzzy integral Fk . Therefore,

in this stage it is essential to know the values of: (a) class prototypes, from which the

partial evaluation hk(es) can be obtained, and (b) the individual fuzzy density gk({&)).

Class prototype selection: The set {x) that contains training inputs from all the

classes, are passed through all the subnetworks to generate a set of feature vectors {@).
All the feature vectors corresponding to each class (say Ck) are collected separately, and

the mean of the vectors (say mk) is calculated. This mean represents the class prototype.

In the testing phase, these class prototypes will enable us to compute the partial evaluation

hk (€3).

Evaluation of fuzzy density gk({CS)): The individual fuzzy densities are calculated

based on how well the outputs generated by the subnetworks separate all the classes for

the training data. Since we have already mentioned that each e3 can be considered as a

feature, determining individual fuzzy densities are equivalent to the determination of the

importance of each feature. We propose a fuzzy-rough set theoretic approach to determine

the individual fuzzy densities, i.e., the importance of the features for a particular class.

This approach is described below for the feature 6, and the output class Ck.

A set of features {(,) is collected by passing a set of training inputs {x) through the

sth subnetwork. Fuzzy K-means algorithm [Bez81] is applied on this feature set. Since

the number of clusters is not known, we assume K is equal to the number of classes

M. While applying the fuzzy K-means clustering on the set {(,), we can observe the

following two points:

1. Some (, belong to more than one cluster partially as the clusters are overlapping.

2. All e3 from the same cluster may not belong to the same class.

The first type of uncertainty is fuzzy uncertainty. It is generated because the outputs of

the subnetworks are not from { O , l) . The second type of uncertainty is rough uncertainty.

It is generated as the feature e3 is not sufficient to classify all the input patterns {x).

Hence, two different tg belonging to the same cluster may represent two different classes.

Thus, the relationship between the sth feature and the class labels may be a one-to-many

mapping. In other words, the classes are indescernible or not distinguishable with respect

to the sth feature. The sth feature t3 is an important feature if

1. The clusters are compact and wide apart. The less is the fuzzy uncertainty, the

more important the feature is [PC861 [PM86].

2. All the elements from a particular cluster belong to the same class. The less is the

rough uncertainty, the more important the feature is.

That is, the feature <, is important if each cluster, generated by the feature, is compact

and isolated, and if all the patterns from each cluster represent the same class. Therefore,

the presence of more fuzzy and rough uncertainties implies less importance. Note that the

presence of any one or both of these uncertainties change the importance of the feature

for a particular class. We seek to measure the amount of fuzzy and rough uncertainties

involved by using fuzzy-rough sets. Later we will use the quantified value to determine

the importance of the sth feature for the kth class.

Based on the feature e3, the approximation of Ck by the set of feature vectors {+) is

expressed here as a fuzzy-rough set. The lack of discriminating power of the feature <, is

due to the fact that we are not considering the other features t j , j # s, j = 1,2. . . . ,S

into account. Here we do not have complete information to classify a particular pattern

in the class Ck based on the information supplied by e3. To determine the importance of

the feature <, for the class Ck with such incomplete knowledge, the concept of rough sets

can be used. In the terminology of rough set, two patterns +, E {+) and +, E ($1 are

called indiscernible with respect to the sth feature when the sth component of these two

patterns have the same value. Mathematically, it can be stated as

+pR3+q iff €3, = €39

where R3 is a binary relation over {+) x {+). Obviously, R" is an equivalent relation.

Therefore, R9 partitions ($1 into a set of equivalent classes, namely {Ff , Fl, . . . , F;),

where K is greater than one but less than the cardinality of {+). For continuous features,

it is better to consider that +, and qhq are related if the sth component of the two features

are similar (not necessarily strictly equal as in (7.9)). Two patterns from the same cluster

can be considered similar as they have spatial similarity. The resultant equivalence classes

become fuzzy clusters. It can be proved [DP92] that the fuzzy clusters F,9, F;,. . . , F,& will

be present if and only if there exists some similarity relation like (7.9). Moreover, it can

be shown that [DP92] the generated clusters will follow weak fuzzy partitioning [DP92].

This situation can be formulated in terms of fuzzy-rough sets. One obvious problem is to

decide the number of clusters needed for the task. We are assuming that the number of

clusters is equal to the number of classes, i.e., K = M.

After showing that fuzzy-rough uncertainty is associated with each (,, we have r e p

resented the approximation of C k by {+} in terms of fuzzy-rough sets. Now we are ready

to quantify the fuzzy-rough uncertainty associated with each 6,. In Appendix-Dl we

can observe that using fuzzy-rough membership values, we can measure the fuzzy-rough

uncertainty associated with each input pattern. Now, a measure of fuzzy-roughness is

needed to estimate the average ambiguity in the output class Ck for the input feature 6,.

As a measure we use the concept of fuzzy-rough entropy for the sth feature and the kth

class as

where rck (6,) is the fuzzy-rough membership value of the feature 6, in the class Ck and

f i is the number of feature vectors used to determine the importance of the feature. It

can be noticed that Xi increases monotonically in [O, 0.51 and decreases monotonically in

[0.5, 11. It reaches the maximum value when rck (6,) = 0.5 V(,, and minimum value when

rCk((,) = 0 or 1 V6, [PB95]. The lower the value of Xi is, the greater is the number

of 6, having rck((,) M 1 or rck(t3) M 0, i.e., less is the difficulty in deciding whether

6, can be considered a member of Ck or not. In particular, when rck (6,) M 1, greater

is the tendency of 6, to form a compact class Ck in the sth subspace, resulting in less

internal scatter in the sth subspace. Moreover, when rck (6,) M 0, 6, is far away from the

kth class, and hence, the interclass distance increases in the sth subspace. On the other

hand, when rck (6,) M 0.5, 6, lies in between Ck and the other classes in the sth subspace.

Hence, compactness and interclass distance both decrease in the sth subspace. Therefore,

the reliability of (,, in characterizing the class Ck, increases as the corresponding Xi
value decreases. Thus, Xi quantifies the importance of 6, in characterizing the kth class.

One way to determine the importance of the sth feature in the kth class is by the term

(1 - 'Xi). Hence, the fuzzy densities can be determined as

The procedure to find the fuzzy density can be summarised as follows: We interpret

the fuzzy density of a module with respect to an output class as the importance of the

module for that class. It is equivalent to the importance of the feature generated by the

module (since the module is treated as a feature extractor). The importance of the feature

for an output class depends on the fuzzy-roughness associated with the output class for

the given feature. We have demonstrated that a set of input patterns can be clustered

based on the feature value, and as a consequence, the approximation of the output class by

these clusters can be expressed in terms of a fuzzy-rough set. It is possible to quantify the

fuzzy-roughness associated with each input pattern for the output class in terms of fuzzy-

rough membership functions. The fuzzy-rough ambiguity associated with the output class

for the given set of input patterns is measured using the fuzzy-rough entropy. The fuzzy

density for the output class is determined from the fuzzy-rough entropy.

The complete training procedure, consisting of training the subnetworks and matching

the patterns, is shown in Fig. 7.2.

7.3.3 Testing of Modular Networks

A separate set of test patterns is used as inputs to all the subnetworks. The outputs

of all the subnetworks corresponding to the input test pattern x form the feature vector

+ = [d, &, . . . , &i. To determine the partial evaluation hk(E,) from the already recorded

class prototypes, we use the following relation [Bezgl]:

where dk is the distance between the feature (, and the prototype of the kth class, i.e.,

dk = ((, - m i j ~ - ~ (< , - mi), with m i = [mce-,+l,k,. . . , mCecj. Here, C is a positive

definite matrix and q E (1, m) is an index. Generally, C is taken as the covariance

matrix for the distance between E, and mi , and q is taken as 2. The value of hk(EJ)

is an indication of how certain we are in the classification of the input x into the class

Ck using the feature t, . Here, 1 indicates with absolute certainty that the input x is

from the class Ck, and 0 means that the input certainly does not belong to the class Ck.

Moreover, from the training the fuzzy densities gk({<,)), Vs, k, are known. Hence, using

Use different training sets T8, s = 1,2, . . . ,S to train all the

subnetworks.The training set T8 contains the training
input-output pairs only for the sth subnetwork.

Prepare another training set {xl, x2,. . . , xii) that contains the
training Input-output pairs for all the subnetworks. Pass this

training set through all the subnetworks to collect the feature

vectors $,, p = 1,2,. ..,fi as the outputs.

DO for each k = 1,2, ..., M

Record the class prototype mk.

END DO

DO for each s

Apply the fuzzy K-means clustering algorithm with M

clusters on {<,, (p = 1,2,. . . , fi).
DO for each class Ck, k = 1,2,. . . , M

Use (7.11) to compute the fuzzy density gk({tS))

from {<,, Ip = l,2,. . . , f i) .

END DO

END DO

Fig. 7.2: Training of the proposed modular neural network.

For t h e t e s t input p a t t e r n x , f i n d t h e outputs t,, s = 1 , 2 , . . . , S
f o r a l l t h e subnetworks.

DO f o r each output c l a s s Ck, k = 1 , 2 , . . . , M

DO f o r each t,, s = 1 , 2 , . . . , S

Compute hk (t,) from (7.12) .

END DO

Calcula te X from (7.8) .

Calcula te Fk from (7.3) .

END DO
M The c l a s s l a b e l of x is j i f Fj = mmax{Fk}.

k = l

Fig. 7.3: Testing of the proposed modular neural network.

Equation (7.3), the fuzzy integral value of x corresponding to each output class can be

computed. The class label corresponding to the test input is the class index which yields

the maximum fuzzy integral value. The fuzzy integral value corresponding to a particular

class can also be used as the confidence level in classifying the input to that class. The

testing procedure is given in form of an algorithm in Fig. 7.3.

7.4 Results and Discussion

In chapter 6, we found that FRNNs are suitable for the first and second level bids,

whereas the FFNN with fuzzy mean square error is suited for the third level bids. Hence

to construct the modular network, we use two FRNNs for the first and second level bids

and one FFNN for the third level bids. The architecture and training strategy for these

networks are discussed in chapter 5 and 6. To combine the outputs of the networks, a

test set of 600 input patterns was formed. It contains patterns from all the classes. For

a given input hand, the output of each network is found. In the first experiment, we

applied winner-take-all technique on these outputs to find the corresponding class labels.

The class label of the input was chosen as the class label corresponding to the maximum

output. The classification performance is shown in the second column of Table 7.1.

Next we apply the fuzzy integral to fuse the outputs of the three networks. To train

the fuzzy integral, we used a validation set of size 400. This set contains data from all the

classes. Here the importance of each <, is determined using two different methods. One

method is called frequency-based method. It was used first by Tahani et al. in [TK90].

The fuzzy density corresponding to each (, is found based on how well this feature alone

performs on the validation set. The fuzzy densities are calculated using [CK95b]

where P3,k is the classification performance of (, for the class Ck on the validation data

and d, is the desired sum of the fuzzy densities. The output with maximum fuzzy integral

value is chosen as the output class label. The classification efficiency using this procedure

is depicted in the third column of Table 7.1. Finally the fuzzy densities are calculated

using the proposed method. For each module, the class prototypes were recorded. Since

the number of classes is 15, we used 15 clusters in the fuzzy K-means algorithm. This

information was used to compute the fuzzy densities. The classification results of the

proposed method on the same test set are given in the fourth column of Table 7.1.

In Table 7.1, we can observe that the proposed method is performing better than

the winner-take-all method. In the winner-take-all method, there is a large variation in

the performance among the classes. It is because some classes are highly trained, and

hence these classes win for most of the input data. The sum of importance calculated

using frequency based method is equal to one. Consequently, if a module is not efficient

to classify patterns to any of the classes, then the importance associated with the mod-
1 ule for all the classes will be no. of classes = z. On the otherhand, in the proposed

method sum of importance may or may not be equal to one. Hence, if a module is not

efficient to classify patterns to any of the classes, then the importance associated with

the module for all the classes will be zero. This strategy is certainly more attractive than

that of frequency-based method. Possibly because of this reason, the proposed method is

performing better (overall) than the frequency-based method. Therefore, the better clas-

sification performance (overall), makes the proposed method more attractive compared

to the other two methods.

In this chapter, finally we have built the complete modular network for the opening

bid problem. Although the performance of the resultant bidding system is not the best,

our aim was to show that exploitation of uncertainities can make the classifier better. For

that we started with a monolithic classifier, which could not be trained. Then we broke the

Table 7.1: Final classification results for the opening bid problem using win-

ner- take-all method, frequency method and proposed met hod.

1 Overall 1 7 7 . 3 1 % 1 8 2 . 2 0 % 1 85.23 % 1

P

monolithic classifier and finally integrated the classification results from the subclassifiers.

The classification result by the network is off course subjective. It is because the bids

produced by the system are tallied by an expert, and if it is accepted by the expert as a

valid bid, then the output is considered as correct output. There may be be slight change

in the performance of the classifier if the expert is changed.

method

90.14%

7.5 Summary

This chapter applies a fuzzy integral-based technique to combine the outputs of the rnod-

ules in a modular neural networks. The modules are viewed as nonlinear feature extrac-

tors. Hence, for each input the modules generate a feature vector. The fuzzy integral acts

here as a weighted closeness measure between the feature vector and the class prototypes.

method

78.87%

method

88.34%

The weights are determined based on how important the features are for a particular class.

The importance of a feature for a particular class is measured in terms of fuzzy-rough

ambiguity associated with the concerned output class for the given input feature. The

class prototype that is the nearest to the feature vector is designated as the class label of

the input pattern corresponding to the feature vector.

The approach adopted in this chapter can also be viewed as a two stage classification

scheme [CK92]. The first stage of the classification scheme, accomplished by the subnet-

works, is for crude classification. The second stage, which consists of the fuzzy integral,

is to fine tune the classification results obtained from the first stage.

The attractive points about the proposed way of calculating the fuzzy densities are

1. It is an objective way of calculating the fuzzy densities. Therefore, it does not need

any expert to determine the fuzzy densities. Moreover, unlike other objective ap-

proaches, it does not need any information regarding the probability of occurrence

of the input patterns. It needs only the facts hidden inside the data.

2. It is conceptually simple and needs simple algorithm. It does not need any com-

plicated learning procedure as used in [KO961 [WW97]. The learning procedures

used in [KO961 [WW97] may get stuck in local minima, or may take long time to

converge. Especially, if the number of modules are large, then the convergence of

this kind of learning algorithm may become very tough [GN94].

In the definition of fuzzy integral, we are using max and min operators which are nonin-

teractive. It makes the fuzzy integral less sensitive towards the training data. A better

approach may be to use the fuzzy integral with OWA operators [Cho95].

Chapter 8

SUMMARY AND CONCLUSIONS

8.1 Summary of the Thesis

In this thesis, an attempt has been made to deal with uncertainties in classification prob-

lems. The objective is (a) to identify the roles of fuzzy, rough and probabilistic uncer-

tainties associated with the given classification problem, and (b) to exploit the associated

uncertainties to evolve a pattern classification methodology. Contract Bridge opening --
bid problem is considered as a case study. The aim is to construct a classifier for the

opening bid problem based on the input-output pairs of the data collected from players

of the Bridge game. When a hand pattern is presented as an input pattern, the classifier

should be able to determine the opening bid. Some salient characteristics of the problem

are: The input hand patterns are crisp, the output bids are fuzzy, some output bids are

highly probable and the input-output relationship is not unique. Although the problem

is complex, the straightforward input representation of the problem enables us to probe

more into the classification mechanism.

Before going into the details of the opening bid problem, a comprehensive survey of

different pattern classification techniques are presented. The emphasis of the review is on

the recent trend to evolve pattern classification methodologies using uncertainties. The

review includes the description of the state-of-the-art techniques employed in modular

classifiers.

In this thesis, the classification process is described through numerical quantities.

Feedforward neural networks (FFNNs) with backpropagation learning algorithm are cho-

sen for the study. In the initial experiments, monolithic feedforward neural networks

failed to converge. The reason may be that the classifier is insufficient to handle, resolve

and exploit the uncertainties associated with the problem. To make the uncertainty han-

dling easier, an attempt is made to break the the problem into smaller subproblems. The

intention is to resolve and exploit the uncertainties locally in each subproblem, followed

by a mechanism to treat the uncertainties globally. In order to accomplish it the following

five steps are adopted:

In the first step, all the possible classes are partitioned such that the classes that are

close, and the classes for which the frequency of occurrence of the patterns are similar,

belong to the same partition. The condition of closeness narrows down the effect of fuzzy

uncertainty into a local region, and the condition of similar occurrence makes the learning

easier. Each partition forms one subclassification problem. This strategy results in three

subclassification problems in the opening bid problem. The output classes for the three

subclassifiers correspond to the first, second and third level bids.

In the second step, different feature sets are used for each subclassification problem

to increase and decrease the interclass and intraclass distances, respectively. The aim is

to make the classification process easier with the derived feature set. It is accomplished

by imposing high-er weightage on the features that are important for the classes present in

the subclassification process. While measuring the importance of a particular feature, in-

fluence of the other features present in the input pattern and influence of the unaccounted

features are not possible to be taken under consideration. Consequently, two input pat-

terns with the same feature value may be mapped to more than one class. This situation

causes the input-output relation to be one-to-many, and hence, rough-uncertainty is gen-

erated. Moreover, the classification task involved in the opening bid problem is inherently

fuzzy. The more rough and fuzzy uncertainties are associated with a feature, the less is

the importance of the feature. Rough-fuzzy entropy is proposed as a criterion function

to evaluate the importance of each feature. The fuzzy membership value of each training

pattern is determined using possibilistic K-means algorithm. These membership values

are used to compute the rough-fuzzy entropy. The rough-fuzzy entropy is minimized

iteratively to obtain the optimal importance of each feature for a particular module.

In the third step, a classifier module is designed for each subclassification task. Each

module is constructed using direct classification technique. Feedforward neural networks

with backpropagation algorithm are used. The inputs of the networks are the modified

feature vectors and the outputs are the fuzzy output classes. The backpropagation al-

gorithm is designed to minimize two classes of fuzzy objective functions, namely, fuzzy

mean square error and fuzzy cross entropy. The performance of these two algorithms are

comparable on the opening bid problem. The generalization capability of the modules are

still low. It is because (a) the number of weights and hidden nodes are not minimized,

and (b) the training of each module may not be proper as the backpropagation algorithm

may get stuck in local minima. In order to reduce these drawbacks, a stochastic learning

strategy using evolutionary programming is adopted in conjugat ion with the deterministic

learning (BP) using fuzzy objective functions. In particular, two objective functions, viz.

major (global) and minor (local) objective functions, are minimized simultaneously. The

major objective function is the fuzzy mean square error value (or fuzzy cross entropy) over

a validation set and the minor objective function is the fuzzy mean square error value

(or fuzzy cross entropy) over a training set. Iterative minimization of the minor objective

function is carried out to guide the minimization of the major objective function. The

iterative procedure is made faster by dynamically adapting the mutation parameters that

are used in evolutionary programming.

In an another approach, each subclassification task is carried out through clustering.

The modified feature vectors that form fuzzy clusters, are clustered using evolutionary

programming. The clustering algorithm determines the number of clusters, cluster means
. -

and cluster variance automatically. Two objective functions are incorporated. The major

objective function decides how many clusters should be there. The minor objective func-

tion decides the cluster parameters. The major objective function is minimized stochas-

tically using evolutionary programming-based method, and the minor objective function

is minimized using a deterministic iterative method. The resultant clusters are used to

construct a fuzzy-rough neural network (FRNN). This network uses the fuzzy uncertainty

present in the clusters and the rough uncertainty (due to one-to-many mapping between

the clusters and the class labels) in terms of fuzzy-rough membership functions. Com-

pared to the backpropagation algorithm with fuzzy objective functions, the classification

performance of FRNNs is better for the modules that deal with the first and second level

bids, and worse for the module that deals with the third level bids. Hence, the FRNNs

are used for the first and second modules and the FFNN is used for the third module.

In the fifth step, the result of all the classifiers are combined using Sugeno's fuzzy inte-

gral. All the modules are supposed to resolve or exploit the fuzzy and rough uncertainties

locally. For any input, each module claims that the input can be classified by that module

alone. Consequently, each module provides some classification result. A postprocessor is

used to determine the output class from such a collection of conflicting evidence. The

evidence are aggregated in a nonlinear fashion, and each evidence is weighted differently.

To find the weightage associated with each module, the amount of fuzzy and rough un-

certainties associated with each module is quantified from global angle. The concept of

fuzzy-rough membership functions is used for the purpose of quantification. The outputs

of the integrator, i.e., the outputs of the modular network, are the class confidence levels

corresponding to the input pattern.

8.2 Contribution of the Thesis

The contributions of the thesis are

1. Providing an in-depth review on the pattern classification techniques that exploit

uncertainty (chapter 2).

2. Formulating the opening bid problem as a pattern classification problem, and ad-

dressing different types of uncertainties involved in this problem (section 2.4).

3. Application of modular neural networks to deal with fuzzy, rough and probabilistic

uncertainties .- effectively (chapter 3).

4. Use of possibilistic K-means algorithm to determine the possibilistic membership

values of the training inputs (section 4.3.2).

5. Use of rough-fuzzy sets to determine the importance of each feature for classification

(chapter 4).

6. Development of backpropagation learning algorithm based on various fuzzy objec-

tive functions (section 5.2).

7. Enhancement of the dynamics of evolutionary programming and use of this tech-

nique to configure feedforward neural networks (section 5.3).

8. Devising a framework to embed fuzzy clustering algorithms in evolutionary p r e

gramming paradigm (section 6.2).

9. Introducing the concepts of rough-fuzzy and fuzzy-rough membership functions for

classification (Appendix C and D).

10. Proposing fuzzy-rough neural networks to consider the fuzziness as well as the

roughness present in the classification problem (section 6.3).

11. Use of fuzzy-rough sets in fuzzy integral to measure the importance of each module

(chapter 7).

8.3 Conclusion of the Thesis

The following are some important conclusion of the study:

1. Uncertainties, which apparently affect the classification system, can be made useful

to the classification system, if treated properly.

2. It is possible to employ the uncertainities associated with the given classification

problem to evolve one among many possible solutions for the classification problem.

3. We should be careful not to add large amount of uncertainty while representing the

problem. If the representation is straightforward, it becomes easier to analyse the

classification task.

4. An attractive way to exploit the uncertainties is to divide the given classification

task into simple subtasks, and then combine the individual solutions of the subtasks.

The uncertainities in each subtask can be considered locally, and the uncertainities

in the whole problem can be treated globally while combining the solutions.

5 . ~odulari&tion in an arbitrary manner may not enable us to construct a good clas-

sifier. Because modularisation adds its own uncertainty, which should be handled

with care. If we can exploit the uncertainity involved in the original problem, slight

increase in the uncertainity due to modularisation may get nullified. Eventually

the modularisation may be beneficial to us.

6. When the classification relation is based on subjective data, as we observe in the

case of bidding, it is difficult to model the classification system.

7. It is difficult to model a part of the system, when the correlation between the

various parts of the system is very high. For example, while building a bidding

system, if we do not consider some important aspect like "vulnerability", then the

problem becomes difficult.

8. Although opening bid problem is taken as an illustration, problems dealing with

uncertainties are common in vision, speech and natural language processing.

8.4 Issues Related t o This Thesis Work for Further Study

In this thesis we have partitioned the classification task based on some prior knowledge.

In many classification problems, the domain specific knowledge may be absent or difficult

to obtain. It is worthwhile to explore automatic partitioning of the input space so that

the overall generalization capability of the whole network is increased.

Bridge players gather their experience from data as well as from some weak rules or

knowledge. We have exploited only the data to construct the classification system. The

classification performance could be enhanced if we had used data and rules simultaneously.

We have used possibilistic K-means to obtain the membership values of the input

hands. A better approach is to learn the classification function and membership functions

simultaneously. In [PK96], this problem is attempted, where each class contains only

one cluster. For a general framework, where each class contains more than one cluster,

virtually no progress is achieved so far.

The importance of each feature is determined by minimizing the rough-fuzzy entropy

iteratively. Rigorous proof is needed to show that this iterative scheme always converges.

Human beings can remember some accidental events and generalize many regular

events. In the bidding problem also, players remember the high level bids and generalize

the lower level bids. The current model cannot handle this memorisation-generalization

dilemma. It will-be an interesting topic to explore how the memorisation-generalization

dilemma can be realized in modular networks.

The feedforward neural networks with fuzzy objective functions, reported in chapter 5,

do not capture the rough uncertainty. Hence, it will be interesting to train the network

to capture fuzzy as well as rough uncertainties.

We have enhanced the dynamics of evolutionary programming based on some empiri-

cal evidence. A more rigorous analysis is needed to analyse the efficiency of the proposed

technique. One useful tool for this analysis can be Markov chain.

We have used fuzzy hypervolume to decide the optimal number of clusters. In some

cases, it does not give the optimal result. Therefore, we need to develop a better measure

to identify the optimal number of clusters.

Although in literature attempts have been made to quantify the generalization capa-

bility of classifiers [Vid97], no significant work has been reported to quantify the general-

ization capability of modular networks.

In statistical pattern recognition, Bayesian classifiers are accepted as benchmarks to

compare other classification techniques. Till now no such classifier is developed whose

classification efficiency is optimum in presence of fuzzy, rough and probabilistic uncer-

tainties. This kind of model may not be applicable in practice, but it can serve as a

benchmark.

APPENDIX A

CONTRACT BRIDGE GAME: ISSUES

The game of Contract Bridge offers a rich platform for exploring theories in artificial

intelligence. We observe that unlike chess, which is a two-person zero-sum complete-

information game, Bridge cannot be tackled by elegant mechanisms like minimax search

method [LS95]. This is because Bridge is not a complete information game. Since one

does not know the cards held by the opponents, one cannot project the play into the

future to try and discover which strategy is most profitable. Instead one has to rely on

some knowledge intensive method. Bridge can be classified as a two-side incomplete-

information game [LS95]. Further complication is introduced by the fact that each side

constitutes of two persons. Therefore communication is vital. Not only does one have to

convey information, within the rules of the game of course, to the partner, but one also

needs to intercept opponents messages to learn their intentions. Almost as a corollary,

at a more sophisticated level one may even want to send out misleading signals to lead

opponents astray.

Contract Bridge is played with a regular pack of 52 cards dealt randomly and equally

among 4 players. Let us call them North, South, East and West, according to their

position on the table. North and South are partners, as are East and West. The cards are

ranked in the order Ace, King, Queen, Jack, 10,9,. . . , 2 in each suit. Each player plays a

card, in clockwise order, and the highest ranking card wins the trick, then it wins some

points. Thirteen such tricks are played, and each time the winner of the precious trick

starts play. This constitutes one deal or one hand.

There are two stages of play in each deal, viz. bidding, followed by the play of cards.

The goal in a deal is to maximize points. The points essentially depend upon bidding. Bids

are made for the number of tricks the side promises to make, given the stated "trump"

suit. Eventually the highest bid is accepted in each deal. This is known as the contract.

Generally, the higher a side bids the more points it is likely to win, provided it can

fulfill the contract. That is, if the side can make the number of tricks it has bid for. If

it succeeds, it wins some points. Let us call them success-points. If it loses, then the

opponents get some points instead, which we can call penalty-points.

The straightforward goal in bidding is to bid the highest number of tricks one thinks

the side can make. That is, to maximize success-points won. The means used in this

process are the following:

1. Evaluation of own hand.

2. Communication with partner.

3. Projection of play.

Among these, the first two are simpler and can possibly be handled by heuristic methods.

The third is more difficult, as it would involve constructing plausible distributions (based

on the bids heard, .- and on probability) and then projecting the play. A more complex goal

is to make a sacrifice bid. It essentially means intentional overbidding, over an opponent

bid, with the hope that the penalty-points loss will be lesser than the opponents' expected

success-points gain, thus being an overall gain. Even more complex goals are to sabotage

the opponents communication. This may mean consuming the bidding space (jamming

the communications channel), or even making "false" bids to confuse opponents. In the

process, an enterprising planner may make an "advance sacrifice" to "push" the opponents

higher than they can manage, or to escape with a lighter penalty. Considering that all

these processes happen when the planner can see only one hand, one observes that bidding

is probably a more difficult part of the game.

Once bidding is over, the goal for the play stage has been defined. One side has the

contract, and is required to make the bid number of tricks. At this stage one player of

the contracting side (called the dummy) exposes the cards to everybody, while the other

(called the declarer) plans and executes the play. The opposing side (called defenders)

are said to defend the contract. They are in fact trying to defeat the accomplishment of

the contract by the declarer.

One can observe that the situation at this stage is not symmetric. The declarer knows

the entire strength of his side, and is in total control of the play of the cards. He is also

aware of the entire assets of the defense, in terms of material strength, since they have the

remaining 26 cards. Each defender knows only his own hand, and cannot see his partner's

hand. Therefore the two defenders have to combine their efforts to try and achieve the

goal. This necessarily involves (formal) communication between the two. Both can see

the dummy also.

Since the cards of all the players cannot be seen, one cannot project moves into the

future. Methods Iike minimax search are therefore ruled out immediately. Instead, the

success of a strategy can only be estimated based on the probabilistic distribution of the

cards, and any information gleaned from the communication taking place. The strategies

themselves are derived from knowledge about the various known methods of tackling

various card combinations.

The straightforward goal in the play of the hand is to make the number of tricks

as stated in the contract. The emphasis is on maximising the probability of success. If

success is assured, then the god can be revised to increase the number of tricks won,

as some more points can then be gained. If success seems unlikely, then a planner may

even choose to minimize losses, i.e., the penalty-points won by the opponents. Like in

bidding, the planner may attempt to do better by exploiting the incomplete information
--

that the opponents have. This may introduce complex "meta-level" gods of protecting

information, or sending out misleading signals.

Thus, we observe that unIike games like chess, where a clear cut strategy of aiming

for the minimax value (saddle) points is meaningful, in Bridge one has to largely grapple

with incomplete information. In the face of such uncertainty, planning in the game of

Bridge can only be a complex knowledge intensive activity.

APPENDIX B

EVOLUTIONARY PROGRAMMING AND

ROUGH SETS: BASICS

B.l Background of Evolutionary Programming

Usually an optimization problem seeks to find the value of a free parameter x E X

of the system under consideration, such that a certain quality function G : X + ?R is

minimised (or, equivalently maximised) [BHS97]. This quality function is known as ob-

jective function. The goal of the minimisation operation is to find x corresponding to

the global minimum of the objective function. But the presence of local minima, con-

straints and the other factors like large dimensionality, nonlinearity, nondifferentiability,

noisy objective function make the optimization task difficult. If an optimization method

can give a solution of x which is slightly better than the currently known best solution

of x , then it is often accepted as a success. The efficiency of the optimization process

can be enhanced, if it is carried out in parallel. One such biologically inspired method

is evolutionary programming [Fog94b] [Fog95], where a population of solutions are proba-

bilistically explored over a sequence of generations to reach the globally optimum solution.

Evolutionary programming employs the following steps to find the global minimum of a

function G(x) : ?RN + 8:

1. Initially a population of parent vectors xi, i=l , 2, . . . , v, is selected at random

(uniformly) from a feasible range in each dimension.

2. An offspring vector k,, i = 1, 2, . . . , v, is created from each parent xi, by adding

a Gaussian random variable with zero mean and predefined standard deviation to

each component of xi.

3. A selection procedure then compares the values G(x,) and G(jZi) to determine which

of these vectors are to be retained. The v vectors that possess the least value of

the objective function become the parents for the new generation.

4. Go to the step 2 unless a satisfactory solution is reached or the number of genera-

tions is greater than some prespecified constant.

5. The solution of the problem is x*, where G(x*) posses the least value in the final

population.

B.2 Background of Rough Sets

In any classification task the aim is to form various classes where each class contains ob-

jects that are not noticeably different. These indiscernible or indistinguishable objects can

be viewed as basic building blocks (concepts) used to build up a knowledge base about the

real world. For example, if the objects are classified according to' color (red, black) and

shape (triangle, square and circle), then the classes are: red triangles, black squares, red
.-

circles, etc. Thus, these two attributes make a partition in the set of objects and the uni-

verse becomes coarse. If two red triangles with different areas belong to different classes, it

is impossible for anyone to correctly classify these two red triangles based on the given two

attributes. This kind of uncertainty is referred to as rough uncertainty [Paw821 [PBSZ95].

The rough uncertainty is formulated in terms of rough sets [Paw9:L]. Obviously, the rough

uncertainty can be completely avoided if we can successfully extract the essential features

so that distinct feature vectors are used to represent different objects. But it may not be

possible to guarantee as our knowledge about the system generating the data is limited.

In any classification problem, two input training patterns xu and xu (where xu, xu E

X , the set of all input patterns) are called indiscernible with respect to the s th feature,

when the s th component of these two patterns have the same value. Mathematically, this

indiscernibility can be represented as &RSxV iff xu, = xus, where RS is a binary relation

over X x X . Obviously, Rs is an equivalence relation that partitions the universal set

X into different equivalence classes. This idea can be generalized to take some or all the

features into our consideration. Without loss of generality, based on a particular set of

features, let R be an equivalence relation on the universal set X . Moreover, let X /R

denote the family of all the equivalence classes induced on X by R. One such equivalence

class in X/R that contains xE X , is designated by [XIR. In any classification problem,

the objective is to approximate the given output class Cc X by X/R. For the output

class Cc, we can define lower approximation R(Cc) and upper approximation &(CC), which

approach Cc as closely as possible from inside and outside, respectively [KY95]. Here,

R(Cc) = U{[X]R I [X]R Cc, x E X) is the union of all the equivalence c~asses in X/R

that are contained in C,, and z(Cc) = u{[x]~ ([XIR r) Cc # 4, x E X) is the union of d l

the equivalence classes in XIR that overlap with C,. A rough set R(Cc) = (R(c,), &(c,))
is a representation of the given set Cc by &(Cc) and R(Cc). The set difference, R(Cc) -
&(CC), is a rough description of the boundary of C, by the equivalence classes of XIR.

The approximation is rough uncertainty free if fi(Cc) = &(Cc). When all the patterns

from an equivalence class do not carry the same output class labels, rough ambiguity is

generated as a manifestation of the one-to-many relationship between the equivalent class

and the output class labels. For a given Cc representing certain concept of interest, we

can characterize XIR with the following three distinct regions:

1. l?(Cc) is called the positive region POSR(Cc) of C,,

2. R(Cc) - &(Cc) is called the boundary region BNDR(Cc) of C,,

3. X I R - Z(C,) is called the negative region NEGR(Cc) of Cc.

Two examples of rough sets are shown in Fig. B.1. In the first example (Fig. B.l(a)),

X is a closed interval of real numbers, and XIR partitions X into ten semiclosed intervals

and one closed interval. The output class Cc, which is to be approximated by the elements

of XIR, is the closed interval shown in this figure. The rough set approximation of

Cc consists of the two semiclosed intervals, R(Cc) and &(CC). In the second example

(Fig. B.l(b)), the universal set is X = X1 x X2, and the equivalence relation R partitions

X1 x Xz into one hundred small squares.

Fig. B.l: Rough sets in (a) one and (b) two dimensional domains.

In a classification task, the concept of rough membership function is introduced [WZ87]

to quantify the rough uncertainty associated with each pattern. The rough membership

function re, (x) : X -+ [O, 11 of a pattern X E X for the output class Cc is defined by

where (CcI denotes the cardinality of the set Cc. Rough membership function rc , (x)

signifies the rough uncertainty associated with the pattern x for the output class Cc. It

can be shown that rec (x) = 0 or 1 if and only if there is no rough uncertainty associated

with the pattern x [Paw951 [Paw94]. Evidently, the rough uncertainty associated with x

is maximum when re, (x) = 0.5.

APPENDIX C

ROUGH-FUZZY MEMBERSHIP

FUNCTIONS

In a classification task, the indiscernibility relation partitions the input pattern set to form

equivalence classes. These equivalence classes try to approximate the given output class.

When this approximation is not proper, roughness is generated. The output classes may

have fuzzy boundaries. Thus, both roughness and fuzziness appear due to the indiscerni-
.-

bility relation in the input pattern set and the vagueness in the output class, respectively.

To model this type of situation, where both vagueness and approximation are present,

the concept of rough-fuzzy set [DP90] is proposed. The resultant model is expected to be

more powerful than either of rough sets or fuzzy sets.

This appendix provides one scheme to generalize the concept of rough membership

functions in pattern classification tasks to rough-fuzzy membership functions. Unlike the

rough membership value of a pattern, which is sensitive only towards the rough uncertainty

associated with the pattern, the rough-fuzzy membership value of the pattern signifies

the rough uncertainty as well as the fuzzy uncertainty associated with the pattern. In

absence of fuzziness in the output class, the rough-fuzzy membership function reduces to

the original rough membership function. Moreover, when the partitioning in the input set

is fine, i.e., each equivalent class contains only one pattern, the rough-fuzzy membership

function turns out to be the fuzzy membership function. If the partitioning is fine and the

output classes are crisp simultaneously, the rough-fuzzy membership function reduces to

the characteristic function. In this appendix, various set theoretic properties of the rough-

fuzzy membership functions are discussed. A detail discussion on rough-fuzzy membership

functions can be found in [SY].

C. l Basics of Rough-Fuzzy Sets

Let X be a set, R be an equivalence relation defined on X and the output class Cc C X be

a fuzzy set. A rough-fuzzy set is a tuple (R(C,), B(c,)), where the lower approximation

&(Cc) and the upper approximation a(Cc) of Cc are fuzzy sets of XIR, with membership

functions defined by [DP92]

PR(C,)([X]R) = i n f { ~ c , (x) l ~ ~ [~] ~) VXEX (c.1-a>

~ R (c ,) (Ix] id = SUP{PC, (~) I~E[X]R) VxEX (C.1-b)

(C. 1-c)

Here, ,!4R(Cc) - ([XI R) and pK(cc) ([XI R) are the membership values of [X]R in R(Cc) and R(Cc),

respectively.
.-

C .2 Definition of Rough-Fuzzy Membership F'unct ions

The rough-fuzzy membership function of a pattern x E X for the fuzzy output class

Cc C_ X is defined by

where F = [x] ~ and \Cc(means the cardinality of the fuzzy set Cc. One possible way to

determine the cardinality is to use [Zad78]: ICc/ sf C pcc(x). For the 'n' (intersection)
xEX

def operation, we can use pAne (x) = min{pA (x), pB(x)) Vx E X . It must be noted that the

concept of rough-fuzzy set is necessary while dealing with ambiguous concepts, whereas

the rough-fuzzy membership function is needed when uncertain data are considered.

C.3 Properties of Rough-Fuzzy Membership Functions

Following are a few important properties of rough-fuzzy membership functions that can

be exploited for a classification task.

Property C.l: 0 < LC, (x) ,< 1

Proof. Since 4 F t l Cc C F, the proof is trivial. rn

Property C.2: LC,(X) = 1 and 0 if and only if n o rough-fuzzy uncertainty i s associated

with the pattern x.

Proof.

If part: If no rough-fuzzy uncertainty is involved, then either (a) F c Cc, i.e., LC, = 1,

or (b) F n Cc = cp, i.e., LC, = 0.

Only if part: If LC,(X) = 0, then the numerator of (C.2) is zero. It implies that

F n C, = 4. On the other hand, if LC, (x) = 1, then the numerator of (C.2) is equal

to the denominator. It means that F n Cc = Cc, i.e., F c Cc. Both cases imply that no

rough-fuzzy uncertainty is involved.

Property C.3: When the output class Cc is crisp, LC, (x) = rcc (x).

Proof. When the output class Cc is crisp, Equation (C.2) reduces to (B.l). Hence, the

proof follows. rn
.-

Property C.4: When the partitioning is fine, L C , (~) = PC, (~) . Moreover, if the parti-

tioning is fine and the output class Cc is crisp, then LC,(X) is equivalent to the character-

istic function.

Proof. When the partitioning is fine, i.e., each F consists of a single pattern, LC, (x) =

1 x = p C (x) . If pcc(x) E {O, 11, i.e., the output class is crisp, then LC.(X) becomes

the characteristic function.

This property and the property C.3 show that both rough and fuzzy membership functions

become particular cases of rough-fuzzy membership functions in the absence of fuzziness

and, roughness, respectively.

Property C.5: LX-c, (x) = 1 - LC, (x)

Fn X-Cc Proof* Lx-c,(X) = J* = 1 - JW = 1-LC.(X). .
Property C.6: If x and z are two input patterns so that xRz (i.e., x , z E F), then

LC, (x) =LC, (2).

Proof. It can be derived directly from Equation (C.2). rn

Property C.7: LAUB(X) 2 ~ ~ x { L A (x) , L ~ (x) } , where A, B C X

Fn AUB Proof. LAUB(X) = 2 $fl = bA(x). Similarly, LA,B(X) 2 LB(X) .
Property C.8: LAnB (x) 5 r n i n { ~ ~ (x) , ~ ~ (x)) where A, B C X.

188

EWG9.l < = (x). Similarly, LAnB (x) < LB (x) . Proof- Lane(x) = -

Property C.9: If Z is a family of pairwise disjoint subsets of X , then L,~(X) =

c LC,(X).
CCEZ

CCEZ

Property C.lO: For a C-class classification problem, rough-fuzzy membership function

of a pattern behaves in a possibilistic way provided the fuzzy membership function of the

pattern to the output classes is possibilistic.

Proof.

Therefore, for crisp and constrained fuzzy classification [PB95], where cz1 pcc(x) = 1,

the value of EL, LC,(X) is equal to one. In case of possibilistic classification [PB95]

O< c:=, pcC (x) 5 C , and hence, 0 5 c:=, LC, (x) < C. Therefore, LC, (x) behaves in a

possibilistic manner. .
Property C.ll: For crisp output classes

Proof. For the crisp output classes, the above results come directly from Equation (C.1-a)

and (C.1-b).

Following is a trivial but interesting definition based on the above properties:

A C-class classification problem for a set of input patterns X ={x1,x2,. . . ,xn) is

basically an assignment of the rough-fuzzy membership value (xi) on each xi E X, Vc =
1 ,2 , . . . , C, Vi = 1,2, . . . , n. In the rough-fuzzy context, C partitions of X are the set of

values {LC, (xi)) that can be conveniently arranged on a C x n matrix [LC, (xi)]. Based on

the characteristic of [LC. (xi)], classification can be of the following three types [PBSS]:

(a) Crisp classification:

C

B ~ c - - / k (xi)] E sCn 1 LC, (xi) E {o, 1) VC, vi; C L& (xi) = I;

(b) Constrained rough-fuzzy classification:

(C. 5-a)

(c) Possibilistic rough-fuzzy classification:

n

BPc = {[LC. (Xi)] E sCn (LC. (xi) E [O, l] VC, Vi; 0 < C LC, (xi) < n VC
i=l

(C.5-c)

It is obvious that Bhc c Bfc c Bpc.

APPENDIX D

FUZZY-ROUGH MEMBERSHIP

FUNCTIONS

In a classification task the indiscernibility relation, based on the equivalence of the features

of the patterns, partitions the input pattern set into several equivalence classes. These

equivalence classes try to approximate the given output class. When the approximation

is not proper, the roughness is generated. In most of the real life cases, the value of
.-

a particular feature for two patterns may not be exactly same, but similar. Therefore,

the indescernibility relation formulated based on the features do not obey the law of

equivalence, and is a matter of degree. Hence, the equivalence relation takes the form

of a similarity relation, and the equivalence classes form fuzzy clusters. The situation

becomes more complicated because the output classes can be fuzzy too. The roughness

appears here due to the indiscernibility relation in the input pattern set, and the fuzziness

is generated due to the vagueness present in the output class and the clusters. To model

this type of situation, where both approximation and vagueness are present, the concept

of fuzzy-rough sets [DPSCI] can be employed. The resultant model is expected to be more

powerful than rough sets, fuzzy sets and rough-fuzzy sets.

In this appendix the concept of rough-fuzzy membership functions (see Equa-

tion (C.2)) in the classification tasks are generalized to fuzzy-rough membership functions.

If the clusters are crisp, then fuzzy-rough membership functions are equivalent to rough-

fuzzy membership functions. In absence of fuzziness, fuzzy-rough membership functions

reduce to the existing rough membership functions. Moreover, under certain conditions

fuzzy-rough membership functions are equivalent to fuzzy membership functions and char-

acteristic functions. The concept of fuzzy-rough membership function becomes particu-

larly attractive when we do not have complete knowledge about the human classification

system, but we attempt to mimic the vagueness present in the human reasoning. In this

appendix, various set theoretic properties of the fuzzy-rough membership functions are

described. Details about fuzzy-rough membership functions is given in [SY98a]

D.l Background of Fuzzy-Rough Sets

When the equivalence classes are not crisp, they are in form of fuzzy clusters

{Fl, F2, . . . , FH) generated by a fuzzy weak partition [DP92] of the input set X. The term

fuzzy weak partition means that each Fj is a normal fuzzy set (i.e., max, p~~ (x) = 1) and

infx maxj pFj (x) > 0 while

Here, pFj(x) is the fuzzy membership function of the pattern x in the cluster Fj. In

addition, the output classes Cc, c = {1,2,. . . , C) may be fuzzy too. Then the fuzzy set

Cc can be described by means of the fuzzy partitions under the form of an upper and a

lower approximation and - Cc as follows:

The tuple (c., - c) is called a fuzzy-rough set. Here, pcc(x) = {0, 1) is the fuzzy

membership of the input x to the class C,. Fuzzy-roughness appears when a fuzzy cluster

contains patterns that belong to more than one class.

D.2 Definition of Fuzzy-Rough Membership Functions

The definition of rough-fuzzy membership function (Equation (C.2)) can be generalized

to the following definition of fuzzy-rough membership function [SY98c]:

L z ~ l p ~ , (~) ~ c c (~) if 3 j with pq (x) > 0

0 otherwise

where H (5 H) is the number of clusters in which x has nonzero memberships and

L&(x) =IFjnCc. Here, rcc(x) represents the fuzzy-rough uncertainity of x in the class C,.
lFj l

A When x does not belong to any cluster, fi is equal to zero, and hence, $ Cj,l p 5 (x)L&

becomes undefined. In order to avoid this problem, rcC (x) is made equal to zero when x

does not belong to any cluster.

D.3 Properties of Fuzzy-Rough Membership Functions

Property D.l: 0 5 rCC(x) 5 1

Proof. Since 4 G Fj n Cc G F'j , 0 5 L&, 5 1. Moreover, 0 5 p q (x) < 1. Hence, the

proof follows.

Property D.2: rcc(x) = 1 or 0 if and only if no fuzzy-rough uncertainty is associated

with the pattern x .

Proof. If part: If no fuzzy-rough uncertainty is involved, then x must belong com-

pletely to all the clusters in which it has non-zero belongingness. I t implies p q (x) =

1 for which p~~ (x) > 0. Moreover, all the clusters in which x has non-zero belongingness

either (a) must be the subsets of the class Cc, or (b) must not share any pattern with the

class Cc. In other words, the condition (a) implies that Fj 2 Cc V j for which p q (x) > 0.
1 f i Hence, rcc(x) = xj 1.1 = 1. Similarly the condition (b) expresses that Fj n C, =

1 F i 4 V j for which PF,(X) > 0. Hence, TC,(X) = Cj=I pCC(x).O = 0

Only if part: rc,(x) = 0 implies that either x does not belong to any cluster, or each

term under the summation symbol, i.e., pFj(x)~cC is separately zero. In the first case,

there is no fuzzy-roughness associated with x. The second case implies that either p~~ (x)

or L&,, or both p~~ (x) and L&, are zero. If pFj (x) = 0, then the pattern x does not

belong to the cluster Fj, and hence, no fuzzy-rough uncertainty is associated with x . If

L&, = 0, then Fj and Cc do not have any pattern common, and therefore, no fuzzy-rough

uncertainty exists with x. Thus, rcc (x) = 0 implies that fuzzy-roughness is not associated

with the pattern x. Ifrcc(x) = 1, thenpFj(x) = 1 and L&, = 1, V j = 1,2 , . . . , H. It also

indicates the absence of fuzzy-roughness.

Note that if fuzzy-rough uncertainty is absent, H > 1 and rcc(x) # 0, then rcC(x)

never becomes one, rather it approaches towards one. I t is because, the condition ex-

pressed in (D.l) does not allow pFj (x) = 1 to be true for more than one cluster. However,

it hardly happens in practice as it needs two cluster centers to be same. w

Property D.3: If no fuzzy linguistic uncertainty is associated with the pattern x, then

rcC(x) = L&(x) for some j E {1,2,. . . , H}.

Proof. If no fuzzy linguistic uncertainty is involved, then p~~ (x) = 1 for some j E

{1,2,. . ., H}, and pFI(x) = 0 for k E {1,2,. . ., H}, k # j. Hence, rcC(x) = L;,, .i E
{I, 2 , . . . , H}. w

Property D.4: If no fuzzy linguistic and fuzzy classification uncertainties are associated

with the pattern x, then TC, (x) = TC, (x) .

Proof. If no fuzzy linguistic uncertainty is involved, then each cluster is crisp. Con-

sequently, the input pattern belongs to only one cluster. Let it be the j th clus-

ter. Hence, p F j (x) = 1 and pF,(x) = 0 Vk # j . Since the classification is crisp,
F.nCc rCc (x) = = T~~ (x) (see Equation (B .1)) . rn

Property D.5: When each cluster is crisp and fine, that is, each cluster consists of a

single pattern and the associated cluster memberships are crisp, rCC(x) is equivalent to

the fuzzy membership function of x in the class Cc. If the output class is also crisp, then

r c C (x) is equivalent to the characteristic function of x in- the class Cc.

Proof. Since each cluster is crisp and fine, rcc(x) = 1 . ' ~ ~ : ~) . = pcc(x) . In addition, if

the output class is crisp, then rCc (x) lies in (0, I) , and thus, it becomes the characteristic

function. rn .-

Property D.6: For a C-class classification problem with crisp output classes, the fuzzy-

rough membership functions behave in a possibilistic manner provided the fuzzy member-

ship function of the pattern to the clusters is possibilistic.

Proof.

Since c:=, rcc (x) needs not to be equal to a constant, the resultant classification procedure

is possibilistic [KY95] [PB95]. rn

Property D.7: If x and z are the two input patterns with p~~ (x) = PF, (z) Vj and

PCc (x) = PCc (4 7 then 7 c c (4 =7cc (2)

Proof. Directly comes from Equation (D.3). rn

The definition of compliment operator satisfies the following properties:

1. Boundary condition: When the clusters and the output classes are crisp, i.e.,

rec (x) ' = rec (x), T behaves like an ordinary compliment for rough sets. I t means

that if T~ , (x) = 0 or 1, then TX-C,(X) = 1 or 0, respectively.

2. Monotonicity: If rcC(x) < rcC(z) Vx, z E X , then TX-c,(x) > T~-C,(Z).

3. Continuity: Obviously, rx-cC(x) is a continuous function.

4. ~nvolutivit~: rx-(x-c4(x) = rc, (x).

Property D.9: T A ~ B (X) L max{rA (x),TB(x))

~ (A u B) F.nA ' -

proof- TAUB(X) = $ c p q (x) 2 c ,UF, (XI - TA (XI. Similarly, T A U ~ (x)
3 3

2 TB(X). Therefore, TAUB(X) 2 m a x { ~ ~ (x) , ~ ~ (x)) . rn

Property D.10: TA~B(X) < r n i n { ~ ~ (x) , r ~ (x))

I F . ~ (A ~ B) I 1 F.nAI Proof. rAnB(x) = C PF, (x) ' IF,, < - C /lq (x) = 71 (x). Similarly, TA~B(x)
3 H i < rB (x) . Therefore, TAUB (x) < min{rA'(x) ,TB (x)) . rn

Property D. l l : If Z is a family of pairwise disjoint subsets of X , then ruz(x) =

C 7cc(x).
CCEZ

F.n uz) u (~ . n z Proof. ruz(x) =$ C PFj (x) = 1 C PF, (x) '+ = C ~ c c (x)
3

H .
3 CCEZ

Property D.12: 0 < TC,(X) 5 C.

Proof. If the input pattern does not belong to any cluster, then from Equation D.3

rCc(x) = 0 Vc. Thus, CF=l rCc(x) = 0. In pattern classification it can happen when the

input pattern is not from any of the existing classes. On the other hand, when the input

pattern belongs to all the classes with fuzzy membership value 1,

Therefore, if the -- input pattern belongs to all the clusters completely, then X;=, rcC (x)

attains the maximum value C. I

Property D.13: When the clusters and the output classes are crisp,

Proof. For the crisp output classes with crisp clusters, the above results come directly

from Equation (D.2-a) and (D.2-b). rn

Following is an interesting definition based on the above properties:

A C-class classification problem for a set of input patterns X = {xl,xZ,. . . ,xn) can

be looked a t as an assignment of the fuzzy-rough membership value rcC(xi) on each

xi E X , Vc = 1,2 , . . . , C, Vi = 1,2 , . . . , n. In fuzzy-rough context, C partitions of X

are the set of values {rCc(xi)) that can be conveniently arranged on a C x n matrix

[rG(xi)]. Based on the characteristic of [rcC(xi)] classification can be of the following

three types [PB95]:

(a) Crisp classification:

Ahc = ([Tc. (xi)] E scn I TC. (xi) E {O, 1) VC, Vi;

(b) Constrained fuzzy-rough classification:

C n

C TC, (xi) = 1; 0 < C rcC (xi) < n VC} (D.7-b)

(c) Possibilistic fuzzy-rough classification:

From the above relations, it is obvious that Ahc c Afc c Ape.

BIBLIOGRAPHY

[Ad1941 L. Adleman. Molecular computation of solutions to combinatorial problems.
Science, (266):1021-1024., 1994.

[AH951 H. Adeli and S. L. Hung. Machine Learning: Neural Networks, Genetic
Algorithms and Fuzzy Systems. John Wiley and Sons, Inc, 1995.

[Aka741 H. Akaike. A new look at the statistical model identification. IEEE Pans-
actions on Automatic Control, 19:716-723, 1974.

[AMMR93] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka. An improved algo-
rithm for neural network classification of imbalanced training sets. IEEE
Transactions on Neural Networks, 4:962-963, 1993.

[Arb951 M. A. Arbib. The Handbook of Brain Theory and Neural Networks. MIT
Press, Cambridge, MA, 1995.

.-

[ASP941 P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm
that constructs recurrent neural networks. IEEE Transactions on Neural
Networh, 5(1):54-64, January 1994.

[BCR97] J . M. Benitez, J . L. Castro, and I Requena. Are artificial neural net-
works black boxes. IEEE Transactions on Neural Networks, 8(5) : 1156-1 164,
September 1997.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability
and Vapnik-Chervonenkis dimension. Journal of the Association of Comput-
ing Machinery, 36(4):929-965, October 1989.

[Be1891 R. K. Belew. When both individuals and populations search: Adding simple
learning to genetic algorithm. In Proceedings of Third International Confer-
ence on GA (George Mason University), pages 34-41, June 1989.

[Be2811 J . C. Bezdek. Pattern Recognition with fizzy Objective Function Algorithms.
Plenum Press, New York, 1981.

[Be2941 J . C. Bezdek. The thirsty traveller visits gamont: A rejoinder to "comments
on fuzzy set - what are they and why?". IEEE Transactions on Fuzzy Sys-
tems, 2(1):43-45, February 1994.

[Be2961 J. C. Bezdek. A reyiew of probabilistic, fuzzy, and neuraI models for pat-
tern recognition. In C. H. Chen, editor, Fuzzy Logic and Neural Network
Handbook. McGraw-Hill, Inc, New York, 1996.

[BH94] J . C. Bezdek and R. J . Hathaway. Optimization of fuzzy clustering crite-
ria using genetic algorithms. In Proceedings of First IEEE Conference on
Evolutionary Computation, pages 589-594, June 1994.

[BHS97] T . Back, U. Hammel, and H. P. Schwefel. Evolutionary computation: Com-
ments on the history and current state. IEEE Transactions on Evolutionary
Computation, 1(1):3-17, April 1997.

[Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford Univ Press,
1995.

[BL96] N. K. Bose and P. Liang. Neural Network Fundamentals with Graphs, Algo-
rithms and Applications. McGraw-Hill Inc., New York, 1996.

[BL98] A. L. Blum and P. Langley. Selection of relevant features and examples in
machine learning. In R. Greiner and D. Subramanian, editors, to appear in
the special issue of Artificial Intelligence on 'Relevance '. 1998.
M. Banerjee, S. Mitra, and S. K. Pal. Knowledge-based fuzzy MLP with
rough sets. In IEEE International Conference on Neural Networks (Houston,
USA), June 9-12 1997.

S. T. Bow. Pattern Recognition. Marcel Dekker, New York, 1984.

J. C. Bezdek and S. K. Pal. Fuzzy Models for Pattern Recognition, Eds.
IEEE Press, New York, 1992.
A. K. Bhattacharya and B. Roysam. Joint solution of low-, intermediate-
, and high- level vision tasks by evolutionary optimization: Application to
computer vision a t low snr. IEEE Transactions on Neural Networks, 5(1):83-
93, January 1994.
S. A. Billings and G. L. Zheng. Radial basis function network configuration
using genetic algorithm. Neural Networks, 8(6) :877-890, 1995.
J. 3; Choi, R. J. Arabshahi, R. J . Marks, and T. P. Candell. Fuzzy pa-
rameter adaptation in neural systems. In Proceedings of IEEE International
Conference on Neural Networks, pages 232-238, 1992.
T. M. Cover and P. E. Hart. Nearest neighbor pattern classifier. IEEE
Transactions on Information Theory, pages 21-27, 1967 1967.
0 . Cordon, %. Herrera, and M. Lozano. On the bidirectional integration of
genetic algorithms and fuzzy logic. In 2nd On line Workshop on Evolutionary
Computation (WECZ), Nagoya (Japan), pages 13-17, 1996.

S. B. Cho. Fuzzy aggregation of modular neural networks with ordered
weighted averaging operators. Approximate Reasoning, 13:359-375, 1995.
S. B. Cho. Neural-Network classifier for recognizing totally unconstrained
handwritten numerals. IEEE Tkansactions on Neural Networks, 8(1):43-52,
January 1997.

S. B. Cho and J. H. Kim. A twestage classification scheme with backpropa-
gation neural network classifiers. Pattern Recognition Letters, 13(5):309-331,
May 1992.

S. B. Cho and J. H. Kim. Combining multiple neural networks by fuzzy
integral for robust classification. IEEE Transactions on System, Man and
Cybernetics, 25(2):380-384, February 1995.

S. B. Cho and J. H. Kim. Multiple network fusion using fuzzy logic. IEEE
Transactions on Neural Networks, 6(2):497-501, March 1995.

J . J. Choi, H. OIKeefe, and P. K. Baruah. Non-linear system diagnosis
using neural networks and fuzzy logic. In Proceedings of IEEE International
Conference on Fuzzy Systems (Sun Diago), pages 813-820, 1992.
L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, 1991.

R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley,
New York, 1979.

D. Driankov, H. Hellendorn, and M. Reinfrank. An Introduction to Fuzzy
Control. Springer-Verlag, Berlin, 1993.

[DY 971

[ESY 921

R. Dubes and A. Jain. Algorithms that Cluster Data. Prentice Hall, Engle-
wood Cliffs, NJ, 1987.
R. Devijver and J . Kittler. Pattern Recognition: A Statistical Approach.
Prentice Hall, Englewood Cliffs, NJ, 1982.
M. Dash and H. Liu. Feature selection for classification. Intelligent Data
Analysis, 1 (3), August 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by
a colony of cooperating agents. IEEE Transactions on System, Man and
Cybernetics, 26(1):29-41, 1996.

D. Dubois and H. Prade. Fuzzy Sets and Systems. Academic Press, New
York, 1980.
D. Dubois and H. Prade. Possibility Theoy: An Approach to Computerized
Processing of Uncertainty. Plenum Press, New York: Plenum, 1988.
D. Dubois and H. Prade. Rough-fuzzy sets and fuzzy-rough sets. Interna-
tional Journal of General Systems, 17(2-3):191-209, 1990.

D. bubois and H. Prade. Putting rough sets and fuzzy sets together. In
R. Slowinski, editor, Intelligent Decision Support. Handbook of Applications
and Advances of the Rough Set Theory. Kluwer Academic Publishers, Dor-
drecht, 1992.

R. Duda. Elements of pattern recognition. In J . M. Mendel and K. S.
Fu, editors, Adaptive, Learning and Pattern Recognition Systems. Academic
Press, New York, 1970.
P. J . Darwen and X. Yao. S~eciation as automatic categorical modularisa-
tion. IEEE Transactions on '~volutionay ~om~utation,~1(2):101-108, July
1997.
P. Eswar, C. C. Sekhar, and B. Yegnanarayana. Use of fuzzy mathematical
concepts in character spotting for automatic recognition of continuous speech
in Hindi. Fuzzy Sets and Systems, 46(1):1-9, February 1992.

H. F'rigui and R. Krishnapuram. A comparison of fuzzy shell clustering
methods for the detection of ellipses. IEEE Transactions on Fuzzy Systems,
4(2):193-199, May 1996.

D. B. Fogel. An information criterion introduction to simulated evolution-
ary optimization. IEEE Tkansactions on Neural Networks, 2(5):490-497,
September 1991.
D. B. Fogel. System Identification through Simulated Evolution: A Machine
Learning Approach of Modeling. Ginn Press, Needham, MA, 1991.
D. B. Fogel. Asymptotic convergence properties of genetic algorithms and
evolutionary programming. Cybernetics and Systems, 25:389-407, 1994.
D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, 5(1):3-14, January 1994.

D. B. Fogel. Evolutionay Computation: Toward a New Philosophy of Ma-
chine Learning. IEEE Press, Piscataway, 1995.
D. B. Fogel. Evolutionary Computation: The Fossil Record. IEEE Press,
Piscataway, 1998.

L. J . Fogel, A. J . Owens, and M. J . Walsh. Artificial Intelligence through
Simulated Evolution. John Wiley, New York, 1966.

[FS89] Y. Fukuyarna and M. Sugeno. A new method for choosing the number of
clusters for the c-means method. In Proceedings of Fifth Fuzzy Systems Sym-
posium, pages 247-250, (in Japanese) 1989.

[FS93] D. B. Fogel and P. K. Simpson. Evolving fuzzy clusters. In Proceedings of
International Conference on Neural Networks (Sun Francisco), pages 1829-
1834, 1993.

[FSW97] A. Famili, W. M. Shen, and R. Weber. Data preprocessing and intelligent
data analysis. Intelligent Data Analysis, 1(1), January 1997.

[h681 K. S. Fu. Sequential Methods in Pattern Recognition and Machine Learning.
Academic Press, London, 1968.

[fig21 K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall,
Englewoods Cliffs, 1982.

[Fuk89] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, New York, 1989.

[GG89] I. Gath and A. B. Geva. Unsupervised optimal fuzzy clustering. IEEE
Tramactions on Pattern Analysis and Machine Intelligence, 11(7):773-781,
July 1989.

[GN94] M. Grabisch and J. M. Nicolas. Classification by fuzzy integral: Performance
and test. Fuzzy Sets and Systems, (65):255-271, 1994.

[Go1891 D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading MA, 1989.

[Gra96] M. Grabisch. The representation and interaction of features by fuzzy mea-
sures. Pattern Recognition Letters, (17):567-575, 1996.

[Gra97] M. Grabisch. Fuzzy measures and integrals: A survey of applications and
recent issues. In D. Dubois, H. Prade, and R. Yager, editors, Fuzzy Sets
Methods in Information Engineering: A Guided Tour of Applications. J . Wi-
ley, New York, 1997.

[Ha1751 J . Hartigan. Clustering Algorithms. Wiley, New York, 1975.
[Has951 M. F. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press,

Cambridge, MA, 1995.
rHau921 D. Haussler. Decision theoretic generalisations of the PAC model for neural

net and other learning applications. Information and Computation, 100:78-
150, 1992.

[Hay941 S. Haykin. Neural Networks - A Comprehensive Foundation. Macmillan
College Publishing Company, New York, 1994.

[HC96] J . E. Hunt and D. E. Cooke. Learning using an artificial immune system.
Journal of Networks and Computer Applications, 19:189-212, 1996.

[HH93] D. R. Hush and B. G. Home. Progress in supervised neural networks. IEEE
Transactions on Signal Processing, pages 8-39, January 1993.

[HHMS96] K. J. Hunt, .R. Haas, and R. Murray-Smith. Extending the functional equiv-
alence of radial basis function networks and fuzzy inference systems. IEEE
Transactions on Neural Networks, 7(3):776-771, May 1996.

[HHVLV94] F. Herrare, E. Herrera-Viedma, M. Lozano, and J . L. Verdegay. Fuzzy tools
to improve genetic algorit hms. In Proceedings of Second European Congress
on Intelligent Techniques and Soft Computing (Aachen, Gemany), pages
1532-1539, September 1994.

[HS W89]

[IFT93]

J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley, Reading, MA, 1991.
F. Herrera and L. Magdalena. Genetic fuzzy system. In B. Riecan R. Mesiar,
editor, Fuzzy Structures: Current Trends, volume 13, pages 93-121. Tatra
Mountains Mathematical Publications, 1997.
J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.
K. Hirota and W. Pedrycz. OR/AND neurons in modeling fuzzy set connec-
tives. IEEE fiansactions on Neural Networks, 2(2): 151-161, May 1994.

R. Hashemi, B. Pearce, R. Arani, W. Hinson, and M. Paule. A fusion of
rough sets, modified rough sets, and genetic algorithms for hybrid diagnostic
systems. In T.Y. Lin and N. Cercone, editors, Rough Sets and Data Mining.
Analysis for Imprecise Data, pages 149-175. Kluwer Academic Publishers,
Boston, London, Dordrecht, 1997.
K. Hornic, M. Stinchcombe, and H. White. Multilayered feedforward net-
works are universal approximatiors. Neural Networks, 4:359-364, 1989.

H. Ishibuchi, R. Fuiioka, and H. Tanaka. Neural networks that learn from
fuzzy if-then' rules. "IEEE Tmnsactions on fizzy Systems, 1(2):85-97, May
1993.
H. Ishibuchi, K. Nozaki, N. Yarnamoto, and H. Tanaka. Selecting fuzzy if-
then rules for classification problems using genetic algorithms. IEEE Bans-
actions on Fuzzy Systems, 3 (3):260-270, August 1995.

R. A. Jacobs and M. I. Jordan. Learning piecewise control strategies in a
modular neural network architecture. IEEE Bansactions on System, Man
and Cybernetics, 23:337-345, 1993.
R. A. Jacobs, M. I. Jordan, M. I. Nowlan, and G. E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3:79-87, 1991.
J. John and R. Kohavi. Feature subset selection using the wrapper model:
Overiitting and dynamic search space topology. In Proceedings of the First
International Conference on Knowledge and Data Mining, pages 643-649,
1995.
S. Jockusch and H. Ritter. Self-organizing maps: Local competition and
evolutionary optimization. Neural Networks, 7(8):1229-1239, 1994.

J. S. R. Jang and C. T. Sun. Functional equivalence between radial basis
function networks and fuzzy inference systems. IEEE Bansactions on Neural
Networks, 4(1): 156-159, January 1993.

J . S. R. Jang, C. T. Sun, and E. Mijutani. Neuro-Fuzzy and Soft Computing.
Prentice-Hall, Englewood Cliffs, NJ, 1997.
A. Kandle. Fuzzy Techniques in Pattern Recognition. Wiley, New York,
1982.
A. Kandle. Fuzzy Mathematical Techniques with Applications. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1986.
G. S. Klir and T. A. Folger. Fuzzy Sets, Uncertainty and Information.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

A. Kauffman and M. M. Gupta. Introduction to Fuzzy Mathematics. Van
Nostrand Reinhold, New York, 1985.

[KGG85] J . M. Keller, M. R. Gray, and J. A. Givens. A fuzzy K-nearest neighbor
algorithm. IEEE Dansactions on System, Man and Cybernetics, 15(4) :580-
585, July/August 1985.

[KGT+94] J. M. Keller, P. Gader, H. Tahani, J . H. Chiang, and M. Mohamed. Ad-
vances in fuzzy integration for pattern recognition. Fuzzy Sets and Systems,
(65):273-283, 1994.

[KH85] J. M. Keller and D. J. Hunt. Incorporating fuzzy membership functions
into the perceptron algorithms. IEEE Dansactions on Pattern Analysis and
Machine Intelligence, pages 693-699, July/August 1985.

[Khe88] D. Khemani. Theme based Planning in an Uncertain Environment. PhD
thesis, Department of Computer Science and Engineering, Indian Institute
of Technology, Bombay, 1988.

[KJV831 S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, (220):671-680, 1983.

[KK93] R. Krishnapuram and J. M. Keller. A possibilistic approach to clustering.
IEEF . Tkansactions on Fuzzy Systems, 1 (2):98-110, May 1993.

[KKR92] J . M. Keller, R. Krishnapuram, and F. C. H. Wee. Evidence aggregation
networks for fuzzy logic interface. IEEE Tkansactions on Neural Networks,
3(5):761-769, 1992.

[KL79] A. Kandle and S. C. Lee. Fuzzy Switching and Automata: Theory and Ap-
plications. Crane, Russak & Company, New York, 1979.

[KNF92] R. Krishnapuram, 0. Nasraoui, and H. Frigui. The fuzzy c spherical shells
algorithm. IEEE Transactions on Neural Networks, 3(5):663-671, Sep. 1992.

[KO961 J. M. Keller and J. Osborn. Training the fuzzy integral. Information Science,
(15):l-24, 1996.

[Koh89] T. Kohonen. Self Organization and Associative Memory, 3rd edition.
Springer Verlag, Berlin, .Germany, 1989.

[KohSO] T . Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464-
1480, September 1990.

[Kos93] B. Kosko. Fuzzy Thinking. Harper Collins, Glasgow, UK, 1993.
[Koz92] J. R. Koza. Genetic Programming: On the Programming of Computers b y

Means of Natural Selection. MIT, Press, Cambridge, Massachusetts, 1992.

[K&88] J. M. Keller and H. Qui. Fuzzy set methods in pattern recognition. In
Kitller, editor, Proceedings of Fourth International Conference on Pattern
Recognition, Cambridge 28-30 March. Springer Verlag, 1988.

[KR8 91 D. Khemani and R. S. Ramakrishna. Bridge: A benchmark for knowledge
based planning. The Journal for the Integrated Study of Artificial Intelli-
gence, Cognitive Science and Applied Epistemology (CC-AI), 6(2/3): 137-151,
1989.

[KT921 J . M. Keller and H. Tahani. Implementation of conjunctive and disjunctive
fuzzy logic rules with neural networks. International Journal of Approzimate
Reasoning, (6):221-240, 1992.

[Kun93] S. Y. Kung. Digital Neural Networks. Prentice Hall, Englewood Cliffs, New
Jersey, 1993.

[KY 951 G. S. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic - Theory and Applica-
tions. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[LD95] S. Loncaric and P. Dhawan. Near-optimal mst-based shape description using
genetic algorithm. Pattern Recognition, 28(4):571-579, 1995.

[Nat 9 11

[Nee961

B. L. Lu and M. Ito. Task decomposition and module combination based on
class relations: A modular neural network for pattern classification. Techni-
cal Report BMC TR-98-1, Bio-Mimetic Control Research Center, The Insti-
tute of Physical and Chemical Research (RIKEN), 1998.

Y. Liu. Unbiased estimate of generalization error and model selection in
neural network. Neural Networks, 8(2):215-219, 1995.

C. T. Lin and Y. C. Lu. A neural fuzzy system with linguistic teaching
signals. IEEE Dansactions on Fuzzy Systems, 3(2): 169-189, May 1995.

C. T. Lin and C. S. G. Lee. Neural Fuzzy Systems. Prentice Hall, Englewood
Cliffs, New Jersey, 1996.

G. F. Luger and W. A. Stubblefield. Artificial Intelligence. Addison-Wesley,
Reading MA, 1995.

M. Mandischer. Representation and evolution of neural networks. In Pro-
ceedings of the International Conference in Innsbruck (Austria), pages 643-
649, 1993.
M. T . Musavi, K. H. Chan, D. M. Hummels, and K. Kalantri. On the
generalization ability of neural network classifiers. IEEE 7kansactions on
Pattern Analysis and Machine Intelligence, 16(6), June 1994.

Z. Michalewicz. Genetic Algorithm + Data Structure. Springer Verlag, New
York, 1992.

M. Mozer and P. Smolensky. Skeletonization: A technique for trimming the
fat from a network via relevance assessment. In D. Touretzky, editor, Ad-
vances in Neural Information Processing Systems 1. San Mateo, CA: Morgan
Kauffman, New York, 1989.

T. Murofushi and M. Sugeno. An interpretation of fuzzy measure and the
Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets
and Systems, 29:201-227, June 1989.

G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks and
genetic algorithms. In J. D. Schaffer, editor, Proceedings of the Third Inter-
national Conference on Genetic Algorithms and their Applications. Morgan
Kaufmann, San Mateo, CA, 1989.
N. Murata, S. Yoshizawa, and S. Amari. Network information criterion - de-
termining the number of hidden units for an artificial neural network model.
IEEE 7kansactions on Neural Networh, 5 (6) :865-872, November 1994.

B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kauf-
mann, San Mateo, California, 1991.

A. Neeharika. Generalization Capability of Feedforward Neural Networks
for Pat tern Recognition Tasks. MS Thesis, Indian Institute of Technology,
Madras, Department of Computer Science and Engineering, August, 1996.

K. Nozaki, H. Ishibuchi, and H. Tanaka. Adaptive fuzzy rule-based classifi-
cation system. IEEE ~;ansactions on Fuzzy systems, 4(3):238-250, August
1996.
M. Lozano 0 . Cordon, F. Herrare. On the combination of fuzzy logic and
evolutionary computation: A short review and bibliography: 1989- 1995. In

W. Pedrycz, editor, Fuzzy Evolutiona y Computation, pages 57-77. Kluwer
Academic Press, 1997.

[Pal921 S. K. Pal. Fuzzy set theoretic measures for automatic feature evaluation: 11.
Information Sciences, 65:165-179, July-October 1992.

[Pa0891 Y. H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-
Wesley, Reading MA, 1989.

[Paw821 Z. Pawlak. Rough sets. International Journal of Computer and Information
Science, 11:341-356, 1982.

[Paw911 Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data.
Kluwer, Dordrecht, 1991.

[Paw941 Z. Pawlak. Vagueness and uncertainity: A rough set perspective. Technical
Report ICS Research Report 19/94, Institute of Computer Science, Warsaw
University of Technology, Warsaw, Poland, March 1994.

[Paw951 Z. Pawlak. Rough sets present state and future prospects. Technical Re-
port ICS Research Report 32/94, Institute of Computer Science, Warsaw
University of Technology, Warsaw, Poland, 1995.

[PB94] N. R. Pal and J . C. Bezdek. Measuring fuzzy entropy. IEEE Transactions
on fizzy Systems, 2(2):107-118, May 1994.

[PB95] N. R. Pal and J. C. Bezdek. On cluster validity for the fuzzy C-means model.
IEEE Pansactions on Fuzzy Systems, 3(3):330-379, August 1995.

IPBSZ951 Z. Pawlak, J. G. Busse, R. Slowinsky, and W. Ziarko. Rough sets. Commu-
nications of the ACM, 38(11):89-95, November 1995.

[PC861 S. K. Pal and B. Chakraborty. Fuzzy set theoretic measure for automatic
feature evaluation. IEEE Transactions on System, Man and Cybernetics,
16(5):754-760, September/October 1986.

[PedSO] W. Pedrycz. Fuzzy sets in pattern recognition: Methodology and methods.
Pattern Recognition, 23(1/2):121-146, 1990.

[Ped92] W. Pedrycz. Fuzzy neural networks with reference neurons as pattern clas-
sifiers. IEEE Transactions on Neural Networks, 3(5):770-775, September
1992.

[PFF95] W. Porto, D. B. Fogel, and L. J . Fogel. Alternative neural network training
methods. IEEE Expert, pages 16-22, June 1995.

[PIL96] Y. H. Pao, B. Igelnik, and S. R. LeClair. An approach for neural-net com-
puting with two-objective functions. In Proceedings of IEEE International
Conference on Neural Networks (Washington D.C.), pages 181-186, June
1996.

[PK96] G. Purushothaman and N. B. Karayiannis. Quantum neural networks
(QNNs) : Inherently fuzzy feedforward neural networks. In Proceedings of
IEEE Conference on Neural Networks (Washington D. C.), pages 1085-1090,
June 1996.

[I'M861 S. K. Pal and D. Dutta Majumder. Fuzzy Mathematical Approach to Pattern
Recognition. Wiley (Halsted Press), New York, 1986.

[PM92] S. K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets and classification.
IEEE Pansactions on Neural Networks, 3(5):683-697, September 1992.

[PP92] N. R. Pal and S. K. Pal. Higher order fuzzy entropy and hybrid entropy of
a set. Information Sciences, 61 (3):211-231, 1992.

[RH W86]

[RY 951

[RY96]

[RY 971

S. K. Pal and N. R. Pal. Soft computing: Goals, tools and feasibility. Journal
of IETE, 42(5):195-204, July-October 1996.

N. R. Pal, K. Pal, and J . C. Bezdek. A mixed c-means clustering model. In
Proceedings of IEEE International Conference on Fuzzy Systems (Barcelona,
Spain), pages 11-21, July 1997.

W. Pedrycz and A. F. Rocha. Fuzzy-set based models of neurons and
knowledgebased networks. IEEE Transactions on Fuzzy Systems, 1(4):254-
266, November 1993.

Z. Pawlak, S. K. M. Wong, and W. Ziarko. Rough sets: Probabilistic
verses deterministic approach. International Journal of Man-Machine Stud-
ies, 29:81-95, 1988.

R. Reed. Pruning algorithms - A survey. IEEE Transactions on Neural
Networks, 4:740-747, September 1993.
J. M. Redners and S. P. Flasse. Hybrid methods using genetic algorithms for
global optimization. IEEE fiansactions on System, Man and Cybernetics,
26(2) :243-258, 1996.

D. E. Rumelhart, G. E. Hinton, and R. J . Williams. Learning internal repre-
sentations by error propagation. In D. E. Rumelhart and McClelland, editors,
Parallel and Distributed Processing. MIT Press, Cambridge, MA, 1986.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press, Cambridge, 1996.

P. P. Raghu, R. Poongodi, and B. Yegnanarayana. Unsupervised texture
classification using vector quantization and deterministic relaxation neural
network. IEEE fiansactions on Image Processing, 6 (10) : 1376-1388, October
1997.
C. Rodriguez, S. Rementeria, J. I. Martin, A. Lafuente, J . Mugerza, and
J . Perez. A modular neural network approach to fault diagnosis. IEEE
Transactions on Neural Networks, 7(2):326-340, March 1996.

P. P. Raghu and B. Yegnanarayana. A combined neural network approach
for texture classification. Neural Networks, 8(6):975-987, December 1995.

P. P. Raghu and B. Yegnanarayana. Segmentation of Gabor filtered tex-
tures using deterministic relaxation. IEEE fiansactions on Image Process-
ing, 5(12), December 1996.

P. P. Raghu and B. Yegnanarayana. Multispectral image classification using
Gabor filters and stochastic relaxation neural network. Neural Networks,
10(3):561-572, December 1997.

P. P. Raghu and B. Yegnanarayana. Supervised texture classification us-
ing a probabilistic neural network and constrain satisfaction model. IEEE
Transactions on Neural Networks, 9(3):516-522, May 1998.

M. Scherf and W. Brauer. Feature selection by means of feature weight-
ing approach. Technical Report FKI-221-97, Forschungsberichte Kunstliche
Intelligenz, Institut fur Informatik, Technische Universi tat Munchen, 1997.

H. P. Schwefel. Numerical Optimization of Computer Models. John Wiley,
Chichester, 1981.

N. Saravanan and D. B. Fogel. Evolving neural control systems. IEEE
Expert, pages 23-27, June 1995.

[Sha76] G. Shafer. A Mathematical Theo y of Evidence. Princeton University Press,
Princeton, 1976.

[Sug741

[Sus92]

[SYI

[SY 961

[SY 98a]

[SY 98 b]

[SY 98e]

R. Slowinsky. Intelligent Decision Support. Handbook of Applications and
Advances of the Rough Set The0 y. Kluwer Academic Publishers, Dordrecht,
1992.
A. Sankar and R. J. Mammone. Growing and pruning neural tree networks.
IEEE Tkansactions on Neural Networks, 42(3):291-299, March 1993.

M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mu-
tation in genetic algorithm. IEEE Tkansactions on System, Man and Cyber-
netics, 24(4):656-667, 1994.

D. F. Specht. Probabilistic neural networks. Neural Networks, 3:109-118,
1990.
S. 2. Selim and K. A. Sultan. A simulated annealing algorithm for the
clustering problem. Pattern Recognition, 24(10) :1003-1008, 1991.

R. Slowinsky and J. Stefanowski. Foundations of Computing and Decision
Sciences (eds.), 18(3-4), Fall 1993.

M. R. A. Sadzadi, S. Sheedvash, and F. 0 . Triljillo. Recursive dynamic
node creation in multilayer neural networks. IEEE Tkansactions on Neural
Networks, 4(2):242-256, 1993.

M. Sugeno. Theo y of fuzzy integrals and its applications. PhD thesis, Tokyo
Institute of Technology, 1974.

H. J. Sussmann. Uniqueness of the weights of minimal feedfonvard nets with
given input-output map. Neural Networks, 5:589-593, 1992.

M. Sarkar and B. Yegnanarayana. Application of fuzzy integral in modular
networks for contract bridge bidding. Accepted in Fuzzy Sets and Systems.
C. C. Sekhar and B. Yegnanarayana. Recognition of stopconsonant-vowel
(svc) segments in continuous speech using neural network models. Journal
of Institution of Electronics and Telecommunication Engineers (IETE), 42(4
& 5):269-280, July-October 1996.

M. Sarkar and B. Yegnanarayana. Fuzzy-rough membership functions. Ac-
cepted in IEEE International Conference on Systems, Man and Cybernetics,
Sun Diego, California, USA, October 11-14 1998.
M. Sarkar and B. Yegnanarayana. Fuzzy-rough neural networks for vowel
classification. Accepted in IEEE International Conference on Systems, Man
and Cybernetics, Sun Diego, California, USA, October 11-14 1998.
M. Sarkar and B. Yegnanarayana. A review on merging some recent tech-
niques with artificial neural networks. Accepted in IEEE International Con-
ference on Systems, Man and Cybernetics, Sun Diego, California, USA, Oc-
tober 11-14 1998.
M. Sarkar and B. Yegnanarayana. Rough-fuzzy membership functions. In
Proceedings of IEEE International Conference on Fuzzy Systems (Anchorage,
Alaska, USA), pages 796-801, May 4-9 1998.

C. C. Sekhar and B. Yegnanarayana. Modular networks and constraint sat-
isfaction model for recognition of stop consonant-vowel (SCV) utterances. In
Proceedings of IEEE International Conference on Neural Networks (Anchor-
age, Alaska, USA), pages 1206-1211, May 4-9 1998.

[TG74] J . Tau and R. Gonzalez. Pattern Recognition Principles. Addison Wesley,
Reading, MA, 1974.

[TI921 H. Tanaka and H. Ishibuchi. Fuzzy expert system based on rough sets and its
application to medical diagnosis. International Journal of General Systems,
21:83-97, 1992.

[TIS92] H. Tanaka, H. Ishibuchi, and T. Shigenaga. Fuzzy inference system based on
rough sets and its application to medical diagnosis. In R. Slowinski, editor,
Intelligent Decision Support. Handbook of Applications and Advances of the
Rough Set Theory. Kluwer Academic Publishers, Dordrecht, 1992.

[TK90] H. Tahani and J . K. Keller. Information fusion in computer vision using fuzzy
integral. IEEE Tkansactions on System, Man and Cybernetics, 20(3):733-
741, May/June 1990.

[TM87] T . Toffoli and N. Margolus. Cellular Automata Machines: A New Environ-
ment for Modeling. MIT Press, Cambridge, MA, 1987.

[TMBC92] S. Thiria, C. Mejia, F. Badran, and M. Crepon. Multimodular architec-
ture for remote sensin operations. In J. E. Moddy, J. Hanson, and R. P.
Lippmann, editors, A f vances in Neural Information Processing Systems-4.
Morgan Kaufmann, 1992.

[Vid97] M. Vidyasagar. A Theo ry of Learning and Generalization: With Applications
to Neural Networks and Control Systems. Springer Verlag, New York, 1997.

[Vig70] S. S. Viglione. Application of pattern recognition technology. In J. M.
Mendel and K. S. Fu, editors, Adaptive, Learning and Pattern Recognition
Systems. Academic Press, New York, 1970.

[WAM97] D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical eval-
uation of feature weighting methods for a class of lazy learning algorithm.
Artificial Intelligence Review, 1997.

[WC96] B. A. Whitehead and T . D. Choate. Cooperative-competitive genetic evo-
lution of radial basis function centers and widths for time series prediction.
IEEE Tkansactions on Neural Networks, 7(4):869-880, July 1996.

[Whig61 B. A. Whitehead. Genetic evolution of radial basis function coverage using
orthogonal niches. IEEE Tkansactions on Neural Networks, 7(6):1525-1528,
November 1996.

[WK92] Z. Wang and G. Klir. Fuzzy Measure Theory. Plenum Press, New York,
1992.

[WM97] L. X. Wang and J. M. Mendel. Fuzzy basis functions, universal approxima-
tions, and orthogonal least square learning. IEEE Tkansactions on Neural
Networks, 3(5):807-814, September 1997.

[Wro95] J. Wroblewski. Finding minimal reducts using genetic algorithm (extended
version). In Second Annual Joint Conference on Information Sciences (North
Carolina), pages 186-189, September 1995.

[WW97] J . Wang and 2. Wang. Using neural networks to determine sugeno measures
by statistics. Neural Networks, 10(1):183-195, 1997.

[WZ87] S. K. M. Wong and W. Ziarko. Comparison of the probabilistic approximate
classification and fuzzy set model. Fuzzy Sets and Systems, 21:357-362, 1987.

[XB91] X. L. Xie and G. Beni. A validity measure for fuzzy clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(8):841-847,
August 1991.

R. R. Yager. Element selection from a fuzzy subset using the fuzzy integral.
IEEE l+ansactions on System, Man and Cybernetics, pages 467-477, 1993.
X. Yao. Evolutionary artificial neural networks. International Journal of
Neural Networks, 4(3):203-222, 1993.

B. Yegnanarayana. Artificial Neural Networks. Prentice Hall, New Delhi,
India, 1998.
M. Yoneda and S. F'ukami. Interactive determination of a utility function
represented as a fuzzy integral. Information Sciences, 71:43-64, 1993.

B . Yuan, G. J . Klir, and J. F. Swan-Stone. Evolutionary fuzzy C-means
clustering algorithm. In Proceedings of First IEEE Conference on f izzy
Systems (Yokohama), pages 2221-2226, March 1995.

X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural
networks. IEEE l+ansactions on Neural Networks, 8 (3) , May 1997.

X. Yao and Y. Liu. Making use of population information in evolutionary
artificial neural networks. IEEE Transactions on System, Man and Cyber-
netics, 28(B2), April 1998.

L. A. Zadeh. Fuzzy sets. Information and Control, pages 338-353, 1965.

L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. f izzy Sets and
Systems, 1:3-28, 1978.

PUBLICATIONS

PAPERS IN JOURNALS

1. M. Sarkar and B. Yegnanarayana,"Feedforward neural network classifiers: Back-
propagation learning algorithm with fuzzy objective functions", accepted in IEEE

Tkansactions on Systems, Man and Cybernetics.

2. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy membership functions in classifi-

cation", accepted in f izzy Sets and Systems.

3. M. Sarkar, B. Yegnanarayana and D. Khemani, "Backpropagation learning algo-

rithms for classification with fuzzy mean square error", Pat tern Recognition Letters,

vol. 19/1, pp 43-51, 1998.

4. M. ~arkar-; B. Yegnanarayana and D. Khemani, "A clustering algorithm using

an evolutionary programming-based approach", Pattern Recognition Letters, vol.

18/10, pp. 975-986, 1997.

5. B. Yegnanarayana, D. Khemani and M. Sarkar, "Neural networks for contract

bridge bidding", Sadhana, vol. 21, no. 3, pp. 395413, June 1996.

PAPERS COMMUNICATED TO JOURNALS

1. M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough membership functions in classifi-

cation", communicated to IEEE Transactions on f izzy Systems.

2. M. Sarkar and B. Yegnanarayana, "Feedforward neural networks configuration us-

ing evolutionary programming", communicated to Pattern Recognition.

3. M. Sarkar and B. Yegnanarayana, "Evolutionary programming-based hybrid clus-

tering technique", communicated to IEEE fiansactions on Systems, Man and Cy-
bernetics.

4. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy set-based approach for selecting

input features in classification", communicated to IEEE Transactions on Neural
Networks.

PAPER IN EDITED VOLUME

M. Sarkar and B. Yegnanarayana, "Application of fuzzy-rough sets in fuzzy integral-

based modular neural networks", Rough-Fuzzy Hybridization: A New Trend i n Decision-
Making, ed. S. K. Pal and A. Skowron, Springer Verlag (in press).

PAPERS I N INTERNATIONAL CONFERENCES

1. M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough membership functions", accepted

in IEEE International Conference on Systems, Man and Cybernetics, San Diego,

California, USA, October 11-14, 1998.

2. M. Sarkar and B. Yegnanarayana, "A review on merging some recent techniques

with artificial neural networks", accepted in IEEE International Conference on
Systems, Man and Cybernetics, an Diego, California, USA, October 11-14, 1998.

3. M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough neural networks for vowel classi-
fication", accepted in IEEE International Conference on Systems, Man and Cyber-

netics, San Diego, California, USA, October 11-14, 1998.

4. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy membership functions", in Pro-
ceedings olf IEEE International Conference on Fuzzy Systems, Anchorage, USA, pp.

796-801, May 3-9, 1998.

5 . M. Sarkar and B. Yegnanarayana, "Application of fuzzy-rough sets in modular neu-
ral networks", Proceedings of IEEE International Conference on Neural Networks,

Anchorage, USA, pp. 741-746, May 3-9, 1998.

6. M. Sarkar and B. Yegnanarayana, "Incorporation of fuzzy classification properties
into backpropagation learning algorithm", in Proceedings of IEEE International

Conference on Fuzzy Systems, Barcelona, Spain, vol. 3, pp. 1701-1706, July 1-5,
1997.

7. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy set theoretic approach to evaluate
the importance of input features in classification", in Proceedings of IEEE Interna-
tional Conference on Neural Networks, Houston, USA, vol. 3, pp. 1590-1595, June
9-12, 1997.

8. M. Sarkar and B. Yegnanarayana, "Feedforward neural networks configuration us-

ing evolutionary programming", in Proceedings of IEEE International Conference
on Neural Networks, Houston, USA, vol. 1, pp. 438-443, June 9-12, 1997.

9. M. Sarkar and B. Yegnanarayana, "An evolutionary programming-based probabilis-
tic neural network construction technique", in Proceedings of IEEE International
Conference on Neural Networks, Houston, USA, vol. 1, pp. 456-461, June 9-12,

1997.

10. M. Sarkar, B. Yegnanarayana and D. Khemani, "Feedforward neural networks and

fuzzy classification", in Proceedings of Fourth International Conference on Ad-
vanced Computing, Bangalore, India, pp. 65-72, December 16-18, 1996.

11. M. Sarkar and B. Yegnanarayana, "A clustering algorithm using evolutionary pro-

gramming", in Proceedings of IEEE International Conference on Neural Networks,
Washington, USA, vol. 2, pp. 1162-1167, June 3-6, 1996.

12. M. Sarkar, "Evolutionary programming-based fuzzy clustering", in Proceedings of

Fifth Annual Conference on Evolutionary Programming, MIT Press, Cambridge,

Massachusetts, San Diago, USA, pp. 247-256, 1996.

13. B. Yegnanarayana, D. Khemani and M. Sarkar, "Hierarchical neural networks -
An application in contract bridge", in Proceedings of International Conference on

Automation, Indore, India, pp. 9-12, December 12-14, 1995.

PAPERS IN NATIONAL CONFERENCES

1. M. Sarkar, Evolutionary programming-based fuzzy clustering and its applica-

tions", in Proceedings of the 84th Indian Science Congress-1997, Delhi University,

New Delhi, India, January 3-8, 1997.

2. M. Sarkar, B. Yegnanarayana and D. Khemani, "Application of neural networks in

contract bridge bidding", in Proceedings of National Conference on Neural Networks
and Fuzzy Systems, Anna University, Madras, India, pp. 144151, March 16-18,

1995.

