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ABSTRACT

The objective of this study is to demonstrate the significance of incorporating a prior:
knowledge o the problem in a pattern classification task. The issues of identification,
representation and application of knowledge in the form o fuzzy, rough and probabilistic
uncertainities are addressed to develop a new pattern classification methodology. This
thesis demonstrates the significance of modular classification approach to deal with un-
certainties effectively in pattern classification tasks. The performance o the proposed
approach isillustrated for the opening bid problem in the game of Contract Bridge.

Building classifiersinvolves capturing the similarity among the training patterns and
assigning labelsfor thegroup of similar patterns. Capturing thesimilarity among patterns
becomes complicated when a training pattern belongs to more than one class, i.e., the
output classes are overlapping. Thus fuzzy uncertainty appears in form of similarity and
overlap. Due to the lack of details, two input patterns may appear similar whereas the
class labels may not be same. The one-to-many relationship between the inputs and
outputs results in rough uncertainty. If the occurrence d the training patterns in the
neighborhood region is small, then due to probabilistic uncertainty assigning the class
labels is difficult. Thus building classifiers essentially involves dealing with fuzzy, rough
and probabilistic uncertainties. In the opening bid problem of Contract Bridge game,
the input is a hand pattern and the output is the class label for the input hand. In
this problem, obtaining a particular hand pattern is probabilistic. The output classes are
fuzzy. The absence of unique class labels for input hands creates rough uncertainty.

In this thesis artificial neural networks are employed as classifiers. Experimentally it
was observed that it isdifficult to deal with theissuesin uncertainties for the opening bid
problem. Hence, modular neura networks are explored. Modular approach partitions the
classification task into three subclassification tasks, solves each subclassification task, and
eventually integrates the results to obtain the final classification result. In other words,
partitioning of the classification task is carried out such that each subproblem can be
solved in a module by exploiting thelocal uncertainities and the results of all the modules
can be combined by exploiting the global uncertainities.

The performance of each module can beimproved by givingimportance to the features
based on their class discrimination capability for the output classes present in the module.
Since both roughness and fuzziness are present and the input features are discrete, the
uncertainity in assigning class labels for a given pattern based on each feature is treated
as rough-fuzzy uncertainty. The more important a feature is for classification, the lessis
the rough-fuzzy uncertainty associated with that feature. A rough-fuzzy entropic measure
is proposed to quantify the importance o each feature. Using the importance measure,
the input hands are biased to generate modified feature vectors corresponding to each



module.

One approach of assigning class labelsfor the modified feature vectorsis through direct
classification. It involves partitioning the modified feature space of a module into severa
fuzzy output classes. Feedforward neural networks are used to obtain the class labels.
Backpropagation learning algorithm with fuzzy objective functions are used to train the
networks. The networks are configured optimally using evolutionary programming. After
training if a new input pattern is presented to the network, then the network yields the
output as the fuzzy membership value of the input to the output classes.

An alternative approach to assign the class labels on the modified feature vector is
clustering. In this approach, modified feature vectors are clustered, and each cluster
is labelled with class labels. Since the clusters are fuzzy, the modified feature vectors
are clustered using an evolutionary programming-based fuzzy clustering algorithm. The
labelling of the clusters is complicated because two patterns from the same cluster may
belong to entirely different classes. The labelling o the clusters is done using a fuzzy-
rough neural network. It captures the fuzzy uncertainty present in the clusters and rough
uncertainty between the clusters and the classlabels. If anew input pattern is presented to
the network after training, it yields the output as aclassconfidence value in terms of fuzzy-
rough membership value corresponding to the input pattern. In the opening bid problem,
experimentally it was decided to use feedforward neural networks with backpropagation
algorithm to construct the module for thefirst level bids and fuzzy-rough neural networks
to construct the remaining two modules for the second and third level bids.

When the original classification task isdistributed among modules, the modules have
been trained and configured to deal with the uncertainities locally. But the final class
labels, indicated by the outputs of the modules, may be conflicting. To arrive at the
classification result from the conflicting outputs, Sugeno’s fuzzy integral is used. The
outputs of the modules are treated as evidence, and they are fused in a nonlinear fashion
based on their importance. The importance of each evidence is determined using the
fuzzy-roughness associated with the evidence. The final class label of an input is the
output class corresponding to the maximum vaue o the fuzzy integral.

The main contribution of the thesisare: (1) Demonstrating the significance of uncer-
tainty in pattern classification problems, (2) providing a review on issues in uncertainty-
driven pattern classification tasks, (3) application of modular neural networks to deal with
fuzzy, rough and probabilistic uncertainties, (4) use of rough-fuzzy sets to determine the
importance of each featurefor classification, (5) development o backpropagation learning
algorithms based on various fuzzy objective functions, (6) proposing rough-fuzzy mem-
bership functions and fuzzy-rough membership functions to construct fuzzy-rough neura
networks, and (7) use o fuzzy-rough sets in fuzzy integral to measure the importance of
each module.

Keywords: Classification, uncertainty, modular neural networks, feedforward neural net-
works, fuzzy sets, rough sets, evolutionary programming, clustering, fuzzy-rough mem-
bership functions, fuzzy-rough neural networks and fuzzy integral.
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Chapter 1

INTRODUCTION

Human beings apply their classification ability to perceive patterns in natural scenes,
stock market analysis, mental processes and in many other fields. It would be possible to
build a new breed of intelligent machines if the human classification mechanism can be
successfully emulated on machines. However, this goal appears to be difficult. One major
reason behind it is the presence of uncertainties at different stages of the classification
process. Presence of uncertainties may affect the classification process. The problem is
made simpler by ignoring the uncertainties at every stage o the pattern classification
process, but it results in an inevitable loss of information. The objective of this study is
to demonstrate that incorporation of the knowledge in form of the uncertainties indeed
enables us to design better pattern classifiers. In this thesis, the role fuzzy, rough and
probabilistic uncertainties in a given classification task are discussed. This work illus-
trates the use of modular classification approach to handle the uncertainties efficiently
in complex pattern classification tasks. The modular approach breaks the classification
task into several subclassification tasks, solves each subclassification task, and eventually
integrates the subclassification results to obtain the final classification result. In other
words, partitioning of the classification task is carried out such that each subproblem
can be solved in a module by exploiting the local uncertainities and the results of all the
modules can be combined by exploiting the global uncertainities. The performance of the
proposed approach isillustrated for the opening bid problem in Contract Bridge game.

1.1 Background: Problem Solving with Uncertainty

Importance of pattern recognition: Intelligence implies the ability to think, reason,
learn and memorise. It is generally related to the human cognitive process. The fact
that the human cognition process is marvelloudly efficient and effective poses a question
to the scientists: Can some of the functions and attributes of the human reasoning be
emulated on a machine? The reasoning can be for the tasks like classification, grouping,



and prediction. The issues involved in these reasoning tasks are discussed in the fidd of
pattern recognition.

Exploitation of uncertainties may improve the pattern recognition process:
Many pattern recognition tasks in real life involve uncertainties at various stages. For
instance, the input data to a pattern recognition system may have uncertainties due to
randomness in the system generating the data or due to errors in the measurement o the
data. Uncertainties may also arise in the selection and extraction of the features from the
input data. The output of a recognition task may be vague too. Finaly, the knowledge
captured in the form of cause and effect relation is generally soft because the relationship
between the input features and the output can be imprecise or only partially correct.
However, human reasoning processis able to deal with these uncertainities effortlessly to
obtain satisfactory solutions to many pattern recognition problems. Moreover, the deci-
sions based on the soft relations or constraints seem to be robust against small variations
in the parameters or features at every stage. In fact, these variationsor uncertainties may
be helping the human beings with updating the acquired knowledge, and thus, helping in
the process of learning.

Unsolved aspects and objective: For solving pattern recognition problems on a
machine, normally crisp quantities are derived from the uncertain data or information
available at every stage. The problem itself is solved using an algorithm consisting of
unambigious sequence of processing steps. It is likely that the performance of a pat-
tern recognition system may improve significantly in terms of accuracy, robustness and
learning ability, if the system is designed to deal with ambiguities at different stages of
processing the information. This requires identification of the sources of uncertainties
and capturing the uncertainties in a suitable form for incorporating them for solving the
pattern recognition problem on a machine. The objective d thisstudy is to demonstrate
the significance of incorporating the knowledge of the uncertainties for some real world
pattern recognition problems.

1.2 Issues in Pattern Classification

Patter n classification is chosen for the study: There are several pattern recognition
tasks, which are relevant for this study, such as pattern classification, pattern storage,
pattern clustering, associative memory recall and pattern mapping. This thesis considers
pattern classification tasks for discussion throughout the study. The task of pattern clas-



sification isdefined as a search for structuresin a pattern set, and subsequent labelling of
the structures into categories such that the degreed association is high among the struc-
tures of the same category and low between the structures of different categories [Bez81].
Pattern classification finds extensive applications in script recognition, face recognition,
speech recognition, speaker recognition, ECG analysis, radar and sonar signal detection,
weather forecasting, data mining, etc. [TG74] [Fuk89] [BP92).

Presence of uncertainty in pattern classification: In a pattern classification task,
the input datais generated by asource, and the datais measured by a set of sensors. The
sensed datais used to extract some relevant features, which in turn are used to associate
class labels corresponding to the problem. To implement the pattern classification task
on a machine, one needs to characterize the associated uncertainties at different stages.
Some d the uncertainties may be identified as resolution, probabilistic,fuzzy and rough
uncertainties. Resolution uncertainty is due to sensors, probabilistic uncertainty is due to
the randomnessin physical system generating thedata. Fuzzy uncertainty [KY95] [PM86]
IS due to the vagueness in the human interpretation of the data at the feature leve,
class labels or may be at some intermediate levels. Rough uncertainty [Paw91] is due to
incomplete information or knowledge at various stages.

Example: Let us consider an example of a pattern classification task to illustrate these
uncertainties. Suppose an artificial vison system analyzesa digital image of adice. Based
on the evidence gathered, the system might suggest that the top face of the diceis either
a 5 or 6, but cannot.be more specific. This kind of uncertainty, known as resolution
uncertainity, arises from the limitations (for example, sensor resolution) of the evidence
gathering system. Again, randomnessis involved when the outcome d a diceis predicted
before the dice is cast. This uncertainty, which arises due to the chance or randomness,
is called probabilistic uncertainty. On the other hand, if one is asked to interpret the top
face of the dice as, say high, the uncertainty appears due to vagueness. This is called
fuzzy uncertainty. In this example, rough uncertainty is absent.

Issues: The issues involved in modeling human classification mechanism on a machine
are

(&) Identification of the uncertainties involved in the chosen classification task.

(b) Representation of the problem with uncertainties on a machine. It involves repre-
sentation of the input, output and the knowledge of the problem at variousstages.

(c) Development of a methodology to exploit the uncertainties for solving the classifi-



cation problem.

1.3 Scope: Study of Uncertaintiesin Opening Bid Problem in Bridge Game

Contract Bridge Problem is chosen to illustrate the efficacy of the proposed
approach: In order to demonstrate the significance of the uncertainties for solving a
pattern classification problem on a machine, the "opening bid" problem in the game of
Contract Bridge has been chosen. Contract Bridge [Khe88] is a card game played in two
stages (for more details see the Appendix A). The aim is to maximize the points gained,
which depend directly upon the number of tricks a side can win. In the first stage, both
the players of each side make bids. Finally, through a bid the player stakes a claim for
the denoted number of tricks. In practice the first few bids are used by the players to
convey information about their hands. In the second stage, the cards are played out to
see if the highest bidder can fulfill the contract.

In Contract Bridge a player makes a bid to convey information about the thirteen
cardsin hishand. The bid made by thefirst player in thegameiscalled the 'opening bid'.
He makes one of the permitted bids based only on the patterns of the cards in his hand,
as he has no a priori knowledge of the cards in the hands of the other three players. In
the opening bid problem, the input is thedistribution of the thirteen cardsin the player's
hand, and the output is the legal bid the player makes. It isassumed that the bid is to
be made according to standard conventions, so that no artificial conventions are involved.
Theaim is to capture the human reasoning process in the opening bid problem based on
the real input-output pairs of the data collected from players of the Bridge game.

Reason for choosing Contract Bridge Game: Onereason for choosing this particular
problem for illustration is that it is easy to collect the data. Moreover, the input is the
crisp data of the thirteen cards pattern, and hence, there is no resolution uncertainty in
the problem. In addition, there is no noise in the input representation. In many pattern
classification problems, preliminary processing of the data (e.g., speech signal) is essential
to extract parameters or features. This in turn may result in loss of information at the
input stage itself. Expert behavior in games, on the other hand, does not depend on any
o these sensory interactions. Thisis particularly important if one is to generate faithful
reproductions of human cognition. Thisisrelevant if the objective is not only to attempt
a task typical of humans, but to also try and mimic the human way of doing it. When
the goal is to emulate human expertise, one has to be careful in selecting those areas that



can best be modeled without too many simplifying assumptions [KR89].

In spite of the simplicity in the representation, the opening bid problem is still very
complex. For example, all the hands are not equally likely, and hence, learning al the
hands equally well is not possible. This is true especially, since the hands corresponding
to the higher level bids are very rare. Therefore, one problem is how to learn the rare
hands along with the frequently available hands. In addition, for a given hand, the same
player may make a different bid at a different time, which illustrates the variability in
his reasoning process. This variability is present because the player changes his strategy
based on his experience, vulnerability, etc. Sinceit isimpossible to quantify the influence
o these subjective qualities, two hands may appear same or similar, although they are
not if the unaccounted features are also considered. Two hands with same or similar
patterns may be classified to two different classes. This implies the presence of rough
uncertainity in the bidding process. The output bid can be fuzzy. For example, the bid
can be neither completely one “Diamond” nor one "Spade”. In this thesis the following
issues are addressed:

1. How to represent the input hand pattern on a machine and how to interpret the
output bid.

2. How to develop methods to effectively model and classify the input hand pattern to
an output bid. In particular, how to take care of the rough, fuzzy and probabilistic
uncertainty while modeling the bidding system.

In Bridge game, hand patterns containing seven cards or longer suit constitute less
than 5% of the total possible number of hands. Therefore, to make the problem simpler,
the study is kept limited only up to third level bids. However, it must be noted that this
work is not intended to solve the bidding problem. Rather it illustrates the development
of a pattern classification methodology based on the uncertainties associated with the
given classification process.

Portability to other problems: The uncertainty-based pattern classification method-
ology may also be relevant for problemsin vision, speech and other decision making fields,
where a large part of the information islost in representing the problem on a machine.



1.4 Proposed Approach for Capturing the Reasoning Process in Opening Bid
Problem

The goal of this study is to develop a pattern classification technique based on uncer-
tainties at different stages to capture the human reasoning process. Initially, we survey
various existing techniques for pattern classification. We focus on the role of uncertainties
in these classification techniques. Then an attempt is made to build a feedforward neural
network [Yeg98] for the opening bid problem. Artificial neural network is chosen as a
tool because it offers various advantages like incremental learning, robustness, universal
approximation capability, etc. However, experimentally it has been found that a single
monolithic neural network model may not be suitable for the complete classification task.
Therefore, based on domain specific knowledge, the monolithic classifier is broken into
several modules such that equiprobable classes and overlapping classes are kept in the
same module. It aids, 1) to learn hands with less frequent patterns and highly frequent
patterns equally well, 2) to deal with fuzziness among the close classes locally, and 3) to
deal with roughness within each module locally. A post-processor treats the fuzzy and
rough uncertainities globally, and it combines the results from all the modules to yield
the final classification result.

Following the above track, the input representation has been fine tuned separately
for each module using the concept of rough-fuzzy sets [DP92]. Each module can be a
classifier that relies on the principle of direct classification or classification through clus-
tering [Bez81]. In the direct classification approach, the whole feature space is directly
analysed to delineate the output classes. Classification through clustering approach in-
volves initial clustering of a subset of patterns from the original feature space, and sub-
sequent partitioning of the whole feature space based on the clusters obtained. Following
the first approach, a feedforward neural network is used for each module. These networks
are trained by backpropagation algorithm with fuzzy objective functions. Thereafter, each
such network is configured using evolutionary programming [Fog95] technique. Following
the second approach, i.e., classification through clustering, the input data set isoptimally
classified using evolutionary programming-based fuzzy clustering technique. Next, using
these clusters a fuzzy-rough neural network is evolved to establish the input-output rela-
tionship. Thus, several modules are constructed either by the direct classification method
or by the clustering method. The evidencesupplied by these modules are aggregated by a
post-processor which is based on fuzzy integral. Finally, a modular network consisting of
feature analysers, subclassifier modules and a post-processor (Fig. 1.1) is obtained. The
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Fig. 1.1: A modular network with S different modules for the opening bid
problem. Initially, the input feature vector (x) is modified separately for
each module through a feature analyser (FA). The modified feature vector
yi, 1t =1{12,...,9) isfed to the module connected to the ith feature anal-
yser. Each module can be afeedforward neural network or afuzzy-rough neural
network. The outputs of al the modules, i.e., {&€,,&,,...,&,}, arefused by a
fuzzy integrator (FI) to obtain the final classification result.

flow of the ideas described in this thesisis depicted in Fig. 1.2.

1.5 Organization of the Thesis

The organization of the rest o the thesisis as follows:

Chapter 2 is devoted to review different classification stages involved in pattern clas-
sification. It also delineates different paradigms used for the classification stages.
Specifically, attention has been paid on the manipulation of the various uncertaini-
ties present in the classification process. In a complex pattern classification task,
modular approach is an attractive approach to handle the uncertainties efficiently.
Later part of this chapter reviews severa varieties of modular classifiers.

Chapter 3 explores the possibility of capturing the implicit relationship in bidding a
Bridge hand using an artificial neural network. Issues like the role of uncertaini-
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ties, input representation, possible architectures for the network are studied. It
was found experimentally that it is difficult to train a monolithic neural network
for the opening bid problem. This chapter suggests the use of a modular neural
network for attacking the bidding problem. The opening bid classification problem
is partitioned into three subclassification tasks, and one moduleis assigned for each
subclassification task.

Chapter 4 focuses on fine tuning the input representation for a module based on the
class discriminatory capability of the features for the output classes present in
the module. Since both roughness and fuzziness are present in the opening bid
problem, a rough-fuzzy entropic measure is proposed to quantify the rough-fuzzy
uncertainty associated with each feature. The rough-fuzzy entropy corresponding to
each feature isiteratively minimized to quantify the class discriminatory capability
of the feature. These quantified values are used to derive the modified feature
vectors for each module.

Chapter 5 describes one approach o capturing the relationship between the modified
feature vector and the output classes of a module through direct classification. It
involves partitioning the modified feature space o a module into several decision
regions or output classes. The boundary between any such two regionsisfuzzy. This
chapter employs feedforward neural networks to capture the relationship between
the modified feature vector (crisp) and the output classes (fuzzy) present in each
module. Backpropagation learning algorithm with fuzzy objective functions are
used to train the networks. In addition, evolutionary programminpbased technique
is applied to configure each network optimally.

Chapter 6 examines clustering-based approach to capture the input-output relation in
each module. In this approach clustering of the modified feature vectors isfollowed
by labelling of each cluster with a class label. This chapter proposes a technique
to construct a classifier module in presence of fuzzy and rough uncertainties. The
modified feature vectors are clustered using an evolutionary programming-based
fuzzy clustering algorithm. The relationship between a cluster and the output class
labels are estimated through thefuzzy-rough membership functions associated with
each input pattern. Using the fuzzy-rough membership functions, a fuzzy-rough
neural network is constructed to relate the input and output.

Chapter 7 combinestheinformation supplied by all the modules using afusion technique
based on Sugeno's fuzzy-integral. In the earlier chapters, the original classification
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task is distributed among small modules, and the modules have been trained and
configured to deal with the uncertainities locally. Here, the outputs of al the
modules are treated as evidence, and they are fused in a non-linear fashion based
on their importance. The importance of each evidence is determined using the
fuzzy-roughness associated with the evidence. The final class label of an input is
the output class corresponding to the maximum fuzzy integral value.

Chapter 8 concludes the thesis, by summarising the work and indicating the future
directions of using uncertainties in modular neural network classifiers.
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Chapter 2

MODELING PATTERN
CLASSIFICATION PROBLEMS

2.1 Introduction

In the last few years, there has been a large upswing in research activities in the prob-
lems of pattern classification [DH79] [Fuk89] [Bow84]. Although far away from human
classification ability, machine classification techniques attempt to mimic the human clas-
sification mechanism in several stages. In this chapter we discuss the functions performed
by these stages, the uncertainities pertaining to them, and the working principle of the
various techniques used for these stages. This discussionincludessome uncertainty driven
techniques like statistical, fuzzy and rough approaches. When the classification problem
is complex, one greedy approach to solve the problem is modular classification approach.
Following the principle of 'divide and conquer, modular approach breaks the classification
task into several subclassification tasks, solves each subclassification task, and eventually
integrates the subclassification results to obtain the final classification result. In other
words, partitioning of the classification task is carried out such that each subproblem can
be solved in a module by exploiting the local uncertainities, and the results of all the
modules can be combined by exploiting the global uncertainities. Later part of this chap-
ter summarises the architecture and working principle & some d the existing modular
classfiers.

Theorganization of the chapter is asfollows: In section 2.2 we describe how machines
are used to mimic human classification mechanism. It reviews several methods to perform
classification process on a machine. Section 2.3 analyses issues and architectures of mod-
ular classifiers. Section 2.4 attempts to frame the Contract Bridge opening bid problem
as a pattern classification problem.



2.2 A Review on Pattern Classification

A pattern is a description of an object [TG74]. A pattern can be a concrete item which
can be recognized by human sensory organs, like eyes and ears [TG74]. Image pattern,
speech pattern, hand pattern of a Bridge player, etc., are the examples of concrete items.
On the other hand, a pattern may be an abstract item, like a pattern of thought process,
which we can recognize with our sensors like eyes and ears closed [TG74]. The task
of pattern classification is defined as a search for the structures in a pattern set, and
subsequent labelling of the structures into categories such that the degree of association
Is high among the structures of the same category and low between the structures of
different categories [Bez81] [KY95]. In this chapter we address the pattern classification
problem based on the concrete patterns only.

In section 2.2.1 we describe how machines are used to mimic human classification
mechanism. Section 2.2.2 discusses several methods to represent the classification pro-
cess on a machine. It also describes the basic five stages involved in a machine-based
pattern classification technique. Section 2.2.3 analyses several aspects of the first stage,
i.e., feature extraction stage. Section 2.2.4 reviews a few methods used for the second
stage, i.e., how to interpret the structures present in the input data set. Section 2.2.5
discusses various current methodologiesto discover the structure present inside the data.
Issues involved in the last stage, i.e., generalization, are discussed in section 2.26. The
relationships among the topics discussed in this section are illustrated in Fig. 2.1.

221 How Human Classification Mechanism is Mimicked on Machines

Let us take a real life pattern classification example. Suppose, one is asked to determine
whether a particular person is a European or an Asian. He cannot do it unless he has
aready seen a set of European and Asian people, or someone has told him about the
difference explicitly. While observing a set o European or Asian people, he gathers
some experience about them. In other words, gathering experience means, based on
certain characteristics of these people, he extracts some common property from them.
For instance, he watches their height, eye color, etc., and based on that he realizes most
d the Europeans are tall and their eye colours are not black. The opposite is true for
the Asians. Now, he tries to find whether a new person is tall or his eye color is black,
and based on that he can determine that person's identity (assuming that the person can
come only from any one of those two classes). If he can decide the identity of most of
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persons he encounters, then heiscalled inteligent. It is because his ability to extract the
common property out of these two classes is good.

In order to mimic the above mentioned human classification mechanism on a ma-
chine, several instances (e.g., aset o Europeans and Asians) d the problem are collected.
Care should be taken to collect the sample data randomly from the whole population.
To represent these instances on a machine, typical properties, termed as features (e.g.,
height and eye color), are extracted from each instance. These features represent the
given problem in a higher dimensional feature space. Feature extraction is a difficult
task as less number of features may not be sufficient to represent the problem, whereas
too many features can affect the classfier system (thisphenomenon is known as curse o
dimensionality [Bis95]). In addition, we do not know how many features are sufficient, or
which featureis necessary (e.g., in the above examplecolor of each person's cloth need not
to be noted). The features form some structures in the feature space. The interpretation
of the structures depends on the pattern recognition task and situation. For instance, in
recognizing English characters, twenty six different class structures are present. On the
other hand, in distinguishing English characters from Arabic characters, only two struc-
tures are interpreted [Fu68]. Now, the task o pattern classfier is to search the structure.
This search becomes complicated because of the presence d uncertainties associated with
the structure. Thus, the whole pattern classification process involves manipulation of
the information supplied by the instances. The instances contain the information about
the process generating them, and the extracted features reflect this information. The
structures present inside the features represent the information in an organized manner
so that the relationship among the variablesin the classification process can be identified.
Finally, in the last step, a search process recognizes the information from the structure.
Now, if a new pattern isencountered, the machine detects the structure in which the input
pattern belongs, and based on the structure the pattern is classified. Therefore, once the
structure is found, the machine is capable o dealing with new situations to some extent.
The ability to deal with new situations can be evaluated by testing the ciassifier with
severa new examples, for which we know the answers for comparison. If the performance
o the pattern classifier with thisso called test datais good, then we say that the machine
has generalized well.

An important assumption in the pattern classification task (for humans as wdl as
machines) is that nature is by and large stable-what is known yesterday is true for today
and tomorrow. In other words, it means that to some extent today's experience is vaid
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tomorrow. This assumption is essential; otherwise, there would have been no meaning of
gathering experience through learning and using this experience further for generalization.

Realizing the pattern classification task by a machine becomes complicated due to
various uncertainties. A few of them are known, among them fewer we can model. Some
of them are

e Resolution uncertainty: Caused by inaccurate measurement in measuring in-
struments.

e Probabilistic uncertainty: Caused by randomness in physical systems.
e Fuzzy uncertainty: Caused by vaguenessin human reasoning.

e Rough uncertainty: Caused by our incomplete knowledgeabout the classification
system we are trying to model.

Although all the above four are uncertainties, they are basically different from each
other. The fuzzy uncertainity differs from the probabilistic uncertainty and resolution
uncertainty, because it deals with situations where set-boundaries are not sharply de-
fined. The probabilistic uncertainity and resolution uncertainity are not due to the am-
biguity about the set-boundaries; rather about the belongingness of elements or events
to crisp sets [PB94]. Specificaly, fuzziness deals with vagueness between the overlap-
ping sets [Bez94] [KY95], while probability concerns the likelihood of randomness of
the phenomenon. On the other hand, rough sets deal with coarse nonoverlapping con-
cepts [DP90] [DP92]. Both roughness and fuzziness do not depend on the occurrence
o the event; whereas probability does. Fuzziness liesin the subsets defined by the lin-
guistic values, like tall, big, whereas indiscernibility is a property of the referential itself,
as perceived by some observers, not of its subsets {DP92]. In fuzzy sets each granule of
knowledge can have only one membership value to a particular class. However, rough
sets assert that each granule may have different membership values to the same class.
Fuzzy sets deal with overlapping classes and fine concepts; whereas rough sets deal with
nonoverlapping classes and coarse concepts. In a pattern classification problem, al or
some of the above uncertainities may be present.

For simplicity, most of the pattern classification problemscan be decomposed into five
different stages. From an abstract point of view, the division of the classification problem
into five different stages may seem to be quite arbitrary. The entire process can be viewed
as a single mapping from the object space to the decision space. Optimum mapping is
the one for which the probability of error is minimum. In practice, this leads to a very
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Fig. 2.2: Relationships among different steps involved in pattern classifica-
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description we can go to generalization directly without going through feature
analysis and structure analysis.

complicated calculation, which is in fact currently impossible to solve [Dud70]. In many
cases depending upon the given problem certain stages can be skipped (Fig. 2.2). For
instance, in afew applications it is possible to consider the raw input data as features,
and hence, there is no need o any separate feature analysis stage. The five stages are
discussed in the next five subsections.

2.2.2 Process Description

The first stage concerns the way the classification process will be represented. The fol-
lowing are some of the methods for this stage:



2.2.2.1 Symbolic process description

The classification process can be represented in terms of different symbols. In the decade
of the 1980s symbolic approach became a dominant theory to explain how intelligence
is produced and how it can do certain useful tasks. Using this method it is possible to
write programs that work with symbols rather than numbers. Symbols can be equal or
not equal, and that is the only relationship defined between the symbols. Hence, it is
not possible to know if one symbol is less than another symbol. Of course, in symbol
processing programs, the symbols do get represented by numbers. Besides the use of
symbols, the symbol processing programs consists of a large number of rules. The most
significant outcome o the symbolic approach is the development of the knowledge-based
expert Systems [LS95]. It tends to capture the higher level human reasoning functions in
the form of a set of if-then rules or knowledge. A typical set of two symbolic rules in
chromosome identification can be

If theinput is thenthe output classis C4

If theinput is then the output classis C,

If a new chromosome is encountered, then the structure of the chromosome is matched
with the if part of each rule. The class label of the new chromosome is the class label
corresponding to the then part of the matched rule.

Eventhough in symbolic approach symbols can only be equal or not equal, and there
are no other relations defined for them, quite often “symbolic” programs end up using
integersor reals as part of the program, and it is called symbolic anyway eventhough by
the strictest standard doing so no longer makes the program completely symbolic, only
partly symbolic. Drawbacks of the symbolic approach are the following: (a) It does not
take care of pattern variability, (b) it needs large number of rules when the inputs are
continuous, and (c) it does not employ efficientlearning mechanisms to acquire the rules.

Symbolic approach is useful in syntactic pattern recognition technique [Fu82]. Thisa p
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proach deals with the patterns which are rich in structural information, i.e., the patterns
that contain most o their information in their structures, rather than in numeric values.
In this approach the input patterns are divided into several parts, and one symbol, called
primitive, is assigned to each part. Each primitive has no direct relationship to the struc-
tured the pattern. A pattern isrepresented by the knowledge about how primitives must
be combined to make up the entire pattern, and how primitives are related to each other.
In the syntactic methods, building classifiersconsist of constructing rules for combining
primitives to obtain the structure of a given object. The methods are formulated around
the concept of formal languages with each primitive represented as a terminal symbol and
a grammar inferred for each pattern class. When a new pattern comes, it is represented
asaset d primitives, and the primitives are matched against the antecedent parts o the
rules to determine the output class. The pattern grammar used for these rules can be
made more effective by using stochastic grammar (in presence of randomness) or fuzzy
grammar (in presence o vagueness). It should be noted that existence of a recognizable
physical structureisessential for the successd the syntactic approach. Syntactic pattern
recognition research has been largely confined to pictorial patterns, which are character-
ized by recognizable shapes, such as characters, chromosomes, finger prints, etc. Many of
the major problems associated with the design o a syntactic pattern recognition system
have been only partially developed. For instance, not much progress has been achieved
in deriving general training algorithms for syntactic systems [TG74] [PM86] [Fu68].

2.2.2.2 Numerical process description

The most familiar choice of representing objects or patterns are by numbers. Unlike
symbolic approach, in numerical approach, the information about the classification process
is extracted from the following types of numerical data:

e Object data: Object data can be the numerical representation of some physica
entities, like images and hand patterns of a card game.

e Relational data: It may happen that, instead of an object data set, we have
access to a set o numerical relationships between pairs of objects; that is, the
relationship represents the extent to which the objects are related. For example, in
numerical taxonomy, the relationship between species families can be assigned by
human experts. Here, we do not have any access to the object or species, rather the
relationship among them. Relational data are found in diverse application fields,
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e.g., cognitive maps, influence diagrams, etc. [Bez96).

In this review, we shall discuss the other stages o pattern classification process as-
suming the representation is numeric. In addition, the word "data"’ will always imply the
object data.

2.2.3 Feature Analysis

Feature analysis can be defined as a method that is used to explain and improve the data
collected during the process description. It consists o the following three steps:

Preprocessing: A preprocessor is used in this step to perform some or al of the follow-
ing functions: (a) Strengthening features, i.e., edges, specific frequencies, etc., (b) pro-
vide invariance to translations, rotations, and scale changes o the input data, (c) noise
suppression, and (d) formatting the processed data for acceptance by the recognition
device [Vig70].

Feature selection: Feature selection seeks a small number o features by obtaining a
subset from the original set, either by discarding poor features or selecting good ones.
Feature selection can take place by minimizing some objective function. The choice of
the objective function may be classifier independent, or it may be based on particular
classifier's accuracy to judge whether a feature subset is superior to another subset. The
former approach is known as absolute feature selection approach or filter approach and
thelater approach is known as perfomzance-dependent feature selection approach or map-
per approach [BL98] [SB97] [WAM97]. The objective functions are carefully designed so
that interclass distance of the input data set decreases, but the intraclass distance in-
creases [DH79]. The distances may be Euclidean, Mahalonobis or some other standard
distance measure, or it may be the distance between two probability distributions. The
objective function like mean square error is based on Euclidean distance, and the objective
functions like entropy and divergence are based on the distance between two probability
distributions [Fuk89). It is also possible to transform or rotate the axes of the input data
set so that the interclass distance decreases and the intraclass distance decreases. Prin-
cipal component analysis and Karhunen Loeve transform are based on this idea [DH79)].
Note that in these casesthe transformation of axesisactually alinear mapping. A natural
extension o this scheme is nonlinear mapping {Fuk89]. Till now, nonlinear mapping has
not become popular asit is very difficult to handle.

Feature extraction: It deas with developing some new features based on the already



selected features. From preprocessing and feature selection steps, the designer of classifier
obtains the features that he knows or suspects are important. These may prove to be
inadequate, or may provide a format not suitable for the decision mechanism. For exam-
ple, in statistical feature extraction, asampleset of preclassified patterns is analyzed, and
the statistical information collected from this sample set is used to augment the known
feature list and to reformat the feature profile [Vig70].

The presence of noise, missing attributes, missing attribute values, etc., can make the
feature analysis difficult [FSW97]. In addition, the presence of uncertainties can make
this stage more complex. For instance, the input features may be vague in terms like tall,
amost 5, etc. The features that are present may be insufficient for a particular class.
This creates rough uncertainty in the classification task.

Practically, the methods by which initial features are obtained are often intuitive and
empirical, drawing upon the designer's knowledge about and experience with the problem.
The main guideline hereis that the features should be invariant to (or, at least insensitive
to) irrelevant variations, such as limited amount of translation, rotation, scale change,
etc., while emphasizing differencesthat areimportant for distinguishing between patterns
of different types. These features are ranked to select only the most important features
(feature selection), and then some new features may be augmented with the extracted
features (feature extraction).

Feature analysis serves several functions. Firstly, by reducing the input patterns to
its essential features, the memory requirement to store the input patterns can be reduced.
Secondly, by reducing the input datato moreindependent features, a considerable amount
of invariance to exact form is obtained. Finaly, by extracting more than the minimum
number of features required, a degree of invariance to noise and background may be
achieved [DL97].

2.2.4 Structure Analysis

Thestructure (spatial) present in the feature space represents certain common properties
of the feature. Building classifiers may be impossible if such common property is not
present in the data; then even a look-up table scheme would be sufficient. For instance, it
Isimpossible to capture any common property from a set of names while classifying them
into two classes, bdow 50 years and above 50 years. Moreover, the feature selection may
not be proper when the feature is deep hidden due to many surface features. In this case
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there may not exist any structure at all. For example, if we represent a large dimensional
parity problem by a string of 0 and 1, then each character of the string does not carry
any common property, which can be utilized to classify the input strings to even or odd
parity. On the other hand, if we extract a feature that represents the sum total of all 0’s
and 1’s present in the string, then thereis certainly a structure. It is because, when this
sum total is odd, it represents an odd parity, and when it is even it represents an even
parity.

Interpretation of the structure in the feature space depends on the method followed in
classification. Let X denote the original population o the data from which the example
data set & has been drawn, i.e., X C X. A C-class classification can be carried out in
the following two ways:

1. Direct classfication: X isused to train the classifier, i.e., to delineate the output
classesin X into different decision regions [Bez81]. Therefore, the stmcture in the
space X isdirectly analysed.

2. Classification through clustering: This technique involves initial grouping or
clustering of X, and subsequent partitioning of the set X based on the obtained
structure. Therefore, thestmcture in the training dataspace X isanalysed. Later,
based on this structure, the structure of the space X is analysed.

In the classification through clustering, the structure is analysed in the space formed by
X. Since this step needs clustering as a prerequisite, we will discuss the basic concepts
of clustering in brief. Clustering can be defined asfollows [Bez81] [DJ87] [Har75]: Given
aset X = {x,x,...,x,} of feature vectors, find an integer K (2 £ K < n) and a
K number of partitions of X which exhibit categorically homogeneous subsets. There
exists many clustering algorithms. Among them, the simplest and popular one is K-
means clustering algorithm [DH79]. It starts with K random initial cluster centers. The
algorithm considers each input pattern sequentially, and assigns the input pattern to the
nearest (in Euclidean distance sense) cluster center. After the assignment isover for al the
input patterns, each cluster center is updated so that it becomes the mean of the patterns
that are associated with it. Same procedure is repeated for several iterations until thereis
no appreciable change in the position of the cluster centers. After clustering, each pattern
belongs to only one cluster, and a structure evolves in the training set X. Most of the
clustering algorithms assume that K is known a prior:. To find the approximate value of
K for a given set of data, various methods based on cluster validity exist [DJ87).



Presence of uncertainities may make the boundaries of the classes or clusters over-
lapping. It may also happen that the same cluster represent patterns from more than
one class. It is because the relation between the input structure and the output class la-
bels is one-to-many. Thus, uncertainities make the structure analysis difficult, and these
difficulties are manifested in the next stage.

2.2.5 Abstraction: Search for Structure

This stage involves exploring structures using all the available information so that the
obtained structure can be used for classifying a new sample with unknown class. Math-
ematically, let X denote the feature space from which X has been drawn, i.e., X C X.
A classifier for X is a device or means whereby X itself is partitioned into C' decision
regions. Explicit representation of these regions depends on the nature of X (i.e., data),
the way in which the regions are formed (i.e., structure), and the model we choose for
searching [Bez81]. X is often employed to "train" the classifier, that is, to delineate the
decision regions in X. The resulting structure may enable the machine to classify subse-
quent observations rapidly and automatically. The training method adopted in this stage
can take place mainly in the following two ways.

1. Supervised: In this process a known set of input-output pairsis used to teach
the classifier system first how to classfy, and then let the system go ahead freely
classifying other new patterns. In this case we usually need some a prior: informa-
tion, i.e., a training set consisting o a set of input-output pairs, to form the basis
o teaching.

2. Reinforcement: In many classification problems, it is not possible to obtain a
known set o input-output pairs. The output may be known only partially. This
partial information may state that the actual output is "too high" or "50% cor-
rect”. Unlike the supervised learning, here the teacher signal only says how bad
a particular output is, and provides no hints on what the right answer should
be [LL96).

It ispossible, but not necessary, to conduct thesearch by first clustering the patternsin
X. Theclustering can take placein supervised or unsupervised fashion. In the supervised
clustering, all the training datafrom a particular class are collected, and the clustering is
carried out on thisset of data. In the unsupervised clustering, the clustering is done on
the whole training set.



In some search operations, there is no training. The search operation is left for the
testing phase. Hence, the testing becomes time consuming, and thus, it makes these
algorithms unsuitable for online testing. Some o these algorithms are caled lazy algo-
rithms [WAM97].

When a new input comes, it isclassified based on in which part of thestructure it fals.
However, the boundaries among the different parts of the structure may be ambiguous.
Due to this uncertainty, classifiers can be of the following types:

2251 Deterministic classifiers: Crisp rule base

If the boundaries of the different parts of the structure are not ambiguous, then the test
pattern can be classified without any uncertainty. It happens in deterministic classifiers.
An example of deterministic classifiersis a crigp rule base system.

Instead of representing knowledge in a relatively declarative, static way (as a set of
things that are true), crisp rule base systems represent knowledge in terms of a set of
if-then rules, a set of facts, and some interpreter controlling the application of the rules
when the facts are given. A typical rulein the rule base is

if the input is 23, then the output classis C,

Note that thisruleisdifferent from the symbolic rule describe in section 2.2.2.1. Here the
input is a number, but in a symbolic rule the input must be a symbol. There are numer-
ous techniques to construct a rule base from a set of data. Among them one important
approach is evolutionary computation (EC) theoretic approach [Fog94b] [BHS97] [Fog98].
EC is atechnique to encompass a variety of population-based problem solving techniques
that mimic the natural process of Darwinian evolution. Current research in the evolu-
tionary computation has resulted in powerful and versatile problem solving mechanisms
for global searching, adaptation, learning and optimization in a variety of pattern recog-
nition domains. The main avenues for research in evolutionary computation are genetic
algorithms [Hol75] [Gol89] [Dav91], genetic programming [Koz92], evolutionary strate-
gies [Sch81] and evolutionary programming [FOW66] [Fogd1lb] [Fogd5]. Genetic ago-
rithms deal with chromosomal operators, while genetic programming stresses on opera-
tors of more general hierarchical structures. Evolutionary strategies emphasize behavioral
changes at the level of theindividuals, whereas evolutionary programming focuses on be-
havioral changes at the level of the species. The common factor underlying all these
approaches is the emphasis on an ensemble of solution structures, and the evaluation



and evolution o these structures through specialized operators that mimic their biolog-
ical counterparts, in response to an ever changing environment. Specifically, all of them
maintain a population of trial solutions, impose random changes to those solutions, and
incorporate the use of selection to determine which solutions are to be maintained into
future generation and which are to be removed from the pool of trials.

From a mathematical point of view, all the EC techniques are controlled, parallel,
stochastic search and optimization techniques. There are, two different training ap
proaches for exploiting these optimization techniques to evolve the classification rules.
In one method (also known as Pitt’s approach in genetic algorithm community [Mic92]),
each element of the population represents one complete classification rule set. Conse-
quently, the complete population is an ensemble of many rule sets. In the process of
evolution the rules compete among themselves, the wesk individual dies, the strong sur-
vives and reproduces. In the other approach (alsoknown as Michigan approach in genetic
algorithm community [Mic92]), the whole population represents only one rule base, i.e.,
each member of the population represents asinglerule. The second method is more time
and space efficient. But, it needs, (a) delicate credit assignments, for which a heuristic
method should distribute positive or negative credits among the members of the pop
ulation, and (b) the members of the population, i.e., different parts of the network, to
cooperate with each other so that they can build the complete rule base [Mic92] [WC96].
For both the training approaches, generally supervised or reinforcement learnings are
used. The difficulties that most o the EC agorithms face are the optimal balance in
exploration and exploitation, and premature convergence. EC keeps a balance between
what already has worked best and exploring possibilities that might evolve into some-
thing even better [CHL96]. But, the balance is not optimal in practice. Moreover, in
spite of the in-built stochasticity, EC agorithm may get stuck in local minima. This kind
of premature convergence takes place mainly when all the new offsprings are similar to
the existing offsprings (thus virtually stops the exploration of new space in the search
domain). In order to reduce these problems, there are variousstrategies like modification
of EC operators, increasing population diversity, etc.

Crisp rule base can be applied to a classification problem provided the input features
are discrete. To accommodate the continuous features, one approach is to discretize the
input feature with inevitable loss of information. When the input features are distorted
due to noise and measurement errors, the variation in the input features increases rapidly.
If discretization is carried out on this feature set, then the distortion may become very



high, and eventually the classification performance may decrease significantly. Note that
EC does not use any uncertainity inherent to the problem; it introduces probabilistic
uncertainty externally to make the search operation more efficient.

2.25.2 Statistical classifiers

In many classification problems, which deal with measuring and interpreting physical
events, statistical considerations becomeimportant in pattern recognition because of the
randomness in the pattern generation process. Here the randomness comes from the
physical process which generates it. For instance, in the Asian-European example, if we
have certain statistical ideasabout the occurencesdf the personsin the two differnt classes,
we can derive a classification technique which is optimal in the sense that, on the average,
its useyields lowest probability of committing errors, provided the cost o misclassification
is equal for all the classes and no cost is associated with correct classification. This
statistically optimal classification techniqueis a generally accepted standard for classifiers
where the outputs come from [0, 1] and sum of them is equal to 1. Henceforth, these
kinds of classifierswill be called probabilistic classifiers. One such classification technique
is Bayes classification technique. The assumption needed for using the Bayes classifier is
that the feature vectors are random vectors whose conditional density function depends
on its class. Let the class conditional probability density function, p(x|¢), along with a
priori probability (P,)df each class be known. The Bayes classification rule states that
theinput x belongs to the classi with probability

Pip(x|i)
Eic=1 Pip(x[i)
The Bayes classifier is defined as the classifier which computes p(i|x), where i =
1,2,...,C. The output class label is determined by maximum a posteriori probability.
That is, the class label is ¢, if p(c|x) = max;{p(i|x)}. While implementing Bayes classi-
fiers, in many cases, we do not have any idea about the input distribution. There are the
following three methods to estimate the class conditional distribution of the inputs.

p(ilx) = i=1,2,...,C (2.1)

Parametric estimates: In this approach a functiona form p(x|i,8) for the probabil-
ity density p(x|?) is assumed, where 8 is a parameter vector. The parameter vector is
then optimized by fitting the model to the data set. It leads to the parametric estima-
tion o the Bayes classifier. Unsupervised mazimum likelihood classifier and supervised



maximum likelihood classifier are the two classifiers that are based on this idea [Bez96].
The drawback of this method is that the chosen form of parametric function may not be
able to provide a good representation of the true probability density, and the number of
parameters in the model grows with the size of the data set.

Nonparametric estimates: In many pattern classification problems the classification
of an input pattern is based on the training data, where the respective sample size of each
class issmall, and possibly not representative of the actual probability distributions. In
these situations, nonparametric modelsare attractive as they do not assume any particular
form o the density function.

There are mainly two types of nonparametric classifiers. One type consists of proce-
dures for estimating the density function p(x|z) from the sample patterns. The approach
based on Parzen Window falls in this category [DH79]. Another type consists of proce-
dures for directly estimating the a posteriori probabilities p(i|x). It is accomplished by
collecting a set of correctly classified samples, and by classifying each new pattern using
the evidence of the nearby sample observations. One such approach, popularly known as
K-nearest neighbours (KNN) algorithm [DK82], is used as a simple nonparametric super-
vised method for the assignment of a class label to the input pattern based on the class
labels represented by the K-closest (in some distance sense) neighbors of the input. It
can be shown that the error rate of 1-NN (i.e., K=1) is bounded above by no more than
twice the optimal Bayeserror rate, and moreover, when K increases with infinite number
of training data, the error rate approaches the Bayes optimal rate asymptotically [CH67).
Thisalgorithmis also a typical example of lazy algorithm mentioned in section 2.2.5. The
advantage of this algorithm is that it does not need any a priori knowledge about the
structure present in the training data. Like other nonparametric techniques, in KNN also
the number of samplesis greater than the number that would be required if we know the
form of the density. The demand for alarge number of samples grows exponentially with
the dimension of the feature vector. Consequently, when the number of test dataislarge
or K islarge, KNN takes large amount of time.

Semiparametric estimates. This approach is a compromise between parametric and
non-parametric approaches, and it tries to enjoy the advantages of both parametric and
non-parametric approaches [Bis95]. It allowsageneral classdf of functional formsin which
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the number of adaptive parameters can be varied independently from the size o the data
set. Artificial neural networks can be regarded as typical examples o this approach.

The Bayes classifier gives optimal classification performance for the probabilistic clas-
sifiers [Bez96], provided the parameters o the input distribution are estimated from the
inputs collected over the whole input space. In practice, the parameters o input distri-
bution are estimated based only on a finite number o training data. As a result, the
performance of the resultant Bayes classifier is no longer optimal, but its performances
approaches the optimal one as the number of input data is made very large (theoretically,
it is infinity). Nevertheless, the Bayes classifier, based on a finite number of training
samples, is used to compare the performance of the other probabilistic classifiers.

Artificial neural network (ANN) [Arb95], a semiparametric model, needs special at-
tention, and in what follows we will describe it in detail. An ANN is an interconnected
assembly of simple processing units or nodes, whose functionality is loosely based on the
biological neuron. The processing ability of the network is stored in the inter-unit con-
nection strengths, or weights, obtained by a process of adaptation to, or learning from, a
set of training patterns [BL96] [Rip96]. Some of the advantages of using ANNs are [RY95]

1 Any continuous input-output function can be captured by ANNS.

2. ANN models can learn the statistical distributions underlying the input patterns.
Hence, ANN-based classifiersdo not need to know the input probability distribution
explicitly.

3. Certain ANN modelscan act as constraint satisfaction models. Such networks can
be used to represent different domain-specificconstraints [RY96], [RY97] [RPY97].

4. Information stored in an ANN is not represented locally, rather it is distributed
over the entire network through synaptic weights. Hence, ANNSs are fault tolerant
in the sense that even if some connections are snapped or some of the processing
elements are damaged, performance of the networksis not affected significantly.

5. ANNs take care of pattern variability. Moreover, ANNs do not need any input-
output rule to be known.

6. ANNs can learn incrementally, and hence, they do not need a huge data storage.

7. Other advantages like parallel computation, robustness, etc., make ANNS attrac-
tive.



Based on the architectures, ANNs can be classified into the following three groups:
1) Feedforward, 2) feedback, and 3) feedforward and feedback. Although all these three
types of networks can be used for classification, generally feedforward networks are used
for classification. Here, we shall describe the following three feedforward neural networks
that are useful for classification.

Feedforward neural networks with backpropagation algorithm: A feedforward
neural network (FFNN) with backpropagation (BP) algorithm consist of elementary pro-
cessors arranged in a distributive fashion so that the whole network can classify patterns
in an autonomous manner. Specifically,the network consists of several layers where each
layer contains several processing units (Fig 2.3). There is a complete connection between
the layers, but there is no connection within the layers. The input-output relation iscap
tured through the change of weights associated with the connections. Given a training
set of input-output pairs {(x1,y1), (X2,¥2),--.,(Xn,¥x)}, the backpropagation algorithm
provides a supervised procedure for changing the weights in an FFNN to classify the
given input patterns correctly. It uses supervised learning mechanism implemented in
two phases. In theforward phase, the input pattern x; is propagated from the input layer
to the output layer, and as a result, it produces an actual output o;. Then, in the second
phase, the error signal resulting from the difference between y; and o; is backpropagated
from the output layer to the previouslayer to update the weights. The weight updating
continues until the error becomes very small [SY96]. Note that the classification mech-
anism adopted here is direct classification. The advantage o this method is that it can
partition the input space X even when the class boundary is very complicated. But the
disadvantage with this approach is that it takes along time to train, and in many cases
the training may not converge. .

Radial basisfunction neural networks: A radial basisfunction neural network [HH93]
is a three-layer network (Fig. 2.4), whose output nodes form a linear combination of the
basis functions computed by the hidden layer nodes. The basis functionsin the hidden
layer produce a localized response to input stimulus. Hence, they produce a significant
nonzero response only when the input falls within a small localized region of the input
space. Popularly used basis function is of the following type:

X - mj)’(x - mJ)J (22)
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where o;-‘ is the output of the jth hidden node, X is the input pattern of dimension N, m;
and o? are the center and variance (assume that the varianceissame aong all dimensions)
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Fig. 2.3: A three layered feedforward neural network. It has three input
nodes, three hidden nodes and two output classes. The input is x and the
output is the class confidence values for the classes C; and Cs.

o the Gaussian functions o the jth hidden node, respectively. The hidden node outputs
are in the range from zero to one such that the closer the input is to the center of the
Gaussian, the larger is the response of the node. The output layer node equations are
given by _—
Py

0% = f:,—l:uk,l (2.3)
where o is the output of the kth output node and wy; is the weight from the jth hidden
node to the kth output node. The class label of the input x is assigned as ¢ where
0? = max{0},03,... ,0%}. In radial basis function neural networks, the parameters used
in the hidden layer are generally obtained through supervised clustering. The weights
between the hidden and output layer are learned in a supervised fashion using Widrow-
Hof flearning rule [Hay94]. Note that here classification is carried out through clustering.
The advantageof thismethod isthat thetrainingisfast. However, if theestimated number
d clusters and the cluster structure are not close to the original one, the classification
result may be poor.

Probabilistic neural networks. A probabilistic neural network is a three layered feed-
forward network [Spe90] [RY98] consisting of an input layer, a pattern layer and asumma-
tion layer (Fig. 2.5). The input layer contains N nodes to accept an N-dimensional input
pattern. The pattern layer consists of C poolsd pattern units, where Kth pool contains
Sx number of pattern units. Here, C is the number of classes, and Sk is the number of
training patterns for the class Cx. Each nodein the pattern layer is connected from every
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Fig. 24: A typical radial basis function neural network. It has three input
nodes, four hidden nodes and two output classes. The input is x and the
output is the class confidence value corresponding to the classes C; and Cs.

nodein the input layer. The summation layer consists o C number of summation units,
one unit for each pool in the pattern layer. Pattern units of the kth pool in the pattern
layer are connected to the corresponding kth summation unit in the summation layer.

Training of the network consists of storing each training vector x; (1< j £ Sk)
of the class Ci as the weight wy; connecting the input layer and the jth pattern unit
in the kth pool o the pattern layer. The connection weight from each pattern unit in
the kth pool and the summation unit for the kth class is assigned as . Note that
the training is a one-pass supervised algorithm, and hence, it is trivial in this case.
For any input vector x, output of the jth pattern unit belonging to the kth pool is

m exp (— llx = w;l[? /2a,fj), where oy; isasmoothing parameter for the Gaussian
kj

activation function of that unit. Output d the kth summation unit is [RY95]

1 3 exp (=[x — wi||*/20%;)
Sk j=1 \/(QW)N azj
The class label of the input x is assigned as ¢ where o2 = max{09,03,...,0%}

op = (2.4)

The problem with this network is that the testing time is very high. To alleviate it,
supervised clustering scheme can be adopted. But, if the estimated number of clusters
and the cluster structure are not close to the original one, then the classification result
may decrease significantly.
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Fig. 2.5: A typical probabilistic neural network. It has three input nodes,
four hidden nodes and two output classes. The input is x and the output is
the class confidence value corresponding to the classes C; and Cs.

There exist various other interesting neural networksclassifierslike Hopfield networks,
Kohonen's self-organization map (SOM) networks [Hay94] {RY95], adaptive resonance
theory (ART) networks [Hay94], etc.

2.25.3 Fuzzy classifiers

The concept of fuzzy sets was first introduced by L. Zadeh in 1965 [Zad65], as a mathe-
matical way to represent the vagueness present in the human reasoning. Fuzzy sets can
be considered as a generalization d classical set theory. In the classical set, an element
of the universe either belongs to or does not belong to a set. That is, the belongingness
of the element is crisp-it is either yes (in the set) or no (not in the set). In fuzzy sets,
the belongingness o the element can be anything in between yes or no; for instance, a
set of tall persons. We cannot identify a person as tall in a yes/no manner, as there
does not exist any well-defined boundary for the set tall [PP96] [ESY92]. A fuzzy set
is mathematically a mapping (known as membershipfunction) from the universe of dis-
course to [0, 1]. The higher the membership valued an input pattern to aclass, the more
is the belongingness of the pattern to the class [DP80] [Kan82] [Kan86] [KF93]. There-
fore, any concept that uses fuzzy sets requires the membership function to be defined.
This function is usually designed by taking into consideration the requirements and con-
straints of the problem. Fig. 2.6(a) shows one possible membership function for the set
tall. There are many other possible membership functions for the set tall. Nonuniqueness
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Fig. 2.6: Fuzzy membership functions for (a) fuzzy set tall and (b) fuzzy
number close to 4.

of membership functions may raise a question: How does a designer know which one to
use? In fact, the designer can obtain the membership function from an expert (subjective
computation) or from the data (objective computation) [PP96] [Bez81] [BP92] [Bez96].
Following the idea o fuzzy sets, the concept of crisp numbers has been generalized to
fuzzy numbers [KG85] (Fig. 2.6(b)). The reasoning with fuzzy sets and fuzzy numbers is
known as fuzzy logic [Kos93].

Since many classical pattern recognition techniques are based on conventional set
theory, fuzzy sets can be fruitfully used to generalize these techniques. In traditional
two-state classifiers, where a class A isdefined as a subset d a universal set X, any input
pattern x € X can either be a member or not be a member of the given class A. This
property of whether or not a pattern x of the universal set belongs to the class A can be
defined by a characteristic function p4 : X — {0,1} as follows

1 : ifandonlyif xe A
pa(x) = . .
0 : ifandonlyif x ¢& A

In real lifesituations, however, boundaries between the classesmay be overlapping. Hence,
it isuncertain whether an input pattern belongstotally totheclass A. To take care of such
situations, in fuzzy sets [Bez81] the concept of characteristic function has been modified
to membership function g4 : X — [0, 1].

The training of a C-class classifier for a set of input patterns X = {x1,Xa,...,Xn}
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is basically an assignment o the membership values u.(x;) on each x; € X, Vc =
1,2,...,C, Vi=1,2,...,n. If the membership valuesare crisp, then X is partitioned into
C subgroups during the training process. In the fuzzy context, C subgroups of X are the
set of values {u.(x;)} that can be conveniently arranged on a C X n matrix U = [p.(x;)].
Based on the characteristic of U, classification can be of the following three types [PB95]:

1. Crisp classification:

(o) n ’
My, = {U € RO | pe(xi) € {0, 1} Ve, Va5 Y pe(xi) =15 0 <) pe(xi) < m Vc}

c=1 i=1 ( 5_3)

2. Constrained fuzzy classification:

My = {U € RO | u(x;) € [0, 1] Ve, Vi; Zc:,u,_.(xi) =1,0< Zn:,uc(x;) <n Vc}
c=1 =1 ( 5_b)
3. Possibilistic classification:
My = {U € RO | u(x;) €0, 1] Ve, Vi; 0 < Zn:,u,_.(x,-) <n Vc} ( 5-c)
i=1

It is obvious My, C My, C M,. The implementation o the crisp classifiershas been
discussed in the context d crisp rule base system (section 2.2.5.1). If we replace the
membership values by probabilities, then the constrained fuzzy classifiers become the
probabilistic classifiers (discussed in section 2.2.5.2). The interpretations of the output
(say @) for the two classifier models are different. The probabilistic interpretation means
that the probability that the input pattern belongs to the classC, is a. On the other hand,
the fuzzy interpretation is asfollows. The grade d membership o the input pattern to the
classC. is a. Thefirst statement impliesthat if we take the same input pattern n times,
an times it belongs to the class C, [Ped90] [Bez94]. In contrast, the second statement
expresses that the input is close to the center of the class prototype C. with a degree a,
that is, the input issimilar to the class C, with adegree a. The user is not interested in
repeating the experiments but in the class assgnment. Therefore, in many cases it may
be appealing to consider the output o the classifiers as fuzzy membership values rather
than a posteriori probabilities. In these cases fuzzy sets can be used to implement the

classifiers based on the constrained fuzzy classification and possibilistic classification.

Fig. 2.7 examines the role played by crisp, constrained fuzzy and possibilistic-classifi-
cation approaches in a 2-class problem. Here, both the patterns A and B are equidistant



from the two classes. In crisp classification, the membership value of A in one class will
be 1, and in the other class it will be 0. It istrue for the pattern B also. Obvioudly, this
kind of membership assignment does not reflect the actual classification situation as A
and B partially belong to both the classes. In constrained fuzzy membership assignment,
both the patterns A and B will be assigned the membership valuesequal to 0.5. Although
this membership assignment is better than the crisp counterpart, it fails to consider the
pattern A as a more typical one than the pattern B. It is because, here the member-
ship assignment is a relative one, and it depends on the membership values to both the
classes. In possibilistic membership assignment, the pattern A will receive equal mem-
bership values to both the classes. It istrue for B also. But, the membership of B to any
class will be aways less than that of pattern A. Therefore, the possibilistic assignment
may not be summed up to one, and thus, it can distinguish between equal evidence and
ignorance [Zad78] [KK93] [Sha76] [DP88]. This property of the possibilistic assignment
makes it attractive compared to the crisp membership assignment and constrained fuzzy
membership assignment.

Broadly speaking, there are the following four ways to apply the fuzzy classification
techniques:

e Fuzzy relation approach: The input and output of any classifier system is sup-
posed to be related by some relation. If thereisnosuch relations, it isimpossible to
build any classifier. On the other hand, if there exists any relation, in a crisp case,
any two points (one from input space and another from output space) from the
input-output space are either related or not. In fuzzy relations, these two points
can be related with a varying degree. The value of the degree is expressed as a
membership value that liesin between 0 and 1. Therefore, the fuzzy relation sub-
sumes the crisp relation. The search for a structure involves discovering the fuzzy
relation. One scheme to realize the fuzzy relation is construction of a fuzzy rule
base system [DHR93]. A fuzzy rule base system consists of a set of fuzzy if-then
rules like

If a person is very tall and veryfair, then heis a European with high confidence.
If a person is very tall and fair, then he is an African with low confidence.
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Fig. 2.7: (@) The crisp membership values o pattern A and B in both the
classes are either 0 or 1. The constrained fuzzy membership values of the
pattern A and B in both the classes are about 0.5, which does not consider
the fact that B is much less representative of either class than A is. (b) The
crisp membership valuesdf pattern A in both the classesare either 0 or 1. The
constrained fuzzy membership values d the pattern A in both the classes are
about 0.5. On the other hand, possibilistic membership values of the pattern
A in both the classes are 1 as it belongs to both the classes completely.

where the terms tall, fair are called fuzzy linguistic values. The fuzzy rule-base
system is useful where it is difficult or impossible to model the given classification
system with classical approach. In this case a set of fuzzy if-then rules along with
the fuzzy linguistic values are collected from experts. If a new input comes, the
input is matched against the if part of each if-then rule, and the response of each
rule is obtained through fuzzy implication. The response of each rule is weighed
according to the extent to which each fuzzy rule fires. The response of all the
fuzzy rules for a particular output class are combined to obtain the confidencewith
which the input is classified to that class. The final class label can be determined
by taking the class with maximum confidence. It can be observed that there is
no learning associated with the fuzzy-rule base system. Consequently, the designer
has to rely completely on the expert's opinions to build the rule base, which may
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be difficult in some cases.

a Fuzzy pattern matching approach: A dightly different way of classification
is the information fusion approach offered by fuzzy integrals. Here, a decision
to associate an input pattern to a class is accomplished through the fusion of
the information coming from severa sources in form of features. Fuzzy integral
combines the objective evidence supplied by the features in a nonlinear way with
the importance of that feature set for recognition purpose. Instead of treating
each feature identically, it stresses those features or sets o features which provide
the most evidence toward the determination of class memberships. Therefore, it
resultsin a convenient framework to produce different nonlinear classification rules
for different classes within the same problem and with the same over all feature
set [KQ88] [Gra96]. However, when the number of features is N, this technique
may need O(2V) computations.

a Fuzzy clustering approach: Fuzzy clustering issimilar to the conventiona clus-
tering as described in section 2.2.4. However, unlike the conventional one, in fuzzy
clustering each input pattern belongs to all the clusters with different degrees or
membership values. Thus, each cluster is a fuzzy set. If the sum of memberships
of a pattern to all the clusters is equal to one, then it is called constrained fuzzy
clustering. If the sum is not necessarily equal to one, then it is called possibilistic
clustering. There is fuzzy K-means clustering algorithm which realizes the con-
strained fuzzy clustering method. Modificationsaf this algorithm form possibilistic
angle are known as possibilistic K-means algorithm [KK93] and mixed K-means
clustering algorithm [PPB97]. If the valuedf K isnot closeto the actual number of
clusters, then the clustering result may be far away from the reality. To know the
approximate number of clusters present in the dataset, variousindices like partition
coefficient and entropy indices [Bez81], Xie-Beni index [XB91], Fukuyama-Sugeno
index [FS89] [PB95], fuzzy hypervolume [GG89], etc., exist. The clustering ago-
rithms can be used to group the input dataset. Then a class label (crisp or fuzzy)
is assigned to each cluster. Thus, a classifier can be constructed through fuzzy
clustering.

e Other approaches: Among the other methods, fuzzy K-nearest neighbors algo-
rithm [KGG85] and fuzzy decision trees are popular. In the conventional K-nearest
neighbors algorithm, each neighbor is considered equally important to assign the
class label to the input sample. However, when two classes overlap each other, a



more typical neighbor should be given more weightage. In fuzzy K-nearest neigh-
bors algorithm, this philosophy is implemented. Thus, fuzzy K-nearest neighbors
algorithm subsumes the conventional K-nearest neighbors algorithm, and in many
cases thefirst one becomes more powerful than the later one. Like the conventional
crisp K-nearest neighbors algorithm, the fuzzy counterpart also suffers from the
problem of long testing time.

2.2.5.4 Rough classifiers

In any classification task the aim is to form classes of objects which are not noticeably
different. These indiscernible or indistinguishable objects can be viewed as basic building
blocks (concepts) used to build up a knowledge base about the real world. For instance,
if the objects are classified according to color (red, black) and shape (triangle, square
and circle), then the indiscernible objects are red triangles, black squares, red circles, etc.
Thus, these two attributes make a partitionin the set of objects and the universe becomes
coarse. If two red triangles with different areas belong to different classes, it isimpossible
for anyone to classify these two red triangles based on the given two attributes. This
kind of uncertainty is referred to as rough uncertainty [Paw82] [PBSZ95] {Paw95]. The
rough uncertainty is formulated in terms of rough sets [Paw82] [PBSZ95]. Obviously, the
rough uncertainty can be completely avoided if we can successfully extract the essential
features so that distinct feature vectors are used to represent different objects. But, it
may not be possible to guarantee as our knowledge about the system generating the data
is limited [SS93].

Let us consider a 2-class problem where each input pattern has only one feature. Two
input patterns z; and zo are called related if z; = z,. This is obviously an equivalence
relation. From linear algebra we know that this equivalence relation partitions the input
space into (say m) equivalenceclasses. If al the patterns from an equivalence class (say
[z]) have the same label (let C;), then we can alot a single rule to describe the input-
output relationship for al the patterns that belong to the equivalent class. The rule
IS

If the input is z, then the output class label is C

Thus, by partitioning the input space into m equivalence classes, it is possible to obtain a
rule base consisting of m deterministic rules. However, in presence of rough uncertainity,
i.e.,, when more than one pattern from the same equivalence class carries a different label
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(let Cy3), a one-to-many relationship exits between the equivaence class and the class la-
bels. Hence we cannot use the deterministic rulesany more. One possible way to describe
the input-output relationship is to construct nondeterministic rules such as [Paw91]

If the input is x, then the output classlabel is C; with confidence factor r;
If the input is x, then the output class label is C; with confidence factor

where r; and rz2 can be determined from the input data. Note that here more than one
rule is present with the same if part. Let R(C)) represent the set of al equivalence
classes, where each equivalent class contains patterns only from the class C,. Let R(C))
represent all the equivalence classes, where each equivaent class contains some pattern
from Ci. In R(C;) some equivalence class may contain patterns from classes other than
C, as well. Now, one simple scheme of assigning the valuedf r, isr; = %%%. Similarly,
T Can be assigned. This concept can be extended for an input with more than one
feature. Thus, in general, any classification problem can be mapped onto two sets of
rues—one set is deterministic and another set is nondeterministic. If there is no rough
uncertainty, then the nondeterministic rulesdo not exist. In other words, the deterministic
and nondeterministic rules are needed for the equivalence classes where the class |abelling
is not unique. When a new input comes, the input is matched with the if part of each
deterministic rule. A rule firesif there is a match. The class label corresponding to the
input is decided by the rule that fires. If the input does not match with the if part of
any deterministic rule, then theinput is matched with the if part of the nondeterministic
rules. The class label is decided based on the confidence factor associated with each
nondeterministic rule.

One problem with the rough approach is that it ismainly applicablewhen the number
o equivalenceclassesissmall. When thefeatures are continuous, the number of equivalent
classes may be very high. To circumvent this problem, continuous features are usually
transformed to discrete features with inevitablelossd information. Moreover, approaches
based on rough set cannot be used where the input features or the output classes are fuzzy.

2.2.5.5 Hybrid classifiers

Table 2.1 summarises the relative merits and demerits o artificial neural networks, fuzzy
logic, rough sets and evolutionary computation techniquesfor pattern classification tasks.
To exploit the rough and fuzzy uncertainities present in a classification process, it is ben-
eficial to incorporate the concepts o rough sets and fuzzy logicin the framework of neural



networks. This kind of model is useful, because these three methods approach the design
o classifiers from quite different angles. Neural networks supply the brute force method
necessary to accommodate and interpret large amount of input data. Rough sets and fuzzy
logic provide a structural framework that utilises and exploits these low level results. For
efficient implementation of thiskind of hybrid model, we need agood search and optimiza-
tion strategy. For this purpose, one can use evolutionary programming, which represents
apotentially powerful pathway to machinelearning and sf organization [AH95]. In what
follows, we are focussing on these hybrid techniques from the pattern classification angle.

Table 2.1: Relative merits of artificial neural network (ANN), fuzzy logic
(FL), evolutionary computation (EC) and rough set (RS). The symbols B,
SB, SG and G represent bad, somewhat bad, somewhat good and good, respec-

tively [JSM97]
Property ANN | FL | EC | RS
Mathematical modeling B [SG| B |SG
Learning ability G BIS G B
Knowledge representation B G |SB| G
Expert knowledge B GB S G

Nonlinearity G G| G| B
Optimization ability S &G Bl G| B
Fault tolerance G G| G| B
Uncertainty tolerance G G| G |G
Real-time operation SG | G |SB| G

Neuro-Fuzzy classifiers. It has been recognized that the areas of neural networks
and fuzzy logic are strongly interconnected [LL96]. An important connection between
ANN and fuzzy logic-based systems is that both of them can approximate continuous
functions [JSM97]. Use of fuzzy concepts in ANNs is also supported by the fact that the
psycho-physiological process involved in the human reasoning does not employ precise
mathematical formulation [PM86]. There are the following two approaches to fuse these



two approaches:

e Fuzzy-neural networks. This type o classifier consists of an ANN equipped
with the capability of handling fuzzy information. Specificaly, fuzziness can be
incorporated in an ANN at the following levels. (@) At output and target levels,
(b) at input level, and (c) at each neuron levd in terms o weight value, basis
function and,output function. The appropriate level o incorporation of the theory
of fuzzy logic depends on the given problem.

e Neural-fuzzy systems. This type of classifier consists  a fuzzy system aug-
mented by ANNSs to enhance the flexibility, speed and adaptability of the fuzzy
system. For instance, neural networks can be used to tune the membership values
or fuzzy rules. Thus, neura network learning can reduce the development time and
cost while improving the performance o a fuzzy system.

While training an ANN for a classification task, we generally use crisp target values,
which can be either zero or one. This kind o target assignment can be generalized by
exploiting fuzzy sets, where target values can be anything in between zero and one. In
[PM92] ANN outputs are interpreted as fuzzy membership values, and using this idea
the conventional mean sguare error objective function has been extended to various fuzzy
objective functions. The learning laws are derived by minimizing the fuzzy objective
functionsin a gradient descent manner. It has been found that incorporation of fuzziness
in the objective functions leads to better classification rate.

ANNSs adopt numerical computations for learning. But numerical quantities suffer
from lack of representative power {Pao89]. There are many applicationswhereinformation
cannot be obtained in terms of numerical values. Instead it is possible to represent the
information in linguistic valuesonly [LL95] [KL79]. In [WM97] Wang €t a. have proposed
fuzzy basis functions to design a radial basis function network [Hay94], which can accept
both numerical inputs as wel asfuzzy linguistic inputs. In [Ped92] Pedrycz has proposed
an ANN model based on fuzzy logical connectives. Instead of using linear basis functions,
he has utilized fuzzy aggregation operators. In [PR93] and [HP94], this technique has
been extended to a more general one where inhibitory and excitatory characteristics of
theinputs are captured by employingdirect and complemented, i.e., negated input signals.
The advantage o this approach is that problem-specificfuzzy a priori knowledge can be
incorporated into the network easily. In [IFT93] Ishibuchi et al. have proposed an ANN
learning algorithm where expert's a priori knowledge, in terms of fuzzy if-then rules, can



be exploited to learn the information supplied by the numerical data.

Fuzzy logic can be employed to speed up the training of an ANN. In [CAMC92] a
fuzzy rule base is used to dynamically adapt the learning rate and momentum parameters
d a feedforward neural network with backpropagation learning algorithm. In a similar
approach [COB92], Choi et al. have proposed an incremental updating scheme to control
the value o vigilance parameters o ART networks.

The difficulty in constructing fuzzy rule base systems is that the membership func-
tion, number of rules and precedent parts of the rules can be supplied only by the experts.
In many cases, it is difficultto get an expert, and in some cases, even for the experts it
becomes difficult to construct the rules. This problem can be reduced if ANNSs learning
mechanism can be incorporated in the fuzzy rule base systems to construct fuzzy neural
systems. Since ANNS can approximate continuous functions, ANNs (for example, feedfor-
ward neural networkswith backpropagation algorithm) can be used to realise membership
functions with arbitrary shape. If the membership function has a regular shape like bell
shape or triangular shape, it can even be modeled by a simple neuron with sigmoidal
function [LL96]. Fuzzy OR and fuzzy AND need min and max operators. Since they
are nondifferentiable, it is difficult to learn them. Hence, the concept of differential min-
imum and maximum operators, i.e., softmin and softmax, have been introduced [LL96].
Thus, fuzzy logic connectives, i.e., fuzzy NOT, fuzzy OR and fuzzy AND, are modeled by
ANNSs. Keller et al. have proposed [KKR92) fuzzy inference network, where membership
functions and fuzzy logic connectives are implemented through ANNs. This network is
made more powerful by incorporating learning facilities. The resultant network is called
fuzzy aggregation network [KT92].

In many cases, it is possible to view the same classifier as a neural network and
a fuzzy rule base system. For instance, feedforward neural networks with backpropa-
gation algorithm and radial basis function network can be seen as fuzzy rule base sys-
tems [BCR97] [JS93] [HHMS96]. In these networks the output functions present in the
hidden nodes act as the membership functions for some linguistic values.

Neuro-Rough classifiers: In ANNs one critical problem is to determine how many
input units are necessary. Obvioudly, it depends on the number of features present in the
input data. Using rough sets, it may be possible to decrease the dimension of the input
data without losing any information. A set o features issufficientto classify al the input



patterns if the rough ambiguity for this set of features isequal to zero. If we know the
amount of rough ambiguity present, then using it as a criterion we can select a proper
set of features from the given set of data [PWZ88]. In [PBSZ95] it is clamed that for
a classification task the number of hidden units needed in a feedforward neural network
is equal to the minimal number of features required to represent the data set without
increasing the rough uncertainty. One way to accelerate the training o a network is to
initialize the weights o the networks in such a manner that the initial decision region is
closer to the desired one. For that, a set d training data is collected, and the knowledge
extracted from them through rough sets is used to initialize the ANN [BMP97].

Neur o-Evolutionary classfiers. From a mathematical point o view, al the evolu-
tionary computation (EC) techniques are controlled, parallel, stochastic search and op-
timization techniques. Since different learning techniques used in ANNs hinge on the
optimization of various objective functions, it is possible to employ EC for learning
weights, learning network architectures, learning the learning laws, input feature selection,
etc. [Yao093]. For instance, in a feedforward neural network, gradient-based local search
methods [Hay94] can be substituted by EC for weight training [SF95] [MTH89] [Has95).
In some cases, a more ambitious approach may be to exploit local search methods likegra-
dient descent, and global search methodslike EC, simultaneously [RF96]. The advantages
of local search methods are better accuracy and fast computation. The disadvantages of
the local search methods are stagnation at the suboptimal solutions and sensitiveness to
the initialization. On the other hand, EC is a global search method which can avoid
local optima, and does not have the initialization problem. However, EC can suffer from
extremely dow convergence before arriving at the accurate solution. This is because, EC
uses minimal a priori knowledge, and does not exploit availablelocal information [RF96].
In fact, in the search space EC is good for exploration, whereas the gradient descent is
good for exploitation. Therefore, by utilizing both of them, merits of both methods, i.e.,
speed, accuracy, reliability and fast computation, can be achieved. Yao et al. [YL97]
have proposed one such method to evolve the topology (weights and architecture) of
a feedforward neural network, where they exploit both evolutionary programming and
backpropagation algorithm, simultaneoudly. In EC techniques, the whole population set
evolves over and over again, generations after generations. At the last generation, the
network which has the highest fitnessis considered to be the desired optimal network for
the given task. Instead of choosing a single network as the desired network, in [YL98]
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all the networks in the population are considered as the desired networks. The final re-
sult is obtained by combining all the individuals in the last generation to make best use
o all the information contained in the whole population. This result confirms the fact
that a population contains more information than a single individual, and EC is used
to exploit that information. In particular, in [YL98] the outputs of all the networks in
the population are combined, and the output class is determined by a majority voting
method. In [WC96] [Whi96] [BZ95], EC-based techniques are used successfully to opti-
mally configure radial basis function networks so that the networks generalize well. In
another development, Angeline et al. [ASP94] have used EC to configure recurrent neural
networks. 1t should be noted that, gradient-based approach is not useful here as it needs
the objective function to be differentiable. Using EC, Jockusch et al. [JR94] have intro-
duced a training strategy for self-organizing maps [Koh89] [Koh90], where it is possible
to find the number of output units for the self-organizing maps automatically. In their
scheme the training of the self-organizing mapsis less likely to be stuck in local optima.
Currently, researchers are working on different evolutionary methods which can be uti-
lized to learn weights, architectures and learning laws, simultaneously [Ya093]. The search
space for these problems are prohibitively large, and they need a large computing time.
These drawbacks may be reduced if parallel machines are used to implement the search
operation [BR94], or the search operation is made more efficient and less time consuming
by using adaptive EC operators [SP94] [LD95).

Fuzzy-Rough classifiers. Rough set theory was proposed as a mathematical tool in
order to deal with inexact, noisy or incomplete information. It aims to provide a formal
framework for automated transformation of datainto classification knowledge. The start-
ing premise is that the universe is coarse and some object in the data set may become
indiscernible, resulting in a partition of the universe. In contrast, fuzzy set theory pro-
vides an effective means of handling uncertainty in various systems, including those in the
application of rough set theory. But the premise of granularity in knowledge is absent in
fuzzy set theory, and the focusison thefact that concepts in the universe of discourse tend
to be gradual rather than crisp. Therefore, rough sets are a calculus of partitions, while
fuzzy sets are a continuous generalization of set-characteristic functions [DP92] [Slo92].
Hence, it is possible to integrate roughness and fuzziness, and the resultant model of
uncertainty is expected to be stronger than either. These hybrid notions develop in a
natural way when a linguistic category, denoting a set of objects, must be approximated



in terms of already existing labels, or when the indescernibility relation between objects
no longer obeys the ideal laws o equivalence, and the relation is a matter of degree.

Direct application of rough sets to minimize a fuzzy rule base classifier was proposed
by Tanaka et al. [TI92] [TIS92]. They extracted a fuzzy rule base for a given medica
classification problem. They also proposed a method to reduce significantly the number
o input variables o the fuzzy rule base. The advantage d their method is that the
inconsistency of the test data and experts' diagnoses can be clarified, and inconsistent
data can be removed. In addition, unlike the rule base generated by rough approach (see
section 2.2.5.4), the fuzzy rule base is applicable to inputs with continuous features.

Fuzzy-Evolutionary classifiers: Currently, the combination o EC and fuzzy logic is
taking place mainly along the following two directions [HHVLV94] [CHL96] [HM97]:

1 The use o fuzzy logic-based techniquesfor either improving EC behavior and mod-
eling EC components, or to manage problemsin an imprecise environment, where
the imprecision is modeled by fuzzy sets.

2. The application d ECs in various optimization and search problemsinvolving fuzzy
systems.

Severa techniques related to fuzzy logic have been used for improving EC behavior
and modeling EC components (like using fuzzy connectives to design crossover in genetic
algorithm, fuzzy population diversity measure, etc. [CHL96]). These techniques concern
different parts of EC development in the following ways:

1 Expert knowledge (represented as fuzzy rules) is used to compute dynamically the
EC parameters. Theaimisto obtain suitableexploitation/exploration relationships
throughout the EC execution. In this way, a knowledge base is used for controlling
the evaluation process and for avoiding the undesired behavior, like premature
convergence.

2. A fuzzy stop criterion forces the EC to reach optimal solutions with a user-defined
accuracy.

There are two main directionsfor applying ECs in a fuzzy environment. The first one
exploits an EC to manage fuzzy valued variables. In the second approach, the variables
consist of associated fuzzy sets, and hence, the fitness is actually a fuzzy valued fitness.



The first proposal considers variables with fuzzy values in the representation, and the
second proposal considers nonfuzzy value variables but with a fuzzy evaluation (e.g.,
fuzzy fitness).

In [BH94] [FS93] [YKSS95] attempts are made to develop EC-based clustering tech-
niques. These algorithms are less prone to get stuck in local minima. Moreover, they do
not suffer from the initialization problems as observed in the fuzzy K-means algorithm.
These clusters are used to construct fuzzy rules. In [INYT95] [NIT96] genetic algorithm
Is used to evolve a fuzzy rule base system suitable for a given classification task. A good
bibliography on fuzzy-evolutionary techniques is provided in [OC97].

Rough-Evolutionary classifiers: One mgjor difficulty in a classification problem is
to find the optimal number of features. It can be viewed in rough set domain as to
discover the minimum number of features necessary for the classification problem without
increasing the rough uncertainity associated with the classification task. Although it is
possible to apply brute force method to find all possible combinations of the features,
and subsequently take the best one as the optimal one, it may involve large amount of
computation. This problem may be reduced if we use EC to find the minimum number
of features [PBSZ95]. Here, rough set theoretic measure acts as a guideline to choose the
correct set of features [Wro95] [HPA*+97].

In addition to the above techniques, hybrid techniques like neuro-fuzzy-rough, neuro-
fuzzy-evolutionary, fuzzy-rough-evolutionary, neuro-fuzzy-rough-evolutionary, etc., are
also possible. These integration techniques are based on partnerships, in which each
of the partners contributes a distinct methodology for solving the problem [AH95]. There
are severa other attractive paradigms which can be used for the hybrid techniques. For
instance, artificial ant system [DMC96], cultural evolution [Bel89], immunity net [HC96),
cdlular automata [TM87] and DNA computing [Ad194] seem to be attractive and viable
approaches.
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2.2.6 Generalization

A great deal of episodic evidence has been presented in the literature to support the claim
that, once a classifier has been trained on a sufficient number of samples, it can then label
a new and previously unseen input. It should be noticed that, without the ability to
generalize, much of the cases for using classifiers would simply collapse. A simple look
up table would sufficeif one were interested merely in constructing a classifier that could
reproduce the known input-output pairs [Nee96] [Vid97]. The training o a classifier with
a data set leads the classifier to learn the input-output relationship. When a test set is
applied, this relationship is extended so that it holds for the test data. However, there
can be more than one relationship if the training data sequence, classifier size, learning
algorithm, etc., are varied. All these relationships may be vdid on the given training set,
however, when extended on a different test set many o them may not be valid. Hence,
the task of the generalization is to choose the relationship which holds for most of the
test data [HKP91]. In order to choose the best relationship, we should be able to impose
certain constraints on all possible input-output relationships. It can be accomplished if
thereisastructure present in thefeature space, and the relationship between this structure
and the class labels is not random. Since the parameters for classfier design depend on
the structure in the feature space and the input-output relationship, the generalization
capability of a classfier islargely influenced by the following three factors:

1. Training data: This refersto how wdl the training set consisting of input-output
pairs represent the input-output relationship. Obvioudly, if the input-output rela-
tionship is noisy or random, then the generalization ability of the classifier becomes

very poor.

2. Size and structure of the classfier: If thesze o the classifier is large, then it
needs a large number of parameters. It may lead to nenori sation of the training
examples if the training set size is not large. Moreover, while training a large
classifier, all the parameters may not get involved in the training process as they
balance each others effect on the output. Consequently, training error becomes low.
However, such free parameters may result in a large variation of the classification
efficiency for different test sets [Sus92]. As a consequence, the structure present in
thedataset isnot captured and the generalization ability remainslow. In contrast,
if the classifier size is small, then it may not be sufficient enough to capture the
input-output relationship.
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3. Training methodology: The training algorithm, the presentation of the input
data during training, the stopping criterion, all affect the performance o the clas-
sifier. Use of improper stopping criteria may cause overtraining which may lead to
memorisation.

In order to study the generalization capability, we must be able to quantify it. That
is, it should be possible to evaluate a classifier, and decide whether its generalization is
"good" or not. However, the notion of "good" or "reasonable” themselves are not well-
defined. It varies from person to person and is problem dependent. For instance, when
the desired output is obtained on most occasions, it isconsidered as "good" generalization
in certain cases. On the other hand, in certain other types o problems, generalization is
considered to be "good" if the classifier yieldsthe desired output for a very rare situation
which never occurred before. Various methods d measuring generalization are used in
practice [Liu95], [MCHK94]. We can classify them into two categories: measure d model
fit and measure d performance. The first one measures how close the actual classifier
function is to the desired one based on the training result. The second one focuses on the
difference between the actual classification rate and the desired classification rate after
the final class label is assigned to each test pattern with inevitable loss of information.
Therefore, the first one measures how good the approximation is, based on the training
and when there is no loss of information. The second one stresses on how good the
approximation is after the information islost due to crisp labelling on the test patterns.

Let n be the number of patterns in the training set X = {(x1,¥1), (x2,¥2),...,
(xn,¥n)}, C be the number of output classes and y be the desired output corresponding
to the input x. Then, some measures based on the model-fit criterion are

1. Kullback-Leibler measure: This measure d generalization quantifies the differ-
ence between the actual classification function and the classifier function obtained
by training [Hay94]. The Kullback-Leibler measure (ex) is given mathematically
by the following equation:

fly,x 1 ylx)f(x)

e = — /p(x,y)log [pgy,x))} dxdy = — /P(X,}’)lo.q lp(y'IX)p(x) dxdy (24)
where p(y|x) is the conditional probability distribution of the sample x given the
output y, p(x) is the probability distribution of theinput X, f (y|x) is the probabil-
ity distribution approximated by the classifier after training and the integral is over



the whole input-output space. Since p(x) = f(x) for agiven input distribution, we
can redefine ey as
en = — [ p(x,¥)loglf (yix)|dxdy (2.5)

The Kullback-Leibler measureis difficult to calculate asit requires prior knowledge
about the actual classification function p being realized.

2. Cross-Validation measure: Cross-validation measure estimates generalization
error by making use of the training data [Liu95]. In this method, generalization
error ey given by equation (2.5), is estimated as follows:

oo = = S loa( (i) (26)

3. Mean square error measure: One of the the most commonly used measure of

generalization for the pattern classification task is how large the Euclidean distance

is between the actual output of the classifiers (after the training is over) and the

desired one. Like the previous two cases, this measure depends on the training set
only. The measure is

Emse = % Zj: [(yil —0i1)2 + (yiz — 02)? + ... + (¥ic — Oic)2 (2.7)

where o; isthe actual output when thetraining pattern x; isapplied to the classifier.

4. An information criterion (AIC): This measure [Aka74] is also known as
Akaike's information criterion. Although memorisation trend in a classifier is re-
lated to thesize or the number of the free parameters (kf ) of the classifier, the above
three measures do not consider the classifierssize. AIC isa measure which consid-
ers mean square error measure as well as the size o the classifier. It isformulated
as

earc = nlog (“;) + 2k,

A popular measure based on the performance criterion is error rate measure. The
easiest way to assess the error rate isto choose a misclassification count on the test set.
1 C

€er = — > (no. of misclassificationsfor class c)
v~ e=1




where n, is the number o test samples. This measure is extensively used because it is
simple and easy to implement. It can be viewed as a variation of the cross-validation
measure. if we have some idea about the a prior: probability P, for the cth class, the
above measure can be modified as

18 . I
€er =~ > P.(no. of misclassificationsfor class c)
v

c=1

Note that in all the above cases the less the measureis, the better isthe generalization
capability. Other than the above measures, there exist many other measures, e.g., leave-
one-out measure, entropic measure, BIC, etc. [Rip96].

Although a relatively small fraction o the overall work done on the pattern classifiers
ison the theoretical analysis of generalization, these studies are marked by a variety of ap-
proaches. Somed theissueslike how much training datais needed, i.e., sample complezity,
and how much time is needed for a particular level of generalization, i.e., computational
complezity, are formalised and investigated within the fidld d computational learning the-
ory. One popular approach in computational learning theory is probably approximately
correct (PAC) learning theory approach [Hau92] [BEHW89] [Nat91]. Most of the theoret-
ical studies assume noiselesssynthetic input data, where the raw data represent features.
The input-output relationships are assumed to be random. Application o the theoretical
results are still limited because the results inferred based on these assumptions are far
from the real life situations. Despite these limitations, the theoretical results indeed give
us some idea about the extent of the influence o the classfier size, classifier architecture
and the training set size on generalization. Due to the limitations of the theoretical stud-
ies, there are several heuristics adopted to enhance the generalization capability o the
classifiers. These techniques can be broadly classfied into two parts:

1. Problem-independent techniques. These methods deal with the functioning
of the classifiers, methods of presentation of the data, etc. They include pruning
of the extra parameters used in the classifiers, generating more training data by
introducing noise, accel erating the training algorithms (sothat large dataset can be
used for training), stopping training after some point (so that overtraining cannot
take place).

2. Problem-dependent techniques: These methods include specia design of the

classifiers after taking care of the problem-specific knowledge. For example, if we
know that the clusters formed in the input space isdf shell type, then we can cluster



2.2.7

the input by using fuzzy shell clustering algorithm [FK96]. Classification can be
achieved subsequently by labelling the clusters. We may also incorporate domain
specific constraint to limit the classification function realizable by the classifier. In
other words, we can bias the classifier to have less variance in the performance of

the classifier [Bis95].

Conclusion

From the review presented in this chapter, it is quite obvious that the stages of pattern
classification are involved. As Bezdek rightly pointed out in [Bez81] that if we could
choose "optima™ features, clustering and classification would be trivial. But we often
attempt to discover the optimal features by clustering the feature vectors. Also, if we
could design an "optimal" classifier, then the features selected would be immaterial. The
current state of research in pattern classification can be characterized as follows:

1.
2.

Basic concepts of pattern classificationare being used in many real lifeapplications.
Theoretical foundation have gained substantial base.

Most of the current research methods use numerical representation. This trend is
growing because of the availability of the computing power.

Efforts are being made to combine the symbolic and numerical approach for prob-
lems in which such information can be obtained from physical systems.

The role of uncertainties in a given problem is being examined to avoid possible
loss of information. The uncertainities captured in the initial stages are exploited
for problem solving till the final stage o solution.

However, the pattern classification ability of the existing machinesis still far away
from the human classification ability for the following reasons:

1.

Humans perceive everything as a pattern, whereas for machines everything is data.
Even in aroutine data consisting o integer numbers (like telephone numbers, bank
account numbers, car numbers), humans tend to perceive a pattern [Yeg98].

Functionally also humans and machinesdifferin the sense that humans understand
patterns, whereas machines can be said to recognize patterns in data. In other
words, humans can get the whole object in the data eventhough there is no clear
identification of subpatterns in the data. For example, consider the name of a



person written in a handwritten cursive script. Eventhough the individual patterns
for each letter may not be evident, the name is understood due to the visua hints
provided in the written script [Yeg98].

3. Human beings are capable of making mental patterns in their biological neural
network from an input data given in the form of numbers, text, picture, sounds,
etc., using their sensory mechanismsaf vision, sound, touch, smell and taste. These
mental patterns are formed even when the data is noisy or deformed due to varia-
tions such as translation, rotation and scaling. The patterns are also formed from
a temporal sequence of data as in the case of speech and pictures. Another major
characteristic of a human being is the ability to learn continuously from examples.
These aspects are not at all wel understood in order to implement them efficiently
in an algorithmic fashion in a machine [Yeg98].

4. Human beings have the capability to gather information from both data and rule,
simultaneously. Still most -of the machine classification techniques are based on
either data or rules.

5. For classification, human beings generalize most of the common objects and memo-
rise uncommon objects. Moreover, in human classification there is a smooth transi-
tion from memorisation to generalization and vice versa. These abilities are totally
absent in the techniques adopted by machines.

6. In pattern classification on machines, we face the problem o inductive biasor the
a priori bias of the designer. The problem o inductive bias is that the resulting
representation and search strategies provide us a medium for encoding an already
interpreted world. They do not offer us any mechanism for questioning our in-
terpretation, generating new viewpoints or changing perspectives when they are
unproductive [LS95].

7. In pattern classification several uncertainties exist, We still do not know how to
model these uncertainities. For instance, Fig. 2.8(a) can be classified to any one
o the two classes as shown in Fig. 2.8(b) and Fig. 2.8(c). The classes are not
fuzzy. It appears that rough uncertainty is also not present. Moreover, there are
no probabilistic and resolution uncertainties involved. Still, the exact classification
result may not be known!

The above issues will continue to motivate researchers to explore methods to match
the performance of human classification.
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Fig. 2.8: The psychological uncertainty which we do not know how to model.
(&) A cube, and (b) and (c) areits two differentinterpretations. Apparently no
fuzzy, rough and probabilistic uncertainties are involved in the interpretation.
Still it is uncertain which interpretation we should follow.



2.3 Modular Classifiers

2.3.1 Background of Modular Classifiers

In the last section we have discussed the role of uncertainties in pattern classification.
In many problems, it is difficult to deal with uncertainties in a monolithic classfier.
Therefore, it is useful to divide the classification task among several small subclassifiers,
and then combine their individual solutions to obtain the final classification result. In
this section, we review various modular approaches, which are based on the divide and
conquer technique.

Human brain consists of about 10'* neurons and 10'® connections. Due to its highly
organized architecture, the brain manages to execute a myriad o functions and yet main-
tains a compact size. Execution o mental functions are alocated to different parts of
the brain. Split brain patients in which the connection between the two hemispheres is
completely severed can live an almost normal life, which shows that the hemispheres in-
deed function to a large extent independently. It has been found that in each hemisphere,
part of the brain has a regular structure in layers, streams and many microscopic levels.
Modules containing little more than a hundred cells, also known as minicolumns, have
been proposed as the basic functional modular unit of the cerebral cortex.

A functional advantage of the anatomical separation o different areas of the brain
might be minimization of mutual interference between simultaneous processing and exe-
cution of different tasks. For example, we have no problem in driving a car while listening
to the radio. Studies with multiple tasks can easily be performed in parallel, while the
simultaneous execution of similar tasks (e.g., presentation of two auditory or two visual
messages) causes more interference. Some tasks are processed in distinct streams of mod-
ules and do not interfere with each other. Other tasks require simultaneous access to a
single module, and are, therefore, much more likely to interfere mutually. This evidence
suggests that modular approach is not merely advantageous, but essential.

In many complex pattern classification tasks (e.g., script recognition [CK95b], speech
recognition [SY96], etc.), where the number of classesis large and the similarity amongst
the classes is high, a monolithic classifier, also known as all-class-one-classifier, either
may not converge or may take large amount o time to converge during training. But
the all-class-one-classifier needs lesser storage and leads to better generalization if they
converge. It is aso possible to develop a classifier based on the concept of one-class
one-classifier [Kun93] architecture, where a separate classifier is trained for each class.



This kind of local approach offers the following advantages. (a) fast learning, (b) r e
quires a few training examples, and hence, it can operate in real time. This approach
requires a large number of subclassifiers, and also the discrimininatory capability of the
one-class-one-classifieris poor [SY96]. Therefore we need something in between these two
extremes, where advantages of both all-class-oneclassifier and oneclass-oneclassifier can
be enjoyed. Motivated by the biological evidence, pattern recognition in rea life prob-
lems can be approached using classifiers that are in between oneclass-oneclassifier and
al-class-oneclassifier. In this approach, modularity is viewed as a manifestation of the
principle of divide and conquer. In [Hay94], [JJ93], modular classfier is defined as follows:
" A classifier is called a modular classifier if the computation performed by the classifier
can be decomposed into two or more modules that operate on distinct inputs without com-
municating with each other. The outputs of the modules are mediated by an integrating
unit that is not permitted to feed information back to the modules’. Thus the principle
o modular classifierscan be thought as Some Class One Classifier. Modular classifiers
have the advantages of both all-class-one-classifierand one-class-oneclassifier approaches,
like quick convergence, paralel training, better generalization, etc. The use of modular
classifier systems was discussed as far back as the mid 1980's by Barto and Hinton. Jacob
in [JJ93] presented a taxonomy for a class of modular hierarchical connectionist mod-
els. Modular approaches find applications in handwritten character recognition, texture
recognition and speech recognition [SY98e].

2.3.2 Advantages of Modular Classifiers
The main advantages of the modular approach are as follows ?7?:

1. The modules can be constructed using different techniques. For example, some
modules can be based on ANN, where the input-output relationship can be ex-
plained only through input-output patterns. Some other modulescan be based on
fuzzy rule base systems, where expert's knowledgeis easy to obtain in form of rules.

2. Generally modularity results in an architecture o lesser complexity, and hence, is
easier and faster to train. The generalization capability may also enhanced due to
the reduction in complexity [CK95a].

3. Training of the modules can be done in parallel. Therefore, it takes less time to
train a modular classifier.

4. Different featuresets can be used to train different modules. This flexibility allows
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us to use the appropriate set o features for each module so that within-class dis-
tance decreases and between-class distance increases. Therefore, the training time
decreases and generalization ability increases.

5. Each module can be trained on different input data set. It decreases the training
time and increases the generalization capability.

6. If the modular classifier is built carefully, then it can capture discontinuous input-
output functions [JJ93]. In contrast, the monolithic counterpart does not have this
capability.

7. In a modular approach existing modules can be retrained easily. If a new pattern
is added, only the related modules need to be retrained. In the modular approach,
new modules can also be appended easily.

2.3.3 Issuesin Modular Approach

In order to construct a modular classifier systematically, we need to consider mainly three
points. Firstly, the given classification task has to be decomposed into subtasks. Secondly,
an appropriate classification task has to be assigned for each module. Finally, intermodule
communication has to be evolved. The following are some d the issuesin constructing a
modular classifier:

1. Depending on the decomposition criterion: The classescan be grouped based
on the closeness of the class prototypesin thefeature space. A clustering algorithm
can be employed for this purpose. Another way is to employ domain-specific knowl-
edge to partition the classification task.

2. Choice of classifiersfor each module: Varioustypes o classifiers, e.g., feedfor-
ward neural networks with backpropagation learning algorithm, radial-basis func-
tion neural networks, probabilistic neural networks, fuzzy rule base system, etc.,
can be used in each module.

3. Interpretation of the outputs of each module: The output of each module
can beinterpreted asan a posteriori probability, belief or fuzzy membership values.

4. Choice of the preprocessor or postprocessor: It depends on which principle
we are adopting to make a module active. In other words, the task may be so
distributed that only one moduleis active or al the modules are active. The first
method needs a preprocessor to decide which module should be active, and the



Categorization of Modular Classifiers

(a) Depending on Task
e Functional
e Categorical
(b) Depending on Decomposition Criterion
e Problem decomposition
e Class decompaosition
(c) Depending on Topology
e Preprocessor-based
e Postprocessor-based
e Hierarchical
(d) Depending on Fusion Criterion
e Maximum output approach
e Weighted output approach
e Dempster-Shepherd approach

e Fuzzy integral approach

Fig. 2.9: Types of modular classfiers.

later method needs a postprocessor so that the results of all the modules can be
fused.

2.3.4 Typesof Modular Classifiers

It is possible to group modular classifiers based on various criteria. They are as follows
(Fig. 2.9):

1. Depending on the task: One way to decompose a classifier isto create modules
that serve very different functions, not different versionsof the same function. The
top-down structure of a large software projectsis an example, where each procedure
hasits own function. Thisiscalledfunctional modularisation [DY97]. Another way
is to decompose the classifier such that the modules perform different versions of
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the same job. It is called categorical modularisation. This can be thought of as a
set of experts giving their individual opinions on the same subject.

2. Selection of grouping criterion:

(@) Problem decomposition: The designer decomposes the modules based on
his knowledge about the classification problem (Fig. 2.10). Sufficient prior
knowledge is essential when this is carried out before the learning takes
place [TMBC92]. Another variation is to perform the decomposition auto-
matically when the learning takes place [JJNH91].

(b) Class decomposition: The origina classification problem is divided into
several sets of subproblems according to the inherent relations among the
training data [AMMR93] (Fig. 2.11). It can be done before learning or during
learning [LI98]. If it is done before learning, domain specific knowledge is
needed. Compared to the problem decomposition, the class decomposition
approach needs more computation. But, the later one becomes attractive
when there is no prior knowledge about the problem.

3 Depending on the topology: Architecturally, modular classifiers can also
be subdivided as follows: 1) Preprocessor-based, 2) hierarchical-based and
3) postprocessor-based. In Fig. 2.12, these three variations along with a monolithic
classifier are shown. The Fig. 2.12(a) depicts a monolithic classifier. Here only one
moduleis present. In Fig. 2.12(b), the selector or preprocessor analyzes the input,
and decides which module should be used to classify the input. As a result, only
one module will be active for each input pattern. This type of topology needs the
preprocessor to be highly accurate. Fig. 2.12(c) employs a set of modules arranged
in a hierarchical fashion. Although the input goesto all the modules directly, the
top one becomes active first. If it can classify the input, then the classification of
the input is over. Otherwise, it triggers the module just below it. In this way, the
control flows from the top to the bottom. It is asif a set of experts are present
and we are asking them the same question sequentialy, and the whole session is
over as soon as someone is able to provide an answer. Note that in some cases the
answer given by a particular expert may be wrong also, and there is no scope for
the experts, who are hierarchically below him, to rectify the answer. Hence, the
drawback of this kind of approach isthat if the higher level modules fails to trigger
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or mistakenly triggers any lower level module, then the whole classification prob-
lem becomes erroneous. Hence, the accuracy o this model largely depends on the
classification accuracy of the higher level modules. Since it isdifficult to train each
module such that it fires correctly for all the test examples, the efficiency o the
whole classifier is not usually high. In Fig. 2.12(d), a postprocessor or integrator
combines the results of all modules. When some test input is used, all the modules
become active in parallel, and the output result o all of them are fused by the in-
tegrator. Note that, in the hierarchical and postprocessor-based modular classifier,
the feature set for each module can easily be made different from others. It isaso
possible to house both selectors and integrators in the same system [RRM*96].

4 Depending on the fusion method: For the task of catagorization, the following
fusion methods exist:

(a)

(b)

(c)

M aximum output approach: The class label of the input can be decided
based on the winner-take-all policy. It means that the class label of the input
pattern is assigned to j, where o; = k=r17,1§.>.(.,co’°’ and o is the output corre-
sponding to the kth output class. Although this is the simplest method, this
kind of assignment may not be justified, as all the subclassifiers are indepen-
dently trained on different sets of data.

Gatingor weighted output approach: Compared to the above approach, a
better approach is to declare the jth class winner, if the jth class corresponds
to k=T§)§’C{gkok}, where gi is the importance associated with the class Ck.
One possible choice for g, isthe aposteriori probability of the class Cg. The

drawback of this method is that the probability constraint ; g =1
k=1,2,...,
cannot discriminate between lack o evidence and ignorance [KO96].

Dempster-Shafer theor etic approach: Dempster-Shafer's theory [Sha76]
replaces the additivity requirement of probability measure theory with either a
superadditivity or subadditivity requirements. Therefore, Dempster-Shafer's
theory can distinguish between lack o evidence and negative evidence. In
Dempster-Shafer's theory, each information source, i.e., module, generates a
belief function over the power set of the hypotheses (i.e., output classes), which
are then combined using Dempster-Shafer's rule [Sha76]. The calculation can
have exponential complexity with large number of output classes.
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the input feature vector, the output classesand the subclassifiers, respectively.
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(d) Fuzzy integral theoretic approach: In the fuzzy integral approach, the

outputs of the modules are processed further so that the interactions among
the outputs are also exploited for the final classification result. For an input
pattern x, each module (say sth) generates a partial evidence hi({§,}) to
support the kth class, where &, denotes the output of the sth module. The
term gx may be replaced by a more specific term ge({£,}), where gi({€,})
denotes the importance o &, in characterizing the class C. With the help of
a({&,}), s = 1,2,...,5, the fuzzy integral F; for the class C, combines all
the partial evidence, i.e., hg(€,) Vs = 1,2,...,S, in a nonlinear fashion. The
final class label corresponding to the input is j, if F; = k=n,12?f.(,M{fk}.
Like Dempster-Shafer approach, fuzzy integral-based approach also can distin-
guish between equal evidence and ignorance. In thefuzzy integral, the frame of
discernment contains the information sources related to a particular hypothe-
sis (i.e., an output class) under consideration, whereasin the Dempster-Shafer
theory, the frame of discernment contains all possible hypotheses (i.e., all pos-
sible output classes). Thus, the fuzzy integral approach has a means to assess
the importance of all groups of information sources towards supporting a par-
ticular hypothesis as wdl as the degree to which each information source sup
ports the hypothesis. In contrast, the Dempster-Shafer theory does not have
this advantage [KGT*94). In addition, the fuzzy integral is computationally
more efficientthan astrict Dempster-Shafer approach. In the Dempster-Shafer
theory, each information source generates a belief function over the power set
d the hypotheses, which are then combined using Dempster-Shafer's rule. The
calculation can have exponential complexity with the number of hypotheses,
i.e., with the number of output classes (C). In the fuzzy integral, the measure
needs to be calculated only for S subsets, where Sis the number of modules
involved with each hypothesis [KGT*94]. Fuzzy integra is beneficial because
in many modular classifiers, C >> S.

For the task of functional modularisation the following methods exist:

(&) Majority voting: The simplest linear combination method is majority vot-
ing. That is, the output of the most number of modules will be the output of
ensemble. If thereisatie, then the output of the module (amongthosein the
tie) with the lowest error rate on a test set will be selected as the ensemble
output. Another method is to keep the number of modules odd so that the



conflict cannot arise.

(b) Weighted averaging: The weights are fixed in proportion to how each mod-
ule performs on a test set. When the weights summed up to one, the weights
can be viewed as a priori probability of the module to classify an input ac-
curately. When this additivity constraint is relaxed, Dempster-Shafer ap-
proach and fuzzy integral-based approach become suitable tools to use. The
advantages and disadvantages o Dempster-Shafer and fuzzy integral-based
approaches are similar to that of categorical modularisation.

2.4 Opening Bid Problem in Contract Bridge as a Pattern Classification
Problem

The opening bid problem is an exercise of high level perception. It involves classifying the
pattern in a hand to a single output corresponding to the bid for the hand. A classifier
does precisaly this. Given a set o input hands and the corresponding opening bids,
the classifiers try to capture the implicit relation between the two. Once the classifier
has been trained to generalize, 'then it can respond meaningfully to a new hand. In
the opening bid problem we can immediately spot the presence o probabilistic, fuzzy and
rough uncertainties. The card pattern, what one gets after shufflingis purely probabilistic;
on the other hand, whether the player will classfy a particular input hand as an 1D or
1H is basically fuzzy. Here the classes corresponding to 1D and 1H are overlapping. The
relation between the input pattern and the corresponding output bid is not unique even
among the expert players (see Table 2.2). Some player may consider the hand pattern
“97-5-AKQ8754-AK?2” as 1D or some may consider it as 2C. It is because the playing
strategy o the playersfor the remaining part o the play, vulnerability, etc., are different
and are difficult to model. Hence the same input hand may belong to different classes,
although the classes are not overlapping. This situation creates rough uncertainty. It is
to be noted that in the card problem resolution uncertainty is absent. It may be present,
if oneis asked to classify the input hand based on the image of the input hand taken by
a camera. It is because there may be some ambiguity in identifying, for example, a card
as a Heart or a Club due to the poor resolution o the image. In this thesis we are not
considering resolution uncertainty.

For the opening bid problem, we have chosen numerical representation of the object
data. Theraw input acts as a feature vector which is later refined. The structure present



Table 2.2: Variations in players bids. Sets of 80 hands were bid by human
players. It can be observed that for every set, the players differed on a signifi-
cant number of hands, suggesting that more than one correct bid may exist.

IE No. & No. o handsfor which_]

Ir

" who bid "Tn numbers In %
1 2 14 17.50
2 3 17 21.25
3 2 26 32.50
4 2 24 30.00
5 2 14 17.50
6 2 13 16.25
7 2 17 21.25
8 2 29 36.25

in the feature space can be interpreted in terms o direct classification and classification
through clustering. For the opening bid problem, we need to have some classifier with fast
learning and quick classification capability in the presence of fuzzy, rough and probabilis-
tic uncertainties. ANNs seem to be a possible candidate for this purpose. Conventional
ANNs are not suitable to deal with fuzzy and rough uncertainties efficiently. Hence,
in this thesis an attempt is made to develop hybrid learning models, where the neuro-
computing paradigm is integrated with fuzzy and rough paradigms. Following this line,
modular classification approach is adopted to deal with the uncertainties in the opening
bid problem. The performanced the resultant model is evaluated in terms of error rate
measure.

The next chapter explores the possibility of capturing the implicit relationship in
bidding a Bridge hand using an artificial neural network. We study issues like the role of
uncertainities in the opening bid problem, input representation, possible architectures for
the network.
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Chapter 3

PRELIMINARY STUDIES ON BIDDING
PROBLEM USING ARTIFICIAL
NEURAL NETWORKS

3.1 Introduction

The objective of this chapter isto study different issues likethe role of uncertainities, in-
put representation, possible classifier architectures for the opening bid problem. Since it
Is not easy to find a recognizable structure in a hand pattern, we opted for numerical rep
resentations, rather than symbolic representations, to describe the classification process.
Initially we attempted to construct a deterministic classification model for the opening
bid system. It is because the deterministic model can be ssimple, and the representation
problem for this type of model is the least. As a deterministic model, a crisp rule base
approach is considered. To construct the rule base, we need to extract the rules of the
following type from the expert bidders:

If the input hand patternisA J93,K 84,K 743, A9, then the output bid is 1S

When an input hand is used for testing, the hand is matched against the if part of each
rule. The class label isindicated by the output class of the rule that fires.

Extracting the rules from the experts are difficult because players normally use these
rules only as a guideline, and often they make bids for which they cannot articulate their
reasoning in terms of the given rules. For instance, for a hand containing 4 Spades and 4
Diamonds, a rule may suggest opening 1S, or possibly 1D. But for the two hands given
below, which are only dlightly different, a player may choose different bids as

AJ93,K84,K743, A9 -bid: 1S
AJ93, K8 K743,A94-bid: 1C



This change comes because the player uses subtle reasoning process, and he is also con-
cerned about his next bid. There are other patterns too in the hand for such a reasoning.
For example, “K84” is a "support" for a possble bid of 2H by partner, while “K8” is not.
“A94" in Clubs, on the other hand, is an openable suit if the hand has no five carder. One
could possibly list al such possibilities as rules, but the number of rules will be too many
(it isapproximately the number of possible hands, i.e., 6.35x 10""). Constructing, such a
large rule base is an impossible task. If thesized the rule baseis decreased to a moderate
one, then the rule base cannot cover many hand patterns and situations. Consequently,
when a hand pattern outside the rule base is encountered, the rule base approach fails to
indicate the output. In other words, the system is not generalizable; it works just like a
look-up table.

The above drawback of the deterministic model motivated us to exploit uncertainities
such that the classification system becomes robust and generalizable. The rule base
works as long as the input comes only from the points o the input space at which the
input-output relationship is defined. Let us cal these points reference points. The model
can be made more powerful, if we can assign some certainty factors (to belong to the
output classes) on the neighborhood points o the reference points. Thus the input-
output relation becomes defined for all the pointsin the input space. In this work, the
neighborhood points are viewed as similar to the reference point, and hence, the certainty
factors associated with the neighborhood points are expected to be close to that of the
reference point. Thus fuzzy uncertainty isintroduced in terms o similarity to make the
problem generalizable.

In order to incorporate the fuzzy uncertainty in the opening bid problem, we have
used artificial neural networks (ANNSs). The reasons behind choosing ANNSs over other
possible classifiers are various benefits like incremental learning, robustness, universal
approximation capability. From section 2.2.4, we know that there are the following two
possibleschemes to use ANNsas classifiers: Direct classificationand classification through
clustering. Wefirst experiment ANNs with direct classificationtechniques. For thisstudy,
we explore the possibility of training a multilayer feedforward neural network (FFNN)
with backpropagation (BP) training algorithm [RHW86]. It tries to capture the implicit
reasoning involved from several examples of input (pattern)-output (bid) pairs of data.
In order to perform this study the followingissues need to be considered:

1. Collection of data.
2. Representation of the hand.
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3. Interpretation of the output bid.
4. Architecture of the network.

5. Training of the network.

Thefirst issue deals with the collection of input datathat have to be used for training
aswdl asfor testing. To collect variety of inputs, the collection of data should be random.
Moreover, care should be taken to partition the datafor training and testing so that both
have similar probability distribution. Second issue is how to represent the input data on
a machine. Although we have decided numerical representation for the input hands, there
exist several possible numerical representations. The exact choice will be dictated by the
classification performance with the representation. The third issue is the interpretation
o the output results. It is quite possible that during testing the network produces a bid
which is different from a player's bid. But, then the player should also decide whether the
network bid is reasonable for the given hand. The fourth and fifth issues are regarding
the type of the network and the training methodology that have to be used. These issues
are discussed in this chapter.

Initially, we attempted to train a monolithic ANN for al the classes. But the network
did not converge. One possible reason may be that the network was unable to handle,
resolve and exploit the associated uncertainties globally. This problem may be reduced if
the classification task is partitioned. Partitioningshould besuch that each subproblem is
solved in a module by exploiting the local uncertainitiesand the results of all the modules
are combined by exploiting the global uncertainities. To verify it empirically, we break the
monolithic classifier into several modules using some domain specific knowledge, and test
the classification performance o each model. The experiments conducted in this chapter
advocate the use of a modular network instead of a monolithic network.

The organization of the chapter is asfollows. Section 3.2 discusses the representation
of the problem. Section 3.3 demonstrates the performance of the feedforward neural
networks with different architectures.

32 Representation of Opening Bid Problem on Machines

3.2.1 Data Generation and Collection

The hands used for training the network were generated by a program which simulates
shuffling of the cards. The distribution of the hand patterns generated by the program



matches the distribution given in Table 3.1. A representative set of 19 hands are givenin
Table 3.2. Note that the hands which contain suits of maximum length 5 constitute about
80% o all the hands. On the other hand, for the bidsof 2H and 25, the input may require
the following features: A six card suit, with no singleton or void in the hand, about 8 to
10 high card points, with most of the high cards in the bid suit. To successfully learn
these bids, it is necessary to have a large number of these samples in the training set.
It would mean a correspondingly large training set, and hence, a large training period.
We have used a generating program to produce the hands according to a given set of
constraints, for example, the length of the Heart suit should be at least 6 and the number
of points should be at least 6. In this way, we can produce more hands for which we want
the system to learn the patterns. The expert's bids were collected from the experts in
[T open Bridge Tournament, 1994.

3.2.2 Representation of Input Patterns

Theinputs can be represented as a fifty-two dimensional raw dataas shown in Fig. 3.1(a).
Each component of this vector is either 0 or 1. The value 0 and 1 indicate the pres-
ence/absence of the card in the hand. Since each player has thirteen cards, the number
d 1’s in the raw data is equal to thirteen. For example, the first hand in Table 3.2 and
the corresponding input pattern vector are given by

Hand: K753-KJ8-K87-K'76
Input Pattern: 0100000101010010100100000001000011000000100000110000

Theinput can also be represented in the form o feature patterns as shown in Fig. 3.1(b).
These patterns are based on the evaluation of the strength of the hands by a bidding
system. In this representation there are 16 components of the raw data vector, which can
take values between -1 and +4. Thirteen components are used to represent the cards,
while three are used as markers (-1) between suits. In this representation an attempt was
made to feed some feature information in the form of relative weights given to various
cards. For example, on the cards Ace, King, Queen, Jack, 10,9, 8, ..., 2we have assigned
the following weights: +4, +3, +2, +1, +0.9, +0.8, +0.7, +0.6, ..., +0.1. These weights
were close to the points given to the cards in most bidding systems.

Our initial experiments showed that the first representation is preferable. During
training we found that the network converged with the first representation, whereas the



Table 3.1: Distribution o hand patterns. Numbers under total sum up the
values for all possible ways o choosing suits for the given pattern or shape.

Values listed pnder specific are fon amed suits having specified length.
No. | Pattern | Specific| Total | No. | Pattern | Specific Total
1| gpan | (In%) | (in%) (in %) (in %)
1.796 | 21.5512 | 24 | 82-2-1 | 0.016 0.1924
4-3-3-3 2.634 | 10.5361 | 25| 83-1-1 | 0.010 0.1176
4-4-4-1 0.748 | 2.9932 26 | 83-2-0 | 0.005 -1 0.1085
27 | 8-4-1-0 | 0.002 0.0452
4 | 5-3-3-2 1.293 | 15.5165 28 | 8-5-0-0 | 0.0003 0.0031
5| 5-4-3-1 0.539 | 12.9307
6 | 5-4-2-2 0.882 | 10.5797 29 | 9-2-1-1 | 0.001 0.0178
7 | 5-5-2-1 0.264 | 3.1739 30| 9-3-1-0 | 0.0004 0.0100
8 | 5-4-4-0 0.104 | 1.2433 31| 9-2-2-0 | 0.0007 0.0082
9| 5-5-3-0 0.075 | 0.8952 | 32| 9-4-0-0 | 0.00008 0.0010
10 | 6-3-2-2 0.470 | 5.6429 | 33 | 10-2-1-0 | 0.00004 0.0011
11| 6-4-2-1 0.196 | 4.7021 | 34| 10-1-1-1 | 0.0004 0.0001
12 | 6-3-3-1 3.448 0.287 | 35 | 10-3-0-0 | 0.00001 0.00015
13 | 6-4-3-0 0.055 | 1.3262
14 | 6-5-1-1 0.059 | 0.7053 | 36 | 11-1-1-0 | 0.000002 0.00002
15 | 6-5-2-0 0.027 | 0.6511 | 37| 11-2-0-0 | 0.000001 0.00001
16 | 6-6-1-0 0.006 | 0.0723
38 | 12-1-0-0 | 0.0000003 0.000003
17 | 7-3-2-1 0.078 | 1.8808
18 | 7-2-2-2 0.128 | 0.5129 39 | 13-0-0-0 | 0.000000002 | 0.0000000009
19 | 7-4-1-1 0.033 | 0.3918
20 | 7-4-2-0 0.015 | 0.3617
21| 7-3-3-0 0.022 | 0.2652
22 | 7-5-1-0 0.005 | 0.1065
23 | 7-6-0-0 | 0.0005 | 0.0056




Table 3.2: Sample hands generated by the shuffling problem. Bids are made
by theauthors, toillustrate the preparation d the training set. In thistraining
set some less frequent hands are present which are generated specially to ease
learning. "T" implies the card number 10.

No. || Hands points | Desred bid
(S)-(H)-(D)-(C) (by authors)

1 || K753-KJ8-K87-K76 13 1C
2 | Q9-3-KQJ8542-QT4 10 3D
3 || 863-KQJT954-K9-5 9 3H
4 || T853-KT83-A9-AQ7 13 1S
5 || J62-AJ5-K652-942 9 P
6 || 7-AQT976-874-K85 9 2H
7 || Q87-KQJT63-92-95 8 2H
8 || A98-K2-AQJ62-AT6 18 IN
9 || QT75-A73-J3-AKJ8 15 1C
10 || T75-K52-AK86-QJ7 13 1D
11 || Q94-QJ832-A95-AK 16 1H
12 || AKT7642-Q53-8-T5 9 3S
13 || J986-72-AQ543-J8 8 P
14 || A7-K94-KT65-AK74 17 1IN
15 || A92-4-AK82-AJ832 16 1C
16 | QT-76-AQJ752-AJ3 14 1D
17 || A-KQJ9873-J98-T6 1 1H
18 | AK842-AKT93-6-82 14 1S
19 | AQJT-QT4-AJ-QT92 16 1IN
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feature based representation failed to converge in some cases. This isinteresting because
the information in the second case isin an interpreted or an abstracted form. It appears
that abstraction from raw data, if not done properly, may not be useful for generalising
the network. Experiments described in this chapter therefore use the first representation.

3.3 Studies on Network Architectureand Training

This section describes the development of the network architecture by trial and error
procedure. The training algorithm was the BP algorithm. The input layer has 52 nodes,
one for each card. Each node has a value 1, if the card is present, or 0, if the card is not
present in the given hand. In thefollowing, we describe our trial experimentsfor evolving
asuitable ANN architecture for the bidding problem.

Experiment with monolithic networks. An approach using 13 output nodes to cap
ture all the bids from Pass to 3S was explored. Three nodes were assigned to the three
levelsof bids, five were assigned to the suits and one node was kept for "Pass* bid. Thus,
for each input, except for a "Pass" hand, two output nodes are expected to be active, one
for the level of the bid, and the other for the suit. The training set consists o 1000 hands.
Different network architectures were examined. Two of them are (a) 30 and 20 nodes in
the first and second hidden layers, and (b) 30 and 6 nodes in the first and second hidden
layers. 1t was found that the network did not converge. This was probably because there
were a large number of bids (some 2 level bids and all 3 level bids) for which very few
training patterns were available. For the subsequent experiments, we decided to use a
simpler format for output nodes with one output node for each bid. Therefore, we used
fifteen output nodes to study the network behaviour. This time aso the network failed
to converge.

Experiment with 1-Level networks: To resolve the convergence problem, we reduced
the number of output nodes to seven, by restricting the bids to 1 level only, including
“Pass” (P) and the "Unknown" (U) category bids. When the input is not from the first
level bids, then the class label "Unknown" is assigned as the desired class label. The
resulting network consists of 52 input nodes, 7 output nodes and one hidden layer. The
number of nodes in the hidden layer was varied to study its effect on the performance.
A training set of size 1000 is chosen. Table 3.3 gives the total sum of squared error for
40, 45, 50, 55 and 60 hidden nodes. We observed that the network converged for various
number of hidden nodes. The network with 50 hidden nodes gave the highest accuracy of



Table 3.3: Mean square error of the 1-Level network after training. Here 52
input nodes and 7 output nodes are used. The number of iterations is 5000,
and the number of hands is 1000.

No. of Mean square
hidden nodes error
40 26.14
45 28.54
90 20.81
99 24.11
60 23.81

69% correct bids on the test set, when compared with the bids made by an expert player.
The test data consisted of 500 randomly generated hands. Some test results are given
in Table 3.4 and 3.5. It should be noted that while evaluating the performance, if the
output of the network was also acceptable by the expert player as a possible bid, then it
was taken as a correct output.

Experiment with 2-NT networks. We consider a network to include 2 level bids.
Here, the number of output nodes is 12, one each for P, 1C, 1D, 1H, 1S, 1IN, 2C, 2D, 2H,
2S, 2N and U. Initially we attempted to train the network with a training set conforming
to the theoretical distribution of hand patterns. But the network could not be trained.
The network was unable to learn the patterns for 2C, 2D, 2H, 2S, 2N bids since they are
very rare. Obtaining suitable samples of such hands require large amount of training set.
Instead we decided to selectively insert the patterns, which are rare, into the training set.
Nearly 600 hands from the 2 level bids were added along with nearly 1000 hands from the
1level bids. Asa result we obtained 1600 hands to train the network. This network was
trained using five different architectures having 40, 45, 50, 55, and 60 hidden nodes. The
mean square error of the network for this training set is shown in Table 3.6. The network
with 50 hidden nodes gave the best performance. Results produced by the network are
givenin Table 3.5 and 3.7. The network has bid correctly for about 72% of the test hands,
which were not part of the training set. Initially we planned to give only positive samples
of hands for the bids which we wanted the system to make. But we found that for the
system to perform well, we also had to give a large number of hands for which we did
not want the system to make a bid. Hence, we introduced all those hands under the bid



Tabl e 3.4: Bids made by the 1-Levd network. Strong imbalanced hands
are labelled "Unknown" for training purpose. However sometimes (e.g., the
sample no. 2) the system did better by opening 1C. Also, in the sample no. 3,
the network's bid seems to be better! The discrepancy in the last example is
also typical of human players.

No. | Hands Points | Expert's | 1-Leve
(S)-(H)-(D)-(C) bids | network

1 || KJ6-Q62-K94-A864 13 1C 1C
2 || -4-AT942-AK J8974 12 U 1C
3 || J8-KQT643-KQ92-T 11 P 1H
4 || K64-AQ874-AT953 13 1C 1C
5 | AKQT9-J765432-9- 10 U P
6 || AT63-KQJT6-AT73 14 1D 1D
7 | AQT87-K4-AKT4-Q7 | 18 18 1S
8 || AKJ9542-QJ852-6 11 U U
9 || 62-AT3-J942-AKT7 12 1C 1C
10 || Q653-AKJ8-AJ-974 15 1H 18




"Unknown".

Experiment with modular networks: In the bidding problem we have observed that
a) large networks are difficult to train, b) a 1-Level network performs well, and c) a 2-
NT network does not learn wel because of lack of data for 2-Leve bids. But, if specific
data are added for the 2-Level bids, then it may perform well. From these results, it
can be clearly observed that smaller networks are easier to train, and consequently they
also perform better. Looking at the task environment, one can see that al the bids
made at higher levels are speciaized. In addition, they deal with hands that are less
frequent. Hands with four card and five card suits are most common (80%) and the
bidding systems are designed to use the cheaper (low level) bids for these hands. To
design a complete ANN system would require sufficient training samples. |t appears
reasonable to consider the high level speciaized bids as exceptions, and train different
networks to deal with them. Thus one would have a modular structure of the network,
each module catering to a specialized situation. Following this line, we employed one
module for each level of output bids. Since output bids upto third level are present, we
used total three modules. The first moduleisfor thefirst level bids. It can classify Pass,
1C, 1D, 1H, 1S and 1N. Similarly, the second module is for 2C, 2S, 2H, 2D and 2N. The
third module is supposed to classify 3C, 3D, 3H and 3S. Note that none of the module
has the output class "Unknown". For each module we used FFNN with one hidden layer.
All the modules have fifty hidden nodes. Let the training sets for the first, second and
third modules be called “TrainingSet1”, “TrainingSet2” and “IrainingSet3”, respectively.
The size of “TrainingSetl”, “TrainingSet2” and “TrainingSet3” are 1200, 700 and 400,
respectively. These training sets will be used again in the subsequent chapters for the
experiments. For all the modules the convergence was achieved during training. Three
test sets “TestSetl”, “TestSet2” and “TestSet3” are formed to test the performance of
the first, second and third modules, respectively. These test sets will be used again in
the subsequent chapters to compare the performance of other networks. When the test
data sets are presented to the first, second and third modules, the classification results
are shown in Table 3.8, 3.9, and 3.10, respectively. The overall classification result of the
third module is quite high compared to the other modules. It is because if the hand is
strong, then Bridge players have less problem in giving the higher level bids.
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Table 3.5: The bids made by the 1-Level and 2-NT networks for some hands
are shown. Bids made by two experts are also included. Bids marked “**” are
incorrect. " T impliesthe card number 10.

No. | Hands Points | Expert's | 1-Leve 2-NT
(S)-(H)-(D)-(C) bids | network | network

1 || AT5-J983-K5-AJT5 13 1C, 1H 1C 1H
2 || AQ6-A752-AT2-KQ3 19| 1C, 1H U 1C
3 || A95-AQ9-543-AQ93 16 | 1C, IN 1IN 1C
4 | K85-K94-KQJ94-96 12 P, 1D 1C** 1D
5 || T-AK6-J8642-QJ63 11 P, 1D P 1D
6 || KJ3-T-QT9643-AQ9 12 P, 1D 1D 1D
7 || AQ84-AJ984-J92-9 12 P, 1H 18 P
8 || AQ8-AQJ6-63-AJ94 18 | 1H, 1IN 1C 1C
9 || 974-A732-AK6-QJ6 14| 1C, 1H 10 1H
10 || 8753-4-AT5-AKT98 11 P, 1C P P
11 || 98-AK6-K854-AK43 17| 1C, 1IN 1C 1C
12 || QJ72-K743-K9-A54 13 1S, 1H 1S 1S
13 || Q72-A98-Q64-KJ92 12 P, 1C P P
14 || JT4-J8-AKQ6-AQ64 17| 1C, 1N N 1C
15 || AKQ97-52-T3-9853 9 P, 25 U 2S
16 || K843-A64-A52-AT3 12| P18 1S 1S
17 || K832-AKJ3-QT5-K6 16 | 1N, 1H 1S 1H
18 || -Qo8762-KQ753-Q3 9| P 1H P P
19 || 8-QJ5-A74-KJ9875 11 P, 1C P P
20 | K8-AT94-JT7-AT65 12 P, 1H 1H P




Table 3.5: (Continuation)

No. | Hands Points | Expert's | 1-Leve 2-NT

(S)-(H)-(D)-(C) bids | network | network
21 | 97-5-AKQ8754-AK?2 16 | 2C, 1D 1D 1D
22 | 96542-AQI-AKQ7 16 | 1S, 1D 1S 1C
23 | AJ75-4KJT6-AKT8 16| 1D, 1C 1C 1D
24 | A6-QJ86-J94-KQJ9 14| 1H,1C 1C 1C
25 || T8-AT5-K976-A874 11 1N, P 1C 1C
26 | KQ-QJ7642-QJ92-T 11 P, 1H 1H 1H
27 | K87-J8-AKQ8-AKQ2 2| 1C, 2N U N
28 | KT84-KQT7-K63-T2 11 P, 1S P P
29 | AJ-Q64-J42-AKJ85 15| 1N, 1C 1C 1C
30 || A632-3-96-KQJ863 10 P, 1C 1C P
31 | 965-AT8762-J7-A9 9 1H, P P P
32 | Q7-A74-A2-KQJ972 16 | 1D, 1C 1C 1C
33 | 3-T6-KT74AQJT74 10| P, 1C P P
34 || AKJ3-982-J85-KQ5 14| 1S, 1C 1S 1C
35 || 92-KQ6-A93-AQJ73 16 | 1N, 1C 1C 1C
36 || 94-KQ3-AQT2-J632 12 P, 1D 1D 1D
37 | -A874-AJT52-AQT5 15| 1C, 1D 1D 1D
38 | 2-JT86-AQT9864-Q 9 P, 3D U P
39 | K95-94-A852-AT83 11 P, 1D P P
40 | Q-A743-AJ5-A8732 15| 1H, 1C 1C 1H




Table 3.5: (Continuation)

No. || Hands Points | Expert's | 1-Leve 2-NT

(S)-(H)-(D)-(C) bids | network | network
41 || -A642-AKT83-J943 12| 1H, 1D 1H P
42 | AJ76-AQT73-75-J87 12| 1S,1H 1S 1S
43 | AQJ73-KT85-42-72 10 15, P P 1S
44 | KQ98754-83-Q7-A2 11 1S, 25 1S 25
45 || QJ6-Q-KT864-A854 12 1D, P 1D 1D
46 || 743-Q65-AKT7-KQ9 14| 1C, 1D 1N P
47 | J4-AJ654-J53-KJ9 1 P, 1H P P
48 || K8653-3-7-AKJ753 11| 3C,1C 1C 1S
49 || AT5-AK-Q9532-KQ3 18| 1N, 1D U 1N
50 | A3-AT2-KT64-AKQJ 21| 2C,1C U| 1N*
51 || 75-A3-AQT632-AK5 17| 1N, 1D 1D 1D
52 || K53-QJ3-QJ8753-3 9 3D, P U 2D
53 || Q-KQ65-AKQ74-Q43 18 | 1IN, 1D 1H 1D
54 || A7-K8643-K863-A8 14 1S, 1H 1H 1H
55 || K-AJ8-AK965-QT87 17| 1IN, 1D U IN
56 || A943-Q432-Q52-A2 12 1C, P P 1S
57 || K87-AT9-J87-A972 12 1C, P P 1C
58 || JT86-AK43-76-AQ7 14 1S, 1H 1S 1S
59 || 982-Q652-AKQT-K5 14| 1H, 1D 1D 1H
60 || KQJT85-A96-743-8 10 3S, 25 P 25
61 | AT982-QT2-A3-J65 1| 1S,P 1S 1S
62 | AJ32-AQ93-5-AQJ2 18| 2C,1C U IN**
63 || 76-AKQJ653-7-KQ9 15| 1H, 4H 1H 1H
64 || 5-AJT8753-K4-K93 11| 3H, 1H 1H 1H




Table 3.6 Mean square error o the 2-NT network after training. 52 input
nodes and 12 output nodes are used. The number of iterationsand the number
of hands are 5000 and 1600, respectively.

No. of Mean square
hidden nodes error
40 23.15
45 22.68
50 15.21
95 15.17
60 17.19

Table 3.7: Bids made by the 2-NT network. Many experts would open the
sample no. 4 with 2H, because the key feature - long solid suit is present. In
the sample no. 8 the system has in fact done better by opening 1D. In the
sample no. 9 it possibly had to choose between "Unknown" and 1C, since it
does not know the 3N bid, which is very specialized.

No. || Hands Points | Expert's 2-NT
(S)-(H)-(D)-(C) bids | network

1| KJT4-QT9762-A-T3 10 P 1H
2 | A8-QT2-KQJ97532- 12 1D 1D
3 || 7-QJ98-QJ8752-T3 6 P P
4 || Q-KQJ852-73-K983 11 P 2H
5 || K94-A5-AJT743-74 12 1D 1D
6 | AK8742-J4-K852-9 11 1S 1S
7 || AT9872-5-K54-643 7 28 2S
8 || A-K82-QJ9642-Q97 12 P 1D
9 || J6-JT-8-AKQ98654 11 3N 1C
10 || 84-KJT9542-Q8-A3 10 2H 2H
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3.4 Summary

The aim of the work reported in this chapter is to explore the possibility of capturing
the reasoning process used in bidding an opening bid in Bridge game using an ANN. The
network captures the implicit mapping in bidding a Bridge hand adopting a standard
convention (bidding system) which acts as a guide or a wesk constraint on the mapping
function. We used an FFNN with BP agorithm as a classifier, whose input is a hand and
the output is the corresponding opening bid. The input is represented as a series o 52
one/zero Where presence or absence o a card is denoted by 1 or 0. While experimenting,
it turned out that the training of the whole network is time consuming. Moreover, in
many cases the network do not converge at all. Possible reason may be that the network
iIsnot able to tackle the uncertainties. We adopted a modular structure to deal with the
uncertainties. Three modules are used to deal with the first three levels d opening bids.

Thestudies reported in this chapter demonstrate that a neural network can be trained
to capture the implicit reasoning used for bidding a hand in the Bridge game. The
present study clearly brings out severa interesting research issues. Thefirst issue is the
representation of theinput data. In situations like card games, representation in raw form
appears preferable, as any feature representation is likely to be subjective and may result
inloss o information. In contrast, in problemsdealing with image and speech data, it is
essential to represent the data in a manner that reflects the visual and auditory sensory
processing, respectively. Errors in the feature representations are usually responsible for
poor generalization performance in the pattern recognition tasks involving image and
speech. The second major issueis training a network with patterns occurring with widely
different probabilities. Thisisadifficult issuein many practical problems. For example, in
optical character recognition different characters occur with widely different probabilities.
Similarly, in speech recognition different speech sounds occur with different probabilities.

This chapter demonstrates that modular networks can be used for the opening bid
problem. The classification efficiency may further be improved if the feature vectors
corresponding to each module are modified depending on the output classes present in the
module. The discussion in chapter 4 isaong thisline. Chapter 5 and 6 will concentrate on
how to design each module. In chapter 7 we will combine the results of all these modules.
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Table 3.8: Classification performance of FFNNs with BP algorithm for first

level bids.
Pass 1C 1D 1S 1H 1N Overal

85.12% | 66.83% | 63.13% | 71.82% | 77.16% | 64.52% | 71.43%

'Pable 3.9: Classification performanced FFNNs with BP algorithm for second
level bids.

2C 2D 2S 2H 2N Overdl
61.04% | 75.71% | 77.56% | 72.33% | 74.34% | 72.19%

'‘Pable 3.10: Classification performance o FFNNs with BP algorithm for third
level bids.

3C 3D 3S 3H Overall
75.17% || 77.28% | 83.54% | 84.97% | 80.24%




Chapter 4

IMPORTANCE OF INPUT FEATURES IN
CLASSIFICATION: ROUGH-FUZZY SET
THEORETIC APPROACH

4.1 |Introduction

In the last chapter a modular network architecture is advocated for complex pattern
classification problems like opening bid problem. This chapter attempts to fine tune the
input features specifically for each module so that the class discriminatory capability of
theinput patterns are enhanced. In order to accomplishit, the importance of each feature
Is quantified, and the input representation is biased accordingly. Therefore, this chapter
deals with feature analysis. In actual Bridge game, players impose different weightages
on each card. These weightages depend on the player, level o the game and many other
factors, e.g., experience of the player, characteristics d the player, vulnerability, etc. This
fact also justifies the quantisation o the importance o each feature for each module in
the opening bid problem.

In the modular structure, each module exploits the uncertainties locally, and spe-
cialisesto classify only a group of output classes. Since the class discriminatory property
of al the input features are not same for different sets of output classes, the repre-
sentation of each pattern for a particular module should be fine tuned based on the
output classes present in the module. One way to accomplish it is to put different impor-
tance on each feature. The input representation for each module can be biased so that
the feature with higher importance gets more weightage. Determination of the impor-
tance [SB97] [WAMY7] is generally based on a criterion function and a search strategy.
The search strategy chooses a set of importance among niany possiblesets of importance,
while the criterion function decides whether a set of importance is superior to another
set. The search techniques, that exist in literature, can be broadly classified into filter
approach and wrapper approach [SB97] [WAM97]. Thefilter approach depends on acrite-



rion function which is classifier independent. In contrast, the wrapper approach uses the
classifier accuracy to judge whether a particular set of importance is superior to another
set. The wrapper approach can be used only with the classfiers of low comp'utational cost
like K-nearest neighbours (KNN) algorithm, decision tree, etc. In addition, the wrapper
approach may cause overfitting as the learning algorithm is fitted by the change of input
features [JK95]. We prefer thefilter approach as thistechniqueisgeneraly applicable, and
can be used with complex classifierslike feedforward neural networks with BP algorithm.

Most of the classifiersclassify a test input based on the fact that the more similar the
test input isto theset of training patterns, the higher is the possibility that this test input
belongs to the same class: Therefore, the similarity between the inputs is a crucial one.
The input representation, leading to a reinforcement of similarities between the inputs
from the same class and detoriation of the similarities between the inputs from different
classes, may lead to enhancement o the classification performance. Following this line,
in pattern recognition literatures [PC86], [TG74], an input feature s is considered to be
important if the compactness and interclass distance of all the classes along the sth axis
is high. In this chapter we attempt to exploit this criterion to measure the importance of
each feature. The compactness of the classes are affected when the classes are overlapping
and the patterns with the same sth feature have different class labels. In card gamesit
indeed happens because the output bids are fuzzy and the output bids are not unique
for the same card. It implies that the compactness of the classes can be estimated if
we can quantify the roughness and fuzziness associated with the sth feature. In this
spirit, a rough-fuzzy set [DP92] theoretic measure roughfuzzy entropy is proposed as a
criterion function. To measure the rough-fuzzy entropy, it is essential to know the fuzzy
membership values of the training data in the output classes. Possibilistic K-means
algorithm is proposed to accomplish it.

As a search technique, an iterative method is adopted here. The iterative procedure
starts assuming equal importance for all the features. At thefirst iteration, the value of
rough-fuzzy entropy is calculated, and using it the set of importance is updated. In the
next iteration the input features are weighted by thisset o importance. The rough-fuzzy
entropy is further calculated for this modified feature vector, and the importance are
updated accordingly. The iterative method goes on until the criterion function attains
a local minimum. Subsequently, the resultant set of weightsis used to bias the input
representation of each hand so that more important features get more weightages, and
eventually result in a better classification.



The organization of the chapter is as follows: Section 4.2 discusses fuzzy K-nearest
neighbors algorithm. Section 4.3 embodies the proposed method. Section 4.4 illustrates
the efficacy of the proposed method through some experiments. The basics of rough sets
and rough-fuzzy sets can be found in Appendix-B and Appendix-C.

4.2 Background of Fuzzy K-Nearest Neighbors Algorithm

Fuzzy K-nearest neighbors algorithm (FKNN) classifiesan input pattern x by assigning
it a fuzzy membership value. The membership of x depends on a) the vector distance
between x and the K-nearest (K isa positiveinteger) input training patterns, and b) the
memberships of those neighboring training patterns in the possible classes. Let X =
{x1,%2,...,%n} be aset of input training patterns for whom the corresponding member-
ship assignments are already known. Let u.(x;) be the membership of the ith training
pattern in the cth classand 1 < K < n. Theinitial memberships on each training pattern
can be assigned in the following two ways [KH85]:

1. Crisp membership: Each training pattern can have complete membership in
their known class and nonmembership in al other classes.

2. Constrained fuzzy membership: The K-nearest neighbors of each training
pattern are found, and the membership in each class is assigned according to the
following equation:

= (4.1)
0.49 otherwise

\ {O.Sl"‘n,-/K ifj =1
The value n; isthe number of the neighbours found which belong to the jth class.
This initialization technique fuzzifies the memberships of the labelled samples that
arein the overlapping class regions. Moreover, the samples that are well away from
the overlapping area, are assigned with complete membership in the known class.
Conseguently, an unknown samplelyingin the overlapping region will be influenced

to a lesser extent by the labelled samples that are also in the overlapping area.

The algorithm to find the membership of a test pattern x in the cth class, i.e., uc(x),
isshown in Fig. 4.1 [KH85]. In Equation (4.2) of Fig. 4.1, g determines how strongly the
distance is weighted when calculating each neighbour’s contribution to the membership
value. Generally, the value of g is taken as 2.



Set =1.
DO UNTIL (K-nearest neighbors of x are found)
Determine the distance between x and xi.
IF (i < K)
Include x; in the set of K-nearest neighbors.
BHSE IF (x; is closer to x than any previous nearest
neighbor)
Delete the farthest of the K-nearest neighbors.
Include x; in the set of K-nearest neighbors.
END IF
Set i =14 1.
END DO UNTIL
Set c=1.
DO UNTIL (x is assigned membership in all classes)
Determine u.(x) using

3 pelxe) (1/ lpe = el 77

- (4.2)
> (1/flx = xP/)
k=1

/‘c(x) =

Set c=c+1.
END DO UNTIL

Fig. 4.1: Fuzzy K-nearest neighbors algorithm. The input consists of a set
o labelled patterns and a test pattern. The output is the class membership
value dof the test pattern.




Lemma 4.1: In a C-class classification problem, the class membership assignments on
the test patterns by the FKNN are constrained fuzzy.

Proof. The membership of the test patterns are constrained fuzzy because the initial
class membership valuesfor the training patternsare constrained fuzzy. It can beformally

shown by the following steps:

K
> pe(xx) (1/ flx = x| /00D
Lo = &t (el T)

K
c=1 c=1 2 (1/ ”X _ xk”2/(¢1—1))
k=1

2 (1/ e = xil70) Sy (i)

k=1
K
35 (U e 7)

Since £ pelxi) = 1,

M=

(1/ llx — xk“'/-’/(q—l))

(1/ 1l = ] */@=)

—
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c
g He(x)

1

I
—

(4.3)

Consequently, the membership values assigned on each test pattern cannot distinguish
between equal evidence and ignorance.

4.3 Proposed Method

4.3.1 Criterion Function

In an N dimensional input pattern x € X, the sth feature is considered to be important
if the compactness and the interclass distance of al the classesalong thesth (1< s < N)
axis is high. A measure of compactness and interclass distance can be a criterion to
measure the importance of the sth feature. This measurement becomes complicated
because two patterns x, and x, may be identical based on their sth feature; but they
may belong to two different classes. That is, the relationship between the sth feature and
the class labels may be a one-to-many mapping. Thislack of discriminatory power of the
featureis due to the fact that we are not considering other features like the player's past



experience, vulnerability, etc., into our account. In other words, we do not have sufficient
amount of information about the problem. To determine the importance of the sth feature
with such incomplete knowledge, the concept o rough set is helpful. In the terminology
of rough set, two input patterns x, and x, are caled indiscernible or indistinguishable
with respect to the sth feature when the sth component o these two patterns have the
same value. Mathematically, it can be stated as

XoR%X, iff Tus = Tos (4.4)

where R’ is a binary relation over X x X. Obvioudy, R* is an equivalence relation.
Therefore, R® partitions X into a set o equivaence classes, namely {X?, X3,..., X%}
The sth feature alone is sufficient to classfy al the input patterns to the cth class iff
X/Re, ie., {X}§,X3,...,X%}, approximates the boundary o C. accurately. In this case
BNDg(C.;) =0 or B’ (C.) = R*(C.). It implieseach X{, 1< i < H, either belongs to the
positive region of C. or negative region o C.. If this condition holds, the output class
C. achieves a high degree o compactness and large interclass distance along the sth axis.
Therefore, the extent to which X/R* approximates the output class C, can be a measure
of importance of the sth feature to classify the patterns to that class.

In the opening bid problem the output classes are overlapping, and hence, C; is a
fuzzy set. This brings the concept o a rough-fuzzy set. In the current context, a rough-
fuzzy set <F’(Cc),&(cc)> is defined as follows: Lower approximates R*(C.) and upper
approximates R’ (C.) of C. are fuzzy sets of X/R¢®, with membership functions defined
by [DP92]

pre(c)(Xi) = inf {pc, (x)]x € Xi) (4.5-3)
PR (Xi) = sup{uc.(x)|x € X;} (4.5-b)

Here, pre(c.)(Xi) and pge(c,)(Xi) are the membership values of X in B*(C.) and R’(C.),
respectively. Since the number of training patternsis finite for al practical purposes, we
can substitute inf by min and sup by max in (4.5-a) and (4.5-b), respectively.

To measure the importance of the sth feature to classify all the input patterns into
the cth class, we define rough-fuzzy entropyfor the sth feature and the cth class as

VI IS [l‘i Inpi + (1 = 423) In(1 - pss) (4.6)
€ HIn2i=1

where 1 represents either pgs(c.)(Xi) or pzs () (Xi) throughout the equation. From (4.6),
it can be noticed that H{ increases monotonically in [0, 0.5] and decreases monotonically
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in [0.5, 1]. It reaches the maximum value when g; = 0.5 Vi, and minimum value when
i = 0 or 1 Vi [PB95]. The lower the value d H! is, the greater is the number of
X’s having u; ~ 1 or p; = 0, i.e., lessis the difficulty in deciding whether X; can be
considered a member o C, or not. In particular, when g; ~ 1, greater is the tendency of
X; to form a compact class C. along the sth axis, resulting in less internal scatter along
the sth axis. Moreover, when y; ~ 0, X; isfar away from the cth class, and hence, the
interclass distance increases along the sth axis. On the other hand, when p; =~ 0.5, X;
lies in between C, and the other classes along the sth axis. Hence, both compactness
and interclass distance along the sth axis decrease. The reliability o a feature s, in
characterizing the class C;, increases as the corresponding H: vauedecreases. Therefore,
H? quantifies the importancedf the sth input feature for the classC.. We introduce total
roughfuzzy entropy for thesthfeature to quantify the importanced the sth input feature
for all the classes. It isdefined as

H =3 P (4.7)
c=1

Here P, is the weightage that has to be given to the cth class. One possible choice for
P, isthe a priori probability of the cth class. Note that #* lies in [0, 1]. Evidently, the
more the value of H? is, the lessis the importance of the sth feature.

The value of H, depends on the choice of ;. When we take p; = pgec.)(Xi), we are
basicaly pessimistic as (4.5-a) involves min operator. Similarly, when we assume y; =
,uﬁs(cc)(X.-), we become optimistic as (4.5-b) involves maz operator. In (4.7) these two
choices result in the two extreme bounds for H*. It indeed depends on the application
which one we should take as the importance [PP92], because (4.5-a) and (4.5-b) are
equivalent to asking the question "to what extent {x{x € X;} as a whole belongsto C.?”.
For example, in a quiz team if y; is the ability of the ith member, the ability of the team
as a whole is max; (1), because if one member succeeds the whole team succeeds [PP92].
On the other hand, suppose a group of acrobats are standing in such a manner that all of
them fall if any one of them falls. If u; is the stability of the ith member, the stability of
the team as a whole is min;(y;). However, our concern also may be to obtain a measure
in between these two extreme cases. Hence, we need some kind of aggregation operator
in between min and max to generalize the definition of H*. It can be conveniently done
by Yager’s ordered weighted average (OWA) operator [Yag33].

The term min in (4.5-a) measures the degree to which all the X;’s are classified to
C.. Similarly, the term maz in (4.5-b) measures the degree to which at least one X; is



classified to C,. It is natural to consider other t-norm and t-conorm operators [KY95] in
place of min and max, respectively. Using OWA operator "' softening” is done by changing
all to most and at least one to some. A mapping W: [0, 1]* — [0, 1] iscalled an OWA
operator if there exists a weighting vector w = [wy,ws, . ..,w,]| associated with W. The
characteristics of the weighting vector w are

1. w; € [0, 1],

3. W(ay, as,...,3) =wib Twby T . . T wyb,, whered; istheith largest element in
the collection ay, ao, ..., a.

In [Yag93] Yagerillustrated how different assignments of the weights allow implementation
of different quantifiers. For example, w; = 1 and w; = 0, Vi i # 1, provides the maz
operator. On the other hand, wy, =1 and w; = 0, Vi i # u gives the min operator.
Moreover, w; = L Vi yields the average. It shows that the more the weights are near the
bottom, the more AND-like the aggregation is, and the more the weights are near the
top, the more OR-like the aggregation is.

There are two specia types of OWA operators [Yag93] [Cho95], which are useful for
extending the concept of rough-fuzzy set. They are called SOWA-AND and S-OWA-OR
operators. The SSOWA-AND operator is defined by

l—-a

Walar, ag,...,ay) = > a; + omin{a;} (4.8)

u

The parameter « liesin the unit interval. The closer « isto one, the more AND-like the
aggregation becomes. In (4.5-a) we can obtain the effect of SSOWA-AND operators by
replacing min{uc, (X) | x € X;} with

l—-a ) \
_|X| Z ke, (x) + amin {,ucc (x)|x € X,-} (4.9)
tl xeX;
On the other hand, the SOWA-OR operator isfor an OR like aggregation. This operator
is defined by

Ws(a1,as,...,0,) = #Zae + fmax{a:} (4.10)

Here again the parameter § liesin the unit interval and the closer 4 isto 1, the more like
apure OR theoperation is. In (4.5-b) we can obtain the effect of SOWA-AND operators



by replacing max{ﬂcc(x)lx € X;} with

|X| Zucc +ﬂma.x{,ucc( )|xeX.} (4.11)

xe X;

Thus the OWA operators generalize the definitions given in (4.5-a) and (4.5-b). Conse-
guently, the definition of the criterion function given in Equation (4.7) is also generalized.

4.3.2 Possibilistic K-Nearest Neighbors Algorithm

To calculate (4.7), we need to determine the membership values u.(x) Ye Vx. Since
the membership assignment should be possibilistic to extract the maximum advantage of
fuzzy sets, we modify the FKNN algorithm to possihilistic K-nearest neighbors (PKNN)
algorithm. Other than Equation (4.2), the steps of the PKNN algorithm are exactly
similar to that of the FKNN algorithm. In the PKNN algorithm Equation (4.2) is modified
as

1 XK (X

helX) = g LT3 n||)/:—( :,3“2/(::—1) (4.12)
where « is a parameter that decides the bandwidth of the membership, i.e., the point at
which p.(x) attains the vaue 0.5. One way to assign the value of « is by making it equal
to the average distance between any two training patterns. The initial memberships can
be assigned in the following three ways a) Crisp initialization: As done in the case of
FKNN. b) Constrained fuzzy initialization: As done in the case of FKNN. ¢) Possibilistic
initialization: The initialisation can be possibilistic if certain domain specific knowledge
IS present.

Lemma 4.2: For a C-class classfication problem, the membership assignments of the
test patterns in the PKNN are posshbilistic even if the initial class memberships for the
training patterns are crisp or constrained fuzzy.

Proof.
c c K
1 ;uc(xk)
c(z) = ) —
;,u (z) ; K kz:‘l 1 + Kl|x — xx||2/(a-1)
) ppm— 5 )
= = Kl Xg
K k=1 + ,i“x - xk“2/ q— c=1
1 X 1
- 4.13
Kkz; 1+ &||x — xg||?/(a-1) ( )



Since TC., k. (z) needs not to be equal to a constant, the resultant classification proce
dureis possihbilistic [KY95] [PB95]. m

In the opening bid problem, the membership valuesaf al the training patternscan be
obtained in crisp form. The sole purpose of using the PKNN algorithm is to fuzzify the
crisp membership values of the training patterns in a possibilistic manner. All training
patternsare used to construct the PKNN algorithm. Now a training pattern is considered
as a test pattern for the PKNN. The PKNN algorithm is used for only one iteration.
The closest neighbor of any test pattern will be the pattern itself. The output of the
PKNN algorithm will give the possibilistic class membership values of the test pattern.
The possibilistic membership value corresponding to each training pattern can be found
similarly. This technique issimilar to obtaining a blurred image from a noisy image (i.e.,
image smoothing).

Experimentally it is observed that the performance of the PKNN is comparable to
that of the FKNN. However, the PKNN has an edge over the FKNN as the membership
valuesgenerated by thefirst oneis possibilistic, whereas the membership values generated
by the later one is constrained fuzzy.

4.3.3 Optimization Technique and Weight Update

Depending on the importance o afeature, thefeatureis biased by assigning some weigh-
tage on it. If the jth featureis very important, then the importance of the feature I; is
assumed to be close to 1. On the other hand, if the feature is redundant, then the value
of 7; is taken as 0. The importance is found using an iterative procedure (see Fig. 4.2).
The iterative process starts with the origina input x = [z}, zs,...,zx]. The importance
of each input featureisinitially assigned as1, ie., at starting | =[1,1,..., 1]'. In the first
iteration, the input features are weighted by | such that the modified feature vector be-
comesy = | * x. Here the operation * signifiesa component wise multiplication between
the two vectors, ie., | * x = [[ 1y, z,,... ,INxN]'. The PKNN algorithm is applied on
the modified feature vector (which is discrete) to determine the fuzzy class membership
values. The change of importance Al = [AT}, ALL,..., AIL{ for the modified featureis
determined using

AIM = (1- H*) Vs (4.14)

Now the value of importance is updated as | = I+AI'. In the next iteration, the input
features are weighted again usingy = | «*x. Since this modified input set is not dis-



Feature
biasing

Deter mination of
rough-fuzzy
entropy

Input

Discretisation [ PossbilisticKNN = ——pw

Weight update

Fig. 4.2. Flow diagram to show how the feature weightages are determined
iteratively using rough-fuzzy method. The training patterns are the inputs to
the flow diagram. The importance | is the output o the of the flow diagram.
| *x implies [y, LT3, ..., Inzal.

crete, it cannot be used directly to calculate the rough-fuzzy entropy. It is discretized by
rounding each feature value to the closest integer value. The fuzzy membership values
corresponding to the modified feature vectors are reevaluated from the PKNN algorithm.
These membership valuesare used to calculate the rough-fuzzy entropy. Again the change
of importance (A1?) is determined, and the importance is updated as | =1 x A12. The
iterative process is continued until alocal minimum is reached, i.e., there is no significant

change in the value of
H=) H’ (4.15)

Finaly the modified feature vector is y = | = X, where | is the importance &f-
ter the fina iteration. The complete algorithm is shown in Fig. 43. Appli-
cation of this method will result in more impact on the distance measure hy
the important features. For instance, the distance between the modified feature
vectors y; and y; is d(yi,y;) = \/(yil_yj1)2+(yi2_yj2)2+---+(yiN_yjN)2 =
\/112(2:,'1 "'-'L'jl)2 + 122(33:'2 _-'I«'jz)2 + e +112v(1:,‘1v - -’EjN)2- If I, >> I, Vv # U and u, U €
{1,2,...,N), then the value of d(yi, y;) will be dictated by the uth feature only.

4.4 Resultsand Discussion

Before using the proposed method on the opening bid problem, we will show the ef-
fectiveness of the proposed method on some artificially generated two-dimensional data
sets.



Initialize |l as an N-dinensional vector [1,1,...,1]'.
Set +=1.
Assign the maxi num possible value of X, i.e., Nto .
DO
fHold=H
Find nodified feature vectors using y =x=«1.
Discretize the nodifies feature vector.
Use PKNN to determne the fuzzy nenberships of the
training patterns to all the classes.
FORfeature s=1to N
FCRclass c=1to C
Conpute #H: from (4.6) .
Calcul ate the a priori probability P..
BEND FCR
Conpute #H* from(4.7)
Deternine AI' using (4.14).
BEND FCR
Qonput e | = IxATL.
Set i1=t1+1.
Conpute 31 from (4.15) .
END DO UNTI L abs(#°1d — %) is larger than certain prespecified
const ant
| stores the inportance of all the features.

Fig. 4.3: The proposed algorithm to determine the importance of input fea-
tures using the rough-fuzzy entropy. The input to the algorithm is the set
of training patterns and the output of the algorithm is the importance of the
features. The term abs(x) represents the absolute value of x.




Table 4.1: Importance of features against the number o iterations for the
data set shown in Fig. 4.4.

No. o Importance | Importance
iterations || of z, o z,

1 1.0000 1.0000

2 0.0522 1.0000

3 0.0001 1.0000

4 0.0000 1.0000

5 0.0000 1.0000

For the first experiment we use the 2-Class data set shown in Fig. 44. The datais
discrete. The number of inputsis 120, and the dimension of each input is two. In the
data set, some patterns from the class C; and C, are present with the same z; value.
Hence the classes are indistinguishable based on z;. It creates rough uncertainty. On the
other hand, the feature z issufficient for classification. We used PKNN to determine the
possibilistic membership values o the inputs. Since the overlaps between the classes are
minimum, the generated memberships are almost crisp. The parameter P, of the PKNN
Is made equal to the fraction of the number of training patterns in the cth class to the
total number of patterns. The importance of each feature is found by using o = 0.5.
Fig. 4.5 shows the change of total rough-fuzzy entropy against the number of iterations.
The iterative process converged within 5 iterations. The importance of both the features
after each iteration are normalized. Otherwise after a certain number of iterations, the
importance will be so small that roundoff error will take place in digital computers. The
change of importance (normalized) is shown in Table 4.1. The fina importance for z,
and z, are 0 and 1, respectively. The final importance for z; (or z3) is obtained by
multiplying all the entries present in thefirst (second) column of Table 4.1. The vaue of
final importance indicates that the feature z, isredundant and the feature z; is essential.
It tallies with our visual observation also.

The next experiment is on the data set of a 2-class problem. The number of inputs
Is 140, and the dimension of each input is 2 (see Fig. 4.6). The features are al discrete.
In this problem the output classes are indistinguishable with respect to the feature z;.
The classes are quite separable with respect to the feature z,. Unlike the data set shown
in Fig. 4.4, here the output classes are overlapping to some extent. The possibilistic
membership values are determined using the PKNN. The importance of each feature is
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Fig. 4.4: Artificialy generated input data set for the first experiment. The
horizontal and vertical axes represent the feature z, and z,, respectively. The
points with the symbols ‘+’ and ‘.’ represent the patterns from the classes

C, and C,, respectively. The classes are indistinguishable with respect to the
feature z,. But the classes are distinguishable with respect to the feature z2.
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Fig. 4.5: Change d total rough-fuzzy entropy with the number o iterations
for the dataset shown in Fig. 4.4.

found by usinga= 0.5. Fig. 4.7 shows the change o total rough-fuzzy entropy against the
number o iterations. The iterative process converges within 25 iterations. The change
of importance after each iteration is shown in Table. 4.2. The final importance of the
features z; and z; are 0.0511 and 1.0000, respectively. It implies that the feature z; is
not an important feature.

Next we apply the proposed method on the opening bid problem. Weinitially collected
aset of patterns with class labels corresponding to first level bids. The crisp membership
value corresponding to each pattern is known. The possibilistic membership of each input
pattern is determined by using the PKNN algorithm. In the PKNN, P, is taken as the
fraction of the number of training patternsin the cth classto the total number of patterns.
The importance of each feature is found by using a = 0.7. Instead of a = 0.5, we have
kept o = 0.7 so that the calculation becomes dlightly optimistic. The iterative process
was continued for 25 iterations. The value o rough-fuzzy entropy against the number
o iterationsis shown in Fig. 4.8. The ranking o the features, as given by the proposed
method, in a decreasing order is:. UA,OK, &A4,UA, OA, 4Q, 8K, 49, OK, O7,0Q,
O, 8T, 82,05, V4,5, ..., 03,87, ..., O8,#8,04, #2 (here “T” represents 10). It
implies that for the first level bids, Ace, King, Queen, Jack cards are more important,
which is also as per the notion o Bridge players. Thereafter, we took “TrainingSetl”
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Table 4.2: Importance o features against the number o iterations for the
data set shown in Fig. 4.6.

No. of || Importance | Importance
iterations || of ; o zo
1| 1.0000 1.0000
2 || 0.9769 1.0000
3 || 0.9453 1.0000
4 1 09118 1.0000
o || 0.8777 1.0000
6 || 0.8433 1.0000
7 || 0.8056 1.0000
8 || 0.7673 1.0000
9| 0.7289 1.0000
10 || 0.6859 1.0000
11 || 0.6429 1.0000
12 || 0.5997 1.0000
13 || 0.5522 1.0000
14 || 0.5014 1.0000
15 || 0.4530 1.0000
16 || 0.4015 1.0000
17 || 0.3503 1.0000
18 || 0.2959 1.0000
19 || 0.2429 1.0000
20 | 0.1842 | 1.0000
21 || 0.1282 1.0000
22 || 0.6781 1.0000
23 || 0.9832 1.0000
24 || 0.9961 1.0000
25 || 0.9901 1.0000




Table 4.3: Classification performance o FFNNs with BP algorithm for the

first level bids.
Input Pass 1C 1D 1S 1H IN Overall

Raw 85.12% | 66.83% | 63.13% | 71.82% | 77.16% | 64.52% | 71.43%
Modified | 85.82% | 69.94% | 72.13% | 70.01% | 78.25% | 69.92% | 74.34%

to train to train a three layered FFNN by backpropagation algorithm. This is the same
training set that we used in chapter 3 to train the FFNNs for first level bids. Each
component o a pattern of this set is multiplied by the corresponding importance. The
number o input nodes, hidden nodes and output nodes are 52, 50 and 6, respectively. We
used theset "TestSetl" for testing. While testing also we use the modified representation
for the test patterns. The class corresponding to a test pattern is chosen as the label
corresponding to the output node with the highest output. With the original input
representation, the network takes 2000 iterations to converge, whereas with the modified
representation the same network takes 1650 iterations to converge, which is significantly
better. Overall classification performance on the same test set with the origina (raw)
and modified representation are given in the first and second rows of Table 4.3.

Similarly the proposed method is used for the bids o second and third levels. The
training sets “TrainingSet2” and “TrainingSet2” areagain considered to train the modules
for the second and third level bids, respectively. The importance are used to weight the
patterns of the training sets. These weighted patterns are used to train FFNNs with BP
algorithm. The FFNN for the second level bids has 52 input nodes, 50 hidden nodes
and 5 output nodes. The FFNN for the third level bids has 52 input nodes, 50 hidden
nodes and 4 output nodes. The classification results for the second and third level bids
on “TestSet2” and “TestSet2” are given in the second row of Table 44 and 4.5. Thefirst
row of Table 4.4 and 4.5 show the classification results when the original input (raw)
is fed to the network. The comparative results show a significant improvement o the
classification results.

45 Summary

This chapter proposes a filter-type feature weighting method. Since the class discrimina-
tory property of all the cards are not same to classify an input hand, the representation
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Table 4.4: Classification performance o FFNNs with BP algorithm for the
second level bi

Input 2C 2D 25 2H 2N Overall
Raw 61.04% | 75.71% | 77.56% | 72.33% | 74.34% | 72.19%
Modified || 67.45% | 76.88% | 78.19% | 75.43% | 74.98% | 74.59%

Table 4.5: Classification performance of FFNNs with BP algorithm for the

third lev

bids
Input 3C 3D 3S 3H | Overall |
Raw | 75.17%177.28% 83.54% | 84.97% | 80.24% |
Modified | 85.14% | 79.43% | 82.46% | 85.11% | 83.03% |
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of each input pattern should be biased based on the importance of each card. This ne-
cessitates a way to measure the importance of each card, i.e., each feature, individually.
A filter type approach, which does not depend on the classifier being used, is employed.
As a criterion function, rough-fuzzy entropy is used. The criterion function is optimized
iteratively. To determine the fuzzy membership values of the training patterns, other
than the PKNN algorithm we could have used other fuzzy classifiers that do not need any
a priort information about the structure of the data.

For different values of a and B we get some interesting results. For example, if
a=0or 3 =0in (49) and (4.11), then pp:(c.)(X:) = pg(c.)(X:) = =7 Lxex; boe(x)
¥x € X;. From Equation (C.2) in Appendix-C, it can be observed that TJ%T Yoxex; He. (%)
is equal to the rough-fuzzy membership function of x for the output class C.. Therefore,
the rough-fuzzy entropy in Equation (4.6) is equal to the rough-fuzzy entropy proposed
in [SY] [SY98d]. In the absence of roughness, each input will be labelled always with
unique class label. In this case, if there is no repeatation of any input, then the num-
ber of equivalence classes will be equal to the number of input data and uge(c.)(Xi) =
b oy (Xi) = pe. (). Thus, the rough-fuzzy entropy for the cth class and the sth feature
becomes

|X]|
H, = —mﬁ > [Mcc (%:) In(pe, (x:)) + (1 — pe,(x:)) In(1 = pe, (x3)) (4.16)

i=1
It is explicitly the fuzzy entropy proposed for feature selection in [PC86] [Pal92]. If no
fuzziness but roughness is present, then pgsc.)(X;) is actually the rough membership
function for any pattern x € X; (see Equation (B.l) in Appendix B). Then the pro-
posed rough-fuzzy entropy can be compared with the definition of rough entropy given
in [PWZ88] and [SY].

The advantages of the proposed method are

1. It exploits roughness and fuzziness simultaneously.
2. 1t ismoderately fast.

3. If we seek to find the importance of the features in terms of intervals, then we
have to run the algorithm twice with pu; =ppe(c,)(Xi) and pi= pge(c,)(Xi)- The
importance of the sth featureisan interval [u, v], where u and v are the importance
with ppec.)(Xi) and pge(c,)(Xi), respectively. Appropriate point in the interval
can be chosen based on the given problem. Instead of an interval, by taking a
specific value as an importance of the feature, we lose some information. In this
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chapter we have adopted a specific value as an importance as processing of the
interval may be complicated in the next stages.

4. For feature selection, a threshold value can be chosen for the importance. All
features with importance lesser than this threshold value will be ignored.

5. It does not depend on the type o the classifier used in the feature analysis stage.
It does not need significant domain dependent knowledge.

The drawback o the method isthat the resultant importance may not be globally opti-
mum.

For the sth module, the derivation of the modified feature vectors using the proposed
method is a mapping from an N dimensional discrete space to an N dimensional con-
tinuous space. For the sth module, we need to find the relation from the continuous N
dimensional space to n, dimensional continuous space (assuming that the sth module
has n, output classes). In the next two chapters we propose two alternative schemes to
capture thisrelation.



Chapter 5

DESIGN OF CLASSIFIER MODULES
THROUGH DIRECT CLASSIFICATION

5.1 Introduction

In this chapter an attempt has been made to build a module using direct classification
techniques. The aim is to capture the relationship between the modified feature vectors
and the fuzzy output classesadf the module. For each module, thischapter proposes FFNNs
with the BP learning algorithm that minimizes certain fuzzy objective functions from
possibilistic classification viewpoint. After training, if a new input pattern is presented
to the network, it yields the outputs as class membership values corresponding to the
input pattern. The classification performance d the FFNNs can be improved further if
the networks are configured optimally. To configure the FFNNSs, the BP algorithm with
the fuzzy objective functions is embedded into a stochastic search operation.

When the output classes are fuzzy, an input pattern may not necessarily belong to
a single class; rather it may belong to more than one class with different degrees o
belongingness. The conventional BP learning algorithm is not tailored to this type of
fuzzy classification problem. Section 5.2 makes an FFNN powerful by proposing a method
to embed fuzzy classification properties into the conventional BP learning algorithm. In
section 5.3 we use evolutionay programming (EP), a multipoint, controlled, stochastic
search and optimization technique, for finding the optimal configuration of the FFNN.
Training and configuring the FRNN involveslocal as wel as global search in the parameter
space. EPisgood for global search, whereasit isdow for local search. Although gradient-
based search techniques like BP algorithms are quite fast for local search, they may get
stuck inlocal minima whileexploring a search space globally. We combine the BP and EP,
and exploit the advantages of both. Efficiencyof this hybrid method is further enhanced
by incorporating the concepts d adaptive structural mutation.



5.2 Feedforward Neural Network Classifiers: Backpropagation Learning Al-
gorithm with Fuzzy Objective Functions

A major drawback of the conventional BP algorithm is that it assigns each input pattern
exactly to one of the output classes, assuming well-defined class boundaries. In rea life
situations boundaries between the classes may be overlapping. This section proposes a
method of incorporating fuzzy classification properties into the conventional BP learning
algorithm. In the opening bid problem, the inputs are modified feature vectors (crisp)
and the output classes are fuzzy. An input pattern may not necessarily belong to asingle
class; rather it may belong to more than one class with different degrees of belongingness.
Unlike the conventional BP, here the number of target classes corresponding to each input
training pattern may be more than one. The aim of the proposed learning algorithm
during training is to minimize an error term, henceforth termed as fuzzy mean square
error. The fuzzy mean square error is the overall weighted sum of the square error
between the actual network output and all possible target outputs, where the weight
signifies the level of belongingness of the input pattern into the corresponding target
class. If a modified feature vector is presented to the network after training, it yields the
output as class membership values corresponding to the input pattern. We also propose
another learning algorithm that tries to minimize an alternative error term, called fuzzy
cross entropy, which is a fuzzy counterpart of crisp cross entropy {Hay94]. Although the
learning algorithms for the fuzzy mean square error and fuzzy cross entropy differ, the
basic philosophy of introducing the concept of fuzzy classification into the crisp error
measure is same.

The sum of one's belief that a particular bid isfrom the class 1C or 1D is not neces-
sarily equal to one. Hence the proposed learning algorithm is derived in such a manner
that the sum total of the membership values for a particular pattern to al the classes
need not necessarily be equal to one. It implies that the membership assignment is not
constrained fuzzy [PB95]; on the other hand, it is possibilistic [PB95]. In the case of
constrained fuzzy membership assignment, we show that the learning algorithm, given by
Pal and Mitra [PM92], is equivalent to the proposed algorithm. In addition, when the
classification is crisp, the proposed learning algorithm reduces to the conventional BP al-
gorithm. Thus, the possibilistic approach of the proposed algorithm leads it to encompass
both constrained fuzzy classification and crisp classification.
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Fig. 5.1: A typical fully connected feedforward neural network with two input
nodes, three hidden nodes and two output nodes.

5.21 Architecture of Feedforward Neural Networks

Let the training set in a C-class problem consists of vector pairs{(y1,21),(y2,22),...,
(Yn,2a)}, Where y, € RY refers to the uth modified feature vector and z, € {t.| ¢ =
1,2,...,C; t, € RC} refers tothe target output of the network corresponding to thisinput.
Specifically, if y, isfrom the kth class, then z, = t;, where txx = 1 and ¢t = 0 Ve, ¢ # k.

The network used here is a multilayer feedforward network, which can have several
hidden layers. Without loss of generality, the number of the hidden layers can be assumed
to be one with H hidden nodes. When a modified feature vector y, = [¥u1, Yu2; - - - » Yun]
is applied at the input layer of the network, the input units distribute the values to the

hidden layer units. The output of the jth hidden unit is of;= f}(net}) = Wj;mzt")’

Wherenet" = Z wJ,ym+9". w . istheweight of thelink from theith input nodeto the jth

hidden node. Here 9" and f} are the bias term and transfer function of the jth hidden
node. Similarly, the output of the kth output node is 02, = f2(netl,) = Wl—neTuJ’
where net?, —Z, | Wi; f7(nety) +¢2. The superscripts h and o refer to the quantitiesin

the hidden and output layers, respectively (see Fig. 5.1).

5.2.2 Training of Feedforward Neural Networks

The adaptive parameters of FENNs consist of all weights and bias terms. The sole purpose
of the training phase is to determine the optimum setting of the weights and bias terms



S0 as to minimize the difference between the network output and the target output. This
difference is referred to as training error of the network. The error measure can be fuzzy
mean square error, which is a fuzzy counterpart of the mean square error [Hay94] used in
the conventional BP algorithm.

In the conventi%nal BP algorithm, the mean square error for the uth input pattern is
defined as &, = gk;(tuk - 0%.)% The use of &, as an error term is justified when each
input pattern belongs to only one class. But, in fuzzy classification the input pattern
may belong to more than one class with different degrees of belongingness. It implies
that the target value of an input pattern may be more than one. In other words, each
input pattern can have all possible target values with different membership values (certain
membership values may be zero also). Through training, the network attempts to reach
those target values weighted by different membership values. In other words, the problem
of training can also be conceptually viewed as a fuzzy constraint satisfaction problem.
Here the constraint is that each input pattern should belong to a particular class, and the
associated membership value signifiesto what extent thisconstraint should be satisfied. In
the training phase, the proposed network adapts the parameters so that these constraints
are resolved optimally. For the uth input pattern the constraints can be mathematically
expressed as the fuzzy mean square error. It is defined as

&f 1 o q 0 \2 -
v 522%(}%)(% —Ouk) (0'1)

Here the index of u, ie., q € [0, oo) controls the amount of fuzziness present in the
classification. Different values of g signifies to what extent the constraints should be
satisfied. When g isequal to zero, each input pattern tries to attain all the target outputs
with equal importance, and ultimately the network learns the mean of al the class centers.
When q is greater than one, the constraints associated with the high membership values
get more importance to be resolved. When g tends to be infinity, only the input pattern
that belongs to a class completely, i.e., with membership one, islearned. That means, at
g~ oo and 0 < p(y,) < 1Vc & isequivaent to the conventional mean square error
&4 Specificaly, the larger the value of g isin [0,00), the less fuzzier are the membership
assignments. As a consequence, £ decreases strictly towards zero as g increasesin [1, oo)
for 0 < pe(yy) < 1Ve.

Lemma5.1: £ is a monotonically decreasing function for 0 < p.(y«) < 1 ¥c and
q €1, oo).



Proof. Differentiating £ with respect to q we get

f cC C
a;; = %ggui Yu) In(pd(yu)) (tex — 03)° (5.2)
= %Z Z e (Yu) In( ;U'c(}'u))] [ﬂg_l(}'u)(tck - Ozk)2] (5.3)

With the usual convention that xIn(z) = 0 if x =0, we have [g.(y.) In(u.(y.))] < 0 and
(137 (yu) (tex—03)?] 2 0V, k. Both theinequalities beingstrict whenever 0 < p(y.) < 1.
Hence, when 0 < p.(y.) <1, & strictly decreases [Bez81] on every finite interval of the
form [1, bl with1<b m

On the other hand, when g is less than 1, the constraints associated with the high
membership values get less importance to be resolved. Thus, g controls the extent of the
membership sharing between the fuzzy classes. This can be good; on the other hand, one
must choose q to actually implement it. In our work q is assumed to be one. The role
of g isquite similar to the index o fuzziness in the concentration and dilation operators
(found in fuzzy hedge) [KF93], and the index of fuzziness in fuzzy K-means clustering
algorithm [Bez81].

Next, we derive the learning laws for the network following the same method as
followed in the conventional BP algorithm [Hay94]. Here, we assume that the weight
updating Aw takes place after the presentation of each input pattern. Assuming the use
of same learning-rate parameter n for al the weight changes made in the network, the
change of weights for wg; and wj; are calculated in accordance to the gradient-descent
rules: Awg; = 17%“:{,- and Aw}, ng_usl,#:i.

C
Lemma 52 Awg; = ndfol; and Aw); = ndlyu: where 6=\ uf(ya) — % Ha(yu)ou
c=

Proof. The expression for 95“- can be derived as

agf afk (net ) a(netak)
u u 4
Qwg; Zl‘c Yol Ou) d(net?,)  Owy; (5:4)
= =3 by (te = 0%)0%(1 = oG )ol, (5.5)
c=1

c
= - [l‘g(yﬂ)(tkk — Ou) T Z pE(yu) (bek — Ogx) [0k (1 — OZk)OZj (5.6)

c=legk



Since tge =1 and ty = 0 Ve # K,

85,{ q 0 c q 0 0 0 h
Bwe = - ,uk(yu)(l _Ouk) - Z ﬂc(yu)ouk Ouk(l _Ouk)ouj (57)
kj C=lc;é/¢
C
- - [uzm) —zuﬂyu)ozk] (1~ o), (58)
c=1
Therefore,
C
Awp; = luk Yu) = > w(yu)o uk] k(1= 0%)ok; (5.9)
c=1
= néukouj (510)

where 8°, = |, 9 g q 0
uk = | pk(Yu) = E pdyu)oi

Again, the expression for w—gx-f can be found as follows:

I

ogr(l — OZk)‘

oEf df¢(net?,) O(nets,) 0o3; O(neth)

c C
. —_ q
Fur, I;::l;::luc(sm)(tdc %) S (nete) 5ot Blaetl) Bulk (5.11)
c C
= = Z Z:ug(yu) (tCk - OZk)OZk(l - uk)wkjf (netuj)ym (512)
k=1c=1
= neth yui Z Zﬂc yu ) uk(l - Ozk)wzj (513)

k=1c=1

Following the steps involved in deriving Equation (5.8) from Equation (3.5), we can write

C
— Y Hiyu)ol = Zuc Yu) (tek — %) (5.14)
= c=1
Hence,
—agf h h S - q (4 (4 (4 0
Suw™ _f net Z uk y“ Zﬂc(yu)ouk Ouk(l - Ouk)wkj
3t k=1 c=1

Finally we can state

C

Aw;: = anh(net::J)yut Z [uk yu ZI‘LC yu uk] (1 - uk)wzj (5.15)
k=1

= nft(neth;)yu; Zéukwk, (5.16)

= n‘su_;yut (517)

where &%, = fM(neth ) 5., 62wy



Therefore,

sz] - T)(Sukow (5-18"3-)
Awl = 16ty (5.18-b)

Now, we generalize the other error measure, i.e., cross entropy. For the uth input
pattern, the cross entropy is defined as

’Huzi(ukln (Z") +(1—tuk)1n<1_t‘;’°>> (5.19)

k=1 uk 1- Ouk

Since t,; is either zero or one, we can rewrite the above definition as

C

Hu =~ (tukIn(0%) + (1 — tuk) In(1 — 03)) (5.20)
k=1

Following the same logic, as we used to justify the use of the fuzzy mean square error in
the place of mean square error, we can generalize #,, to itsfuzzy counterpart, called fuzzy
cross entropy. The fuzzy cross entropy is defined as

C

W= = 3 pa(0) [ (o) + (1 = ) a1 = ) (521

=1

Itistrivial to show that for 0 < p.(y.) < 1, Hf reduces to H, at g~ oo. Here, g controls
the amount of fuzziness in a similar way as it does in Equation (5.1). Consequently, like
Lemma 5.1, Hf decreases strictly to zero as q increases in [1, oo) for 0 < pc(y.) < 1 Ve

Lemma 5.3: #{ isa monotonically decreasing function for g € [1, c0) and 0 < p(ys) <
1vc.

Proof. For q> 1,

aHf C C N Al -
3q —Zuc ¥u) In(pd(y) LZ tex In(oge) — (L — tex) In(1 — 0g,)) (5.22)

With the usual convention that zln(z) = 0 if x = 0, we have uc(y.) In(p(yw)) < 0 and
(=t In(0%) — (1 - t&)In(l — 02;)) > 0 Ve k. It implies, H£ decreases monotonically in
g € [1, co0). First inequality becomes strict when 0 < p.(y.) < 1. For the fuzzy cross
entropy to be a well-defined criterion, we must have the additional constraint 0 < o, < 1
on the outputs of the neural networks. Therefore, #/ can be zero only when tcx is equal
to zero and one, simultaneously; which is impossible. Therefore, when 0 < pc(y.) < 1,



1 decreases monotonically in a strict manner on every finite interval of the form [1, b]

withl1 <b. m
Lemma 5.4:
" r
sz]'_ = nga)w(, =1 [ﬂz YU Z,Urc yu Zlc Ou] (523—3_)
c=]
p_aX " c c
Awh = ngyk = nf (netl)yu 33 [#Z(Yu) — 23 H(Yu)o%d w, (5.23-b)

Proof. To find %é’ we differentiate Equation (5.21) with respect to wg;.

oMS 1~t
= =3y t2 5.24
ut, Z” <::k = )f’“(“e 1% (524
= - Z 'uc U) ( UkZ) uk(]' - ouk)oh (525)
= - X_:l pE(yu) (tex — 0Zk)ol; (5.26)
Using the identity (5.14),
f [Y € o}
wk —_ - e\ Yu OZ j ~27
ka.; c=l'u (y ) k J (O )
The value of 2% —# can be calculated as
ax; tck l—tck h N
(t ,
- —kzlzlﬂc o) ALk = Our). °f ot - et v (59)
= —Z”cZﬂg(YU)(tck 0% )wl; fH(net? Yy (5.30)
c= =1
Applying the identity (5.14),
oM S R C
b, — [ (net? Yy 3 | el (v) Zﬂc (yu)0% | wh; (5.31)
J k=1 c=1

Therefore, by introducing the fuzzy concepts in the usual BP error measures, we can
obtain a large class of learning equations. Although the exact formulation of the learning



equations for the fuzzy mean square error and fuzzy cross entropy differ, the underlying
concept of introduction of fuzziness into the usual error measures is same.

To make the learning faster, the learning rate can be increased or decreased dynami-
cally as the learning algorithm progresses. In addition, momentum term can be used for
faster learning.

Now, we illustrate the following particular cases of the proposed learning algorithms.

1. Crisp classification: In the case of crisp classification only one component of
pi(y.) Ve = 1,...,C isone and the remaining components are zero. Thus, the
expression for £ reduces to the following expression:

1 C
&l = P Z Z tew ~ Ouk)? (5.32)

which is the mean square error term found in the conventional BP algorithm. Con-
sequently, in a crisp case the learning equations based on the mean square error
and fuzzy mean square error become identical. It can be verified easily by makicg
the membership assignments in Equation (5.18-a) and (5.18-b) crisp.

Similarly, in the case of crisp classification, the fuzzy cross entropy reduces to the

conventional cross entropy, and consequently, the learning equations for the cross
entropy and fuzzy cross entropy become same.

2. Constrained fuzzy classification: When ¥ u.(y,) = 1 Vu and q = 1, the
learning equations (5.18-a) and (5.18-b) achieve simpler forms as follows:

Awp; = -n63.00; (5.33-a)
Auwl, = néu]ym (5.33-b)

ji

where 85, = [k (Yu) — 05¢] 05, (1—0%) and &}; = f"‘(net" ) Z 63,wg;. This particu-
lar version of the proposed algorithm isavailable asthelearnmg algorithm proposed
by Pal et a. in [PM92]. Note that we are not considering Pal et al.’s algorithm
with fuzzy linguistic inputs; rather we are considering it with crisp inputs.

For Y. pe(yw) = 1 Vu and q = 1, the learning equations (5.23-a) and (5.23-b) can
be simplified to
Awg; = n(ue(yu) — ogl 02,’ (5.34-a)

, C
Awl = nff(neth)yw Y [me(ys) - o] wi, (5.34-b)
k=1



This particular case of the learning algorithm is derivable from a variant of Pal et
al.’s cross entropy [PM92], i.e., HP¥ = (ue(yw)In(0%,) T (1= we(yw)) In(1 — 02,)).
This result is quite obvious as the definition of the fuzzy cross entropy reduces to
Pal et al.’s cross entropy when q = 1 and ¥, p.(y,) = 1 Vu. This claim can be
proved from the following Lemma.

Lemma 5.5: Hf = HP* when Y, u.(ys) =1Vuandg=1

Proof. When g=1and ¥, u.(y.) =1,

C C
Ho= = pelya) [Z to In(0%) + (1 — te) In(1 — o;k))} (5.35)
czl . k=1
= -5 [Zuc (Yu ( ek In(0p) + (1 — tex) In(1 — opk))J (5.36)
kcl c=1
= Z [ﬂk Y. (tkk ln(o;k) + (1 - tkk) ln(l - 0;/:))
. C
+C=Z pe(Yu) (tck In(op;) + (1 ~ te) In(1 — o;k)” (5.37)

Since tgx =1 and t = 0 Ve # k,
C C
He==3 [myu)In(og) + 3 he(ya) In(l - Ozk)} (5.38)
k=1 c=lexk
In the case of constrained fuzzy approach, ux(x.) T 5, , te(ys) = 1, and hence,

- 3 [l nlege) + (1= ity n(1 = o) =50 (5.39)

k=1
|

Thus, being possibilistic in nature, the proposed algorithm encapsulates various BP
algorithms based on crisp as well as constrained fuzzy classification.

5.2.3 Testing of Feedforward Neural Networks

The network learns the fuzzy boundaries between the classes after training. In thisstage,
a separate set of test patterns is given as the inputs to the network. Generated outputs
are the class membership values corresponding to the test inputs.

Note that, the network with the proposed |learning algorithm is a universal approxi-
mator [HSW89].



5.2.4 Results and Discussion

We employed the BP learning algorithms with the fuzzy mean square error (or fuzzy cross
entropy) to train FFNNSs for first, second and third level bids. The inputs are modified
feature vectors. The number of input nodes for all the FFNNs are 52. The number
of hidden nodes for all the FFNNs are chosen as 50. We have chosen the number of
hidden nodes as 50 because we have observed in chapter 3 that the performance of the
networks isgood with-50 hidden nodes. The valued gischosen asl. Thelearning-rateis
adaptively changed in the following way: If the error decreases during training, then.the
learning-rateisincreased by a predefined amount. In contrast, if the error increases, then
the learning-rate is decreased and the new weights and errors are discarded. As a result,
the error always decreases or stays as it is. The momentum is kept 0.5 throughout the
process. We adopted the strategy of picking the output node with the highest activation
value as the output class corresponding to an input.

For the first level bids, the FFNN has 6 output nodes. We used the same training
and test sets as we used in chapter 3 and 4 (i.e., “TrainingSet1” and “TestSet1”). While
using the fuzzy mean square error, the convergence was achieved within 1570 iterations
(Fig. 5.2Top). Using the fuzzy crossentropy, the network took 1400 iterations to converge
(Fig.5.2Bottom). Theerror valuesshown in Fig. 5.2Top and Bottom are the average of the
error values with five different network initializations. From these figures, it appears that
the convergence property of FFNNs with fuzzy cross entropy is slightly better than that
of fuzzy mean square error. In chapter 4, we found that FFNNs with crisp BP converge
within 1650 iterations. Therefore, the BP algorithm with fuzzy objective functions offers
slight improvement in the convergence property for the first level bids. In the first row
of Table 5.1, we have rewritten the classification performance of the conventional BP
algorithm with crisp mean square error (from Table 4.3). Classification efficiency of
the network with fuzzy objective functions is depicted in the second and third rows of
Table 5.1. In this table, we can observe the better classification performance of the BP
algorithm with fuzzy objective functions compared to the conventional BP algorithm.
This improvement takes place because the proposed method takes care of the fuzziness
involved in the classification from the possibilistic angle. The proposed algorithms can
find the fuzzy decision boundary more accurately as some input patterns (especialy,
at the borders or away from the classes) may not satisfy the condition ¥, pc(x,) = 1.
In Table 5.1, we can observe that the BP algorithm with the fuzzy mean square error is
showing marginally better resultscompared to thefuzzy cross entropy. Therefore, training



Table 5.1: Classification performance of FFNNs with the BP algorithm for
first level bids. The inputs are modified feature vectors. The symbols Obj. fn.,
cmse, fmse and fce imply objective function, crisp mean square error, fuzzy

mean square error and fuzzy cross entropy, respectively.
Obj. fn. || Pass 1C 1D 18 1H IN | Overdll

cmse 85.82% | 69.94% | 72.13% | 70.01% | 78.25% | 69.92% | 74.34%
fmse || 77.14% | 81.98% | 71.03% | 92.61% | 59.33% | 75.02% | 76.18%

fce 87.31% | 71.74% | 82.12% | 87.33% | 59.27% | 65.04% | 75.46%

Table 5.2: Classification performance of FFNNs with the BP algorithm for
second level bids. The inputs are modified feature vectors. The symbols Obj.
fn., cmse, fmse and fce imply objective function, crisp mean square error, fuzzy

mean square error and fuzzy cross entropy, respectively.
Obj. fn. 2C 2D 2S 2H 2N Overall

cmse 67.45% | 76.88% | 78.19% | 75.43% | 74.98% | 74.59%
fmse 71.01% | 77.23% | 78.57% | 81.12% | 74.17% | 76.42%
fce 80.23% | 75.72% | 67.43% | 80.55% ‘ 76.02% | 75.99%

an FFNN with the fuzzy cross entropy may be easier compared to the FFNN with the
fuzzy mean square error (Fig. 5.2); but the generalization capability of the FFNN with
the fuzzy mean square error is better than the FFNN with the fuzzy cross entropy.

In a similar manner, the proposed method trains an FFNN for the second level bids
using “TrainingSet2”. The inputs to the networks are the modified feature vectors. This
network has 5 output nodes. The FFNN for the third level bids was trained by "Training
Setl" and tested on “TestSet3”. This network has 4 output nodes. The classification
performance of these two FFNNs are given in Table 5.2 and 5.3. These tables show the
improvements in the classification results of the proposed method compared to the BP
algorithm with crisp objective functions. Note that FFNNs with the fuzzy mean square
error are consistently performing better than FFNNs with the fuzzy cross entropy.
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Fig. 52: Top: No. of iterations vs. fuzzy mean square error of an FFNN.
Bottom: No. of iterations vs. fuzzy cross entropy o an FFNN. In both the
cases, the FFNN has fifty-two input nodes, fifty hidden nodes and six output
nodes. All training patterns are from first level bids.

114



Table 5.3: Classification performance of FFNNs with the BP algorithm for

third level bids. The inputs are modified feature vectors. The symbols Obj.

fn., cmse, fmseand fce imply objective function, crisp mean square error, fuzzy
mean square error and fuzzy cross entropy, respectively.

Obj. fn. K® 3D 3S 3H Overdl
cmse 85.14% | 79.43% | 82.46% | 85.11% | 83.03%
fmse 90.11% | 84.51% | 88.23% | 86.15% | 87.25%

“ fce 87.12% | 87.36% | 86.73% | 82.66% 85.96%4

53 Configuration of Feedforward Neural Networks Using Evolutionary
Programming-Based Hybrid Technique

Use of FFNNs with fuzzy objective functions improves the classification performance of
the modules. But the training process may be slow or in some cases it may halt due to
the presence of local minima. Even if the network converges, the generalization capability
of the trained network may not be high because of the improper choice of the network
size. This section proposes a method to configure FFNNs in terms of optimum structure
and optimum parameter set so that the resultant network generalizes well. The proposed
method uses the BP algorithm with fuzzy objective functions as a local search operation.
In addition, it employs evolutionary programming (EP) technique as a global search
operation.

In many classification problems, it has been proved that learning in general, as well
as choosing an optimal network configuration, are NP complete {Man93]. The selection of
an appropriate number of hidden nodes and weights is so difficult because small number
of hidden nodes and weights may hamper convergence of the network on a training set;
on the other hand, large number of hidden nodes and weights may affect the generaliza-
tion [Hay94] capability of the network. Large size of a network affects the generalization
capability mainly in two ways. Firstly, the large size of a network may cause overfit-
ting [Hay94], i.e., the network simply memorises the training patterns. Secondly, while
training a large network, all the weights may not get involved in the training process as
they balance each others effect on the output. Consequently, training error becomes low.
However, such free weights may result in a large variation of the classification efficiency
for different test sets [Sus92]. Other than the generalization issue, smaller networks are



better because they are usually faster and cheaper to build. Moreover, the operation of
smaller networks is easier to understand where users need to know how the system works.
But it not is always true that the smaller a network is, the better is its generalization
capability. It is because, sometimes small networks may cause underfitting [Hay94] of
the data. In addition, there may exist certain networks of optimum size just complex
enough to generalize the data but very sensitive to the initial conditions [Ree93]. These
two problems, i.e., underfittingand sensitiveness to the initial condition, may result in a
low classification rate on the test sets, and thus these networks, although they are small,
are not useful.

In order to have an optimal network architecture, we need an objective function and
an advanced search and optimization method. Thesearch method should necessarily look
for the following:

1. How to determine the optimum number of hidden nodes of the network after avoid-
ing locally optimal solutions.

2. How to determine the optimum set of weights and bias of the network after avoiding
locally optimal solutions.

3. How to make the network configuration to be less sensitive to the initial choice of
the weights and bias values.

4. How to reduce the configuration time.

In light of these requirements we can formulate an objective function, whose minimiza-
tion will generate an optimum network configuration that generalizes well. The choice of
the objective function should be such that minimization of it should not lead to memori-
sation of the input patterns. One such objective function in neural networks training can
be the fuzzy mean square error or fuzzy cross entropy on a validation set. The validation
set consists of a set of input-output pairs which do not occur in the training set.

A potential candidate for the optimization method is gradient descent ago-
rithms [Hay94]. The advantages of the gradient descent algorithm are: (a) It uses the
local informationin an efficient way resulting in better accuracy, provided it does not get
stuck in local optima or saddle points, and (b) it is quite fast to find the local optima or
saddle points. The disadvantages of this method are: (a) It may stagnate at certain po-
tentially suboptimal solutions, rendering the network incapable of sufficient performance,
(b) it is sensitive to the initial values of the weights and bias, and (c) it.cannot be used
when the objective function is not differentiable at certain points. Another candidate for



the optimization process is EP [FOW66] [Fog91b] [Fog95], which is a stochastic search
and optimization technique. EP optimizes the objective function by using a controlled
stochastic search, and it performsthe search parallely from more than one point. In other
words, while searching for the global minimum, this technique explores many paths simul-
taneously. Certain search paths may be less promising at the initial stage, whereas due to
the random perturbation of the search parameters these search paths may become highly
promising after some time. In the EP-based approach, these less promising solutions are
kept along with highly promising solutions, hoping that they would lead new search paths
towards the global minima after some time. These new paths enable the search process
to avoid locally optimal solutions. Also, by adding or deleting hidden nodes or by small
perturbation o the weights and bias terms, the search operation may jump over local
minima. Due to these two reasons, EP can avoid alocally minimal solution, whereas the
gradient-based approach cannot. In EP-based approach more than one solution is gener-
ated initially, and the solutions are repeatedly adapted by adding and deleting the hidden
nodes, or by small perturbation o the weights or bias values. Thus the problem o proper
initialization o the weights and bias vauesis aso reduced. However, EP can suffer from
extremely dow convergence before arriving at the correct solution. It is because EP does
not exploit available local information [RF96). Therefore, a clever approach is to go for
a trade of where merits of both the methods, i.e., speed, accuracy, reliability and fast
computation can be achieved. EP isgood for explorationin the search space, whereas the
BP is good for exploitation. Inspired by biology and especialy by the manner in which
living beings adapt themselves to their environment, the hybrid method adopted in this
section involves two interwoven levels o optimization, namely evolution (EP) and indi-
vidual learning (BP), which co-operate in aglobal process d optimization. The evolution
of individuals are carried out to minimize certain global objective function. The global
objective function is the fuzzy mean square error or fuzzy cross entropy on a validation
set. The local search method, i.e., minimization d the fuzzy mean square error or fuzzy
cross entropy on a training set, is used to guide the global search method [PIL96].

By fusing gradient descent and evolutionary algorithm, the search method becomes
faster than a pure evolutionary approach. However there is a further scope to accelerate
the proposed method by accelerating EP. Although EP is based on random search, it
is not totally random - rather it is a controlled random search. This control action is
provided by certain mutation parameters. The proper choice d mutation parameters
has a profound impact on the convergence and performance d the proposed method. In
accordance with this requirement, another issue that is addressed in this section is the



dynamic adaptation of the mutation parameters.

531 Evolutionary Programming in Network Configuration

While designing a feedforward network for a particular problem, the aim is to find the
optimum number of hidden nodes and a set of optimum parameters. Formally, it can be
written as a problem of finding the global maxima of the following function:

G(y,0): ®Y > R (5.40)

where y represents a modified feature vector with dimension N, 8 consists of weights and
bias terms, and G(y, 8) signifies how good the network for the particular classification
problem is. In the proposed method, 4 is maximised such that EP is able to find the
optimum value of 8 as well as the optimum value for the dimension of 8.

The above idea to configure a network is implemented through the following sequence
of events (Fig. 5.3). Initially, EP creates a population of networks. EP initializes the
population with fully connected networks of randomly (uniform distribution) generated
hidden nodes. Thus, v such networks are formed with each network having any number
of hidden nodes between one to some prespecified positive integer. The number of hidden
nodes in each network is determined randomly from a uniform distribution. These net-
works are called parents. Each parent network is trained for a fixed number of iterations
using the BP algorithm with the fuzzy mean square error or fuzzy cross entropy. Fitness
value (ameasure to indicate how good the network is for the given classification task) of
each parent network is measured. Each parent isnow allowed to create an offspring. Thus,
v offspring networks are generated. The method to create the offspring is described in
the next section. Each offspringnetwork is trained for a fixed number o iterations using
the BP algorithm with the fuzzy mean square error or fuzzy cross entropy. The fitness
value of each offspring network is measured. Thus 2v networks, comprising of parents as
wdl as offsprings, are generated. Next in the competition phase, pairwise comparison of
fitness values of all the networks (parents as well as offsprings) are conducted. For each
solution, the algorithm chooses 10 randomly selected opponents from al the parents and
offspringswith uniform probability. In each comparison, if the conditioned network offers
as good performance as the randomly selected opponent, it receives a win [Fog95]. Based
on the wins, networks scoring in the top 50% are designated as parents. All the networks,
other than the parents, are discarded. Again, these parents create offsprings, and thus,
the whole procedure is continued until the number of generations becomes greater than



some prespecified constant. Finally, the network with the highest fitness is considered as
the desired network.

It is to be noted that while embedding the BP algorithm in the EP paradigm, we
have employed Lamarckian principle [RF96]. In this case the properties learned by the
individuals are transferred to the next generation. The life of each individual spans the
number of iterations used in the BP algorithm.

5.3.2 Implementation Issues
5.3.2.1 Fitness function

Fitness value of a network decides how good it isin the competition phase. Specifically, a
network with higher fitness value has higher chance of survival and vice versa. Thefitness
function of a network is .
= — 41
g % (5.41)

where E is equal to either ¥, &£ or T, H{ on a validation set. It is important to note
that although ¥, &/ or 3, H{ is differentiable with respect to the connection weights,
It is nondifferentiable with respect to the number of hidden nodes. Thus, gradient-based
optimization methods cannot be applied here to determine the optimal number of hidden
nodes.

An alternative fitness function could be the inverse of Akaike's information criterion
(AIC) [AkaT74] [Fog9la] [BZ95] or network information criterion (NIC) [MYA94]. Since
the AIC (or NIC) value is supposed to be used only after the network is completely
evolved, AIC (or NIC) value calculated from a network which is not evolved completely
may not reflect the generalization capability of the network at the current generation.

In order to generate offsprings, the following steps are needed:

5.3.2.2 Replication of parents

In our work, each parent is typically represented combinedly by the number of hidden
layers, number of input, output and hidden nodes, set of weight values and set of bias
values. Since the number o hidden layers is one, and the number of input and output
nodes are fixed, a network is actually represented by the number of hidden nodes, weight
values and bias values. In this step, these values are copied from the parent to generate
a new offspring.

119



Randomly generate a population of v networks (call them
parents) .
KR each parent
Train the parent network for a fixed number of iterations
by the BP algorithm with fuzzy objective functions.
Find the fitness value of the parent network.
END KR
WH LE (the number of generations is less than a specific number
or the fitness of the best parent is less than a specific value)
FR each parent network
Create an offspring of the parent network.
Train the offspring network for a fixed number of
iterations by the BP algorithm with fuzzy objective
functions.
Find the fitness value of the offspring network.
END KR
Competition starts among all parent and offspring networks
based on the fitness values.
Survival of the fittest networks (call them parents).
END WHILE
The parent network- with the highest fitness is considered as the
desired network.

Fig. 5.3: Configuration of feedforward neural networks using evolutionary
programming.
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5323 Mutation

The aim of creating offsprings is to minimize the global objective function. Basicaly
creation of an offspringis searching one step forward or backward in the search space.
But the length of a step size and the corresponding step direction are unknown. The
step size cannot be too big as well as too small, because it may result the search process
to jump over the global minimum or to take long time to reach the global minimum. It
necessitates the use of mutation operators to decide the stepsize and step direction of
the search method probabilistically. The nondeterminism associated with the selection
o step size and step direction enables the search process to avoid local minima. To
search an optimum set of weights and bias terms, we encounter local minima which we
call parametric local minima, and to find an optimum number of hidden nodes we come
across local minimawhich we call structural local minima. Parametric local minima and
structural local minima are alleviated by parametric mutation and structural mutation,
respectively.

In the parametric mutation, each weight w is perturbed using a Gaussian noise. Hence,
w = w T AN(0,T). The mutation step size (0, T) is a Gaussian random number with
mean 0 and variance T. The intensity of the parametric mutation should be high when
the fitness value of the parent islow and vice versa. It can be accomplished if we consider
T of a particular network as its temperature, and define it as

minimum fitness
fitness of the network

T =al(0,1) (5.42)
where U4(0,1) is a uniform random number over the interval [0, 1] and a is a constant
(0 € a<1). Obvioudly, the range of T liesin between 0 and 1. This temperaturein fact
determines how close the network is to the solution for the task [ASP94], and the amount
of the parametric mutation is controlled depending on that. Likesimulated annealing, the
temperature is used to anneal the mutation parameters. Initially when the temperature
is high, the mutation parameters are annealed quickly like coarse grains, and at low tem-
perature they are annealed slowly like fine grains. Large mutations are needed to escape
parametric local minima; but many times large mutations adversely affect the offspring’s
ability to perform better than its parent [ASP94]. Hence, to lessen the frequency of large
parametric mutations, we have multiplied right hand side of Equation (5.42) by o24(0, 1).
In Equation (5.42) we need to know the minimum value of the fitness function. The
maximum value of £/ is 0.5nC2. Therefore, from Equation (5.41), the minimum fitness



corresponding to £/ is
1

Gunin = 550
Similarly, the minimum fitness corresponding to %/ iS Guin = 13-

(5.43)

In the proposed method, the structural mutation is used to obtai n an optimum number
of hidden nodes after avoiding structural local minima. Using the structural mutation,
hidden nodes are added or deleted during the creation of offsprings. Determination of
the optimum number of hidden nodes can be considered as a search problem in a struc-
ture space where each point represents a particular network. If some performance index
like fuzzy mean square error on the validation set is assigned to each network, then the
performance levels of all possible networks form a surface in the structure space. Thus,
determination o the optimum number of hidden nodes is equivalent to finding the lowest
point on this surface. However this search operation becomes complicated as the surface
has the following typical characteristics [Ya093] [MTH89):

1. Thesurface is very large since the number of possible networks can be very high.

2. The surface is nondifferentiable as the number of hidden nodes and weights are
discrete.

3. The surface is multimodal as performance of two networks with different number
of hidden nodes and weights may be same.

Dueto the structural mutation, sometimes one hidden node is added or deleted during
the creation of offsprings. The specific instants of hidden node addition or deletion in a
network depend upon the probability of the structural mutation, which further depends on
thefitness of the network. The hidden node, whichisadded toor deleted from the network,
Is selected randomly (uniformly). The amount of structural mutation depends on the
probability of the structural mutation (pm). Large value of p,, makes EP a purely random
search algorithm, while some amount of mutation is needed to prevent the premature
convergence of EP to suboptimal solution [SP94]. Therefore, a scheme is adopted here to
change p, adaptively.

The value of p,, isincreased when the population tends to get stuck in local minima,
and it is decreased when the population isscattered in the solution space. Let the average
fitnessvalue of the population and the maximum fitnessvalue of the population be denoted
by Gav and Guax, respectively. (Gmax — Gav) is likely to be less for a population that has
converged to an optimal solution than that for a population scattered in the solution
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space [SP94]. It can be expressed as

o 1
Pm o 7 (5.44)

max — Gav
In order to preserve the good solutions of the population, p, of a network with lower
fitness must be greater than p,, of a network with higher fitness. It resultsin the following

relation:
Pm X (Gmax — G) (5.45)
Accommodating Equation (5.44) and (5.45) simultaneously, we can write
gmax - g
L 5.46
Pm gmax - Gav ( )

where k, is a proportionality constant. From this relation, it appears that for solutions
with subaverage fitness values, i.e., ¢ < Gav, p» May assume value larger than 1. In order
to make p,, for the subaverage solutions always less than or equal to one, the expression
for p,, is modified as

gm - g .
Pm = kmg+ if G > Gav (5.47-a)
max Ga}

= k, if § < Gav (5.47-b)

To keep pm in [0, 1], k,, should be less than or equal to 1. In fact, solutions with
fitness values less than or equal to Gav should be disrupted completely. Hence, the value
of kn istaken as 0.5. Thisassignment always makes p,,, of the best network zero. But the
best network should aso be alowed to undergo through the structural mutation process.
Obviously, the amount of mutation for the best network should be the lowest. This
observation modifies the above equations as

e

thkny iG> Ga (5.48-a)
max
= kn if G < Gav (5.48-b)

where km1 and km2 are two constants. After this modification, pm for the above average
networks increases linearly from ks t0 kmy T kma.

In the above relations, we have considered the spread of the population through
(Gmax — G); but we did not consider whether the members of the population are diverse
in the population space [LD95]. It may happen that the spread is high, but the diversity
islow (Fig.5.4(a)) and vice versa (Fig. 5.4(b)). Weindeed seek both spread and diversity
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should be high (Fig. 5.4(c)). Higher spread allows the search to be carried out in a wider
space, and higher diversity allows uniform exploration in that space.

To take the diversity factor into account, p,, should be high when the diversity is
low and vice versa. In order to measure the diversity of a population, the concept of
probabilistic entropy [Hay94] can be used over the fitness values. To measure the entropy,
theinterval. [Gmin, Gmax] iS divided into L subintervals [Gmiq +iD, GunT (j 1)D], where
7=0,1,2,..,L—21and D = (Gmax — Gmin)/L. D; isdefined as %i,, where 4 is the number
of members of the population in the jth interval and 2v is the size of the population (v
parents T v offsprings). With these introduced notations, the probabilistic entropy is
defined as

1 L-1 _ _
EN = eD) g)p,- In p; (5.49)

If the members are uniformly distributed, then EN attains the maximum value 1. On
the other hand, if all the members are grouped around a few values, the entropy value is
close to 0. So, we can write, p,  (1- EN?®) where s is a weighing factor. Combining
this result with Equation (5.48-a and b), we can write

k2= eNy sk, iG> Gay (5.50-a)
gmax - gav

= kn(l — EN?) if G < Gav (5.50-b)

DPm

5.3.3 Results and Discussion

In section 5.2.4, we have already observed the classification performance of the BP ago-
rithm with the proposed fuzzy objective functions. There we chose the number of hidden
nodes arbitrarily. In the following experiments we choose the number of hidden nodes
dynamically using the EP-based network configuration strategy. To configure the FFNN
for first level bids, “TrainingSetl” was used. We first generated randomly 25 FFNNs
(each with the number hidden nodesin between 1 and 100). In each generation, each par-
ent network was trained for 100 iterations using the BP algorithm with the fuzzy mean
square error. The fitness value of each parent was determined by calculating the fuzzy
mean square error of the network for a validation set of size 200. For each parent, an
offspringwas created. During the structural mutation, between 1 to 3 hidden nodes were
added or deleted at a time. The exact number of hidden node addition or deletion was
decided randomly. If more number of hidden nodes are added or deleted, the fitness of

124



(a) (b)

H—.

()

Fig. 5.4: Each circle represents a solution in the population space. E and H
represent fitriess and the number of hidden nodes in the solution, respectively.
Three figures represent three different cases: (a) Spread of the population is
low, but diversity is high, (b) spread of the population is high, but diversity is
low, and (c) both spread and diversity are high.
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the network decreases drastically. It is because the behavioural gap between the parent
and the offspring becomes too high. To enhance the structural mutation, we used Equa-
tion (5.50-aand b). The value of s was chosen as 2. %,,; and k> were taken as 0.3 and
0.2 such that p,, varies linearly from 0.2 (for the best set) to 0.5 (for the average set).
Fig. 5.5Top illustrates the number of hidden nodes in the best network for first level bids
against the number of generations. The resultant network has 45 hidden nodes. This fig-
ure demonstrates the self-organization capability of the proposed algorithm, due to which,
it isableto find better structure eventhough it starts with inappropriate number of hid-
den nodes. "Plot 1" in Fig. 5.5Bottom exhibits the fuzzy mean square error of the best
networks, while trained by the proposed method. This error value is the average of the
error values of the best network in ten runs. "Plot 1" is obtained when Equation (5.50-a
and b) are used for adapting the parameters of structural mutation. "Plot 2” represents
another curve when Equation (5.50-aand b) are not used for adapting the parameters
of the structural mutation. This comparative study clearly demonstrates how effectively
Equation (5.50-a and b) enhance the performance of the search process. Using "Plot 1"
the convergence was achieved at the 20th generation. Since each generation needs 100
iterations for each parent network, the proposed method requires a long time on sequen-
tial computer. This drawback can be reduced if we use parallel machines. Actually this
amenability to asynchronous parallel computation has made EP popular [BR94]. Classi-
fication efficiency of the FFNN on “TestSet1” isshown in the third row of Table 5.4. The
fourth row of Table 5.4 depicts the classification performance of the EP-based method
with the fuzzy cross entropy. The first and second rows of this table are reproduced from
Table 5.1. Table 5.4 demonstrates the better generalization capability of the network
while configured by the proposed method. We can observe that the FFNN trained with
the fuzzy mean square error is giving better result (overall) compared to the FFNN with
the fuzzy cross entropy.

Similarly the proposed technique was used for the second and third level bids. The
number of hidden nodes of the FFNNSs for the second and third level bids are 32 and 23,
respectively. The classification results areillustrated in Table 5.5 and 5.6. We can observe
that in the configured architectures, the network with the fuzzy mean square error shows
better performance than that of fuzzy cross entropy. Hence, in the subsequent experiments
with FFNNs, we shall use only the fuzzy mean square error.
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Number of hidden nodes
8

5 10 15 20 25 30
No. of generations

Fuzzy mean square error
2

1
P

5 10 15 20 25 3 35
No. of generalions

Fig. 5.5: Top: No. of generations vs. fuzzy mean square error of an FFNN.
Bottom: No. of generations vs. no. o hidden nodes. "Plot 1" represents
a curve when Equation (5.50-aand b) are used for adapting the parameters
of the structural mutation. In contrast, "Plot 2' represents another curve
when Equation (5.50-aand b) are not used for adapting the parameters of the
structural mutation.
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Table 5.4: Classification performance of FFNNs with the BP algorithm for
first level bids. The inputs are modified feature vectors. The symbols Arc.,

Obj. fn., F, D, fmse and fce imply architecture, objective function, fixed
architecture, configured architecture, fuzzy mean square error and fuzzy cross
entropy, respectively.

Arc. | Obj. fn. | Pass 1C 1D 18 1H IN Overall
F fmse | 77.14% | 81.98% | 71.03% | 92.61% | 59.33% | 75.02% | 76.18%
F fce 87.31% | 71.74% | 82 12% | 87.3% | 59.2M% | 65.04% | 75. 46%
C fmse | 80.64% | 75.14% | 70.38% | 85.63% | 70.44% | 73.02% | 77.3™%
C fce 72.90% | 78.45% | 8L.23% | 78.01% | 78.81% | 72.23% | 77.60%

Table 5.5: Classification performance of FFNNs with'the BP algorithm for
second level bids. The inputs are modified feature vectors. The symbols Arc.,
fn., F, D, fmse and fce imply architecture, objective function, fixed

Obj.

architecture, configured architecture, fuzzy mean square error and fuzzy cross
entropy, respectively.

Arc. [Obj. fn. | 2C | 2D | 28 | 2H | 2N | Overal
F | fmse [7L01% | 77.23% | 78.5M6 | 8L 12% | 74.17% | 76.42%
F | fee |80.23% | 75.7% |67.43% 80.55% | 76.02% | 75.9%
C | fmse 75.8%% | 77.51% | 80.24% | 78.12% | 76.68% | 77.68%
C | fee |7813%|7542% |8L23%|70.12% | 74 129% | 77.60%

Table 5.6: Classification performance of FFNNs with the BP algorithm for
third level bids. The inputs are modified feature vectors. The symbols Arc.,

Obj.

fn., F, D, fmse and fce imply architecture, objective function, fixed
architecture, configured architecture, fuzzy mean square error and fuzzy cross
entropy, respectively.

Arc. || Obj. In. 3C 3D 3S 3H Overall
F fmse | 90.11% | 84.51% | 83.23% | 86.15% | 87. 25%
F fce 87.12% | 87.36% | 86.73% | 82.66% | 85.96%
C fmse |89.23% | 88.52% | 93.15% | 85.63% | 89.13%
C fce 82.18% | 81 14% | 93.12% | 93.54% | 87. 4%




54 Summary

In this chapter, we applied feedforward neural networks to construct each module by
capturing the relationship between the feature vectors and the output classes present in
the module. Since the output bids are fuzzy, the network is trained by the BP learn-
ing algorithm with fuzzy objective functions. The proposed training algorithm has the
possibilistic classification ability, and hence, it can encompass various BP learning algo-
rithms based on crisp and constrained fuzzy classification. To increase the generalization
capability of the network, we configure FFNNs using a hybrid search operation consisting
of both deterministic and stochastic search operations. As a deterministic search, the
proposed B P algorithm with fuzzy objective functions is used. As a stochastic search, EP
is employed. The BP algorithm uses local information efficiently, whereas EP exploits
global information. The efficiency of the whole search process is further enhanced by
dynamic adaptation of the structural mutation. If a modified feature vector is presented
to the configured network, the output of the network is produced as class membership
values corresponding to the input pattern.

As a global search method, in place of EP, we could have chosen constructive and de-
structive pruning techniques [Ree93], [SM93]. Constructive pruning techniques [SST93]
initially assume a simple network, and add nodes and links as warranted, while destructive
techniques [MS89a] start with alarge network and prune off superfluous components. The
aim of the pruning techniques is to evolve a near optimal neural network architecture.
However the problems associated with the pruning techniques are [ASP94]: (a) These
methods get stuck in local minimavery easily. (b) In these methods, once an architecture
is explored and determined to be insufficient, the old one becomes topologically unreach-
able. Thus, they investigate only restrictive topological subsets of networks rather than
the complete class of network architectures [ASP94].

While configuring neural networks, EP isconsidered to be more powerful optimization
tool than simulated annealing [KJV83] and genetic algorithm [Gol89], [Mic92], [Dav9l].
In particular, simulated annealing is asequential search operation, whereas EP is a paral-
lel search algorithm. In fact, we can say that EP is more than a parallel search algorithm.
Parallel search starts with a number of different paths (say v where » > 1) and continues
until al the search paths get stuck in blind alleys or any one of them finds the solution.
EP also starts with v different paths. But, it tries to generate new paths which are always
better than the current paths. Due to this inherent parallelism, in many cases EP-based
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(a) (b)

Fig. 5.6 (a) and (b) are two equivalent networks, which order their hid-
den nodes differently. The genotype representations of the networks become
different, although the networks are equivalent.

search operation becomes more efficient and faster than simulated annealing-based oper-
ation [PFF95]. Although both EP and genetic algorithm are parallel search operations,
the EP-based optimization approach is more attractive for the network configuration. It
is due to the following reasons:

1. EP manipulates networks directly. So it does not need any dual representation. Ge-
netic algorithm needs coding which may not represent the problem itself [ASP94].

2. While creating offsprings, EP avoids recombination between networks. It helps to
keep the individuality of the network intact [ASP94].

3. One major problem with genetic algorithm-based approach is permutation prob-
lem [Ya093]. The permutation problem stems from the fact that in genetic algo-
rithm two functionally identical networks which label their hidden nodes differently
(Fig. 5.4) will have two different genotype representations. Therefore, the proba-
bility of producing a highly fit offspring from them by crossover will be very low.
EP-based optimization method does not suffer from this problem.

4. Asymptotic convergence property of EP is better than that of genetic algo-
rithm [Fog94a], [FS93].

The EP-based network configuration technique can also be seen from Markov-chain



perspective [Fog95]. Each state of the Markov chain consists of al possible networks with
the same fitness value. Since the fitness representation is finite on digital computers, the
number of statesisfinite. The starting state depends on theinitialisation. The state with
the highest fitness acts as an absorbing state. The probability of jumping from one state
to another state is dictated by the probability of mutation.

In the next chapter, we will employ clustering to capture the relationship between the
modified feature vectors and the output class labels.
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Chapter 6

DESIGN OF CLASSIFIER MODULES
THROUGH CLUSTERING

6.1 Introduction

This chapter proposes a classifier module that uses clustering to capture the relationship
between the modified feature vectors and the output classes o a module. Construction
of such a classifier can be carried out in two phases. First phase is necessary to perform
clustering, and the second phase is needed to establish the relationship between each
cluster and the class labels. When a modified feature vector is presented as an input,
the classifier detects the belonginness of the input into the clusters. The output class
label corresponding to the pattern is determined depending on the relationship between
each cluster and the output classes. In the opening bid problem, the clusters generated
by the feature vectors are generally overlapping or fuzzy. In addition, the class |abels of
the patterns from the same cluster may not be similar. This one-to-many relationship
between the clusters and the output class labels creates rough uncertainty. This chapter
proposes a classification technique in presence of fuzzy and rough uncertainties.

It is possible to use the conventional fuzzy K-means (FKM) clustering algorithm
to cluster the modified feature space. However, to apply the FKM user has to know
a priort the number of clusters present in the given set of input patterns. Moreover,
the solution obtained from the FKM may be locally optimal or too much dependent on
the initializations. To reduce some of these limitations, in section 6.2, an evolutionary
programming-based fuzzy clustering algorithm is proposed. This algorithm effectively
groups a given set of input patterns into an optimum number o clusters. The algorithm
determines the number of clusters and the cluster centers in such a way that there is a
high chance of avoiding locally optimal solutions. The clustering results of the algorithm
do not depend critically on the choice of theinitial cluster centers.

After clustering, the next task is to label each cluster with an appropriate class label.



The main assumption of the clustering-based classification is that similar inputs produce
similar outputs. It means that any twoinput patternsfrom the same cluster must be from
the same class. Generalization is possible in such classifiersdueto thissimilarity property.
In the bidding problem, however, two patterns from the same cluster may belong to
different classes, and hence, classification based on meresimilarity property isinadequate.
This problem arises because the available features are not sufficient to discriminate the
classes. It implies that the fuzzy clusters generated by the modified feature vectors have
rough uncertainty. To exploit the fuzziness and roughness, section 6.3 proposes fuzzy-
rough neural networks. For any modified feature vector, the network determines the
classification result in terms of fuzzy-rough membership values.

6.2 Evolutionary Programming-Based Fuzzy Clustering

Clustering a set d patterns provides a systematic approach for partitioning the set of pat-
terns into different groups such that patterns with similar features are grouped together,
and patterns with different features are placed in different groups [DJ87]. Formally, clus-
tering can be defined as follows: [Bez81]: Given aset Y = {y1,y2,...,¥n} Of feature
vectors, find an integer K (2 < K < n) and the K partitions of Y which exhibit cat-
egorically homogeneous subsets. An important requirement for resolving this issue is a
suitable measure of clusters — what clustering criterion should be used? Specifically, what
mathematical properties - e.g., distance, angle, curvature - possessed by the members
of the data should be used, and in what way, to identify the clusters in Y7 In fact,
each observation may have infinite number o variations. In addition, the data set may
be a mixture of different shapes, sizes and geometries. Therefore, infinite varieties of
structures are possible. It is evident that clustering criterion must be problem-specific,
and it cannot be universally applicable. Three types of clustering approaches are com-
monly used [Bez81]. They are (1)hierarchical approach, (2) graph theoretic approach and
(3) objective function-based approach. Among them, the objective function approach is
well-known. One extensively used objective function type clustering algorithmis hard K -
means algorithm [TG74] [Bez81]. It involves assigning each pattern exactly to one of the
clusters, assuming well-defined boundaries between the clusters. It is used for clustering
where clusters are crisp and spherical. In the hard K-meansalgorithm, clusteringis based
on minimization of the overall sum of the squared errors between each pattern and the
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corresponding cluster center. That is

n

E® =) d(y;, my)’ (6.1)

j=1

Here, K is the number of clusters and my is the closest cluster center to the pattern
y;. In rea life situations, boundaries between groups may be overlapping. In particular,
there may be some patterns that completely belong to one cluster, but partially belong
to other clusters aso. In order to overcome this problem, the idea of fuzzy K-means
(FKM) algorithm has been introduced [Bez81]. Incorporation of fuzzy theory in the
FKM algorithm makes it a generalized version of the hard K-means algorithm.

In the FKM, clusteringis based on minimization of the overall weighted sum of squared
error between each pattern and each cluster center, where the weight signifies the level
of belongingness of the pattern into the cluster. It can be treated as minimization of the
following objective function:

n

Um =E§ (1 (y5)) (6.2)

j=lk=1

where U = [u(y;)] is a fuzzy partition of Y and m={m;,...,mg}, with m; desig-
nating the center of the cluster . In thisequation, q € (1, oo) and djx is a distance
measure between y; and mg. Although the FKM algorithm is extensively used in liter-
ature [DJ87] [SS91], it suffers from several drawbacks. Firstly, to apply the algorithm,
the user has to know a priors the number of clusters present in the given input data set.
Secondly, the objective function is not convex, and hence, it may contain local minima.
Therefore, while minimizing the objective function, there is a chance of getting stuck in
local minima (also in local maxima and saddle points). Finally, the performance o the
FKM algorithm depends on the choice of theinitial cluster centers.

In this section we propose a clustering algorithm to address the following issues:

1. How to determine the optimum number of clusters.

2. How to avoid local minimasolutions.

3. How to make theclustering lessdependent on theinitial choiceof the cluster centers.

Since human ability to cluster dataisfar superior to any of the clustering algorithms,
we examine some of the aspects of human way of clustering to address the above issues.
For example, when we see a picture, we try to cluster the elements of the picture into
different groups. It is interesting to note that, immediately after observing a picture



we can find how many clusters there are, and it is done without looking at each point
within the clusters. It appears that clustering depends on the global view of the observer.
After deciding the number of clusters, we try to see which point belongsto which cluster.
Hence, we gather global information first, and then we look for local properties. Now the
question is, what criterion do we use to gather the global information? Possibly we collect
this global information from the isolation and compactness of the clusters in the whole
picture. Although the FKM considers the local properties of the picture, it does not take
the global view into its account.

We propose a clustering algorithm that tries to mimic the above mentioned features
of the human way of clustering. In this algorithm, two objective functions are minimized
simultaneously. The global view of the input data set is considered by an objective
function called fuzzy hypervolume [GG89]. Minimization of this objective function takes
place by randomly merging and splitting the clusters. The objective function E/ (given
in Equation (6.2)) is minimized to consider the local property, i.e., to determine which
input pattern should belong to which cluster. It turnsout that minimization of the global
performance index, i.e., the fuzzy hypervolume, gives the optimum number of clusters,
whereas minimization of Ef leads to proper positioning of the cluster centers. In other
words, the task of minimizing the fuzzy hypervolume can be considered as a major one,
while the task of minimizing Ef can be regarded as a minor one. The role played by
the fuzzy hypervolume and Ef is quite similar to the role played by the fuzzy mean
square error on a validation set and the fuzzy mean square error on a training set (see
configuration of FFNNs in section 5.3). Minimization of both the objective functions
may yield locally optimal solutions. To circumvent thelocal minima problem, we propose
an optimization technique based on evolutionary programming (EP) [Fog95]. EP-based
search operation tries to escape locally minimal solutions by splitting and merging the
clusters or by small perturbation of the cluster centers. In this approach, more than one
solution is generated, and the solutions are repeatedly adapted by splitting and merging
the clusters or by small perturbations of the cluster centers. Therefore, theinitial choice
of the cluster centersis not very critical in the proposed EP-based clustering algorithm.

6.21 Background of Fuzzy K-Means Clustering

The fuzzy K-means algorithm uses iterative optimization procedure to minimize the ob-
jective function Ef (U, m) (givenin Equation (6.2)). This objective function is minimized
such that the following constraints are satisfied.



(1) me(y;) € [0 1] V5, k; (i) Z;»“k y;) >0 Vk; (iii) z x(y;) = 1V5; (6.3)

The steps o the algorithm are stated in Fig. 6.1. The FKM algorithm can be made more
powerful by using fuzzy modification of maximum likdihood estimation (FMLE) [GG89).
The intention o using the FMLE is to obtain better clustering results [GG89] when it
is applied after using the FKM. Other than using differentform o the distance measure
djx, the steps of the FMLE algorithm are exactly similar to that of the FKM algorithm.
The distance function used in Equation (6.7) is modified here as follows:

[det(Fy)]*

dix =
7k Pk

exp [(y; - me) (B)~Hy; - mi)] (6.4)
where i
Po= 3 m(yy) (6:5)

i=t

and ©{ is the fuzzy covariance matrix for the cluster Fy. = is defined as [GG89)

j= e (e (y )) 610]6"]
i1 ((y;))e

where §;; = y; — myg, q = (1,00), my is the cluster center of F; and p(y;) is the fuzzy
membership o y; in Fy.

o = (6.6)




1. Fix the value of g and assign the number of clusters as K.
Define a distance measure between y; and m; as

dij = (y; ~ mg) 57 (y; — my) (6.7)

where ¥ is a positive definite matrix.
2. Assign i =0.
3. Initiate the fuzzy K- partition U*.
4. DO
(a) Set i=¢+1.
(b) Calculate K cluster centers {m;} of U"

I S (e (y4));
T ((y))e

k=1,2,.. K (6.8)

(¢) Update UG+Y py calculating U' as follows:
i . Determine the content of the following sets:
L = {k|1<k<K;dy=0} (6.9)

L = {1,2,..., K} - (6.10)

ii. Compute the new membership values as follows:

1
K des /(g—1)
Zh:l (d_:JL)

else ue(y;) = O Vkel and D m(y;) =1
kel

(6.12)

END DO UNTIL norm(U* — UW*1) > g

Fig. 6.1: Fuzzy K-means algorithm. Here 7 is a constant with small value
and norm() is an appropriate matrix norm.




6.2.2 Embedding Evolutionary Programming in Fuzzy Clustering

The objective of the proposed clustering algorithm is to find the optimum number of
clusters and the optimum position of each cluster center. Formally, it can be treated as
the problem of finding the global maximum dof the following function:

G(z) : R 5 R (6.13)

where 3 is an nK dimensional vector representing (m;, m,, ..., mg] and G(z) signifies
how good the clustering is. Therefore, EP should be able to find the optimum value of z
as well as the optimum value of K.

Now we describe how the above idea can be used in a practical situation (see Fig. 6.2).
To cluster an input data set, initially EP needs to create a population of sets of clusters.
EP initializes the population using sets o clusters with randomly generated (uniform
distribution) cluster centers. Thus v such sets of cluster centers are formed. Each set
has any number of cluster centers between two and some prespecified positive integer.
The number of cluster centers in each set is determined randomly. These sets are called
parents. Modifiedfuzzy K-means (MFKM) algorithm clusters the entire data set using
the set of parent cluster centers. The MFKM algorithm is described in the next section.
A fitnessvalue is assigned on each parent set. Each parent is alowed to create one
offspring. Thus, v offspring sets of cluster centers are generated. The method of creating
the offsprings is described in the next section. The MFKM clusters the entire data set
using the set of offspring cluster centers, and then the fitness value of each offspring set
is measured. As a result, we obtain 2v sets of clusters comprising of parents as well as
offsprings. Now the competition phase starts. In this phase, the fitness values of all sets
(parents as well as offspring) are compared. For each solution, the algorithm chooses 10
randomly selected opponents from all parents and offsprings with uniform probability.
In each comparison, if the conditioned set offers as good performance as the randomly
selected opponent, it receives a win [PFF95], [SF95]. Based on the wins, sets scoring
in the top 50% are designated as parents. All other sets are discarded. Again these
parents are used to create offsprings. The whole procedure is continued until the number
of generations becomes larger than some prespecified constant. Finally, the set with the
maximum fitness value is considered as the desired clustered output.
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Randomly generate a population of v sets of cluster centers
(call them parents).
FR each parent
Cluster the parent set using the MFKM.
Find the fitness value of the parent set.
END KR
WHILE (the number of generations is less than a specific number
or the fitness of the best parent is less than a specific value)
FR each parent set
Create an offspring of the parent set.
Cluster the offspring set using the MKM
Find the fitness value of the offspring set.
END AR
Based on the fitness values competition starts among al |
parent sets and offspring sets.
Survival of the fittest sets (call them parents).
END WHILE
The parent with the highest fitness is considered as the desired
set of clusters.

Fig. 6.2: The proposed evolutionary programming-based fuzzy clustering
algorithm.
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6.23 Implementation |Issues
6.2.3.1 Fitness function

In our work the following fitness function is chosen:

. 1
fitness value = total fuzzy hypervolume (6.14)

where total fuzzy hypervolume (V > 0) is an index to signify how good the clustering is.
The smaller is the total fuzzy hypervolume [GG89], [KNF92], the better is the clustering.
Since V may have any positive value, it appears from Equation (6.14) that the fitness
value may be more than one. It is not objectionable as the fitness value is used here for

relative comparison only.

The fuzzy hypervolume [GG89] of the cluster Fy is given by

Vk = \/det(Fk) (615)

The total fuzzy hypervolume, occupied by all the clusters, is defined as
K
V=3V (6.16)
k=1

Note that we have two objective functions E (in Equation (6.2)) and the total fuzzy
hypervolume (in Equation (6.16)) to minimize. Of these two, we are treating only the
inverse of the fuzzy hypervolume as thefitness function. The reason isthat the evaluation
of Ef in Equation (6.2) requires K to be predefined and fixed. When K varies, Ef for a
set with the optimal number of clusters may not attain the minimum value. For example,
if the number of clusters of a set is very close to the number of data, then the value of
E/ isclose to zero. Obviously, this kind of situation may not signify optimal clustering.
Instead of minimizing both objective functions, we could have minimized only the fuzzy
hypervolume. But, our search for a better set of clusters becomes more efficient when
minimization of Ef is viewed as a clue to minimize the fuzzy hypervolume. In other
words, the fuzzy hypervolume and E/ are used for exploration and exploitation in the
search space, respectively [RF96).

The next three sections describe the three steps to generate the offsprings:

6.23.2 Replication of parents

In the first step, each parent is represented by the number of clustersand cluster centers.
In thisstep these values are copied from the parent to generate a new offspring.



6.2.3.3 Mutation

The aim of creating offspringsis to minimize Ef and the fuzzy hypervolume. To minimize
Ef, we come across parametric local minima, and to minimize the fuzzy hypervolume we
encounter structural local minima. Parametric local minima and structural local minima
are overcome by the parametric mutation and structural mutation, respectively. Using
the parametric mutation, each cluster center my, 1 < k < K, is perturbed with Gaussian
noise. It can be expressed &

m; = my, + N (0,T) (6.17)

Specifically, the mutation step size N (0, T) is a Gaussian random vector with each com-
ponent having mean 0 and variance T.

Theintensity of the parametric mutation should be high when the fitness value of the
parent is low and vice versa. It can be accomplished if T is defined for the parent set as

minimum fitness
fithess of the set of clusters

T = ald(0,1) (6.18)

where U(0,1) is a uniform random variable over the interval [0,1] and a is a constant
(a<'1). Actually, this equation is already used in Equation (5.42).

The minimum value of fitness function is determined as follows: The fuzzy hypervol-
ume of each cluster is always less than the crisp hypervolume of the cluster comprising of
al theinput patterns. Hence, we can write

Vi < det {M} (6.19)
n

where §p; = y; —mg and my = 237, y;. Since V = Y5, Vi, the upper bound for the
total fuzzy hypervolume V is

K det [Z}‘:l-go]-&j} (6.20)

Therefore, the minimum fitness value is given by

! (6.21)

The structural mutation is used to avoid structural local minima and to obtain the
optimum number of clusters. The determination of the optimum number of clusters can
be considered as a search problem in a structure space where each point represents a



particular set of clusters. If a performance index like fuzzy hypervolume is assigned to
each set of clusters, the performance level of all possible sets of clusters formsa surfacein
the structure space. Thus, determination of the optimum number of clusters is equivalent
to finding the lowest point on this surface. However, this search operation becomes
complicated as the surface has the following characteristics [Yao93] [MTHS89]:

1. Thesurfaceis very large since the number of possible sets of clusters can be very
high.

2. The surface is nondifferentiable as the change in the number of clustersis discrete.

In order to find the proper number of clusters, i.e., to find the global minimum in the
structure space, sometimes one cluster is added to or deleted from an offspring [TG74].
These addition and deletion operations are controlled by the structural mutation. The
addition of one cluster to an offspring set is done by splitting an existing cluster of the
offspring. To identify a cluster for splitting, it is required to find the cluster (say Fi)
with the maximum fuzzy hypervolume V. In order to break this cluster into two parts,
the center of this cluster, i.e., my, is split into two new cluster centers m{ and mg, and
then my is deleted [TG74]. As a result, the number o clusters for this set, i.e., K is
incremented by one. Here, the cluster center m; isformed by adding a certain quantity
~ to the component of m,, which corresponds to the maximum component of o, (variance
of the kth cluster), i.e., o%,.,.; ad in asimilar way m; isformed by subtracting vx from
the same component of m;. One simple way of specifying v, isto makeit equal to some
fraction of oy, that is

vk = aog,,, Whee 0<a<gl (6.22)

Deletion of one cluster from an offspringset is executed by merging two existing clusters
of theset. In order to accomplish it, the two closest clusters with centers mg, and my, are
identified for merging. Thereafter, these two clusters are merged by a lumping operation
m["’“ my, T ni,my,], where mj is the center of the new cluster and ny, is
the number of patternsin the cluster with center mg,. Next, mg, and my, are deleted,
and the number of clusters K is reduced by one. The amount of the structural mutation
can be adaptively controlled using Equation (5.50-a and b).

asm, =

It is important to note that the splitting and merging operations employed in the
proposed scheme are quite similar to that of in ISODATA [TG74]. However, unlike in
ISODATA, here cluster merging and splitting are executed in a nondeterministic fashion.
This inherent nondeterministic property plays a key role in avoiding local minima while



finding the optimum number of clusters, and eventually it guarantees the asymptotic con-
vergence of the EP-based fuzzy clustering scheme towards the global minimum [Fog94a).

6.2.3.4 Modified fuzzy K-means algorithm

By exploiting the mutation in a particular offspring,we obtain the number of clusters and
the perturbed cluster centers. However, to calculate the fitness value o this offspring,
the input data set needs to be clustered using the perturbed cluster centers. In addition,
if the perturbed cluster centers are updated based on the clustered output, then the
minimization of £/ takes place, and asaresult, the minimization of the fuzzy hypervolume
becomes easy. We exploit the modified fuzzy K-means (MFKM) algorithm to accomplish
this task. For an offspring, the MFKM is executed for a certain number of iterations (say
j) at each generation. Consequently, if the offspring survives g generations, then it passes
through gj iterations. The steps associated with the MFKM algorithm are described in
Fig. 6.3.

The MFKM algorithm basically remembers the cluster centers at the last generation,
and updates the old cluster centers in the current generation. This updating process,
however, may get stuck in certain parametric local minima. In order toavoid it, the cluster
centers o the offspring at the last generation are perturbed by applying Equation (6.17),
and then the cluster centers are used in the current generation for further updating.
Although both MFKM and FKM are iterative in nature, the difference between them
is that the FKM never uses the old cluster centers in perturbed form. This difference
makes the FKM algorithm a deterministic search operation, and thus vulnerable for the
parametric local minima.

6.2.4 Results and Discussion

Before using the proposed clustering technique on the opening bid problem, we show the
performance of the proposed clustering technique on an artificialy generated simple data
set. For the sake of visual observation, the dimension of each data is taken as two. We
generated 387 data from 9 Gaussian distributions (Fig. 6.4Top). The value of v is set to
4. To enhance the parametric mutation, we used Equation (5.50-aand b). The valuesof q
and saretaken as 2 and 2, respectively. k,,; and k., are taken as0.3 and 0.2 such that pm
varieslinearly from 0.2 (for the best set) to 0.5 (for the average set). During the structural
mutation only one cluster is added or deleted at a time. « (used in Equation(6.22)) is



1. If the current generation is the first generation follow
this step, else skip it. For each parent set randomly
,generate the number of clusters, and randomly determine
the cluster centers within the range of input patterns.
Assuume that the number of clusters generated is K, where
K is in between two and some prespecified integer.

2. Set i=0.

3. Find a fuzzy partition U* of Y by using Equation (6.11),
(6.12) and the already known cluster centers.

4. DO

(a) Assign i=i+1.

(b) Calculate the K cluster centers {mjl < k& < K} using
the following relation:

> r=1 (e (y))Ix; + my
Z?ﬂ(ﬂk(h‘))q +1

m; = (6.23)
(¢) Update U* by using Equation (6.11) and (6.12).
EB\D DO UNTIL norm(U* — Ul+Y) > g

5. Repeat step 4 with the distance measure given in
Equation (6.4). This step helps to obtain better
clustering.

Fig. 6.3: Modified fuzzy K-means algorithm. Here n is a constant with small
value and norm() is an appropriate matrix norm.
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chosen as 0.6. If the value d ais varied dightly, then the clustering results remain same.
Fig. 6.4Bottom depicts the clustered data after using the proposed clustering algorithm.
Number of generations and the corresponding fitnessaf the best set of clusters isshown in
Fig. 6.5Top. In fact, this fitness value is average of the fitness values of the best set in ten
runs. Here "plot 1" represents a curve when Equation (5.50-aand b) are used for adapting
the parameters of the structural mutation. In contrast, "plot 2* represents another curve
when Equation (5.50-aand b) are not used for adapting the parameters of the structural
mutation. This comparative study demonstrates that Equation (5.50-aand b) enhances
the performance of the search process. But it also shows that the enhancement of the
performance is not as much asit was while configuring FFNNs in chapter 5. The proposed
algorithm finds the optimum number o clusters after 12 generation (see Fig. 6.5Bottom).
The clustered output iscloseto the desired one. The proposed algorithm self-organizesto
find the proper number of clusters and proper cluster centers automatically. This figure
illustrates the self-organization capability of the proposed algorithm, due to which, the
proposed algorithm does not find any problem in clustering, eventhough it starts with
wrong number of clusters and incorrect position o the cluster centers. This figure also
shows that sets with different structural variation aways come during the whole process.
In fact, it exhibits that search for better set of clusters (structurally) is carried out all
round the process. Even after assigning the number of clusters as nine, the FKM (followed
by FMLE) failed to cluster the data set properly. Fig. 6.6Top and Fig. 6.6Bottom show
the results of using the FKM (followed by FMLE) on the data set with two different
initializations. The clustering results with both the initializations are bad. Apparently
the FKM, FMLE combination wasstuck inlocal minimadue to improper initializations. If
only the FKM algorithm is used, clustering result becomes worse than this result. After
the proposed algorithm converges on this data set, the value of Ef is calculated from
Equation (6.2). It is found to be 5% less than the value of Ef obtained after the FKM
(followed by FMLE) converges on this same dataset. It a demonstrates the usefulness of
the proposed method to avoid parametric local minima.

Next we use the proposed method on the opening Bid problem. We considered the
training sets “TrainingSet1”, “TrainingSet2” and “TrainingSet3” for first, second and
third level bids. From “TrainingSet1”, we collected the inputs only for Pass bids. We
used the proposed clustering scheme to cluster these patterns. Twelve clusters were
evolved after 23 generations. Using the similar procedure, we got 8, 6, 7, 5, 6, 3 clusters
for the input patterns corresponding to 1C, ID, 1H, 1S and 1N, respectively. From
“TrainingSet2”, we obtained 5, 4, 5, 2 and 3 clusters corresponding to 2C, 2D, 2H, 2S
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Fig. 6.4 Top: Eight different Gaussian distributions are used to generate
a data set artificially. Bottom: Clustered output by the proposed clustering
algorithm. The clustered output isclose to the desired one.
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Fig. 6.5 Top: No. of iterations vs. fitness curve for the best set of clustersin
the proposed clustering algorithm. The data set for these clusters are shown
in Fig. 6.4. "Plotl" and “Plot2” represent the curve with and without using
Equation (5.50-a and b), respectively. Bottom: No. of iterations vs. no. of
clusters for the best member of the population.
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close to the desired one.
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and 2N, respectively. clusters. From “TrainingSet3”, we obtained 2, 2, 3 and 2 clusters
corresponding to 3C, 3D, 3H and 3S, respectively. We will use these clusters in the next
section while constructing the fuzzy-rough neural networks.

Note that in some cases the fuzzy hypervolume does not attain the minimum value
with the optimal number of clusters. In thiscases, the clustering output may not be good.
Moreover, in some cases the clustering is highly subjective. More than one possible way
may be present to cluster the input. Moreover, in the proposed clustering algorithm we
are assuming that the clusters are ellipsoidal. However, the proposed method may not
give good results when this assumption is not valid. For instance, if the clusters are of
shell type, the proposed algorithm will not work. The advantage of the proposed method
is that one can do other modifications in the given framework.

6.3 Fuzzy-Rough Neural Networks

After clustering the next step involves labelling of each cluster. To accomplish it, a
three-layer feedforward network can be constructed, where each node in the hidden layer
represents the cluster centers and the weights between the hidden and the output nodes
represent the class labels attached to the clusters. The main idea of using the fuzzy
clustering is that if two input patterns are similar, i.e., close neighbors in the input
pattern space, then the class |abels associated with them will be same. Since each cluster
in the pattern space represents certain common property, it is logical that the patterns
from the same cluster will also belong to the same class. When a new pattern is presented
at theinput layer, the network classifies precisely based on the similarity or neighborhood
property. Thus the inherent similarity or neighbourhood property of the clusters leads
the network to generalize. In real life cases, however, we cannot extract all the relevant
features necessary for the classification. Consequently, two patterns may have the same
or similar feature values, but they are not same or similar if the other features, including
the existing ones, are accounted for. Therefore, when the input patterns are clustered
based on the available features, two apparently similar or neighboring patterns may have
different class labels. 1t makes the output classes indescernible or indistinguishable based
on the given set of features. Consequently, the relationship between each cluster and
the class labels becomes rough. One way to completely avoid the rough uncertainity is
to extract the essential features so that distinct feature vectors are used to represent
different objects. But, it may not be possible to guarantee as our knowledge about the
system generating thedataislimited [SS93]. Another way to avoid rough uncertainity isto



break the clusters further so that they do not contain any pattern from the other clusters.
Thisisdifficult aseach fuzzy cluster to some extent covers patterns from the other clusters.
Moreover, the breaking o clusters means destruction of the similarity property, which in
turn means the destruction of the generalization property of the network. In addition, if
the clusters are broken too much, then the network training may need large space and
high time complexity.

In thissection, we attempt to reduce the effect of rough uncertainity, while keeping the
similarity property intact. To tackle thesimilarity property we need fuzzy sets [K'Y95], and
to tackle roughness we need rough sets [Paw82]. Both fuzziness and roughness associated
with each modified feature vector is captured using fuzzy-rough membership functions.
The fuzzy-rough membership function is further exploited to construct a fuzzy-rough neu-
ral network (FRNN). Basically, the FRNN uses the fuzzy uncertainity involved in the
input data set and the roughness present in the input-output relationship. One advan-
tage of the classification procedure used in the FRNN isthat it is possibilistic [KY95].
It is useful because the output of the FRNN will be used again while combining the
classification result. Theoretically the FRNN is a powerful classifier asit is a universal
approximator [SY98b).

6.3 1 Root of Fuzzy-Rough Neural Networks

The FRNN isdesigned such that the outputs of the networks are fuzzy-rough membership
values corresponding to the input. The fuzzy-rough membership function of a pattern
captures both fuzziness and roughness associated with the pattern. Let, 7¢,(y) represent
the fuzzy-rough uncertainity o y in the class C.. ¢ (y) is defined as

7 ﬁlun(y)b’éc(y) if 37 with ur;(y) >0

_ (6.24)
0 otherwise

c.(y) = {
where {F\, F3, ..., Fy} are the fuzzy clusters generated by evolutionary programming-
based fuzzy clustering algorithm, H is the number of cluster in which y has non zero
membership and o’d(y) =f1|g—‘|’°| Appendix-D contains a detail description about the
fuzzy-rough membership functions.

6.3.2 Architecture of Fuzzy-Rough Neural Networks

The proposed FRNN is a three layered feedforward network with one hidden layer
(Fig. 6.7). The number of nodes in the input, hidden and output layers are equal to
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Module output
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Fig. 6.7: A typical fuzzy-rough neural network with three input nodes, four
hidden nodes and two output nodes.

the dimension of the input pattern (=), number of the fuzzy clusters present in the
input data (=H) and number of the classes (=C'), respectively. When an input pattern
Y = [y1,¥2...,yn) is applied at the input layer of the network, the output of the jth
hidden node is

0} = exp [— - m’;‘(?y - mj)] (6.25)
where m; and o; (assuming the spread is same along all directions) are the center and
spread of the Gaussian function used in the jth hidden node. The center and spread of
the hidden nodes can be determined by making them equal to the mean and variance of
theclusters. The mean and variance of each cluster are determined using the evolutionary
programming-based fuzzy clustering algorithm, which is described in the previous section.
The outputs of the hidden nodes can also be interpreted as the fuzzy membership values.
The parameters necessary for the FRNN can be obtained from the parameters defined in

the input space (Table 6.1). The output of the kth output node is

H
Oz = Z o;‘wjk (626)
=1

J

where wj; is the weight from the jth hidden node to the kth output node. The output
value o} liesin between 0 and 1 (from Property D.| of Appendix-D) as the output is the
fuzzy-rough membership value corresponding to the input. Moreover, from Property D.6
of Appendix D, o}, is possibilistic.
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Table 6.1: The relationship between the parameters used in fuzzy-rough neu-
ral networks and input space.

Fuzzy-Rough neural networks Input Space

No. of the input nodes = Dimension of the input patterns
No. of the hidden nodes = No. o the clusters

No. of the output nodes = No. of the classes
Center of the jth hidden node = Center of the jth cluster

Width of the jth hidden node = Width of the jth cluster

6.33 Training and Testing of Fuzzy-Rough Neural Networks

To design the FRNN, the last task is to adjust the weights between the hidden layer and
the output layer through training. Precisely, the weights between the hidden and the
output layer reflect the rough-fuzzy membership values. For training, all the weights,
w;k(0) V3, k areinitialised to zero. For each input training pattern, the weight adjustment
Is carried out as

Awp(l) = o;-‘ x1 V], k (6.27)

wheei = 1ify € C, elsei = 0. It isinteresting to note that the training process
takes exactly one iteration. After the whole cycle is over, w;, represents |F; N Cyl,
i€, Lyec, pr,(y). TO make wj, = if,, wj is normaized as E‘—ZJ;’;—; (since |Fj| =
Yk Tyec, #F,(¥) = Tpw;e). Since al the hidden nodes are using Gaussian clusters,
each input pattern belongs to all the clusters, and hence, H = H. Finally, the weights
are set as wjr = 4 to take care of the term H involved in Equation (6.24). Note that
no bias term is involved here with any node.

In thetesting stage, aseparate set of test patternsisgiven astheinputsto the network.
For the test input y, the generated output at the cth output node is the fuzzy-rough
membership value ¢ (y). Since the fuzzy-rough membership functions are possibilistic
(see Property D.6 of Appendix-D), the outputs of the FRNN are also possibilistic.

It can be shown that architecturally (although functionally not) FRNNs are equiva-
lent to radial basis function neural networks [SY98b]. Since radial basis function neural
networks are universal approximators [JSM97], FRNNs are also universal approximators.
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6.3.4 Resultsand Discussion

Through clustering we have obtained the clusters corresponding to the fifteen classes
present in the opening bid problem. This cluster information is used to construct an
FRNN. We used “TrainingSetl” to train the network for the first level bids. From sec-
tion 6.2.4, the number o clustersis 21 (5for ‘P’, 5 for ‘1C’, '6' for ‘1D’). Hence for the
first level bids we used 21 hidden nodes. The resultant FRNN has fifty input nodes,
twenty-nine hidden nodes and six output classes. The first row of Table 6.2 shows the
classification performanced FFNNson thefirst level bids. This result is reproduced from
Table 5.1. The second row of Table 6.2 exhibits the performance of the FRNN. While
comparing with the FFNN for first level bids, we can observe that the performance of the
FRNN is better than that of the FFNN. The time needed to configure the FRNN is also
less.

Similarly, FRNNs were constructed for the second and third level bids. The data
sets “TrainingSet2” and “TrainingSet3” were used to construct the FRNNs. To test the
performance of these two FRNNS, we used “TestSet2” and “TestSet3”. The FRNN for
the second level bids consist of fifty-two input nodes and five output nodes. Since the
total number of clusters for the second level bids is 19, the number of hidden nodes is
chosen as 19. The comparative classification performance of the FRNN and the FFNN
isgiven in Table 6.3. For the third level bids, the FRNN has fifty-two input nodes, nine
hidden nodes and four output nodes. The classification performance of the FRNN and
the FFNN is compared in Table 6.3.

It can be observed that for first and second level bids, the performance of FRNNs are
better than the FRNN. In contrast, the FFNN for third level bids perform better than the
FRNN. In lower level bids roughness is very high. FRNNs take roughness into account,
and hence, they perform better than FFNNs for lower level bids. The role of rough
uncertainty islessfor theinputscorresponding to the higher level bids. Hence, in thiscase
the FFNN can approximate the class boundaries more effectively than the FRNN. Some
differencesbetween the FFNN approach and the FRNN approach are: 1) FRNNSs utilise
the structure present in the data explicitly, whereas in FFNNs the use of the structureis
implicit. 2) FFNNs with the fuzzy objective functions do not consider rough uncertainity.
In contrast, FRNNSs take care of rough uncertainty. 3) FFNNs with the fuzzy objective
functions perform wedl when the decision boundary is very complicated. However, the
performance degrades as soon as the roughness in the data set becomes high. On the
other hand, although the performance of FRNNSs is poor in presence of complex decision



Table 6.2: Comparative classification performance of FFNNs and FRNNSs for

first level bids.
Network Pass

FFNN (80.64%
FRNN 86.05%

1D

79.38%
81.62%

1H

70.44%
77.23%

1C
75.14%
78.30%

1S

85.63%
79.63%

IN

73.02%
86.75%

Overall

77.37%
81.42%

Table 6.3: Comparative classification performance o FFNNs and FRNNSs for

second level bi
Network 2C 2D 2S 2H 2N Overal
FFNN 75.82% | 77.57% | 80.24% | 78.12% | 76.68% | 77.68%
FRNN || 88.18% | 76.12% | 81.57% | 90.01% | 82.51% | 83.67%

Table 6.4: Comparative classification performance of FFNNs and FRNNs for

third level_bids.
Network 3C 3D 35 3H Overdll
FFNN || 89.23% | 88.52% | 93.15% | 85.63% | 89.13%
FRNN || 91.76% | 79.88% | 89.54% | 78.87% | 85.01%

boundaries, FRNNs exploit rough uncertainty to enhance the classification performance.
The effectiveness of these two approaches depend on the type of the decision boundary
and the roughness present in the classification task.

6.4 Summary

In this chapter, an evolutionary programming-based clustering algorithm is proposed.
The algorithm effectively groups a given set of data into an optimum number of clusters.
The algorithm determines the number of clusters and the cluster centers in such a way
that locally optimal solutions are avoided. The result of the algorithm does not depend
critically on the choice of the initial cluster centers. The clusters are used to construct
an FRNN. The parameters for the hidden nodes and the number of hidden nodes are
determined from the clusters. The weight between each hidden node and the output class
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Fig. 6.8: (a) and (b) are two equivalent sets o clusters, which order their
clusters differently. Although phenotype representation for both the sets are
same, genotype representations are different.

is determined using the rough-fuzzy membership functions. The outputs of the network
are fuzzy-rough membership values corresponding to the modified feature vectors.

Like FFNN configuration, in the clustering problem also, an EP-based optimization
approach is advantageous over a genetic algorithm-based approach. Here, the permutation
problem stems from the fact that in genetic algorithm two functionally identical sets of
clusters, which order their clusters differently, have two different genotype representations
(see Fig. 6.8). Therefore, the probability of producing a highly fit offspring from them by
crossover will be very low.

The difference between FRNNSs and radial basis function networks should be noted.
The working principle of radial basisfunction neura networksissimilar to that of FRNNSs.
But, FRNNs consider the rough uncertainty present in the clusters, whereas the radial
basis functionsdo not take roughnessintoitsaccount. In particular, the use of rough-fuzzy
membership functions makes FRNNs more powerful than radial basis function neural
networks. Detail comparison between these two networks is given in [SY98b).

When both the input clusters and the output classes are crisp, the outputs of the
FRNN are rough membership values (see Property D.4 o Appendix-D). Hence, the re-
sultant FRNN architecture is reduced to a modified architecture, called rough neural
networks. The architectural difference between FRNNs and rough neural networksisin
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the transfer function used in each hidden node. In particular, the transfer function used in
the FRNN is of Gaussian type, whereas in the case of rough neural networks the transfer
function is a unit gate function, i.e.,

oh={ 1 if (y-my)(y-m;) <27 (6.28)

7 .
0 otherwise

Evidently, the 1/0 option used in the gate function makes the generalization capability of

rough neural networks limited.

When the input clusters are crisp and fine, and the output classes are crisp, then
the outputs of the FRNN are the crisp class membership values (see Property D.5 of
Appendix-D). The resultant network can be called crisp neural network. The number of
hidden nodes of the crisp neural network is equal to the number of inputs. Since the
width of each cluster approaches towards zero, the transfer function of each hidden node
becomes a unit impulse function, i.e.,

#:{1” Y=Y (6.29)
0 otherwise

As a result, the weight calculation becomes very simple, i.e., w;, =1 if y; € Cy else
w;x = 0. Thus, the resultant crisp neural network needs a large amount of space, and it
works like a look-up table, which does not have any generalization capability, but has a

very good memorising power.
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Chapter 7

FUSION OF CLASSIFICATION RESULTS

7.1 Introduction

Till now we have divided the original classification task among small feedforward sub-
networks, and we have built modules to accomplish the subclassification tasks. In this
chapter we combine the individual solution provided by the modules to obtain the fina
classification result. The proposed method interprets each subnetwork as a nonlinear filter
tailored to the subgroup. The outputs of al the filters can be viewed as a feature vector
representing the input. We may call these features secondary features to distinguish it
from the features that we obtained in chapter 4. In fact, the features what we obtained in
chapter 4 undergoes nonlinear filtering and generates the secondary feature vectors. For
the sake of brevity we will call the secondary features also features as long as no confusion
exists. Each module classifies the input pattern from different angles. Each feature, i.e.,
the output of each module, can be considered as an evidence in classifying theinput. Since
the modules are trained locally and the modules cannot resolve the global uncertainties,
each of the evidence may support or contradict one another. For instance, the following
two conditions may arise:

1. If the classes of two modules are close or overlapping, then for an input, outputs of
both the modules will be high. In other words, each of these two modules claims
that the input can be classified by the module alone.

2. Due to roughness, an input may completely belong to two different classes. |If
these classes are from two different modules, then for a similar test input, both the
modules will produce high outputs. It indicates that the input belongs to both the
modules.

Some modules may cooperate each other also. For instance, the low output vaue of
a module may automatically indicate the high output in some other modules. Due to



the presence of conflicts and cooperations, each feature would have a different degree of
importance in classifying the input to a particular class.

To fuse the information supplied by each module, various methodologies like
winner-take-all [Hay94], probabilistic (Bayesian) reasoning [JJ93], Dempster-Shafer the-
ory [Sha76], fuzzy integral [CK95a] [CK95b] [Yag93] [Cho95] [YF93] [Gra97] (WK92] exist.
In the winner-take-all technique, outputs of al the subnetworks are combined by simply
choosing the class with the largest output value. This method does not consider the im-
portance of each feature. Since each module is not trained to discriminate al the classes
and all the modules are not trained upto the same accuracy, the performance o this
scheme is poor [CK95a] [Cho97]. For the information fusion, Bayesian reasoning utilises
the importance of each feature. But, while combining the importance of more than one
evidence, it relies on probability theory, which cannot discriminate between lack of evi-
dence and negative evidence [KO96]. On the other hand, Dempster-Shafer’s theory and
the fuzzy integral can distinguish between lack of evidence and negative evidence. Aswe
have discussed in section 2.3.4, the fuzzy integral approach has a way to assess the im-
portance o all groups of information sources towards supporting a particular hypothesis
as wdl as the degree to which each information source supports the hypothesis. In con-
trast, the Dempster-Shafer theory does not have this advantage [KGTS94]. In addition,
fuzzy integral is computationally moreefficient than the Dempster-Shafer approach. Due
to these merits, this chapter applies a fuzzy integral-based fusion method in combining
the subnetworks. In particular, a specia type o fuzzy integral, known as Sugeno’s fuzzy
integral, is used. Henceforth, we use the term fuzzy integral to mean Sugeno's fuzzy
integral.

The behavior of the fuzzy integral in an application depends critically on the impor-
tance of the subsets of the features. Therefore, determination of the worth of each feature
IS very important. In some applications of the fuzzy integral, the importance is sup-
plied subjectively by an expert or it is estimated directly from the data [TK90] [SY98e].
These methods require some kind of prior knowledge about the behavior of the outputs
generated by the modules. In many applications, it may be difficult to obtain the prior
knowledge. However, it isinteresting to note that in the fuzzy integral approach, influence
of the other features on a given feature is not considered. Hence, determination of the
importance of a particular feature is based on the partial information supplied by the
featureitself. A featureisimportant for a particular class when all the input patterns can
be classified correctly to that class only using this feature value. Thisis possible when all



theinput patterns are clustered based only on this feature valueand all the input patterns
from each cluster have the same class label. When it does not happen, the relationship
between the clusters and the output class |abels becomes one-to-many. It resultsin rough
ambiguity [Paw82]. In most of the cases, the clusters formed in the input space based on
each feature value is fuzzy. Therefore, in this article, an attempt is made to determine
the importance of each feature using fuzzy-rough set [DP92] theoretic technique.

The chapter is organized as follows: In section 7.2 we discuss the basics of fuzzy
measure, fuzzy integral and rough sets. In section 7.3 the proposed method is described.
Section 7.4 demonstrates the experimental results.

7.2 Background

7.2.1 Fuzzy Measure

Let Z be a finite set of elements. A set function g : 25 — [0, 1] with the following
properties is called a fuzzy measure [Sug74]:

P1: g(¢)=0
P2: g(B)=1
P3: If U CV, then g(U) C g(V), whereU, V CE

The fuzzy measure generalizes the classical measure which plays a crucial role in
probability and integration theory. A probability measure P is characterized by the
property of additivity: For all sets U and V, if UnV = 4, then P(UU V) = P(U) +
P(V). In the fuzzy measure, this property of additivity is weakened by the more general
property of monotonicity (property P3). Sugeno’s g, measure is a special type of fuzzy
measure [Sug74] which satisfies all the properties of the fuzzy measure, in addition to the
following:

gUUV) =gU)+g(V) + Ag(U)g(V) (7.1)
whereA> -1, U, VCEZand Un V = ¢. By varying the values of A, one can obtain
different types of fuzzy measure. For example, A = 0 produces the probability measure.

7.2.2 Fuzzy Integral

Let Z ={&,&,,...,€5} be afinite set of elements, h: = — [0, 1] be a mapping and g be
afuzzy measure on Z. Then the fuzzy integral (over Z) of the function h with respect to
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the fuzzy measure g is defined as

F = h(E)eg()

= max lmin (min (h(£,)), 9(9))

ma; pin (7.2)

wherel < s £ 8. Sinceboth hand g map to [0, 1}, Basoliesin [0, 1]. The aboveintegral
can be seen as an extension of Lebesgue integral if product and summation operators are
substituted for rnin and max, respectively. 'Intuitively the interpretation of the above
relation is as follows: Let us suppose, an object is evaluated using a set of information
sources E. Let h(€,) € [0, 1] denote the decision for the object when a single information
source €, € Z is considered. Moreover, suppose g({&,}), known as fuzzy density, denotes
the importance of thesource&,. Instead of asingleinformation source, if aset of sources,

namely 2 C Z, is taken to evaluate the object, then it is reasonable to consider énin h(€,)
aen

as the largest security decision. Evidently, ¢(?) expresses the degree of importance or

the expected worth o the set R. Therefore, min gmg (h(&,)),9(Q) | denotes the grade
A€

of agreement between the real possibility h and the expectation g. Thus, the fuzzy
integral can be interpreted as a search for the maximal grade of agreement between the
objective evidence and the expectation. However, the definition can further be simplified
if h(€,), s=1,2,...,Sare ordered in a decreasing manner. Let h(§,) > h(€;) > ... >
h(€s) (if not, Eisrearranged so that this relation holds). Then Equation (7.2) issimplified

to

F = h(E) o g() = max | min (h(£,), 9()) (73)

where Qs = {61,52, . !es}'

In order to evaluate the fuzzy integral, i.e., 3, we should have some way to determine
g(Q,) from g({&,}). For that, we need to use the concept o fuzzy measure. In the
next section we will show how to determine the individual fuzzy densities g({£,}), s =
1,2,...,S for each information source from the given data. For the time being, let us
suppose that we know the fuzzy densities of the individual sources. But, g(£2,) is not
necessarily equal to g({€,}) +9({&,}) T ... T g({¢&,}). The simple additive property
may not hold because there may be some interactions among &,. If the interactions are
cooperative, then g(®,) > g({€,}) +9({&;}) T ... + 9({¢,}). On the contrary, if the



interactions are noncooperative, then g(€,) < g({&}) +e({&}) T... T 9({¢,}) [MS89b].
From this discussion, note that probability theory cannot be used to determine the value
of g(€2,). However, the concept of Sugeno's g, fuzzy measure can be exploited here to
find the value of g(£2,). The procedure is as follows:

g(Ql) = g({€1})
9(Q) = g({&}) +9({&}) + rg({&:Da({&,})
= g({&}) + () + Ag({&,})g(n)

9(Q) = g({&}D +9(Q-1) + Ag({€,1)9(Rs-1) forl<s<S (74)

One problem remains still unresolved; that is, how to determine A, which is the key
term to decide the amount of interactions among the information sources. In order to find
A, we use Equation (7.4), and we express g(=Z) in terms of the individual fuzzy densities
as follows:

9(8) = g({&}) +9({&1, &2 €5-1})

+9({€sHAg({é1, &, s €5-1)) - (75)
S S-1 S
= LoleN+2 X 3 gesed + -
+A5g({€)g({€:)) .- 9({&s}) | (7.6)
S
= Ll;(l + Ag({&,})) - 1} /A where A # 0 (7.7)

From (P2), weknow that the valueof g over thewholeset = must be one as no uncertainty
isinvolved. Hence, using g(£) = 1 and Equation (7.5)

S

[Ma+x({e))=r+1 (7.8)

s=1
It is possible to find the value of XA after solving the above (S— 1)th degree equation.
In [TK90], it has been shown that A has a unique value in (—1,0) U (0, +c0) when
0<g({§}) <1, Vs=12,...,8.



7.3 Modular Networks with Proposed Fusion Technique

7.3.1 Architecture of Modular Networks

In third chapter, the given pattern classification task is subdivided into three subtasks,
and one subnetwork is assigned for each subtask. We make this statement slightly general
by assuming that the original problem has M output classes {C1, Cs,...,Cwm}, and these
classes are divided into S subnetworks (Fig. 7.1). The sth subnetwork is assigned to
classify a group of classes, represented by {Ce,_,+1,-..,Ce,} With ¢g = 0 and ¢s = M.
The output of the sth subnetwork is {ye,_,+1,---,¥e,}, Which is expressed in a vector
notation as &, = [yc,_,+1,-..,¥e)- The proposed method interprets each subnetwork as a
nonlinear filter tailored to the subgroup. Thus, the outputsd all the filters corresponding
toan input x isviewed asan Sdimensiona feature vector. Thisfeature vector is presented
as an input to a fuzzy integrator, which computes the value of the fuzzy integral with the
help of fuzzy densities. The class label of the input x is the class index that yields the
maximum value of the fuzzy integral corresponding to .

7.3.2 Training of Modular Networks

When a modular network is used for classification, a given training pattern isinput to all
the subnetworks and the outputs of the subnetworks are processed to determine the class
label. We can decide the class label of the input based on winner-take-all policy. It means
that theclass|abel of theinput patternisassignedasj, 1< j< M, if y; = k:ﬂ?’..‘,m{y"}‘
However, this type of assignment is not proper as al the subnetworks are independently
trained on different sets of data. A better approach isto declarethe jth class winner, if the
jth class correspondences to _max {gkyk} where g, is the importance associated with
theclass Ck. One possi blech0|cefor gk i1Sthe a priors probability of the class Cx. However,
the constraint kzmz‘ij gr = 1 used in probability theory cannot distinguish between lack
of evidence and ignorance. Therefore, the concept of fuzzy integral is appealing here.
In the fuzzy integral approach, the outputs o the modules are processed further so that
the interactions among the outputs are also exploited for the final classification result.
Hence, the term gy isreplaced by a morespecificterm g ({€,}), where gr({€,}) denotesthe
importancedf &, in characterizingthe classC,. With the help o gx({&,}), s=1,2,...,S,
the fuzzy integral F for the class C, combines the outputs of al the modules, i.e.,
£, s=12,...,S, in anonlinear fashion. The fina class label corresponding to the
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Fig. 7.1: A modular network with S modules or subnetworks. Initially the
input pattern is fed to Sdifferent feature analysers (FA). The feature analy-
sers modify the input by providing different weightage on each feature. The
modified featureset is passed to the module connected to the feature analyser.
The output of the sth module is represented by &,. All the outputs are com-
bined in a nonlinear manner by a fuzzy integrator (FI). 4 denotes the vector

[éh é?y s yéS]"

input is j, if F; = k_rlnzaxM{J-'k}. The training of the modular network is comprised of

=L1,ay..1y

the following two stages:

7321 Training of subnet wor ks

For this stage, separate data sets are prepared to train the subnetworks independently.
The training data set for a subnetwork generally consists of the patterns belonging to
the classes in its subgroup only. Then, each subnetwork is trained to form the decision
surfaces for the classes in its subgroup. Training of the subnetworks varies depending on
whether the network is FFNN or FRNN. Both the training strategies are discussed in
chapter 5 and chapter 6.
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7.3.2.2 Pattern matching

This stage d training is needed to compare the kth class prototype and the feature
vector 1. Here the partial evaluation hg(§,) implies how good the feature €, alone is to
classify the patterns from the class Ci, and the individual fuzzy density g ({&,}) signifies
the importance of the feature §, for the class Cx. Hence, the comparison between the
prototypes of Cx and % can be accomplished in terms o closeness. Roughly speaking,
the closeness can be expressed as Ay (€1)gx ({£1)) + ha(€2)9x({€2)) +- .+ Pu(€5) 9 ({€5))-
When thedomain is continuous and the continuity o thefunction kg (€&, ) isnot guaranteed,
the closeness can be represented more comfortably by the fuzzy integral Fx. Therefore,
in this stage it is essential to know the values of: (a) class prototypes, from which the
partial evaluation h(€,) can be obtained, and (b) the individual fuzzy density gx({,}).

Class prototype selection: The set {x) that contains training inputs from all the
classes, are passed through all the subnetworks to generate a set of feature vectors {¢}.
All the feature vectors corresponding to each class (say Cx) are collected separately, and
the mean of the vectors (say my) iscalculated. This mean represents the class prototype.
In the testing phase, these class prototypes will enable us to compute the partial evaluation

h (53)-

Evaluation of fuzzy density gx({§,}): The individual fuzzy densities are calculated
based on how wel the outputs generated by the subnetworks separate all the classes for
the training data. Since we have already mentioned that each £, can be considered as a
feature, determining individual fuzzy densities are equivalent to the determination of the
importance of each feature. We propose a fuzzy-rough set theoretic approach to determine
the individual fuzzy densities, i.e., the importance of the features for a particular class.
This approach is described below for the feature §, and the output class Ck.

A set of features {€,} is collected by passing a set of training inputs{x) through the
sth subnetwork. Fuzzy K-means algorithm [Bez81] is applied on this feature set. Since
the number of clusters is not known, we assume K is equal to the number of classes
M. While applying the fuzzy K-means clustering on the set {£,}, we can observe the
following two points:

1. Some &, belong to more than one cluster partially as the clusters are overlapping.

2. All €, from the same cluster may not belong to the same class.

Thefirst type of uncertainty is fuzzy uncertainty. It is generated because the outputs of



the subnetworks are not from {0, 1}. The second type o uncertainty is rough uncertainty.
It is generated as the feature £, is not sufficient to classfy all the input patterns{x).
Hence, two different§, belonging to the same cluster may represent two different classes.
Thus, the relationship between the sth feature and the class |abels may be a one-to-many
mapping. In other words, the classes are indescernibleor not distinguishable with respect
to the sth feature. The sth feature €, is an important feature if

1. The clusters are compact and wide apart. The less is the fuzzy uncertainty, the
more important the feature is [PC86| [PM86].

2. All the elementsfrom a particular cluster belong to the same class. The lessisthe
rough uncertainty, the more important the feature is.

That is, the feature €, isimportant if each cluster, generated by the feature, is compact
and isolated, and if all the patterns from each cluster represent the same class. Therefore,
the presence of morefuzzy and rough uncertaintiesimplieslessimportance. Note that the
presence of any one or both of these uncertainties change the importance of the feature
for a particular class. We seek to measure the amount o fuzzy and rough uncertainties
involved by using fuzzy-rough sets. Later we will use the quantified vaue to determine
the importance of the sth feature for the kth class.

Based on the feature &,, the approximation o Cy by the set of feature vectors {4} is
expressed here as a fuzzy-rough set. The lack o discriminating power o thefeature €, is
due to the fact that we are not considering the other features §;, j #s, j =1,2....,5
into account. Here we do not have complete information to classify a particular pattern
in the class C; based on the information supplied by &,. To determine the importance of
the feature &, for the class Cy with such incomplete knowledge, the concept o rough sets
can be used. In the terminology o rough set, two patterns +, € {¥} and ¥, € {4} are
called indiscernible with respect to the sth feature when the sth component o these two
patterns have the same value. Mathematically, it can be stated as

W,RY, I £ =& (7.9)

where R® is a binary relation over {+) x {¢}. Obvioudy, R* is an equivaent relation.
Therefore, R® partitions {1} into aset of equivalent classes, namely {F?, F3,..., Fx}
where K isgreater than one but lessthan the cardinality of {+}. For continuous features,
it is better to consider that v, and vy, arerelated if the sth component o the two features
aresimilar (not necessarily strictly equal asin (7.9)). Two patternsfrom the same cluster



can be considered similar as they have spatial similarity. The resultant equivalence classes
become fuzzy clusters. It can be proved [DP92] that thefuzzy clusters F}, F3, ..., Fy, will
be present if and only if there exists some similarity relation like (7.9). Moreover, it can
be shown that [DP92] the generated clusters will follow weak fuzzy partitioning [DP92].
This situation can be formulated in terms of fuzzy-rough sets. One obvious problem is to
decide the number of clusters needed for the task. We are assuming that the number of
clusters is equal to the number of classes, i.e., K = M.

After showing that fuzzy-rough uncertainty is associated with each £,, we have rep-
resented the approximation of Cx by {#} in terms of fuzzy-rough sets. Now we are ready
to quantify the fuzzy-rough uncertainty associated with each &,. In Appendix-D, we
can observe that using fuzzy-rough membership values, we can measure the fuzzy-rough
uncertainty associated with each input pattern. Now, a measure of fuzzy-roughness is
needed to estimate the average ambiguity in the output class Cy for the input feature §,.
As a measure we use the concept of fuzzy-rough entropy for the sth feature and the kth
class as

Hl‘z = _ﬁ l];l 9 %: TCk (€3) ln(Tch (es)) + (1 = Tcy (53)) ln(l —TCy (63)) (710)

where 7¢, (€,) is the fuzzy-rough membership value of the feature &, in the class Cy and
i is the number of feature vectors used to determine the importance of the feature. It
can be noticed that #} increases monotonically in [0, 0.5] and decreases monotonically in
[0.5, 1]. It reaches the maximum value when ¢, (€,) = 0.5V&,, and minimum value when
¢, (€,) = 0 or 1 V&, [PB95]. The lower the vaue of #j is, the greater is the number
of &, having ¢, (€,) = 1 or 7¢,(&,) m 0, ie., lessis the difficulty in deciding whether
€, can be considered a member of C or not. In particular, when ¢, (€,) ~ 1, greater
Is the tendency of &, to form a compact class Cy in the sth subspace, resulting in less
internal scatter in the sth subspace. Moreover, when 7, (€,) = 0, §, isfar away from the
kth class, and hence, the interclass distance increases in the sth subspace. On the other
hand, when ¢, (€,) = 0.5, €, liesin between Cy and the other classesin the sth subspace.
Hence, compactness and interclass distance both decrease in the sth subspace. Therefore,
the reliability of €,, in characterizing the class Cy, increases as the corresponding Hj
value decreases. Thus, Hi quantifies the importance of &, in characterizing the kth class.
One way to determine the importance of the sth featurein the kth classis by the term



(1-"Xi). Hence, the fuzzy densities can be determined as
gk({es}) =1- ’HZ v $, k (711)

The procedure to find the fuzzy density can be summarised as follows. We interpret
the fuzzy density of a module with respect to an output class as the importance o the
module for that class. It is equivalent to the importance of the feature generated by the
module (sincethe moduleis treated as afeature extractor). Theimportance of the feature
for an output class depends on the fuzzy-roughness associated with the output class for
the given feature. We have demonstrated that a set o input patterns can be clustered
based on the feature value, and as a consegquence, the approximation o the output class by
these clusters can be expressed in terms o afuzzy-roughset. It is possibleto quantify the
fuzzy-roughnessassociated with each input pattern for the output classin terms o fuzzy-
rough membership functions. The fuzzy-rough ambiguity associated with the output class
for the given set of input patterns is measured using the fuzzy-rough entropy. The fuzzy
density for the output class is determined from the fuzzy-rough entropy.

The complete training procedure, consisting of training the subnetworks and matching
the patterns, is shown in Fig. 7.2.

7.3.3 Testing of Modular Networks

A separate set of test patterns is used as inputs to al the subnetworks. The outputs
of all the subnetworks corresponding to the input test pattern x form the feature vector
b =[£,€,,...,€s]. Todetermine the partial evaluation h(€,) from the already recorded
class prototypes, we use the followingrelation [Bez81]:

hi(§,) =1 / f: (di/dy)>/ @Y (7.12)

where dy is the distance between the feature &, and the prototype of the kth class, i.e.,
dy = (€&, - my)T™Y(&, - my), with m{ = [me,_,414,...,Me,x)- Here, T is a positive
definite matrix and q € (1, o) is an index. Generaly, X is taken as the covariance
matrix for the distance between ¢, and m§, and q is teken as 2. The value of hi(§,)
Is an indication of how certain we are in the classification of the input X into the class
Cr using the feature §,. Here, 1 indicates with absolute certainty that the input x is
from the class Ck, and 0 means that the input certainly does not belong to the class Ck.
Moreover, from the training the fuzzy densities g,({£,}), Vs, k, are known. Hence, using



Wse different training sets T,, s = 1,2,...,5totrain all the
subnetworks.The training set T, contains the training
input-output pairs only for the sth subnetwork.

Prepare another training set {x;,x...,x3} that contains the
training Input-output pairs for all the subnetworks. Pass this
training set through all the subnetworks to collect the feature
vectors ¢,, p=1,2,...,7 as the outputs.

DO for each k=1,2,...,M
Record the class prototype my.
END DO

DO for each s

Apply the fuzzy K-means clustering algorithmwth A
clusters on {&,,|p=1,2,...,7}.

DO for each class Ci, k=1,2,...,M

Use (7.11) to conpute the fuzzy density ge({€,})
from{&,|p=1,2,...,7}.

END DO
END DO

Fig. 7.2 Training of the proposed modular neural network.
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For the test input pattern x, find the outputs &,, s = 1,2,...,S
for all the subnetworks.

DO for each output class Ci, k=1,2,...,M
DO for each &,, s=1,2,...,5
Compute hi(€,) from (7.12) .
END DO
Calculate A from (7.8).
Calculate F; from (7.3).

END DO

The class label of x isj if }'j=rﬁz§|.1x{ﬂ}.

Fig. 7.3: Testing of the proposed modular neural network.

Equation (7.3), the fuzzy integral value of x corresponding to each output class can be
computed. The class label corresponding to the test input is the class index which yields
the maximum fuzzy integral value. Thefuzzy integral value corresponding to a particular
class can also be used as the confidence level in classifying the input to that class. The
testing procedure is given in form of an algorithm in Fig. 7.3.

7.4 Results and Discussion

In chapter 6, we found that FRNNs are suitable for the first and second level bids,
whereas the FFNN with fuzzy mean square error is suited for the third level bids. Hence
to construct the modular network, we use two FRNNs for the first and second level bids
and one FFNN for the third level bids. The architecture and training strategy for these
networks are discussed in chapter 5 and 6. To combine the outputs of the networks, a
test set of 600 input patterns was formed. It contains patterns from al the classes. For
a given input hand, the output o each network is found. In the first experiment, we
applied winner-take-all technique on these outputs to find the corresponding class labels.
The class label of the input was chosen as the class label corresponding to the maximum
output. The classification performance is shown in the second column of Table 7.1.



Next we apply the fuzzy integral to fuse the outputs of the three networks. To train
thefuzzy integral, we used a validation set o size 400. Thisset containsdatafrom all the
classes. Here the importance of each &, is determined using two different methods. One
method is called frequency-based method. It was used first by Tahani et al. in [TK90].
The fuzzy density corresponding to each &, isfound based on how well this feature alone
performs on the validation set. The fuzzy densities are calculated using [CK95b]

.
o({6) = Pur /Y- s, (713)

where P, ;. is the classification performance of €, for the class Cy, on the validation data
and d, isthe desired sum of the fuzzy densities. The output with maximum fuzzy integral
valueischosen as the output classlabel. The classification efficiency using this procedure
is depicted in the third column of Table 7.1. Finally the fuzzy densities are calculated
using the proposed method. For each module, the class prototypes were recorded. Since
the number of classes is 15, we used 15 clusters in the fuzzy K-means algorithm. This
information was used to compute the fuzzy densities. The classification results of the
proposed method on the same test set are given in the fourth column o Table 7.1.

In Table 7.1, we can observe that the proposed method is performing better than
the winner-take-all method. In the winner-take-al method, there is a large variation in
the performance among the classes. It is because some classes are highly trained, and
hence these classes win for most o the input data. The sum of importance calculated
using frequency based method is equal to one. Consequently, if a module is not efficient
to classify patterns to any of the classes, then the importance associated with the mod-
ule for al the classes will be m = 5. On the otherhand, in the proposed
method sum of importance may or may not be equal to one. Hence, if a module is not
efficient to classify patterns to any o the classes, then the importance associated with
the module for al the classes will be zero. Thisstrategy is certainly more attractive than
that of frequency-based method. Possibly because o this reason, the proposed method is
performing better (overall) than the frequency-based method. Therefore, the better clas-
sification performance (overall), makes the proposed method more attractive compared
to the other two methods.

In this chapter, finally we have built the complete modular network for the opening
bid problem. Although the performance o the resultant bidding system is not the best,
our aim was to show that exploitation o uncertainities can make the classfier better. For
that we started with a monolithic classifier, which could not be trained. Then we broke the



Table 7.1: Final classification results for the opening bid problem using win-
ner-take-all method, frequency method and proposed method.

method method method
P 90.14% 78.87% 88.34%
1C 56.67% 89.43% 85.91%
1D 57.24% 68.89% 79.83%
1H 88.76% 88.94% 86.54%
1S 86.94% 77.76% 92.53%
IN 83.78% 82.90% 85.89%
2¢ 46.17% 69.91% 80.15%
" 9D 77.18% 86.18% 87.89%
oH 95.56% 84.56% 82.15%
25 67.01% 85.93% 89.04%
9N 75.56% 83.85% 73.78%
3C 56.13% 76.78% 79.23%
3D 96.67% 84.74% 88.14%
3H 87.61% 87.45% 89.14%
3S 94.23% 86.89% 90.01%
Overall 77.31% 82.20% 85.23 % |

monolithic classifier and finally integrated the classification results from the subclassifiers.
The classification result by the network is off course subjective. It is because the bids
produced by the system are tallied by an expert, and if it is accepted by the expert as a
valid bid, then the output is considered as correct output. There may be be slight change
in the performance of the classifier if the expert is changed.

7.5 Summary

This chapter applies a fuzzy integral-based technique to combine the outputs of the mod-
ules in a modular neural networks. The modules are viewed as nonlinear feature extrac-
tors. Hence, for each input the modules generate a feature vector. The fuzzy integral acts
here as a weighted closeness measure between the feature vector and the class prototypes.



The weights are determined based on how important the features are for a particular class.
The importance of a feature for a particular class is measured in terms of fuzzy-rough
ambiguity associated with the concerned output class for the given input feature. The
class prototype that is the nearest to the feature vector is designated as the class label of
the input pattern corresponding to the feature vector.

The approach adopted in this chapter can aso be viewed as a two stage classification
scheme [CK92]. The first stage of the classification scheme, accomplished by the subnet-
works, is for crude classification. The second stage, which consists of the fuzzy integral,
IS to fine tune the classification results obtained from the first stage.

The attractive points about the proposed way df calculating the fuzzy densities are

1. It isan objective way of calculating the fuzzy densities. Therefore, it does not need
any expert to determine the fuzzy densities. Moreover, unlike other objective ap-
proaches, it does not need any information regarding the probability of occurrence
of the input patterns. It needs only the facts hidden inside the data.

2. It is conceptually ssimple and needs simple algorithm. It does not need any com-
plicated learning procedure as used in [KO96] [WW97]. The learning procedures
used in [KO96] [WW97] may get stuck in local minima, or may take long time to
converge. Especialy, if the number o modules are large, then the convergence o
this kind of learning algorithm may become very tough [GN94].

In the definition o fuzzy integral, we are using max and min operators which are nonin-
teractive. It makes the fuzzy integral less sensitive towards the training data. A better
approach may be to use the fuzzy integral with OWA operators [Cho95].



Chapter 8

SUMMARY AND CONCLUSIONS

8.1 Summary of the Thesis

In this thesis, an attempt has been made to deal with uncertainties in classification prob-
lems. The objective is (a) to identify the roles o fuzzy, rough and probabilistic uncer-
tainties associated with the given classification problem, and (b) to exploit the associated
uncertainties to evolve a pattern classification methodology. Contract Bridge opening
bid problem is considered as a case study. The aim is to construct a classifier for the
opening bid problem based on the input-output pairs of the data collected from players
d the Bridge game. When a hand pattern is presented as an input pattern, the classifier
should be able to determine the opening bid. Some salient characteristics of the problem
are. The input hand patterns are crisp, the output bids are fuzzy, some output bids are
highly probable and the input-output relationship is not unique. Although the problem
is complex, the straightforward input representation o the problem enables us to probe
more into the classification mechanism.

Before going into the details o the opening bid problem, a comprehensive survey of
different pattern classification techniques are presented. The emphasis o the review ison
the recent trend to evolve pattern classification methodologies using uncertainties. The
review includes the description o the state-of-the-art techniques employed in modular
classifiers.

In this thesis, the classification process is described through numerical quantities.
Feedforward neural networks (FFNNs) with backpropagation learning algorithm are cho-
sen for the study. In the initial experiments, monolithic feedforward neural networks
failed to converge. The reason may be that the classifier isinsufficient to handle, resolve
and exploit the uncertainties associated with the problem. To make the uncertainty han-
dling easier, an attempt is made to break the the problem into smaller subproblems. The
intention is to resolve and exploit the uncertainties locally in each subproblem, followed
by a mechanism to treat the uncertainties globally. In order to accomplishit the following



five steps are adopted:

In the first step, all the possible classes are partitioned such that the classes that are
close, and the classes for which the frequency o occurrence o the patterns are similar,
belong to the same partition. The condition o closeness narrows down the effect of fuzzy
uncertainty into alocal region, and the condition df similar occurrence makes the learning
easier. Each partition forms one subclassification problem. This strategy results in three
subclassification problems in the opening bid problem. The output classes for the three
subclassifiers correspond to the first, second and third level bids.

In the second step, different feature sets are used for each subclassification problem
to increase and decrease the interclass and intraclass distances, respectively. The aim is
to make the classification process easier with the derived feature set. It is accomplished
by imposing higher weightage on the features that are important for the classes present in
the subclassification process. While measuring the importance of a particular feature, in-
fluence of the other features present in the input pattern and influenced the unaccounted
features are not possible to be taken under consideration. Consequently, two input pat-
terns with the same feature value may be mapped to more than one class. Thissituation
causes the input-output relation to be one-to-many, and hence, rough-uncertainty is gen-
erated. Moreover, the classification task involved in the opening bid problem isinherently
fuzzy. The more rough and fuzzy uncertainties are associated with a feature, the lessis
the importance of the feature. Rough-fuzzy entropy is proposed as a criterion function
to evaluate the importance of each feature. The fuzzy membership value d each training
pattern is determined using possibilistic K-means algorithm. These membership vaues
are used to compute the rough-fuzzy entropy. The rough-fuzzy entropy is minimized
iteratively to obtain the optimal importance of each feature for a particular module.

In the third step, a classifier module is designed for each subclassification task. Each
module is constructed using direct classification technique. Feedforward neural networks
with backpropagation algorithm are used. The inputs o the networks are the modified
feature vectors and the outputs are the fuzzy output classes. The backpropagation al-
gorithm is designed to minimize two classes of fuzzy objective functions, namely, fuzzy
mean square error and fuzzy cross entropy. The performance dof these two algorithms are
comparable on the opening bid problem. The generalization capability of the modules are
still low. 1t is because (a) the number of weights and hidden nodes are not minimized,
and (b) the training of each module may not be proper as the backpropagation algorithm
may get stuck in local minima. In order to reduce these drawbacks, a stochastic learning



strategy using evolutionary programmingisadopted in conjugation with the deterministic
learning (BP) using fuzzy objective functions. In particular, two objective functions, viz.
major (global) and minor (local) objective functions, are minimized simultaneously. The
maj or objective function is thefuzzy mean square error value (or fuzzy cross entropy) over
a validation set and the minor objective function is the fuzzy mean square error value
(or fuzzy cross entropy) over atrainingset. Iterative minimization of the minor objective
function is carried out to guide the minimization of the major objective function. The
iterative procedure is made faster by dynamically adapting the mutation parameters that
are used in evolutionary programming.

In an another approach, each subclassification task is carried out through clustering.
The modified feature vectors that form fuzzy clusters, are clustered using evolutionary
programming. The clustering algorithm determines the number of clusters, cluster means
and cluster variance automatically. Two objective functions are incorporated. The major
objective function decides how many clusters should be there. The minor objective func-
tion decides the cluster parameters. The major objective function is minimized stochas-
tically using evolutionary programming-based method, and the minor objective function
is minimized using a deterministic iterative method. The resultant clusters are used to
construct a fuzzy-rough neural network (FRNN). This network uses the fuzzy uncertainty
present in the clusters and the rough uncertainty (due to one-to-many mapping between
the clusters and the class labels) in terms of fuzzy-rough membership functions. Com-
pared to the backpropagation algorithm with fuzzy objective functions, the classification
performance d FRNNSs is better for the modules that deal with the first and second level
bids, and worse for the module that deals with the third level bids. Hence, the FRNNs
are used for the first and second modules and the FFNN is used for the third module.

In the fifth step, theresult o all the classifiers are combined using Sugeno’s fuzzy inte-
gral. All the modules are supposed to resolve or exploit the fuzzy and rough uncertainties
locally. For any input, each module claimsthat theinput can be classified by that module
alone. Consequently, each module provides some classification result. A postprocessor is
used to determine the output class from such a collection o conflicting evidence. The
evidence are aggregated in a nonlinear fashion, and each evidence is weighted differently.
To find the weightage associated with each module, the amount of fuzzy and rough un-
certainties associated with each module is quantified from global angle. The concept of
fuzzy-rough membership functions is used for the purpose d quantification. The outputs
of the integrator, i.e., the outputs of the modular network, are the class confidence levels



corresponding to the input pattern.

8.2 Contribution of the Thesis

The contributions o the thesis are

10.

Providing an in-depth review on the pattern classification techniques that exploit
uncertainty (chapter 2).

Formulating the opening bid problem as a pattern classification problem, and ad-
dressing different types of uncertainties involved in this problem (section 2.4).

Application of modular neural networksto deal with fuzzy, rough and probabilistic
uncertainties effectively (chapter 3).

Use of possibilistic K-means algorithm to determine the possibilistic membership
values of the training inputs (section 4.3.2).

Use of rough-fuzzy sets to determinethe importancedf each feature for classification
(chapter 4).

Development of backpropagation learning algorithm based on various fuzzy objec-
tive functions (section 5.2).

Enhancement of the dynamics of evolutionary programming and use of this tech-
nique to configure feedforward neural networks (section 5.3).

Devising a framework to embed fuzzy clustering algorithms in evolutionary pro-
gramming paradigm (section 6.2).
Introducing the concepts of rough-fuzzy and fuzzy-rough membership functions for
classification (Appendix C and D).
Proposing fuzzy-rough neural networks to consider the fuzziness as wel as the

roughness present in the classification problem (section 6.3).

Use of fuzzy-rough sets in fuzzy integral to measure the importance of each module
(chapter 7).

8.3 Concluson of the Thess

The following are some important conclusion o the study:



1. Uncertainties, which apparently affect the classificationsystem, can be made useful
to the classification system, if treated properly.

2. It is possible to employ the uncertainities associated with the given classification
problem to evolve one among many possiblesolutions for the classification problem.

3. Weshould be careful not to add large amount d uncertainty while representing the
problem. If the representation is straightforward, it becomes easier to analyse the
classification task.

4. An attractive way to exploit the uncertainties is to divide the given classification
task intosimplesubtasks, and then combinetheindividual solutionsaof the subtasks.
The uncertainitiesin each subtask can be considered locally, and the uncertainities
in the whole problem can be treated globally while combining the solutions.

5. Modularisation in an arbitrary manner may not enable us to construct a good clas-
sifier. Because modularisation adds its own uncertainty, which should be handled
with care. If we can exploit the uncertainity involved in the original problem, slight
increase in the uncertainity due to modularisation may get nullified. Eventually
the modularisation may be beneficial to us.

6. When the classification relation is based on subjective data, as we observe in the
case of bidding, it is difficult to model the classification system.

7. It is difficult to model a part o the system, when the correlation between the
various parts of the system is very high. For example, while building a bidding
system, if we do not consider some important aspect like "vulnerability”, then the
problem becomes difficult.

8. Although opening bid problem is taken as an illustration, problems dealing with
uncertainties are common in vision, speech and natural language processing.

8.4 Issues Related to This Thesis Work for Further Study

In this thesis we have partitioned the classification task based on some prior knowledge.
In many classification problems, the domain specific knowledge may be absent or difficult
to obtain. It is worthwhile to explore automatic partitioning of the input space so that
the overall generalization capability of the whole network is increased.

Bridge players gather their experience from data as wel as from some weak rules or
knowledge. We have exploited only the data to construct the classification system. The



classification performance could be enhanced if we had used dataand rulessimultaneously.

We have used possibilistic K-means to obtain the membership values of the input
hands. A better approach is tolearn the classification function and membership functions
simultaneously. In [PK96], this problem is attempted, where each class contains only
one cluster. For a general framework, where each class contains more than one cluster,
virtually no progress is achieved so far.

The importance of each featureis determined by minimizing the rough-fuzzy entropy
iteratively. Rigorous proof is needed to show that this iterative scheme always converges.

Human beings can remember some accidental events and generalize many regular
events. In the bidding problem also, players remember the high level bids and generalize
the lower level bids. The current model cannot handle this memorisation-generalization
dilemma. It will-be an interesting topic to explore how the memorisation-generalization
dilemmacan be realized in modular networks.

The feedforward neural networks with fuzzy objective functions, reported in chapter 5,
do not capture the rough uncertainty. Hence, it will be interesting to train the network
to capture fuzzy as well as rough uncertainties.

We have enhanced the dynamics o evolutionary programming based on some empiri-
cal evidence. A more rigorous analysis is needed to analyse the efficiency of the proposed
technique. One useful tool for this analysis can be Markov chain.

We have used fuzzy hypervolume to decide the optimal number of clusters. In some
cases, it does not give the optimal result. Therefore, we need to develop a better measure
to identify the optimal number of clusters.

Although in literature attempts have been made to quantify the generalization capa-
bility of classifiers [Vid97], no significant work has been reported to quantify the general-
ization capability of modular networks.

In statistical pattern recognition, Bayesian classifiers are accepted as benchmarks to
compare other classification techniques. Till now no such classifier is developed whose
classification efficiency is optimum in presence of fuzzy, rough and probabilistic uncer-
tainties. This kind of model may not be applicable in practice, but it can serve as a
benchmark.
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APPENDIX A

CONTRACT BRIDGE GAME: ISSUES

The game of Contract Bridge offers a rich platform for exploring theories in artificial
intelligence. We observe that unlike chess, which is a two-person zero-sum complete-
information game, Bridge cannot be tackled by elegant mechanisms like minimax search
method [LS95]. This is because Bridge is not a complete information game. Since one
does not know the cards held by the opponents, one cannot project the play into the
future to try and discover which strategy is most profitable. Instead one has to rely on
some knowledge intensive method. Bridge can be classified as a two-side incomplete-
information game [LS95]. Further complication is introduced by the fact that each side
constitutes o two persons. Therefore communication is vital. Not only does one have to
convey information, within the rules o the game o course, to the partner, but one also
needs to intercept opponents messages to learn their intentions. Almost as a corollary,
at a more sophisticated level one may even want to send out misleading signals to lead
opponents astray.

Contract Bridgeis played with a regular pack of 52 cards dealt randomly and equally
among 4 players. Let us call them North, South, East and West, according to their
position on the table. North and South are partners, as are East and West. The cards are
ranked in the order Ace, King, Queen, Jack, 10,9,...,2 in each suit. Each player playsa
card, in clockwise order, and the highest ranking card wins the trick, then it wins some
points. Thirteen such tricks are played, and each time the winner of the precious trick
starts play. This constitutes one deal or one hand.

There are two stages of play in each deal, viz. bidding, followed by the play of cards.
Thegoa in adeal isto maximize points. The pointsessentially depend upon bidding. Bids
are made for the number o tricks the side promises to make, given the stated "trump"
suit. Eventually the highest bid is accepted in each deal. This is known as the contract.
Generally, the higher a side bids the more points it is likely to win, provided it can
fulfill the contract. That is, if the side can make the number o tricks it has bid for. If
it succeeds, it wins some points. Let us call them success-points. If it loses, then the



opponents get some points instead, which we can call penalty-points.

The straightforward goal in bidding is to bid the highest number o tricks one thinks
the side can make. That is, to maximize success-points won. The means used in this
process are the following:

1. Evaluation of own hand.
2. Communication with partner.

3. Projection o play.

Among these, thefirst two are ssimpler and can possibly be handled by heuristic methods.
Thethird is more difficult, as it would involve constructing plausible distributions (based
on the bids heard, and on probability) and then projecting the play. A more complex goal
isto make a sacrifice bid. It essentially means intentional overbidding, over an opponent
bid, with the hope that the penalty-pointsloss will be lesser than the opponents' expected
success-points gain, thus being an overal gain. Even more complex goals are to sabotage
the opponents communication. This may mean consuming the bidding space (jamming
the communications channel), or even making "falsg" bids to confuse opponents. In the
process, an enterprising planner may makean "advancesacrifice” to "push” the opponents
higher than they can manage, or to escape with a lighter penalty. Considering that all
these processes happen when the planner can see only one hand, one observesthat bidding
is probably a more difficult part of the game.

Once bidding is over, the goal for the play stage has been defined. One side has the
contract, and is required to make the bid number o tricks. At this stage one player of
the contracting side (called the dummy) exposes the cards to everybody, while the other
(called the declarer) plans and executes the play. The opposing side (called defenders)
are said to defend the contract. They are in fact trying to defeat the accomplishment of
the contract by the declarer.

One can observethat thesituation at thisstageis not symmetric. The declarer knows
the entire strength of hisside, and isin total control o the play of the cards. He is also
awareof the entire assets of the defense, in terms of material strength, since they have the
remaining 26 cards. Each defender knows only his own hand, and cannot see his partner's
hand. Therefore the two defenders have to combine their efforts to try and achieve the
goal. This necessarily involves (formal) communication between the two. Both can see
the dummy also.
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Since the cards of all the players cannot be seen, one cannot project moves into the
future. Methods like minimax search are therefore ruled out immediately. Instead, the
success o a strategy can only be estimated based on the probabilistic distribution of the
cards, and any information gleaned from the communication taking place. The strategies
themselves are derived from knowledge about the various known methods of tackling
various card combinations.

The straightforward goal in the play o the hand is to make the number o tricks
as stated in the contract. The emphasis is on maximising the probability of success. If
success is assured, then the god can be revised to increase the number o tricks won,
as some more points can then be gained. If success seems unlikely, then a planner may
even choose to minimize losses, i.e., the penalty-points won by the opponents. Like in
bidding, the planner may attempt to do better by exploiting the incomplete information
that the opponents have. This may introduce complex "meta-level" gods of protecting
information, or sending out misleading signals.

Thus, we observe that unlike games like chess, where a clear cut strategy of aiming
for the minimax value (saddle) points is meaningful, in Bridge one has to largely grapple
with incomplete information. In the face o such uncertainty, planning in the game of
Bridge can only be a complex knowledge intensive activity.
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APPENDIX B

EVOLUTIONARY PROGRAMMING AND
ROUGH SETS: BASICS

B.l Background of Evolutionary Programming

Usually an optimization problem seeks to find the value of a free parameter x € X
o the system under consideration, such that a certain quality function G : X — R is
minimised (or, equivalently maximised) [BHS97]. This quality function is known as ob-
jective function. The goa o the minimisation operation is to find x corresponding to
the global minimum o the objective function. But the presence d local minima, con-
straints and the other factors like large dimensionality, nonlinearity, nondifferentiability,
noisy objective function make the optimization task difficult. If an optimization method
can give a solution of x which is dlightly better than the currently known best solution
o X, then it is often accepted as a success. The efficiency o the optimization process
can be enhanced, if it is carried out in parallel. One such biologically inspired method
is evolutionary programming [Fog94b] [Fog95], where a population of solutions are proba-
bilistically explored over asequence o generations to reach the globally optimum solution.
Evolutionary programming employs the following steps to find the global minimum o a
function G(x) : RY — R:

1. Initially a population o parent vectors x;, i=1, 2, ..., v, is selected at random
(uniformly) from a feasible range in each dimension.

2. An offspring vector x;, : = 1, 2, ..., v, is created from each parent x;, by adding
a Gaussian random variable with zero mean and predefined standard deviation to
each component o Xi.

3. A selection procedure then compares the vaues G(x;) and G(x;) to determine which

of these vectors are to be retained. The v vectors that possess the least value of
the objective function become the parents for the new generation.



4. Go to the step 2 unless a satisfactory solution is reached or the number of genera-
tions is greater than some prespecified constant.

5. The solution of the problem is x*, where G(x*) posses the least value in the fina
population.

B.2 Background of Rough Sets

In any classification task the aim is to form various classes where each class contains ob-
jects that are not noticeably different. These indiscernible or indistinguishableobjects can
be viewed as basic building blocks (concepts) used to build up a knowledge base about the
real world. For example, if the objects are classified according to'color (red, black) and
shape (triangle, square and circle), then the classes are: red triangles, black squares, red
circles, etc. Thué, these two attributes make a partition in the set of objects and the uni-
verse becomes coarse. If two red triangles with different areas belong to different classes, it
isimpossible for anyone to correctly classify these two red triangles based on the given two
attributes. Thiskind of uncertainty is referred to as rough uncertainty [Paw82] [PBSZ95].
The rough uncertainty is formulatedin terms of rough sets [Paw91]. Obvioudly, the rough
uncertainty can be completely avoided if we can successfully extract the essential features
so that distinct feature vectors are used to represent different objects. But it may not be
possible to guarantee as our knowledge about the system generating the datais limited.

In any classification problem, two input training patterns x,, and x, (where x,, x, €
X, theset o al input patterns) are called indiscernible with respect to the sth feature,
when the sth component of these two patterns have the same value. Mathematically, this
indiscernibility can be represented as x, R*x,, iff z,, = z,s, Where R®isa binary relation
over X x X. Obvioudly, R® is an equivalence relation that partitions the universal set
X into different equivalence classes. This idea can be generalized to take some or al the
features into our consideration. Without loss of generality, based on a particular set of
features, let R be an equivalence relation on the universal set X. Moreover, let X/R
denote the family of all the equivalence classes induced on X by R. One such equivalence
classin X/R that contains x€ X, is designated by [x]g. In any classification problem,
the objective is to approximate the given output class C. C X by X/R. For the output
class C,, we can define lower approximation R(C.) and upper approximation R(C.), which
approach C. as closely as possible from inside and outside, respectively [KY95]. Here,
R(C.) = U{[x]r | [x]r € C;, x € X} isthe union o all the equivalence classes in X/R
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that are contained in C,, and B(C.) = U{[x]r | [x]aN C. # ¢, X € X} is the union df all
the equivalence classesin X/ R that overlap with C,.. A roughset R(C,) = <R(Cc),E(CC)>
is a representation of the given set C, by R(C.) and R(C.). The set difference, R(C,) —
R(C,), is a rough description of the boundary of C. by the equivalence classes of X/R.
The approximation is rough uncertainty free if R(C.) = R(C.). When al the patterns
from an equivalence class do not carry the same output class labels, rough ambiguity is
generated as a manifestation of the one-to-many relationship between the equivalent class
and the output class labels. For a given C, representing certain concept of interest, we
can characterize X/ R with the followingthree distinct regions:

1. R(C,) iscdled the positive region POSg(C,) of C.,
2. R(C,) — R(C,) iscalled the boundary region BNDg(C,) of C.,
3. X/R - R(C,) is called the negative region NEGg(C.) of C..

Two examples of rough sets are shown in Fig. B.1. In the first example (Fig. B.1(a)),
X isaclosed interval o real numbers, and X /R partitions X into ten semiclosed intervals
and oneclosed interval. Theoutput class C,, which is to be approximated by the elements
o X/R, is the closed interval shown in this figure. The rough set approximation of
C. consists of the two semiclosed intervals, R(C.) and R(C.). In the second example

(Fig. B.1(b)), the universal set isX = X X X3, and the equivalence relation R partitions
X, X X, into one hundred small squares.
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Fig. B.l: Rough setsin (a) one and (b) two dimensional domains.



In aclassification task, the concept of rough membership functionisintroduced [WZ87)
to quantify the rough uncertainty associated with each pattern. The rough membership
function r¢ (x): X — [0, 1] of a pattern xe X for the output class C. is defined by

_ x]rNC
e = g
where |C.| denotes the cardinality of the set C.. Rough membership function rc¢,(x)
signifies the rough uncertainty associated with the pattern x for the output class C.. It
can be shown that ¢, (x)=0 or 1if and only if there is no rough uncertainty associated
with the pattern x [Paw95] [Paw94]. Evidently, the rough uncertainty associated with x
is maximum when r¢, (x)= 0.5.

(B.1)
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APPENDIX C

ROUGH-FUZZY MEMBERSHIP
FUNCTIONS

In aclassification task, theindiscernibility relation partitionsthe input pattern set to form
equivalence classes. These equivaence classes try to approximate the given output class.
When this approximation is not proper, roughness is generated. The output classes may
have fuzzy boundaries. Thus, both roughness and fuzziness appear due to the indiscerni-
bility relation in the input pattern set and the vaguenessin the output class, respectively.
To model this type of situation, where both vagueness and approximation are present,
the concept of rough-fuzzy set [DP90] is proposed. The resultant model is expected to be
more powerful than either of rough sets or fuzzy sets.

This appendix provides one scheme to generalize the concept of rough membership
functions in pattern classification tasks to rough-fuzzy membership functions. Unlike the
rough membership value of a pattern, which issensitive only towards the rough uncertainty
associated with the pattern, the rough-fuzzy membership value of the pattern signifies
the rough uncertainty as well as the fuzzy uncertainty associated with the pattern. In
absence of fuzziness in the output class, the rough-fuzzy membership function reduces to
the original rough membership function. Moreover, when the partitioning in the input set
isfine, i.e., each equivalent class contains only one pattern, the rough-fuzzy membership
function turnsout to be the fuzzy membership function. If the partitioning isfine and the
output classes are crisp simultaneously, the rough-fuzzy membership function reduces to
the characteristic function. In this appendix, various set theoretic properties of the rough-
fuzzy membership functions are discussed. A detail discussion on rough-fuzzy membership
functions can be found in [SY].



C.l Basics of Rough-Fuzzy Sets

Let X be aset, R be an equivaencerelation defined on X and the output classC, C X be
afuzzy set. A rough-fuzzy set isatuple (R’(Cc), ﬁ(C,_.)>, where the lower approximation
R(C.) and the upper approximation R(C.) o C. arefuzzy setsof X /R, with membership
functions defined by [DP92]

prc.)((x|r) = inf{uc.(x)|x € [x]a}  VxeX (C.l-a)
prc)(Xlr) = sup{uc.(x)|x€[x]r}  VxeX (C.1-b)
(C.l-c)

Here, pgc.)([x]r) and pgc,([x]r) are the membership valuesdf [x]r in B(C.) and R(C.),
respectively.

C.2 Definition of Rough-Fuzzy Membership Functions

The rough-fuzzy membership function d a pattern x € X for the fuzzy output class
C. C X isdefined by

|FNC,|
_ 2
te, (x) 7 (C.2)
where F = [x]z and |C,| means the cardinality of the fuzzy set C.. One possible way to
def

determine the cardinality isto use [Z2ad78]: |C.| = ¥ uc.(x). For the ‘0’ (intersection)
xeX

operation, we can Use g 4ns (X) ! min{ug (X),up(x)} VX € X. It must be noted that the
concept of rough-fuzzy set is necessary while dealing with ambiguous concepts, whereas
the rough-fuzzy membership function is needed when uncertain data are considered.

C.3 Properties of Rough-Fuzzy M ember ship Functions

Following are a few important properties o rough-fuzzy membership functions that can
be exploited for a classification task.

Property C.I: 0 < tc (x) <1
Proof. Since ¢ C FNC, C F, the proof istrivial. =

Property C.2: t¢c.(x) =1 and 0 if and only if no rough-fuzzy uncertainty is associated
with the pattern x.



Pr oof .

If part: If no rough-fuzzy uncertainty isinvolved, then either (a) F C C,, i.e., ¢tc. =1,
or (b) FNC, =y, ie, tc, =0.

Only if part: If ¢ (x) = 0, then the numerator of (C.2) is zero. It implies that
FnNC, = ¢. On theother hand, if ic,(X) = 1, then the numerator of (C.2) is equal
to the denominator. It means that FNC, = C,, ie., F C C.. Both cases imply that no
rough-fuzzy uncertainty isinvolved. m

Property C.3: When the output class C, is crisp, tc.(x) = r¢. (X).

Proof. When the output class C. is crisp, Equation (C.2) reduces to (B.l). Hence, the
proof follows. =

Property C.4: When the partitioning is fine, .c,(~)= PC,(~).Moreover, if the parti-
tioning is fine and the output class C, is crisp, then ic.(x) s equivalent to the character-
istic function.

Proof. When the partitioning is fine, i.e., each F consists of a single pattern, ¢c (X) =
boce(l = e (x). If pe,(x) € {0,1}, ie., the output class is crisp, then wc,(x) becomes
the characteristic function. =

This property and the property C.3 show that both rough and fuzzy membership functions
become particular cases of rough-fuzzy membership functions in the absence of fuzziness
and, roughness, respectively.

Property C.5: tx-c.(x) =1 — tc.(X)

Proof* ix_c.(x) = Efl(]%‘&ﬂ =1- E%ﬂ = 1—-ic(x). m

Property C.6: If x and z are two input patterns o that xRz (i.e., X, z € F), then

ve. (x) =tc, (2).

Proof. It can be derived directly from Equation (C.2). m

Property C.7: tayp(x) > max{c4(x),.5(x)}, where A,B C X

Proof. taus(x) = IE%#M > J%‘-\ = 14(x). Similarly, tayp(x) > tp(x) m

Property C.8: tanp (X) < min{ia(x),tp(x)} where 4,B C X.
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Proof. 14np(x) =IF”<|;‘;,“B“ < BEl = wa(x). Similarly, tanp(x) < ts(x) ®

Property C9 If Z is a family o pairwise digoint subsets o X, then vuz(x) =

¥ e (x).
CCEz

Proof. iz (x) =|F?§,9|Z)l = |u(1|7~‘I?|Z)| = CZéZ Le.(x) m

Property Cl O For a C-class classification problem, rough-fuzzy membership function
d a pattern behaves in a possibilistic way provided the fuzzy membership function d the
pattern to the output classesis possibilistic.

Pr oof.
C|IFNC,

C
2ol = LR

c=1

ch=1 ZXEX min{ﬂp(X), Uc. (x)}
|F|
cc=1 erF min{l) Hc. (X)}
|F|

Y& | Txer be.(X)
|F|

= %ﬁi (i pe. (x)>

c=1

9
= T hax) (©3)

Therefore, for crisp and constrained fuzzy classification [PB95], where Y5, pc, (x) =1,
the value of Y5, tc.(x) is equal to one. In case of possibilistic classification [PB95]
0< T8, ke (X) € C, and hence, 0< Y9, ¢, (X) < C. Therefore, tc,(x) behaves in a
possibilistic manner. =

Property CI1: For crisp output classes

R(C) = {x€X |iw(x)=1} (C.da)
R(C) = {x€X |uic(x)>0} (C.4-b)
BN(C.) = R(C.)- R(C.) ={x€ X | 0<uic.(x) <1} (C.4-c)

Proof. For thecrisp output classes, the above results comedirectly from Equation (C.1-a)
and (C.1-b). =



Following is a trivial but interesting definition based on the above properties:

A C-class classification problem for a set of input patterns X ={x;,x,,...,x,} is
basically an assignment of the rough-fuzzy membership value¢, (x;) on each x; € X, Vc =
,2,...,C, Vi=1,2,...,n. In the rough-fuzzy context, C partitions o X are the set of

values {.c.(x:)} that can be conveniently arranged on a C' x n matrix [ic, (x;)]. Based on
the characteristic of [tc, (x;)], classification can be o the following three types [PB95):

(a) Crigp classification:

Bp, = { [tc. ()] € R™ | e, (xi) € {0, 1} Ve, Vi; > te(x) =1;

\

0< i Le, (X,') <n VC} (C5-9)

=1

(b) Constrained rough-fuzzy classification:
C
By, = {[Lcc(xi)} € R | g (xi) €0, 1] Ve, Vi, Y e (xi) =1,
c=1

0< i e (%) < m Vc} (C.5-b)

i=1

(c) Possibilistic rough-fuzzy classification:

By = {[Lcc (Xi)] € R | ic.(x:) E [0, 1] Ve, Vi 0< itcc (xi) <n VC}
i=l
(C.5-0)

It is obvious that By C By. C By,.



APPENDIX D

FUZZY-ROUGH MEMBERSHIP
FUNCTIONS

In aclassification task the indiscernibility relation, based on the equivalence o the features
o the patterns, partitions the input pattern set into severa equivalence classes. These
equivalence classes try to approximate the given output class. When the approximation
is not proper, the roughness is generated. In most o the rea life cases, the value of
a particular feature for two patterns may not be exactly same, but similar. Therefore,
the indescernibility relation formulated based on the features do not obey the law of
equivalence, and is a matter o degree. Hence, the equivalence relation takes the form
o a similarity relation, and the equivalence classes form fuzzy clusters. The situation
becomes more complicated because the output classes can be fuzzy too. The roughness
appears here due to theindiscernibility relation in theinput pattern set, and the fuzziness
is generated due to the vagueness present in the output class and the clusters. To model
this type o situation, where both approximation and vagueness are present, the concept
of fuzzy-rough sets [DP90] can be employed. The resultant model is expected to be more
powerful than rough sets, fuzzy sets and rough-fuzzy sets.

In this appendix the concept of rough-fuzzy membership functions (see Equa-
tion (C.2)) in the classification tasks are generalized to fuzzy-rough membership functions.
If the clusters are crisp, then fuzzy-rough membership functions are equivalent to rough-
fuzzy membership functions. In absence of fuzziness, fuzzy-rough membership functions
reduce to the existing rough membership functions. Moreover, under certain conditions
fuzzy-rough membership functions are equivalent to fuzzy membership functions and char-
acteristic functions. The concept of fuzzy-rough membership function becomes particu-
larly attractive when we do not have complete knowledge about the human classification
system, but we attempt to mimic the vagueness present in the human reasoning. In this
appendix, various set theoretic properties of the fuzzy-rough membership functions are
described. Details about fuzzy-rough membership functions is given in [SY98a]



D.l Background of Fuzzy-Rough Sets

When the equivalence classes are not crisp, they are in form o fuzzy clusters
{F, F,..., Fy} generated by a fuzzy weak partition [DP92] of theinput set X. The term
fuzzy weak partition means that each F; isa normal fuzzy set (i.e., maxx ur; (X) = 1) and

inf, max; g, (X) >0 while
supmin{ug(x), ur, (x)} <1 Vi, je{1,2,...,H} (D.1)

Here, ur,(x) is the fuzzy membership function of the pattern x in the cluster F;. In
addition, the output classes C., c={1,2,...,C} may be fuzzy too. Then the fuzzy set
C. can be described by means of the fuzzy partitions under the form of an upper and a
lower approximation C, and C, as follows:

pe.(F;) = infmax{l - up,(x), pc.(x)} V j (D.2-a)
pe(Fy) = supmin{pg(x), pc. (x)} Vi (D.2-b)
The tuple (g, C_'c> is caled a fuzzy-rough set. Here, uc.(x) = {0, 1) is the fuzzy

membership of the input X to the class C,. Fuzzy-roughnessappears when a fuzzy cluster
contains patterns that belong to more than one class.

D.2 Deéefinition of Fuzzy-Rough Membership Functions

The definition of rough-fuzzy membership function (Equation (C.2)) can be generalized
to the following definition of fuzzy-rough membership function [SY98c):

o) = { L5l pp(x)d, (x) if 3 with ur (x) > 0 03)

0 otherwise
where H (< H) is the number of clusters in which x has nonzero memberships and
i (x) =|f-1rg—°|’l Here, ¢, (x) represents the fuzzy-rough uncertainity o x in the class C..
When x does not belong to any cluster, H isequal to zero, and hence, % Efﬂ K (x)a’éc
becomes undefined. In order to avoid this problem, 7¢, (X) is made equal to zero when x

does not belong to any cluster.

D.3 Properties of Fuzzy-Rough Membership Functions

Property D.l: 0<7¢.(x) <1
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Proof. Since¢ C F;NC, C F;, 0 <, < 1. Moreover, 0 < pp(x) < 1. Hence, the
proof follows. m

Property D.2: 7¢.(x) =1 or 0if and only if no fuzzy-rough uncertainty is associated
with the pattern x.

Proof. If part: If no fuzzy-rough uncertainty is involved, then x must belong com-
pletely to all the clusters in which it has non-zero belongingness. It implies ug, (x) =
1 for which ur; (x)> 0. Moreover, al the clusters in which x has non-zero belongingness
either (a) must be the subsets of the class C., or (b) must not share any pattern with the
class C.. In other words, the condition (a) impliesthat F; € C. V j for which pg, (x) > 0.
Hence, 7, (x) = & $F_, 1.1 = 1. Similarly the condition (b) expresses that F; N C, =
¢V j for which pr;(x) > 0. Hence, 7¢, (x) = I‘,fffdﬂa(x)_o -0

Only if part: 7¢.(x) = 0 implies that either x does not belong to any cluster, or each
term under the summation symbol, i.e., /lp].(X)L'évc is separately zero. In the first case,
there is no fuzzy-roughness associated with x. The second case implies that either ug;(x)
or i, or both pg,(X) and ¢, are zero. If pg(x) = 0, then the pattern x does not
belong to the cluster Fj;, and hence, no fuzzy-rough uncertainty is associated with x. If
g, = 0, then F; and C. do not have any pattern common, and therefore, no fuzzy-rough
uncertainty existswith x. Thus, 7¢, (x) = 0 impliesthat fuzzy-roughness is not associated
with the pattern x. If 7¢,(x) = 1, then pp,(x) =1and %, =1, Vj=1,2,...,H. It aso
indicates the absence of fuzzy-roughness.

Note that if fuzzy-rough uncertainty is absent, H > 1 and 7, (x) # 0, then 7¢,(x)
never becomes one, rather it approaches towards one. It is because, the condition ex-
pressed in (D.l) does not alow ur; (x) = 1 to be true for more than one cluster. However,
it hardly happens in practice asit needs two cluster centers to besame. =

Property D.3: If no fuzzy linguistic uncertainty is associated with the pattern x, then
76 (%) = i, (x) for some j € {1,2,..., H}.

Proof. If no fuzzy linguistic uncertainty is involved, then pr,(x) = 1 forsome j <
{1,2,..., H}, and pg (x) = 0 for k € {1,2,..., H}, k # j. Hence, 7¢.(x) = ¢, J €
{1,2,...,H}. =

Property D.4: If no fuzzy linguistic and fuzzy classification uncertainties are associated
with the pattern x, then ¢, (X) = rc. (X).



Proof. If no fuzzy linguistic uncertainty is involved, then each cluster is crisp. Con-
sequently, the input pattern belongs to only one cluster. Let it be the jth clus-
ter. Hence, ur,(x) = 1 and pp,(x) = 0 Vk # j. Since the classification is crisp,
7e.(x)= HEEE = 16, (x) (see Equation (B.1)). =

Property @ 5. When each cluster is crisp and fine, that is, each cluster consists d a
single pattern and the associated cluster memberships are crisp, 7¢.(x) is equivalent to
the fuzzy membership function of x inthe class C.. If the output classis also crisp, then
¢, (x) is equivalent to the characteristic function of x in the class C..

Proof. Since each cluster is crisp and fine, ¢, (x) = 1.2 = ;. (x). In addition, if
the output classis crisp, then 7¢_(x)liesin {0,1}, and thus, it becomes the characteristic
function. m

Property D 6. For aC-class classification problemwith crisp output classes, the fuzzy-
rough membership functions behave in a possibilistic manner provided the fuzzy member-
ship function o the pattern to the clusters is possibilistic.

Pr oof.
3 o1& YEare
cgl'rcc(x) = H;;ﬂp} 'F|
= 1§ (e o Taex min{ur (), s (2)}
Hj Jj=1 ZzGX AUF}( )
_ 1 i ¥, Taec, min{ur, (), 1}
Hj j=1 2zeX UF; (Z)
)i 4
- Zzex ur;(z)
i {3 S ex ir, @)
Jig
- 7 25 (D.4)

Since ©¢_, 7¢. (x)needs not to beequal to aconstant, the resultant classification procedure
is possibilistic [KY95] [PB95]. m

Property D.7: If x and z are the two input patterns with pr;(x) = ur;(z) ¥j and
pe.(x) = pe.(2), then 7¢,(x) =7¢,(2).

Proof. Directly comes from Equation (D.3). m
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Property D.8: 7x_c.(x) = -}I- = pry(x) ~ 1¢, (x).
3

Proof. mx-c.(x) = § Zug ()Nl = 4 2 (0 (1= BEE )= D ur () -
Tc.(x).

The definition of compliment operator satisfies the following properties:

1. Boundary condition: When the clusters and the output classes are crisp, i.e.,
TC, (x)‘: re.(X),T behaves like an ordinary compliment for rough sets. It means
that if 7¢,(x) = 0 or 1, then Tx_¢.(x) =1 or O, respectively.

2. Monotonicity: If 7¢.(x) < 7¢.(2z) VX, z € X, then Tx_¢,.(x) > Tx_c.(2).
3. Continuity: Obviously, T7x—_¢,(x) is a continuous function.

4. Involutivity: Tx-(x-ce)(X) = T (X).
n
Property D.9: Taus(x) > max{74(x),75(x)}

proof- Taus(x) = #%uFJ(X)E’%—TW > %%umxmﬁg—fllz Ta(Xl. Similarly, T A y(x)

> Tg(x). Therefore, Taus(x) > max{r4(x),7p(x)}. W

Property D.10: Tanp(x) < min{74(x),7s(x)}

Proof. T4np(x) = ;‘{—z]:u,,j(x)'—ﬁ'éﬂl(};:—ln” < -;?-Zﬂpj (x)'ff,,—f;{l = T4(x). Similarly, T4np(x)
1

< 75(x). Therefore, Taup(x) < min{r4(x),75(x)}. =

Property D.Il: If Z is a family of pairwise disjoint subsets of X, then muz(x) =
Z TCC(X)-
C.eZ

[Fy] 5 =

Proof. TuZ(x) =.11.{.23:yp](x)lfﬂi€21 — ﬁ%:#ﬂ(x)jg(_m — CZEzTCC(x) |

Property D.12: 0< £, 76.(x) < C.

Proof. If the input pattern does not belong to any cluster, then from Equation D.3
7c.(x) = 0 Ve. Thus, £, 7¢.(x) = 0. In pattern classification it can happen when the



input pattern is not from any of the existing classes. On the other hand, when the input
pattern belongs to all the classes with fuzzy membership value 1,

c L& xS minur, (o) e @)
;TCC () = H X_—.: 2aex UF; (z)
= _1_ i ZZEX ch=l min{l_l,pj (Z), 1}
H j=1 ZzEX LF; (Z)
_ i il CZzeX KF; (Z)
B H g zzEX l"’F, (Z)
C H

Therefore, if the.input pattern belongs to all the clusters completely, then ¥, 7¢. (x)
attains the maximum value C. n

Property D.13: When the clusters and the output classes are crisp,

R(C.) = {xeX |7, (x)=1} (D.6-a)
R(C) = {x€X|g(x)>0} (D.6-b)
N(C) = R(Cc)—R(C)={x€X|0<rc(x)<1} (D.6-c)

Proof. For the crisp output classes with crisp clusters, the above results come directly
from Equation (D.2-a) and (D.2-b). =

Following is an interesting definition based on the above properties:

A C-class classification problem for a set of input patterns X = {x1,xz,...,Xs} can
be looked at as an assignment of the fuzzy-rough membership value 7¢,(x;) on each
x; € X, Vc=1,2,...,C, Vi = 1,2,...,n. In fuzzy-rough context, C partitions of X
are the set of values {r¢ (x;)} that can be conveniently arranged on a C X n matrix
[7c.(x;)]. Based on the characteristic of [r¢, (x;)] classification can be of the following
three types [PB95]:

(a) Crigp classification:
Are = {[re.(x)] € RO | 7. (x:) € {0, 1} Ve, Vi

XC:TCc (x)=1; 0< XH:TCC(X:‘) <n VC} (D.7-a)

i=1
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(b) Constrained fuzzy-rough classification:
Afe = {['rcc(x,-)] e RO~ | 7c.(xi) € [0, 1] Ve, Vi;

C n
Y=l 0<Y 7 (x)<n Vc} (D.7-b)

=1

(c) Possibilistic fuzzy-rough classification:

Ap = {[ch(x;)] € RO | ¢, (xi) €0, 1] Ve,Vi; 0< Y 7o (%) <n Vc}
=1
(D.7-c)
From the above relations, it is obvious that Ax. C Af. C Ape.



[Ad194]
[AHY5)]

[AkaT4]

[AMMRO3]

[Arb93]

[ASPY4]

[BCRY7]

[BEHWS9)

[Bel89]

[Bez81]

[Bez94]

[Bez96]

[BHO4]

[BHS97]

[Bis95)]

[BL96]

BIBLIOGRAPHY

L. Adleman. Molecular computation of solutions to combinatorial problems.
Science, (266):1021-1024., 1994.

H. Adeli and S. L. Hung. Machine Learning: Neural Networks, Genetic
Algorithms and Fuzzy Systems. John Wiley and Sons, Inc, 1995.

H. Akalke. A new look at the statistical model identification. |EEE Trans-
actions on Automatic Control, 19:716-723, 1974.

R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka. An improved algo-
rithm for neural network classification of imbalanced training sets. |EEE
Transactions on Neural Networks, 4:962-963, 1993.

M. A. Arbib. The Handbook d Brain Theory and Neural Networks. MIT
Press, Cambridge, MA, 1995.

P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm

that constructs recurrent neural networks. |EEE Transactions on Neural
Networks, 5(1):54-64, January 1994.

J. M. Benitez, J. L. Castro, and | Reguena. Are artificial neural net-
works black boxes. IEEE Transactions on Neural Networks, 8(5):1156-1164,
September 1997.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability
and Vapnik-Chervonenkis dimension. Journal d the Association o Comput-
ing Machinery, 36(4):929-965, October 1989.

R. K. Belew. When both individuals and populations search: Adding simple
learning to genetic algorithm. In Proceedings d Third International Confer-
ence on GA (George Mason University), pages 34-41, June 1989.

J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms,
Plenum Press, New York, 1981.

J. C. Bezdek. The thirsty traveller visits gamont: A rejoinder to "comments
on fuzzy set - what are they and why?'. |EEE Transactions on Fuzzy Sys-
tems, 2(1):43-45, February 1994.

J. C. Bezdek. A review of probabilistic, fuzzy, and neural models for pat-
tern recognition. In C. H. Chen, editor, Fuzzy Logic and Neural Network
Handbook. McGraw-Hill, Inc, New Y ork, 1996.

J. C. Bezdek and R. J. Hathaway. Optimization of fuzzy clustering crite-
ria using genetic algorithms. In Proceedings d First IEEE Conference on
Evolutionary Computation, pages 589-594, June 1994.

T. Back, U. Hammel, and H. P. Schwefd. Evolutionary computation: Com-
ments on the history and current state. |EEE Transactions on Evolutionary
Computation, 1(1):3-17, April 1997.

1ngl\él. Bishop. Neural Networksfor Pattern Recognition. Oxford Univ Press,

N. K. Boseand P. Liang. Neural Network Fundamentals with Graphs, Algo-
rithms and Applications. McGraw-Hill Inc., New Y ork, 1996.



[BL9S]

[BMP97]

[Bow84]
[BP92]

[BR94]

[BZ95)

[CAMC92]

[CH67]

[CHLY6]

[Cho95]

[Cho97]

[CK92

[CK95a)]

[CK95b)

[COB92]

[Dav9l]
[DHT79)

[DHR93]

A. L. Blum and P. Langley. Selection of relevant features and examples in
machine learning. In R. Greiner and D. Subramanian, editors, to appear in
the special issue d Artificial Intelligence on 'Relevance’. 1998.

M. Banerjee, S. Mitra, and S. K. Pal. Knowledge-based fuzzy MLP with
rough sets. In |EEE International Conference on Neural Networks (Houston,
USA), June 9-12 1997,

S. T. Bow. Pattern Recognition. Marcel Dekker, New Y ork, 1984.

J. C. Bezdek and S. K. Pal. Fuzzy Modelsfor Pattern Recognition, Eds.
|EEE Press, New Y ork, 1992.

A. K. Bhattacharya and B. Roysam. Joint solution of low-, intermediate-
, and high- level vision tasks by evolutionary optimization: Application to
computer vision at low snr. |IEEE Transactions on Neural Networks, 5(1):83-
93, January 1994.

S. A. Billings and G. L. Zheng. Radial basis function network configuration
using genetic algorithm. Neural Networks, 8(6):877-890, 1995.

J. J: Choi, R. J. Arabshahi, R. J. Marks, and T. P. Candell. Fuzzy pa-
rameter adaptation in neural systems. In Proceedings o |EEE International
Conference on Neural Networks, pages 232-238, 1992.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classifier. |EEE
Transactions on Information Theory, pages 21-27, 1967 1967.

O. Cordon, F. Herrera, and M. Lozano. On the bidirectional integration of
genetic algorithmsand fuzzy logic. In 2nd On line Workshop on Evolutionary
Computation (WEC2), Nagoya (Japan), pages 13-17, 1996.

S. B. Cho. Fuzzy aggregation of modular neural networks with ordered
weighted averaging operators. Approximate Reasoning, 13:359-375, 1995.

S. B. Cho. Neura-Network classifier for recognizing totally unconstrained
handwritten numerals. |EEE Transactions on Neural Networks, 8(1):43-52,
January 1997.

S. B. Choand J. H. Kim. A two-stage classification scheme with backpropa-
gation neural network classifiers. Pattern Recognition Letters, 13(5):309-331,
May 1992.

S. B. Cho and J. H. Kim. Combining multiple neural networks by fuzzy
integral for robust classification. |IEEE Transactions on System, Man and
Cybernetics, 25(2):380-384, February 1995.

S. B. Cho and J. H. Kim. Multiple network fusion using fuzzy logic. |IEEE
Transactions on Neural Networks, 6(2):497-501, March 1995.

J. J. Choi, H. O’Keefe, and P. K. Baruah. Non-linear system diagnosis

using neural networks and fuzzy logic. In Proceedings d@ |EEE International
Conference on Fuzzy Systems (San Diago), pages 813-820, 1992.

L. Davis. Handbook d Genetic Algorithms. Van Nostrand Reinhold, New
York, 1991.

R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley,
New York, 1979.

D. Driankov, H. Hellendorn, and M. Reinfrank. An Introduction to Fuzzy
Control. Springer-Verlag, Berlin, 1993.



[DJ187]
[DK82]
[DL97]

[DMCO6]

[DP80]
[DP8s)
[DP9O]

[DP92]

[Dud70]

[DY97]

[ESY92]

[FK96]

[Fog91a)

[Fog91b]
[Fog94al
[Fog94b]
[Fog95]
[Fog98]

[FOW66]

R. Dubes and A. Jain. Algorithmsthat Cluster Data. Prentice Hall, Engle-
wood Cliffs, NJ, 1987.

R. Devijver and J. Kittler. Pattern Recognition: A Satistical Approach.
Prentice Hall, Englewood Cliffs, NJ, 1982.

M. Dash and H. Liu. Feature selection for classification. Intelligent Data
Analysis, 1(3), August 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by
a colony of cooperating agents. |EEE Transactions on System, Man and
Cybernetics, 26(1):29-41, 1996.

D. Dubois and H. Prade. Fuzzy Sets and Systems. Academic Press, New
Y ork, 1980.

D. Dubois and H. Prade. Possbility Theoy: An Approach to Computerized
Processing of Uncertainty. Plenum Press, New York: Plenum, 1988.

D. Dubois and H. Prade. Rough-fuzzy sets and fuzzy-rough sets. Interna-
tional Journal of General Systems, 17(2-3):191-209, 1990.

D. Dubois and H. Prade. Putting rough sets and fuzzy sets together. In
R. Slowinski, editor, Intelligent Decison Support. Handbook of Applications
and Advances of the Rough Set Theory. Kluwer Academic Publishers, Dor-
drecht, 1992.

R. Duda. Elements of pattern recognition. In J. M. Mendel and K. S.
Fu, editors, Adaptive, Learning and Pattern Recognition Systems. Academic
Press, New Y ork, 1970.

P. J. Darwen and X. Yao. Speciation as automatic categorical modularisa-
tion. |EEE Transactions on Evolutionary Computation, 1(2):101-108, July
1997.

P. Eswar, C. C. Sekhar, and B. Yegnanarayana. Use of fuzzy mathematical
concepts in character spotting for automatic recognition of continuous speech
in Hindi. Fuzzy Sets and Systems, 46(1):1-9, February 1992.

H. Frigui and R. Krishnapuram. A comparison o fuzzy shell clustering
methods for the detection o ellipses. IEEE Transactionson Fuzzy Systems,
4(2):193-199, May 1996.

D. B. Fogel. An information criterion introduction to simulated evolution-
ary optimization. |EEE Transactions on Neural Networks, 2(5):490-497,
September 1991.

D. B. Fogel. System Identification through Smulated Evolution: A Machine
Learning Approach of Modding. Ginn Press, Needham, MA, 1991.

D. B. Fogel. Asymptotic convergence properties of genetic algorithms and
evolutionary programming. Cybernetics and Systems, 25:389-407, 1994.

D. B. Fogel. An introduction to simulated evolutionary optimization. |EEE
Transactions on Neural Networks, 5(1):3-14, January 1994.

D. B. Fogel. Evolutionay Computation: Toward a New Philosophy of Ma-
chine Learning. |EEE Press, Piscataway, 1995.

D. B. Fogel. Evolutionary Computation: The Fossl Record. |EEE Press,
Piscataway, 1998.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Smulated Evolution. John Wiley, New Y ork, 1966.



[FS89)

[FS93]

[FSW97)
[Fu68]
[Fus2]
[Fuk8g)]

[GG89]

[GN94]
[Gol89]
[Gra96]

[Gra97]

[Har75)
[Has95]

[Hau92]

[Hay94]
[HC96]
[HH93]

[HHMS96]

[HHVLV94]

Y. Fukuyama and M. Sugeno. A new method for choosing the number of
clusterstor the c-means method. In Proceedingsd Fifth Fuzzy Systems Sym-

posium, pages 247-250, (in Japanese) 1989.

D. B. Fogel and P. K. Simpson. Evolving fuzzy clusters. In Proceedings o
International Conference on Neural Networks (San Francisco), pages 1829-
1834, 1993.

A. Famili, W. M. Shen, and R. Weber. Data preprocessing and intelligent
data analysis. Intelligent Data Analysis, 1(1), January 1997.

K. S. Fu. Sequential Methodsin Pattern Recognition and Machine Learning.
Academic Press, London, 1968.

K. S Fu. ntactic Pattern Recognition and Applications. Prentice-Hall,
Englewoods Cliffs, 1982.
K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, New York, 1989.

|. Gath and A. B. Geva. Unsupervised optimal fuzzy clustering. |EEE
Transactions on Pattern Analysis and Machine Intelligence, 11(7):773-781,
July 1989.

M. Grabisch and J. M. Nicolas. Classification by fuzzy integral: Performance
and test. Fuzzy Sets and Systems, (65):255-271, 1994.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wedey, Reading MA, 1989.

M. Grabisch. The representation and interaction of features by fuzzy mea-
sures. Pattern Recognition Letters, (17):567-575, 1996.

M. Grabisch. Fuzzy measures and integrals: A survey of applications and
recent issues. In D. Dubois, H. Prade, and R. Yager, editors, Fuzzy Sets
Methods in Information Engineering: A Guided Tour o Applications. J. Wi-
ley, New York, 1997.

J. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

M. F. Hassoun. Fundamentals o Artificial Neural Networks. MIT Press,
Cambridge, MA, 1995.

D. Haussler. Decision theoretic generalisations of the PAC model for neural
51&6 a{giggther learning applications. Information and Computation, 100:78-

S. Haykin. Neural Networks - A Comprehensive Foundation. Macmillan
College Publishing Company, New Y ork, 1994.

J. E. Hunt and D. E. Cooke. Learning using an artificial immune system.
Journal & Networks and Computer Applications, 19:189-212, 1996.

D. R. Hush and B. G. Home. Progressin supervised neural networks. |EEE
Transactions on Signal Processing, pages 8-39, January 1993.

K. J. Hunt, R. Haas, and R. Murray-Smith. Extending the functional equiv-
alence of radial basis function networks and fuzzy inference systems. |EEE
Transactions on Neural Networks, 7(3):776-771, May 1996.

F. Herrare, E. Herrera-Viedma, M. Lozano, and J. L. Verdegay. Fuzzy tools
to improve genetic algorithms. In Proceedings d Second European Congress
on Intelligent Techniques and Soft Computing (Aachen, Germany), pages
1532-1539, September 1994.



[HKP91]

[HM97]

[Hol75]
[HP94]

[HPA*97]

[HSW89)

[IFT93]

[INYT95]

[3393]

[JINH91]

[JK95]

[JR94]

[3593]

[ISM97]

[Kan82]

[Kans6]
[KF93)

[KG8S5]

J. Hertz, A. Krogh, and R. G. Pamer. Introduction to the Theory d Neural
Computation. Addison-Wedley, Reading, MA, 1991.

F. Herreraand L. Magdalena. Genetic fuzzy system. In B. Riecan R. Mesiar,
editor, Fuzzy Structures: Current Trends, volume 13, pages 93-121. Tatra
Mountains Mathematical Publications, 1997.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

K. Hirota and W. Pedrycz. OR/AND neurons in modeling fuzzy set connec-
tives. |EEE Transactions on Neural Networks, 2(2):151-161, May 1994.

R. Hashemi, B. Pearce, R. Arani, W. Hinson, and M. Paule. A fusion of
rough sets, modified rough sets, and genetic algorithms for hybrid diagnostic
%stem_s. In T.Y. Linand N. Cercone, editors, Rough Sets and Data Mining.

nalysisfor Imprecise Data, agi;&s 149-175. Kluwer Academic Publishers,
Boston, London, Dordrecht, 1997.

K. Hornic, M. Stinchcombe, and H. White. Multilayered feedforward net-
works are universal approximatiors. Neural Networks, 4:359-364, 1989.

H. Ishibuchi, R. Fuiioka, and H. Tanaka. Neural networks that learn from
fuzzy if-then' rules. IEEE Transactions on Fuzzy Systems, 1(2):85-97, May
1993.

H. Ishibuchi, K. Nozaki, N. Yarnamoto, and H. Tanaka. Selecting fuzzy if-
then rules for classification problems using genetic algorithms. |EEE Trans-
actions on Fuzzy Systems, 3(3):260-270, August 1995.

R. A. Jacobs and M. |. Jordan. Learning piecewise control strategies in a
modular neural network architecture. |EEE Transactions on System, Man
and Cybernetics, 23:337-345, 1993.

R. A. Jacobs, M. I. Jordan, M. I. Nowlan, and G. E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3:79-87, 1991.

J. John and R. Kohavi. Feature subset selection using the wrapper model:
Overfitting and dynamic search space topology. In Proceedings d the First
Ilgtgesrnatlonal Conference on Knowledge and Data Mining, pages 643-649,
S. Jockusch and H. Ritter. Self-organizing maps. Local competition and
evolutionary optimization. Neural Networks, 7(8):1229-1239, 1994.

J.S. R. Jang and C. T. Sun. Functional equivalence between radial basis
function networks and fuzzy inferencesystems. |EEE Transactions on Neural
Networks, 4(1):156-159, January 1993.

J.S.R. Jang, C. T. Sun, and E. Mijutani. Neuro-Fuzzy and Soft Computing.
Prentice-Hall, Englewood Cliffs, NJ, 1997.

,16\982Kandle. Fuzzy Techniques in Pattern Recognition. Wiley, New York,
A. Kandle. Fuzzy Mathematical Techniques with Applications. Addison-
Wedey Publishing Company, Reading, Massachusetts, 1986.

G. S. Klir and T. A. Folger. Fuzzy Sets, Uncertainty and Information.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

A. Kauffman and M. M. Gupta. Introduction to Fuzzy Mathematics. Van
Nostrand Reinhold, New Y ork, 1985.



[KGG85]

[KGT*94]

[KH8S]

[Khe88]

(KIV83]
[KK93]

[KKR92]

[KL79]
[KNF92]
[KO96)]
[Koh89]
[Kohg0]

[Kos93]
[Koz92]

[KQ88]

[KR89]

[KT92]

[Kun93]

[KY95]

J. M. Kéller, M. R. Gray, and J. A. Givens. A fuzzy K-nearest neighbor
algorithm. IEEE Dansactions on System, Man and Cybernetics, 15(4):580~
585, July/August 1985.

J. M. Kdller, P. Gader, H. Tahani, J. H. Chiang, and M. Mohamed. Ad-
vances in fuzzy integration for pattern recognition. Fuzzy Sets and Systems,
(65):273-283, 1994.

J. M. Keller and D. J. Hunt. Incorporating fuzzy membership functions
into the perceptron algorithms. |EEE Dansactions on Pattern Analysis and
Machine Intelligence, pages 693-699, July/August 1985.

D. Khemani. Theme bassd Planning in an Uncertain Environment. PhD
thesis, Department of Computer Science and Engineering, Indian Institute
of Technology, Bombay, 1988.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, {220):671-680, 1983.

R. Krishnapuram and J. M. Keller. A possibilistic approach to clustering.
IEEE Transactions on Fuzzy Systems, 1(2):98-110, May 1993.

J. M. Kdler, R. Krishnapuram, and F. C. H. Rhee. Evidence aggregation
networks for fuzzy logic interface. |EEE Transactions on Neural Networks,
3(5):761-769, 1992.

A. Kandle and S. C. Lee. Fuzzy Snitching and Automata: Theory and Ap-
plications. Crane, Russak & Company, New York, 1979.

R. Krishnapuram, O. Nasraoui, and H. Frigui. The fuzzy c spherical shells
algorithm. |EEE Transactionson Neural Networks, 3(5):663-671, Sep. 1992.

J. M. Keller and J. Osborn. Training thefuzzyintegral. Information Science,
(15):1~-24, 1996.

T. Kohonen. SAf Organization and Associative Memory, 3rd edition.
Springer Verlag, Berlin, .Germany, 1989.

T. Kohonen. The self-organizing map. Proceedings of the |EEE, 78(9):1464~
1480, September 1990.

B. Kosko. Fuzzy Thinking. Harper Collins, Glasgow, UK, 1993.

J. R. Koza. Genetic Programming: On the Programming of Computers by
Means d Natural Selection. MIT, Press, Cambridge, Massachusetts, 1992.

J. M. Keller and H. g_ui. Fuzzy set methods in pattern recognition. In
Kitller, editor, Procesdings d Fourth International Conference on Pattern
Recognition, Cambridge 28-30 March. Springer Verlag, 1988.

D. Khemani and R. S. Ramakrishna. Bridge: A benchmark for knowledge
based planning. The Journal for the Integrated Study o Artificial Intelli-
Srswg;e Cognitive Science and Applied Epistemology (CC-Al), 6(2/3):137-151,
J. M. Keller and H. Tahani. Implementation of conjunctive and disjunctive
fuzzy logic rules with neural networks. International” Journal o Approzimate
Reasoning, (6):221-240, 1992.

S. Y. Kung. Digital Neural Networks. Prentice Hall, Englewood Cliffs, New
Jersey, 1993.

G. S. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic - Theory and Applica-
tions. Prentice-Hall, Englewood Cliffs, NJ, 1995.



[LD95)

[L198]

[Liu95)
[LL95]
[LL96]
[LS95)

[Man93]

[MCHK94]

[Mic92]

[MS89a]

[MS89b]

[MTHS9]

[MYA94]

[Nato1]

[Nee96]

[NIT96]

[0C97]

S. Loncaric and P. Dhawan. Near-optimal mst-based shape description using
genetic algorithm. Pattern Recognition, 28(4):571-579, 1995.

B. L. Lu and M. Ito. Task decomposition and module combination based on
class relations: A modular neural network for pattern classification. Techni-
cal Report BMC TR-98-1, Bio-Mimetic Control Research Center, The Insti-
tute of Physical and Chemical Research (RIKEN), 1998.

Y. Liu. Unbiased estimate d generalization error and model selection in
neural network. Neural Networks, 8(2):215-219, 1995.

C. T. Linand Y. C. Lu. A neura fuzzy system with linguistic teaching
signals. |EEE Transactions on Fuzzy Systems, 3(2):169-189, May 1995.

C.T.Linand C.S. G. Lee. Neura Fuzzy Systems. Prentice Hall, Englewood
Cliffs, New Jersey, 1996.

G. F. Luger and W. A. Stubblefield. Artificial Intelligence. Addison-Wedey,
Reading MA, 1995.

M. Mandischer. Representation and evolution o neural networks. In Pro-
ceedings d the International Conference in Innsbruck (Austria), pages 643-
649, 1993.

M. T. Musavi, K. H. Chan, D. M. Hummels, and K. Kalantri. On the
generalization ability o neural network classifiers. |EEE Transactions on
Pattern Analysis and Machine Intelligence, 16(6), June 1994.

Z. Michaewicz. Genetic Algorithm + Data Structure. Springer Verlag, New
York, 1992.

M. Mozer and P. Smolensky. Skeletonization: A technique for trimming the
fat from a network via relevance assessment. In D. Touretzky, editor, Ad-
vances in Neural Information Processing Systems1. San Mateo, CA: Morgan
Kauffman, New Y ork, 1989.

T. Murofushi and M. Sugeno. An interpretation of fuzzy measure and the
Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets
and Systems, 29:201-227, June 1989.

G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks and
genetic algorithms. In J. D. Schaffer, editor, Proceedingsd the Third Inter-
national Conference on Genetic Algorithmsand their Applications. Morgan
Kaufmann, San Mateo, CA, 1989.

N. Murata, S. Yoshizawa, and S. Amari. Network information criterion - de-
termining the number of hidden units for an artificial neural network model.
| EEE Transactions on Neural Networks, 5(6):865-872, November 1994.

B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kauf-
mann, San Mateo, California, 1991.

A. Neeharika. Generalization Capability of Feedforward Neural Networks
for Pattern Recognition Tasks. MS Thesis, Indian Institute of Technology,
Madras, Department of Computer Science and Engineering, August, 1996.

K. Nozaki, H. Ishibuchi, and H. Tanaka. Adaptive fuzzy rule-based classifi-
cation system. |EEE Transactions on Fuzzy Systems, 4(3):238-250, August
1996.

M. Lozano O. Cordon, F. Herrare. On the combination of fuzzy logic and
evolutionary computation: A short review and bibliography: 1989-1995. In



[Pal92]
[Pao89)
[Paw82]
[Paw91]

[Paw94]

[Paw95]

[PB94]
[PB95]
[PBSZ95]

[PC86]

[Ped90]

[Ped92]
[PFF95]

[PIL96]

[PK96]

[PM86]

[PM92]

[PP92]

W. Pedrycz, editor, Fuzzy Evolutionay Computation, pages 57-77. Kluwer
Academic Press, 1997.

S. K. Pal. Fuzzy set theoretic measures for automatic feature evaluation: II.
Information Sciences, 65:165-179, July-October 1992.

Y. H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-
Wedey, Reading MA, 1989.

Z. Pawlak. Rough sets. International Journal & Computer and Information
Science, 11:341-356, 1982.

Z. Pawlak. Rough Sets: Theoretical Aspects d Reasoning About Data.
Kluwer, Dordrecht, 1991.

Z. Pawlak. Vagueness and uncertainity: A rough set perspective. Technical
Report ICS Research Report 19/94, Institute of Computer Science, Warsaw
University of Technology, Warsaw, Poland, March 1994.

Z. Pawlak. Rough sets present state and future prospects. Technical Re-
port 1CS Research Report 32/94, Institute of Computer Science, Warsaw
University of Technology, Warsaw, Poland, 1995.

N. R. Pal and J. C. Bezdek. Measuring fuzzy entropy. |EEE Transactions
on Fuzzy Systems, 2(2):107-118, May 1994.

N. R. Pal and J. C. Bezdek. On cluster validity for the fuzzy C-means model.
|EEE Transactions on Fuzzy Systems, 3(3):330-379, August 1995.

Z. Pawlak, J. G. Busse, R. Slowinsky, and W. Ziarko. Rough sets. Commu-
nications d the ACM, 38(11):89-95, November 1995.

S. K. Pal and B. Chakraborty. Fuzzy set theoretic measure for automatic
feature evaluation. |EEE Transactions on System, Man and Cybernetics,
16(5):754-760, September/October 1986.

W. Pedrycz. Fuzzy sets in pattern recognition: Methodology and methods.
Pattern Recognition, 23(1/2):121-146, 1990.

W. Pedrycz. Fuzzy neura networks with reference neurons as pattern clas-
iigigezrs. |[EEE Transactions on Neural Networks, 3(5):770-775, September
W. Porto, D. B. Fogel, and L. J. Fogel. Alternative neural network training
methods. |EEE Expert, pages 16-22, June 1995.

Y. H. Pao, B. Igelnik, and S. R. LeClair. An approach for neural-net com-
puting with two-objective functions. In Proceedings d | EEE International
%%rgerence on Neural Networks (Washington D.C.), pages 181-186, June
1996.

G. Purushothaman and N. B. Karayiannis. Quantum neural networks
(QNNs): Inherently fuzzy feedforward neural networks. In Proceedings d
IEEE Conference on Neural Networks (Washington D.C.), pages 1085-1090,
June 1996.

S. K. Pal and D. Dutta Majumder. Fuzzy Mathematical Approach to Pattern
Recognition. Wiley (Halsted Press), New Y ork, 1986.

S. K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets and classification.
|EEE Transactions on Neural Networks, 3(5):683-697, September 1992.

N. R. Pal and S. K. Pal. Higher order fuzzy entropy and hybrid entropy of
aset. Information Sciences, 61(3):211-231, 1992.

205



[PP96]

[PPBY7]

[PR93]
[PWZ88]

[Ree93]

[RF96]
[RHWS6]
[Rip96)
[RPY97]
[RRM*96]

[RY95]

[RY96]
[RY97]
[RY98]
SB97]

[Sch81]

[SF95]

S. K. Pal and N. R. Pal. Soft computing: Goals, tools and feasibility. Journal
d IETE, 42(5):195-204, July-October 1996.

N. R. Pal, K. Pal, and J. C. Bezdek. A mixed c-means clustering model. In
Proceedings d | EEE International Conference on Fuzzy Systems (Barcelona,
Spain), pages 11-21, July 1997.

W. Pedrycz and A. F. Rocha. Fuzzy-set based models of neurons and
knowledge-based networks. | EEE Transactions on Fuzzy Systems, 1(4):254~
266, November 1993.

Z. Pawlak, S. K. M. Wong, and W. Ziarko. Rough sets: Probabilistic
verses deterministic approach. International Journal & Man-Machine Stud-
les, 29:81-95, 1988.

R. Reed. Pruning algorithms - A survey. |EEE Transactions on Neural
Networks, 4:740-747, September 1993.

J. M. Redners and S. P. Flasse. Hybrid methods using genetic algorithms for
global optimization. IEEE Transactions on System, Man and Cybernetics,
26(2):243-258, 1996.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-
sentations by error propagation. In D. E. Rumelhart and McClelland, editors,
Parallel and Distributed Processing. MIT Press, Cambridge, MA, 1986.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press, Cambridge, 1996.

P. P. Raghu, R. Poongodi, and B. Yegnanarayana. Unsupervised texture
classification using vector quantization and deterministic relaxation neural
?ng;ork. | EEE Transactions on Image Processing, 6(10):1376-1388, October

C. Rodriguez, S. Rementeria, J. |. Martin, A. Lafuente, J. Mugerza, and
J. Perez. A modular neural network approach to fault diagnosis. IEEE
Transactions on Neural Networks, 7(2):326-340, March 1996.

P. P. Raghu and B. Yegnanarayana. A combined neural network approach
for texture classification. Neural Networks, 8(6):975-987, December 1995.

P. P. Raghu and B. Yegnanarayana. Segmentation of Gabor filtered tex-
tures using deterministic relaxation. |EEE Transactions on Image Process-
ing, 5(12), December 1996.

P. P. Raghu and B. Yegnanarayana. Multispectral image classification using
Gabor filters and stochastic relaxation neural network. Neural Networks,
10(3):561-572, December 1997.

P. P. Raghu and B. Yegnanarayana. Supervised texture classification us-
ing a probabilistic neural network and constrain satisfaction model. |EEE
Transactions on Neural Networks, 9(3):516-522, May 1998.

M. Scherf and W. Brauer. Feature selection by means of feature weight-
ing approach. Technical Report FKI-221-97, Forschungsberichte Kunstliche
Intelligenz, Institut fur Informatik, Technische Universitat Munchen, 1997.

H. P. Schwefdl. Numerical Optimization d Computer Models. John Wiley,
Chichester, 1981.

N. Saravanan and D. B. Fogel. Evolving neural control systems. |EEE
Expert, pages 23-27, June 1995.



[Sha76]

[Slo92]

[SM93]

[SP94]

[Spe90)

[5591]
[S593]

[SST93]

[Sug74]
[Sus92]
8Y)
[SY96]
[SY98a)

[SY98b)]

[SY98c¢]

[SY98d]

[SY98e]

G. Shafer. A Mathematical Theoy o Evidence. Princeton University Press,
Princeton, 1976.

R. Slowinsky. Intelligent Decison Support. Handbook of Applications and
ﬁ%/zanc& of the Rough Set Theoy. Kluwer Academic Publishers, Dordrecht,
A. Sankar and R. J. Mammone. Growing and pruning neural tree networks.
|EEE Tkansactions on Neural Networks, 42(3):291-299, March 1993.

M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mu-
tation in genetic agorithm. |EEE Transactions on System, Man and Cyber-
netics, 24(4):656-667, 1994.

D. F. Specht. Probabilistic neural networks. Neural Networks, 3:109-118,
1990.

S. Z. Selim and K. A. Sultan. A simulated annealing algorithm for the
clustering problem. Pattern Recognition, 24(10):1003-1008, 1991.

R. Slowinsky and J. Stefanowski. Foundations d Computing and Decision
Sciences (eds.), 18(3-4), Fall 1993.

M. R. A. Sadzadi, S. Sheedvash, and F. O. Trujillo. Recursive dynamic
node creation in multilayer neural networks. |EEE Tkansactions on Neural
Networks, 4(2):242-256, 1993.

M. Sugeno. Theoy o fuzzy integralsand its applications. PhD thesis, Tokyo
Institute of Technology, 1974.

H. J. Sussmann. Uniquenessof the weightsdf minimal feedforward nets with
given input-output map. Neural Networks, 5:589-593, 1992.

M. Sarkar and B. Yegnanarayana. Application of fuzzy integral in modular
networks for contract bridge bidding. Accepted in Fuzzy Sets and Systems.

C. C. Sekhar and B. Yegnanarayana. Recognition of stop-consonant-vowel
(svc) segments in continuous speech using neural network models. Journal
d Institution of Electronicsand Telecommunication Engineers (IETE), 42(4
& 5):269-280, July-October 1996.

M. Sarkar and B. Yegnanarayana. Fuzzy-rough membership functions. Ac-
cepted in |EEE International Conference on Systems, Man and Cybernetics,
San Diego, California, USA, October 11-14 1998.

M. Sarkar and B. Yegnanarayana. Fuzzy-rough neural networks for vowd
classification. Accepted in |EEE International Conference on Systems, Man
and Cybernetics, San Diego, California, USA, October 11-14 1998.

M. Sarkar and B. Yegnanarayana. A review on merging some recent tech-
niques with artificial neural networks. Accepted in IEEE International Con-
ference on Systems, Man and Cybernetics, San Diego, California, USA, Oc-
tober 11-14 1998.

M. Sarkar and B. Yegnanarayana. Rough-fuzzy membership functions. In

Proceedingsd |EEE International Conference on Fuzzy Systems (Anchorage,
Alaska, USA), pages 796-801, May 4-9 1998.

C. C. Sekhar and B. Yegnanarayana. Modular networks and constraint sat-
isfaction model for recognition of stop consonant-vowel (SCV) utterances. In
Proceedings of |EEE International Conference on Neural Networks (Anchor-
age, Alaska, USA), pages 1206-1211, May 4-9 1998.



[TG74]

[T192]

[TIS92]

[TK90)

[TM87]

[TMBC92)

[Vid97]

[Vig70]

[WAMY7]

[WC96]

[Whi96]

[(WK92]

[WM97]

[Wro95]

[WW97]
[WZ87]

[XB91]

J. Tau and R. Gonzalez. Pattern Recognition Principles. Addison Wedey,
Reading, MA, 1974.

H. Tanaka and H. Ishibuchi. Fuzzy expert system based on rough setsand its
appllscagtéori 9té)zmedlcal diagnosis. International Journal of General Systems,
21:83-97, .

H. Tanaka, H. Ishibuchi, and T. Shigenaga. Fuzzy inference system based on
rough sets and its application to medical diagnosis. In R. Slowinski, editor,
Intelligent Decision Support. Handbook of Applications and Advances of the
Rough Set Theory. Kluwer Academic Publishers, Dordrecht, 1992.

H. Tahani and J. K. Keller. Information fusion in computer vision using fuzzy
integral. |EEE Transactions on System, Man and Cybernetics, 20(3):733-
741, May/June 1990.

T. Toffoli and N. Margolus. Cellular Automata Machines: A New Environ-
ment for Modeling. MIT Press, Cambridge, MA, 1987.

S. Thiria, C. Mgjia, F. Badran, and M. Crepon. Multimodular architec-
ture for remote sensing operations. In J. E. Moddy, J. Hanson, and R. P.
Lippmann, editors, Advances in Neural Information Processing Systems-4.
Morgan Kaufmann, 1992.

M. Vidyasagar. A Theory of Learning and Generalization: With Applications
to Neural Networks and Control Systems. Springer Verlag, New York, 1997.

S. S. Viglione. Application of pattern recognition technology. In J. M.
Mendel and K. S. Fu, editors, AdaEtive, Learning and Pattern Recognition
Systems. Academic Press, New York, 1970.

D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical eval-
uation of feature weighting methods for a class of lazy learning algorithm.
Artificial Intelligence Review, 1997.

B. A. Whitehead and T. D. Choate. Cooperative-competitive genetic evo-
lution of radial basis function centers and widths for time series prediction.
|EEE Transactions on Neural Networks, 7(4):869-880, July 1996.

B. A. Whitehead. Genetic evolution of radial basis function coverage using
orthogonal niches. |EEE Transactions on Neural Networks, 7(6):1525-1528,
November 1996.

fQQVZVang and G. Klir. Fuzzy Measure Theory. Plenum Press, New York,
L. X. Wang and J. M. Mendel. Fuzzy basis functions, universal approxima-
tions, and orthogonal least square learning. |EEE Transactions on Neural
Networks, 3(5):807-814, September 1997.

J. Wroblewski. Finding minimal reducts using genetic algorithm (extended
version). In Second Annual Joint Conference on Information Sciences (North
Carolina), pages 186-189, September 1995.

J. Wang and Z. Wang. Using neural networks to determine sugeno measures
by statistics. Neural Networks, 10(1):183-195, 1997.

S. K. M. Wong and W. Ziarko. Comparison o the probabilistic approximate
classification and fuzzy set model. Fuzzy Sets and Systems, 21:357-362, 1987.

X. L. Xie and G. Beni. A validity measure for fuzzy clustering. |EEE
Transactions on Pattern Analysis and Machine Intelligence, 13(8):841-847,
August 1991.



[Yag93]
[Ya093]
[Yeg98]
[YF93]

[YKSS95]

[YL97]

[YL8]

[Zad65]
[Zad78|

R. R. Yager. Element selection from a fuzzy subset using the fuzzy integral.
|EEE Transactions on System, Man and Cybernetics, pages 467-477, 1993.

X. Yeo. Evolutionary artificial neura networks. International Journal of
Neural Networks, 4(3):203-222, 1993.

B. Yegnanarayana. Artificial Neural Networks. Prentice Hall, New Delhi,
India, 1998.

M. Yoneda and S. Fukami. Interactive determination of a utility function
represented as a fuzzy integral. Information Sciences, 71:43-64, 1993.

B. Yuan, G. J. Klir, and J. F. Swan-Stone. Evolutionary fuzzy C-means
clustering algorithm. In Proceedings of First IEEE Conference on Fuzzy
Systems (Yokohama), pages 2221-2226, March 1995.

X.Yaoand Y. Liu. A new evolutionary system for evolving artificial neural
networks. |EEE Transactions on Neural Networks, 8(3), May 1997.

X. Yaoand Y. Liu. Making use d population information in evolutionary
artificial neural networks. 1EEE Transactions on System, Man and Cyber-
netics, 28(B2), April 1998.

L. A. Zadeh. Fuzzy sets. Information and Control, pages 338-353, 1965.

L. A. Zadeh. Fuzzy sets as a basisfor a theory of possibility. Fuzzy Sets and
Systems, 1:3-28, 1978.



PUBLICATIONS

PAPERS IN JOURNALS

1. M. Sarkar and B. Yegnanarayana,“Feedforward neural network classifiers: Back-
propagation learning algorithm with fuzzy objective functions", accepted in |EEE
Transactions on Systems, Man and Cybernetics.

2. M. Sarkar and B. Y egnanarayana, "Rough-Fuzzy membership functionsin classifi-
cation", accepted in fizzy Sets and Systems.

3. M. Sarkar, B. Yegnanarayana and D. Khemani, "Backpropagation learning ago-
rithmsfor classification with fuzzy mean squareerror”, Pattern Recognition L etters,
vol. 19/1, pp 43-51, 1998.

4. M. Sarkar, B, Y egnanarayana and D. Khemani, "A clustering algorithm using
an evolutionary programming-based approach”, Pattern Recognition Letters, vol.
18/10, pp. 975-986, 1997.

5. B. Yegnanarayana, D. Khemani and M. Sarkar, "Neura networks for contract
bridge bidding", Sadhana, vol. 21, no. 3, pp. 395-413, June 1996.

PAPERS COMMUNICATED TO JOURNALS

1. M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough membership functionsin classifi-
cation", communicated to |EEE Transactions on fizzy Systems.

2. M. Sarkar and B. Y egnanarayana, "Feedforward neural networks configuration us-
ing evolutionary programming", communicated to Pattern Recognition.

3. M. Sarkar and B. Yegnanarayana, "Evolutionary programming-based hybrid clus-
tering technique”, communicated to |EEE Transactions on Systems, Man and Cy-
bernetics.

4. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy set-based approach for selecting
input features in classification", communicated to [EEE Transactions on Neural

Networks.

PAPER IN EDITED VOLUME

M. Sarkar and B. Y egnanarayana, "Application of fuzzy-rough sets in fuzzy integral-
based modular neural networks", Rough-Fuzzy Hybridization: A New Trend i n Decision-
Making, ed. S. K. Pal and A. Skowron, Springer Verlag (in press).



PAPERSIN INTERNATIONAL CONFERENCES

1.

Ot

10.

M. Sarkar and B. Y egnanarayana, "Fuzzy-Rough membership functions", accepted
in EEE International Conference on Systems, Man and Cybernetics, San Diego,
California, USA, October 11-14, 1998.

M. Sarkar and B. Yegnanarayana, "A review on merging some recent techniques
with artificial neural networks", accepted in |EEE International Conference on
Systems, Man and Cybernetics, San Diego, California, USA, October 11-14, 1998.

M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough neural networks for vowe classi-
fication", accepted in |EEE International Conference on Systems, Man and Cyber-
netics, San Diego, California, USA, October 11-14, 1998.

M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy membership functions”, in Pro-
ceedings of | EEE I nternational Conference on Fuzzy Systems, Anchorage, USA, pp.
796-801, May 3-9, 1998.

M. Sarkar and B. Y egnanarayana, "Application of fuzzy-rough sets in modular neu-
ral networks", Proceedings d |EEE International Conference on Neural Networks,
Anchorage, USA, pp. 741-746, May 3-9, 1998.

M. Sarkar and B. Y egnanarayana, "Incorporation of fuzzy classification properties
into backpropagation learning algorithm", in Proceedings d | EEE International
Conference on Fuzzy Systems, Barcelona, Spain, vol. 3, pp. 1701-1706, July 1-5,
1997.

M. Sarkar and B. Y egnanarayana, "Rough-Fuzzy set theoretic approach to evaluate
the importance of input featuresin classification", in Proceedingsd | EEE Interna-
tional Conference on Neural Networks, Houston, USA, val. 3, pp. 1590-1595, June
9-12, 1997.

M. Sarkar and B. Y egnanarayana, "Feedforward neural networks configuration us-
ing evolutionary programming", in Proceedings d |EEE International Conference
on Neural Networks, Houston, USA, vol. 1, pp. 438-443, June 9-12, 1997.

M. Sarkar and B. Y egnanarayana, "An evolutionary programming-based probabilis-
tic neural network construction technique”, in Proceedings d | EEE International
Conference on Neural Networks, Houston, USA, vol. 1, pp. 456-461, June 9-12,
1997.

M. Sarkar, B. Yegnanarayana and D. Khemani, "Feedforward neural networks and
fuzzy classification", in Proceedings d Fourth International Conference on Ad-
vanced Computing, Bangalore, India, pp. 65-72, December 16-18, 1996.



11. M. Sarkar and B. Yegnanarayana, "A clustering algorithm using evolutionary pro-
gramming", in Proceedings d IEEE International Conference on Neural Networks,
Washington, USA, val. 2, pp. 1162-1167, June 3-6, 1996.

12. M. Sarkar, "Evolutionary programming-based fuzzy clustering”, in Proceedings d
Fifth Annual Conference on Evolutionary Programming, MIT Press, Cambridge,
Massachusetts, San Diago, USA, pp. 247-256, 1996.

13. B. Yegnanarayana, D. Khemani and M. Sarkar, "Hierarchical neural networks -
An application in contract bridge", in Proceedings d International Conference on
Automation, Indore, India, pp. 9-12, December 12-14, 1995.

PAPERSIN NATIONAL CONFERENCES

1 M. Sarkar, Evolutionary programming-based fuzzy clustering and its applica-
tions", in Proceedings d the 84th Indian Science Congress-1997, Delhi University,
New Delhi, India, January 3-8, 1997.

2. M. Sarkar, B. Yegnanarayanaand D. Khemani, "Application o neural networksin
contract bridge bidding", in Proceedingsd National Conference on Neural Networks
and Fuzzy Systems, Anna University, Madras, India, pp. 144151, March 16-18,
1995.

212



