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ABSTRACT 

The objective of this study is to demonstrate the significance of incorporating a pn'ori 
knowledge of the problem in a pattern classification task. The issues of identification, 
representation and application of knowledge in the form of fuzzy, rough and probabilistic 
uncert ainities are addressed to develop a new pat tern classification methodology. This 
thesis demonstrates the significance of modular classification approach to deal with un- 
certainties effectively in pattern classification tasks. The performance of the proposed 
approach is illustrated for the opening bid problem in the game of Contract Bridge. 

Building classifiers involves capturing the similarity among the training patterns and 
assigning labels for the group of similar patterns. Capturing the similarity among patterns 
becomes complicated when a training pattern belongs to more than one class, i.e., the 
output classes are overlapping. Thus fuzzy uncertainty appears in form of similarity and 
overlap. Due to the lack of details, two input patterns may appear similar whereas the 
class labels may not be same. The one-temany relationship between the inputs and 
outputs results in rough uncertainty. If the occurrence of the training patterns in the 
neighborhood region is small, then due to probabilistic uncertainty assigning the class 
labels is difficult. Thus building classifiers essentially involves dealing with fuzzy, rough 
and probabilistic uncertainties. In the opening bid problem of Contract Bridge game, 
the input is a hand pattern and the output is the class label for the input hand. In 
this problem, obtaining a particular hand pattern is probabilistic. The output classes are 
fuzzy. The absence of unique class labels for input hands creates rough uncertainty. 

In this thesis artificial neural networks are employed as classifiers. Experimentally it 
was observed that it is difficult to deal with the issues in uncertainties for the opening bid 
problem. Hence, modular neural networks are explored. Modular approach partitions the 
classification task into three subclassification tasks, solves each subclassification task, and 
eventually integrates the results to obtain the final classification result. In other words, 
partitioning of the classification task is carried out such that each subproblem can be 
solved in a module by exploiting the local uncertainities and the results of all the modules 
can be combined by exploiting the global uncertainities. 

The performance of each module can be improved by giving importance to the features 
based on their class discrimination capability for the output classes present in the module. 
Since both roughness and fuzziness are present and the input features are discrete, the 
uncertainity in assigning class labels for a given pattern based on each feature is treated 
as rough- fuzzy uncertainty. The more important a feature is for classification, the less is 
the rough-fuzzy uncertainty associated with that feature. A rough-fuzzy entropic measure 
is proposed to quantify the importance of each feature. Using the importance measure, 
the input hands are biased to generate modified feature vectors corresponding to each 



module. 

One approach of assigning class labels for the modified feature vectors is through direct 
classification. It involves partitioning the modified feature space of a module into several 
fuzzy output classes. Feedforward neural networks are used to obtain the class labels. 
Backpropagation learning algorithm with fuzzy objective functions are used to train the 
networks. The networks are configured optimally using evolutionary programming. After 
training if a new input pattern is presented to the network, then the network yields the 
output as the fuzzy membership value of the input to the output classes. 

An alternative approach to assign the class labels on the modified feature vector is 
clustering. In this approach, modified feature vectors are clustered, and each cluster 
is labelled with class labels. Since the clusters are fuzzy, the modified feature vectors 
are clustered using an evolutionary programming-based fuzzy clustering algorithm. The 
labelling of the clusters is complicated because two patterns from the same cluster may 
belong to entirely different classes. The labelling of the clusters is done using a fumy- 
rough neural network. It captures the fuzzy uncertainty present in the clusters and rough 
uncertainty between the clusters and the class labels. If a new input pattern is presented to 
the network after training, it yields the output as a class confidence value in terms of fuzzy- 
rough membership value corresponding to the input pattern. In the opening bid problem, 
experimentally it was decided to use feedforward neural networks with backpropagation 
algorithm to construct the module for the first level bids and fuzzy-rough neural networks 
to construct the remaining two modules for the second and third level bids. 

When the original classification task is distributed among modules, the modules have 
been trained and configured to deal with the uncertainities locally. But the final class 
labels, indicated by the outputs of the modules, may be conflicting. To arrive at the 
classification result from the conflicting outputs, Sugeno 's fuzzy integral is used. The 
outputs of the modules are treated as evidence, and they are fused in a nonlinear fashion 
based on their importance. The importance of each evidence is determined using the 
fuzzy-roughness associated with the evidence. The final class label of an input is the 
output class corresponding to the maximum value of the fuzzy integral. 

The main contribution of the thesis are: (1) Demonstrating the significance of uncer- 
tainty in pattern classification problems, (2) providing a review on issues in uncertainty- 
driven pattern classification tasks, (3) application of modular neural networks to deal with 
fuzzy, rough and probabilistic uncertainties, (4) use of rough-fuzzy sets to determine the 
importance of each feature for classification, (5) development of backpropagation learning 
algorithms based on various fuzzy objective functions, (6) proposing rough-fuzzy mem- 
bership functions and fuzzy-rough membership functions to construct fuzzy-rough neural 
networks, and (7) use of fuzzy-rough sets in fuzzy integral to measure the importance of 
each module. 
Keywords: Classification, uncertainty, modular neural networks, feedforward neural net- 
works, fuzzy sets, rough sets, evolutionary programming, clustering, fuzzy-rough mem- 
bership functions, fuzzy-rough neural networks and fuzzy integral. 
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Chapter 1 

INTRODUCTION 

Human beings apply their classification ability to perceive patterns in natural scenes, 

stock market analysis, mental processes and in many other fields. It would be possible to 

build a new breed of intelligent machines if the human classification mechanism can be 

successfully emulated on machines. However, this goal appears to be difficult. One major 

reason behind it is the presence of uncertainties at different stages of the classification 

process. Presence of uncertainties may affect the classification process. The problem is 

made simpler by ignoring the uncertainties at every stage of the pattern classification 

process, but it results in an inevitable loss of information. The objective of this study is 

to demonstrate that incorporation of the knowledge in form of the uncertainties indeed 

enables us to design better pattern classifiers. In this thesis, the role fuzzy, rough and 

probabilistic uncertainties in a given classification task are discussed. This work illus- 

trates the use of modular classification approach to handle the uncertainties efficiently 

in complex pattern classification tasks. The modular approach breaks the classification 

task into several subclassification tasks, solves each subclassification task, and eventually 

integrates the subclassification results to obtain the final classification result. In other 

words, partitioning of the classification task is carried out such that each subproblem 

can be solved in a module by exploiting the local uncertainities and the results of all the 

modules can be combined by exploiting the global uncertainities. The performance of the 

proposed approach is illustrated for the opening bid problem in Contract Bridge game. 

1.1 Background: Problem Solving with Uncertainty 

Importance of pattern recognition: Intelligence implies the ability to think, reason, 

learn and memorise. It is generally related to the human cognitive process. The fact 

that the human cognition process is marvellously efficient and effective poses a question 

to the scientists: Can some of the functions and attributes of the human reasoning be 

emulated on a machine? The reasoning can be for the tasks like classification, grouping, 



and prediction. The issues involved in these reasoning tasks are discussed in the field of 

pattern recognition. 

Exploitat ion of uncertainties may improve the pat tern recognit ion process: 

Many pattern recognition tasks in real life involve uncertainties at various stages. For 

instance, the input data to a pattern recognition system may have uncertainties due to 

randomness in the system generating the data or due to errors in the measurement of the 

data. Uncertainties may also arise in the selection and extraction of the features from the 

input data. The output of a recognition task may be vague too. Finally, the knowledge 

captured in the form of cause and effect relation is generally soft because the relationship 

between the input features and the output can be imprecise or only partially correct. 

However, human reasoning process is able to deal with these uncertainities effortlessly to 

obtain satisfactory solutions to many pattern recognition problems. Moreover, the deci- 

sions based on the soft relations or constraints seem to be robust against small variations 

in the parameters or features at  every stage. In fact, these variations or uncertainties may 

be helping the human beings with updating the acquired knowledge, and thus, helping in 

the process of learning. 

Unsolved aspects and objective: For solving pattern recognition problems on a 

machine, normally crisp quantities are derived from the uncertain data or information 

available at every stage. The problem itself is solved using an algorithm consisting of 

unarnbigious sequence of processing steps. It is likely that the performance of a pat- 

tern recognition system may improve significantly in terms of accuracy, robustness and 

learning ability, if the system is designed to deal with ambiguities at  different stages of 

processing the information. This requires identification of the sources of uncertainties 

and capturing the uncertainties in a suitable form for incorporating them for solving the 

pattern recognition problem on a machine. The objective of this study is to demonstrate 

the significance of incorporating the knowledge of the uncertainties for some real world 

pat tern recognition problems. 

1.2 Issues in Pattern Classification 

Pattern classification is chosen for the study: There are several pattern recognition 

tasks, which are relevant for this study, such as pat tern classification, pat tern storage, 

pat tern clustering, associative memory recall and pat tern mapping. This thesis considers 

pattern classification tasks for discussion throughout the study. The task of pattern clas- 



sification is defined as a search for structures in a pattern set, and subsequent labelling of 

the structures into categories such that the degree of association is high among the struc- 

tures of the same category and low between the structures of different categories [Bez81]. 

Pattern classification finds extensive applications in script recognit ion, face recognition, 

speech recognition, speaker recognition, ECG analysis, radar and sonar signal detection, 

weather forecasting, data mining, etc. [TG74] [Fuk89] [BP92]. 

Presence of uncertainty in  pa t te rn  classification: In a pattern classification task, 

the input data is generated by a source, and the data is measured by a set of sensors. The 

sensed data is used to extract some relevant features, which in turn are used to associate 

class labels corresponding to the problem. To implement the pattern classification task 

on a machine, one needs to characterize the associated uncertainties at different stages. 

Some of the uncertainties may be identified as  resolution, probabilistic, fuzzy and rough 

uncertainties. Resolution uncertainty is due to sensors, probabilistic uncertainty is due to 

the randomness in physical system generating the data. Fuzzy uncertainty [KY95] [PM86] 

is due to the vagueness in the human interpretation of the data at the feature level, 

class labels or may be at some intermediate levels. Rough uncertainty [Paw911 is due to 

incomplete information or knowledge at various stages. 

Example: Let us consider an example of a pattern classification task to illustrate these 

uncertainties. Suppose an artificial vision system analyzes a digital image of a dice. Based 

on the evidence gathered, the system might suggest that the top face of the dice is either 

a 5 or 6, but cannot. be more specific. This kind of uncertainty, known as  resolution 

uncertainity, arises from the limitations (for example, sensor resolution) of the evidence 

gathering system. Again, randomness is involved when the outcome of a dice is predicted 

before the dice is cast. This uncertainty, which arises due to the chance or randomness, 

is called probabilistic uncertainty. On the other hand, if one is asked to interpret the top 

face of the dice as, say high, the uncertainty appears due to vagueness. This is called 

fuzzy uncertainty. In this example, rough uncertainty is absent. 

Issues: The issues involved in modeling human classification mechanism on a machine 

are 

(a) Identification of the uncertainties involved in the chosen classification task. 

(b) Representation of the problem with uncertainties on a machine. It involves repre- 

sentation of the input, output and the knowledge of the problem at various stages. 

(c) Development of a methodology to exploit the uncertainties for solving the classifi- 



cation problem. 

1.3 Scope: Study of Uncertainties in Opening Bid Problem in Bridge Game 

Contract Bridge Problem is chosen to illustrate the efficacy of the proposed 

approach: In order to demonstrate the significance of the uncertainties for solving a 

pattern classification problem on a machine, the "opening bid" problem in the game of 

Contract Bridge has been chosen. Contract Bridge [Khe88] is a card game played in two 

stages (for more details see the Appendix A). The aim is to maximize the points gained, 

which depend directly upon the number of tricks a side can win. In the first stage, both 

the players of each side make bids. Finally, through a bid the player stakes a claim for 

the denoted number of tricks. In practice the first few bids are used by the players to 

convey information about their hands. In the second stage, the cards are played out to 

see if the highest bidder can fulfill the contract. 

In Contract Bridge a player makes a bid to convey information about the thirteen 

cards in his hand. The bid made by the first player in the game is called the 'opening bid'. 

He makes one of the permitted bids based only on the patterns of the cards in his hand, 

as he has no a prion' knowledge of the cards in the hands of the other three players. In 

the opening bid problem, the input is the distribution of the thirteen cards in the player's 

hand, and the output is the legal bid the player makes. It is assumed that the bid is to 

be made according to standard conventions, so that no artificial conventions are involved. 

The aim is to capture the human reasoning process in the opening bid problem based on 

the real input-output pairs of the data collected from players of the Bridge game. 

Reason for choosing Contract Bridge Game: One reason for choosing this particular 

problem for illustration is that it is easy to collect the data. Moreover, the input is the 

crisp data of the thirteen cards pattern, and hence, there is no resolution uncertainty in 

the problem. In addition, there is no noise in the input representation. In many pattern 

classification problems, preliminary processing of the data (e.g., speech signal) is essential 

to extract parameters or features. This in turn may result in loss of information a t  the 

input stage itself. Expert behavior in games, on the other hand, does not depend on any 

of these sensory interactions. This is particularly important if one is to generate faithful 

reproductions of human cognition. This is relevant if the objective is not only to attempt 

a task typical of humans, but to also try and mimic the human way of doing it. When 

the goal is to emulate human expertise, one has to be careful in selecting those areas that 



can best be modeled without too many simplifying assumptions [KR89]. 

In spite of the simplicity in the representation, the opening bid problem is still very 

complex. For example, all the hands are not equally likely, and hence, learning all the 

hands equally well is not possible. This is true especially, since the hands corresponding 

to the higher level bids are very rare. Therefore, one problem is how to learn the rare 

hands along with the frequently available hands. In addition, for a given hand, the same 

player may make a different bid at a different time, which illustrates the variability in 

his reasoning process. This variability is present because the player changes his strategy 

based on his experience, vulnerability, etc. Since it is impossible to quantify the influence 

of these subjective qualities, two hands may appear same or similar, although they are 

not if the unaccounted features are also considered. Two hands with same or similar 

patterns may be classified to two different classes. This implies the presence of rough 

uncertainity in the bidding process. The output bid can be fuzzy. For example, the bid 

can be neither completely one "Diamond" nor one "Spade". In this thesis the following 

issues are addressed: 

1. How to represent the input hand pattern on a machine and how to interpret the 

output bid. 

2. How to develop methods to effectively model and classify the input hand pattern to 

an output bid. In particular, how to take care of the rough, fuzzy and probabilistic 

uncertainty while modeling the bidding system. 

In Bridge game, hand patterns containing seven cards or longer suit constitute less 

than 5% of the total possible number of hands. Therefore, to make the problem simpler, 

the study is kept limited only up to third level bids. However, it must be noted that this 

work is not intended to solve the bidding problem. Rather it illustrates the development 

of a pattern classification methodology based on the uncertainties associated with the 

given classification process. 

Portabil i ty t o  o ther  problems: The uncertainty-based pattern classification method- 

ology may also be relevant for problems in vision, speech and other decision making fields, 

where a large part of the information is lost in representing the problem on a machine. 



1.4 Proposed Approach for Capturing the Reasoning Process in Opening Bid 

Problem 

The goal of this study is to develop a pattern classification technique based on uncer- 

tainties a t  different stages to capture the human reasoning process. Initially, we survey 

various existing techniques for pattern classification. We focus on the role of uncertainties 

in these classification techniques. Then an attempt is made to build a feedforward neural 

network [Yegg81 for the opening bid problem. Artificial neural network is chosen as a 

tool because it offers various advantages like incremental learning, robustness, universal 

approximation capability, etc. However, experimentally it has been found that a single 

monolithic neural network model may not be suitable for the complete classification task. 

Therefore, based on domain specific knowledge, the monolithic classifier is broken into 

several modules such that equiprobable classes and overlapping classes are kept in the 

same module. It aids, 1) to learn hands with less frequent patterns and highly frequent 

patterns equally well, 2) to deal with fuzziness among the close classes locally, and 3) to 

deal with roughness within each module locally. A post-processor treats the fuzzy and 

rough uncertainities globally, and it combines the results from all the modules to yield 

the final classification result. 

Following the above track, the input representation has been fine tuned separately 

for each module using the concept of rough-fuzzy sets [DP92]. Each module can be a 

classifier that relies on the principle of direct classification or classification through clus- 

tering [BezSl]. In the direct classification approach, the whole feature space is directly 

analysed to delineate the output classes. Classification through clustering approach in- 

volves initial clustering of a subset of patterns from the original feature space, and sub- 

sequent partitioning of the whole feature space based on the clusters obtained. Following 

the first approach, a feedforward neural network is used for each module. These networks 

are trained by backpropagat ion algorithm with fuzzy objective functions. Thereafter, each 

such network is configured using evolutionary programming [Fog951 technique. Following 

the second approach, i.e., classification through clustering, the input data set is optimally 

classified using evolutionary programming-based fuzzy clustering technique. Next, using 

these clusters a fuzzy-rough neural network is evolved to establish the input-output rela- 

tionship. Thus, several modules are constructed either by the direct classification method 

or by the clustering method. The evidence supplied by these modules are aggregated by a 

post-processor which is based on fuzzy integral. Finally, a modular network consisting of 

feature analysers, subclassifier modules and a post-processor (Fig. 1.1) is obtained. The 
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Fig. 1.1: A modular network with S different modules for the opening bid 

problem. Initially, the input feature vector (x) is modified separately for 

each module through a feature analyser (FA). The modified feature vector 

yi, i = {1,2, . . . , S) is fed to the module connected to the ith feature anal- 

yser. Each module can be a feedforward neural network or a fuzzy-rough neural 

network. The out puts of all the modules, i.e., {el, e,, . . . , c,), are fused by a 

fuzzy integrator (FI) to obtain the final classification result. 
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Chapter 2 is devoted to review different classification stages involved in pattern clas- 

sification. It also delineates different paradigms used for the classification stages. 

Specifically, attention has been paid on the manipulation of the various uncertaini- 

ties present in the classification process. In a complex pattern classification task, 

modular approach is an attractive approach to handle the uncertainties efficiently. 

Later part of this chapter reviews several varieties of modular classifiers. 

Chapter 3 explores the possibility of capturing the implicit relationship in bidding a 

Bridge hand using an artificial neural network. Issues like the role of uncertaini- 
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ties, input representation, possible architectures for the network are studied. It 

was found experimentally that it is difficult to train a monolithic neural network 

for the opening bid problem. This chapter suggests the use of a modular neural 

network for attacking the bidding problem. The opening bid classification problem 

is partitioned into three subclassification tasks, and one module is assigned for each 

subclassification task. 

Chapter 4 focuses on fine tuning the input representation for a module based on the 

class discriminatory capability of the features for the output classes present in 

the module. Since both roughness and fuzziness are present in the opening bid 

problem, a rough-fuzzy entropic measure is proposed to quantify the rough-fuzzy 

uncertainty associated with each feature. The rough-fuzzy entropy corresponding to 

each feature is iteratively minimized to quantify the class discriminatory capability 

of the feature. These quantified values are used to derive the modified feature 

vectors for each module. 

Chapter 5 describes one approach of capturing the relationship between the modified 

feature vector and the output classes of a module through direct classification. It 

involves partitioning the modified feature space of a module into several decision 

regions or output classes. The boundary between any such two regions is fuzzy. This 

chapter employs feedforward neural networks to capture the relationship between 

the modified feature vector (crisp) and the output classes (fuzzy) present in each 

module. Backpropagation learning algorithm with fuzzy objective functions are 

used to train the networks. In addition, evolutionary programminpbased technique 

is applied to configure each network optimally. 

Chapter 6 examines clustering-based approach to capture the input-output relation in 

each module. In this approach clustering of the modified feature vectors is followed 

by labelling of each cluster with a class label. This chapter proposes a technique 

to construct a classifier module in presence of fuzzy and rough uncertainties. The 

modified feature vectors are clustered using an evolutionary programminpbased 

fuzzy clustering algorithm. The relationship between a cluster and the output class 

labels are estimated through the fuzzy-rough membership functions associated with 

each input pattern. Using the fuzzy-rough membership functions, a fuwy-rough 

neural network is constructed to relate the input and output. 

Chapter 7 combines the information supplied by all the modules using a fusion technique 

based on Sugeno's fuzzy-integral. In the earlier chapters, the original classification 



task is distributed among small modules, and the modules have been trained and 

configured to deal with the uncertainities locally. Here, the outputs of all the 

modules are treated as evidence, and they are fused in a non-linear fashion based 

on their importance. The importance of each evidence is determined using the 

fuzzy-roughness associated with the evidence. The final class label of an input is 

the output class corresponding to the maximum fuzzy integral value. 

Chapter 8 concludes the thesis, by summarising the work and indicating the future 

directions of using uncertainties in modular neural network classifiers. 



Chapter 2 

MODELING PATTERN 

CLASSIFICATION PROBLEMS 

2.1 Introduction 

In the last few years, there has been a large upswing in research activities in the prob- 

lems of pattern classification [DH79] [Fuk89] [Bow84]. Although far away from human 

classification ability, machine classification techniques attempt to mimic the human clas- 

sification mechanism in several stages. In this chapter we discuss the functions performed 

by these stages, the uncertainities pertaining to them, and the working principle of the 

various techniques used for these stages. This discussion includes some uncertainty driven 

techniques like statistical, fuzzy and rough approaches. When the classification problem 

is complex, one greedy approach to solve the problem is modular classification approach. 

Following the principle of 'divide and conquer, modular approach breaks the classification 

task into several subclassification tasks, solves each subclassification task, and eventually 

integrates the subclassification results to obtain the final classification result. In other 

words, partitioning of the classification task is carried out such that each subproblem can 

be solved in a module by exploiting the local uncertainities, and the results of all the 

modules can be combined by exploiting the global uncertainities. Later part of this chap  

ter summarises the architecture and working principle of some of the existing modular 

classifiers. 

The organization of the chapter is as follows: In section 2.2 we describe how machines 

are used to mimic human classification mechanism. It reviews several methods to perform 

classification process on a machine. Section 2.3 analyses issues and architectures of mod- 

ular classifiers. Section 2.4 attempts to frame the Contract Bridge opening bid problem 

as a pattern classification problem. 



2.2 A Review on Pattern Classification 

A pattern is a description of an object [TG74]. A pattern can be a concrete item which 

can be recognized by human sensory organs, like eyes and ears [TG74]. Image pattern, 

speech pattern, hand pattern of a Bridge player, etc., are the examples of concrete items. 

On the other hand, a pattern may be an abstract item, like a pattern of thought process, 

which we can recognize with our sensors like eyes and ears closed [TG74]. The task 

of pattern classification is defined as a search for the structures in a pattern set, and 

subsequent labelling of the structures into categories such that the degree of association 

is high among the structures of the same category and low between the structures of 

different categories [Be28 11 [KY95]. In this chapter we address the pat tern classification 

problem based on the concrete patterns only. 

In section 2.2.1 we describe how machines are used to mimic human classification 

mechanism. Section 2.2.2 discusses several methods to represent the classification pro- 

cess on a machine. It also describes the basic five stages involved in a machine-based 

pattern classification technique. Section 2.2.3 analyses several aspects of the first stage, 

i.e., feature extraction stage. Section 2.2.4 reviews a few methods used for the second 

stage, i.e., how to interpret the structures present in the input data set. Section 2.2.5 

discusses various current methodologies to discover the structure present inside the data. 

Issues involved in the last stage, i.e., generalization, are discussed in section 2.2.6. The 

relationships among the topics discussed in this section are illustrated in Fig. 2.1. 

2.2.1 How Human Classification Mechanism is Mimicked on Machines 

Let us take a real life pattern classification example. Suppose, one is asked to determine 

whether a particular person is a European or an Asian. He cannot do it unless he has 

already seen a set of European and Asian people, or someone has told him about the 

difference explicitly. While observing a set of European or Asian people, he gathers 

some experience about them. In other words, gathering experience means, based on 

certain characteristics of these people, he extracts some common property from them. 

For instance, he watches their height, eye color, etc., and based on that he realizes most 

of the Europeans are tall and their eye colours are not black. The opposite is true for 

the Asians. Now, he tries to find whether a new person is tall or his eye color is black, 

and based on that he can determine that person's identity (assuming that the person can 

come only from any one of those two classes). If he can decide the identity of most of 



Pattern Classification on Machines 

I rn Mimicking Human Classification on Machines 

1 rn Process Description 

I - Symbolic Process Description 

1 - Numeric Process Description 

* Relational data 
* Object data 

1 rn Feature Analysis 

- Preprocessing 

- Feature Selection 
- Feature Extraction 

1 rn Structure Analysis 

- Direct Classification 
- Classification Through Clustering 

I 1 rn Abstraction: Search for the Structure 

- Search During Training 

* Supervised 
r Reinforcement 
* Unsupervised 1 - Search During Testing 

1 rn Classifier Types 

- Deterministic Classifiers: Crisp Rule Base System 

- Statistical Classifiers 
* Parametric 
* Nonpararnetric 
* Semiparametric 

- Fuzzy Classifiers 

* Fuzzy relation 
+ Fuzzy pattern matching 
+ Fuzzy clustering 
t Fuzzy K-nearest neighbors 

- Rough Classifiers 

- Hybrid Classifiers 

Neuro-Fuzzy 
* Neuro-Rough 
* Neuro-Evolutionary 

Fuzzy-Rough 
1 Fuzzy-Evolutionary 

I 
1 Rough-Evolutionary 

I rn Generalization 
I 

Fig. 2.1: Relationships among different topics discussed in the context of 
pat tern classification (section 2.2). 



persons he encounters, then he is called intelligent. It is because his ability to extract the 

common property out of these two classes is good. 

In order to mimic the above mentioned human classification mechanism on a ma- 

chine, several instances (e.g., a set of Europeans and Asians) of the problem are collected. 

Care should be taken to collect the sample data randomly from the whole population. 

To represent these instances on a machine, typical properties, termed as features (e.g., 

height and eye color), are extracted from each instance. These features represent the 

given problem in a higher dimensional feature space. Feature extraction is a difficult 

task as less number of features may not be sufficient to represent the problem, whereas 

too many features can affect the classifier system (this phenomenon is known as curse of 

dimensionality [Bis95]). In addition, we do not know how many features are sufficient, or 

which feature is necessary (e.g., in the above example color of each person's cloth need not 

to be noted). The features form some structures in the feature space. The interpretation 

of the structures depends on the pattern recognition task and situation. For instance, in 

recognizing English characters, twenty six different class structures are present. On the 

other hand, in distinguishing English characters from Arabic characters, only two struc- 

tures are interpreted [Fu68]. Now, the task of pattern classifier is to search the structure. 

This search becomes complicated because of the presence of uncertainties associated with 

the structure. Thus, the whole pattern classification process involves manipulation of 

the information supplied by the instances. The instances contain the information about 

the process generating them, and the extracted features reflect this information. The 

structures present inside the features represent the information in an organized manner 

so that the relationship among the variables in the classification process can be identified. 

Finally, in the last step, a search process recognizes the information from the structure. 

Now, if a new pattern is encountered, the machine detects the structure in which the input 

pattern belongs, and based on the structure the pattern is classified. Therefore, once the 

structure is found, the machine is capable of dealing with new situations to some extent. 

The ability to deal with new situations can be evaluated by testing the ciassifier with 

several new examples, for which we know the answers for comparison. If the performance 

of the pattern classifier with this so called test data is good, then we say that the machine 

has generalized well. 

An important assumption in the pattern classification task (for humans as well as 

machines) is that nature is by and large stable-what is known yesterday is true for today 

and tomorrow. In other words, it means that to some extent today's experience is valid 



tomorrow. This assumption is essential; otherwise, there would have been no meaning of 

gathering experience through learning and using this experience further for generalization. 

Realizing the pattern classification task by a machine becomes complicated due to 

various uncertainties. A few of them are known, among them fewer we can model. Some 

of them are 

Resolution uncertainty: Caused by inaccurate measurement in measuring in- 

struments. 

Probabilistic uncertainty: Caused by randomness in physical systems. 

Fuzzy uncertainty: Caused by vagueness in human reasoning. 

Rough uncertainty: Caused by our incomplete knowledge about the classification 

system we are trying to model. 

Although all the above four are uncertainties, they are basically different from each 

other. The fuzzy uncertainity differs from the probabilistic uncertainty and resolution 

uncertainty, because it deals with situations where set-boundaries are not sharply de- 

fined. The probabilistic uncertainity and resolution uncertainity are not due to the am- 

biguity about the set-boundaries; rather about the belongingness of elements or events 

to crisp sets [PB94]. Specifically, fuzziness deals with vagueness between the overlap 

ping sets [Be2941 [KY95], while probability concerns the likelihood of randomness of 

the phenomenon. On the other hand, rough sets deal with coarse nonoverlapping con- 

cepts [DP90] [DP92]. Both roughness and fuzziness do not depend on the occurrence 

of the event; whereas probability does. Fuzziness lies in the subsets defined by the lin- 

guistic values, like tall, big, whereas indiscernibility is a property of the referential itself, 

as perceived by some observers, not of its subsets [DP92]. In fuzzy sets each granule of 

knowledge can have only one membership value to a particular class. However, rough 

sets assert that each granule may have different membership values to the same class. 

Fuzzy sets deal with overlapping classes and fine concepts; whereas rough sets deal with 

nonoverlapping classes and coarse concepts. In a pattern classification problem, all or 

some of the above uncertainities may be present. 

For simplicity, most of the pattern classification problems can be decomposed into five 

different stages. f iom an abstract point of view, the division of the classification problem 

into five different stages may seem to be quite arbitrary. The entire process can be viewed 

as a single mapping from the object space to the decision space. Optimum mapping is 

the one for which the probability of error is minimum. In practice, this leads to a very 



Fig. 2.2: Relationships among different steps involved in pattern classifica- 

tion. In many cases certain stages can be skipped. For instance, from process 

description we can go to generalization directly without going through feature 

analysis and structure analysis. 
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complicated calculation, which is in fact currently impossible to solve [Dud70]. In many 

cases depending upon the given problem certain stages can be skipped (Fig. 2.2). For 

instance, in a few applications it is possible to consider the raw input data as features, 
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2.2.2.1 Symbolic process description 

The classification process can be represented in terms of different symbols. In the decade 

of the 1980s symbolic approach became a dominant theory to explain how intelligence 

is produced and how it can do certain useful tasks. Using this method it is possible to 

write programs that work with symbols rather than numbers. Symbols can be equal or 

not equal, and that is the only relationship defined between the symbols. Hence, it is 

not possible to know if one symbol is less than another symbol. Of course, in symbol 

processing programs, the symbols do get represented by numbers. Besides the use of 

symbols, the symbol processing programs consists of a large number of rules. The most 

significant outcome of the symbolic approach is the development of the knowledge-based 

ezpert systems [LS95]. It tends to capture the higher level human reasoning functions in 

the form of a set of if-then rules or knowledge. A typical set of two symbolic rules in 

chromosome identification can be 

If the input is then the output class is C1 

If the input is c then the output class is C2 

If a new chromosome is encountered, then the structure of the chromosome is matched 

with the if part of each rule. The class label of the new chromosome is the class label 

corresponding to the then part of the matched rule. 

Eventhough in symbolic approach symbols can only be equal or not equal, and there 

are no other relations defined for them, quite often "symbolic" programs end up using 

integers or reds as part of the program, and it is called symbolic anyway eventhough by 

the strictest standard doing so no longer makes the program completely symbolic, only 

partly symbolic. Drawbacks of the symbolic approach are the following: (a) It does not 

take care of pattern variability, (b) it needs large number of rules when the inputs are 

continuous, and (c) it does not employ efficient learning mechanisms to acquire the rules. 

Symbolic approach is useful in syntactic pattern recognitaon technique [Fu82]. This a p  



proach deals with the patterns which are rich in structural information, i.e., the patterns 

that contain most of their information in their structures, rather than in numeric values. 

In this approach the input patterns are divided into several parts, and one symbol, called 

primitive, is assigned to each part. Each primitive has no direct relationship to the struc- 

ture of the pattern. A pattern is represented by the knowledge about how primitives must 

be combined to make up the entire pattern, and how primitives are related to each other. 

In the syntactic met hods, building classifiers consist of constructing rules for combining 

primitives to obtain the structure of a given object. The methods are formulated around 

the concept of formal languages with each primitive represented as a terminal symbol and 

a grammar inferred for each pattern class. When a new pattern comes, it is represented 

as a set of primitives, and the primitives are matched against the antecedent parts of the 

rules to determine the output class. The pattern grammar used for these rules can be 

made more effective by using stochastic grammar (in presence of randomness) or fuzzy 

grammar (in presence of vagueness). It should be noted that existence of a recognizable 

physical structure is essential for the success of the syntactic approach. Syntactic pattern 

recognition research has been largely confined to pictorial patterns, which are character- 

ized by recognizable shapes, such as characters, chromosomes, finger prints, etc. Many of 

the major problems associated with the design of a syntactic pat tern recognition system 

have been only partially developed. For instance, not much progress has been achieved 

in deriving general training algorithms for syntactic systems [TG74] [PM86] [Fu68]. 

2.2.2.2 Numerical process description 

The most familiar choice of representing objects or patterns are by numbers. Unlike 

symbolic approach, in numerical approach, the information about the classification process 

is extracted from the following types of numerical data: 

Object data: Object data can be the numerical representation of some physical 

entities, like images and hand patterns of a card game. 

Relational data: It may happen that, instead of an object data set, we have 

access to a set of numerical relationships between pairs of objects; that is, the 

relationship represents the extent to which the objects are related. For example, in 

numerical taxonomy, the relationship between species families can be assigned by 

human experts. Here, we do not have any access to the object or species, rather the 

relationship among them. Relational data are found in diverse application fields, 



e.g., cognitive maps, influence diagrams, etc. [Bez96]. 

In this review, we shall discuss the other stages of pattern classification process as- 

suming the representation is numeric. In addition, the word "data" will always imply the 

object data. 

2.2.3 Feature Analysis 

Feature analysis can be defined as a method that is used to explain and improve the data 

collected during the process description. It consists of the following three steps: 

Preprocessing: A preprocessor is used in this step to perform some or all of the follow- 

ing functions: (a) Strengthening features, i.e., edges, specific frequencies, etc., (b) pro- 

vide invariance to translations, rotations, and scale changes of the input data, (c) noise 

suppression, and (d) formatting the processed data for acceptance by the recognition 

device [Vig7O]. 

Feature selection: Feature selection seeks a small number of features by obtaining a 

subset from the original set, either by discarding poor features or selecting good ones. 

Feature selection can take place by minimizing some objective function. The choice of 

the objective function may be classifier independent, or it may be based on particular 

classifier's accuracy to judge whether a feature subset is superior to another subset. The 

former approach is known as absolute feature selection approach or filter approach and 

the later approach is known as perfomzance-dependent feature selection approach or m a p -  

per approach [BL98] [SB97] [WAM97]. The objective functions are carefully designed so 

that interclass distance of the input data set decreases, but the intraclass distance in- 

creases [DH79]. The distances may be Euclidean, Mahalonobis or some other standard 

distance measure, or it may be the distance between two probability distributions. The 

objective function like mean square error is based on Euclidean distance, and the objective 

functions like entropy and divergence are based on the distance between two probability 

distributions [Fuk89]. It is also possible to transform or rotate the axes of the input data 

set so that the interclass distance decreases and the intraclass distance decreases. Prin- 

cipal component analysis and Karhunen Loeve transform are based on this idea [DH79]. 

Note that in these cases the transformation of axes is actually a linear mapping. A natural 

extension of this scheme is nonlinear mapping [Fuk89]. Till now, nonlinear mapping has 

not become popular as it is very difficult to handle. 

Feature extraction: It deals with developing some new features based on the already 



selected features. From preprocessing and feature selection steps, the designer of classifier 

obtains the features that he knows or suspects are important. These may prove to be 

inadequate, or may provide a format not suitable for the decision mechanism. For exam- 

ple, in statistical feature extraction, a sample set of preclassified pat terns is analyzed, and 

the statistical information collected from this sample set is used to augment the known 

feature list and to reformat the feature profile [Vig70]. 

The presence of noise, missing attributes, missing attribute values, etc., can make the 

feature analysis difficult [FSW97]. In addition, the presence of uncertainties can make 

this stage more complex. For instance, the input features may be vague in terms like tall, 

almost 5, etc. The features that are present may be insufficient for a particular class. 

This creates rough uncertainty in the classification task. 

Practically, the methods by which initial features are obtained are often intuitive and 

empirical, drawing upon the designer's knowledge about and experience with the problem. 

The main guideline here is that the features should be invariant to (or, at least insensitive 

to) irrelevant variations, such as limited amount of translation, rotation, scale change, 

etc., while emphasizing differences that are important for distinguishing between patterns 

of different types. These features are ranked to select only the most important features 

(feature selection), and then some new features may be augmented with the extracted 

features (feature extraction). 

Feature analysis serves several functions. Firstly, by reducing the input patterns to 

its essential features, the memory requirement to store the input patterns can be reduced. 

Secondly, by reducing the input data to more independent features, a considerable amount 

of invariance to exact form is obtained. Finally, by extracting more than the minimum 

number of features required, a degree of invariance to noise and background may be 

achieved [DL97]. 

2.2.4 Structure Analysis 

The structure (spatial) present in the feature space represents certain common properties 

of the feature. Building classifiers may be impossible if such common property is not 

present in the data; then even a look-up table scheme would be sufficient. For instance, it 

is impossible to capture any common property from a set of names while classifying them 

into two classes, below 50 years and above 50 years. Moreover, the feature selection may 

not be proper when the feature is deep hidden due to many surface features. In this case 



there may not exist any structure a t  all. For example, if we represent a large dimensional 

parity problem by a string of 0 and 1, then each character of the string does not carry 

any common property, which can be utilized to classify the input strings to even or odd 

parity. On the other hand, if we extract a feature that represents the sum total of all 0's 

and 1's present in the string, then there is certainly a structure. It is because, when this 

sum total is odd, it represents an odd parity, and when it is even it represents an even 

parity. 

Interpretation of the structure in the feature space depends on the method followed in 

classification. Let X denote the original population of the data from which the example 

data set X has been drawn, i.e., X c X. A C-class classification can be carried out in 

the following two ways: 

1. Direct classification: X is used to train the classifier, i.e., to delineate the output 

classes in X into different decision regions [Bez81]. Therefore, the stmcture in the 

space X is directly analysed. 

2. Classification through clustering: This technique involves initial grouping or 

clustering of X ,  and subsequent partitioning of the set X based on the obtained 

structure. Therefore, the st mcture in the training data space X is analysed. Later, 

based on this structure, the structure of the space X is analysed. 

In the classification through clustering, the structure is analysed in the space formed by 

X.  Since this step needs clustering as a prerequisite, we will discuss the basic concepts 

of clustering in brief. Clustering can be defined as follows [Bez81] [DJ87] [Har75]: Given 

a set X = {x,,x,, . . . ,x,) of feature vectors, find an integer K (2 5 K < n) and a 

K number of partitions of X which exhibit categorically homogeneous subsets. There 

exists many clustering algorithms. Among them, the simplest and popular one is K- 

means clustering algorithm [DH79]. It starts with K random initial cluster centers. The 

algorithm considers each input pattern sequentially, and assigns the input pattern to the 

nearest (in Euclidean distance sense) cluster center. After the assignment is over for all the 

input patterns, each cluster center is updated so that it becomes the mean of the patterns 

that are associated with it. Same procedure is repeated for several iterations until there is 

no appreciable change in the position of the cluster centers. After clustering, each pattern 

belongs to only one cluster, and a structure evolves in the training set X. Most of the 

clustering algorithms assume that K is known a priori. To find the approximate value of 

K for a given set of data, various methods based on cluster validity exist [DJ87]. 



Presence of uncertainities may make the boundaries of the classes or clusters over- 

lapping. It may also happen that the same cluster represent patterns from more than 

one class. It is because the relation between the input structure and the output class la- 

bels is one-to-many. Thus, uncertainities make the structure analysis difficult, and these 

difficulties are manifested in the next stage. 

2.2.5 Abstraction: Search for Structure 

This stage involves exploring structures using all the available information so that the 

obtained structure can be used for classifying a new sample with unknown class. Math- 

ematically, let X denote the feature space from which X has been drawn, i.e., X c X. 

A classifier for X is a device or means whereby X itself is partitioned into C decision 

regions. Explicit representation of these regions depends on the nature of X (i.e., data), 

the way in which the regions are formed (i.e., structure), and the model we choose for 

searching [Bez8:1]. X is often employed to "train" the classifier, that is, to delineate the 

decision regions in X. The resulting structure may enable the machine to classify subse- 

quent observations rapidly and automatically. The training method adopted in this stage 

can take place mainly in the following two ways: 

1. Supervised: In this process a known set of input-output pairs is used to teach 

the classifier system first how to classify, and then let the system go ahead freely 

classifying other new patterns. In this case we usually need some a priori informa- 

tion, i.e., a training set consisting of a set of input-output pairs, to form the basis 

of teaching. 

2. Reinforcement: In many classification problems, it is not possible to obtain a 

known set of input-output pairs. The output may be known only partially. This 

partial information may state that the actual output is "too high" or "50% cor- 

rect". Unlike the supervised learning, here the teacher signal only says how bad 

a particular output is, and provides no hints on what the right answer should 

be [LL96]. 

It is possible, but not necessary, to conduct the search by first clustering the patterns in 

X. The clustering can take place in supervised or unsupervised fashion. In the supervised 

clustering, all the training data from a particular class are collected, and the clustering is 

carried out on this set of data. In the unsupervised clustering, the clustering is done on 

the whole training set. 



In some search operations, there is no training. The search operation is left for the 

testing phase. Hence, the testing becomes time consuming, and thus, it makes these 

algorithms unsuitable for online testing. Some of these algorithms are called lazy algo- 

rithms [WAM97]. 

When a new input comes, it is classified based on in which part of the structure it falls. 

However, the boundaries among the different parts of the structure may be ambiguous. 

Due to this uncertainty, classifiers can be of the following types: 

2.2.5.1 Determinist ic  classifiers: Cr isp  rule base 

If the boundaries of the different parts of the structure are not ambiguous, then the test 

pattern can be classified without any uncertainty. It happens in deterministic class$ers. 

An example of deterministic classifiers is a crisp rule base system. 

Instead of representing knowledge in a relatively declarative, static way (as a set of 

things that are true), crisp rule base systems represent knowledge in terms of a set of 

if-then rules, a set of facts, and some interpreter controlling the application of the rules 

when the facts are given. A typical rule in the rule base is 

If the input is 23, then the output class is Cz 

Note that this rule is different from the symbolic rule describe in section 2.2.2.1. Here the 

input is a number, but in a symbolic rule the input must be a symbol. There are numer- 

ous techniques to construct a rule base from a set of data. Among them one important 

approach is evolutionary computation (EC) theoretic approach [Fog94b] [BHS97] [Fog98]. 

EC is a technique to encompass a variety of population-based problem solving techniques 

that mimic the natural process of Darwinian evolution. Current research in the evolu- 

tionary computation has resulted in powerful and versatile problem solving mechanisms 

for global searching, adaptation, learning and optimization in a variety of pattern recog- 

nition domains. The main avenues for research in evolutionary computation are genetic 

algorithms [Ho175] [Go1891 [Davg 11, genetic programming [Koz92], evolutionary strate- 

gies [Sch81] and evolutionary programming [FOW66] [FogSlb] [Fog95]. Genetic algo- 

rithms deal with chromosomal operators, while genetic programming stresses on opera- 

tors of more general hierarchical structures. Evolutionary strategies emphasize behavioral 

changes a t  the level of the individuals, whereas evolutionary programming focuses on be- 

havioral changes at the level of the species. The common factor underlying all these 

approaches is the emphasis on an ensemble of solution structures, and the evaluation 



and evolution of these structures through specialized operators that mimic their biolog- 

ical counterparts, in response to an ever changing environment. Specifically, all of them 

maintain a population of trial solutions, impose random changes to those solutions, and 

incorporate the use of selection to determine which solutions are to be maintained into 

future generation and which are to be removed from the pool of trials. 

From a mathematical point of view, all the EC techniques are controlled, parallel, 

stochastic search and opt imizat ion techniques. There are, two different training a p  

proaches for exploiting these optimization techniques to evolve the classification rules. 

In one method (also known as Pitt 's approach in genetic algorithm community [Mic92]), 

each element of the population represents one complete classification rule set. Conse- 

quently, the complete population is an ensemble of many rule sets. In the process of 

evolution the rules compete among themselves, the weak individual dies, the strong sur- 

vives and reproduces. In the other approach (also known as Michigan approach in genetic 

algorithm community [Mic92]), the whole population represents only one rule base, i.e., 

each member of the population represents a single rule. The second method is more time 

and space efficient. But, it needs, (a) delicate credit assignments ,  for which a heuristic 

method should distribute positive or negative credits among the members of the p o p  

ulation, and (b) the members of the population, i.e., different parts of the network, to 

cooperate with each other so that they can build the complete rule base [Mic92] [WC96]. 

For both the training approaches, generally supervised or reinforcement learnings are 

used. The difficulties that most of the EC algorithms face are the optimal balance in 

exploration and exploitation, and premature convergence. EC keeps a balance between 

what already has worked best and exploring possibilities that might evolve into some- 

thing even better [CHL96]. But, the balance is not optimal in practice. Moreover, in 

spite of the in-built stochasticity, EC algorithm may get stuck in local minima. This kind 

of premature convergence takes place mainly when all the new offsprings are similar to 

the existing offsprings (thus virtually stops the exploration of new space in the search 

domain). In order to reduce these problems, there are various strategies like modification 

of EC operators, increasing population diversity, etc. 

Crisp rule base can be applied to a classification problem provided the input features 

are discrete. To accommodate the continuous features, one approach is to discretize the 

input feature with inevitable loss of information. When the input features are distorted 

due to noise and measurement errors, the variation in the input features increases rapidly. 

If discretization is carried out on this feature set, then the distortion may become very 



high, and eventually the classification performance may decrease significantly. Note that 

EC does not use any uncertainity inherent to the problem; it introduces probabilistic 

uncertainty externally to make the search operation more efficient. 

2.2.5.2 Statist ical  classifiers 

In many classification problems, which deal with measuring and interpreting physical 

events, statistical considerations become important in pattern recognition because of the 

randomness in the pattern generation process. Here the randomness comes from the 

physical process which generates it. For instance, in the Asian-European example, if we 

have certain statistical ideas about the occurences of the persons in the two differnt classes, 

we can derive a classification technique which is optimal in the sense that, on the average, 

its use yields lowest probability of committing errors, provided the cost of misclassification 

is equal for all the classes and no cost is associated with correct classification. This 

statistically optimal classification technique is a generally accepted standard for classifiers 

where the outputs come from [0, 1) and sum of them is equal to 1. Henceforth, these 

kinds of classifiers will be called probabilistic classifiers. One such classification technique 

is Bayes classification technique. The assumption needed for using the Bayes classifier is 

that the feature vectors are random vectors whose conditional density function depends 

on its class. Let the class conditional probability density function, p(x(i) ,  along with a 

priori probability (P,) of each class be known. The Bayes classification rule states that 

the input x belongs to the class i with probability 

The Bayes classifier is defined as the classifier which computes p(i)x), where i = 

1,2, .  . . , C. The output class label is determined by maximum a posteriori probability. 

That is, the class label is c, if p(c)x) = maxi{p(i(x)). While implementing Bayes classi- 

fiers, in many cases, we do not have any idea about the input distribution. There are the 

following three methods to estimate the class conditional distribution of the inputs. 

Paramet r ic  estimates: In this approach a functional form p(xli, 8 )  for the probabil- 

ity density p(x1i) is assumed, where 8 is a parameter vector. The parameter vector is 

then optimized by fitting the model to the data set. It leads to the parametric estima- 

tion of the Bayes classifier. Unsupervised maximum likelihood classifier and supervised 



maximum likelihood class~jier are the two classifiers that are based on this idea [Bez96]. 

The drawback of this method is that the chosen form of parametric function may not be 

able to provide a good representation of the true probability density, and the number of 

parameters in the model grows with the size of the data set. 

Nonparametric estimates: In many pattern classification problems the classification 

of an input pattern is based on the training data, where the respective sample size of each 

class is small, and possibly not representative of the actual probability distributions. In 

these situations, nonparametric models are attractive as they do not assume any particular 

form of the density function. 

There are mainly two types of nonparametric classifiers. One type consists of proce- 

dures for estimating the density function p(x(i)  from the sample patterns. The approach 

based on Parzen Window falls in this category [DH79]. Another type consists of proce- 

dures for directly estimating the a posterion' probabilities p(i1x). It is accomplished by 

collecting a set of correctly classified samples, and by classifying each new pattern using 

the evidence of the nearby sample observations. One such approach, popularly known as 

K-nearest neighbours (KNN) algorithm [DK82], is used as a simple nonparametric super- 

vised method for the assignment of a class label to the input pattern based on the class 

labels represented by the K-closest (in some distance sense) neighbors of the input. It 

can be shown that the error rate of 1-NN (i.e., K = l )  is bounded above by no more than 

twice the optimal Bayes error rate, and moreover, when K increases with infinite number 

of training data, the error rate approaches the Bayes optimal rate asymptotically [CH67]. 

This algorithm is also a typical example of lazy algorithm mentioned in section 2.2.5. The 

advantage of this algorithm is that it does not need any a priori knowledge about the 

structure present in the training data. Like other nonparametric techniques, in KNN also 

the number of samples is greater than the number that would be required if we know the 

form of the density. The demand for a large number of samples grows exponentially with 

the dimension of the feature vector. Consequently, when the number of test data is large 

or K is large, KNN takes large amount of time. 

Semiparametric estimates: This approach is a compromise between parametric and 

non-parametric approaches, and it tries to enjoy the advantages of both parametric and 

non-parametric approaches [Bis95]. It allows a general class of of functional forms in which 



the number of adaptive parameters can be varied independently from the size of the data 

set. Artificial neural networks can be regarded as typical examples of this approach. 

The Bayes classifier gives optimal classification performance for the probabilistic clas- 

sifiers [Bez96], provided the parameters of the input distribution are estimated from the 

inputs collected over the whole input space. In practice, the parameters of input distri- 

bution are estimated based only on a finite number of training data. As a result, the 

performance of the resultant Bayes classifier is no longer optimal, but its performances 

approaches the optimal one as the number of input data is made very large (theoretically, 

it is infinity). Nevertheless, the Bayes classifier, based on a finite number of training 

samples, is used to compare the performance of the other probabilistic classifiers. 

Artificial neural network (ANN) [Arb95], a semiparametric model, needs special at- 

tention, and in what follows we will describe it in detail. An ANN is an interconnected 

assembly of simple processing units or nodes, whose functionality is loosely based on the 

biological neuron. The processing ability of the network is stored in the inter-unit con- 

nection strengths, or weights, obtained by a process of adaptation to, or learning from, a 

set of training patterns [BL96:I [Rip96]. Some of the advantages of using ANNs are [RY95] 

1. Any continuous input-output function can be captured by ANNs. 

2. ANN models can learn the statistical distributions underlying the input patterns. 

Hence, ANN-based classifiers do not need to know the input probability distribution 

explicitly. 

3. Certain ANN models can act as constraint satisfaction models. Such networks can 

be used to represent different domain-specific constraints [RY96], [RY97] [RPY97]. 

4. Information stored in an ANN is not represented locally, rather it is distributed 

over the entire network through synaptic weights. Hence, ANNs are fault tolerant 

in the sense that even if some connections are snapped or some of the processing 

elements are damaged, performance of the networks is not affected significantly. 

5. ANNs take care of pattern variability. Moreover, ANNs do not need any input- 

output rule to be known. 

6. ANNs can learn incrementally, and hence, they do not need a huge data storage. 

7. Other advantages like parallel computation, robustness, etc., make ANNs attrac- 

tive. 



Based on the architectures, ANNs can be classified into the following three groups: 

1) Feedforward, 2) feedback, and 3) feedforward and feedback. Although all these three 

types of networks can be used for classification, generally feedforward networks are used 

for classification. Here, we shall describe the following three feedforward neural networks 

that are useful for classification. 

Feedforward neural networks with backpropagation algorithm: A feedforward 

neural network (FFNN) with backpropagation (BP) algorithm consist of elementary p r s  

cessors arranged in a distributive fashion so that the whole network can classify patterns 

in an autonomous manner. Specifically, the network consists of several layers where each 

layer contains several processing units (Fig 2.3). There is a complete connection between 

the layers, but there is no connection within the layers. The input-output relation is c a p  

tured through the change of weights associated with the connections. Given a training 

set of input-output pairs {(xl , yl), (x2, y2), . . . , (x,, y,)), the backpropagation algorithm 

provides a supervised procedure for changing the weights in an FFNN to classify the 

given input patterns correctly. It uses supervised learning mechanism implemented in 

two phases. In the forward phase, the input pattern xi is propagated from the input layer 

to the output layer, and as a result, it produces an actual output 0,. Then, in the second 

phase, the error signal resulting from the difference between yi and oi is backpropagated 

from the output layer to the previous layer to update the weights. The weight updating 

continues until the error becomes very small [SY96]. Note that the classification mech- 

anism adopted here is direct classification. The advantage of this method is that it can 

partition the input space X even when the class boundary is very complicated. But the 

disadvantage with this approach is that it takes a long time to train, and in many cases 

the training may not converge. .. 

Radial basis function neural networks: A radial basis function neural network [HH93] 

is a three-layer network (Fig. 2.4)) whose output nodes form a linear combination of the 

basis functions computed by the hidden layer nodes. The basis functions in the hidden 

layer produce a localized response to input stimulus. Hence, they produce a significant 

nonzero response only when the input falls within a small localized region of the input 

space. Popularly used basis function is of the following type: 

where of is the output of the jth hidden node, x is the input pattern of dimension N, m, 

and 0; are the center and variance (assume that the variance is same along all dimensions) 



Fig. 2.3: A three layered feedforward neural network. It has three input 

nodes, three hidden nodes and two output classes. The input is x and the 

output is the class confidence values for the classes C1 and C2. 

of the Gaussian functions of the j th  hidden node, respectively. The hidden node outputs 

are in the range from zero to one such that the closer the input is to the center of the 

Gaussian, the larger is the response of the node. The output layer node equations are 

given by 

where oi is the output of the kth output node and wk, is the weight from the j th  hidden 

node to the kth output node. The class label of the input x is assigned as c where 

og = max{o~, oi, . . . , o$). In radial basis function neural networks, the parameters used 

in the hidden layer are generally obtained through supervised clustering. The weights 

between the hidden and output layer are learned in a supervised fashion using Widrow- 

Hoff learning rule [Hay94]. Note that here classification is carried out through clustering. 

The advantage of this method is that the training is fast. However, if the estimated number 

of clusters and the cluster structure are not close to the original one, the classification 

result may be poor. 

Probabilistic neural networks: A probabilistic neural network is a three layered feed- 

forward network [Spe9O] [RY98] consisting of an input layer, a pattern layer and a summa- 

tion layer (Fig. 2.5). The input layer contains N nodes to accept an N-dimensional input 

pattern. The pattern layer consists of C pools of pattern units, where Kth  pool contains 

Sk number of pattern units. Here, C is the number of classes, and Sk is the number of 

training patterns for the class Ck. Each node in the pattern layer is connected from every 
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Fig. 2.4: A typical radial basis function neural network. It has three input 

nodes, four hidden nodes and two output classes. The input is x and the 

output is the class confidence value corresponding to the classes C1 and C2. 

node in the input layer. The summation layer consists of C number of summation units, 

one unit for each pool in the pattern layer. Pattern units of the kth pool in the pattern 

layer are connected to the corresponding kth summation unit in the summation layer. 

Training of the network consists of storing each training vector x j  (1 5 j 5 Sk) 
of the class Ck as the weight W k j  connecting the input layer and the j th  pattern unit 

in the kth pool of the pattern layer. The connection weight from each pattern unit in 

the kth pool and the summation unit for the kth class is assigned as . Note that 

the training is a one-pass supervised algorithm, and hence, it is trivial in this case. 

For any input vector x, output of the j th  pattern unit belonging to the kth pool is * exp (- Ilx - wkj112 /2cij), where c k ,  is a smoothing parameter for the Gaussian 

activation function of that unit. Output of the kth summation unit is [RY95] 

The class label of the input x is assigned as c where o: = max{o';, o:, . . . , o 3 -  

The problem with this network is that the testing time is very high. To alleviate it, 

supervised clustering scheme can be adopted. But, if the estimated number of clusters 

and the cluster structure are not close to the original one, then the classification result 

may decrease significantly. 



Fig. 2.5: A typical probabilistic neural network. It has three input nodes, 

four hidden nodes and two output classes. The input is x and the output is 

the class confidence value corresponding to the classes Cl and C2. 

There exist various other interesting neural networks classifiers like Hopfield networks, 

Kohonen's self-organization map (SOM) networks [Hay941 [RY95], adaptive resonance 

theory (ART) networks [Hay94], etc. 

2.2.5.3 Fuzzy classifiers 

The concept of fuzzy sets was first introduced by L. Zadeh in 1965 [Zad65], as a mathe- 

matical way to represent the vagueness present in the human reasoning. Fuzzy sets can 

be considered as a generalization of classical set theory. In the classical set, an element 

of the universe either belongs to or does not belong to a set. That is, the belongingness 

of the element is crisp-it is either yes (in the set) or no (not in the set). In fuzzy sets, 

the belongingness of the element can be anything in between yes or no; for instance, a 

set of tall persons. We cannot identify a person as tall in a yeslno manner, as there 

does not exist any well-defined boundary for the set tall [PP96] [ESY92]. A fuzzy set 

is mathematically a mapping (known as membership function) from the universe of dis- 

course to [0, 11. The higher the membership value of an input pattern to a class, the more 

is the belongingness of the pattern to the class [DPSO] [Kan82] [Kan86] [KF93]. There- 

fore, any concept that uses fuzzy sets requires the membership function to be defined. 

This function is usually designed by taking into consideration the requirements and con- 

straints of the problem. Fig. 2.6(a) shows one possible membership function for the set 

tall. There are many other possible membership functions for the set tall. Nonuniqueness 
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Fig. 2.6: Fuzzy membership functions for (a) fuzzy set tall and (b) fuzzy 

number close to 4. 

of membership functions may raise a question: How does a designer know which one to 

use? In fact, the designer can obtain the membership function from an expert (subjective 

computation) or from the data (objective computation) [PP96] [Bezgl] [BP92] [Bez96]. 

Following the idea of fuzzy sets, the concept of crisp numbers has been generalized to 

fuzzy numbers [KG851 (Fig. 2.6(b)). The reasoning with fuzzy sets and fuzzy numbers is 

known as fuzzy logic [Kos93]. 

Since many classical pattern recognition techniques are based on conventional set 

theory, fuzzy sets can be fruitfully used to generalize these techniques. In traditional 

two-state classifiers, where a class A is defined as a subset of a universal set X ,  any input 

pattern x E X can either be a member or not be a member of the given class A. This 

property of whether or not a pattern x of the universal set belongs to the class A can be 

defined by a characteristic function : X + {0,1) as follows: 

1 : if and only if x E A 
PAW = 

0 : if and only if x $ A 

In real life situations, however, boundaries between the classes may be overlapping. Hence, 

it is uncertain whether an input pattern belongs totally to the class A. To take care of such 

situations, in fuzzy sets [BezSl] the concept of characteristic function has been modified 

to membership function PA : X + [O, 11. 

The training of a C-class classifier for a set of input patterns K = {XI, x2, . . . , x,,) 



is basically an assignment of the membership values pc(x,) on each x, E X,  Vc = 

1,2, . . . , C, V i  = 1,2, . . . , n. If the membership values are crisp, then X is partitioned into 

C subgroups during the training process. In the fuzzy context, C subgroups of X are the 

set of values {pc(xi)) that can be conveniently arranged on a C x n matrix U = [p,(xi)]. 

Based on the characteristic of U, classification can be of the following three types [PB95]: 

1. Crisp classification: 

2. Constrained fuzzy classification: 

3. Possibilist ic classification: 

It is obvious Mhc c Mfc c Mpc. The implementation of the crisp classifiers has been 

discussed in the context of crisp rule base system (section 2.2.5.1). If we replace the 

membership values by probabilities, then the constrained fuzzy classifiers become the 

probabilistic classifiers (discussed in section 2.2.5.2). The interpretations of the output 

(say a) for the two classifier models are different. The probabilistic interpretation means 

that the probability that the input pattern belongs to the class Cc is a. On the other hand, 

the fuzzy interpretation is as follows: The grade of membership of the input pattern to the 

class Cc is a. The first statement implies that if we take the same input pattern n times, 

cm times it belongs to the class Cc [PedSO] [Bez94]. In contrast, the second statement 

expresses that the input is close to the center of the class prototype Cc with a degree a ,  

that is, the input is similar to the class Cc with a degree a. The user is not interested in 

repeating the experiments but in the class assignment. Therefore, in many cases it may 

be appealing to consider the output of the classifiers as fuzzy membership values rather 

than a posteriori probabilities. In these cases fuzzy sets can be used to implement the 

classifiers based on the constrained fuzzy classification and possibilistic classification. 

Fig. 2.7 examines the role played by crisp, constrained fuzzy and possibilistic*classifi- 

cation approaches in a 2-class problem. Here, both the patterns A and B are equidistant 



from the two classes. In crisp classification, the membership value of A in one class will 

be 1, and in the other class it will be 0. It is true for the pattern B also. Obviously, this 

kind of membership assignment does not reflect the actual classification situation as A 

and B partially belong to both the classes. In constrained fuzzy membership assignment, 

both the patterns A and B will be assigned the membership values equal to 0.5. Although 

this membership assignment is better than the crisp counterpart, it fails to consider the 

pattern A as a more typical one than the pattern B. It is because, here the member- 

ship assignment is a relative one, and it depends on the membership values to both the 

classes. In possibilistic membership assignment, the pattern A will receive equal mem- 

bership values to both the classes. It is true for B also. But, the membership of B to any 

class will be always less than that of pattern A. Therefore, the possibilistic assignment 

may not be summed up to one, and thus, it can distinguish between equal evidence and 

ignorance [Zad78] [KK93] [Sha76] [DP88]. This property of the possibilistic assignment 

makes it attractive compared to the crisp membership assignment and constrained fuzzy 

membership assignment. 

Broadly speaking, there are the following four ways to apply the fuzzy classification 

techniques: 

Fuzzy relation approach: The input and output of any classifier system is s u p  

posed to be related by some relation. If there is no such relations, it is impossible to 

build any classifier. On the other hand, if there exists any relation, in a crisp case, 

any two points (one from input space and another from output space) from the 

input-output space are either related or not. In fuzzy relations, these two points 

can be related with a varying degree. The value of the degree is expressed as a 

membership value that lies in between 0 and 1. Therefore, the fuzzy relation sub- 

sumes the crisp relation. The search for a structure involves discovering the fuzzy 

relation. One scheme to realize the fuzzy relation is construction of a fuzzy rule 

base system [DHR93]. A fuzzy rule base system consists of a set of fuzzy if-then 

rules like 

If a person is very tall and ve ry fair, then he is a European with high confidence. 

If a person is very tall and faa'r, then he is an African with low confidence. 



Fig. 2.7: (a) The crisp membership values of pattern A and B in both the 

classes are either 0 or 1. The constrained fuzzy membership values of the 

pattern A and B in both the classes are about 0.5, which does not consider 

the fact that B is much less representative of either class than A is. (b) The 

crisp membership values of pattern A in both the classes are either 0 or 1. The 

constrained fuzzy membership values of the pattern A in both the classes are 

about 0.5. On the other hand, possibilistic membership values of the pattern 

A in both the classes are 1 as it belongs to both the classes completely. 

where the terms tall, fair are called fuzzy linguistic values. The fuzzy rule-base 

system is useful where it is difficult or impossible to model the given classification 

system with classical approach. In this case a set of fuzzy if-then rules along with 

the fuzzy linguistic values are collected from experts. If a new input comes, the 

input is matched against the if part of each if-then rule, and the response of each 

rule is obtained through fuzzy implication. The response of each rule is weighed 

according to the extent to which each fuzzy rule fires. The response of all the 

fuzzy rules for a particular output class are combined to obtain the confidence with 

which the input is classified to that class. The final class label can be determined 

by taking the class with maximum confidence. It can be observed that there is 

no learning associated with the fuzzy-rule base system. Consequently, the designer 

has to rely completely on the expert's opinions to build the rule base, which may 



be difficult in some cases. 

a Fuzzy pattern matching approach: A slightly different way of classification 

is the information fusion approach offered by fuzzy integrals. Here, a decision 

to associate an input pattern to a class is accomplished through the fusion of 

the information coming from several sources in form of features. Fuzzy integral 

combines the objective evidence supplied by the features in a nonlinear way with 

the importance of that feature set for recognition purpose. Instead of treating 

each feature identically, it stresses those features or sets of features which provide 

the most evidence toward the determination of class memberships. Therefore, it 

results in a convenient framework to produce different nonlinear classification rules 

for different classes within the same problem and with the same over all feature 

set [KQ88] [Gra96]. However, when the number of features is N, this technique 

may need 0(2N) computations. 

a Fuzzy clustering approach: Fuzzy clustering is similar to the conventional clus- 

tering as described in section 2.2.4. However, unlike the conventional one, in fuzzy 

clustering each input pattern belongs to all the clusters with different degrees or 

membership values. Thus, each cluster is a fuzzy set. If the sum of memberships 

of a pattern to all the clusters is equal to one, then it is called constrained fuzzy 

clustering. If the sum is not necessarily equal to one, then it is called possibilistic 

clustering. There is fuzzy K-means clustering algorithm which realizes the con- 

strained fuzzy clustering method. Modifications of this algorithm form possibilistic 

angle are known as possibilistic K-means algorithm [KK93] and mixed K-means 

clustering algorithm [PPB97]. If the value of K is not close to the actual number of 

clusters, then the clustering result may be far away from the reality. To know the 

approximate number of clusters present in the data set, various indices like partition 

coefficient and entropy indices [Bez81], Xi+Beni index [XB91], Fukuyama-Sugeno 

index [FS89] [PB95], fuzzy hypervolume [GG89], etc., exist. The clustering algo- 

rithms can be used to group the input data set. Then a class label (crisp or fuzzy) 

is assigned to each cluster. Thus, a classifier can be constructed through fuzzy 

clustering. 

Other approaches: Among the other methods, fuzzy K-nearest neighbors algo- 

rithm [KGG85] and fuzzy decision trees are popular. In the conventional K-nearest 

neighbors algorithm, each neighbor is considered equally important to assign the 

class label to the input sample. However, when two classes overlap each other, a 



more typical neighbor should be given more weightage. In fuzzy K-nearest neigh- 

bors algorithm, this philosophy is implemented. Thus, fuzzy K-nearest neighbors 

algorithm subsumes the conventional K-nearest neighbors algorithm, and in many 

cases the first one becomes more powerful than the later one. Like the conventional 

crisp K-nearest neighbors algorithm, the fuzzy counterpart also suffers from the 

problem of long testing time. 

2.2.5.4 Rough classifiers 

In any classification task the aim is to form classes of objects which are not noticeably 

different. These indiscernible or indistinguishable objects can be viewed as basic building 

blocks (concepts) used to build up a knowledge base about the real world. For instance, 

if the objects are classified according to color (red, black) and shape (triangle, square 

and circle), then the indiscernible objects are red triangles, black squares, red circles, etc. 

Thus, these two attributes make a partition in the set of objects and the universe becomes 

coarse. If two red triangles with different areas belong to different classes, it is impossible 

for anyone to classify these two red triangles based on the given two attributes. This 

kind of uncertainty is referred to as rough uncertainty [Paw821 [PBSZ95] [Paw95]. The 

rough uncertainty is formulated in terms of rough sets [Paw821 [PBSZ95]. Obviously, the 

rough uncertainty can be completely avoided if we can successfully extract the essential 

features so that distinct feature vectors are used to represent different objects. But, it 

may not be possible to guarantee as our knowledge about the system generating the data 

is limited [SS93]. 

Let us consider a 2-class problem where each input pattern has only one feature. Two 

input patterns xl and 2 2  are called related if xl = 22. This is obviously an equivalence 

relation. From linear algebra we know that this equivalence relation partitions the input 

space into (say m) equivalence classes. If all the patterns from an equivalence class (say 

[x]) have the same label (let C1), then we can allot a single rule to describe the input- 

output relationship for all the patterns that belong to the equivalent class. The rule 

is 

If the input is x, then the output class label is C1 

Thus, by partitioning the input space into m equivalence classes, it is possible to obtain a 

rule base consisting of m deterministic rules. However, in presence of rough uncertainity, 

i.e., when more than one pattern from the same equivalence class carries a different label 



(let Cz), a one-to-many relationship exits between the equivalence class and the class la- 

bels. Hence we cannot use the deterministic rules any more. One possible way to describe 

the inpu t-output relationship is to construct nondeterministic rules such as [Paw911 

If the input is x, then the output class label is C1 with confidence factor rl 

If the input is x, then the output class label is C2 with confidence factor r2 

where rl and r2 can be determined from the input data. Note that here more than one 

rule is present with the same if part. Let &(C1) represent the set of all equivalence 

classes, where each equivalent class contains patterns only from the class C1. Let R(C1) 
represent all the equivalence classes, where each equivalent class contains some pat tern 

from C1. In X(C1) some equivalence class may contain patterns from classes other than 

Cl as well. Now, one simple scheme of assigning the value of r1 is r1 = a. Similarly, 
R(C1) 

r2 can be assigned. This concept can be extended for an input with more than one 

feature. Thus, in general, any classification problem can be mapped onto two sets of 

rules-one set is deterministic and another set is nondeterministic. If there is no rough 

uncertainty, then the nondeterministic rules do not exist. In other words, the deterministic 

and nondeterministic rules are needed for the equivalence classes where the class labelling 

is not unique. When a new input comes, the input is matched with the if part of each 

deterministic rule. A rule fires if there is a match. The class label corresponding to the 

input is decided by the rule that fires. If the input does not match with the if part of 

any deterministic rule, then the input is matched with the if part of the nondeterministic 

rules. The class label is decided based on the confidence factor associated with each 

nondeterministic rule. 

One problem with the rough approach is that it is mainly applicable when the number 

of equivalence classes is small. When the features are continuous, the number of equivalent 

classes may be very high. To circumvent this problem, continuous features are usually 

transformed to discrete features with inevitable loss of information. Moreover, approaches 

based on rough set cannot be used where the input features or the output classes are fuzzy. 

2.2.5.5 Hybrid classifiers 

Table 2.1 summarises the relative merits and demerits of artificial neural networks, fuzzy 

logic, rough sets and evolutionary computation techniques for pattern classification tasks. 

To exploit the rough and fuzzy uncertainities present in a classification process, it is ben- 

eficial to incorporate the concepts of rough sets and fuzzy logic in the framework of neural 



networks. This kind of model is useful, because these three methods approach the design 

of classifiers from quite different angles. Neural networks supply the brute force method 

necessary to accommodate and interpret large amount of input data. Rough sets and fuzzy 

logic provide a structural framework that utilises and exploits these low level results. For 

efficient implementation of this kind of hybrid model, we need a good search and optimiza- 

tion strategy. For this purpose, one can use evolutionary programming, which represents 

a potentially powerful pathway to machine learning and self organization [AH95]. In what 

follows, we are focussing on these hybrid techniques from the pattern classification angle. 

Table 2.1: Relative merits of artificial neural network (ANN), fuzzy logic 

(FL), evolutionary computation (EC) and rough set (RS). The symbols B, 

SB, SG and G represent bad, somewhat bad, somewhat good and good, respec- 

tively [JSM97] 

Neuro-Fuzzy classifiers: It has been recognized that the areas of neural networks 

and fuzzy logic are strongly interconnected [LL96]. An important connection between 

ANN and fuzzy logic-based systems is that both of them can approximate continuous 

functions [JSM97]. Use of fuzzy concepts in ANNs is also supported by the fact that the 

psycho-physiological process involved in the human reasoning does not employ precise 

mathematical formulation [PM86]. There are the following two approaches to fuse these 
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two approaches: 

Fuzzy-neural networks: This type of classifier consists of an ANN equipped 

with the capability of handling fuzzy information. Specifically, fuzziness can be 

incorporated in an ANN at the following levels: (a) At output and target levels, 

(b) at input level, and (c) at each neuron level in terms of weight value, basis 

function and, output function. The appropriate level of incorporation of the theory 

of fuzzy logic depends on the given problem. 

Neural-fuzzy systems: This type of classifier consists of a fuzzy system aug- 

mented by ANNs to enhance the flexibility, speed and adaptability of the fuzzy 

system. For instance, neural networks can be used to tune the membership values 

or fuzzy rules. Thus, neural network learning can reduce the development time and 

cost while improving the performance of a fuzzy system. 

While training an ANN for a classification task, we generally use crisp target values, 

which can be either zero or one. This kind of target assignment can be generalized by 

exploiting fuzzy sets, where target values can be anything in between zero and one. In 

[PM92] ANN outputs are interpreted as fuzzy membership values, and using this idea 

the conventional mean square error objective function has been extended to various fuzzy 

objective functions. The learning laws are derived by minimizing the fuzzy objective 

functions in a gradient descent manner. It has been found that incorporation of fuzziness 

in the objective functions leads to better classification rate. 

ANNs adopt numerical computations for learning. But numerical quantities suffer 

from lack of representative power [Pao89]. There are many applications where information 

cannot be obtained in terms of numerical values. Instead it is possible to represent the 

information in linguistic values only [LL95] [KL79]. In [WM97] Wang et al. have proposed 

fuzzy basis functions to design a radial basis function network [Hay94], which can accept 

both numerical inputs as well as fuzzy linguistic inputs. In [Ped92] Pedrycz has proposed 

an ANN model based on fuzzy logical connectives. Instead of using linear basis functions, 

he has utilized fuzzy aggregation operators. In [PR93] and [HP94], this technique has 

been extended to a more general one where inhibitory and excitatory characteristics of 

the inputs are captured by employing direct and complemented, i.e., negated input signals. 

The advantage of this approach is that problem-specific fuzzy a pn'ori knowledge can be 

incorporated into the network easily. In [IFT93] Ishibuchi et al. have proposed an ANN 

learning algorithm where expert's a priori knowledge, in terms of fuzzy if-then rules, can 



be exploited to learn the information supplied by the numerical data. 

Fuzzy logic can be employed to speed up the training of an ANN. In [CAMC92] a 

fuzzy rule base is used to dynamically adapt the learning rate and momentum parameters 

of a feedforward neural network with backpropagation learning algorithm. In a similar 

approach [COB92], Choi et al. have proposed an incremental updating scheme to control 

the value of vigilance parameters of ART networks. 

The difficulty in constructing fuzzy rule base systems is that the membership func- 

tion, number of rules and precedent parts of the rules can be supplied only by the experts. 

In many cases, it is difficult to get an expert, and in some cases, even for the experts it 

becomes difficult to construct the rules. This problem can be reduced if ANNs learning 

mechanism can be incorporated in the fuzzy rule base systems to construct fuzzy neural 

systems. Since ANNs can approximate continuous functions, ANNs (for example, feedfor- 

ward neural networks with backpropagation algorithm) can be used to realise membership 

functions with arbitrary shape. If the membership function has a regular shape like bell 

shape or triangular shape, it can even be modeled by a simple neuron with sigmoidal 

function [LL96]. Fuzzy OR and fuzzy AND need min and max operators. Since they 

are nondifferentiable, it is difficult to learn them. Hence, the concept of differential min- 

imum and maximum operators, i.e., softmin and softmax, have been introduced [LL96]. 

Thus, fuzzy logic connectives, i.e., fuzzy NOT, fuzzy OR and fuzzy AND, are modeled by 

ANNs. Keller et al. have proposed [KKR92] fuzzy inference network, where membership 

functions and fuzzy logic connectives are implemented through ANNs. This network is 

made more powerful by incorporating learning facilities. The resultant network is called 

fuzzy aggregata'on network [KT92]. 

In many cases, it is possible to view the same classifier as a neural network and 

a fuzzy rule base system. For instance, feedforward neural networks with backpropa- 

gation algorithm and radial basis function network can be seen as fuzzy rule base sys- 

tems [BCR97] [JS93] [HHMS96]. In these networks the output functions present in the 

hidden nodes act as the membership functions for some linguistic values. 

Neuro-Rough classifiers: In ANNs one critical problem is to determine how many 

input units are necessary. Obviously, it depends on the number of features present in the 

input data. Using rough sets, it may be possible to decrease the dimension of the input 

data without losing any information. A set of features is sufficient to classify all the input 



patterns if the rough ambiguity for this set of features is equal to zero. If we know the 

amount of rough ambiguity present, then using it as a criterion we can select a proper 

set of features from the given set of data [PWZ88]. In [PBSZ95] it is claimed that for 

a classification task the number of hidden units needed in a feedforward neural network 

is equal to the minimal number of features required to represent the data set without 

increasing the rough uncertainty. One way to accelerate the training of a network is to 

initialize the weights of the networks in such a manner that the initial decision region is 

closer to the desired one. For that, a set of training data is collected, and the knowledge 

extracted from them through rough sets is used to initialize the ANN [BMP97]. 

Neuro-Evolutionary classifiers: From a mathematical point of view, all the evolu- 

tionary computation (EC) techniques are controlled, parallel, stochastic search and op- 

timization techniques. Since different learning techniques used in ANNs hinge on the 

optimization of various objective functions, it is possible to employ EC for learning 

weights, learning network architectures, learning the learning laws, input feature selection, 

etc. [Yao93]. For instance, in a feedforward neural network, gradient-based local search 

methods [Hay941 can be substituted by EC for weight training [SF951 [MTH89] [Has95]. 

In some cases, a more ambitious approach may be to exploit local search methods like grac 

dient descent, and global search methods like EC, simultaneously [RF96]. The advantages 

of local search methods are better accuracy and fast computation. The disadvantages of 

the local search methods are stagnation at the suboptimal solutions and sensitiveness to 

the initialization. On the other hand, EC is a global search method which can avoid 

local optima, and does not have the initialization problem. However, EC can suffer from 

extremely slow convergence before arriving at the accurate solution. This is because, EC 

uses minimal a prior2 knowledge, and does not exploit available local information [RF96]. 

In fact, in the search space EC is good for exploration, whereas the gradient descent is 

good for exploitation. Therefore, by utilizing both of them, merits of both methods, i.e., 

speed, accuracy, reliability and fast computation, can be achieved. Yao e t  al. [YL97] 

have proposed one such method to evolve the topology (weights and architecture) of 

a feedforward neural network, where they exploit both evolutionary programming and 

backpropagation algorithm, simultaneously. In EC techniques, the whole population set 

evolves over and over again, generations after generations. At the last generation, the 

network which has the highest fitness is considered to be the desired optimal network for 

the given task. Instead of choosing a single network as the desired network, in [YL98] 



all the networks in the population are considered as the desired networks. The final re- 

sult is obtained by combining all the individuals in the last generation to make best use 

of all the information contained in the whole population. This result confirms the fact 

that a population contains more information than a single individual, and EC is used 

to exploit that information. In particular, in [YL98] the outputs of all the networks in 

the population are combined, and the output class is determined by a majority voting 

method. In [WC96] [Whig61 [BZ95], EC-based techniques are used successfully to opti- 

mally configure radial basis function networks so that the networks generalize well. In 

another development, Angeline et al. [ASP941 have used EC to configure recurrent neural 

networks. It should be noted that, gradient-based approach is not useful here as it needs 

the objective function to be differentiable. Using EC, Jockusch et  al. [JR94] have intro- 

duced a training strategy for self-organizing maps [Koh89] [Koh9O], where it is possible 

to find the number of output units for the self-organizing maps automatically. In their 

scheme the training of the self-organizing maps is less likely to be stuck in local optima. 

Currently, researchers are working on different evolutionary methods which can be uti- 

lized to learn weights, architectures and learning laws, simultaneously [Yao93]. The search 

space for these problems are prohibitively large, and they need a large computing time. 

These drawbacks may be reduced if parallel machines are used to implement the search 

operation [BR94], or the search operation is made more efficient and less time consuming 

by using adaptive EC operators [SP94] [LD95]. 

Fuzzy-Rough classifiers: Rough set theory was proposed as a mathematical tool in 

order to deal with inexact, noisy or incomplete information. It aims to provide a formal 

framework for automated transformation of data into classification knowledge. The start- 

ing premise is that the universe is coarse and some object in the data set may become 

indiscernible, resulting in a partition of the universe. In contrast, fuzzy set theory pro- 

vides an effective means of handling uncertainty in various systems, including those in the 

application of rough set theory. But the premise of granularity in knowledge is absent in 

fuzzy set theory, and the focus is on the fact that concepts in the universe of discourse tend 

to be gradual rather than crisp. Therefore, rough sets are a calculus of partitions, while 

fuzzy sets are a continuous generalization of set-characteristic functions [DP92] [Sl092]. 

Hence, it is possible to integrate roughness and fuzziness, and the resultant model of 

uncertainty is expected to be stronger than either. These hybrid notions develop in a 

natural way when a linguistic category, denoting a set of objects, must be approximated 
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in terms of already existing labels, or when the indescernibility relation between objects 

no longer obeys the ideal laws of equivalence, and the relation is a matter of degree. 

Direct application of rough sets to minimize a fuzzy rule base classifier was proposed 

by Tanaka et al. [TI921 [TIS92]. They extracted a fuzzy rule base for a given medical 

classification problem. They also proposed a method to reduce significantly the number 

of input variables of the fuzzy rule base. The advantage of their method is that the 

inconsistency of the test data and experts' diagnoses can be clarified, and inconsistent 

data can be removed. In addition, unlike the rule base generated by rough approach (see 

section 2.2.5.4), the fuzzy rule base is applicable to inputs with continuous features. 

Fuzzy-Evolutionary classifiers: Currently, the combination of EC and fuzzy logic is 

taking place mainly along the following two directions [HHVLV94] [CHL96] [HM97]: 

1. The use of fuzzy logic-based techniques for either improving EC behavior and mod- 

eling EC components, or to manage problems in an imprecise environment, where 

the imprecision is modeled by fuzzy sets. 

2. The application of ECs in various optimization and search problems involving fuzzy 

systems. 

Several techniques related to fuzzy logic have been used for improving EC behavior 

and modeling EC components (like using fuzzy connectives to design crossover in genetic 

algorithm, fuzzy population diversity measure, etc. [CHL96]). These techniques concern 

different parts of EC development in the following ways: 

1. Expert knowledge (represented as fuzzy rules) is used to compute dynamically the 

EC parameters. The aim is to obtain suitable exploitation/exploration relationships 

throughout the EC execution. In this way, a knowledge base is used for controlling 

the evaluation process and for avoiding the undesired behavior, like premature 

convergence. 

2. A fuzzy stop criterion forces the EC to reach optimal solutions with a user-defined 

accuracy. 

There are two main directions for applying ECs in a fuzzy environment. The first one 

exploits an EC to manage fuzzy valued variables. In the second approach, the variables 

consist of associated fuzzy sets, and hence, the fitness is actually a fuzzy valued fitness. 



The first proposal considers variables with fuzzy values in the representation, and the 

second proposal considers nonfuzzy value variables but with a fuzzy evaluation (e.g., 

fuzzy fitness). 

In [BH94] [FS93] [YKSS95] attempts are made to develop EC-based clustering tech- 

niques. These algorithms are less prone to get stuck in local minima. Moreover, they do 

not suffer from the initialization problems as observed in the fuzzy K-means algorithm. 

These clusters are used to construct fuzzy rules. In [INYT95] [NIT961 genetic algorithm 

is used to  evolve a fuzzy rule base system suitable for a given classification task. A good 

bibliography on fuzzy-evolutionary techniques is provided in [OC97]. 

Rough-Evolutionary classifiers: One major difficulty in a classification problem is 

to find the optimal number of features. It can be viewed in rough set domain as to 

discover the minimum number of features necessary for the classification problem without 

increasing the rough uncertainity associated with the classification task. Although it is 

possible to apply brute force method to find all possible combinations of the features, 

and subsequently take the best one as the optimal one, it may involve large amount of 

computation. This problem may be reduced if we use EC to find the minimum number 

of features [PBSZ95]. Here, rough set theoretic measure acts as a guideline to choose the 

correct set of features [Wro95] [HPA'97]. 

In addition to the above techniques, hybrid techniques like neuro-fuzzy-rough, neuro- 

fuzzy-evolutionary, fuzzy-rough-evolutionary, neuro-fuzzy-rough-evolutionary, etc., are 

also possible. These integration techniques are based on partnerships, in which each 

of the partners contributes a distinct methodology for solving the problem [AH95]. There 

are several other attractive paradigms which can be used for the hybrid techniques. For 

instance, artificial ant system [DMC96], cultural evolution [Be189], immunity net [HC96], 

cellular automata [TM87] and DNA computing [Ad1941 seem to be attractive and viable 

approaches. 



2.2.6 Generalization 

A great deal of episodic evidence has been presented in the literature to support the claim 

that, once a classifier has been trained on a sufficient number of samples, it can then label 

a new and previously unseen input. It should be noticed that, without the ability to 

generalize, much of the cases for using classifiers would simply collapse. A simple look 

up table would suffice if one were interested merely in constructing a classifier that could 

reproduce the known input-output pairs [Nee961 [Vid97]. The training of a classifier with 

a data set leads the classifier to learn the input-output relationship. When a test set is 

applied, this relationship is extended so that it holds for the test data. However, there 

can be more than one relationship if the training data sequence, classifier size, learning 

algorithm, etc., are varied. All these relationships may be valid on the given training set, 

however, when extended on a different test set many of them may not be valid. Hence, 

the task of the generalization is to choose the relationship which holds for most of the 

test data [HKPgl]. In order to choose the best relationship, we should be able to impose 

certain constraints on all possible input-output relationships. It can be accomplished if 

there is a structure present in the feature space, and the relationship between this structure 

and the class labels is not random. Since the parameters for classifier design depend on 

the structure in the feature space and the input-output relationship, the generalization 

capability of a classifier is largely influenced by the following three factors: 

1. Training data: This refers to how well the training set consisting of input-output 

pairs represent the input-output relationship. Obviously, if the input-ou tpu t rela- 

tionship is noisy or random, then the generalization ability of the classifier becomes 

very poor. 

2. Size and structure of the classifier: If the size of the classifier is large, then it 

needs a large number of parameters. It may lead to memorisation of the training 

examples if the training set size is not large. Moreover, while training a large 

classifier, all the parameters may not get involved in the training process as they 

balance each others effect on the output. Consequently, training error becomes low. 

However, such free parameters may result in a large variation of the classification 

efficiency for different test sets [Sus92]. As a consequence, the structure present in 

the data set is not captured and the generalization ability remains low. In contrast, 

if the classifier size is small, then it may not be sufficient enough to capture the 

input-output relationship. 



3. Training methodology: The training algorithm, the presentation of the input 

data during training, the stopping criterion, all affect the performance of the clas- 

sifier. Use of improper stopping criteria may cause overtraining which may lead to 

memorisation. 

In order to study the generalization capability, we must be able to quantify it. That 

is, it should be possible to evaluate a classifier, and decide whether its generalization is 

"good" or not. However, the notion of "good" or "reasonable" themselves are not well- 

defined. It varies from person to person and is problem dependent. For instance, when 

the desired output is obtained on most occasions, it is considered as "good" generalization 

in certain cases. On the other hand, in certain other types of problems, generalization is 

considered to be "good" if the classifier yields the desired output for a very rare situation 

which never occurred before. Various methods of measuring generalization are used in 

practice [Liu95], [MCHK94]. We can classify them into two categories: measure of model 

fit and measure of performance. The first one measures how close the actual classifier 

function is to the desired one based on the training result. The second one focuses on the 

difference between the actual classification rate and the desired classification rate after 

the final class label is assigned to each test pattern with inevitable loss of information. 

Therefore, the first one measures how good the approximation is, based on the training 

and when there is no loss of information. The second one stresses on how good the 

approximation is after the information is lost due to crisp labelling on the test patterns. 

Let n be the number of patterns in the training set X = {(xl, yl), (XZ, YZ) , . . . , 
(x,, y,)), C be the number of output classes and y be the desired output corresponding 

to the input x.  Then, some measures based on the model-fit criterion are 

1. Kullback-Leibler measure: This measure of generalization quantifies the differ- 

ence between the actual classification function and the classifier function obtained 

by training [Hay94]. The Kullback-Leibler measure (ekl) is given mathematically 

by the following equation: 

f ( ~ , x )  f ( ~ 1 ~ ) ~  dxdy (2.4) 
eki = - / p(xj Y P O ~  [rn] dxdy = - /p(xl y)iog [p(y x)p(x)] 

where p(ylx) is the conditional probability distribution of the sample x given the 

output y ,  p(x) is the probability distribution of the input x, f (ylx) is the probabiI- 

ity distribution approximated by the classifier after training and the integral is over 



the whole input-output space. Since p(x) = f (x) for a given input distribution, we 

can redefine ekl as 

The Kullback-Leibler measure is difficult to calculate as it requires prior knowledge 

about the actual classification function p being realized. 

2. Cross-Validation measure: Cross-validation measure estimates generalization 

error by making use of the training data [Liu95]. In this method, generalization 

error ekl given by equation (2.5), is estimated as follows: 

3. Mean square error measure: One of the the most commonly used measure of 

generalization for the pattern classification task is how large the Euclidean distance 

is between the actual output of the classifiers (after the training is over) and the 

desired one. Like the previous two cases, this measure depends on the training set 

only. The measure is 

where o; is the actual output when the training pattern is applied to the classifier. 

4. An information criterion (AIC): This measure [Aka741 is also known as 

Akaike's information criterion. Although memorisation trend in a classifier is re- 

lated to the size or the number of the free parameters ( k  f )  of the classifier, the above 

three measures do not consider the classifiers size. AIC is a measure which consid- 

ers mean square error measure as well as the size of the classifier. It is formulated 

as 

emse e ~ ~ c  = n log (T) + 2kf 

A popular measure based on the performance criterion is error rate measure. The 

easiest way to assess the error rate is to choose a misclassification count on the test set. 

I 
e,, = - z ( n o .  of misclassifications for class c) 

72°C c=l 



where nu is the number of test samples. This measure is extensively used because it is 

simple and easy to implement. It can be viewed as a variation of the cross-validation 

measure. If we have some idea about the a prion' probability PC for the cth class, the 

above measure can be modified as 

1 
e,, = - Pc(no. of misclassifications for class c) 

nuC c=l 

Note that in all the above cases the less the measure is, the better is the generalization 

capability. Other than the above measures, there exist many other measures, e.g., leave- 

one-out measure, entropic measure, BIC, etc. [Rip96]. 

Although a relatively small fraction of the overall work done on the pattern classifiers 

is on the theoretical analysis of generalization, these studies are marked by a variety of a p  

proaches. Some of the issues like how much training data is needed, i.e., sample complezity, 

and how much time is needed for a particular level of generalization, i.e., computational 

complezity, are formalised and investigated within the field of computational leaning the- 

ory. One popular approach in computational learning theory is probably approximately 

correct (PAC) learning theory approach [Hau92] [BEHW89] [Natgl]. Most of the theoret- 

ical studies assume noiseless synthetic input data, where the raw data represent features. 

The input-output relationships are assumed to be random. Application of the theoretical 

results are still limited because the results inferred based on these assumptions are far 

from the real life situations. Despite these limitations, the theoretical results indeed give 

us some idea about the extent of the influence of the classifier size, classifier architecture 

and the training set size on generalization. Due to the limitations of the theoretical stud- 

ies, there are several heuristics adopted to enhance the generalization capability of the 

classifiers. These techniques can be broadly classified into two parts: 

1. Problem-independent techniques: These methods deal with the functioning 

of the classifiers, methods of presentation of the data, etc. They include pruning 

of the extra parameters used in the classifiers, generating more training data by 

introducing noise, accelerating the training algorithms (so that large data set can be 

used for training), stopping training after some point (so that overtraining cannot 

take place). 

2. Problem-dependent techniques: These methods include special design of the 

classifiers after taking care of the problem-specific knowledge. For example, if we 

know that the clusters formed in the input space is of shell type, then we can cluster 



the input by using fuzzy shell clustering algorithm [FK96]. Classification can be 

achieved subsequently by labelling the clusters. We may also incorporate domain 

specific constraint to limit the classification function realizable by the classifier. In 

other words, we can bias the classifier to have less variance in the performance of 

the classifier [Bis95]. 

2.2.7 Conclusion 

From the review presented in this chapter, it is quite obvious that the stages of pattern 

classification are involved. As Bezdek rightly pointed out in [Bez81] that if we could 

choose "optimal" features, clustering and classification would be trivial. But we often 

attempt to discover the optimal features by clustering the feature vectors. Also, if we 

could design an "optimal" classifier, then the features selected would be immaterial. The 

current state of research in pattern classification can be characterized as follows: 

1. Basic concepts of pattern classification are being used in many real life applications. 

2. Theoretical foundation have gained substantial base. 

3. Most of the current research methods use numerical representation. This trend is 

growing because of the availability of the computing power. 

4. Efforts are being made to combine the symbolic and numerical approach for prob- 

lems in which such information can be obtained from physical systems. 

5. The role of uncertainties in a given problem is being examined to avoid possible 

loss of information. The uncertainities captured in the initial stages are exploited 

for problem solving till the final stage of solution. 

However, the pattern classification ability of the existing machines is still far away 

from the human classification ability for the following reasons: 

1. Humans perceive everything as a pattern, whereas for machines everything is data. 

Even in a routine data consisting of integer numbers (like telephone numbers, bank 

account numbers, car numbers), humans tend to perceive a pattern peg98]. 

2. Functionally also humans and machines differ in the sense that humans understand 

patterns, whereas machines can be said to recognize patterns in data. In other 

words, humans can get the whole object in the data eventhough there is no clear 

identification of subpatterns in the data. For example, consider the name of a 



person written in a handwritten cursive script. Eventhough the individual patterns 

for each letter may not be evident, the name is understood due to the visual hints 

provided in the written script [Yeg98]. 

3. Human beings are capable of making mental patterns in their biological neural 

network from an input data given in the form of numbers, text, picture, sounds, 

etc., using their sensory mechanisms of vision, sound, touch, smell and t a t e .  These 

mental patterns are formed even when the data is noisy or deformed due to varia- 

tions such as translation, rotation and scaling. The patterns are also formed from 

a temporal sequence of data as in the case of speech and pictures. Another major 

characteristic of a human being is the ability to learn continuously from examples. 

These aspects are not at all well understood in order to implement them efficiently 

in an algorithmic fashion in a machine [Yeg98]. 

4. Human beings have the capability to gather information from both data and rule, 

simultaneously. Still most -of the machine classification techniques are based on 

either data or rules. 

5. For classification, human beings generalize most of the common objects and memo- 

rise uncommon objects. Moreover, in human classification there is a smooth transi- 

tion from memorisation to generalization and vice versa. These abilities are totally 

absent in the techniques adopted by machines. 

6. In pattern classification on machines, we face the problem of inductive bias or the 

a priori bias of the designer. The problem of inductive bias is that the resulting 

representation and search strategies provide us a medium for encoding an already 

interpreted world. They do not offer us any mechanism for questioning our in- 

terpretation, generating new viewpoints or changing perspectives when they are 

unproductive [LS95]. 

7. In pattern classification several uncertainties exist, We still do not know how to 

model these uncertainities. For instance, Fig. 2.8(a) can be classified to any one 

of the two classes as shown in Fig. 2.8(b) and Fig. 2.8(c). The classes are not 

fuzzy. It appears that rough uncertainty is also not present. Moreover, there are 

no probabilistic and resolution uncertainties involved. Still, the exact classification 

result may not be known! 

The above issues will continue to motivate researchers to explore methods to match 

the performance of human classification. 



Fig. 2.8: The psychological uncertainty which we do not know how to model. 

(a) A cube, and (b) and (c) are its two different interpretations. Apparently no 

fuzzy, rough and probabilistic uncertainties are involved in the interpretation. 

Still it is uncertain which interpretation we should follow. 



2.3 Modular  Classifiers 

2.3.1 Background of Modular Classifiers 

In the last section we have discussed the role of uncertainties in pattern classification. 

In many problems, it is difficult to deal with uncertainties in a monolithic classifier. 

Therefore, it is useful to divide the classification task among several small subclassifiers, 

and then combine their individual solutions to obtain the final classification result. In 

this section, we review various modular approaches,'which are based on the divide and 

conquer technique. 

Human brain consists of about 10'' neurons and 1015 connections. Due to its highly 

organized architecture, the brain manages to execute a myriad of functions and yet main- 

tains a compact size. Execution of mental functions are allocated to different parts of 

the brain. Split brain patients in which the connection between the two hemispheres is 

completely severed can live an almost normal life, which shows that the hemispheres in- 

deed function to a large extent independently. It has been found that in each hemisphere, 

part of the brain has a regular structure in layers, streams and many microscopic levels. 

Modules containing little more than a hundred cells, also known as minicolumns, have 

been proposed as the basic functional modular unit of the cerebral cortex. 

A functional advantage of the anatomical separation of different areas of the brain 

might be minimization of mutual interference between simultaneous processing and exe- 

cution of different tasks. For example, we have no problem in driving a car while listening 

to the radio. Studies with multiple tasks can easily be performed in parallel, while the 

simultaneous execution of similar tasks (e.g., presentation of two auditory or two visual 

messages) causes more interference. Some tasks are processed in distinct streams of mod- 

ules and do not interfere with each other. Other tasks require simultaneous access to a 

single module, and are, therefore, much more likely to interfere mutually. This evidence 

suggests that modular approach is not merely advantageous, but essential. 

In many complex pattern classification tasks (e.g., script recognition [CK95b], speech 

recognition [SY96], etc.), where the number of classes is large and the similarity amongst 

the classes is high, a monolithic classifier, also known as all-class-one-classifier, either 

may not converge or may take large amount of time to converge during training. But 

the all-class-one-classifier needs lesser storage and leads to better generalization if they 

converge. It is also possible to develop a classifier based on the concept of one-class- 

one-classifier [Kun93] architecture, where a separate classifier is trained for each class. 



This kind of local approach offers the following advantages: (a) fast learning, (b) r e  

quires a few training examples, and hence, it can operate in real time. This approach 

requires a large number of subclassifiers, and also the discrimininatory capability of the 

one-class-one-classifier is poor [SY96]. Therefore we need something in between these two 

extremes, where advantages of both all-class-oneclassifier and oneclass-oneclassifier can 

be enjoyed. Motivated by the biological evidence, pattern recognition in real life prob- 

lems can be approached using classifiers that are in between oneclass-oneclassifier and 

all-class-oneclassifier. In this approach, modularity is viewed as a manifestation of the 

principle of divide and conquer. In [Hay94], [JJ93], modular classifier is defined as follows: 

" A  classifier is called a modular classifier if the computation performed by the classifier 

can be decomposed into two or more modules that operate on distinct inputs without com- 

municating with each other. The outputs of the modules are mediated by an  integrating 

unit that is  not permitted to  feed information back to the modules". Thus the principle 

of modular classifiers can be thought as Some Class One Classifier. Modular classifiers 

have the advantages of both all-class-one-classifier and one-class-oneclassifier approaches, 

like quick convergence, parallel training, better generalization, etc. The use of modular 

classifier systems was discussed as far back as the mid 1980's by Barto and Hinton. Jacob 

in [JJ93] presented a taxonomy for a class of modular hierarchical connectionist mod- 

els. Modular approaches find applications in handwritten character recognition, texture 

recognition and speech recognition [SY98e]. 

2.3.2 Advantages of Modular Classifiers 

The main advantages of the modular approach are as follows ??: 

1. The modules can be constructed using different techniques. For example, some 

modules can be based on ANN, where the input-output relationship can be ex- 

plained only through input-output patterns. Some other modules can be based on 

fuzzy rule base systems, where expert's knowledge is easy to obtain in form of rules. 

2. Generally modularity results in an architecture of lesser complexity, and hence, is 

easier and faster to train. The generalization capability may also enhanced due to 

the reduction in complexity [CK95a]. 

3. Training of the modules can be done in parallel. Therefore, it takes less time to 

train a modular classifier. 

4. Different feature sets can be used to train different modules. This flexibility allows 



us to use the appropriate set of features for each module so that within-class dis- 

tance decreases and between-class distance increases. Therefore, the training time 

decreases and generalization ability increases. 

5. Each module can be trained on different input data set. It decreases the training 

time and increases the generalization capability. 

6. If the modular classifier is built carefully, then it can capture discontinuous input- 

output functions [JJ93]. In contrast, the monolithic counterpart does not have this 

capability. 

7. In a modular approach existing modules can be retrained easily. If a new pattern 

is added, only the related modules need to be retrained. In the modular approach, 

new modules can also be appended easily. 

2.3.3 Issues in Modular Approach 

In order to construct a modular classifier systematically, we need to consider mainly three 

points. Firstly, the given classification task has to be decomposed into subtasks. Secondly, 

an appropriate classification task has to be assigned for each module. Finally, intermodule 

communication has to be evolved. The following are some of the issues in constructing a 

modular classifier: 

1. Depending on the decomposition criterion: The classes can be grouped based 

on the closeness of the class prototypes in the feature space. A clustering algorithm 

can be employed for this purpose. Another way is to employ domain-specific knowl- 

edge to partition the classification task. 

2. Choice of classifiers for each module: Various types of classifiers, e.g., feedfor- 

ward neural networks with backpropagation learning algorithm, radial-basis func- 

tion neural networks, probabilistic neural networks, fuzzy rule base system, etc., 

can be used in each module. 

3. Interpretation of the outputs of each module: The output of each module 

can be interpreted as an a posten'ori probability, belief or fuzzy membership values. 

4. Choice of the preprocessor or postprocessor: It depends on which principle 

we are adopting to make a module active. In other words, the task may be SO 

distributed that only one module is active or all the modules are active. The first 

method needs a preprocessor to decide which module should be active, and the 
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Fig. 2.9: Types of modular classifiers. 

later method needs a postprocessor so that the results of all the modules can be 

fused. 

2.3.4 Types of Modular Classifiers 

It is possible to group modular classifiers based on various criteria. They are as follows 

(Fig. 2.9): 

1. Depending on the task: One way to decompose a classifier is to create modules 

that serve very different functions, not different versions of the same function. The 

top-down structure of a large software projects is an example, where each procedure 

has its own function. This is called functional modularisation [DY97]. Another way 

is to decompose the classifier such that the modules perform different versions of 



the same job. It is called categorical modularisation. This can be thought of as a 

set of experts giving their individual opinions on the same subject. 

2. Selection of grouping criterion: 

(a) Problem decomposition: The designer decomposes the modules based on 

his knowledge about the classification problem (Fig. 2.10). Sufficient prior 

knowledge is essential when this is carried out before the learning takes 

place [TMBC92]. Another variation is to perform the decomposition a u t s  

matically when the learning takes place [J JNH911. 

(b) Class decomposition: The original classification problem is divided into 

several sets of subproblems according to the inherent relations among the 

training data [AMMR93] (Fig. 2.11). It can be done before learning or during 

learning [LI98]. If it is done before learning, domain specific knowledge is 

needed. Compared to the problem decomposition, the class decomposition 

approach needs more computation. But, the later one becomes attractive 

when there is no prior knowledge about the problem. 

3 Depending on the topology: Architecturally, modular classifiers can also 

be subdivided as follows: 1) Preprocessor-based, 2) hierarchical-based and 

3) postprocessor-based. In Fig. 2.12, these three variations along with a monolithic 

classifier are shown. The Fig. 2.12(a) depicts a monolithic classifier. Here only one 

module is present. In Fig. 2.12(b), the selector or preprocessor analyzes the input, 

and decides which module should be used to classify the input. As a result, only 

one module will be active for each input pattern. This type of topology needs the 

preprocessor to be highly accurate. Fig. 2.12(c) employs a set of modules arranged 

in a hierarchical fashion. Although the input goes to all the modules directly, the 

top one becomes active first. If it can classify the input, then the classification of 

the input is over. Otherwise, it triggers the module just below it. In this way, the 

control flows from the top to the bottom. It is as if a set of experts are present 

and we are asking them the same question sequentially, and the whole session is 

over as soon as someone is able to provide an answer. Note that in some cases the 

answer given by a particular expert may be wrong also, and there is no scope for 

the experts, who are hierarchically below him, to rectify the answer. Hence, the 

drawback of this kind of approach is that if the higher level modules fails to  trigger 
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Fig. 2.10: Construction of modular classifiers based on the concept of problem 

decomposit ion. 
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Fig. 2.11: Construction of modular classifiers based on the concept of class 

decomposition. 



or mistakenly triggers any lower level module, then the whole classification prob- 

lem becomes erroneous. Hence, the accuracy of this model largely depends on the 

classification accuracy of the higher level modules. Since it is difficult to train each 

module such that it fires correctly for all the test examples, the efficiency of the 

whole classifier is not usually high. In Fig. 2.12(d), a postprocessor or integrator 

combines the results of all modules. When some test input is used, all the modules 

become active in parallel, and the output result of all of them are fused by the in- 

tegrator. Note that, in the hierarchical and postprocessor-based modular classifier, 

the feature set for each module can easily be made different from others. It is also 

possible to house both selectors and integrators in the same system [RRM+96]. 

4 Depending on the fusion method: For the task of catagorization, the following 

fusion methods exist: 

(a) Maximum output approach: The class label of the input can be decided 

based on the winner-take-all policy. It means that the class label of the input 

pattern is assigned to j, where oj = max ok, and ok is the output corre- 
k=1,2, ..., C 

sponding to the kth output class. Although this is the simplest method, this 

kind of assignment may not be justified, as all the subclassifiers are indepen- 

dently trained on different sets of data. 

(b) Gating or weighted output approach: Compared to the above approach, a 

better approach is to declare the j th  class winner, if the j th  class corresponds 

to max {gkok), where gk is the importance associated with the class Ck. 
k=1,2, ..., C 

One possible choice for gk is the a posteriori probability of the class Ck. The 

drawback of this method is that the probability constraint C gk = 1 
k=1,2, ..., C 

cannot discriminate between lack of evidence and ignorance [K096]. 

(c) Dempster-Shafer theoretic approach: Dempster-Shafer's theory [Sha76] 

replaces the additivity requirement of probability measure theory with either a 

superadditivity or subadditivity requirements. Therefore, Dempster-Shafer's 

theory can distinguish between lack of evidence and negative evidence. In 

Dempster-Shafer's theory, each information source, i.e., module, generates a 

belief function over the power set of the hypotheses (i.e., output classes), which 

are then combined using Dempster-Shafer's rule [Sha76]. The calculation can 

have exponential complexity with large number of output classes. 
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Fig. 2.12: Four types of modular classifiers: (a) monolithic, (b) preproces- 

sor-based, (c) hierarchical and (d) postprocessor-based. Y, C and M denote 

the input feature vector, the output classes and the subclassifiers, respectively. 



(d) F'uzzy integral theoretic approach: In the fuzzy integral approach, the 

outputs of the modules are processed further so that the interactions among 

the outputs are also exploited for the final classification result. For an input 

pattern x, each module (say sth) generates a partial evidence hk({<,}) to 

support the kth class, where <, denotes the output of the sth module. The 

term gk may be replaced by a more specific term gk({<,}), where gk({<,}) 

denotes the importance of <, in characterizing the class Ck, With the help of 

gk({<,)), s = 1,2, .  . . , 5, the fuzzy integral Fk for the class Ck combines all 

the partial evidence, i.e., hk( ts)  VS = 1 ,2 , .  . . , S, in a nonlinear fashion. The 

final class label corresponding to the input is j ,  if Fj = max (3k). 
k=1,2, ..., M 

Like Dempster-Shafer approach, fuzzy integral-based approach also can distin- 

guish between equal evidence and ignorance. In the fuzzy integral, the frame of 

discernment contains the information sources related to a particular hypothe- 

sis (i.e., an output class) under consideration, whereas in the Dempster-Shafer 

theory, the frame of discernment contains all possible hypotheses (i.e., all pos- 

sible output classes). Thus, the fuzzy integral approach has a means to assess 

the importance of all groups of information sources towards supporting a par- 

ticular hypothesis as well as the degree to which each information source s u p  

ports the hypothesis. In contrast, the Dempster-Shafer theory does not have 

this advantage [KGT+94]. In addition, the fuzzy integral is computationally 

more efficient than a strict Dempster-Shafer approach. In the Dempster-Shafer 

theory, each information source generates a belief function over the power set 

of the hypotheses, which are then combined using Dempster-Shafer's rule. The 

calculation can have exponential complexity with the number of hypotheses, 

i.e., with the number of output classes (C). In the fuzzy integral, the measure 

needs to be calculated only for S subsets, where S is the number of modules 

involved with each hypothesis [KGT+94]. Fuzzy integral is beneficial because 

in many modular classifiers, C >> S. 

For the task of functional modularisation the following methods exist: 

(a) Majority voting: The simplest linear combination method is majority vat- 

ing. That is, the output of the most number of modules will be the output of 

ensemble. If there is a tie, then the output of the module (among those in the 

tie) with the lowest error rate on a test set will be selected as the ensemble 

output. Another method is to keep the number of modules odd so that the 



conflict cannot arise. 

(b) Weighted averaging: The weights are fixed in proportion to how each mod- 

ule performs on a test set. When the weights summed up to one, the weights 

can be viewed as a priori probability of the module to classify an input ac- 

curately. When t his additivity constraint is relaxed, Dempster-Shafer ap- 

proach and fuzzy integral-based approach become suitable tools to use. The 

advantages and disadvantages of Dempster-Shafer and fuzzy integral-based 

approaches are similar to that of categorical modularisation. 

2.4 Opening Bid Problem in Contract Bridge as a Pattern Classification 

Problem 

The opening bid problem is an exercise of high level perception. It involves classifying the 

pattern in a hand to a single output corresponding to the bid for the hand. A classifier 

does precisely this. Given a set of input hands and the corresponding opening bids, 

the classifiers try to capture the implicit relation between the two. Once the classifier 

has been trained to generalize, 'then it can respond meaningfully to a new hand. In 

the opening bid problem we can immediately spot the presence of probabilistic, fuzzy and 

rough uncertainties. The card pattern, what one gets after shuffling is purely probabilistic; 

on the other hand, whether the player will classify a particular input hand as an 1D or 

1H is basically fuzzy. Here the classes corresponding to 1D and 1H are overlapping. The 

relation between the input pattern and the corresponding output bid is not unique even 

among the expert players (see Table 2.2). Some player may consider the hand pattern 

"97-5AKQ8754-AK2" as ID or some may consider it as 2C. It is because the playing 

strategy of the players for the remaining part of the play, vulnerability, etc., are different 

and are difficult to model. Hence the same input hand may belong to different classes, 

although the classes are not overlapping. This situation creates rough uncertainty. It is 

to be noted that in the card problem resolution uncertainty is absent. It may be present, 

if one is asked to classify the input hand based on the image of the input hand taken by 

a camera. It is because there may be some ambiguity in identifying, for example, a card 

as a Heart or a Club due to the poor resolution of the image. In this thesis we are not 

considering resolution uncertainty. 

For the opening bid problem, we have chosen numerical representation of the object 

data. The raw input acts as a feature vector which is later refined. The structure present 



Table 2.2: Variations in players' bids. Sets of 80 hands were bid by human 

players. It can be observed that for every set, the players differed on a signifi- 

cant number of hands, suggesting that more than one correct bid may exist. 

in the feature space can be interpreted in terms of direct classification and classification 

through clustering. For the opening bid problem, we need to have some classifier with fast 

learning and quick classification capability in the presence of fuzzy, rough and probabilis- 

tic uncertainties. ANNs seem to be a possible candidate for this purpose. Conventional 

ANNs are not suitable to deal with fuzzy and rough uncertainties efficiently. Hence, 

in this thesis an attempt is made to develop hybrid learning models, where the neuro- 

computing paradigm is integrated with fuzzy and rough paradigms. Following this line, 

modular classification approach is adopted to deal with the uncertainties in the opening 

bid problem. The performance of the resultant model is evaluated in terms of error rate 

measure. 

No. of No. of hands for which 

who bid In numbers In % 

The next chapter explores the possibility of capturing the implicit relationship in 

bidding a Bridge hand using an artificial neural network. We study issues like the role of 

uncertainities in the opening bid problem, input representation, possible architectures for 

the network. 
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Chapter 3 

PRELIMINARY STUDIES ON BIDDING 

PROBLEM USING ARTIFICIAL 

NEURAL NETWORKS 

3.1 Introduction 

The objective of this chapter is to study different issues like the role of uncertainities, in- 

put representation, possible classifier architectures for the opening bid problem. Since it 

is not easy to find a recognizable structure in a hand pattern, we opted for numerical r e p  

resentations, rather than symbolic representations, to describe the classification process. 

Initially we at  tempted to construct a deterministic classification model for the opening 

bid system. It is because the deterministic model can be simple, and the representation 

problem for this type of model is the least. As a deterministic model, a crisp rule base 

approach is considered. To construct the rule base, we need to extract the rules of the 

following type from the expert bidders: 

If the input hand pattern is A J 9 3, K 8 4, K 7 4 3, A 9, then the output bid is 1 s  

When an input hand is used for testing, the hand is matched against the if part of each 

rule. The class label is indicated by the output class of the rule that fires. 

Extracting the rules from the experts are difficult because players normally use these 

rules only as a guideline, and often they make bids for which they cannot articulate their 

reasoning in terms of the given rules. For instance, for a hand containing 4 Spades and 4 

Diamonds, a rule may suggest opening IS, or possibly ID. But for the two hands given 

below, which are only slightly different, a player may choose different bids as 



This change comes because the player uses subtle reasoning process, and he is also con- 

cerned about his next bid. There are other patterns too in the hand for such a reasoning. 

For example, "K84" is a "support" for a possible bid of 2H by partner, while "K8" is not. 

"A94" in Clubs, on the other hand, is an openable suit if the hand has no five carder. One 

could possibly list all such possibilities as rules, but the number of rules will be too many 

(it is approximately the number of possible hands, i.e., 6.35 x 10"). Constructing, such a 

large rule base is an impossible task. If the size of the rule base is decreased to a moderate 

one, then the rule base cannot cover many hand patterns and situations. Consequently, 

when a hand pattern outside the rule base is encountered, the rule base approach fails to 

indicate the output. In other words, the system is not generalizable; it works just like a 

look-up table. 

The above drawback of the deterministic model motivated us to exploit uncertainities 

such that the classification system becomes robust and generalizable. The rule base 

works as long as the input comes only from the points of the input space at which the 

input-output relationship is defined. Let us call these points reference points. The model 

can be made more powerful, if we can assign some certainty factors (to belong to the 

output classes) on the neighborhood points of the reference points. Thus the input- 

output relation becomes defined for all the points in the input space. In this work, the 

neighborhood points are viewed as similar to the reference point, and hence, the certainty 

factors associated with the neighborhood points are expected to be close to that of the 

reference point. Thus fuzzy uncertainty is introduced in terms of similarity to make the 

problem generalizable. 

In order to incorporate the fuzzy uncertainty in the opening bid problem, we have 

used artificial neural networks (ANNs). The reasons behind choosing ANNs over other 

possible classifiers are various benefits like incremental learning, robustness, universal 

approximation capability. From section 2.2.4, we know that there are the following two 

possible schemes to use ANNs as classifiers: Direct classification and classification through 

clustering. We first experiment ANNs with direct classification techniques. For this study, 

we explore the possibility of training a multilayer feedforward neural network (FFNN) 

with backpropagation (BP) training algorithm [RHW86]. It tries to capture the implicit 

reasoning involved from several examples of input (pattern)-output (bid) pairs of data. 

In order to perform this study the following issues need to be considered: 

1. Collection of data. 

2. Representation of the hand. 



3. Interpretation of the output bid. 

4. Architecture of the network. 

5. Training of the network. 

The first issue deals with the collection of input data that have to be used for training 

as well as for testing. To collect variety of inputs, the collection of data should be random. 

Moreover, care should be taken to partition the data for training and testing so that both 

have similar probability distribution. Second issue is how to represent the input data on 

a machine. Although we have decided numerical representation for the input hands, there 

exist several possible numerical representations. The exact choice will be dictated by the 

classification performance with the representation. The third issue is the interpretation 

of the output results. It is quite possible that during testing the network produces a bid 

which is different from a player's bid. But, then the player should also decide whether the 

network bid is reasonable for the given hand. The fourth and fifth issues are regarding 

the type of the network and the training methodology that have to be used. These issues 

are discussed in this chapter. 

Initially, we at tempted to train a monolithic ANN for all the classes. But the network 

did not converge. One possible reason may be that the network was unable to handle, 

resolve and exploit the associated uncertainties globally. This problem may be reduced if 

the classification task is partitioned. Partitioning should be such that each subproblem is 

solved in a module by exploiting the local uncertainities and the results of all the modules 

are combined by exploiting the global uncertainities. To verify it empirically, we break the 

monolithic classifier into several modules using some domain specific knowledge, and test 

the classification performance of each model. The experiments conducted in this chapter 

advocate the use of a modular network instead of a monolithic network. 

The organization of the chapter is as follows: Section 3.2 discusses the representation 

of the problem. Section 3.3 demonstrates the performance of the feedforward neural 

networks with different architectures. 

3.2 Representation of Opening Bid Problem on Machines 

3.2.1 Data Generation and Collection 

The hands used for training the network were generated by a program which simulates 

shufEling of the cards. The distribution of the hand patterns generated by the program 



matches the distribution given in Table 3.1. A representative set of 19 hands are given in 

Table 3.2. Note that the hands which contain suits of maximum length 5 constitute about 

80% of all the hands. On the other hand, for the bids of 2H and 2S, the input may require 

the following features: A six card suit, with no singleton or void in the hand, about 8 to 

10 high card points, with most of the high cards in the bid suit. To successfully learn 

these bids, it is necessary to have a large number of these samples in the training set. 

It would mean a correspondingly large training set, and hence, a large training period. 

We have used a generating program to produce the hands according to a given set of 

constraints, for example, the length of the Heart suit should be at least 6 and the number 

of points should be at least 6. In this way, we can produce more hands for which we want 

the system to learn the patterns. The expert's bids were collected from the experts in 

IIT open Bridge Tournament, 1994. 

3.2.2 Representation of Input Patterns 

The inputs can be represented as a fifty-two dimensional raw data as shown in Fig. 3.l(a). 

Each component of this vector is either 0 or 1. The value 0 and 1 indicate the pres- 

encelabsence of the card in the hand. Since each player has thirteen cards, the number 

of 1's in the raw data is equal to thirteen. For example, the first hand in Table 3.2 and 

the corresponding input pattern vector are given by 

Hand: K753-K J8-K87-K76 

Input Pattern: 0100000101010010100100000001000011000000100000110000 

The input can also be represented in the form of feature patterns as shown in Fig. 3.l(b). 

These patterns are based on the evaluation of the strength of the hands by a bidding 

system. In this representation there are 16 components of the raw data vector, which can 

take values between -1 and +4. Thirteen components are used to represent the cards, 

while three are used as markers (-1) between suits. In this representation an attempt was 

made to feed some feature information in the form of relative weights given to  various 

cards. For example, on the cards Ace, King, Queen, Jack, 10, 9, 8, . . . , 2 we have assigned 

the following weights: +4, +3, +2, +1, +0.9, +0.8, +0.7, +0.6, . . . , +0.1. These weights 

were close to the points given to the cards in most bidding systems. 

Our initial experiments showed that the first representation is preferable. During 

training we found that the network converged with the first representation, whereas the 



Table 3.1: Distribution of hand patterns. Numbers under total sum up the 

values for all possible ways of choosing suits for the given pattern or shape. 
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Table 3.2: Sample hands generated by the shuffling problem. Bids are made 

by the authors, to illustrate the preparation of the training set. In this training 

set some less frequent hands are present which are generated specially to ease 

learning. "T" im 

r" 
lies the card number 10. 
Hands I points 

QT-76-AQJ752-AJ3 14 

A-KQ J9873-J98-T6 11 

AK842-AKT93-6-82 14 

Desired bid 

(by authors) 



Hand 1 - S : K753 
H :  KJ8  
D : K87 
C : K76 

4 

(a) Representation 1 (b) Representation 2 

Fig. 3.1: Illustration of input layer patterns for two hands. In representa- 

tion 1 the input is in raw form, while in representation 2 some features (high 

card points) have been extracted. The networks perform better with the raw 

information. 



feature based representation failed to converge in some cases. This is interesting because 

the information in the second case is in an interpreted or an abstracted form. It appears 

that abstraction from raw data, if not done properly, may not be useful for generalising 

the network. Experiments described in this chapter therefore use the first representation. 

3.3 Studies on Network Architecture and Training 

This section describes the development of the network architecture by trial and error 

procedure. The training algorithm was the BP algorithm. The input layer has 52 nodes, 

one for each card. Each node has a value 1, if the card is present, or 0, if the card is not 

present in the given hand. In the following, we describe our trial experiments for evolving 

a suitable ANN architecture for the bidding problem. 

Experiment with monolithic networks: An approach using 13 output nodes to c a p  

ture all the bids from Pass to 3s  was explored. Three nodes were assigned to the three 

levels of bids, five were assigned to the suits and one node was kept for "Pass" bid. Thus, 

for each input, except for a "Pass" hand, two output nodes are expected to be active, one 

for the level of the bid, and the other for the suit. The training set consists of 1000 hands. 

Different network architectures were examined. Two of them are (a) 30 and 20 nodes in 

the first and second hidden layers, and (b) 30 and 6 nodes in the first and second hidden 

layers. It was found that the network did not converge. This was probably because there 

were a large number of bids (some 2 level bids and all 3 level bids) for which very few 

training patterns were available. For the subsequent experiments, we decided to  use a 

simpler format for output nodes with one output node for each bid. Therefore, we used 

fifteen output nodes to study the network behaviour. This time also the network failed 

to converge. 

Experiment with 1-Level networks: To resolve the convergence problem, we reduced 

the number of output nodes to seven, by restricting the bids to 1 level only, including 

"Pass1' (P) and the "Unknown" (U) category bids. When the input is not from the first 

level bids, then the class label "Unknown" is assigned as the desired class label. The 

resulting network consists of 52 input nodes, 7 output nodes and one hidden layer. The 

number of nodes in the hidden layer was varied to study its effect on the performance. 

A training set of size 1000 is chosen. Table 3.3 gives the total sum of squared error for 

40, 45, 50, 55 and 60 hidden nodes. We observed that the network converged for various 

number of hidden nodes. The network with 50 hidden nodes gave the highest accuracy of 



Table 3.3: Mean square error of the 1-Level network after training. Here 52 

input nodes and 7 output nodes are used. The number of iterations is 5000, 

I hidden nodes I error I 

and the number of hands is 1000. 

69% correct bids on the test set, when compared with the bids made by an expert player. 

The test data consisted of 500 randomly generated hands. Some test results are given 

in Table 3.4 and 3.5. It should be noted that while evaluating the performance, if the 

output of the network was also acceptable by the expert player as a possible bid, then it 

was taken as a correct output. 

Experiment with 2-NT networks: We consider a network to include 2 level bids. 

Here, the number of output nodes is 12, one each for P, lC,  ID, lH,  IS, IN, 2C, 2D, 2H, 

2S, 2N and U. Initially we attempted to train the network with a training set conforming 

to the theoretical distribution of hand patterns. But the network could not be trained. 

The network was unable to learn the patterns for 2C, 2D, 2H, 2S, 2N bids since they are 

very rare. Obtaining suitable samples of such hands require large amount of training set. 

Instead we decided to selectively insert the patterns, which are rare, into the training set. 

Nearly 600 hands from the 2 level bids were added along with nearly 1000 hands from the 

1 level bids. As a result we obtained 1600 hands to train the network. This network was 

trained using five different architectures having 40, 45, 50, 55, and 60 hidden nodes. The 

mean square error of the network for this training set is shown in Table 3.6. The network 

with 50 hidden nodes gave the best performance. Results produced by the network are 

given in Table 3.5 and 3.7. The network has bid correctly for about 72% of the test hands, 

which were not part of the training set. Initially we planned to give only positive samples 

of hands for the bids which we wanted the system to make. But we found that for the 

system to perform well, we also had to give a large number of hands for which we did 

not want the system to make a bid. Hence, we introduced all those hands under the bid 

No. of Mean square 



Table 3.4: Bids made by the 1-Level network. Strong imbalanced hands 

are labelled "Unknown" for training purpose. However sometimes (e.g., the 

sample no. 2) the system did better by opening 1C. Also, in the sample no. 3, 

the network's bid seems to be better! The discrepancy in the last example is 

bids I network I 

also typical of human players. 
No. Hands Points Expert's 1-Level 



"Unknown" . 

Expe r imen t  w i t h  modula r  networks: In the bidding problem we have observed that 

a) large networks are difficult to train, b) a 1-Level network performs well, and c) a 2- 

NT network does not learn well because of lack of data for 2-Level bids. But, if specific 

data are added for the 2-Level bids, then it may perform well. From these results, it 

can be clearly observed that smaller networks are easier to train, and consequently they 

also perform better. Looking at  the task environment, one can see that all the bids 

made at  higher levels are specialized. In addition, they deal with hands that are less 

frequent. Hands with four card and five card suits are most common (80%) and the 

bidding systems are designed to use the cheaper (low level) bids for these hands. To 

design a complete ANN system would require sufficient training samples. I t  appears 

reasonable to consider the high level specialized bids as exceptions, and train different 

networks to deal with them. Thus one would have a modular structure of the network, 

each module catering to a specialized situation. Following this line, we employed one 

module for each level of output bids. Since output bids upto third level are present, we 

used total three modules. The first module is for the first level bids. It can classify Pass, 

lC ,  ID, lH ,  1s and IN. Similarly, the second module is for 2C, 2S, 2H, 2D and 2N. The 

third module is supposed to classify 3C, 3D, 3H and 3s. Note that none of the module 

has the output class "Unknown". For each module we used FFNN with one hidden layer. 

All the modules have fifty hidden nodes. Let the training sets for the first, second and 

third modules be called "Trainingset 1" , "TrainingSet2" and '"I'rainingSet3", respectively. 

The size of 'TrainingSetl7', "TrainingSet2" and 'TrainingSet3" are 1200, 700 and 400, 

respectively. These training sets will be used again in the subsequent chapters for the 

experiments. For all the modules the convergence was achieved during training. Three 

test sets "TestSetl" , "TestSet2" and "TestSet3" are formed to test the performance of 

the first, second and third modules, respectively. These test sets will be used again in 

the subsequent chapters to compare the performance of other networks. When the test 

data sets are presented to the first, second and third modules, the classification results 

are shown in Table 3.8, 3.9, and 3.10, respectively. The overall classification result of the 

third module is quite high compared to the other modules. I t  is because if the hand is 

strong, then Bridge players have less problem in giving the higher level bids. 



Table 3.5: The bids made by the 1-Level and 2-NT networks for some hands 

are shown. Bids made by two experts are also included. Bids marked "**" are 

incorrect. 

I 1 - I 1 bids 1 network I network I 

- -  " T  implies the card number 10. 
No. Expert's Hands 1-Level Points 2-NT 
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2 1 

22 

23 

24 

25 
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32 
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35 
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37 
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16 
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11 

11 

22 

11 

15 

10 
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16 

10 

14 

16 

12 

15 

9 

11 

15 

Table 
Hands 

(s)-(H)-(D)-(c) 

97-5-AKQ8754-AK2 

96542-AQJ2-AKQ7 

A J75-4K JT6-AKT8 

AgQJ86494KQJ9 

T8-AT5K976A874 

KQ-QJ7642-QJ92-T 

K87- J8-AKQ&AKQ2 

KT84KQT7-K63-T2 

AJ-Q64J42-AKJ85 

A632-3-96-KQJ863 

965-AT8762- J7-A9 

Q7-A74-A2-KQJ972 

3-T6-KT74AQ JT74 

AKJ3-982-J85-KQ5 

92-KQ6-Ag3-AQJ73 

94KQ3-AQT2-J632 

-A874-A JT52-AQT5 

2-JT86-AQT9864-Q 

K95-94-A852-AT83 

Q-A743-AJ5-A8732 

(Continuation) 
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2C, 1D 

IS, 1D 

ID, 1C 

lH, 1C 

IN, P 

P, 1H 

lC, 2N 
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lC,  1D 
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Table 3.5: (Continuation) 

No. Hands 

(S)-(H)-(D)-(C) 

Points 

12 

12 
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11 

11 
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'Ihble 3.6: Mean square error of the 2-NT network after training. 52 input 

nodes and 12 output nodes are used. The number of iterations and the number 

of hands are 5000 and 

I hidden nodes 1 error 1 

1600, respectively. 

'Ihble 3.7: Bids made by the 2-NT network. Many experts would open the 

No. of 

sample no. 4 with 2H, because the key feature - long solid suit is present. In 

Mean square 

the sample no. 8 the system has in fact done better by opening ID. In the 

sample no. 9 it possibly had to choose between "Unknown" and lC, since it 

does not know the 3N bid, which is very specialized. 
No. 

1 

Hands 1 Points / Expert's I 2-NT 

(s)-(H)-(D)-(c) 

K JT4QT9762-A-T3 10 

bids 

P 

network 

1H 



3.4 Summary 

The aim of the work reported in this chapter is to explore the possibility of capturing 

the reasoning process used in bidding an opening bid in Bridge game using an ANN. The 

network captures the implicit mapping in bidding a Bridge hand adopting a standard 

convention (bidding system) which acts as a guide or a weak constraint on the mapping 

function. We used an FFNN with BP algorithm as a classifier, whose input is a hand and 

the output is the corresponding opening bid. The input is represented as a series of 52 

onelzero where presence or absence of a card is denoted by 1 or 0. While experimenting, 

it turned out that the training of the whole network is time consuming. Moreover, in 

many cases the network do not converge at all. Possible reason may be that the network 

is not able to tackle the uncertainties. We adopted a modular structure to deal with the 

uncertainties. Three modules are used to deal with the first three levels of opening bids. 

The studies reported in this chapter demonstrate that a neural network can be trained 

to capture the implicit reasoning used for bidding a hand in the Bridge game. The 

present study clearly brings out several interesting research issues. The first issue is the 

representation of the input data. In situations like card games, representation in raw form 

appears preferable, as any feature representation is likely to be subjective and may result 

in loss of information. In contrast, in problems dealing with image and speech data, it is 

essential to represent the data in a manner that reflects the visual and auditory sensory 

processing, respectively. Errors in the feature representations are usually responsible for 

poor generalization performance in the pattern recognition tasks involving image and 

speech. The second major issue is training a network with patterns occurring with widely 

different probabilities. This is a difficult issue in many practical problems. For example, in 

optical character recognition different characters occur with widely different probabilities. 

Similarly, in speech recognition different speech sounds occur with different probabilities. 

This chapter demonstrates that modular networks can be used for the opening bid 

problem. The classification efficiency may further be improved if the feature vectors 

corresponding to each module are modified depending on the output classes present in the 

module. The discussion in chapter 4 is along this line. Chapter 5 and 6 will concentrate on 

how to design each module. In chapter 7 we will combine the results of all these modules. 



Table 3.8: Classification performance of FFNNs with BP algorithm for first 

level bids. 

'Pable 3.9: Classification performance of FFNNs with BP algorithm for second 

level bids. 

Pass 

85.12% 

'Pable 3.10: Classification performance of FFNNs with BP algorithm for third 

level bids. 

1C 

66.83% 

2C 

61.04% 

1D 

63.13% 

2D 

75.71% 

3C 

75.17% 

1 S 

71.82% 

2s 

77.56% 

3D 

77.28% 

1H 

77.16% 

2H 

72.33% 

3s 

83.54% 

IN 

64.52% 

2N 

74.34% 

3H 

84.97% 

Overall 

71.43% 

Overall 

72.19% 

Overall 

80.24% 



Chapter 4 

IMPORTANCE OF INPUT FEATURES IN 

CLASSIFICATION: ROUGH-FUZZY SET 

THEORETIC APPROACH 

4.1 Introduction 

In the last chapter a modular network architecture is advocated for complex pattern 

classification problems like opening bid problem. This chapter attempts to fine tune the 

input features specifically for each module so that the class discriminatory capability of 

the input patterns are enhanced. In order to accomplish it, the importance of each feature 

is quantified, and the input representation is biased accordingly. Therefore, this chapter 

deals with feature analysis. Ln actual Bridge game, players impose different weightages 

on each card. These weightages depend on the player, level of the game and many other 

factors, e.g., experience of the player, characteristics of the player, vulnerability, etc. This 

fact also justifies the quantisation of the importance of each feature for each module in 

the opening bid problem. 

In the modular structure, each module exploits the uncertainties locally, and spe- 

cialises to classify only a group of output classes. Since the class discriminatory property 

of all the input features are not same for different sets of output classes, the repre- 

sentation of each pattern for a particular module should be fine tuned based on the 

output classes present in the module. One way to accomplish it is to put different impor- 

tance on each feature. The input representation for each module can be biased so that 

the feature with higher importance gets more weightage. Determination of the impor- 

tance [SB97] [WAM97] is generally based on a criterion function and a search strategy. 

The search strategy chooses a set of importance among many possible sets of importance, 

while the criterion function decides whether a set of importance is superior to another 

set. The search techniques, that exist in literature, can be broadly classified into filter 

approach and wrapper approach [SB97] [WAM97]. The filter approach depends on a crite- 



rion function which is classifier independent. In contrast, the wrapper approach uses the 

classifier accuracy to judge whether a particular set of importance is superior to another 

set. The wrapper approach can be used only with the classifiers of low comp'utational cost 

like K-nearest neighbours (KNN) algorithm, decision tree, etc. In addition, the wrapper 

approach may cause overfitting as the learning algorithm is fitted by the change of input 

features [JK95]. We prefer the filter approach as this technique is generally applicable, and 

can be used with complex classifiers like feedforward neural networks with BP algorithm. 

Most of the classifiers classify a test input based on the fact that the more similar the 

test input is to the set of training patterns, the higher is the possibility that this test input 

belongs to the same class: Therefore, the similarity between the inputs is a crucial one. 

The input represent ation, leading to a reinforcement of similarities between the inputs 

from the same class and detoriation of the similarities between the inputs from different 

classes, may lead to enhancement of the classification performance. Following this line, 

in pattern recognition literatures [PC86], [TG74], an input feature s is considered to be 

important if the compactness and interclass distance of all the classes along the sth axis 

is high. In this chapter we attempt to exploit this criterion to measure the importance of 

each feature. The compactness of the classes are affected when the classes are overlapping 

and the patterns with the same sth feature have different class labels. In card games it 

indeed happens because the output bids are fuzzy and the output bids are not unique 

for the same card. It implies that the compactness of the classes can be estimated if 

we can quantify the roughness and fuzziness associated with the sth feature. In this 

spirit, a rough-fuzzy set [DP92] theoretic measure rough-fuzzy entropy is proposed as a 

criterion function. To measure the rough-fuzzy entropy, it is essential to know the fuzzy 

membership values of the training data in the output classes. Possibilistic K-means 

algorithm is proposed to accomplish it. 

As a search technique, an iterative method is adopted here. The iterative procedure 

starts assuming equal importance for all the features. At the first iteration, the value of 

rough-fuzzy entropy is calculated, and using it the set of importance is updated. In the 

next iteration the input features are weighted by this set of importance. The rough-fuzzy 

entropy is further calculated for this modified feature vector, and the importance are 

updated accordingly. The iterative method goes on until the criterion function attains 

a local minimum. Subsequently, the resultant set of weights is used to bias the input 

representation of each hand so that more important features get more weightages, and 

eventually result in a better classification. 



The organization of the chapter is as follows: Section 4.2 discusses fuzzy K-nearest 

neighbors algorithm. Section 4.3 embodies the proposed method. Section 4.4 illustrates 

the efficacy of the proposed method through some experiments. The basics of rough sets 

and rough-fuzzy sets can be found in Appendix-B and Appendix-C. 

4.2 Background of Fuzzy K-Nearest  Neighbors Algor i thm 

Fuzzy K-nearest neighbors algorithm (FKNN) classifies an input pattern x by assigning 

it a fuzzy membership value. The membership of x depends on a) the vector distance 

between x and the K-nearest (K is a positive integer) input training patterns, and b) the 

memberships of those neighboring training patterns in the possible classes. Let X = 

{xl, xa, . . . , x,) be a set of input training patterns for whom the corresponding member- 

ship assignments are already known. Let p,(xi) be the membership of the i th training 

pattern in the cth class and 1 5 K 5 n. The initial memberships on each training pattern 

can be assigned in the following two ways [KH85]: 

1. C r i sp  membership:  Each training pattern can have complete membership in 

their known class and nonmembership in all other classes. 

2. Const ra ined fuzzy membership:   h he K-nearest neighbors of each training 

pattern are found, and the membership in each class is assigned according to the 

following equation: 

, = { 0.51 + n j / K  if j = i 

0.49 otherwise 

The value nj is the number of the neighbours found which belong to the j th  class. 

This initialization technique fuzzifies the memberships of the labelled samples that 

are in the overlapping class regions. Moreover, the samples that are well away from 

the overlapping area, are assigned with complete membership in the known class. 

Consequently, an unknown sample lying in the overlapping region will be influenced 

to a lesser extent by the labelled samples that are also in the overlapping area. 

The algorithm to find the membership of a test pattern x in the cth class, i.e., p,(x), 

is shown in Fig. 4.1 [KH85]. In Equation (4.2) of Fig. 4.1, q determines how strongly the 

distance is weighted when calculating each neighbour's contribution to the membership 

value. Generally, the value of q is taken as 2. 



Set i=1. 

DO UNTIL (K-nearest neighbors of x are  found) 

Determine the  distance between x and xi. 

IF (i 5 K )  

Include xi i n  the  s e t  of K-nearest neighbors. 

ELSE IF  (xi is c loser  t o  x than any previous nearest  

neighbor ) 

Delete the  f a r thes t  of the K-nearest neighbors. 

Include xi i n  the  s e t  of K-nearest neighbors. 

END IF  

Set i = i + l .  

END DO UNTIL 

Set c = 1. 

DO UNTIL (x  is  assigned membership i n  a l l  classes) 

Determine pc(x) using 

Set c =  c +  1. 

END DO UNTIL 

Fig. 4.1: Fuzzy K-nearest neighbors algorithm. The input consists of a set 

of labelled patterns and a test pattern. The output is the class membership 

value of the test pattern. 



Lemma 4.1: In a C-class classification problem, the class membership assignments on 

the test patterns b y  the FKNN are constrained fuzzy. 

Proof. The membership of the test patterns are constrained fuzzy because the initial 

class membership values for the training patterns are constrained fuzzy. It  can be formally 

shown by the following steps: 

Since cF=~ ~ ( x k )  = 1' 

Consequently, the membership values assigned on each test pattern cannot distinguish 

between equal evidence and ignorance. 

4.3 Proposed Method 

4.3.1 Criterion Function 

In an N dimensional input pattern x E X, the sth feature is considered to be important 

if the compactness and the interclass distance of all the classes along the s th  (1 5 s 5 N) 

axis is high. A measure of compactness and interclass distance can be a criterion to 

measure the importance of the s th  feature. This measurement becomes complicated 

because two patterns x, and x, may be identical based on their s th  feature; but they 

may belong to two different classes. That is, the relationship between the s th  feature and 

the class labels may be a one-to-many mapping. This lack of discriminatory power of the 

feature is due to the fact that we are not considering'other features like the player's past 



experience, vulnerability, etc., into our account. In other words, we do not have sufficient 

amount of information about the problem. To determine the importance of the sth feature 

with such incomplete knowledge, the concept of rough set is helpful. In the terminology 

of rough set, two input patterns xu and x, are called indiscernible or indistinguishable 

with respect to the sth feature when the sth component of these two patterns have the 

same value. Mathematically, it can be stated as 

xURSx, iff xus = xVs (4.4) 

where R V s  a binary relation over X x X. Obviously, R V s  an equivalence relation. 

Therefore, Rs partitions X into a set of equivalence classes, namely {X:, Xi ,  . . . , X;). 

The sth feature alone is sufficient to classify all the input patterns to the cth class iff 

X/Rs, i.e., {X,9 , Xi,  . . . , X i ) ,  approximates the boundary of Cc accurately. In this case 

BNDR(Cc) = 0 or R' (c,) = R" (C,). It implies each X;, 1 < i 5 H, either belongs to the 

positive region of C, or negative region of C,. If this condition holds, the output class 

C, achieves a high degree of compactness and large interclass distance along the sth axis. 

Therefore, the extent to which X/Rs approximates the output class C, can be a measure 

of importance of the sth feature to classify the patterns to that class. 

In the opening bid problem the output classes are overlapping, and hence, C, is a 

fuzzy set. This brings the concept of a rough-fuzzy set. In the current context, a rough- 

fuzzy set (W(C,), &(c,)) is defined as follows: Lower approximates E ( C c )  and upper 

approximates Rs(Cc) of Cc are fuzzy sets of X/R" with membership functions defined 

by [DP92] 

PR.(c,) (Xi) = inf {PC, (x) I x E Xi) (4.5-a) 

Here, pE(cc)(X,) and pB(cc)(Xi) are the membership values of Xi in Bs(Cc) and 7;i'(cC), 

respectively. Since the number of training patterns is finite for all practical purposes, we 

can substitute inf by min and sup by max in (4.5-a) and (4.5-b), respectively. 

To measure the importance of the sth feature to classify all the input patterns into 

the cth class, we define rough-fuzzy entropy for the sth feature and the cth class as 

1 RE= -- C [Pi in pi + (1 - pi) ln(1 - pi)] 
H l n 2 .  c = l  

where pi represents either ~ R J ( ~ , )  - (Xi) or p ~ ( ~ ~ )  (Xi) throughout the equation. From (4.6), 

it can be noticed that 31: increases monotonically in [O, 0.51 and decreases monotonically 



in [0.5, 11. It reaches the maximum value when pi = 0.5 Vi,  and minimum value when 

pi = 0 or 1 Vi [PB95]. The lower the value of 74: is, the greater is the number of 

Xi's having pi x 1 or pi x 0, i.e., less is the difficulty in deciding whether X, can be 

considered a member of Cc or not. In particular, when pi x 1, greater is the tendency of 

Xi to form a compact class C, along the sth axis, resulting in less internal scatter along 

the sth axis. Moreover, when pi x 0, Xi is far away from the cth class, and hence, the 

interclass distance increases along the sth axis. On the other hand, when pi x 0.5, Xi 
lies in between Cc and the other classes along the sth axis. Hence, both compactness 

and interclass distance along the sth axis decrease. The reliability of a feature s, in 

characterizing the class C,, increases as the corresponding 3C: value decreases. Therefore, 

31; quantifies the importance of the sth input feature for the class Cc. We introduce total 

rough fuzzy entropy for the sth feature to quantify the importance of the sth input feature 

for all the classes. It is defined as 

Here PC is the weightage that has to be given to the cth class. One possible choice for 

PC is the a prion' probability of the cth class. Note that R q i e s  in [0, 11. Evidently, the 

more the value of 3C3 is, the less is the importance of the sth feature. 

The value of 31, depends on the choice of pi. When we take p; = p r ( ~ , )  (Xi), we are 

basically pessimistic as (4.5-a) involves min operator. Similarly, when we assume pi = 

p ~ i " [ ~ ) ( X ~ ) ,  we become optimistic as (4.5-b) involves m a  operator. In (4.7) these two 

choices result in the two extreme bounds for %*. It indeed depends on the application 

which one we should take as the importance [PP92], because (4.5-a) and (4.5-b) are 

equivalent to asking the question "to what extent {xJx E Xi) as a whole belongs to C,?". 

For example, in a quiz team if pi is the ability of the ith member, the ability of the team 

as a whole is m q ( p i ) ,  because if one member succeeds the whole team succeeds [PP92]. 

On the other hand, suppose a group of acrobats are standing in such a manner that all of 

them fall if any one of them falls. If p, is the stability of the ith member, the stability of 

the team as a whole is rnin,(pi). However, our concern also may be to obtain a measure 

in between these two extreme cases. Hence, we need some kind of aggregation operator 

in between min and max to generalize the definition of ?is. It can be conveniently done 

by Yager's ordered weighted average (OWA) operator [Yag93]. 

The term min in (4.5-a) measures the degree to which all the Xi's are classified to 

C,. Similarly, the term m a  in (4.5-b) measures the degree to which at least one X, is 



classified to C,. It is natural to consider other t-norm and t-conorm operators [KY95] in 

place of min and max, respectively. Using OWA operator "softening" is done by changing 

all to most and at least one to some. A mapping W: [0, :[IU +- [O, 3.1 is called an OWA 

operator if there exists a weighting vector w = [wl , w2, . . . , w,]' associated with W. The 

characteristics of the weighting vector w are 

1. wi E [0, 11, 

3. W(a1, a2, . . . , a,) = wl bl + w2b2 + . . + w,b,, where bi is the ith largest element in 

the collection al l  a2, . . . , a,. 

In [Yag93] Yager illustrated how different assignments of the weights allow implementation 

of different quantifiers. For example, wl  = 1 and wi = 0, Vi i # 1, provides the m u  

operator. On the other hand, w, = 1 and wi = 0, Vi i # u gives the min operator. 

Moreover, wi = Vi yields the average. It shows that the more the weights are near the 

bottom, the more AND-like the aggregation is, and the more the weights are near the 

top, the more OR-like the aggregation is. 

There are two special types of OWA operators wag931 [Cho95], which are useful for 

extending the concept of rough-fuzzy set. They are called S-OWA-AND and S-OWA-OR 

operators. The S-OWA-AND operator is defined by 

The parameter cr lies in the unit interval. The closer cr is to one, the more AND-like the 

aggregation becomes. In (4.5a) we can obtain the effect of S-OWA-AND operators by 

replacing min{pcC (x) I x E X i )  with 

On the other hand, the S-OWA-OR operator is for an OR like aggregation. This operator 

Here again the parameter /3 lies in the unit interval and the closer /3 is to 1, the more like 

a pure OR the operation is. In (4.5-b) we can obtain the effect of S-OWA-AND operators 



by replacing max(pcc (x) 1 x E Xi) with 

Thus the OWA operators generalize the definitions given in (4.5-a) and (4.5-b). Conse- 

quently, the definition of the criterion function given in Equation (4.7) is also generalized. 

4.3.2 Possibilistic K-Nearest Neighbors Algorithm 

To calculate (4.7), we need to determine the membership values pc(x) Vc Vx. Since 

the membership assignment should be possibilistic to extract the maximum advantage of 

fuzzy sets, we modify the FKNN algorithm to possibilistic K-nearest neighbors (PKNN) 

algorithm. Other than Equation (4.2), the steps of the PKNN algorithm are exactly 

similar to that of the FKNN algorithm. In the PKNN algorithm Equation (4.2) is modified 

as 

where tc is a parameter that decides the bandwidth of the membership, i.e., the point a t  

which pc(x) attains the value 0.5. One way to assign the value of n is by making it equal 

to the average distance between any two training patterns. The initial memberships can 

be assigned in the following three ways: a) Crisp initialization: As done in the case of 

FKNN. b) Constrained fuzzy initialization: As done in the case of FKNN. c) Possibilistic 

initialization: The initialisation can be possibilistic if certain domain specific knowledge 

is present. 

Lemma 4.2: For a C-class classification problem, the membership assignments of the 

test patterns in the PKNN are possibilistic even if the initial class memberships for the 

training patterns are crisp or constrained fuzzy. 

Proof.  



Since c:==, (a) needs not to be equal to a constant, the resultant classification proce 

dure is possibilistic [KY95] [PB95]. 

In the opening bid problem, the membership values of all the training patterns can be 

obtained in crisp form. The sole purpose of using the PKNN algorithm is to fuzzify the 

. crisp membership values of the training patterns in a possibilistic manner. All training 

pat terns are used to construct the PKNN algorithm. Now a training pattern is considered 

as a test pattern for the PKNN. The PKNN algorithm is used for only one iteration. 

The closest neighbor of any test pattern will be the pattern itself. The output of the 

PKNN algorithm will give the possibilistic class membership values of the test pattern. 

The possibilistic membership value corresponding to each training pattern can be found 

similarly. This technique is similar to obtaining a blurred image from a noisy image (i.e., 

image smoothing). 

Experimentally it is observed that the performance of the PKNN is comparable to 

that of the FKNN. However, the PKNN has an edge over the FKNN as the membership 

values generated by the first one is possibilistic, whereas the membership values generated 

by the later one is constrained fuzzy. 

4.3.3 Optimization Technique and Weight Update 

Depending on the importance of a feature, the feature is biased by assigning some weigh- 

tage on it. If the j th feature is very important, then the importance of the feature Ij is 

assumed to be close to 1. On the other hand, if the feature is redundant, then the value 

of Ij is taken as 0. The importance is found using an iterative procedure (see Fig. 4.2). 

The iterative process starts with the original input x = [xl, x2,. . . , xN]. The importance 

of each input feature is initially assigned as 1, i.e., at starting I = [I ,  1,. . . , 11. In the first 

iteration, the input features are weighted by I such that the modified feature vector be- 

comes y = I * x. Here the operation * signifies a component wise multiplication between 

the two vectors, i.e., I * x = [Ilxl, 12x2,. . . , I N X ~ )  The PKNN algorithm is applied on 

the modified feature vector (which is discrete) to determine the fuzzy class membership 

values. The change of importance AI1 = [AI:, AI;, . . . , AI;~ for the modified feature is 

determined using 

AI: = (1 - 317 Vs (4.14) 

Now the value of importance is updated as I = I*AI1. In the next iteration, the input 

features are weighted again using y = I * x. Since this modified input set is not dis- 



Feature 
biasing 

Fig. 4.2: Flow diagram to show how the feature weightages are determined 

iteratively using rough-fuzzy method. The training patterns are the inputs to 

the flow diagram. The importance I is the output of the of the flow diagram. 

I * x implies [ I ~ X ~ ,  I ~ X ? ,  . . . , INXNj .  

I 

crete, it cannot be used directly to calculate the rough-fuzzy entropy. It is discretized by 

Input 
x 

rounding each feature value to the closest integer value. The fuzzy membership values 

Possibilistic KNN 

Weight update 

corresponding to the modified feature vectors are reevaluated from the PKNN algorithm. 

Discretisation 

C 

These membership values are used to calculate the rough-fuzzy entropy. Again the change 

of importance (A12) is determined, and the importance is updated as I = I * A12. The 

iterative process is continued until a local minimum is reached, i.e., there is no significant 

----b. -+ 

change in the value of 

Determination of 
rough-fmy 

entropy 

3 

Finally the modified feature vector is y = I * x ,  where I is the importance af- 

ter the final iteration. The complete algorithm is shown in Fig. 4.3. Appli- 

cation of this method will result in more impact on the distance measure by 

the important features. For instance, the distance between the modified feature 

vectors yi and yj is d(yi, yj) = J ( w ~  - yjl)? + (yi2 - yj2l2 + . . . + (yiN - yjN)2 = 
J~;(xil - ~ ~ 1 ) ~  + 1;(xi2 - ~ ~ 2 ) ~  + . . . + I&(xiN - z ~ ~ ) ~ .  If Iu >> I" VV # u and U, v E 

{1,2, . . . , N), then the value of d(yi, yj) will be dictated by the uth feature only. 

4.4 Results and Discussion 

Before using the proposed method on the opening bid problem, we will show the ef- 

fectiveness of the proposed method on some artificially generated two-dimensional data 

sets. 



Initialize I as an N-dimensional vector [1, 1, . . . , 11. 
Set i  = 1. 

Assign the maximum possible value of H, i .e., N to H. 
DO 

%old = % 

Find modified feature vectors using y=x*I. 

Discretize the modifies feature vector. 

Use PKNN to determine the fuzzy memberships of the 

training patterns to all the classes. 

FOR feature s = 1  to N 

FOR class c = 1  to C 

Compute H: from (4.6) . 
Calculate the a pra'ori probability PC. 

END FOR 

Compute 31' from (4.7) 

Determine AIi using (4.14) . 
END FOR 

Compute I = l*AIi. 

Set i = i + l .  

Compute 31 from (4.15) . 
END DO UNTIL abs(?i0ld - H) is larger than certain prespecif ied 
constant 

I stores the importance of all the features. 

Fig. 4.3: The proposed algorithm to determine the importance of input fea- 

tures using the rough-fuzzy entropy. The input to the algorithm is the set 

of training patterns and the output of the algorithm is the importance of the 

features. The term abs(x) represents the absolute value of x. 



Table 4.1: Importance of features against the number of iterations for the 
data set shown in Fig. 4.4. 

1 No. of I Importance I Importance / 

For the first experiment we use the 2-Class data set shown in Fig. 4.4. The data is 

discrete. The number of inputs is 120, and the dimension of each input is two. In the 

data set, some patterns from the class C1 and C2 are present with the same x1 value. 

Hence the classes are indistinguishable based on XI. It creates rough uncertainty. On the 

other hand, the feature 22 is sufficient for classification. We used PKNN to determine the 

possibilistic membership values of the inputs. Since the overlaps between the classes are 

minimum, the generated memberships are almost crisp. The parameter PC of the PKNN 

is made equal to the fraction of the number of training patterns in the cth class to the 

total number of patterns. The importance of each feature is found by using a! = 0.5. 

Fig. 4.5 shows the change of total rough-fuzzy entropy against the number of iterations. 

The iterative process converged within 5 iterations. The importance of both the features 

after each iteration are normalized. Otherwise after a certain number of iterations, the 

importance will be so small that roundoff error will take place in digital computers. The 

change of importance (normalized) is shown in Table 4.1. The final importance for xl 

and 22 are 0 and 1, respectively. The final importance for xl (or x2) is obtained by 

multiplying all the entries present in the first (second) column of Table 4.1. The value of 

final importance indicates that the feature x l  is redundant and the feature x2 is essential. 

It tallies with our visual observation also. 

iterations 

1 

The next experiment is on the data set of a 2-class problem. The number of inputs 

is 140, and the dimension of each input is 2 (see Fig. 4.6). The features are all discrete. 

In this problem the output classes are indistinguishable with respect to the feature XI. 

The classes are quite separable with respect to the feature xl. Unlike the data set shown 

in Fig. 4.4, here the output classes are overlapping to some extent. The possibilistic 

membership values are determined using the PKNN. The importance of each feature is 

of x1 

1 .oooo 
of 22 

1.0000 



Fig. 4.4: Artificially generated input data set for the first experiment. The 

horizontal and vertical axes represent the feature xl and x2, respectively. The 

points with the symbols '+' and '.' represent the patterns from the classes 

C1 and C2, respectively. The classes are indistinguishable with respect to the 

feature XI. But the classes are distinguishable with respect to the feature 22. 



No. 01 itetaticns 

Fig. 4.5: Change of total rough-fuzzy entropy with the number of iterations 
for the data set shown in Fig. 4.4. 

found by using a = 0.5. Fig. 4.7 shows the change of total rough-fuzzy entropy against the 

number of iterations. The iterative process converges within 25 iterations. The change 

of importance after each iteration is shown in Table. 4.2. The final importance of the 

features xl and xz are 0.0511 and 1.0000, respectively. It implies that the feature XI is 

not an important feature. 

Next we apply the proposed method on the opening bid problem. We initially collected 

a set of patterns with class labels corresponding to first level bids. The crisp membership 

value corresponding to each pat tern is known. The possibilistic membership of each input 

pattern is determined by using the PKNN algorithm. In the PKNN, PC is taken as the 

fraction of the number of training patterns in the cth class to the total number of patterns. 

The importance of each feature is found by using a = 0.7. Instead of a = 0.5, we have 

kept cu = 0.7 so that the calculation becomes slightly optimistic. The iterative process 

was continued for 25 iterations. The value of rough-fuzzy entropy against the number 

of iterations is shown in Fig. 4.8. The ranking of the features, as given by the proposed 

method, in a decreasing order is: UA, OK, /A, UA, OA, 4 Q ,  4 K ,  49 ,  OK, 07 ,  OQ, 
O9 ,4T ,  4 2 , 0 5 ,  U4,/5, . . . , 03, 4T, . . . , 08, /8 ,04,)2  (here 'T" represents 10). It 

implies that for the first level bids, Ace, King, Queen, Jack cards are more important, 

which is also as per the notion of Bridge players. Thereafter, we took "TrainingSetl" 



Fig. 4.6: Input data set for the second experiment. The horizontal and 

vertical axes represent the features x l  and 22, respectively. The points with 

the symbols '+' and '.' represent the patterns from the classes Cl and C2, 
respectively. The classes are indistinguishable with respect to the feature XI. 

But the classes are distinguishable with respect to the feature x2. 

5 10 15 20 25 
No. d ilarabons 

Fig. 4.7: Change of total rough-fuzzy entropy with the number of iterations 

for the data set shown in Fig. 4.6. 



Table 4.2: Importance of features against the number of iterations for the 

data set shown in Fig. 4.6. 
p Importance 

of XI 

Importance 

of x2 



Table 4.3: Classification performance of FFNNs with BP algorithm for the 

to train to train a three layered FFNN by backpropagation algorithm. This is the same 

training set that we used in chapter 3 to train the FFNNs for first level bids. Each 

component of a pattern of this set is multiplied by the corresponding importance. The 

number of input nodes, hidden nodes and output nodes are 52, 50 and 6, respectively. We 

used the set "TestSetl" for testing. While testing also we use the modified representation 

for the test patterns. The class corresponding to a test pattern is chosen as the label 

corresponding to the output node with the highest output. With the original input 

representation, the network takes 2000 iterations to converge, whereas with the modified 

representation the same network takes 1650 iterations to converge, which is significantly 

better. Overall classification performance on the same test set with the original (raw) 

and modified representation are given in the first and second rows of Table 4.3. 

first level bids. 

Similarly the proposed method is used for the bids of second and third levels. The 

training sets "TrainingSet2" and "TrainingSet2" are again considered to train the modules 

for the second and third level bids, respectively. The importance are used to weight the 

patterns of the training sets. These weighted patterns are used to train FFNNs with BP 

algorithm. The FFNN for the second level bids has 52 input nodes, 50 hidden nodes 

and 5 output nodes. The FFNN for the third level bids has 52 input nodes, 50 hidden 

nodes and 4 output nodes. The classification results for the second and third level bids 

on "TestSet2" and "TestSet2" are given in the second row of Table 4.4 and 4.5. The first 

row of Table 4.4 and 4.5 show the classification results when the original input (raw) 

is fed to the network. The comparative results show a significant improvement of the 

classification results. 

Input 

Raw 

Modified 

4.5 Summary 

This chapter proposes a filter-type feature weighting method. Since the class discrimina- 

tory property of all the cards are not same to classify an input hand, the representation 

Pass 

85.12% 
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66.83% 
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71.82% 

70.01% 

1N 

64.52% 

69.92% 

Overall 

71.43% 

74.34% 
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Fig. 4.8: Change of total rough-fuzzy entropy for the data set with first level 

bids. 

Table 4.4: Classification performance of FFNNs with BP algorithm for the 

second level bids. 
I Input 1 1  2C 1 2D 1 2s I 2H ( 2N I Overall 1 

Table 4.5: Classification performance of FFNNs with BP algorithm for the 

Raw 

Modified 

third level bids. 
I Input 1 1  3C I 3D I 3s  I 3H I Overall 1 

61.04% 

67.45% 

I Raw 1 1  75.17% 177.28% 83.54% '0 84.97% '0 80.24% 1 
I Modified 1 1  85.14% 1 79.43% '0 82.46% '0 85.11% I 83.03% I 

75.71% 

76.88% 

77.56% 

78.19% 

72.33% 

75.43% 

74.34% 

74.98% 

72.19% 

74.59% 



of each input pattern should be biased based on the importance of each card. This ne- 

cessitates a way to measure the importance of each card, i.e., each feature, individually. 

A filter type approach, which does not depend on the classifier being used, is employed. 

As a criterion function, rough-fuzzy entropy is used. The criterion function is optimized 

iteratively. To determine the fuzzy membership values of the training patterns, other 

than the PKNN algorithm we could have used other fuzzy classifiers that do not need any 

a prion' information about the structure of the data. 

For different values of a and P we get some interesting results. For example, if 
1 a = 0 or P = 0 in (4.9) and (4 - l l ) ,  then PR~(C.)(X,) - = p ~ ( ~ = ) ( X i )  = iq pcC(x) 

VX E X,. R o m  Equation (C.2) in Appendix-C, it can be observed that CxEXi pcC (x) 

is equal to the rough-fuzzy membership function of x for the output class C,. Therefore, 

the rough-fuzzy entropy in Equation (4.6) is equal to the rough-fuzzy entropy proposed 

in [SY] [SY98d]. In the absence of roughness, each input will be labelled always with 

unique class label. In this case, if there is no repeatation of any input, then the num- 

ber of equivalence classes will be equal to  the number of input da ta  and pg.(cC) (Xi) = 

~ R ( ~ ~ ) ( X ~ )  = pcC(xi). Thus, the rough-fuzzy entropy for the cth class and the s th  feature 

becomes 

I t  is explicitly the fuzzy entropy proposed for feature selection in [PC861 [Pa192]. If no 

fuzziness but roughness is present, then pBd (cc) (Xi) is actually the rough membership 

function for any pattern x E Xi (see Equation (B.l) in Appendix B). Then the pro- 

posed rough-fuzzy entropy can be compared with the definition of rough entropy given 

in [PWZ88] and [SY]. 

The advantages of the proposed method are 

1. I t  exploits roughness and fuzziness simultaneously. 

2. I t  is moderately fast. 

3. If we seek to find the importance of the features in terms of intervals, then we 

have t o  run the algorithm twice with p, =pE(cc) (Xi) and pi= pK(c,) (Xi). The 

importance of the sth feature is an interval [u, v], where u and v are the importance 

with pa (cC) (Xi) and (Xi), respectively. Appropriate point in the interval 

can be chosen based on the given problem. Instead of an interval, by taking a 

specific value as an importance of the feature, we lose some information. In this 



chapter we have adopted a specific value as an importance as processing of the 

interval may be complicated in the next stages. 

4. For feature selection, a threshold value can be chosen for the importance. All 

features with importance lesser than this threshold value will be ignored. 

5 .  I t  does not depend on the type of the classifier used in the feature analysis stage. 

It does not need significant domain dependent knowledge. 

The drawback of the method is that the resultant importance may not be globally opti- 

mum. 

For the sth module, the derivation of the modified feature vectors using the proposed 

method is a mapping from an N dimensional discrete space to an N dimensional con- 

tinuous space. For the sth module, we need to find the relation from the continuous N 

dimensional space to n, dimensional continuous space (assuming that the sth module 

has n, output classes). In the next two chapters we propose two alternative schemes to 

capture this relation. 



Chapter 5 

DESIGN OF CLASSIFIER MODULES 

THROUGH DIRECT CLASSIFICATION 

5.1 Introduction 

In this chapter an attempt has been made to build a module using direct classification 

techniques. The aim is to capture the relationship between the modified feature vectors 

and the fuzzy output classes of the module. For each module, this chapter proposes FFNNs 

with the BP learning algorithm that minimizes certain fuzzy objective functions from 

possibilistic classification viewpoint. After training, if a new input pattern is presented 

to the network, it yields the outputs as class membership values corresponding to the 

input pattern. The classification performance of the FFNNs can be improved further if 

the networks are configured optimally. To configure the FFNNs, the BP algorithm with 

the fuzzy objective functions is embedded into a stochastic search operation. 

When the output classes are fuzzy, an input pattern may not necessarily belong to 

a single class; rather it may belong to more than one class with different degrees of 

belongingness. The conventional BP learning algorithm is not tailored to this type of 

fuzzy classification problem. Section 5.2 makes an FFNN powerful by proposing a method 

to embed fuzzy classification properties into the conventional BP learning algorithm. In 

section 5.3 we use evolutiona y programming (EP), a multipoint, controlled, stochastic 

search and optimization technique, for finding the optimal configuration of the FFNN. 

Training and configuring the FRNN involves local as well as global search in the parameter 

space. EP is good for global search, whereas it is slow for local search. Although gradient- 

based search techniques like BP algorithms are quite fast for local search, they may get 

stuck in local minima while exploring a search space globally. We combine the BP and EP, 

and exploit the advantages of both. Efficiency of this hybrid method is further enhanced 

by incorporating the concepts of adaptive structural mutation. 



5.2 Feedforward Neura l  Network Classifiers: Backpropagat ion Learning Al- 

gorithm w i t h  Fuzzy Objective Functions 

A major drawback of the conventional BP algorithm is that it assigns each input pattern 

exactly to one of the output classes, assuming well-defined class boundaries. In real life 

situations boundaries between the classes may be overlapping. This section proposes a 

met hod of incorporating fuzzy classification properties into the conventional BP learning 

algorithm. In the opening bid problem, the inputs are modified feature vectors (crisp) 

and the output classes are fuzzy. An input pattern may not necessarily belong to a single 

class; rather it may belong to more than one class with different degrees of belongingness. 

Unlike the conventional BP, here the number of target classes corresponding to each input 

training pattern may be more than one. The aim of the proposed learning algorithm 

during training is to minimize an error term, henceforth termed as fuzzy mean square 

error. The fuzzy mean square error is the overall weighted sum of the square error 

between the actual network output and all possible target outputs, where the weight 

signifies the level of belongingness of the input pattern into the corresponding target 

class. If a modified feature vector is presented to the network after training, it yields the 

output as class membership values corresponding to the input pattern. We also propose 

another learning algorithm that tries to minimize an alternative error term, called fuzzy 

cross entropy, which is a fuzzy counterpart of crisp cross entropy [Hay94]. Although the 

learning algorithms for the fuzzy mean square error and fuzzy cross entropy differ, the 

basic philosophy of introducing the concept of fuzzy classification into the crisp error 

measure is same. 

The sum of one's belief that a particular bid is from the class 1C or ID  is not neces- 

sarily equal to one. Hence the proposed learning algorithm is derived in such a manner 

that the sum total of the membership values for a particular pattern to all the classes 

need not necessarily be equal to one. It  implies that the membership assignment is not 

constrained fuzzy [PB95]; on the other hand, it is possibilistic [PB95]. In the case of 

constrained fuzzy membership assignment, we show that the learning algorithm, given by 

Pal and Mitra [PM92], is equivalent to the proposed algorithm. In addition, when the 

classification is crisp, the proposed learning algorithm reduces to the conventional BP al- 

gorithm. Thus, ' the possibilistic approach of the proposed algorithm leads it to encompass 

both constrained fuzzy classification and crisp classification. 



sth Module 

Fig. 5.1: A typical fully connected feedforward neural network with two input 

nodes, three hidden nodes and two output nodes. 

5.2.1 Architecture of Feedforward Neural Networks 

Let the training set in a C-class problem consists of vector pairs {(y 1, z l) ,  (y2, z2), . . . , 
(yn,zn)) ,  where y, E RN refers to the uth modified feature vector and z, E {t,l c = 

1 ,2 ,  . . . , C; t, E 9Ic) refers to the target output of the network corresponding to  this input. 

Specifically, if y, is from the kth class, then z, = tk, where tkk = 1 and td = 0 Qc, c # k. 

The network used here is a multilayer feedforward network, which can have several 

hidden layers. Without loss of generality, the number of the hidden layers can be assumed 

to be one with H hidden nodes. When a modified feature vector y, = [yul, yu2,. . . , yuN] 

is applied a t  the input layer of the network, the input units distribute the values to the 
1 hidden layer units. The output of the j th  hidden unit is okj= f)(netkj) = l+exp(-nn:,), 

N 
where netkj = C w:,yUi+8:. w:, is the weight of the link from the ith input node to the j th  

i=l 

hidden node. Here, 8: and f) are the bias term and transfer function of the j t h  hidden 
1 node. Similarly, the output of the kth output node is o:, = f;(net:,) = l+,p(-ne,,k), 

where net:, =C;=, w& fT(net4) + 8;. The superscripts h and o refer to  the quantities in 

the hidden and output layers, respectively (see Fig. 5.1). 

5.2.2 Training of Feedforward Neural Networks 

The adaptive parameters of FFNNs consist of all weights and bias terms. The sole purpose 

of the training phase is to determine the optimum setting of the weights and bias terms 



so as to minimize the difference between the network output and the target output. This 

difference is referred to as training error of the network. The error measure can be fuzzy 

mean square error, which is a fuzzy counterpart of the mean square error [Hay941 used in 

the conventional BP algorithm. 

In the conventional BP algorithm, the mean square error for the uth input pattern is 
C 

defined as Eu = k , l ( t u k  - o:,)~. The use of Eu as an error term is justified when each 

input pattern belongs to only one class. But, in fuzzy classification the input pattern 

may belong to more than one class with different degrees of belongingness. It  implies 

that the target value of an input pattern may be more than one. In other words, each 

input pattern can have all possible target values with different membership values (certain 

membership values may be zero also). Through training, the network attempts to reach 

those target values weighted by different membership values. In other words, the problem 

of training can also be conceptually viewed as a fuzzy constraint satisfaction problem. 

Here the constraint is that each input pattern should belong to a particular class, and the 

associated membership value signifies to what extent this constraint should be satisfied. In 

the training phase, the proposed network adapts the parameters so that these constraints 

are resolved optimally. For the uth input pattern the constraints can be mathematically 

expressed as the fuzzy mean  square error. It is defined as 

Here the index of p ,  i.e., q E [0, oo) controls the amount of fuzziness present in the 

classification. Different values of q signifies to what extent the constraints should be 

satisfied. When q is equal to zero, each input pattern tries to attain all the target outputs 

with equal importance, and ultimately the network learns the mean of all the class centers. 

When q is greater than one, the constraints associated with the high membership values 

get more importance to be resolved. When q tends to be infinity, only the input pattern 

that belongs to a class completely, i.e., with membership one, is learned. That  means, at 

q oo and 0 5 pc(yu) < 1 Vc, E,f is equivalent to the conventional mean square error 

Eu. Specifically, the larger the value of q is in [0, CQ), the less fuzzier are the membership 

assignments. As a consequence, E,f decreases strictly towards zero as q increases in [ I ,  oo) 

for 0 < pc(yu) < 1 VC. 

Lemma 5.1: E,f i s  a monotonically decreasing function for 0 < pc(yu) < 1 Vc and 

Q E [ l l  4 .  



Proof. Differentiating &,f with respect to q we get 

With the usual convention that x ln(x) = 0 if x = 0, we have [pc(yu) ln(pc(yu))] 5 0 and 

[pz-l (Y.) (tck-o;k)2] >_ 0 Vc, k. Both the inequalities being strict whenever 0 < pc(y,) < 1. 

Hence, when 0 < pc(yu) < 1, strictly decreases [Bez81] on every finite interval of the 

form [I, b] with 1 < b. 

On the other hand, when q is less than 1, the constraints associated with the high 

membership values get less importance to be resolved. Thus, q controls the extent of the 

membership sharing between the fuzzy classes. This can be good; on the other hand, one 

must choose q to actually implement it. In our work q is assumed to be one. The role 

of q is quite similar to the index of fuzziness in the concentration and dilation operators 

(found in fuzzy hedge) [KF93], and the index of fuzziness in fuzzy K-means clustering 

algorithm [Bez81]. 

Next, we derive the learning laws for the network following the same method as 

followed in the conventional BP algorithm [Hay94]. Here, we assume that the weight 

updating Aw takes place after the presentation of each input pattern. Assuming the use 

of same learning-rate parameter 7 for all the weight changes made in the network, the 

change of weights for wkj and wj; are calculated in accordance to  the gradient-descent 
a ~ f  rules: A w b  = - 7 + -  and Aw:, = 
&kj -7%. 

C 
Lemma 5.2: A W ~  = 7 6 ~ ~ 4 ~  and AW:; = 76tj yui where 6tk= pi(yu) - c p!(y,)o~~ 

c=l 

otk (1 - oEk) and 6tj =f:(nettj) Cf=, 6Ekwij. 
I 

Proof. The expression for & can be derived as 



Since tkk = 1 and td = 0 Vc # k, 

Therefore, 

I C 
where 'Ek = P ~ ( Y U )  - C P : ( Y U ) ~ ; ~  0Ek(1 - oEk). 

c= 1 

h j i  

I 
Again, the expression for % can be found as follows: 

Following the steps involved in deriving Equation (5.8) from Equation (5.5), we can write 

Hence, 

Finally we can state 

where btj = /)(nettj) cF=~ 6Ekwe. 



Therefore, 

Now, we generalize the other error measure, i.e., cross entropy. For the uth input 

pattern, the cross entropy is defined as 

Since tuk is either zero or one, we can rewrite the above definition as 

C 

Following the same logic, as we used to justify the use of the fuzzy mean square error in 

the place of mean square error, we can generalize 31, to its fuzzy counterpart, called fuzzy 

cross entropy. The fuzzy cross entropy is defined as 

It  is trivial to show that for 0 5 pc(yu) 5 1, 31; reduces to 31, at q z oo. Here, q controls 

the amount of fuzziness in a similar way as it does in Equation (5.1). Consequently, like 

Lemma 5.1, 3tf decreases strictly to zero as q increases in [I,  oo) for 0 < pc(yu) < 1 Vc. 

Lemma 5.3: 3tf is a monotonically decreasing function for q E [I ,  oo) and 0 < pc(yu) < 
1 vc. 

Proof. For q > 1, 

With the usual convention that xln(x) = 0 if x = 0, we have pc(yu) ln(pc(yu)) 5 0 and 

(-tck ln(otk) - (1 - tck) ln(1 - o&)) 2 0 Vc, k.  It  implies, 31; decreases monotonically in 

q E [ I ,  oo). First inequality becomes strict when 0 < pC(yu) < 1. For the fuzzy cross 

entropy to be a well-defined criterion, we must have the additional constraint 0 < oEk < 1 

on the outputs of the neural networks. Therefore, 31; can be zero only when tck is equal 

to zero and one, simultaneously; which is impossible. Therefore, when 0 < pc(yu) < 1, 



31; decreases monotonically in a strict manner on every finite interval of the form [I ,  b] 

w i t h l < b .  

Lemma 5.4: 

ax; C 

(5.23-a) 
c= 1 

ax; C C 
nwh. = 7- - '' awfi - 7f(netkj)iiui k= C 1 [P;(Y.) - C= 1 1 pz(yu)o:k 1 wi j  (5.23-b) 

Proof. To find $, we differentiate Equation (5.21) with respect to w b .  

Using the identity (5.14), 

ax; C - = - [  awe, Y - ouj 
c= 1 l h  

The value of % can be calculated as 

ax; c C 

k=l c=l 
h(net:k)w~i;"(net$)y~i (3.28) 

Applying the identity (5.14), 

Therefore, by introducing the fuzzy concepts in the usual BP error measures, we can 

obtain a large class of learning equations. Although the exact formulation of the learning 



equations for the fuzzy mean square error and fuzzy cross entropy differ, the underlying 

concept of introduction of fuzziness into the usual error measures is same. 

To make the learning faster, the learning rate can be increased or decreased dynami- 

cally as the learning algorithm progresses. In addition, momentum term can be used for 

faster learning. 

Now, we illustrate the following particular cases of the proposed learning algorithms. 

I .  Crisp classification: In the case of crisp classification only one component of 

p:(yu) Vc = 1 , .  . . , C is one and the remaining components are zero. Thus, the 

expression for EL reduces to the following expression: 

i c c  

which is the mean square error term found in the conventional BP  algorithm. Con- 

sequently, in a crisp case the learning equations based on the mean square error 

and fuzzy mean square error become identical. It can be verified easily by makicg 

the membership assignments in Equation (5.18-a) and (5.18-b) crisp. 

Similarly, in the case of crisp classification, the fuzzy cross entropy reduces to the 

conventional cross entropy, and consequently, the learning equations for the cross 

entropy and fuzzy cross entropy become same. 

2. Constrained fuzzy classification: When C p c ( y u )  = 1 Vu and q = 1, the 
C 

learning equations (5.18-a) and (5.18-b) achieve simpler forms as follows: 

L 
where d:, = [W(Y.) - otk] otk(l  -o:~) and btj = f:(net:j) C d:,wij. This particu- 

k = l  
lar version of the proposed algorithm is available as the learning algorithm proposed 

by Pal et  al. in [PM92]. Note that we are not considering Pal et  al.'s algorithm 

with fuzzy linguistic inputs; rather we are considering it with crisp inputs. 

For Cc pc(y,) = 1 Vu and q = 1, the learning equations (5.23-a) and (5.23-b) can 

be simplified to 



This particular case of the learning algorithm is derivable from a variant of Pal et 

al.'s cross entropy [PM92], i .e., '+l,Pa' = (pk (yu) ln(otk) + (1 - pk (yu)) ln(1 - o;,)). 

This result is quite obvious as the definition of the fuzzy cross entropy reduces to 

Pal et al.'s cross entropy when q = 1 and Ccpc(yu)  = 1 Vu. This claim can be 

proved from the following Lemma. 

Lemma 5.5: 'H,f = X,pa' when Ccpc(yu)  = 1 Vu and q = 1 

Proof. When q = 1 and c:=, pc(yu) = 1, 

Since tkk = 1 and tck = 0 Vc # k, 

In the case of constrained fuzzy approach, pk(xU) + C~=llc,k pc(yu) = 1, and hence, 

Thus, being possibilistic in nature, the proposed algorithm encapsulates various BP 

algorithms based on crisp as well as constrained fuzzy classification. 

5.2.3 Testing of Feedforward Neural Networks 

The network learns the fuzzy boundaries between the classes after training. Ln this stage, 

a separate set of test patterns is given as the inputs to the network. Generated outputs 

are the class membership values corresponding to the test inputs. 

Note that,  the network with the proposed learning algorithm is a universal approxi- 

mator [HSW89]. 



5.2.4 Results and Discussion 

We employed the BP learning algorithms with the fuzzy mean square error (or fuzzy cross 

entropy) to train FFNNs for first, second and third level bids. The inputs are modified 

feature vectors. The number of input nodes for all the FFNNs are 52. The number 

of hidden nodes for all the FFNNs are chosen as 50. We have chosen the number of 

hidden nodes as 50 because we have observed in chapter 3 that the performance of the 

networks is good with.50 hidden nodes. The value of q is chosen as 1. The learning-rate is 

adaptively changed in the following way: If the error decreases during training, then. the 

learning-rate is increased by a predefined amount. In contrast, if the error increases, then 

the learning-rate is decreased and the new weights and errors are discarded. As a result, 

the error always decreases or stays as it  is. The momentum is kept 0.5 throughout the 

process. We adopted the strategy of picking the output node with the highest activation 

value as the output class corresponding to an input. 

For the first level bids, the FFNN has 6 output nodes. We used the same training 

and test sets as we used in chapter 3 and 4 (i.e., "TrainingSet 1" and "TestSet 1"). While 

using the fuzzy mean square error, the convergence was achieved within 1570 iterations 

(Fig. 5.2Top). Using the fuzzy cross entropy, the network took 1400 iterations to  converge 

(Fig. 5.2Bottom). The error values shown in Fig. 5.2Top and Bottom are the average of the 

error values with five different network initializations. From these figures, it appears that 

the convergence property of FFNNs with fuzzy cross entropy is slightly better than that 

of fuzzy mean square error. In chapter 4, we found that FFNNs with crisp BP converge 

within 1650 iterations. Therefore, the BP algorithm with fuzzy objective functions offers 

slight improvement in the convergence property for the first level bids. In the first row 

of Table 5.1, we have rewritten the classification performance of the conventional BP 

algorithm with crisp mean square error (from Table 4.3). Classification efficiency of 

the network with fuzzy objective functions is depicted in the second and third rows of 

Table 5.1. In this table, we can observe the better classification performance of the BP 

algorithm with fuzzy objective functions compared to the conventional BP  algorithm. 

This improvement takes place because the proposed method takes care of the fuzziness 

involved in the classification from the possibilistic angle. The proposed algorithms can 

find the fuzzy decision boundary more accurately as some input patterns (especially, 

a t  the borders or away from the classes) may not satisfy the condition Cc pc(%) = 1. 

In Table 5.1, we can observe that the BP algorithm with the fuzzy mean square error is 

showing marginally better results compared to the fuzzy cross entropy. Therefore, training 



Table 5.1: Classification performance of FFNNs with the BP  algorithm for 

first level bids. The inputs are modified feature vectors. The symbols Obj. fn., 

cmse, fmse and fce imply objective function, crisp mean square error, fuzzy 

I I I I I I I I 

1 fmse 1 77.14% 1 81.98% 1 71.03% 92.61% 1 59.33% 1 75.02% 1 76.18% 1 

mean square error and fuzzy cross entropy, respectively. 

I I I I I I I I I 

fce 1 87.31% 71.74% 1 82.12% 1 87.33% 1 59.27% 1 65.04% 1 75.46% 

Table 5.2: Classification performance of FFNNs with the BP  algorithm for 

second level bids. The inputs are modified feature vectors. The symbols Obj. 

fn., cmse, fmse and fce imply objective function, crisp mean square error, fuzzy 

Obj. fn. 

cmse 

1 C 

69.94% 

Pass 

85.82% 

mean square error and fuzzy cross entropy, respectively. 

an FFNN with the fuzzy cross entropy may be easier compared to the FFNN with the 

fuzzy mean square error (Fig. 5.2); but the generalization capability of the FFNN with 

the fuzzy mean square error is better than the FFNN with the fuzzy cross entropy. 

1 D 

72.13% 

4 

In a similar manner, the proposed method trains an FFNN for the second level bids 

using "TrainingSet2". The inputs to the networks are the modified feature vectors. This 

network has 5 output nodes. The FFNN for the third level bids was trained by "Training 

Setl" and tested on "TestSet3". This network has 4 output nodes. The classification 

performance of these two FFNNs are given in Table 5.2 and 5.3. These tables show the 

improvements in the classification results of the proposed method compared to  the BP 

algorithm with crisp objective functions. Note that FFNNs with the fuzzy mean square 

error are consistently performing better than FFNNs with the fuzzy cross entropy. 

Overall 

74.59% 

76.42% 

Obj. fn. 

cmse 

fmse 

fce 1 80.23% 1 75.72% 1 67.43% 1 80.55% 76.02% 1 75.99% 1 

1s 
70.01% 

1H 

78.25% 

2N 

74.98% 

74.17% 

2C 

67.45% 

71.01% 

1N 

2D 

76.88% 

77.23% 

Overall 

69.92% 74.34% 

2 S 

78.19% 

78.57% 

2H 

75.43% 

81.12% 



No. ol ilefatims 

Fig. 5.2: Top: No. of iterations vs. fuzzy mean square error of an FFNN. 

Bottom: No. of iterations vs. fuzzy cross entropy of an FFNN. In both the 

cases, the FFNN has fifty-two input nodes, fifty hidden nodes and six output 

nodes. All training patterns are from first level bids. 



Table 5.3: ~lassification>erformance of FFNNs with the BP  algorithm for 

third level bids. The inputs are modified feature vectors. The symbols Obj. 

fn., cmse, fmse and fce imply objective function, crisp mean square error, fuzzy 

( fce 1 1  87.12% 1 87.36% 1 86.73% 1 82.66% 1 85.96% 1 

mean square error and fuzzy cross entropy, respectively. 

5.3 Configurat ion of Feedforward N e u r a l  Networks  Using Evolut ionary  

Programming-Based H y b r i d  Technique 

Obj. fn. 

cmse 

fmse 

Use of FFNNs with fuzzy objective functions improves the classification performance of 

the modules. But the training process may be slow or in some cases it may halt due to 

the presence of local minima. Even if the network converges, the generalization capability 

of the trained network may not be high because of the improper choice of the network 

size. This section proposes a method to configure FFNNs in terms of optimum structure 

and optimum parameter set so that the resultant network generalizes well. The proposed 

method uses the BP algorithm with fuzzy objective functions as a local search operation. 

In addition, it employs evolutionary programming (EP) technique as a global search 

operation. 

In many classification problems, it has been proved that learning in general, as well 

as choosing an optimal network configuration, are NP complete [Man93]. The selection of 

an appropriate number of hidden nodes and weights is so difficult because small number 

of hidden nodes and weights may hamper convergence of the network on a training set; 

on the other hand, large number of hidden nodes and weights may affect the generaliza- 

tion [Hay941 capability of the network. Large size of a network affects the generalization 

capability mainly in two ways. Firstly, the large size of a network may cause overfit- 

ting [Hay94], i.e., the network simply memorises the training patterns. Secondly, while 

training a large network, all the weights may not get involved in the training process as 

they balance each others effect on the output. Consequently, training error becomes low. 

However, such free weights may result in a large variation of the classification efficiency 

for different test sets [Sus92]. Other than the generalization issue, smaller networks are 

3C 

85.14% 

90.11% 

3D 

79.43% 

84.51% 

3 S 

82.46% 

88.23% 

3H 

85.11% 

86.15% 

Overall 

83.03% 

87.25% 1 



better because they are usually faster and cheaper to build. Moreover, the operation of 

smaller networks is easier to understand where users need to know how the system works. 

But it not is always true that the smaller a network is, the better is its generalization 

capability. It  is because, sometimes small networks may cause underfitting [Hay94] of 

the data. In addition, there may exist certain networks of optimum size just complex 

enough to  generalize the data but very sensitive to the initial conditions [Ree93]. These 

two problems, i.e., underfitting and sensitiveness to the initial condition, may result in a 

low classification rate on the test sets, and thus these networks, although they are small, 

are not useful. 

In order to  have an optimal network architecture, we need an objective function and 

an advanced search and optimization method. The search method should necessarily look 

for the following: 

1. How to determine the optimum number of hidden nodes of the network after avoid- 

ing locally optimal solutions. 

2. How to  determine the optimum set of weights and bias of the network after avoiding 

locally optimal solutions. 

3. How to  make the network configuration to be less sensitive to  the initial choice of 

the weights and bias values. 

4. How to  reduce the configuration time. 

In light of these requirements we can formulate an objective function, whose minimiza- 

tion will generate an optimum network configuration that generalizes well. The choice of 

the objective function should be such that minimization of it should not lead to memori- 

sation of the input patterns. One such objective function in neural networks training can 

be the fuzzy mean square error or fuzzy cross entropy on a validation set. The validation 

set consists of a set of input-output pairs which do not occur in the training set. 

A potential candidate for the optimization method is gradient descent algo- 

rithms [Hay94]. The advantages of the gradient descent algorithm are: (a) It uses the 

local information in an efficient way resulting in better accuracy, provided it does not get 

stuck in local optima or saddle points, and (b) it is quite fast to find the local optima or 

saddle points. The disadvantages of this method are: (a) It  may stagnate at certain po- 

tentially suboptimal solutions, rendering the network incapable of sufficient performance, 

(b) it  is sensitive to the initial values of the weights and bias, and (c) it.cannot be used 

when the objective function is not differentiable at certain points. Another candidate for 



the optimization process is EP [FOW66] [Fogglb] [Fog95], which is a stochastic search 

and optimization technique. EP optimizes the objective function by using a controlled 

stochastic search, and it performs the search parallely from more than one point. In other 

words, while searching for the global minimum, this technique explores many paths simul- 

taneously. Certain search paths may be less promising at the initial stage, whereas due to 

the random perturbation of the search parameters these search paths may become highly 

promising after some time. In the EP-based approach, these less promising solutions are 

kept along with highly promising solutions, hoping that they would lead new search paths 

towards the global minima after some time. These new paths enable the search process 

to avoid locally optimal solutions. Also, by adding or deleting hidden nodes or by small 

perturbation of the weights and bias terms, the search operation may jump over local 

minima. Due to these two reasons, EP can avoid a locally minimal solution, whereas the 

gradient-based approach cannot. In EP-based approach more than one solution is gener- 

ated initially, and the solutions are repeatedly adapted by adding and deleting the hidden 

nodes, or by small perturbation of the weights or bias values. Thus the problem of proper 

initialization of the weights and bias values is also reduced. However, EP can suffer from 

extremely slow convergence before arriving at the correct solution. It is because EP does 

not exploit available local information [RF96]. Therefore, a clever approach is to go for 

a trade off where merits of both the methods, i.e., speed, accuracy, reliability and fast 

computation can be achieved. EP is good for exploration in the search space, whereas the 

BP is good for exploitation. Inspired by biology and especially by the manner in which 

living beings adapt themselves to their environment, the hybrid method adopted in this 

section involves two interwoven levels of optimization, namely evolution (EP) and indi- 

vidual learning (BP), which co-operate in a global process of optimization. The evolution 

of individuals are carried out to minimize certain global objective function. The global 

objective function is the fuzzy mean square error or fuzzy cross entropy on a validation 

set. The local search method, i.e., minimization of the fuzzy mean square error or fuzzy 

cross entropy on a training set, is used to guide the global search method [PIL96]. 

By fusing gradient descent and evolutionary algorithm, the search method becomes 

faster than a pure evolutionary approach. However there is a further scope to accelerate 

the proposed method by accelerating EP. Although EP is based on random search, it 

is not totally random - rather it is a controlled random search. This control action is 

provided by certain mutation parameters. The proper choice of mutation parameters 

has a profound impact on the convergence and performance of the proposed method. In 

accordance with this requirement, another issue that is addressed in this section is the 



dynamic adaptation of the mutation parameters. 

5.3.1 Evolut ionary Programming  in Network Configuration 

While designing a feedforward network for a particular problem, the aim is to find the 

optimum number of hidden nodes and a set of optimum parameters. Formally, it can be 

written as a problem of finding the global maxima of the following function: 

where y represents a modified feature vector with dimension N, 8 consists of weights and 

bias terms, and G(y, 8) signifies how good the network for the particular classification 

problem is. In the proposed method, 4 is maximised such that EP is able to find the 

optimum value of 8 as well as the optimum value for the dimension of 8. 

The above idea to configure a network is implemented through the following sequence 

of events (Fig. 5.3). Initially, EP creates a population of networks. EP initializes the 

population with fully connected networks of randomly (uniform distribution) generated 

hidden nodes. Thus, v such networks are formed with each network having any number 

of hidden nodes between one to some prespecified positive integer. The number of hidden 

nodes in each network is determined randomly from a uniform distribution. These net- 

works are called parents. Each parent network is trained for a fixed number of iterations 

using the BP algorithm with the fuzzy mean square error or fuzzy cross entropy. Fitness 

value (a measure to indicate how good the network is for the given classification task) of 

each parent network is measured. Each parent is now allowed to create an offspring. Thus, 

v offspring networks are generated. The method to create the offspring is described in 

the next section. Each offspring network is trained for a fixed number of iterations using 

the BP algorithm with the fuzzy mean square error or fuzzy cross entropy. The fitness 

value of each offspring network is measured. Thus 2v networks, comprising of parents as 

well as offsprings, are generated. Next in the competition phase, pairwise comparison of 

fitness values of all the networks (parents as well as offsprings) are conducted. For each 

solution, the algorithm chooses 10 randomly selected opponents from all the parents and 

offsprings with uniform probability. In each comparison, if the conditioned network offers 

as good performance as the randomly selected opponent, it receives a win [Fog95]. Based 

on the wins, networks scoring in the top 50% are designated as parents. -411 the networks, 

other than the parents, are discarded. Again, these parents create offsprings, and thus, 

the whole procedure is continued until the number of generations becomes greater than 



some prespecified constant. Finally, the network with the highest fitness is considered as 

the desired network. 

It is to be noted that while embedding the BP algorithm in the E P  paradigm, we 

have employed Lamarckian principle [RF96]. In this case the properties learned by the 

individuals are transferred to the next generation. The life of each individual spans the 

number of iterations used in the BP algorithm. 

5.3.2 Implementat ion Issues 

5.3.2.1 Fitness function 

Fitness value of a network decides how good it is in the competition phase. Specifically, a 

network with higher fitness value has higher chance of survival and vice versa. The fitness 

function of a network is 
1 

where E is equal to either Cu E,f or xu 7-l: on a validation set. It  is important to note 

that although Xu E,f or xu 3 ~ , f  is differentiable with respect to the connection weights, 

it is nondifferentiable with respect to the number of hidden nodes. Thus, gradient-based 

optimization methods cannot be applied here to determine the optimal number of hidden 

nodes. 

An alternative fitness function could be the inverse of Akaike's information criterion 

(AIC) [Aka741 [Foggla] [BZ95] or network information criterion (NIC) ['IMYA94]. Since 

the AIC (or NIC) value is supposed to be used only after the network is completely 

evolved, AIC (or NIC) value calculated from a network which is not evolved completely 

may not reflect the generalization capability of the network at the current generation. 

In order to generate offsprings, the following steps are needed: 

5.3.2.2 Replication of parents 

In our work, each parent is typically represented combinedly by the number of hidden 

layers, number of input, output and hidden nodes, set of weight values and set of bias 

values. Since the number of hidden layers is one, and the number of input and output 

nodes are fixed, a network is actually represented by the number of hidden nodes, weight 

values and bias values. In this step, these values are copied from the parent to generate 

a new offspring. 



Randomly generate a population of v networks ( c a l l  them 

parents)  . 
FOR each parent  

Train t h e  parent network f o r  a f ixed number of i t e r a t i o n s  

by t he  BP algorithm with fuzzy object ive  funct ions .  

Find t he  f i t n e s s  value of the  parent  network. 

END FOR 

WHILE ( the  number of generations is l e s s  than a spec i f i c  number 

o r  t h e  f i t n e s s  of t he  bes t  parent i s  l e s s  than a spec i f i c  value) 

FOR each parent  network 

Create an offspr ing of the  parent  network. 

Train the  offspr ing network f o r  a f ixed number of 

i t e r a t i o n s  by t he  BP algorithm with fuzzy object ive  

funct ions .  

Find t he  f i t n e s s  value of the  offspr ing network. 

END FOR 

Competition starts among a l l  parent  and offspr ing networks 

based on t he  f i t n e s s  values.  

Survival  of the  f i t t e s t  networks ( c a l l  them paren t s ) .  

END WHILE . 
The parent  networkwith the  highest  f i t n e s s  is  considered a s  t h e  

des i red  network. 

Fig. 5.3: Configuration of feedforward neural networks using evolutionary 

programming. 



5.3.2.3 Mutation 

The aim of creating offsprings is to minimize the global objective function. Basically 

creation of an offspring is searching one step forward or backward in the search space. 

But the length of a step size and the corresponding step direction are unknown. The 

step size cannot be too big as well as too small, because it may result the search process 

to jump over the global minimum or to take long time to reach the global minimum. It 

necessitates the use of mutation operators to decide the stepsize and step direction of 

the search method probabilis tically. The nondeterminism associated with the selection 

of step size and step direction enables the search process to avoid local minima. To 

search an optimum set of weights and bias terms, we encounter local minima which we 

call parametric local minima, and to find an optimum number of hidden nodes we come 

across local minima which we call structural local minima. Parametric locaI minima and 

structural local minima are alleviated by parametric mutation and structural mutation, 

respectively. 

In the parametric mutation, each weight w is perturbed using a Gaussian noise. Hence, 

w = w + N ( 0 ,  T). The mutation step size N ( 0 ,  T) is a Gaussian random number with 

mean 0 and variance T .  The intensity of the parametric mutation should be high when 

the fitness vaIue of the parent is low and vice versa. It can be accomplished if we consider 

T of a particular network as its temperature, and define it as 

minimum fitness 
T = a U ( 0 , l )  

fitness of the network 1 
where U ( 0 , l )  is a uniform random number over the interval [0, 11 and a is a constant 

(0 5 a 5 1). Obviously, the range of T lies in between 0 and 1. This temperature in fact 

determines how dose the network is to the solution for the task [ASP94], and the amount 

of the parametric mutation is controlled depending on that. Like simulated annealing, the 

temperature is used to anneal the mutation parameters. Initially when the temperature 

is high, the mutation parameters are annealed quickly like coarse grains, and a t  low tem- 

perature they are annealed slowly like fine grains. Large mutations are needed to escape 

parametric local minima; but many times large mutations adversely affect the offspring's 

ability to perform better than its parent [ASP94]. Hence, to lessen the frequency of large 

parametric mutations, we have multiplied right hand side of Equation (5.42) by d ( 0 , l ) .  

In Equation (5.42) we need to know the minimum value of the fitness function. The 

maximum value of ~f is 0.5nC2. Therefore, from Equation (5.41), the minimum fitness 



corresponding to Ef is 
1 

Gmin = A 
0.5C2n 

Similarly, the minimum fitness corresponding to 'Hf is kin = nC:ln2. 

In the proposed method, the structural mutation is used to obtain an optimum number 

of hidden nodes after avoiding structural local minima. Using the structural mutation, 

hidden nodes are added or deleted during the creation of offsprings. Determination of 

the optimum number of hidden nodes can be considered as a search problem in a struc- 

ture space where each point represents a particular network. If some performance index 

like fuzzy mean square error on the validation set is assigned to each network, then the 

performance levels of all possible networks form a surface in the structure space. Thus, 

determination of the optimum number of hidden nodes is equivalent to finding the lowest 

point on this surface. However this search operation becomes complicated as the surface 

has the following typical characteristics [Yao93] [MTH89]: 

1. The surface is very large since the number of possible networks can be very high. 

2. The surface is nondifferentiable as the number of hidden nodes and weights are 

discrete. 

3. The surface is multimodal as performance of two networks with different number 

of hidden nodes and weights may be same. 

Due to the structural mutation, sometimes one hidden node is added or deleted during 

the creation of offsprings. The specific instants of hidden node addition or deletion in a 

network depend upon the probability of the structural mutation, which further depends on 

the fitness of the network. The hidden node, which is added to or deleted from the network, 

is selected randomly (uniformly). The amount of structural mutation depends on the 

probability of the structural mutation (p,). Large value of p, makes E P  a purely random 

search algorithm, while some amount of mutation is needed to prevent the premature 

convergence of E P  to suboptimal solution [SP94]. Therefore, a scheme is adopted here to 

change p, adaptively. 

The value of p, is increased when the population tends to get stuck in local minima, 

and it is decreased when the population is scattered in the solution space. Let the average 

fitness value of the population and the maximum fitness value of the population be denoted 

by Gav and G,,,, respectively. (G,,, - Gav) is likely to be less for a population that has 

converged to an optimal solution than that for a population scattered in the solution 



space [SP94]. It  can be expressed as 

1 
Pm rn (5.44) 

Gmax - Gav 

In order to preserve the good solutions of the population, pm of a network with lower 

fitness must be greater than p ,  of a network with higher fitness. It results in the following 

relation: 

~m rn (Gmax - G) (5.45) 

Accommodating Equation (5.44) and (5.45) simultaneously, we can write 

Gmax - G 
Pm = km 

Gmax - Gav 

where km is a proportionality constant. F'rom this relation, it appears that for solutions 

with subaverage fitness values, i.e., G < Gav, pm may assume value larger than 1. In order 

to make pm for the subaverage solutions always less than or equal to one, the expression 

for pm is modified as 

Gmax - G 
P ,  = km if G L Gav (5.47-a) 

Gmax - Gav 
= km if G < Gav (5.47-b) 

To keep pm in [0, I], km should be less than or equal to 1. In fact, solutions with 

fitness values less than or equal to Gav should be disrupted completely. Hence, the value 

of k ,  is taken as 0.5. This assignment always makes pm of the best network zero. But the 

best network should also be allowed to undergo through the structural mutation process. 

Obviously, the amount of mutation for the best network should be the lowest. This 

observation modifies the above equations as 

Gmax - G 
~m = kml + km2 if G L Gav 

Gmax - Gav 
= km if G < Gav 

where k , ~  and km2 are two constants. After this modification, pm for the above average 

networks increases linearly from km2 to kml + km2. 

In the above relations, we have considered the spread of the population through 

(Q,,, - G); but we did not consider whether the members of the population are diverse 

in the population space [LD95]. It may happen that the spread is high, but the diversity 

is low (Fig. 5.4(a)) and vice versa (Fig. 5.4(b)). We indeed seek both spread and diversity 



should be high (Fig. 5.4(c)). Higher spread allows the search to be carried out in a wider 

space, and higher diversity allows uniform exploration in that space. 

To take the diversity factor into account, p, should be high when the diversity is 

low and vice versa. In order to measure the diversity of a population, the concept of 

probabilistic entropy [Hay941 can be used over the fitness values. To measure the entropy, 

the interval. [Gmi,, G,,] is divided into L subintervals [Gmin + jD ,  4min  + (j  + l )D] ,  where 

j = 0,1,2, .., L - 1 and D = (Gm, - Gmi")/L. $j is defined as 2, where 4 is the number 

of members of the population in the j th  interval and 2v is the size of the population (v 

parents + v offsprings). With these introduced notations, the probabilistic entropy is 

defined as 

If the members are uniformly distributed, then E N  attains the maximum value 1. On 

the other hand, if all the members are grouped around a few values, the entropy value is 

close to 0. So, we can write, pm oc (1 - E W )  where s is a weighing factor. Combining 

this result with Equation (5.48-a and b), we can write 

5.3.3 Results and Discussion 

In section 5.2.4, we have already observed the classification performance of the BP algo- 

rithm with the proposed fuzzy objective functions. There we chose the number of hidden 

nodes arbitrarily. In the following experiments we choose the number of hidden nodes 

dynamically using the EP-based network configuration strategy. To configure the FFNN 

for first level bids, "TrainingSetl" was used. We first generated randomly 25 FFNNs 

(each with the number hidden nodes in between 1 and 100). In each generation, each par- 

ent network was trained for 100 iterations using the BP algorithm with the fuzzy mean 

square error. The fitness value of each parent was determined by calculating the fuzzy 

mean square error of the network for a validation set of size 200. For each parent, an 

offspring was created. During the structural mutation, between 1 to 3 hidden nodes were 

added or deleted at  a time. The exact number of hidden node addition or deletion was 

decided randomly. If more number of hidden nodes are added or deleted, the fitness of 



Fig. 5.4: Each circle represents a solution in the population space. E and H 

and the number of hidden nodes in the solution, respectively. represent fitness 
Three figures represent three different cases: (a) Spread of the population is 

low, but diversity is high, (b) spread of the population is high, but diversity is 

low, and (c) both spread and diversity are high. 



the network decreases drastically. It is because the behavioural gap between the parent 

and the offspring becomes too high. To enhance the structural mutation, we used Equa- 

tion (5.50-a and b). The value of s was chosen as 2. kml and km2 were taken as 0.3 and 

0.2 such that p, varies linearly from 0.2 (for the best set) to 0.5 (for the average set). 

Fig. S.STop illustrates the number of hidden nodes in the best network for first level bids 

against the number of generations. The resultant network has 45 hidden nodes. This fig- 

ure demonstrates the self-organization capability of the proposed algorithm, due to which, 

it is able to find better structure eventhough it starts with inappropriate number of hid- 

den nodes. "Plot 1" in Fig. 5.5Bottom exhibits the fuzzy mean square error of the best 

networks, while trained by the proposed method. This error value is the average of the 

error values of the best network in ten runs. "Plot 1" is obtained when Equation (5.50-a 

and b) are used for adapting the parameters of structural mutation. "Plot 2" represents 

another curve when Equation (5.50-a and b) are not used for adapting the parameters 

of the structural mutation. This comparative study clearly demonstrates how effectively 

Equation (5.50-a and b) enhance the performance of the search process. Using "Plot 1" 

the convergence was achieved at the 20th generation. Since each generation needs 100 

iterations for each parent network, the proposed method requires a long time on sequen- 

tial computer. This drawback can be reduced if we use parallel machines. Actually this 

amenability to asynchronous parallel computation has made E P  popular [BR94]. Classi- 

fication efficiency of the FFNN on 'TestSetl" is shown in the third row of Table 5.4. The 

fourth row of Table 5.4 depicts the classification performance of the EP-based method 

with the fuzzy cross entropy. The first and second rows of this table are reproduced from 

Table 5.1. Table 5.4 demonstrates the better generalization capability of the network 

while configured by the proposed method. We can observe that the FFNN trained with 

the fuzzy mean square error is giving better result (overall) compared to the FFNN with 

the fuzzy cross entropy. 

Similarly the proposed technique was used for the second and third level bids. The 

number of hidden nodes of the FFNNs for the second and third level bids are 32 and 23, 

respectively. The classification results are illustrated in Table 5.5 and 5.6. We can observe 

that in the configured architectures, the network with the fuzzy mean square error shows 

better performance than that of fuzzy cross entropy. Hence, in the subsequent experiments 

with FFNNs, we shall use only the fuzzy mean square error. 
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Fig. 5.5: Top: No. of generations vs. fuzzy mean square error of an FFNN. 

Bottom: No. of generations vs. no. of hidden nodes. "Plot 1" represents 

a curve when Equation (5.50-a and b) are used for adapting the parameters 

of the structural mutation. In contrast, "Plot 2" represents another curve 

when Equation (5.50-a and b) are not used for adapting the parameters of the 

structural mutation. 
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Table 5.4: Classification performance of FFNNs with the BP  algorithm for 

first level bids. The inputs are modified feature vectors. The symbols Arc., 

Obj. fn., F ,  Dl fmse and fce imply architecture, objective function, fixed 

architecture, configured architecture, fuzzy mean square error and fuzzy cross 

1 F 1 1  fce 1 87.31% 1 71.74% 1 82.12% '0 87.33% 1 59.27% 1 65.04% 1 75.46% 1 

entropy, respectively. 

I C I fmse 1 80.64% 75.14% 79.38% 1 85.63% 70.44% 1 73.02% 1 77.37% / 

Arc. 

F 

1 C 1 1  fce 1 72.90% 78.45% 81.23% 1 78.01% 78.81% 1 72.23% 1 77.60% 1 

Table 5.5: Classification performance of FFNNs with'the BP  algorithm for 

Obj. fn. 

fmse 

second level bids. The inputs are modified feature vectors. The symbols Arc., 

Obj. fn., F ,  Dl fmse and fce imply architecture, objective function, fixed 

Pass 

77.14% 

architecture, configured architecture, fuzzy mean square error and fuzzy cross 

entropy, respectively. 
A r c . I I O b j . f n .  2C I 2D I 2s I 2H I 2N IOveralll 

1C 

81.98% 

I F 11 fmse 1 71.01% 1 77.23% 1 78.57% 1 81.12% 74.17% 76.42% I 
1 F 1 1  fce 80.23% 1 75.72% 1 67.43% 80.55% 76.02% 75.99% 1 

1 D 

71.03% 

-- I C I fmse I 75.82% 1 77.57% I 80.24% I 78.12% I 76.68% I 77.68% / 
C fce 78.13% I 75.42% I 81.23% 1 79.12% I 74.12% 1 77.60% 1 

1s 

92.61% 

Table 5.6: Classification performance of FFNNs with the B P  algorithm for 

third level bids. The inputs are modified feature vectors. The symbols Arc., 

1H 

59.33% 

Obj. fn., F,  Dl fmse and fce imply architecture, objective function, fixed 

architecture, configured architecture, fuzzy mean square error and fuzzy cross 

1N 

75.02% 

entropy, respectively. 
I Arc. / Obj. In. 3C 1 3D 3s 1 3H 1 Overall 1 

Overall 

76.18% 

I F 1 fmse I 90.11% 1 84.51% 1 88.23% 86.15% I 87.25% 1 
F 

C 
C 

fce 

fmse 

fce 1 82.18% 81.14% 93.12% 1 93.54% 87.49% ~ 
87.12% 

89.23% 

87.36% 

88.52% 

86.73% 

93.15% 

82.66% 

85.63% 

85.96% 

89.13% 



5.4 Summary 

In this chapter, we applied feedforward neural networks to construct each module by 

capturing the relationship between the feature vectors and the output classes present in 

the module. Since the output bids are fuzzy, the network is trained by the B P  learn- 

ing algorithm with fuzzy objective functions. The proposed training algorithm has the 

possibilistic classification ability, and hence, it can encompass various BP learning algo- 

rithms based on crisp and constrained fuzzy classification. To increase the generalization 

capability of the network, we configure FFNNs using a hybrid search operation consisting 

of both deterministic and stochastic search operations. As a deterministic search, the 

proposed BP algorithm with fuzzy objective functions is used. As a stochastic search, E P  

is employed. The BP algorithm uses local information efficiently, whereas E P  exploits 

global information. The efficiency of the whole search process is further enhanced by 

dynamic adaptation of the structural mutation. If a modified feature vector is presented 

to the configured network, the output of the network is produced as class membership 

values corresponding to the input pattern. 

As a global search method, in place of EP, we could have chosen constructive and de- 

structive pruning techniques [Ree93], [SM93]. Constructive pruning techniques [ST931 

initially assume a simple network, and add nodes and links as warranted, while destructive 

techniques [MS89a] start with a large network and prune off superfluous components. The 

aim of the pruning techniques is to evolve a near optimal neural network architecture. 

However the problems associated with the pruning techniques are [ASP94]: (a) These 

methods get stuck in local minima very easily. (b) In these methods, once an architecture 

is explored and determined to be insufficient, the old one becomes topologically unreach- 

able. Thus, they investigate only restrictive topological subsets of networks rather than 

the complete class of network architectures [ASP94]. 

While configuring neural networks, EP  is considered to be more powerful optimization 

tool than simulated annealing [KJV831 and genetic algorithm [Go189], [Mic92], [Davgl.]. 

In particular, simulated annealing is a sequential search operation, whereas EP  is a paral- 

lel search algorithm. In fact, we can say that EP  is more than a parallel search algorithm. 

Parallel search starts with a number of different paths (say v where v > 1) and continues 

until all the search paths get stuck in blind alleys 6 any one of them finds the solution. 

EP also starts with v different paths. But, it tries to generate new paths which are always 

better than the current paths. Due to this inherent parallelism, in many cases EP-based 



Fig. 5.6: (a) and (b) are two equivalent networks, which order their hid- 

den nodes differently. The genotype representations of the networks become 

different, although the networks are equivalent. 

search operation becomes more efficient and faster than simulated annealing-based oper- 

ation [PFF95]. Although both EP  and genetic algorithm are parallel search operations, 

the EP-based optimization approach is more attractive for the network configuration. It 

is due to  the following reasons: 

1. E P  manipulates networks directly. So it does not need any dual representation. Ge- 

netic algorithm needs coding which may not represent the problem itself [ASP94]. 

2. While creating offsprings, E P  avoids recombination between networks. It helps to 

keep the individuality of the network intact [ASP94]. 

3. One major problem with genetic algorit hm-based approach is permu tation prob- 

lem [Yao93]. The permutation problem stems from the fact that in genetic algo- 

rithm two functionally identical networks which label their hidden nodes differently 

(Fig. 5.4) will have two different genotype representations. Therefore, the proba- 

bility of producing a highly fit offspring from them by crossover will be very low. 

EP-based optimization method does not suffer from this problem. 

4. Asymptotic convergence property of E P  is better than that of genetic algo- 

rit hm [Fog94a], [FS93]. 

The EP-based network configuration technique can also be seen from Markov-chain 



perspective [Fog95]. Each state of the Markov chain consists of all possible networks with 

the same fitness value. Since the fitness representation is finite on digital computers, the 

number of states is finite. The starting state depends on the initialisation. The state with 

the highest fitness acts as an absorbing state. The probability of jumping from one state 

to another state is dictated by the probability of mutation. 

In the next chapter, we will employ clustering to capture the relationship between the 

modified feature vectors and the output class labels. 



Chapter 6 

DESIGN OF CLASSIFIER MODULES 

THROUGH CLUSTERING 

6.1 Introduction 

This chapter proposes a classifier module that uses clustering to capture the relationship 

between the modified feature vectors and the output classes of a module. Construction 

of such a classifier can be carried out in two phases. First phase is necessary to perform 

clustering, and the second phase is needed to establish the relationship between each 

cluster and the class labels. When a modified feature vector is presented as an input, 

the classifier detects the belonginness of the input into the clusters. The output class 

label corresponding to the pattern is determined depending on the relationship between 

each cluster and the output classes. In the opening bid problem, the clusters generated 

by the feature vectors are generally overlapping or fuzzy. In addition, the class labels of 

the patterns from the same cluster may not be similar. This one-t*many relationship 

between the clusters and the output class labels creates rough uncertainty. This chapter 

proposes a classification technique in presence of fuzzy and rough uncertainties. 

It is possible to use the conventional fuzzy K-means (FKM) clustering algorithm 

to cluster the modified feature space. However, to apply the FKM user has to know 

a priori the number of clusters present in the given set of input patterns. Moreover, 

the solution obtained from the FKM may be locally optimal or too much dependent on 

the initializations. To reduce some of these limitations, in section 6.2, an evolutionary 

programming-based fuzzy clustering algorithm is proposed. This algorithm effectively 

groups a given set of input patterns into an optimum number of clusters. The algorithm 

determines the number of clusters and the cluster centers in such a way that there is a 

high chance of avoiding locally optimal solutions. The clustering results of the algorithm 

do not depend critically on the choice of the initial cluster centers. 

After clustering, the next task is to label each cluster with an appropriate class label. 



The main assumption of the clustering-based classification is that similar inputs produce 

similar outputs. It  means that any two input patterns from the same cluster must be from 

the same class. Generalization is possible in such classifiers due to this similarity property. 

In the bidding problem, however, two patterns from the same cluster may belong to 

different classes, and hence, classification based on mere similarity property is inadequate. 

This problem arises because the available features are not sufficient to discriminate the 

classes. It  implies that the fuzzy clusters generated by the modified feature vectors have 

rough uncertainty. To exploit the fuzziness and roughness, section 6.3 proposes fuzzy- 

rough neural networks. For any modified feature vector, the network determines the 

classification result in terms of fuzzy-rough membership values. 

6.2 Evolut ionary  Programming-Based Fuzzy Cluster ing 

Clustering a set of patterns provides a systematic approach for partitioning the set of pat- 

terns into different groups such that patterns with similar features are grouped together, 

and patterns with different features are placed in different groups [DJ87]. Formally, clus- 

tering can be defined as follows: [Bez81]: Given a set y = {yl, yz,  . . . , y,) of feature 

vectors, find an integer K (2 5 K < n) and the K partitions of y which exhibit cat- 

egorically homogeneous subsets. An important requirement for resolving this issue is a 

suitable measure of clusters - what clustering criterion should be used? Specifically, what 

mathematical properties - e.g., distance, angle, curvature - possessed by the members 

of the data should be used, and in what way, to identify the clusters in y ?  In fact, 

each observation may have infinite number of variations. In addition, the data set may 

be a mixture of different shapes, sizes and geometries. Therefore, infinite varieties of 

structures are possible. It  is evident that clustering criterion must be problem-specific, 

and it cannot be universally applicable. Three types of clustering approaches are com- 

monly used [Bez81]. They are (1) hierarchical approach, (2) graph theoretic approach and 

(3) objective function-based approach. Among them, the objective function approach is 

well-known. One extensively used objective function type clustering algorithm is hard K - 

means algorithm [TG74] [Bez81]. It involves assigning each pattern exactly to one of the 

clusters, assuming well-defined boundaries between the clusters. It  is used for clustering 

where clusters are crisp and spherical. In the hard K-means algorithm, clustering is based 

on minimization of the overall sum of the squared errors between each pattern and the 



corresponding cluster center. That  is 

n 

Here, K is the number of clusters and mk is the closest cluster center to the pattern 

yj. In real life situations, boundaries between groups may be overlapping. In particular, 

there may be some patterns that completely belong to one cluster, but partially belong 

to other clusters also. In order to  overcome this problem, the idea of fuzzy K-means 

(FKM) algorithm has been introduced [Bez81]. Incorporation of fuzzy theory in the 

FKM algorithm makes it a generalized version of the hard K-means algorithm. 

In the FKM, clustering is based on minimization of the overall weighted sum of squared 

error between each pattern and each cluster center, where the weight signifies the level 

of belongingness of the pattern into the cluster. It can be treated as minimization of the 

following objective function: 

where U = [pk(yj)] is a fuzzy partition of y and m={ml, .  . . , mK), with mk desig- 

nating the center of the cluster Fk. In this equation, q E (1, m) and djk is a distance 

measure between y j  and mk. Although the FKM algorithm is extensively used in liter- 

ature [DJ87] [SS91], it suffers from several drawbacks. Firstly, to apply the algorithm, 

the user has to know a priori the number of clusters present in the given input data set. 

Secondly, the objective function is not convex, and hence, it may contain local minima. 

Therefore, while minimizing the objective function, there is a chance of getting stuck in 

local minima (also in local maxima and saddle points). Finally, the performance of the 

FKM algorithm depends on the choice of the initial cluster centers. 

In this section we propose a clustering algorithm to address the following issues: 

1. How to  determine the optimum number of clusters. 

2. How to avoid local minima solutions. 

3. How to make the clustering less dependent on the initial choice of the cluster centers. 

Since human ability to cluster data is far superior to any of the clustering algorithms, 

we examine some of the aspects of human way of clustering to address the above issues. 

For example, when we see a picture, we try to cluster the elements of the picture into 

different groups. It is interesting to note that, immediately after observing a picture 



we can find how many clusters there are, and it is done without looking at each point 

within the clusters. It appears that clustering depends on the global view of the observer. 

After deciding the number of clusters, we try to see which point belongs to which cluster. 

Hence, we gather global information first, and then we look for local properties. Now the 

question is, what criterion do we use to gather the global information? Possibly we collect 

this global information from the isolation and compactness of the clusters in the whole 

picture. Although the FKM considers the local properties of the picture, it does not take 

the global view into its account. 

We propose a clustering algorithm that tries to mimic the above mentioned features 

of the human way of clustering. In this algorithm, two objective functions are minimized 

simultaneously. The global view of the input data set is considered by an objective 

function called fuzzy hypervolume [GG89]. Minimization of this objective function takes 

place by randomly merging and splitting the clusters. The objective function E~ (given 

in Equation (6.2)) is minimized to  consider the local property, i.e., to determine which 

input pattern should belong to which cluster. It turns out that minimization of the global 

performance index, i.e., the fuzzy hypervolume, gives the optimum number of clusters, 

whereas minimization of ~f leads to proper positioning of the cluster centers. In other 

words, the task of minimizing the fuzzy hypervolume can be considered as a major one, 

while the task of minimizing Ef can be regarded as a minor one. The role played by 

the fuzzy hypervolume and Ef is quite similar to the role played by the fuzzy mean 

square error on a validation set and the fuzzy mean square error on a training set (see 

configuration of FFNNs in section 5.3). Minimization of both the objective functions 

may yield locally optimal solutions. To circumvent the local minima problem, we propose 

an optimization technique based on evolutionary programming (EP) [Fog95]. EP-based 

search operation tries to escape locally minimal solutions by splitting and merging the 

clusters or by small perturbation of the cluster centers. In this approach, more than one 

solution is generated, and the solutions are repeatedly adapted by splitting and merging 

the clusters or by small perturbations of the cluster centers. Therefore, the initial choice 

of the cluster centers is not very critical in the proposed EP-based clustering algorithm. 

6.2.1 Background of Fuzzy K-Means Clustering 

The fuzzy K-means algorithm uses iterative optimization procedure to minimize the ob- 

jective function Ef (U, m) (given in Equation (6.2)). This objective function is minimized 

such that the following constraints are satisfied. 



(i) pk(yj) E [O 11 vj, k; (ii) C pk (yj) > o tlk; (iii) C pk (yj) = 1 vj; (6.3) 

The steps of the algorithm are stated in Fig. 6.1. The FKM algorithm can be made more 

powerful by using fuzzy modification of  maximum likelihood estimation (FMLE) [GG89]. 

The intention of using the FMLE is to obtain better clustering results [GG89] when it 

is applied after using the FKM. Other than using different form of the distance measure 

djk, the steps of the FMLE algorithm are exactly similar to that of the FKM algorithm. 

The distance function used in Equation (6.7) is modified here as follows: 

djk = [det ( ~k ) 1 ' f -1 

P k  
exp [(yj - m t j ( ~ k )  (yj  - mk)] 

where 
1 n 

and EL is the fuzzy covariance matrix for the cluster Fk. C! is defined as [GG89] 

where dkj = y j  - mk, q = (1, oo), mk is the cluster center of Fk and pk(yj) is the fuzzy 

membership of y j  in Fk. 



1. Fix  t h e  va lue  of q and a s s ign  t h e  number of c l u s t e r s  a s  K .  

Define a d i s t a n c e  measure between y j  and mk a s  

where C is a p o s i t i v e  d e f i n i t e  mat r ix .  

2 .  Assign i =  0.  

3 .  I n i t i a t e  t h e  fuzzy K- p a r t i t i o n  U'. 

4. DO 

(a )  S e t  i = i + 1. 

(b) Ca lcu la t e  K c l u s t e r  c e n t e r s  {mk} of U': 

(c )  Update u('+') by c a l c u l a t i n g  Il" as fo l lows : 

i .  Determine t h e  content  of t h e  fol lowing s e t s :  

ii. Compute t h e  new membership va lues  as fo l lows :  

e l s e  pk(yj) = 0 Vk E I;; and C pk(yj) = 1 
k € I k  

(6.12) 

END DO UNTIL norm(Ui - u('+')) > 77 

Fig. 6.1: Fuzzy K-means algorithm. Here 77 is a constant with small value 

and norm() is an appropriate matrix norm. 



6.2.2 E m b e d d i n g  Evolut ionary  Programming  i n  Fuzzy Clus te r ing  

The objective of the proposed clustering algorithm is to find the optimum number of 

clusters and the optimum position of each cluster center. Formally, i t  can be treated as 

the problem of finding the global maximum of the following function: 

where 3 is an nK dimensional vector representing [ml ,  mz, . . . , m K ]  and B(z) signifies 

how good the clustering is. Therefore, EP  should be able to find the optimum value of z 

as well as the optimum value of K. 

Now we describe how the above idea can be used in a practical situation (see Fig. 6.2). 

To cluster an input data set, initially E P  needs to create a population of sets of clusters. 

EP  initializes the population using sets of clusters with randomly generated (uniform 

distribution) cluster centers. Thus v such sets of cluster centers are formed. Each set 

has any number of cluster centers between two and some prespecified positive integer. 

The number of cluster centers in each set is determined randomly. These sets are called 

parents. Modified fuzzy K-means (MFKM) algorithm clusters the entire da ta  set using 

the set of parent cluster centers. The MFKM algorithm is described in the next section. 

A fitness value is assigned on each parent set. Each parent is allowed to create one 

offspring. Thus, v offspring sets of cluster centers are generated. The method of creating 

the offsprings is described in the next section. The MFKM clusters the entire data set 

using the set of offspring cluster centers, and then the fitness value of each offspring set 

is measured. As a result, we obtain 2v sets of clusters comprising of parents as well as 

o&prings. Now the competition phase starts. In this phase, the fitness values of all sets 

(parents as well as offspring) are compared. For each solution, the algorithm chooses 10 

randomly selected opponents from all parents and offsprings with uniform probability. 

In each comparison, if the conditioned set offers as good performance as the randomly 

selected opponent, it receives a win [PFF95], [SF95]. Based on the wins, sets scoring 

in the top 50% are designated as parents. All other sets are discarded. Again these 

parents are used to create offsprings. The whole procedure is continued until the number 

of generations becomes larger than some prespecified constant. Finally, the set with the 

maximum fitness value is considered as the desired clustered output. 



Randomly generate a population of v s e t s  of c lu s t e r  cen te rs  

( c a l l  them paren ts ) .  

FOR each parent 

Cluster  t h e  parent s e t  using the  MFKM. 

Find t he  f i t n e s s  value of the  parent s e t .  

END FOR 

WHILE ( the  number of generations is l e s s  than a spec i f i c  number 

or  t he  f i t n e s s  of t he  best  parent is  l e s s  than a spec i f i c  value) 

FOR each parent s e t  

Create an offspr ing of the  parent s e t .  

Cluster  t h e  offspring s e t  using the  MFKM. 

Find t he  f i t n e s s  value of the  offspring s e t .  

END FOR 

Based on t he  f i t n e s s  values competition s t a r t s  among a l l  

parent s e t s  and offspr ing s e t s .  

Survival of t he  f i t t e s t  s e t s  ( c a l l  them parents) .  

END WHILE 

The parent  with t he  highest f i t n e s s  is considered a s  t he  desi red 

s e t  of c l u s t e r s .  

Fig. 6.2: The proposed evolutionary programming-based fuzzy clustering 

algorithm. 



6.2.3 I m p l e m e n t a t i o n  Issues 

6.2.3.1 Fi tness  funct ion  

In our work the following fitness function is chosen: 

1 
fitness value = 

total fuzzy hypervolume (6.14) 

where total fuzzy hypervolume (V 1 0) is an index to signify how good the clustering is. 

The smaller is the total fuzzy hypervolume [GG89], [KNF92], the better is the clustering. 

Since V may have any positive value, it appears from Equation (6.14) that the fitness 

value may be more than one. It is not objectionable as the fitness value is used here for 

relative comparison only. 

The fuzzy hypervolume [GG89] of the cluster Fk is given by 

The total fuzzy hypervolume, occupied by all the clusters, is defined as 

Note that we have two objective functions Ef (in Equation (6.2)) and the total fuzzy 

hypervolume (in Equation (6.16)) to minimize. Of these two, we are treating only the 

inverse of the fuzzy hypervolume as the fitness function. The reason is that the evaluation 

of Ef in Equation (6.2) requires K to be predefined and fixed. When K varies, Ef for a 

set with the optimal number of clusters may not attain the minimum value. For example, 

if the number of clusters of a set is very close to the number of data, then the value of 

Ef is close to zero. Obviously, this kind of situation may not signify optimal clustering. 

Instead of minimizing both objective functions, we could have minimized only the fuzzy 

hypervolume. But, our search for a better set of clusters becomes more efficient when 

minimization of Ef is viewed as a clue to minimize the fuzzy hypervolume. In other 

words, the fuzzy hypervolume and Ef are used for exploration and exploitation in the 

search space, respectively [RF96]. 

The next three sections describe the three steps to generate the offsprings: 

6.2.3.2 Repl ica t ion  of parents 

In the first step, each parent is represented by the number of clusters and cluster centers. 

In this step these values are copied from the parent to generate a new offspring. 



6.2.3.3 Mutation 

The aim of creating offsprings is to minimize Ef and the fuzzy hypervolume. To minimize 

Ef, we come across parametric local minima, and to minimize the fuzzy hypervolume we 

encounter structural local minima. Parametric local minima and structural local minima 

are overcome by the parametric mutation and structural mutation, respectively. Using 

the parametric mutation, each cluster center mk, 1 < k < K ,  is perturbed with Gaussian 

noise. It can be expressed as 

mk = mk + n/(o, T)  (6.17) 

Specifically, the mutation step size n/(0, T) is a Gaussian random vector with each com- 

ponent having mean 0 and variance T.  

The intensity of the parametric mutation should be high when the fitness value of the 

parent is low and vice versa. It can be accomplished if T is defined for the parent set as 

I minimum fitness 
T = aU(0 , l )  

fitness of the set of clusters 1 
where U(0, l )  is a uniform random variable over the interval [0,1] and a is a constant 

(a < 1). Actually, this equation is already used in Equation (5.42). 

The minimum value of fitness function is determined as follows: The fuzzy hypervol- 

ume of each cluster is always less than the crisp hypervolume of the cluster comprising of 

all the input patterns. Hence, we can write 

1 n where Soj = yj - and mo = ;; zj=, yj. Since V = EL, Vk, the upper bound for the 

total fuzzy hypervolume V is - - -  

Kdet [E:=I &j&j 1 
Therefore, the minimum fitness value is given by 

The structural mutation is used to avoid structural local minima and to obtain the 

optimum number of clusters. The determination of the optimum number of clusters can 

be considered as a search problem in a structure space where each point represents a 



particular set of clusters. If a performance index like fuzzy hypervolume is assigned to 

each set of clusters, the performance level of all possible sets of clusters forms a surface in 

the structure space. Thus, determination of the optimum number of clusters is equivalent 

to finding the lowest point on this surface. However, this search operation becomes 

complicated as the surface has the following characteristics pa0931 [MTH89]: 

1. The surface is very large since the number of possible sets of clusters can be very 

high. 

2. The surface is nondifferentiable a s  the change in the number of clusters is discrete. 

In order to find the proper number of clusters, i.e., to find the global minimum in the 

structure space, sometimes one cluster is added to or deleted from an offspring [TG74]. 

These addition and deletion operations are controlled by the structural mutation. The 

addition of one cluster to an offspring set is done by splitting an existing cluster of the 

offspring. To identify a cluster for splitting, it is required to find the cluster (say Fk) 

with the maximum fuzzy hypervolume Vk. In order to break this cluster into two parts, 

the center of this cluster, i.e., mk, is split into two new cluster centers m l  and m;, and 

then mk is deleted [TG74]. As a result, the number of clusters for this set, i.e., K is 

incremented by one. Here, the cluster center m l  is formed by adding a certain quantity 

yk to the component of mk which corresponds to the maximum component of a k  (variance 

of the kth cluster), i.e., ak,,,; and in a similar way m i  is formed by subtracting yk from 

the same component of mk. One simple way of specifying yk is to make it equal to some 

fraction of ak,,, , that is 

yk = a o k m a z  where 0 < a 5 1 (6.22) 

Deletion of one cluster from an offspring set is executed by merging two existing clusters 

of the set. In order to accomplish it, the two closest clusters with centers mk, and mk2 are 

identified for merging. Thereafter, these two clusters are merged by a lumping operation 

as mi = L [ n k , m k l  + nk,mk2], where m; is the center of the new cluster and nk, is 
n k l  + n k 2  

the number of patterns in the cluster with center mk,. Next, mk, and mk, are deleted, 

and the number of clusters K is reduced by one. The amount of the structural mutation 

can be adaptively controlled using Equation (5.50-a and b). 

It is important to note that the splitting and merging operations employed in the 

proposed scheme are quite similar to that of in ISODATA [TG74]. However, unlike in 

ISODATA, here cluster merging and splitting are executed in a nondeterministic fashion. 

This inherent nondeterministic property plays a key role in avoiding local minima while 



finding the optimum number of clusters, and eventually it guarantees the asymptotic con- 

vergence of the EP-based fuzzy clustering scheme towards the global minimum [Fog94a]. 

6.2.3.4 Modified fuzzy K-means a lgor i thm 

By exploiting the mutation in a particular offspring, we obtain the number of clusters and 

the perturbed cluster centers. However, to calculate the fitness value of this offspring, 

the input data set needs to be clustered using the perturbed cluster centers. In addition, 

if the perturbed cluster centers are updated based on the clustered output, then the 

minimization of ~f takes place, and as a result, the minimization of the fuzzy hypervolume 

becomes easy. We exploit the modified fuzzy K-means (MFKM) algorithm to accomplish 

this task. For an offspring, the MFKM is executed for a certain number of iterations (say 

j) at  each generation. Consequently, if the offspring survives g generations, then it passes 

through g j  iterations. The steps associated with the MFKM algorithm are described in 

Fig. 6.3. 

The MFKM algorithm basically remembers the cluster centers at the last generation, 

and updates the old cluster centers in the current generation. This updating process, 

however, may get stuck in certain parametric local minima. In order to avoid it, the cluster 

centers of the offspring at the last generation are perturbed by applying Equation (6.17), 

and then the cluster centers are used in the current generation for further updating. 

Although both MFKM and FKM are iterative in nature, the difference between them 

is that the FKM never uses the old cluster centers in perturbed form. This difference 

makes the FKM algorithm a deterministic search operation, and thus vulnerable for the 

parametric local minima. 

6.2.4 Resul t s  and Discussion 

Before using the proposed clustering technique on the opening bid problem, we show the 

performance of the proposed clustering technique on an artificially generated simple data 

set. For the sake of visual observation, the dimension of each data is taken as two. We 

generated 387 data from 9 Gaussian distributions (Fig. 6.4Top). The value of v is set to 

4. To enhance the parametric mutation, we used Equation (5.50-a and b). The values of q 

and s are taken as 2 and 2, respectively. kml and km2 are taken as 0.3 and 0.2 such that pm 

varies linearly from 0.2 (for the best set) to 0.5 (for the average set). During the structural 

mutation only one cluster is added or deleted at a time. cr (used in Equation(6.22)) is 



1. If  t h e  current  generation is the  f i r s t  generation follow 

t h i s  s t e p ,  e l s e  sk ip  i t .  For each parent s e t  randomly 

,genera te  t he  number of c lu s t e r s ,  and randomly determine 

t he  c l u s t e r  centers  within the  range of input pa t t e rn s .  

Assume t h a t  t h e  number of c lu s t e r s  generated i s  K ,  where 

K is  i n  between two and some prespecified in teger .  

2.  Set  i=O.  

3. Find a fuzzy p a r t i t i o n  Ui of y by using Equation (6 .11) ,  

(6.12) and t he  already known c lu s t e r  cen te rs .  

4. DO 

(a) Assign i = i + 1 .  

(b) Calculate the  K c lus te r  centers  {mk/l  5 k 5 K )  using 

t he  following r e l a t i on :  

(c)  Update U' by using Equation (6.11) and (6 .12) .  

END DO UNTIL norm(ll' - u('+ '1) > q 

5. Repeat s t ep  4 with t he  distance measure given i n  

Equation (6 .4 ) .  This s t e p  helps t o  obtain b e t t e r  

c lu s t e r i ng .  

Fig. 6.3: Modified fuzzy K-means algorithm. Here q is a constant with small 

value and norm () is an appropriate matrix norm. 



chosen as 0.6. If the value of a is varied slightly, then the clustering results remain same. 

Fig. 6.4Bottom depicts the clustered data after using the proposed clustering algorithm. 

Number of generations and the corresponding fitness of the best set of clusters is shown in 

Fig. 6.5Top. In fact, this fitness value is average of the fitness values of the best set in ten 

runs. Here "plot 1" represents a curve when Equation (5.50-a and b) are used for adapting 

the parameters of the structural mutation. In contrast, "plot 2" represents another curve 

when Equation (5.50-a and b) are not used for adapting the parameters of the structural 

mutation. This comparative study demonstrates that Equation (5.50-a and b) enhances 

the performance of the search process. But it also shows that the enhancement of the 

performance is not as much as it was while configuring FFNNs in chapter 5. The proposed 

algorithm finds the optimum number of clusters after 12 generation (see Fig. 6.5Bottom). 

The clustered output is close to the desired one. The proposed algorithm self-organizes to 

find the proper number of clusters and proper cluster centers automatically. This figure 

illustrates the self-organization capability of the proposed algorithm, due to which, the 

proposed algorithm does not find any problem in clustering, eventhough it starts with 

wrong number of clusters and incorrect position of the cluster centers. This figure also 

shows that sets with different structural variation always come during the whole process. 

In fact, it exhibits that search for better set of clusters (structurally) is carried out all 

round the process. Even after assigning the number of clusters as nine, the FKM (followed 

by FMLE) failed to cluster the data set properly. Fig. 6.6Top and Fig. 6.6Bottom show 

the results of using the FKM (followed by FMLE) on the data set with two different 

initializations. The clustering results with both the initializations are bad. Apparently 

the FKM, FMLE combination was stuck in local minima due to improper initializations. If 

only the FKM algorithm is used, clustering result becomes worse than this result. After 

the proposed algorithm converges on this data set, the value of Ef is calculated from 

Equation (6.2). It is found to be 5% less than the value of Ef obtained after the FKM 

(followed by FMLE) converges on this same data set. It a demonstrates the usefulness of 

the proposed method to avoid parametric local minima. 

Next we use the proposed method on the opening Bid problem. We considered the 

training sets "TrainingSetl", "TrainingSet2" and "TrainingSet3" for first, second and 

third level bids. From "TrainingSetl", we collected the inputs only for Pass bids. We 

used the proposed clustering scheme to cluster these patterns. Twelve clusters were 

evolved after 23 generations. Using the similar procedure, we got 8, 6, 7, 5, 6, 3 clusters 

for the input patterns corresponding to IC, ID, IH, 1s and IN, respectively. From 

"TrainingSet2", we obtained 5 ,  4, 5, 2 and 3 clusters corresponding to 2C, 2D, 2H, 2s 



Fig. 6.4: Top: Eight different Gaussian distributions are used to generate 

a data set artificially. Bottom: Clustered output by the proposed clustering 

algorithm. The clustered output is close to the desired one. 
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Fig. 6.5: Top: No. of iterations vs. fitness curve for the best set of clusters in 

the proposed clustering algorithm. The data set for these clusters are shown 

in Fig. 6.4. "Plotl" and u P l ~ t 2 1 7  represent the curve with and without using 

Equation (5.50-a and b), respectively. Bottom: No. of iterations vs. no. of 

clusters for the best member of the population. 



Fig. 6.6: Fuzzy K-means algorithm is used on the data set shown in Fig. 6.4. 

Top and Bottom: Clustered outputs with two different sets of random initid 

cluster centers. Due to improper initidizations the clustered outputs are not 

close to the desired one. 



and 2N, respectively. clusters. From "TrainingSet3", we obtained 2, 2, 3 and 2 clusters 

corresponding to 3C, 3D, 3H and 3S, respectively. We will use these clusters in the next 

section while constructing the fuzzy-rough neural networks. 

Note that in some cases the fuzzy hypervolume does not attain the minimum value 

with the optimal number of clusters. In this cases, the clustering output may not be good. 

Moreover, in some cases the clustering is highly subjective. More than one possible way 

may be present to cluster the input. Moreover, in the proposed clustering algorithm we 

are assuming that the clusters are ellipsoidal. However, the proposed method may not 

give good results when this assumption is not valid. For instance, if the clusters are of 

shell type, the proposed algorithm will not work. The advantage of the proposed method 

is that one can do other modifications in the given framework. 

6.3 Fuzzy-Rough Neural Networks 

After clustering the next step involves labelling of each cluster. To accomplish it ,  a 

three-layer feedforward network can be constructed, where each node in the hidden layer 

represents the cluster centers and the weights between the hidden and the output nodes 

represent the class labels attached to the clusters. The main idea of using the fuzzy 

clustering is that if two input patterns are similar, i.e., close neighbors in the input 

pattern space, then the class labels associated with them will be same. Since each cluster 

in the pattern space represents certain common property, it is logical that the patterns 

from the same cluster will also belong to the same class. When a new pattern is presented 

a t  the input layer, the network classifies precisely based on the similarity or neighborhood 

property. Thus the inherent similarity or neighbourhood property of the clusters leads 

the network to generalize. In real life cases, however, we cannot extract all the relevant 

features necessary for the classification. Consequently, two patterns may have the same 

or similar feature values, but they are not same or similar if the other features, including 

the existing ones, are accounted for. Therefore, when the input patterns are clustered 

based on the available features, two apparently similar or neighboring patterns may have 

different class labels. It  makes the output classes indescernible or indistinguishable based 

on the given set of features. Consequently, the relationship between each cluster and 

the class labels becomes rough. One way to completely avoid the rough uncertainity is 

to extract the essential features so that distinct feature vectors are used to  represent 

different objects. But, it may not be possible to guarantee as our knowledge about the 

system generating the data is limited [SS93]. Another way to avoid rough uncertainity is to 



break the clusters further so that they do not contain any pattern from the other clusters. 

This is difficult as each fuzzy cluster to some extent covers pat terns from the other clusters. 

Moreover, the breaking of clusters means destruction of the similarity property, which in 

turn means the destruction of the generalization property of the network. In addition, if 

the clusters are broken too much, then the network training may need large space and 

high time complexity. 

In this section, we attempt to reduce the effect of rough uncertainity, while keeping the 

similarity property intact. To tackle the similarity property we need fuzzy sets [KY95], and 

to tackle roughness we need rough sets [Paw82]. Both fuzziness and roughness associated 

with each modified feature vector is captured using fuzzy-rough membership functions. 

The fuzzy-rough membership function is further exploited to construct a fuzzy-rough neu- 

ral network (FRNN). Basically, the FRNN uses the fuzzy uncertainity involved in the 

input data set and the roughness present in the input-output relationship. One advan- 

tage of the classification procedure used in the FRNN is that it is possibilistic [KY95]. 

It is useful because the output of the FRNN will be used again while combining the 

classification result. Theoretically the FRNN is a powerful classifier as it is a universal 

approximator [SY98b]. 

6.3.1 Root of Fuzzy-Rough Neural  Networks 

The FRNN is designed such that the outputs of the networks are fuzzy-rough membership 

values corresponding to the input. The fuzzy-rough membership function of a pattern 

captures both fuzziness and roughness associated with the pattern. Let, rcc(y) represent 

the fuzzy-rough uncertainity of y in the class C,. rc,(y) is defined as 

H T i z j = l p ~ ( ~ ) ~ ) C I ( ~ )  if 3j w i t h w j ( y )  > O  

0 otherwise 

where {Fl, F2, . . . , FH) are the fuzzy clusters generated by evolutionary programming- 

based fuzzy clustering algorithm, H is the number of cluster in which y has non zero 

membership and L& (y) = F'nccl. Appendix-D contains a detail description about the 
lFj l 

fuzzy-rough membership functions. 

6.3.2 Archi tec ture  of Fuzzy-Rough Neura l  Networks 

The proposed FRNN is a three layered feedforward network with one hidden layer 

(Fig. 6.7). The number of nodes in the input, hidden and output layers are equal to 



sth module 

Fig. 6.7: A typical fuzzy-rough neural network with three input nodes, four 

hidden nodes and two output nodes. 

the dimension of the input pattern ( = N ) ,  number of the fuzzy clusters present in the 

input da ta  (=H)  and number of the classes (=C), respectively. When an input pattern 

y = [yl, yz, . . . , y N ]  is applied at the input layer of the network, the output of the j t h  

hidden node is 

where mj and aj (assuming the spread is same along all directions) are the center and 

spread of the Gaussian function used in the j th  hidden node. The center and spread of 

the hidden nodes can be determined by making them equal to the mean and variance of 

the clusters. The mean and variance of each cluster are determined using the evolutionary 

programming-based fuzzy clustering algorithm, which is described in the previous section. 

The outputs of the hidden nodes can also be interpreted as the fuzzy membership values. 

The parameters necessary for the FRNN can be obtained from the parameters defined in 

the input space (Table 6.1). The output of the kth output node is 

where wjk is the weight from the j t h  hidden node to the kth output node. The output 

value og lies in between 0 and 1 (from Property D.l of Appendix-D) as the output is the 

fuzzy-rough membership value corresponding to  the input. Moreover, from Property D.6 

of Appendix D, og is possibilistic. 



Table 6.1: The relationship between the parameters used in fuzzy-rough neu- 

ral networks and input space. 

I Fuzzy-Rough neural networks Input Space 

I No. of the input nodes = Dimension of the input patterns 1 
1 No. of the hidden nodes = No. of the clusters 7 
I No. of the output nodes = No. of the classes 1 
1 Center of the j th  hidden node = Center of the j th  cluster I 
I Width of the j th  hidden node = Width of the j th  cluster 1 

6.3.3 Training and Testing of Fuzzy-Rough Neural  Networks  

To design the FRNN, the last task is to adjust the weights between the hidden layer and 

the output layer through training. Precisely, the weights between the hidden and the 

output layer reflect the rough-fuzzy membership values. For training, all the weights, 

wjk(0) V j ,  k are initialised to zero. For each input training pattern, the weight adjustment 

is carried out as 

A w j k ( l ) = o f * i  Vj ,  k (6.27) 

where i = 1 if y E Ck else i = 0. It is interesting to note that the training process 

takes exactly one iteration. After the whole cycle is over, wjk represents I Fj r l  Ck 1 ,  
i . . ,  p (y). TO make wjk = L&, wjk is normalized as (since 1 Fj 1 = 

k w j k  

Ck CYECk p~~ (y)  = Ck wjk) Since all the hidden nodes are using Gaussian clusters, 

each input pattern belongs to all the clusters, and hence, H = H. Finally, the weights 

are set as wjk = to take care of the term H involved in Equation (6.24). Note that 

no bias term is involved here with any node. 

In the testing st age, a separate set of test pat terns is given as the inputs to the network. 

For the test input y ,  the generated output at the cth output node is the fuzzy-rough 

membership value rc,(y). Since the fuzzy-rough membership functions are possibilistic 

(see Property D.6 of Appendix-D), the outputs of the FRNN are also possibilistic. 

It can be shown that architecturally (although functionally not) FRNNs are equiva- 

lent to radial basis function neural networks [SY98'b]. Since radial basis function neural 

networks are universal approximators [JSM97], FRNNs are also universal approximators. 



6.3.4 Results and Discussion 

Through clustering we have obtained the clusters corresponding to the fifteen classes 

present in the opening bid problem. This cluster information is used to construct an 

FRNN. We used "TrainingSetl" to train the network for the first level bids. From sec- 

tion 6.2.4, the number of clusters is 21 (5 for 'P', 5 for 'lC', '6' for 'ID'). Hence for the 

first level bids we used 21 hidden nodes. The resultant FRNN has fifty input nodes, 

twenty-nine hidden nodes and six output classes. The first row of Table 6.2 shows the 

classification performance of FFNNs on the first level bids. This result is reproduced from 

Table 5.1. The second row of Table 6.2 exhibits the performance of the FRNN. While 

comparing with the FFNN for first level bids, we can observe that the performance of the 

FRNN is better than that of the FFNN. The time needed to configure the FRNN is also 

less. 

Similarly, FRNNs were constructed for the second and third level bids. The data 

sets "TrainingSet217 and "TrainingSet3" were used to construct the FRNNs. To test the 

performance of these two FRNNs, we used "TestSet2" and "TestSet3". The FRNN for 

the second level bids consist of fifty-two input nodes and five output nodes. Since the 

total number of clusters for the second level bids is 19, the number of hidden nodes is 

chosen as 19. The comparative classification performance of the FRNN and the FFNN 

is given in Table 6.3. For the third level bids, the FRNN has fifty-two input nodes, nine 

hidden nodes and four output nodes. The classification performance of the FRNN and 

the FFNN is compared in Table 6.3. 

It can be observed that for first and second level bids, the performance of FRNNs are 

better than the FRNN. In contrast, the FFNN for third level bids perform better than the 

FRNN. In lower level bids roughness is very high. FRNNs take roughness into account, 

and hence, they perform better than FFNNs for lower level bids. The role of rough 

uncertainty is less for the inputs corresponding to the higher level bids. Hence, in this case 

the FFNN can approximate the class boundaries more effectively than the FRNN. Some 

differences between the FFNN approach and the FRNN approach are: 1) FRNNs utilise 

the structure present in the data explicitly, whereas in FFNNs the use of the structure is 

implicit. 2) FFNNs with the fuzzy objective functions do not consider rough uncertainity. 

In contrast, FRNNs take care of rough uncertainty. 3) FFNNs with the fuzzy objective 

functions perform well when the decision boundary is very complicated. However, the 

performance degrades as soon as the roughness in the data set becomes high. On the 

other hand, although the performance of FRNNs is poor in presence of complex decision 



Table 6.2: Comparative classification performance of FFNNs and FRNNs for 

first level bids. 
1 Network 11 Pass I 1C 1 1D 1 IS 1 1~ I I N  I overall 1 

Table 6.3: Comparative classification performance of FFNNs and FRNNs for 

FFNN 

FRNN 

Table 6.4: Comparative classification performance of FFNNs and FRNNs for 

third level bids. 
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boundaries, FRNNs exploit rough uncertainty to enhance the classification performance. 

The effectiveness of these two approaches depend on the type of the decision boundary 

and the roughness present in the classification task. 
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6.4 Summary 

2C 

75.82% 

88.18% 

In this chapter, an evolutionary pi-ogramming-based clustering algorithm is proposed. 

The algorithm effectively groups a given set of data into an optimum number of clusters. 

The algorithm determines the number of clusters and the cluster centers in such a way 

that locally optimal solutions are avoided. The result of the algorithm does not depend 

critically on the choice of the initial cluster centers. The clusters are used to construct 

an FRNN. The parameters for the hidden nodes and the number of hidden nodes are 

determined from the clusters. The weight between each hidden node and the output class 
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Fig. 6.8: (a) and (b) are two equivalent sets of clusters, which order their 

clusters differently. Although phenotype representation for both the sets are 

same, genotype representations are different. 

is determined using the rough-fuzzy membership functions. The outputs of the network 

are fuzzy-rough membership values corresponding to the modified feature vectors. 

Like FFNN configuration, in the clustering problem also, an EP-based optimization 

approach is advantageous over a genetic algorithm-based approach. Here, the permutation 

problem stems from the fact that in genetic algorithm two functionally identical sets of 

clusters, which order their clusters differently, have two different genotype representations 

(see Fig. 6.8). Therefore, the probability of producing a highly fit offspring from them by 

crossover will be very low. 

The difference between FRNNs and radial basis function networks should be noted. 

The working principle of radial basis function neural networks is similar to that of FRNNs. 

But, FRNNs consider the rough uncertainty present in the clusters, whereas the radial 

basis functions do not take roughness into its account. In particular, the use of rough-fuzzy 

membership functions makes FRNNs more powerful than radial basis function neural 

networks. Detail comparison between these two networks is given in [SY98b]. 

When both the input clusters and the output classes are crisp, the outputs of the 

FRNN are rough membership values (see Property D.4 of Appendix-D). Hence, the re- 

sultant FRNN architecture is reduced to a modified architecture, called rough neural 

networks. The architectural difference between FRNNs and rough neural networks is in 



the transfer function used in each hidden node. In particular, the transfer function used in 

the FRNN is of Gaussian type, whereas in the case of rough neural networks the transfer 

function is a unit gate function, i.e., 

o: = 1 if ( y - m j ) ( y - m j ) < 2 0 ;  
0 otherwise 

Evidently, the 110 option used in the gate function makes the generalization capability of 

rough neural networks limited. 

When the input clusters are crisp and fine, and the output classes are crisp, then 

the outputs of the FRNN are the crisp class membership values (see Property D.5 of 

Appendix-D). The resultant network can be called crisp neural network. The number of 

hidden nodes of the crisp neural network is equal to the number of inputs. Since the 

width of each cluster approaches towards zero, the transfer function of each hidden node 

becomes a unit impulse function, i.e., 

1 if y = yj 
oj = 

0 otherwise 

As a result, the weight calculation becomes very simple, i.e., wjk =1 if y j  E Ck else 

wjk = 0. Thus, the resultant crisp neural network needs a large amount of space, and it 

works like a look-up table, which does not have any generalization capability, but has a 

very good memorising power. 



Chapter 7 

FUSION OF CLASSIFICATION RESULTS 

7.1 Introduction 

Till now we have divided the original classification task among small feedforward sub- 

networks, and we have built modules to accomplish the subclassification tasks. In this 

chapter we combine the individual solution provided by the modules to obtain the final 

classification result. The proposed method interprets each subnetwork as a nonlinear filter 

tailored to the subgroup. The outputs of all the filters can be viewed as a feature vector 

representing the input. We may call these features secondary features to distinguish it 

from the features that we obtained in chapter 4. In fact, the features what we obtained in 

chapter 4 undergoes nonlinear filtering and generates the secondary feature vectors. For 

the sake of brevity we will call the secondary features also features as long as no confusion 

exists. Each module classifies the input pattern from different angles. Each feature, i.e., 

the output of each module, can be considered as an evidence in classifying the input. Since 

the modules are trained locally and the modules cannot resolve the global uncertainties, 

each of the evidence may support or contradict one another. For instance, the following 

two conditions may arise: 

1. If the classes of two modules are close or overlapping, then for an input, outputs of 

both the modules will be high. In other words, each of these two modules claims 

that the input can be classified by the module alone. 

2. Due to roughness, an input may completely belong to two different classes. If 

these classes are from two different modules, then for a similar test input, both the 

modules will produce high outputs. It indicates that the input belongs to both the 

modules. 

Some modules may cooperate each other also. For instance, the low output value of 

a module may automatically indicate the high output in some other modules. Due to 



the presence of conflicts and cooperations, each feature would have a different degree of 

importance in classifying the input to a particular class. 

To fuse the information supplied by each module, various methodologies like 

winner-take-all [Hay94], probabilistic (Bayesian) reasoning [J 5931, Dempster-Shafer the- 

ory [Sha76], fuzzy integral [CK95a] [CK95b] [Yag93] [Cho95] [YF93] [Gra97] [WK92] exist. 

In the winner-take-all technique, outputs of all the subnetworks are combined by simply 

choosing the class with the largest output value. This method does not consider the im- 

portance of each feature. Since each module is not trained to discriminate all the classes 

and all the modules are not trained upto the same accuracy, the performance of this 

scheme is poor [CK95a] [Cho97]. For the information fusion, Bayesian reasoning utilises 

the importance of each feature. But, while combining the importance of more than one 

evidence, it relies on probability theory, which cannot discriminate between lack of evi- 

dence and negative evidence [K096]. On the other hand, Dempster-Shafer's theory and 

the fuzzy integral can distinguish between lack of evidence and negative evidence. As we 

have discussed in section 2.3.4, the fuzzy integral approach has a way to assess the im- 

portance of all groups of information sources towards supporting a particular hypothesis 

as well as the degree to  which each information source supports the hypothesis. In con- 

trast, the Dempster-Shafer theory does not have this advantage [KGTS94]. In addition, 

fuzzy integral is computationally more efficient than the Dempster-Shafer approach. Due 

to these merits, this chapter applies a fuzzy integral-based fusion method in combining 

the subnetworks. In particular, a special type of fuzzy integral, known as Sugeno 's fuzzy 

integral, is used. Henceforth, we use the term fuzzy integral to mean Sugeno's fuzzy 

integral. 

The behavior of the fuzzy integral in an application depends critically on the impor- 

tance of the subsets of the features. Therefore, determination of the worth of each feature 

is very important. In some applications of the fuzzy integral, the importance is s u p  

plied subjectively by an expert or it is estimated directly from the data [TK90] [SY98e]. 

These methods require some kind of prior knowledge about the behavior of the outputs 

generated by the modules. In many applications, it may be difficult to obtain the prior 

knowledge. However, it is interesting to note that in the fuzzy integral approach, influence 

of the other features on a given feature is not considered. Hence, determination of the 

importance of a particular feature is based on the partial information supplied by the 

feature itself. A feature is important for a particular class when all the input patterns can 

be classified correctly to that class only using this feature value. This is possible when all 



the input patterns are clustered based only on this feature value and all the input patterns 

from each cluster have the same class label. When it does not happen, the relationship 

between the clusters and the output class labels becomes onet+many. It results in rough 

ambiguity [Paw82]. In most of the cases, the clusters formed in the input space based on 

each feature value is fuzzy. Therefore, in this article, an attempt is made to determine 

the importance of each feature using fuzzy-rough set [DP92] theoretic technique. 

The chapter is organized as follows: In section 7.2 we discuss the basics of fuzzy 

measure, fuzzy integral and rough sets. In section 7.3 the proposed method is described. 

Section 7.4 demonstrates the experimental results. 

7.2 Background 

7.2.1 Fuzzy Measure 

Let E be a finite set of elements. A set function g : 2" -+ [O, 3.1 with the following 

properties is called a fuzzy measure [Sug74]: 

PI: g(4) = 0 

P2: g(E) = 1 

PJ: If U C V, then g(U) E g(V), where U, V C E 

The fuzzy measure generalizes the classical measure which plays a crucial role in 

probability and integration theory. A probability measure P is characterized by the 

property of additivity: For all sets U and V, if U n V = 4, then P ( U  U V) = P(U) + 
P(V) . In the fuzzy measure, this property of additivity is weakened by the more general 

property of monotonicity (property P3). Sugeno's gx measure is a special type of fuzzy 

measure [Sug74] which satisfies all the properties of the fuzzy measure, in addition to the 

following: 

g(U u V) = g(U> + g(V) + Xg(U)g(V) (7.1) 

where X > -1, U, V E E and U n V = 4. By varying the values of A, one can obtain 

different types of fuzzy measure. For example, X = 0 produces the probability measure. 

7.2.2 Fuzzy Integral 

Let 2 = { E l ,  E 2 ,  . . . , (S) be a finite set of elements, h : Z -+ [O, 11 be a mapping and g be 

a fuzzy measure on Z. Then the fuzzy integral (over Z) of the function h with respect to 



the fuzzy measure g is defined as 

where 1 5 s 5 S. Since both h and g map to [0, I.], 3 also lies in [0, 11. The above integral 

can be seen as an extension of Lebesgue integral if product and summation operators are 

substituted for rnin and max, respectively. 'Intuitively the interpretation of the above 

relation is as follows: Let us suppose, an object is evaluated using a set of information 

sources E. Let h(6,) E [0, 1) denote the decision for the object when a single information 

source (, E E is considered. Moreover, suppose g({€,)), known as fuzzy density, denotes 

the importance of the source 6,. Instead of a single information source, if a set of sources, 

namely R S, is taken to evaluate the object, then it is reasonable to consider rnin h((,) 
€.En 

as the largest security decision. Evidently, g(R) expresses the degree of importance or 

the expected worth of the set R. Therefore, min min (h((,)) , g(R) denotes the grade 
(€ .En 1 

of agreement between the real possibility h and the expectation g. Thus, the fuzzy 

integral can be interpreted as a search for the maximal grade of agreement between the 

objective evidence and the expectation. However, the definition can further be simplified 

if h((,), s = 1,2,  . . . , S are ordered in a decreasing manner. Let h(<,) 2 h((,) 2 . . . 2 
h(<,) (if not, E is rearranged so that this relation holds). Then Equation (7.2) is simplified 

t 0 

where 0, = . . . ,€,). 
In order to evaluate the fuzzy integral, i.e., 3, we should have some way to determine 

g(R,) from g({€,)). For that, we need to use the concept of fuzzy measure. In the 

next section we will show how to determine the individual fuzzy densities g({€,)), s = 

1,2, . . . , S for each information source from the given data. For the time being, let us 

suppose that we know the fuzzy densities of the individual sources. But, g(n,) is not 

necessarily equal to g({€,)) +g({(,)) + . . . + g({€,)). The simple additive property 

may not hold because there may be some interactions among c,. If the interactions are 

cooperative, then g(Rs) >_ g({(,)) +g({(,)) + . . . + g({(,)). On the contrary, if the 



interactions are noncooperative, then g(Rs) < g({(,)) +g({(,)) + . . . + g({€,)) [MS89b]. 

From this discussion, note that probability theory cannot be used to determine the value 

of g(Rs). However, the concept of Sugeno's g~ fuzzy measure can be exploited here to  

find the value of g(Rs). The procedure is as follows: 

One problem remains still unresolved; that is, how to determine A, which is the key 

term to decide the amount of interactions among the information sources. In order to find 

A, we use Equation (7.4), and we express g(E) in terms of the individual fuzzy densities 

as follows: 

where X # 0 
s=l 

(7.7) 

From (PZ), we know that the value of g over the whole set E must be one as no uncertainty 

is involved. Hence, using g(E) = 1 and Equation (7.5) 

It  is possible to  find the value of X after solving the above ( S  - 1)th degree equation. 

In [TK90], it has been shown that X has a unique value in (-1, 0) U (0, +m) when 



7.3 Modular Networks with Proposed Fusion Technique 

7.3.1 Architecture of Modular Networks 

In third chapter, the given pattern classification task is subdivided into three subtasks, 

and one subnetwork is assigned for each subtask. We make this statement slightly general 

by assuming that the original problem has M output classes {C1, C2, . . . , CM), and these 

classes are divided into S subnetworks (Fig. 7.1). The sth subnetwork is assigned to 

classify a group of classes, represented by {Cc,-,+l,. . . , C,,) with c,-, = 0 and cs = M. 

The output of the sth subnetwork is {y,,-,+I,. . . , y,,), which is expressed in a vector 

notation as <, = [yc8-,+l,. . . ,y,,]. The proposed method interprets each subnetwork as a 

nonlinear filter tailored to the subgroup. Thus, the outputs of all the filters corresponding 

to an input x is viewed as an S dimensional feature vector. This feature vector is presented 

as an input to a fuzzy integrator, which computes the value of the fuzzy integral with the 

help of fuzzy densities. The class label of the input x is the class index that yields the 

maximum value of the fuzzy integral corresponding to +. 

7.3.2 Training of Modular Networks 

When a modular network is used for classification, a given training pattern is input to all 

the subnetworks and the outputs of the subnetworks are processed to determine the class 

label. We can decide the class label of the input based on winner-take-all policy. It means 

that the class label of the input pattern is assigned as j, 1 5 j 5 M ,  if yj = max {yk). 
k=1,2, ..., M 

However, this type of assignment is not proper as all the subnetworks are independently 

trained on different sets of data. A better approach is to declare the j th  class winner, if the 

j th  class correspondences to max {gkyk), where gk is the importance associated with 
k=1,2, ..., M 

the class Ck . One possible choice for gk is the a priom' probability of the class Ck. However, 

the constraint C gk = 1 used in probability theory cannot distinguish between lack 
k=1,2, ..., M 

of evidence and ignorance. Therefore, the concept of fuzzy integral is appealing here. 

In the fuzzy integral approach, the outputs of the modules are processed further so that 

the interactions among the outputs are also exploited for the final classification result. 

Hence, the term gk is replaced by a more specific term gk({<s)), where gk({<s)) denotes the 

importance of <, in characterizing the class Ck. With the help of gk({c,)), s = 1 ,2 , .  . . , S, 

the fuzzy integral Fk for the class Ck combines the outputs of all the modules, i.e., 

& ,  s = 1 ,2 , .  . . , S , in a nonlinear fashion. The final class label corresponding to the 
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Fig. 7.1: A modular network with S modules or subnetworks. Initially the 

input pattern is fed to S different feature analysers (FA). The feature analy- 

sers modify the input by providing different weightage on each feature. The 

modified feature set is passed to the module connected to the feature analyser. 

The output of the s th  module is represented by t,. All the outputs are com- 

bined in a nonlinear manner by a fuzzy integrator (FI). @ denotes the vector 
, , 

r&,G7...7c~. 

Module 1 FA 1 

input is j, if Fj = max {Fk) .  The training of the modular network is comprised of 
k=1,2,  ..., M 

the following two stages: 

Y, 
E-. 

7.3.2.1 Training of subnetworks 

. 
r 

For this stage, separate data sets are prepared to train the subnetworks independently. 

The training data set for a subnetwork generally consists of the patterns belonging to 

the classes in its subgroup only. Then, each subnetwork is trained to form the decision 

surfaces for the classes in its subgroup. Training of the subnetworks varies depending on 

whether the network is FFNN or FRNN. Both the training strategies are discussed in 

chapter 5 and chapter 6. 

Y2 
b 4 F A 2  Module 2  

4 1 



7.3.2.2 Pattern matching 

This stage of training is needed to compare the kth class prototype and the feature 

vector @. Here the partial evaluation hk(es) implies how good the feature 6, alone is to 

classify the patterns from the class Ck, and the individual fuzzy density gk({e3)) signifies 

the importance of the feature e3 for the class Ck. Hence, the comparison between the 

prototypes of Ck and @ can be accomplished in terms of closeness. Roughly speaking, 

the closeness can be as hk ((1)gk ((€1)) f hk(€2)gk({€2)) f - - . f hk(<s)gk({€s)). 
When the domain is continuous and the continuity of the function hk(e3) is not guaranteed, 

the closeness can be represented more comfortably by the fuzzy integral Fk .  Therefore, 

in this stage it is essential to know the values of: (a) class prototypes, from which the 

partial evaluation hk(es) can be obtained, and (b) the individual fuzzy density gk({&)). 

Class prototype selection: The set {x) that contains training inputs from all the 

classes, are passed through all the subnetworks to generate a set of feature vectors {@). 
All the feature vectors corresponding to each class (say Ck) are collected separately, and 

the mean of the vectors (say mk)  is calculated. This mean represents the class prototype. 

In the testing phase, these class prototypes will enable us to compute the partial evaluation 

hk (€3). 

Evaluation of fuzzy density gk({CS)): The individual fuzzy densities are calculated 

based on how well the outputs generated by the subnetworks separate all the classes for 

the training data. Since we have already mentioned that each e3 can be considered as a 

feature, determining individual fuzzy densities are equivalent to the determination of the 

importance of each feature. We propose a fuzzy-rough set theoretic approach to determine 

the individual fuzzy densities, i.e., the importance of the features for a particular class. 

This approach is described below for the feature 6, and the output class Ck. 

A set of features {(,) is collected by passing a set of training inputs {x) through the 

sth subnetwork. Fuzzy K-means algorithm [Bez81] is applied on this feature set. Since 

the number of clusters is not known, we assume K is equal to the number of classes 

M. While applying the fuzzy K-means clustering on the set {(,), we can observe the 

following two points: 

1. Some (, belong to more than one cluster partially as the clusters are overlapping. 

2. All e3 from the same cluster may not belong to the same class. 

The first type of uncertainty is fuzzy uncertainty. It is generated because the outputs of 



the subnetworks are not from { O , l ) .  The second type of uncertainty is rough uncertainty. 

It is generated as the feature e3 is not sufficient to classify all the input patterns {x). 

Hence, two different tg belonging to the same cluster may represent two different classes. 

Thus, the relationship between the sth feature and the class labels may be a one-to-many 

mapping. In other words, the classes are indescernible or not distinguishable with respect 

to the sth feature. The sth feature t3 is an important feature if 

1. The clusters are compact and wide apart. The less is the fuzzy uncertainty, the 

more important the feature is [PC861 [PM86]. 

2. All the elements from a particular cluster belong to the same class. The less is the 

rough uncertainty, the more important the feature is. 

That is, the feature <, is important if each cluster, generated by the feature, is compact 

and isolated, and if all the patterns from each cluster represent the same class. Therefore, 

the presence of more fuzzy and rough uncertainties implies less importance. Note that the 

presence of any one or both of these uncertainties change the importance of the feature 

for a particular class. We seek to measure the amount of fuzzy and rough uncertainties 

involved by using fuzzy-rough sets. Later we will use the quantified value to determine 

the importance of the sth feature for the kth class. 

Based on the feature e3, the approximation of Ck by the set of feature vectors {+) is 

expressed here as a fuzzy-rough set. The lack of discriminating power of the feature <, is 

due to the fact that we are not considering the other features t j ,  j # s, j = 1,2. .  . . ,S  

into account. Here we do not have complete information to classify a particular pattern 

in the class Ck based on the information supplied by e3. To determine the importance of 

the feature <, for the class Ck with such incomplete knowledge, the concept of rough sets 

can be used. In the terminology of rough set, two patterns +, E {+) and +, E ($1 are 

called indiscernible with respect to the sth feature when the sth component of these two 

patterns have the same value. Mathematically, it can be stated as 

+pR3+q iff €3, = €39 

where R3 is a binary relation over {+) x {+). Obviously, R" is an equivalent relation. 

Therefore, R9 partitions ($1 into a set of equivalent classes, namely {Ff , Fl, . . . , F;), 

where K is greater than one but less than the cardinality of {+). For continuous features, 

it is better to consider that +, and qhq are related if the sth component of the two features 

are similar (not necessarily strictly equal as in (7.9)). Two patterns from the same cluster 



can be considered similar as they have spatial similarity. The resultant equivalence classes 

become fuzzy clusters. It can be proved [DP92] that the fuzzy clusters F,9, F;,. . . , F,& will 

be present if and only if there exists some similarity relation like (7.9). Moreover, it can 

be shown that [DP92] the generated clusters will follow weak fuzzy partitioning [DP92]. 

This situation can be formulated in terms of fuzzy-rough sets. One obvious problem is to 

decide the number of clusters needed for the task. We are assuming that the number of 

clusters is equal to the number of classes, i.e., K = M. 

After showing that fuzzy-rough uncertainty is associated with each (,, we have r e p  

resented the approximation of C k  by {+} in terms of fuzzy-rough sets. Now we are ready 

to quantify the fuzzy-rough uncertainty associated with each 6,. In Appendix-Dl we 

can observe that using fuzzy-rough membership values, we can measure the fuzzy-rough 

uncertainty associated with each input pattern. Now, a measure of fuzzy-roughness is 

needed to estimate the average ambiguity in the output class Ck for the input feature 6,. 

As a measure we use the concept of fuzzy-rough entropy for the sth feature and the kth 

class as 

where rck (6,) is the fuzzy-rough membership value of the feature 6, in the class Ck and 

f i  is the number of feature vectors used to determine the importance of the feature. It 

can be noticed that Xi increases monotonically in [O, 0.51 and decreases monotonically in 

[0.5, 11. It reaches the maximum value when rck (6,) = 0.5 V(,, and minimum value when 

rCk((,) = 0 or 1 V6, [PB95]. The lower the value of Xi is, the greater is the number 

of 6, having rck((,) M 1 or rck(t3) M 0, i.e., less is the difficulty in deciding whether 

6, can be considered a member of Ck or not. In particular, when rck (6,) M 1, greater 

is the tendency of 6, to form a compact class Ck in the sth subspace, resulting in less 

internal scatter in the sth subspace. Moreover, when rck (6,) M 0, 6, is far away from the 

kth class, and hence, the interclass distance increases in the sth subspace. On the other 

hand, when rck (6,) M 0.5, 6, lies in between Ck and the other classes in the sth subspace. 

Hence, compactness and interclass distance both decrease in the sth subspace. Therefore, 

the reliability of (,, in characterizing the class Ck, increases as the corresponding Xi 
value decreases. Thus, Xi quantifies the importance of 6, in characterizing the kth class. 

One way to determine the importance of the sth feature in the kth class is by the term 



(1 - 'Xi). Hence, the fuzzy densities can be determined as 

The procedure to find the fuzzy density can be summarised as follows: We interpret 

the fuzzy density of a module with respect to an output class as the importance of the 

module for that class. It is equivalent to the importance of the feature generated by the 

module (since the module is treated as a feature extractor). The importance of the feature 

for an output class depends on the fuzzy-roughness associated with the output class for 

the given feature. We have demonstrated that a set of input patterns can be clustered 

based on the feature value, and as a consequence, the approximation of the output class by 

these clusters can be expressed in terms of a fuzzy-rough set. It is possible to quantify the 

fuzzy-roughness associated with each input pattern for the output class in terms of fuzzy- 

rough membership functions. The fuzzy-rough ambiguity associated with the output class 

for the given set of input patterns is measured using the fuzzy-rough entropy. The fuzzy 

density for the output class is determined from the fuzzy-rough entropy. 

The complete training procedure, consisting of training the subnetworks and matching 

the patterns, is shown in Fig. 7.2. 

7.3.3 Testing of Modular Networks 

A separate set of test patterns is used as inputs to all the subnetworks. The outputs 

of all the subnetworks corresponding to the input test pattern x form the feature vector 

+ = [d, &, . . . , &i. To determine the partial evaluation hk(E,) from the already recorded 

class prototypes, we use the following relation [Bezgl]: 

where dk is the distance between the feature (, and the prototype of the kth class, i.e., 

dk = ((, - m i j ~ - ~ ( < ,  - mi), with m i  = [mce-,+l,k,. . . , mCecj. Here, C is a positive 

definite matrix and q E (1, m) is an index. Generally, C is taken as the covariance 

matrix for the distance between E, and mi ,  and q is taken as 2. The value of hk(EJ) 

is an indication of how certain we are in the classification of the input x into the class 

Ck using the feature t, .  Here, 1 indicates with absolute certainty that the input x is 

from the class Ck, and 0 means that the input certainly does not belong to the class Ck. 

Moreover, from the training the fuzzy densities gk({<,)), Vs, k, are known. Hence, using 



Use different training sets T8, s = 1,2, . . . ,S  to train all the 

subnetworks.The training set T8 contains the training 
input-output pairs only for the sth subnetwork. 

Prepare another training set {xl, x2,. . . , xii) that contains the 
training Input-output pairs for all the subnetworks. Pass this 

training set through all the subnetworks to collect the feature 

vectors $,, p =  1,2,. ..,fi as the outputs. 

DO for each k = 1,2, ..., M 

Record the class prototype mk. 

END DO 

DO for each s 

Apply the fuzzy K-means clustering algorithm with M 

clusters on {<,, ( p  = 1,2,. . . , fi). 
DO for each class Ck, k = 1,2,. . . , M 

Use (7.11) to compute the fuzzy density gk({tS)) 

from {<,, Ip = l,2,. . . , f i ) .  

END DO 

END DO 

Fig. 7.2: Training of the proposed modular neural network. 



For t h e  t e s t  input  p a t t e r n  x ,  f i n d  t h e  outputs  t,, s = 1 , 2 , .  . . , S 
f o r  a l l  t h e  subnetworks. 

DO f o r  each output  c l a s s  Ck, k = 1 , 2 , .  . . , M 

DO f o r  each t,, s = 1 , 2 , .  . . , S  

Compute hk (t,) from (7.12) . 

END DO 

Calcula te  X from (7.8)  . 

Calcula te  Fk from (7.3)  . 

END DO 
M The c l a s s  l a b e l  of x is j i f  Fj = mmax{Fk}. 

k = l  

Fig. 7.3: Testing of the proposed modular neural network. 

Equation (7.3), the fuzzy integral value of x corresponding to each output class can be 

computed. The class label corresponding to the test input is the class index which yields 

the maximum fuzzy integral value. The fuzzy integral value corresponding to a particular 

class can also be used as the confidence level in classifying the input to that class. The 

testing procedure is given in form of an algorithm in Fig. 7.3. 

7.4 Results and Discussion 

In chapter 6, we found that FRNNs are suitable for the first and second level bids, 

whereas the FFNN with fuzzy mean square error is suited for the third level bids. Hence 

to construct the modular network, we use two FRNNs for the first and second level bids 

and one FFNN for the third level bids. The architecture and training strategy for these 

networks are discussed in chapter 5 and 6. To combine the outputs of the networks, a 

test set of 600 input patterns was formed. It  contains patterns from all the classes. For 

a given input hand, the output of each network is found. In the first experiment, we 

applied winner-take-all technique on these outputs to find the corresponding class labels. 

The class label of the input was chosen as the class label corresponding to the maximum 

output. The classification performance is shown in the second column of Table 7.1. 



Next we apply the fuzzy integral to fuse the outputs of the three networks. To train 

the fuzzy integral, we used a validation set of size 400. This set contains data from all the 

classes. Here the importance of each <, is determined using two different methods. One 

method is called frequency-based method. It was used first by Tahani et al. in [TK90]. 

The fuzzy density corresponding to each (, is found based on how well this feature alone 

performs on the validation set. The fuzzy densities are calculated using [CK95b] 

where P3,k is the classification performance of (, for the class Ck on the validation data 

and d, is the desired sum of the fuzzy densities. The output with maximum fuzzy integral 

value is chosen as the output class label. The classification efficiency using this procedure 

is depicted in the third column of Table 7.1. Finally the fuzzy densities are calculated 

using the proposed method. For each module, the class prototypes were recorded. Since 

the number of classes is 15, we used 15 clusters in the fuzzy K-means algorithm. This 

information was used to compute the fuzzy densities. The classification results of the 

proposed method on the same test set are given in the fourth column of Table 7.1. 

In Table 7.1, we can observe that the proposed method is performing better than 

the winner-take-all method. In the winner-take-all method, there is a large variation in 

the performance among the classes. It is because some classes are highly trained, and 

hence these classes win for most of the input data. The sum of importance calculated 

using frequency based method is equal to one. Consequently, if a module is not efficient 

to classify patterns to any of the classes, then the importance associated with the mod- 
1 ule for all the classes will be no. of classes = z. On the otherhand, in the proposed 

method sum of importance may or may not be equal to one. Hence, if a module is not 

efficient to classify patterns to any of the classes, then the importance associated with 

the module for all the classes will be zero. This strategy is certainly more attractive than 

that of frequency-based method. Possibly because of this reason, the proposed method is 

performing better (overall) than the frequency-based method. Therefore, the better clas- 

sification performance (overall), makes the proposed method more attractive compared 

to the other two methods. 

In this chapter, finally we have built the complete modular network for the opening 

bid problem. Although the performance of the resultant bidding system is not the best, 

our aim was to show that exploitation of uncertainities can make the classifier better. For 

that we started with a monolithic classifier, which could not be trained. Then we broke the 



Table 7.1: Final classification results for the opening bid problem using win- 

ner- take-all method, frequency method and proposed met hod. 

1 Overall 1 7 7 . 3 1 % 1 8 2 . 2 0 %  1 85.23 % 1 

P 

monolithic classifier and finally integrated the classification results from the subclassifiers. 

The classification result by the network is off course subjective. It is because the bids 

produced by the system are tallied by an expert, and if it is accepted by the expert as a 

valid bid, then the output is considered as correct output. There may be be slight change 

in the performance of the classifier if the expert is changed. 

method 

90.14% 

7.5 Summary 

This chapter applies a fuzzy integral-based technique to combine the outputs of the rnod- 

ules in a modular neural networks. The modules are viewed as nonlinear feature extrac- 

tors. Hence, for each input the modules generate a feature vector. The fuzzy integral acts 

here as a weighted closeness measure between the feature vector and the class prototypes. 

method 

78.87% 

method 

88.34% 



The weights are determined based on how important the features are for a particular class. 

The importance of a feature for a particular class is measured in terms of fuzzy-rough 

ambiguity associated with the concerned output class for the given input feature. The 

class prototype that is the nearest to the feature vector is designated as the class label of 

the input pattern corresponding to the feature vector. 

The approach adopted in this chapter can also be viewed as a two stage classification 

scheme [CK92]. The first stage of the classification scheme, accomplished by the subnet- 

works, is for crude classification. The second stage, which consists of the fuzzy integral, 

is to fine tune the classification results obtained from the first stage. 

The attractive points about the proposed way of calculating the fuzzy densities are 

1. It is an objective way of calculating the fuzzy densities. Therefore, it does not need 

any expert to determine the fuzzy densities. Moreover, unlike other objective ap- 

proaches, it does not need any information regarding the probability of occurrence 

of the input patterns. It needs only the facts hidden inside the data. 

2. It is conceptually simple and needs simple algorithm. It does not need any com- 

plicated learning procedure as used in [KO961 [WW97]. The learning procedures 

used in [KO961 [WW97] may get stuck in local minima, or may take long time to 

converge. Especially, if the number of modules are large, then the convergence of 

this kind of learning algorithm may become very tough [GN94]. 

In the definition of fuzzy integral, we are using max and min operators which are nonin- 

teractive. It makes the fuzzy integral less sensitive towards the training data. A better 

approach may be to use the fuzzy integral with OWA operators [Cho95]. 



Chapter 8 

SUMMARY AND CONCLUSIONS 

8.1 Summary of the Thesis 

In this thesis, an attempt has been made to deal with uncertainties in classification prob- 

lems. The objective is (a) to identify the roles of fuzzy, rough and probabilistic uncer- 

tainties associated with the given classification problem, and (b) to exploit the associated 

uncertainties to evolve a pattern classification methodology. Contract Bridge opening -- 
bid problem is considered as a case study. The aim is to construct a classifier for the 

opening bid problem based on the input-output pairs of the data collected from players 

of the Bridge game. When a hand pattern is presented as an input pattern, the classifier 

should be able to determine the opening bid. Some salient characteristics of the problem 

are: The input hand patterns are crisp, the output bids are fuzzy, some output bids are 

highly probable and the input-output relationship is not unique. Although the problem 

is complex, the straightforward input representation of the problem enables us to probe 

more into the classification mechanism. 

Before going into the details of the opening bid problem, a comprehensive survey of 

different pattern classification techniques are presented. The emphasis of the review is on 

the recent trend to evolve pattern classification methodologies using uncertainties. The 

review includes the description of the state-of-the-art techniques employed in modular 

classifiers. 

In this thesis, the classification process is described through numerical quantities. 

Feedforward neural networks (FFNNs) with backpropagation learning algorithm are cho- 

sen for the study. In the initial experiments, monolithic feedforward neural networks 

failed to converge. The reason may be that the classifier is insufficient to handle, resolve 

and exploit the uncertainties associated with the problem. To make the uncertainty han- 

dling easier, an attempt is made to break the the problem into smaller subproblems. The 

intention is to resolve and exploit the uncertainties locally in each subproblem, followed 

by a mechanism to treat the uncertainties globally. In order to accomplish it the following 



five steps are adopted: 

In the first step, all the possible classes are partitioned such that the classes that are 

close, and the classes for which the frequency of occurrence of the patterns are similar, 

belong to the same partition. The condition of closeness narrows down the effect of fuzzy 

uncertainty into a local region, and the condition of similar occurrence makes the learning 

easier. Each partition forms one subclassification problem. This strategy results in three 

subclassification problems in the opening bid problem. The output classes for the three 

subclassifiers correspond to the first, second and third level bids. 

In the second step, different feature sets are used for each subclassification problem 

to increase and decrease the interclass and intraclass distances, respectively. The aim is 

to make the classification process easier with the derived feature set. It is accomplished 

by imposing high-er weightage on the features that are important for the classes present in 

the subclassification process. While measuring the importance of a particular feature, in- 

fluence of the other features present in the input pattern and influence of the unaccounted 

features are not possible to be taken under consideration. Consequently, two input pat- 

terns with the same feature value may be mapped to more than one class. This situation 

causes the input-output relation to be one-to-many, and hence, rough-uncertainty is gen- 

erated. Moreover, the classification task involved in the opening bid problem is inherently 

fuzzy. The more rough and fuzzy uncertainties are associated with a feature, the less is 

the importance of the feature. Rough-fuzzy entropy is proposed as a criterion function 

to evaluate the importance of each feature. The fuzzy membership value of each training 

pattern is determined using possibilistic K-means algorithm. These membership values 

are used to compute the rough-fuzzy entropy. The rough-fuzzy entropy is minimized 

iteratively to obtain the optimal importance of each feature for a particular module. 

In the third step, a classifier module is designed for each subclassification task. Each 

module is constructed using direct classification technique. Feedforward neural networks 

with backpropagation algorithm are used. The inputs of the networks are the modified 

feature vectors and the outputs are the fuzzy output classes. The backpropagation al- 

gorithm is designed to minimize two classes of fuzzy objective functions, namely, fuzzy 

mean square error and fuzzy cross entropy. The performance of these two algorithms are 

comparable on the opening bid problem. The generalization capability of the modules are 

still low. It is because (a) the number of weights and hidden nodes are not minimized, 

and (b) the training of each module may not be proper as the backpropagation algorithm 

may get stuck in local minima. In order to reduce these drawbacks, a stochastic learning 



strategy using evolutionary programming is adopted in conjugat ion with the deterministic 

learning (BP) using fuzzy objective functions. In particular, two objective functions, viz. 

major (global) and minor (local) objective functions, are minimized simultaneously. The 

major objective function is the fuzzy mean square error value (or fuzzy cross entropy) over 

a validation set and the minor objective function is the fuzzy mean square error value 

(or fuzzy cross entropy) over a training set. Iterative minimization of the minor objective 

function is carried out to guide the minimization of the major objective function. The 

iterative procedure is made faster by dynamically adapting the mutation parameters that 

are used in evolutionary programming. 

In an another approach, each subclassification task is carried out through clustering. 

The modified feature vectors that form fuzzy clusters, are clustered using evolutionary 

programming. The clustering algorithm determines the number of clusters, cluster means 
. - 

and cluster variance automatically. Two objective functions are incorporated. The major 

objective function decides how many clusters should be there. The minor objective func- 

tion decides the cluster parameters. The major objective function is minimized stochas- 

tically using evolutionary programming-based method, and the minor objective function 

is minimized using a deterministic iterative method. The resultant clusters are used to 

construct a fuzzy-rough neural network (FRNN). This network uses the fuzzy uncertainty 

present in the clusters and the rough uncertainty (due to one-to-many mapping between 

the clusters and the class labels) in terms of fuzzy-rough membership functions. Com- 

pared to the backpropagation algorithm with fuzzy objective functions, the classification 

performance of FRNNs is better for the modules that deal with the first and second level 

bids, and worse for the module that deals with the third level bids. Hence, the FRNNs 

are used for the first and second modules and the FFNN is used for the third module. 

In the fifth step, the result of all the classifiers are combined using Sugeno's fuzzy inte- 

gral. All the modules are supposed to resolve or exploit the fuzzy and rough uncertainties 

locally. For any input, each module claims that the input can be classified by that module 

alone. Consequently, each module provides some classification result. A postprocessor is 

used to determine the output class from such a collection of conflicting evidence. The 

evidence are aggregated in a nonlinear fashion, and each evidence is weighted differently. 

To find the weightage associated with each module, the amount of fuzzy and rough un- 

certainties associated with each module is quantified from global angle. The concept of 

fuzzy-rough membership functions is used for the purpose of quantification. The outputs 

of the integrator, i.e., the outputs of the modular network, are the class confidence levels 



corresponding to the input pattern. 

8.2 Contribution of the Thesis 

The contributions of the thesis are 

1. Providing an in-depth review on the pattern classification techniques that exploit 

uncertainty (chapter 2). 

2. Formulating the opening bid problem as a pattern classification problem, and ad- 

dressing different types of uncertainties involved in this problem (section 2.4). 

3. Application of modular neural networks to deal with fuzzy, rough and probabilistic 

uncertainties .- effectively (chapter 3). 

4. Use of possibilistic K-means algorithm to determine the possibilistic membership 

values of the training inputs (section 4.3.2). 

5. Use of rough-fuzzy sets to determine the importance of each feature for classification 

(chapter 4). 

6. Development of backpropagation learning algorithm based on various fuzzy objec- 

tive functions (section 5.2). 

7. Enhancement of the dynamics of evolutionary programming and use of this tech- 

nique to configure feedforward neural networks (section 5.3). 

8. Devising a framework to embed fuzzy clustering algorithms in evolutionary p r e  

gramming paradigm (section 6.2). 

9. Introducing the concepts of rough-fuzzy and fuzzy-rough membership functions for 

classification (Appendix C and D). 

10. Proposing fuzzy-rough neural networks to consider the fuzziness as well as the 

roughness present in the classification problem (section 6.3). 

11. Use of fuzzy-rough sets in fuzzy integral to measure the importance of each module 

(chapter 7). 

8.3 Conclusion of the Thesis 

The following are some important conclusion of the study: 



1. Uncertainties, which apparently affect the classification system, can be made useful 

to the classification system, if treated properly. 

2. It is possible to employ the uncertainities associated with the given classification 

problem to evolve one among many possible solutions for the classification problem. 

3. We should be careful not to add large amount of uncertainty while representing the 

problem. If the representation is straightforward, it becomes easier to analyse the 

classification task. 

4. An attractive way to exploit the uncertainties is to divide the given classification 

task into simple subtasks, and then combine the individual solutions of the subtasks. 

The uncertainities in each subtask can be considered locally, and the uncertainities 

in the whole problem can be treated globally while combining the solutions. 

5 .  ~odulari&tion in an arbitrary manner may not enable us to construct a good clas- 

sifier. Because modularisation adds its own uncertainty, which should be handled 

with care. If we can exploit the uncertainity involved in the original problem, slight 

increase in the uncertainity due to modularisation may get nullified. Eventually 

the modularisation may be beneficial to us. 

6. When the classification relation is based on subjective data, as we observe in the 

case of bidding, it is difficult to model the classification system. 

7. It is difficult to model a part of the system, when the correlation between the 

various parts of the system is very high. For example, while building a bidding 

system, if we do not consider some important aspect like "vulnerability", then the 

problem becomes difficult. 

8. Although opening bid problem is taken as an illustration, problems dealing with 

uncertainties are common in vision, speech and natural language processing. 

8.4 Issues Related t o  This  Thesis Work for Further Study 

In this thesis we have partitioned the classification task based on some prior knowledge. 

In many classification problems, the domain specific knowledge may be absent or difficult 

to obtain. It is worthwhile to explore automatic partitioning of the input space so that 

the overall generalization capability of the whole network is increased. 

Bridge players gather their experience from data as well as from some weak rules or 

knowledge. We have exploited only the data to construct the classification system. The 



classification performance could be enhanced if we had used data and rules simultaneously. 

We have used possibilistic K-means to obtain the membership values of the input 

hands. A better approach is to learn the classification function and membership functions 

simultaneously. In [PK96], this problem is attempted, where each class contains only 

one cluster. For a general framework, where each class contains more than one cluster, 

virtually no progress is achieved so far. 

The importance of each feature is determined by minimizing the rough-fuzzy entropy 

iteratively. Rigorous proof is needed to show that this iterative scheme always converges. 

Human beings can remember some accidental events and generalize many regular 

events. In the bidding problem also, players remember the high level bids and generalize 

the lower level bids. The current model cannot handle this memorisation-generalization 

dilemma. It will-be an interesting topic to explore how the memorisation-generalization 

dilemma can be realized in modular networks. 

The feedforward neural networks with fuzzy objective functions, reported in chapter 5, 

do not capture the rough uncertainty. Hence, it will be interesting to train the network 

to capture fuzzy as well as rough uncertainties. 

We have enhanced the dynamics of evolutionary programming based on some empiri- 

cal evidence. A more rigorous analysis is needed to analyse the efficiency of the proposed 

technique. One useful tool for this analysis can be Markov chain. 

We have used fuzzy hypervolume to decide the optimal number of clusters. In some 

cases, it does not give the optimal result. Therefore, we need to develop a better measure 

to identify the optimal number of clusters. 

Although in literature attempts have been made to quantify the generalization capa- 

bility of classifiers [Vid97], no significant work has been reported to quantify the general- 

ization capability of modular networks. 

In statistical pattern recognition, Bayesian classifiers are accepted as benchmarks to 

compare other classification techniques. Till now no such classifier is developed whose 

classification efficiency is optimum in presence of fuzzy, rough and probabilistic uncer- 

tainties. This kind of model may not be applicable in practice, but it can serve as a 

benchmark. 



APPENDIX A 

CONTRACT BRIDGE GAME: ISSUES 

The game of Contract Bridge offers a rich platform for exploring theories in artificial 

intelligence. We observe that unlike chess, which is a two-person zero-sum complete- 

information game, Bridge cannot be tackled by elegant mechanisms like minimax search 

method [LS95]. This is because Bridge is not a complete information game. Since one 

does not know the cards held by the opponents, one cannot project the play into the 

future to try and discover which strategy is most profitable. Instead one has to rely on 

some knowledge intensive method. Bridge can be classified as a two-side incomplete- 

information game [LS95]. Further complication is introduced by the fact that each side 

constitutes of two persons. Therefore communication is vital. Not only does one have to 

convey information, within the rules of the game of course, to the partner, but one also 

needs to intercept opponents messages to learn their intentions. Almost as a corollary, 

at a more sophisticated level one may even want to send out misleading signals to lead 

opponents astray. 

Contract Bridge is played with a regular pack of 52 cards dealt randomly and equally 

among 4 players. Let us call them North, South, East and West, according to their 

position on the table. North and South are partners, as are East and West. The cards are 

ranked in the order Ace, King, Queen, Jack, 10,9,. . . , 2  in each suit. Each player plays a 

card, in clockwise order, and the highest ranking card wins the trick, then it wins some 

points. Thirteen such tricks are played, and each time the winner of the precious trick 

starts play. This constitutes one deal or one hand. 

There are two stages of play in each deal, viz. bidding, followed by the play of cards. 

The goal in a deal is to maximize points. The points essentially depend upon bidding. Bids 

are made for the number of tricks the side promises to make, given the stated "trump" 

suit. Eventually the highest bid is accepted in each deal. This is known as the contract. 

Generally, the higher a side bids the more points it is likely to win, provided it can 

fulfill the contract. That is, if the side can make the number of tricks it has bid for. If 

it succeeds, it wins some points. Let us call them success-points. If it loses, then the 



opponents get some points instead, which we can call penalty-points. 

The straightforward goal in bidding is to bid the highest number of tricks one thinks 

the side can make. That is, to maximize success-points won. The means used in this 

process are the following: 

1. Evaluation of own hand. 

2. Communication with partner. 

3. Projection of play. 

Among these, the first two are simpler and can possibly be handled by heuristic methods. 

The third is more difficult, as it would involve constructing plausible distributions (based 

on the bids heard, .- and on probability) and then projecting the play. A more complex goal 

is to make a sacrifice bid. It essentially means intentional overbidding, over an opponent 

bid, with the hope that the penalty-points loss will be lesser than the opponents' expected 

success-points gain, thus being an overall gain. Even more complex goals are to sabotage 

the opponents communication. This may mean consuming the bidding space (jamming 

the communications channel), or even making "false" bids to confuse opponents. In the 

process, an enterprising planner may make an "advance sacrifice" to "push" the opponents 

higher than they can manage, or to escape with a lighter penalty. Considering that all 

these processes happen when the planner can see only one hand, one observes that bidding 

is probably a more difficult part of the game. 

Once bidding is over, the goal for the play stage has been defined. One side has the 

contract, and is required to make the bid number of tricks. At this stage one player of 

the contracting side (called the dummy) exposes the cards to everybody, while the other 

(called the declarer) plans and executes the play. The opposing side (called defenders) 

are said to defend the contract. They are in fact trying to defeat the accomplishment of 

the contract by the declarer. 

One can observe that the situation at  this stage is not symmetric. The declarer knows 

the entire strength of his side, and is in total control of the play of the cards. He is also 

aware of the entire assets of the defense, in terms of material strength, since they have the 

remaining 26 cards. Each defender knows only his own hand, and cannot see his partner's 

hand. Therefore the two defenders have to combine their efforts to try and achieve the 

goal. This necessarily involves (formal) communication between the two. Both can see 

the dummy also. 



Since the cards of all the players cannot be seen, one cannot project moves into the 

future. Methods Iike minimax search are therefore ruled out immediately. Instead, the 

success of a strategy can only be estimated based on the probabilistic distribution of the 

cards, and any information gleaned from the communication taking place. The strategies 

themselves are derived from knowledge about the various known methods of tackling 

various card combinations. 

The straightforward goal in the play of the hand is to make the number of tricks 

as stated in the contract. The emphasis is on maximising the probability of success. If 

success is assured, then the god can be revised to increase the number of tricks won, 

as some more points can then be gained. If success seems unlikely, then a planner may 

even choose to minimize losses, i.e., the penalty-points won by the opponents. Like in 

bidding, the planner may attempt to do better by exploiting the incomplete information 
-- 

that the opponents have. This may introduce complex "meta-level" gods of protecting 

information, or sending out misleading signals. 

Thus, we observe that unIike games like chess, where a clear cut strategy of aiming 

for the minimax value (saddle) points is meaningful, in Bridge one has to largely grapple 

with incomplete information. In the face of such uncertainty, planning in the game of 

Bridge can only be a complex knowledge intensive activity. 



APPENDIX B 

EVOLUTIONARY PROGRAMMING AND 

ROUGH SETS: BASICS 

B.l Background of Evolutionary Programming 

Usually an optimization problem seeks to find the value of a free parameter x E X 

of the system under consideration, such that a certain quality function G : X + ?R is 

minimised (or, equivalently maximised) [BHS97]. This quality function is known as ob- 

jective function. The goal of the minimisation operation is to find x corresponding to 

the global minimum of the objective function. But the presence of local minima, con- 

straints and the other factors like large dimensionality, nonlinearity, nondifferentiability, 

noisy objective function make the optimization task difficult. If an optimization method 

can give a solution of x which is slightly better than the currently known best solution 

of x ,  then it is often accepted as a success. The efficiency of the optimization process 

can be enhanced, if it is carried out in parallel. One such biologically inspired method 

is evolutionary programming [Fog94b] [Fog95], where a population of solutions are proba- 

bilistically explored over a sequence of generations to reach the globally optimum solution. 

Evolutionary programming employs the following steps to find the global minimum of a 

function G(x) : ?RN + 8: 

1. Initially a population of parent vectors xi, i=l ,  2, . . . , v, is selected at random 

(uniformly) from a feasible range in each dimension. 

2. An offspring vector k,, i = 1, 2, . . . , v, is created from each parent xi, by adding 

a Gaussian random variable with zero mean and predefined standard deviation to 

each component of xi. 

3. A selection procedure then compares the values G(x,) and G(jZi) to determine which 

of these vectors are to be retained. The v vectors that possess the least value of 

the objective function become the parents for the new generation. 



4. Go to the step 2 unless a satisfactory solution is reached or the number of genera- 

tions is greater than some prespecified constant. 

5. The solution of the problem is x*, where G(x*) posses the least value in the final 

population. 

B.2 Background of Rough Sets 

In any classification task the aim is to form various classes where each class contains ob- 

jects that are not noticeably different. These indiscernible or indistinguishable objects can 

be viewed as basic building blocks (concepts) used to build up a knowledge base about the 

real world. For example, if the objects are classified according to' color (red, black) and 

shape (triangle, square and circle), then the classes are: red triangles, black squares, red 
.- 

circles, etc. Thus, these two attributes make a partition in the set of objects and the uni- 

verse becomes coarse. If two red triangles with different areas belong to different classes, it 

is impossible for anyone to correctly classify these two red triangles based on the given two 

attributes. This kind of uncertainty is referred to as rough uncertainty [Paw821 [PBSZ95]. 

The rough uncertainty is formulated in terms of rough sets [Paw9:L]. Obviously, the rough 

uncertainty can be completely avoided if we can successfully extract the essential features 

so that distinct feature vectors are used to represent different objects. But it may not be 

possible to guarantee as our knowledge about the system generating the data is limited. 

In any classification problem, two input training patterns xu and xu (where xu, xu E 

X ,  the set of all input patterns) are called indiscernible with respect to the s th  feature, 

when the s th  component of these two patterns have the same value. Mathematically, this 

indiscernibility can be represented as &RSxV iff xu, = xus, where RS is a binary relation 

over X x X .  Obviously, Rs is an equivalence relation that partitions the universal set 

X into different equivalence classes. This idea can be generalized to take some or all the 

features into our consideration. Without loss of generality, based on a particular set of 

features, let R be an equivalence relation on the universal set X .  Moreover, let X /R  

denote the family of all the equivalence classes induced on X by R. One such equivalence 

class in X/R that contains xE X ,  is designated by [XIR. In any classification problem, 

the objective is to approximate the given output class Cc X by X/R. For the output 

class Cc, we can define lower approximation R(Cc) and upper approximation &(CC), which 

approach Cc as closely as possible from inside and outside, respectively [KY95]. Here, 

R(Cc) = U{[X]R I [X]R Cc, x E X )  is the union of all the equivalence c~asses in X/R 



that are contained in C,, and z(Cc)  = u{[x ]~  ( [XIR r) Cc # 4, x E X )  is the union of d l  

the equivalence classes in XIR that overlap with C,. A rough set R(Cc) = (R(c,), &(c,)) 
is a representation of the given set Cc by &(Cc) and R(Cc). The set difference, R(Cc) - 
&(CC), is a rough description of the boundary of C, by the equivalence classes of XIR. 

The approximation is rough uncertainty free if fi(Cc) = &(Cc). When all the patterns 

from an equivalence class do not carry the same output class labels, rough ambiguity is 

generated as a manifestation of the one-to-many relationship between the equivalent class 

and the output class labels. For a given Cc representing certain concept of interest, we 

can characterize XIR with the following three distinct regions: 

1. l?(Cc) is called the positive region POSR(Cc) of C,, 

2. R(Cc) - &(Cc) is called the boundary region BNDR(Cc) of C,, 

3. X I  R - Z(C,) is called the negative region NEGR(Cc) of Cc. 

Two examples of rough sets are shown in Fig. B.1. In the first example (Fig. B.l(a)), 

X is a closed interval of real numbers, and XIR partitions X into ten semiclosed intervals 

and one closed interval. The output class Cc, which is to be approximated by the elements 

of XIR,  is the closed interval shown in this figure. The rough set approximation of 

Cc consists of the two semiclosed intervals, R(Cc) and &(CC). In the second example 

(Fig. B.l(b)), the universal set is X = X1 x X2, and the equivalence relation R partitions 

X1 x Xz into one hundred small squares. 

Fig. B.l: Rough sets in (a) one and (b) two dimensional domains. 



In a classification task, the concept of rough membership function is introduced [WZ87] 

to quantify the rough uncertainty associated with each pattern. The rough membership 

function re, ( x )  : X -+ [O, 11 of a pattern X E  X for the output class Cc is defined by 

where (CcI denotes the cardinality of the set Cc. Rough membership function rc , (x)  

signifies the rough uncertainty associated with the pattern x  for the output class Cc. It 

can be shown that rec ( x )  = 0 or 1 if and only if there is no rough uncertainty associated 

with the pattern x  [Paw951 [Paw94]. Evidently, the rough uncertainty associated with x  

is maximum when re, ( x )  = 0.5. 



APPENDIX C 

ROUGH-FUZZY MEMBERSHIP 

FUNCTIONS 

In a classification task, the indiscernibility relation partitions the input pattern set to  form 

equivalence classes. These equivalence classes try to approximate the given output class. 

When this approximation is not proper, roughness is generated. The output classes may 

have fuzzy boundaries. Thus, both roughness and fuzziness appear due to the indiscerni- 
.- 

bility relation in the input pattern set and the vagueness in the output class, respectively. 

To model this type of situation, where both vagueness and approximation are present, 

the concept of rough-fuzzy set [DP90] is proposed. The resultant model is expected to be 

more powerful than either of rough sets or fuzzy sets. 

This appendix provides one scheme to generalize the concept of rough membership 

functions in pattern classification tasks to rough-fuzzy membership functions. Unlike the 

rough membership value of a pattern, which is sensitive only towards the rough uncertainty 

associated with the pattern, the rough-fuzzy membership value of the pattern signifies 

the rough uncertainty as well as the fuzzy uncertainty associated with the pattern. In 

absence of fuzziness in the output class, the rough-fuzzy membership function reduces to 

the original rough membership function. Moreover, when the partitioning in the input set 

is fine, i.e., each equivalent class contains only one pattern, the rough-fuzzy membership 

function turns out to be the fuzzy membership function. If the partitioning is fine and the 

output classes are crisp simultaneously, the rough-fuzzy membership function reduces to 

the characteristic function. In this appendix, various set theoretic properties of the rough- 

fuzzy membership functions are discussed. A detail discussion on rough-fuzzy membership 

functions can be found in [SY]. 



C. l  Basics of Rough-Fuzzy Sets 

Let X be a set, R be an equivalence relation defined on X and the output class Cc C X be 

a fuzzy set. A rough-fuzzy set is a tuple (R(C,), B(c,)), where the lower approximation 

&(Cc) and the upper approximation a(Cc)  of Cc are fuzzy sets of XIR,  with membership 

functions defined by [DP92] 

PR(C,)([X]R) = i n f { ~ c , ( x ) l ~ ~ [ ~ ] ~ )  VXEX (c.1-a> 

~ R ( c , )  (Ix] id = SUP{PC, (~ ) I~E[X]R)  VxEX (C.1-b) 

(C. 1-c) 

Here, ,!4R(Cc) - ([XI R )  and pK(cc) ([XI R)  are the membership values of [X]R in R(Cc) and R(Cc), 

respectively. 
.- 

C .2 Definition of Rough-Fuzzy Membership F'unct ions 

The rough-fuzzy membership function of a pattern x E X for the fuzzy output class 

Cc C_ X is defined by 

where F = [ x ] ~  and \Cc( means the cardinality of the fuzzy set Cc. One possible way to 

determine the cardinality is to use [Zad78]: ICc/ sf C pcc(x). For the 'n' (intersection) 
xEX 

def operation, we can use pAne (x) = min{pA (x), pB(x)) Vx E X .  It must be noted that the 

concept of rough-fuzzy set is necessary while dealing with ambiguous concepts, whereas 

the rough-fuzzy membership function is needed when uncertain data are considered. 

C.3 Properties of Rough-Fuzzy Membership Functions 

Following are a few important properties of rough-fuzzy membership functions that can 

be exploited for a classification task. 

Property C.l:  0 < LC, (x) ,< 1 

Proof. Since 4 F t l  Cc C F, the proof is trivial. rn 

Property C.2: LC,(X) = 1 and 0 if and only if n o  rough-fuzzy uncertainty i s  associated 

with the  pattern x. 



Proof. 

If part: If no rough-fuzzy uncertainty is involved, then either (a) F c Cc, i.e., LC, = 1, 

or (b) F n Cc = cp, i.e., LC, = 0. 

Only if part: If LC,(X) = 0, then the numerator of (C.2) is zero. It implies that 

F n C, = 4. On the other hand, if LC, (x) = 1, then the numerator of (C.2) is equal 

to the denominator. It means that F n Cc = Cc, i.e., F c Cc. Both cases imply that no 

rough-fuzzy uncertainty is involved. 

Property C.3: When the output class Cc is crisp, LC, (x) = rcc (x). 

Proof. When the output class Cc is crisp, Equation (C.2) reduces to (B.l).  Hence, the 

proof follows. rn 
.- 

Property C.4: When the partitioning is fine, L C , ( ~ )  = PC, (~ ) .  Moreover, if the parti- 

tioning is fine and the output class Cc is crisp, then LC,(X) is equivalent to the character- 

istic function. 

Proof. When the partitioning is fine, i.e., each F consists of a single pattern, LC, (x) = 

1 x  = p C ( x ) .  If pcc(x) E {O, 11, i.e., the output class is crisp, then LC.(X) becomes 

the characteristic function. 

This property and the property C.3 show that both rough and fuzzy membership functions 

become particular cases of rough-fuzzy membership functions in the absence of fuzziness 

and, roughness, respectively. 

Property C.5: LX-c, (x) = 1 - LC, (x) 

Fn X-Cc Proof* Lx-c,(X) = J* = 1 - JW = 1-LC.(X). . 
Property C.6: If x and z are two input patterns so that xRz (i.e., x ,  z E F), then 

LC, (x) =LC, (2). 

Proof. It can be derived directly from Equation (C.2). rn 

Property C.7: LAUB(X) 2 ~ ~ x { L A ( x ) , L ~ ( x ) } ,  where A, B C X 

Fn AUB Proof. LAUB(X) = 2 $fl = bA(x). Similarly, LA,B(X) 2 LB(X) . 
Property C.8: LAnB (x) 5 r n i n { ~ ~ ( x ) , ~ ~ ( x ) )  where A, B C X. 
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EWG9.l < = (x). Similarly, LAnB (x) < LB (x) . Proof- Lane(x) = - 

Property C.9: If Z is a family of pairwise disjoint subsets of X ,  then L,~(X)  = 

c LC,(X). 
CCEZ 

CCEZ 

Property C.lO: For a C-class classification problem, rough-fuzzy membership function 

of a pattern behaves in a possibilistic way provided the fuzzy membership function of the 

pattern to the output classes is possibilistic. 

Proof. 

Therefore, for crisp and constrained fuzzy classification [PB95], where cz1 pcc(x) = 1, 

the value of EL, LC,(X) is equal to  one. In case of possibilistic classification [PB95] 

O< c:=, pcC (x) 5 C ,  and hence, 0 5  c:=, LC, (x) < C. Therefore, LC, (x) behaves in a 

possibilistic manner. . 
Property C.ll: For crisp output classes 

Proof. For the crisp output classes, the above results come directly from Equation (C.1-a) 

and (C.1-b). 



Following is a trivial but interesting definition based on the above properties: 

A C-class classification problem for a set of input patterns X ={x1,x2,. . . ,xn) is 

basically an assignment of the rough-fuzzy membership value (xi) on each xi E X, Vc = 
1 ,2 , .  . . , C, Vi = 1,2, .  . . , n. In the rough-fuzzy context, C partitions of X are the set of 

values {LC, (xi)) that can be conveniently arranged on a C x n matrix [LC, (xi)]. Based on 

the characteristic of [LC. (xi)], classification can be of the following three types [PBSS]: 

(a) Crisp classification: 

C 

B ~ c  - - / k (xi)] E sCn 1 LC, (xi) E {o, 1) VC, vi; C L& (xi) = I; 

(b) Constrained rough-fuzzy classification: 

(C. 5-a) 

(c) Possibilistic rough-fuzzy classification: 

n 

BPc = {[LC. (Xi)] E sCn ( LC. (xi) E [O, l] VC, Vi; 0 < C LC, (xi) < n VC 
i=l  

(C.5-c) 

It is obvious that Bhc c Bfc c Bpc. 



APPENDIX D 

FUZZY-ROUGH MEMBERSHIP 

FUNCTIONS 

In a classification task the indiscernibility relation, based on the equivalence of the features 

of the patterns, partitions the input pattern set into several equivalence classes. These 

equivalence classes try to approximate the given output class. When the approximation 

is not proper, the roughness is generated. In most of the real life cases, the value of 
.- 

a particular feature for two patterns may not be exactly same, but similar. Therefore, 

the indescernibility relation formulated based on the features do not obey the law of 

equivalence, and is a matter of degree. Hence, the equivalence relation takes the form 

of a similarity relation, and the equivalence classes form fuzzy clusters. The situation 

becomes more complicated because the output classes can be fuzzy too. The roughness 

appears here due to the indiscernibility relation in the input pattern set, and the fuzziness 

is generated due to the vagueness present in the output class and the clusters. To model 

this type of situation, where both approximation and vagueness are present, the concept 

of fuzzy-rough sets [DPSCI] can be employed. The resultant model is expected to be more 

powerful than rough sets, fuzzy sets and rough-fuzzy sets. 

In this appendix the concept of rough-fuzzy membership functions (see Equa- 

tion (C.2)) in the classification tasks are generalized to fuzzy-rough membership functions. 

If the clusters are crisp, then fuzzy-rough membership functions are equivalent to rough- 

fuzzy membership functions. In absence of fuzziness, fuzzy-rough membership functions 

reduce to the existing rough membership functions. Moreover, under certain conditions 

fuzzy-rough membership functions are equivalent to fuzzy membership functions and char- 

acteristic functions. The concept of fuzzy-rough membership function becomes particu- 

larly attractive when we do not have complete knowledge about the human classification 

system, but we attempt to mimic the vagueness present in the human reasoning. In this 

appendix, various set theoretic properties of the fuzzy-rough membership functions are 

described. Details about fuzzy-rough membership functions is given in [SY98a] 



D.l  Background of Fuzzy-Rough Sets 

When the equivalence classes are not crisp, they are in form of fuzzy clusters 

{Fl, F2, . . . , FH) generated by a fuzzy weak partition [DP92] of the input set X. The term 

fuzzy weak partition means that each Fj is a normal fuzzy set (i.e., max, p~~ (x) = 1) and 

infx maxj pFj (x) > 0 while 

Here, pFj(x) is the fuzzy membership function of the pattern x in the cluster Fj. In 

addition, the output classes Cc, c = {1,2,. . . , C) may be fuzzy too. Then the fuzzy set 

Cc can be described by means of the fuzzy partitions under the form of an upper and a 

lower approximation and - Cc as follows: 

The tuple (c., - c) is called a fuzzy-rough set. Here, pcc(x) = {0, 1) is the fuzzy 

membership of the input x to the class C,. Fuzzy-roughness appears when a fuzzy cluster 

contains patterns that belong to more than one class. 

D.2 Definition of Fuzzy-Rough Membership Functions 

The definition of rough-fuzzy membership function (Equation (C.2)) can be generalized 

to the following definition of fuzzy-rough membership function [SY98c]: 

L z ~ l p ~ , ( ~ ) ~ c c ( ~ )  if 3 j  with pq (x )  > 0 

0 otherwise 

where H (5 H )  is the number of clusters in which x has nonzero memberships and 

L&(x) =IFjnCc. Here, rcc(x) represents the fuzzy-rough uncertainity of x in the class C,. 
lFj l 

A When x does not belong to any cluster, fi is equal to zero, and hence, $ Cj,l p 5  (x)L& 

becomes undefined. In order to avoid this problem, rcC (x) is made equal to zero when x 

does not belong to any cluster. 

D.3 Properties of Fuzzy-Rough Membership Functions 

Property D.l:  0 5 rCC(x) 5 1 



Proof. Since 4 G Fj n Cc G F'j , 0 5 L&, 5 1. Moreover, 0 5 p q ( x )  < 1. Hence, the 

proof follows. 

Property D.2: rcc(x) = 1 or 0 if and only if no fuzzy-rough uncertainty is associated 

with the pattern x .  

Proof. If part: If no fuzzy-rough uncertainty is involved, then x must belong com- 

pletely to all the clusters in which it has non-zero belongingness. I t  implies p q ( x )  = 

1 for which p~~ (x) > 0. Moreover, all the clusters in which x has non-zero belongingness 

either (a) must be the subsets of the class Cc, or (b) must not share any pattern with the 

class Cc. In other words, the condition (a) implies that Fj 2 Cc V j for which p q  (x) > 0. 
1 f i  Hence, rcc(x) = xj 1.1 = 1. Similarly the condition (b) expresses that Fj n C, = 

1 F i  4 V j for which PF,(X) > 0. Hence, TC,(X) = Cj=I pCC(x).O = 0 

Only if part: rc,(x) = 0 implies that either x does not belong to any cluster, or each 

term under the summation symbol, i.e., pFj(x)~cC is separately zero. In the first case, 

there is no fuzzy-roughness associated with x.  The second case implies that either p~~ (x) 

or L&,, or both p~~ (x) and L&, are zero. If pFj (x) = 0, then the pattern x does not 

belong to the cluster Fj, and hence, no fuzzy-rough uncertainty is associated with x .  If 

L&, = 0, then Fj and Cc do not have any pattern common, and therefore, no fuzzy-rough 

uncertainty exists with x.  Thus, rcc (x) = 0 implies that fuzzy-roughness is not associated 

with the pattern x. Ifrcc(x) = 1, thenpFj(x) = 1 and L&, = 1, V j  = 1,2 , . . . ,  H. It also 

indicates the absence of fuzzy-roughness. 

Note that if fuzzy-rough uncertainty is absent, H > 1 and rcc(x) # 0, then rcC(x) 

never becomes one, rather it approaches towards one. I t  is because, the condition ex- 

pressed in (D.l) does not allow pFj (x) = 1 to be true for more than one cluster. However, 

it hardly happens in practice as it needs two cluster centers to be same. w 

Property D.3: If no fuzzy linguistic uncertainty is associated with the pattern x, then 

rcC(x) = L&(x) for some j E {1,2,.  . . ,  H}. 

Proof. If no fuzzy linguistic uncertainty is involved, then p~~ (x) = 1 for some j E 

{1,2,.  . ., H}, and pFI(x) = 0 for k E {1,2,. . ., H}, k # j. Hence, rcC(x) = L;,, .i E 
{I, 2 , .  . . , H}. w 

Property D.4: If no fuzzy linguistic and fuzzy classification uncertainties are associated 

with the pattern x, then TC, (x) = TC, (x) . 



Proof. If no fuzzy linguistic uncertainty is involved, then each cluster is crisp. Con- 

sequently, the input pattern belongs to only one cluster. Let it be the j th  clus- 

ter. Hence, p F j ( x )  = 1 and pF,(x)  = 0 Vk # j .  Since the classification is crisp, 
F.nCc rCc ( x )  = = T~~ ( x )  (see Equation (B .1 ) ) .  rn 

Property D.5: When each cluster is crisp and fine, that is, each cluster consists of a 

single pattern and the associated cluster memberships are crisp, rCC(x)  is equivalent to 

the fuzzy membership function of x in the class Cc. If the output class is also crisp, then 

r c C ( x )  is equivalent to the characteristic function of x in- the class Cc. 

Proof. Since each cluster is crisp and fine, rcc(x)  = 1 . ' ~ ~ : ~ ) .  = pcc(x) .  In addition, if 

the output class is crisp, then rCc ( x )  lies in (0, I ) ,  and thus, it becomes the characteristic 

function. rn .- 

Property D.6: For a C-class classification problem with crisp output classes, the fuzzy- 

rough membership functions behave in a possibilistic manner provided the fuzzy member- 

ship function of the pattern to the clusters is possibilistic. 

Proof. 

Since c:=, rcc ( x )  needs not to be equal to a constant, the resultant classification procedure 

is possibilistic [KY95] [PB95]. rn 

Property D.7: If x and z are the two input patterns with p~~ ( x )  = PF, ( z )  Vj and 

PCc ( x )  = PCc (4  7 then 7 c c  (4 =7cc ( 2 )  

Proof. Directly comes from Equation (D.3). rn 



The definition of compliment operator satisfies the following properties: 

1. Boundary condition: When the clusters and the output classes are crisp, i.e., 

rec (x) ' = rec (x), T behaves like an ordinary compliment for rough sets. I t  means 

that if T~ , (x )  = 0 or 1, then TX-C,(X) = 1 or 0, respectively. 

2. Monotonicity: If rcC(x) < rcC(z) Vx, z E X ,  then TX-c,(x) > T~-C,(Z). 

3. Continuity: Obviously, rx-cC(x) is a continuous function. 

4. ~nvolutivit~: rx-(x-c4(x) = rc, (x). 

Property D.9: T A ~ B ( X )  L max{rA (x),TB(x)) 

~ ( A u B )  F.nA ' -  

proof- TAUB(X) = $ c p q  (x) 2 c ,UF, (XI - TA (XI. Similarly, T A U ~  (x) 
3 3 

2 TB(X). Therefore, TAUB(X) 2 m a x { ~ ~ ( x ) , ~ ~ ( x ) ) .  rn 

Property D.10: TA~B(X)  < r n i n { ~ ~ ( x ) , r ~ ( x ) )  

I F . ~ ( A ~ B ) I  1 F.nAI Proof. rAnB(x) = C PF, (x) ' IF,, < - C /lq (x) = 71 (x). Similarly, TA~B(x) 
3 H i  < rB (x) . Therefore, TAUB (x) < min{rA'(x) ,TB (x) ) . rn 

Property D. l l :  If Z is a family of pairwise disjoint subsets of X ,  then ruz(x) = 

C 7cc(x). 
CCEZ 

F.n uz) u ( ~ . n z  Proof. ruz(x) =$ C PFj (x) = 1 C PF, (x) '+ = C ~ c c  (x) 
3 

H .  
3 CCEZ 

Property D.12: 0 < TC,(X) 5 C. 

Proof. If the input pattern does not belong to any cluster, then from Equation D.3 

rCc(x) = 0 Vc. Thus, CF=l rCc(x) = 0. In pattern classification it can happen when the 



input pattern is not from any of the existing classes. On the other hand, when the input 

pattern belongs to all the classes with fuzzy membership value 1, 

Therefore, if the -- input pattern belongs to all the clusters completely, then X;=, rcC (x) 

attains the maximum value C. I 

Property D.13: When the clusters and the output classes are crisp, 

Proof. For the crisp output classes with crisp clusters, the above results come directly 

from Equation (D.2-a) and (D.2-b). rn 

Following is an interesting definition based on the above properties: 

A C-class classification problem for a set of input patterns X = {xl,xZ,. . . ,xn) can 

be looked a t  as an assignment of the fuzzy-rough membership value rcC(xi) on each 

xi E X ,  Vc = 1,2 ,  . . . , C, Vi  = 1,2 ,  . . . , n. In fuzzy-rough context, C partitions of X 

are the set of values {rCc(xi)) that can be conveniently arranged on a C x n matrix 

[rG(xi)]. Based on the characteristic of [rcC(xi)] classification can be of the following 

three types [PB95]: 

(a) Crisp classification: 

Ahc = ([Tc. (xi)] E scn I TC. (xi) E {O, 1) VC, Vi;  



(b) Constrained fuzzy-rough classification: 

C n 

C TC, (xi) = 1; 0 < C rcC (xi) < n VC} (D.7-b) 

(c) Possibilistic fuzzy-rough classification: 

From the above relations, it is obvious that Ahc c Afc c Ape. 



BIBLIOGRAPHY 

[Ad1941 L. Adleman. Molecular computation of solutions to combinatorial problems. 
Science, (266):1021-1024., 1994. 

[AH951 H. Adeli and S. L. Hung. Machine Learning: Neural Networks, Genetic 
Algorithms and Fuzzy Systems. John Wiley and Sons, Inc, 1995. 

[Aka741 H. Akaike. A new look at the statistical model identification. IEEE Pans-  
actions on Automatic Control, 19:716-723, 1974. 

[AMMR93] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka. An improved algo- 
rithm for neural network classification of imbalanced training sets. IEEE 
Transactions on Neural Networks, 4:962-963, 1993. 

[Arb951 M. A. Arbib. The Handbook of Brain Theory and Neural Networks. MIT 
Press, Cambridge, MA, 1995. 

.- 

[ASP941 P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm 
that constructs recurrent neural networks. IEEE Transactions on Neural 
Networh, 5(1):54-64, January 1994. 

[BCR97] J .  M. Benitez, J .  L. Castro, and I Requena. Are artificial neural net- 
works black boxes. IEEE Transactions on Neural Networks, 8(5) : 1156-1 164, 
September 1997. 

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability 
and Vapnik-Chervonenkis dimension. Journal of the Association of Comput- 
ing Machinery, 36(4):929-965, October 1989. 

[Be1891 R. K. Belew. When both individuals and populations search: Adding simple 
learning to genetic algorithm. In Proceedings of Third International Confer- 
ence on GA (George Mason University), pages 34-41, June 1989. 

[Be2811 J .  C. Bezdek. Pattern Recognition with fizzy Objective Function Algorithms. 
Plenum Press, New York, 1981. 

[Be2941 J .  C. Bezdek. The thirsty traveller visits gamont: A rejoinder to "comments 
on fuzzy set - what are they and why?". IEEE Transactions on Fuzzy Sys- 
tems, 2(1):43-45, February 1994. 

[Be2961 J. C. Bezdek. A reyiew of probabilistic, fuzzy, and neuraI models for pat- 
tern recognition. In C. H. Chen, editor, Fuzzy Logic and Neural Network 
Handbook. McGraw-Hill, Inc, New York, 1996. 

[BH94] J .  C. Bezdek and R. J .  Hathaway. Optimization of fuzzy clustering crite- 
ria using genetic algorithms. In Proceedings of First IEEE Conference on 
Evolutionary Computation, pages 589-594, June 1994. 

[BHS97] T .  Back, U. Hammel, and H. P. Schwefel. Evolutionary computation: Com- 
ments on the history and current state. IEEE Transactions on Evolutionary 
Computation, 1(1):3-17, April 1997. 

[Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford Univ Press, 
1995. 

[BL96] N. K. Bose and P. Liang. Neural Network Fundamentals with Graphs, Algo- 
rithms and Applications. McGraw-Hill Inc., New York, 1996. 



[BL98] A. L. Blum and P. Langley. Selection of relevant features and examples in 
machine learning. In R. Greiner and D. Subramanian, editors, to appear in 
the special issue of Artificial Intelligence on 'Relevance '. 1998. 
M. Banerjee, S. Mitra, and S. K. Pal. Knowledge-based fuzzy MLP with 
rough sets. In IEEE International Conference on Neural Networks (Houston, 
USA), June 9-12 1997. 

S. T. Bow. Pattern Recognition. Marcel Dekker, New York, 1984. 

J.  C. Bezdek and S. K. Pal. Fuzzy Models for Pattern Recognition, Eds. 
IEEE Press, New York, 1992. 
A. K. Bhattacharya and B. Roysam. Joint solution of low-, intermediate- 
, and high- level vision tasks by evolutionary optimization: Application to 
computer vision a t  low snr. IEEE Transactions on Neural Networks, 5(1):83- 
93, January 1994. 
S. A. Billings and G. L. Zheng. Radial basis function network configuration 
using genetic algorithm. Neural Networks, 8(6) :877-890, 1995. 
J.  3; Choi, R. J.  Arabshahi, R. J .  Marks, and T. P. Candell. Fuzzy pa- 
rameter adaptation in neural systems. In Proceedings of IEEE International 
Conference on Neural Networks, pages 232-238, 1992. 
T. M. Cover and P. E. Hart. Nearest neighbor pattern classifier. IEEE 
Transactions on Information Theory, pages 21-27, 1967 1967. 
0 .  Cordon, %. Herrera, and M. Lozano. On the bidirectional integration of 
genetic algorithms and fuzzy logic. In 2nd On line Workshop on Evolutionary 
Computation ( WECZ), Nagoya (Japan), pages 13-17, 1996. 

S. B. Cho. Fuzzy aggregation of modular neural networks with ordered 
weighted averaging operators. Approximate Reasoning, 13:359-375, 1995. 
S. B. Cho. Neural-Network classifier for recognizing totally unconstrained 
handwritten numerals. IEEE Tkansactions on Neural Networks, 8(1):43-52, 
January 1997. 

S. B. Cho and J. H. Kim. A twestage classification scheme with backpropa- 
gation neural network classifiers. Pattern Recognition Letters, 13(5):309-331, 
May 1992. 

S. B. Cho and J. H. Kim. Combining multiple neural networks by fuzzy 
integral for robust classification. IEEE Transactions on System, Man and 
Cybernetics, 25(2):380-384, February 1995. 

S. B. Cho and J. H. Kim. Multiple network fusion using fuzzy logic. IEEE 
Transactions on Neural Networks, 6(2):497-501, March 1995. 

J .  J.  Choi, H. OIKeefe, and P. K. Baruah. Non-linear system diagnosis 
using neural networks and fuzzy logic. In Proceedings of IEEE International 
Conference on Fuzzy Systems (Sun Diago), pages 813-820, 1992. 
L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New 
York, 1991. 

R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, 
New York, 1979. 

D. Driankov, H. Hellendorn, and M. Reinfrank. An Introduction to Fuzzy 
Control. Springer-Verlag, Berlin, 1993. 



[DY 971 

[ESY 921 

R. Dubes and A. Jain. Algorithms that Cluster Data. Prentice Hall, Engle- 
wood Cliffs, NJ, 1987. 
R. Devijver and J .  Kittler. Pattern Recognition: A Statistical Approach. 
Prentice Hall, Englewood Cliffs, NJ, 1982. 
M. Dash and H. Liu. Feature selection for classification. Intelligent Data 
Analysis, 1 (3), August 1997. 

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by 
a colony of cooperating agents. IEEE Transactions on System, Man and 
Cybernetics, 26(1):29-41, 1996. 

D. Dubois and H. Prade. Fuzzy Sets and Systems. Academic Press, New 
York, 1980. 
D. Dubois and H. Prade. Possibility Theoy: An Approach to Computerized 
Processing of  Uncertainty. Plenum Press, New York: Plenum, 1988. 
D. Dubois and H. Prade. Rough-fuzzy sets and fuzzy-rough sets. Interna- 
tional Journal of General Systems, 17(2-3):191-209, 1990. 

D. bubois and H. Prade. Putting rough sets and fuzzy sets together. In 
R. Slowinski, editor, Intelligent Decision Support. Handbook of Applications 
and Advances of the Rough Set Theory. Kluwer Academic Publishers, Dor- 
drecht, 1992. 

R. Duda. Elements of pattern recognition. In J .  M. Mendel and K. S. 
Fu, editors, Adaptive, Learning and Pattern Recognition Systems. Academic 
Press, New York, 1970. 
P. J .  Darwen and X. Yao. S~eciation as automatic categorical modularisa- 
tion. IEEE Transactions on '~volutionay ~om~utation,~1(2):101-108, July 
1997. 
P. Eswar, C. C. Sekhar, and B. Yegnanarayana. Use of fuzzy mathematical 
concepts in character spotting for automatic recognition of continuous speech 
in Hindi. Fuzzy Sets and Systems, 46(1):1-9, February 1992. 

H. F'rigui and R. Krishnapuram. A comparison of fuzzy shell clustering 
methods for the detection of ellipses. IEEE Transactions on Fuzzy Systems, 
4(2):193-199, May 1996. 

D. B. Fogel. An information criterion introduction to simulated evolution- 
ary optimization. IEEE Tkansactions on Neural Networks, 2(5):490-497, 
September 1991. 
D. B. Fogel. System Identification through Simulated Evolution: A Machine 
Learning Approach of Modeling. Ginn Press, Needham, MA, 1991. 
D. B. Fogel. Asymptotic convergence properties of genetic algorithms and 
evolutionary programming. Cybernetics and Systems, 25:389-407, 1994. 
D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE 
Transactions on Neural Networks, 5(1):3-14, January 1994. 

D. B. Fogel. Evolutionay Computation: Toward a New Philosophy of Ma- 
chine Learning. IEEE Press, Piscataway, 1995. 
D. B. Fogel. Evolutionary Computation: The Fossil Record. IEEE Press, 
Piscataway, 1998. 

L. J .  Fogel, A. J .  Owens, and M. J .  Walsh. Artificial Intelligence through 
Simulated Evolution. John Wiley, New York, 1966. 



[FS89] Y. Fukuyarna and M. Sugeno. A new method for choosing the number of 
clusters for the c-means method. In Proceedings of Fifth Fuzzy Systems Sym- 
posium, pages 247-250, (in Japanese) 1989. 

[FS93] D. B. Fogel and P. K. Simpson. Evolving fuzzy clusters. In Proceedings of 
International Conference on Neural Networks (Sun Francisco), pages 1829- 
1834, 1993. 

[FSW97] A. Famili, W. M. Shen, and R. Weber. Data preprocessing and intelligent 
data analysis. Intelligent Data Analysis, 1(1), January 1997. 

[h681 K. S. Fu. Sequential Methods in Pattern Recognition and Machine Learning. 
Academic Press, London, 1968. 

[fig21 K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, 
Englewoods Cliffs, 1982. 

[Fuk89] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic 
Press, New York, 1989. 

[GG89] I. Gath and A. B. Geva. Unsupervised optimal fuzzy clustering. IEEE 
Tramactions on Pattern Analysis and Machine Intelligence, 11(7):773-781, 
July 1989. 

[GN94] M. Grabisch and J.  M. Nicolas. Classification by fuzzy integral: Performance 
and test. Fuzzy Sets and Systems, (65):255-271, 1994. 

[Go1891 D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine 
Learning. Addison Wesley, Reading MA, 1989. 

[Gra96] M. Grabisch. The representation and interaction of features by fuzzy mea- 
sures. Pattern Recognition Letters, (17):567-575, 1996. 

[Gra97] M. Grabisch. Fuzzy measures and integrals: A survey of applications and 
recent issues. In D. Dubois, H. Prade, and R. Yager, editors, Fuzzy Sets 
Methods in Information Engineering: A Guided Tour of Applications. J .  Wi- 
ley, New York, 1997. 

[Ha1751 J .  Hartigan. Clustering Algorithms. Wiley, New York, 1975. 
[Has951 M. F. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, 

Cambridge, MA, 1995. 
rHau921 D. Haussler. Decision theoretic generalisations of the PAC model for neural 

net and other learning applications. Information and Computation, 100:78- 
150, 1992. 

[Hay941 S. Haykin. Neural Networks - A Comprehensive Foundation. Macmillan 
College Publishing Company, New York, 1994. 

[HC96] J .  E. Hunt and D. E. Cooke. Learning using an artificial immune system. 
Journal of Networks and Computer Applications, 19:189-212, 1996. 

[HH93] D. R. Hush and B. G. Home. Progress in supervised neural networks. IEEE 
Transactions on Signal Processing, pages 8-39, January 1993. 

[HHMS96] K. J. Hunt, .R. Haas, and R. Murray-Smith. Extending the functional equiv- 
alence of radial basis function networks and fuzzy inference systems. IEEE 
Transactions on Neural Networks, 7(3):776-771, May 1996. 

[HHVLV94] F. Herrare, E. Herrera-Viedma, M. Lozano, and J .  L. Verdegay. Fuzzy tools 
to improve genetic algorit hms. In Proceedings of Second European Congress 
on Intelligent Techniques and Soft Computing (Aachen, Gemany), pages 
1532-1539, September 1994. 



[HS W89] 

[IFT93] 

J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural 
Computation. Addison-Wesley, Reading, MA, 1991. 
F. Herrera and L. Magdalena. Genetic fuzzy system. In B. Riecan R. Mesiar, 
editor, Fuzzy Structures: Current Trends, volume 13, pages 93-121. Tatra 
Mountains Mathematical Publications, 1997. 
J. H. Holland. Adaptation in Natural and Artificial Systems. University of 
Michigan Press, 1975. 
K. Hirota and W. Pedrycz. OR/AND neurons in modeling fuzzy set connec- 
tives. IEEE fiansactions on Neural Networks, 2(2): 151-161, May 1994. 

R. Hashemi, B. Pearce, R. Arani, W. Hinson, and M. Paule. A fusion of 
rough sets, modified rough sets, and genetic algorithms for hybrid diagnostic 
systems. In T.Y. Lin and N. Cercone, editors, Rough Sets and Data Mining. 
Analysis for Imprecise Data, pages 149-175. Kluwer Academic Publishers, 
Boston, London, Dordrecht, 1997. 
K. Hornic, M. Stinchcombe, and H. White. Multilayered feedforward net- 
works are universal approximatiors. Neural Networks, 4:359-364, 1989. 

H. Ishibuchi, R. Fuiioka, and H. Tanaka. Neural networks that learn from 
fuzzy if-then' rules. "IEEE Tmnsactions on fizzy Systems, 1(2):85-97, May 
1993. 
H. Ishibuchi, K. Nozaki, N. Yarnamoto, and H. Tanaka. Selecting fuzzy if- 
then rules for classification problems using genetic algorithms. IEEE Bans- 
actions on Fuzzy Systems, 3 (3):260-270, August 1995. 

R. A. Jacobs and M. I. Jordan. Learning piecewise control strategies in a 
modular neural network architecture. IEEE Bansactions on System, Man 
and Cybernetics, 23:337-345, 1993. 
R. A. Jacobs, M. I. Jordan, M. I. Nowlan, and G. E. Hinton. Adaptive 
mixtures of local experts. Neural Computation, 3:79-87, 1991. 
J. John and R. Kohavi. Feature subset selection using the wrapper model: 
Overiitting and dynamic search space topology. In Proceedings of the First 
International Conference on Knowledge and Data Mining, pages 643-649, 
1995. 
S. Jockusch and H. Ritter. Self-organizing maps: Local competition and 
evolutionary optimization. Neural Networks, 7(8):1229-1239, 1994. 

J. S. R. Jang and C. T.  Sun. Functional equivalence between radial basis 
function networks and fuzzy inference systems. IEEE Bansactions on Neural 
Networks, 4(1): 156-159, January 1993. 

J .  S. R. Jang, C. T. Sun, and E. Mijutani. Neuro-Fuzzy and Soft Computing. 
Prentice-Hall, Englewood Cliffs, NJ, 1997. 
A. Kandle. Fuzzy Techniques in Pattern Recognition. Wiley, New York, 
1982. 
A. Kandle. Fuzzy Mathematical Techniques with Applications. Addison- 
Wesley Publishing Company, Reading, Massachusetts, 1986. 
G. S. Klir and T. A. Folger. Fuzzy Sets, Uncertainty and Information. 
Prentice-Hall, Englewood Cliffs, NJ, 1993. 

A. Kauffman and M. M. Gupta. Introduction to Fuzzy Mathematics. Van 
Nostrand Reinhold, New York, 1985. 



[KGG85] J .  M. Keller, M. R. Gray, and J. A. Givens. A fuzzy K-nearest neighbor 
algorithm. IEEE Dansactions on System, Man and Cybernetics, 15(4) :580- 
585, July/August 1985. 

[KGT+94] J. M. Keller, P. Gader, H. Tahani, J .  H. Chiang, and M. Mohamed. Ad- 
vances in fuzzy integration for pattern recognition. Fuzzy Sets and Systems, 
(65):273-283, 1994. 

[KH85] J. M. Keller and D. J. Hunt. Incorporating fuzzy membership functions 
into the perceptron algorithms. IEEE Dansactions on Pattern Analysis and 
Machine Intelligence, pages 693-699, July/August 1985. 

[Khe88] D. Khemani. Theme based Planning in an Uncertain Environment. PhD 
thesis, Department of Computer Science and Engineering, Indian Institute 
of Technology, Bombay, 1988. 

[KJV831 S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated 
annealing. Science, (220):671-680, 1983. 

[KK93] R. Krishnapuram and J. M. Keller. A possibilistic approach to clustering. 
IEEF . Tkansactions on Fuzzy Systems, 1 (2):98-110, May 1993. 

[KKR92] J .  M. Keller, R. Krishnapuram, and F. C. H. Wee. Evidence aggregation 
networks for fuzzy logic interface. IEEE Tkansactions on Neural Networks, 
3(5):761-769, 1992. 

[KL79] A. Kandle and S. C. Lee. Fuzzy Switching and Automata: Theory and Ap- 
plications. Crane, Russak & Company, New York, 1979. 

[KNF92] R. Krishnapuram, 0. Nasraoui, and H. Frigui. The fuzzy c spherical shells 
algorithm. IEEE Transactions on Neural Networks, 3(5):663-671, Sep. 1992. 

[KO961 J. M. Keller and J. Osborn. Training the fuzzy integral. Information Science, 
(15):l-24, 1996. 

[Koh89] T. Kohonen. Self Organization and Associative Memory, 3rd edition. 
Springer Verlag, Berlin, .Germany, 1989. 

[KohSO] T .  Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464- 
1480, September 1990. 

[Kos93] B. Kosko. Fuzzy Thinking. Harper Collins, Glasgow, UK, 1993. 
[Koz92] J. R. Koza. Genetic Programming: On the Programming of Computers b y  

Means of Natural Selection. MIT, Press, Cambridge, Massachusetts, 1992. 

[K&88] J. M. Keller and H. Qui. Fuzzy set methods in pattern recognition. In 
Kitller, editor, Proceedings of Fourth International Conference on Pattern 
Recognition, Cambridge 28-30 March. Springer Verlag, 1988. 

[KR8 91 D. Khemani and R. S. Ramakrishna. Bridge: A benchmark for knowledge 
based planning. The Journal for the Integrated Study of Artificial Intelli- 
gence, Cognitive Science and Applied Epistemology (CC-AI), 6(2/3): 137-151, 
1989. 

[KT921 J .  M. Keller and H. Tahani. Implementation of conjunctive and disjunctive 
fuzzy logic rules with neural networks. International Journal of Approzimate 
Reasoning, (6):221-240, 1992. 

[Kun93] S. Y. Kung. Digital Neural Networks. Prentice Hall, Englewood Cliffs, New 
Jersey, 1993. 

[KY 951 G. S. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic - Theory and Applica- 
tions. Prentice-Hall, Englewood Cliffs, NJ, 1995. 



[LD95] S. Loncaric and P. Dhawan. Near-optimal mst-based shape description using 
genetic algorithm. Pattern Recognition, 28(4):571-579, 1995. 

[Nat 9 11 

[Nee961 

B. L. Lu and M. Ito. Task decomposition and module combination based on 
class relations: A modular neural network for pattern classification. Techni- 
cal Report BMC TR-98-1, Bio-Mimetic Control Research Center, The Insti- 
tute of Physical and Chemical Research (RIKEN), 1998. 

Y. Liu. Unbiased estimate of generalization error and model selection in 
neural network. Neural Networks, 8(2):215-219, 1995. 

C. T.  Lin and Y. C. Lu. A neural fuzzy system with linguistic teaching 
signals. IEEE Dansactions on Fuzzy Systems, 3(2): 169-189, May 1995. 

C. T.  Lin and C. S. G. Lee. Neural Fuzzy Systems. Prentice Hall, Englewood 
Cliffs, New Jersey, 1996. 

G. F. Luger and W. A. Stubblefield. Artificial Intelligence. Addison-Wesley, 
Reading MA, 1995. 

M. Mandischer. Representation and evolution of neural networks. In Pro- 
ceedings of the International Conference in Innsbruck (Austria), pages 643- 
649, 1993. 
M. T .  Musavi, K. H. Chan, D. M. Hummels, and K. Kalantri. On the 
generalization ability of neural network classifiers. IEEE 7kansactions on 
Pattern Analysis and Machine Intelligence, 16(6), June 1994. 

Z. Michalewicz. Genetic Algorithm + Data Structure. Springer Verlag, New 
York, 1992. 

M. Mozer and P. Smolensky. Skeletonization: A technique for trimming the 
fat from a network via relevance assessment. In D. Touretzky, editor, Ad- 
vances in Neural Information Processing Systems 1. San Mateo, CA: Morgan 
Kauffman, New York, 1989. 

T.  Murofushi and M. Sugeno. An interpretation of fuzzy measure and the 
Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets 
and Systems, 29:201-227, June 1989. 

G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks and 
genetic algorithms. In J. D. Schaffer, editor, Proceedings of the Third Inter- 
national Conference on Genetic Algorithms and their Applications. Morgan 
Kaufmann, San Mateo, CA, 1989. 
N. Murata, S. Yoshizawa, and S. Amari. Network information criterion - de- 
termining the number of hidden units for an artificial neural network model. 
IEEE 7kansactions on Neural Networh, 5 (6) :865-872, November 1994. 

B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kauf- 
mann, San Mateo, California, 1991. 

A. Neeharika. Generalization Capability of Feedforward Neural Networks 
for Pat tern Recognition Tasks. MS Thesis, Indian Institute of Technology, 
Madras, Department of Computer Science and Engineering, August, 1996. 

K. Nozaki, H. Ishibuchi, and H. Tanaka. Adaptive fuzzy rule-based classifi- 
cation system. IEEE ~;ansactions on Fuzzy systems, 4(3):238-250, August 
1996. 
M. Lozano 0 .  Cordon, F. Herrare. On the combination of fuzzy logic and 
evolutionary computation: A short review and bibliography: 1989- 1995. In 



W. Pedrycz, editor, Fuzzy Evolutiona y Computation, pages 57-77. Kluwer 
Academic Press, 1997. 

[Pal921 S. K. Pal. Fuzzy set theoretic measures for automatic feature evaluation: 11. 
Information Sciences, 65:165-179, July-October 1992. 

[Pa0891 Y. H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison- 
Wesley, Reading MA, 1989. 

[Paw821 Z. Pawlak. Rough sets. International Journal of Computer and Information 
Science, 11:341-356, 1982. 

[Paw911 Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data. 
Kluwer, Dordrecht, 1991. 

[Paw941 Z. Pawlak. Vagueness and uncertainity: A rough set perspective. Technical 
Report ICS Research Report 19/94, Institute of Computer Science, Warsaw 
University of Technology, Warsaw, Poland, March 1994. 

[Paw951 Z. Pawlak. Rough sets present state and future prospects. Technical Re- 
port ICS Research Report 32/94, Institute of Computer Science, Warsaw 
University of Technology, Warsaw, Poland, 1995. 

[PB94] N. R. Pal and J .  C. Bezdek. Measuring fuzzy entropy. IEEE Transactions 
on fizzy Systems, 2(2):107-118, May 1994. 

[PB95] N. R. Pal and J.  C. Bezdek. On cluster validity for the fuzzy C-means model. 
IEEE Pansactions on Fuzzy Systems, 3(3):330-379, August 1995. 

IPBSZ951 Z. Pawlak, J. G. Busse, R. Slowinsky, and W. Ziarko. Rough sets. Commu- 
nications of the ACM, 38(11):89-95, November 1995. 

[PC861 S. K. Pal and B. Chakraborty. Fuzzy set theoretic measure for automatic 
feature evaluation. IEEE Transactions on System, Man and Cybernetics, 
16(5):754-760, September/October 1986. 

[PedSO] W. Pedrycz. Fuzzy sets in pattern recognition: Methodology and methods. 
Pattern Recognition, 23(1/2):121-146, 1990. 

[Ped92] W. Pedrycz. Fuzzy neural networks with reference neurons as pattern clas- 
sifiers. IEEE Transactions on Neural Networks, 3(5):770-775, September 
1992. 

[PFF95] W. Porto, D. B. Fogel, and L. J .  Fogel. Alternative neural network training 
methods. IEEE Expert, pages 16-22, June 1995. 

[PIL96] Y. H. Pao, B. Igelnik, and S. R. LeClair. An approach for neural-net com- 
puting with two-objective functions. In Proceedings of IEEE International 
Conference on Neural Networks (Washington D.C.), pages 181-186, June 
1996. 

[PK96] G. Purushothaman and N. B. Karayiannis. Quantum neural networks 
(QNNs) : Inherently fuzzy feedforward neural networks. In Proceedings of 
IEEE Conference on Neural Networks (Washington D. C.), pages 1085-1090, 
June 1996. 

[I'M861 S. K. Pal and D. Dutta Majumder. Fuzzy Mathematical Approach to Pattern 
Recognition. Wiley (Halsted Press), New York, 1986. 

[PM92] S. K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets and classification. 
IEEE Pansactions on Neural Networks, 3(5):683-697, September 1992. 

[PP92] N. R. Pal and S. K. Pal. Higher order fuzzy entropy and hybrid entropy of 
a set. Information Sciences, 61 (3):211-231, 1992. 



[RH W86] 

[RY 951 

[RY96] 

[RY 971 

S. K. Pal and N. R. Pal. Soft computing: Goals, tools and feasibility. Journal 
of IETE, 42(5):195-204, July-October 1996. 

N. R. Pal, K. Pal, and J .  C. Bezdek. A mixed c-means clustering model. In 
Proceedings of IEEE International Conference on Fuzzy Systems (Barcelona, 
Spain), pages 11-21, July 1997. 

W. Pedrycz and A. F. Rocha. Fuzzy-set based models of neurons and 
knowledgebased networks. IEEE Transactions on Fuzzy Systems, 1(4):254- 
266, November 1993. 

Z. Pawlak, S. K. M. Wong, and W. Ziarko. Rough sets: Probabilistic 
verses deterministic approach. International Journal of Man-Machine Stud- 
ies, 29:81-95, 1988. 

R. Reed. Pruning algorithms - A survey. IEEE Transactions on Neural 
Networks, 4:740-747, September 1993. 
J. M. Redners and S. P. Flasse. Hybrid methods using genetic algorithms for 
global optimization. IEEE fiansactions on System, Man and Cybernetics, 
26(2) :243-258, 1996. 

D. E. Rumelhart, G. E. Hinton, and R. J .  Williams. Learning internal repre- 
sentations by error propagation. In D. E. Rumelhart and McClelland, editors, 
Parallel and Distributed Processing. MIT Press, Cambridge, MA, 1986. 

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer- 
sity Press, Cambridge, 1996. 

P. P. Raghu, R. Poongodi, and B. Yegnanarayana. Unsupervised texture 
classification using vector quantization and deterministic relaxation neural 
network. IEEE fiansactions on Image Processing, 6 (10) : 1376-1388, October 
1997. 
C. Rodriguez, S. Rementeria, J. I. Martin, A. Lafuente, J .  Mugerza, and 
J .  Perez. A modular neural network approach to fault diagnosis. IEEE 
Transactions on Neural Networks, 7(2):326-340, March 1996. 

P. P. Raghu and B. Yegnanarayana. A combined neural network approach 
for texture classification. Neural Networks, 8(6):975-987, December 1995. 

P. P. Raghu and B. Yegnanarayana. Segmentation of Gabor filtered tex- 
tures using deterministic relaxation. IEEE fiansactions on Image Process- 
ing, 5(12), December 1996. 

P. P. Raghu and B. Yegnanarayana. Multispectral image classification using 
Gabor filters and stochastic relaxation neural network. Neural Networks, 
10(3):561-572, December 1997. 

P. P. Raghu and B. Yegnanarayana. Supervised texture classification us- 
ing a probabilistic neural network and constrain satisfaction model. IEEE 
Transactions on Neural Networks, 9(3):516-522, May 1998. 

M. Scherf and W. Brauer. Feature selection by means of feature weight- 
ing approach. Technical Report FKI-221-97, Forschungsberichte Kunstliche 
Intelligenz, Institut fur Informatik, Technische Universi tat Munchen, 1997. 

H. P. Schwefel. Numerical Optimization of Computer Models. John Wiley, 
Chichester, 1981. 

N. Saravanan and D. B. Fogel. Evolving neural control systems. IEEE 
Expert, pages 23-27, June 1995. 



[Sha76] G. Shafer. A Mathematical Theo y of Evidence. Princeton University Press, 
Princeton, 1976. 

[Sug741 

[Sus92] 

[SYI 

[SY 961 

[SY 98a] 

[SY 98 b] 

[SY 98e] 

R. Slowinsky. Intelligent Decision Support. Handbook of Applications and 
Advances of the Rough Set The0 y. Kluwer Academic Publishers, Dordrecht, 
1992. 
A. Sankar and R. J. Mammone. Growing and pruning neural tree networks. 
IEEE Tkansactions on Neural Networks, 42(3):291-299, March 1993. 

M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mu- 
tation in genetic algorithm. IEEE Tkansactions on System, Man and Cyber- 
netics, 24(4):656-667, 1994. 

D. F. Specht. Probabilistic neural networks. Neural Networks, 3:109-118, 
1990. 
S. 2. Selim and K. A. Sultan. A simulated annealing algorithm for the 
clustering problem. Pattern Recognition, 24(10) :1003-1008, 1991. 

R. Slowinsky and J. Stefanowski. Foundations of Computing and Decision 
Sciences (eds.), 18(3-4), Fall 1993. 

M. R. A. Sadzadi, S. Sheedvash, and F. 0 .  Triljillo. Recursive dynamic 
node creation in multilayer neural networks. IEEE Tkansactions on Neural 
Networks, 4(2):242-256, 1993. 

M. Sugeno. Theo y of fuzzy integrals and its applications. PhD thesis, Tokyo 
Institute of Technology, 1974. 

H. J. Sussmann. Uniqueness of the weights of minimal feedfonvard nets with 
given input-output map. Neural Networks, 5:589-593, 1992. 

M. Sarkar and B. Yegnanarayana. Application of fuzzy integral in modular 
networks for contract bridge bidding. Accepted in Fuzzy Sets and Systems. 
C. C. Sekhar and B. Yegnanarayana. Recognition of stopconsonant-vowel 
(svc) segments in continuous speech using neural network models. Journal 
of Institution of Electronics and Telecommunication Engineers (IETE), 42(4 
& 5):269-280, July-October 1996. 

M. Sarkar and B. Yegnanarayana. Fuzzy-rough membership functions. Ac- 
cepted in IEEE International Conference on Systems, Man and Cybernetics, 
Sun Diego, California, USA, October 11-14 1998. 
M. Sarkar and B. Yegnanarayana. Fuzzy-rough neural networks for vowel 
classification. Accepted in IEEE International Conference on Systems, Man 
and Cybernetics, Sun Diego, California, USA, October 11-14 1998. 
M. Sarkar and B. Yegnanarayana. A review on merging some recent tech- 
niques with artificial neural networks. Accepted in IEEE International Con- 
ference on Systems, Man and Cybernetics, Sun Diego, California, USA, Oc- 
tober 11-14 1998. 
M. Sarkar and B. Yegnanarayana. Rough-fuzzy membership functions. In 
Proceedings of IEEE International Conference on Fuzzy Systems (Anchorage, 
Alaska, USA), pages 796-801, May 4-9 1998. 

C. C. Sekhar and B. Yegnanarayana. Modular networks and constraint sat- 
isfaction model for recognition of stop consonant-vowel (SCV) utterances. In 
Proceedings of IEEE International Conference on Neural Networks (Anchor- 
age, Alaska, USA), pages 1206-1211, May 4-9 1998. 



[TG74] J .  Tau and R. Gonzalez. Pattern Recognition Principles. Addison Wesley, 
Reading, MA, 1974. 

[TI921 H. Tanaka and H. Ishibuchi. Fuzzy expert system based on rough sets and its 
application to medical diagnosis. International Journal of General Systems, 
21:83-97, 1992. 

[TIS92] H. Tanaka, H. Ishibuchi, and T. Shigenaga. Fuzzy inference system based on 
rough sets and its application to medical diagnosis. In R. Slowinski, editor, 
Intelligent Decision Support. Handbook of Applications and Advances of the 
Rough Set Theory. Kluwer Academic Publishers, Dordrecht, 1992. 

[TK90] H. Tahani and J .  K. Keller. Information fusion in computer vision using fuzzy 
integral. IEEE Tkansactions on System, Man and Cybernetics, 20(3):733- 
741, May/June 1990. 

[TM87] T .  Toffoli and N. Margolus. Cellular Automata Machines: A New Environ- 
ment for Modeling. MIT Press, Cambridge, MA, 1987. 

[TMBC92] S. Thiria, C. Mejia, F. Badran, and M. Crepon. Multimodular architec- 
ture for remote sensin operations. In J. E. Moddy, J. Hanson, and R. P. 
Lippmann, editors, A f vances in Neural Information Processing Systems-4. 
Morgan Kaufmann, 1992. 

[Vid97] M. Vidyasagar. A Theo ry of Learning and Generalization: With Applications 
to Neural Networks and Control Systems. Springer Verlag, New York, 1997. 

[Vig70] S. S. Viglione. Application of pattern recognition technology. In J. M. 
Mendel and K. S. Fu, editors, Adaptive, Learning and Pattern Recognition 
Systems. Academic Press, New York, 1970. 

[WAM97] D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical eval- 
uation of feature weighting methods for a class of lazy learning algorithm. 
Artificial Intelligence Review, 1997. 

[WC96] B. A. Whitehead and T .  D. Choate. Cooperative-competitive genetic evo- 
lution of radial basis function centers and widths for time series prediction. 
IEEE Tkansactions on Neural Networks, 7(4):869-880, July 1996. 

[Whig61 B. A. Whitehead. Genetic evolution of radial basis function coverage using 
orthogonal niches. IEEE Tkansactions on Neural Networks, 7(6):1525-1528, 
November 1996. 

[WK92] Z. Wang and G. Klir. Fuzzy Measure Theory. Plenum Press, New York, 
1992. 

[WM97] L. X. Wang and J. M. Mendel. Fuzzy basis functions, universal approxima- 
tions, and orthogonal least square learning. IEEE Tkansactions on Neural 
Networks, 3(5):807-814, September 1997. 

[Wro95] J. Wroblewski. Finding minimal reducts using genetic algorithm (extended 
version). In Second Annual Joint Conference on Information Sciences (North 
Carolina), pages 186-189, September 1995. 

[WW97] J .  Wang and 2. Wang. Using neural networks to determine sugeno measures 
by statistics. Neural Networks, 10(1):183-195, 1997. 

[WZ87] S. K. M. Wong and W. Ziarko. Comparison of the probabilistic approximate 
classification and fuzzy set model. Fuzzy Sets and Systems, 21:357-362, 1987. 

[XB91] X. L. Xie and G. Beni. A validity measure for fuzzy clustering. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 13(8):841-847, 
August 1991. 



R. R. Yager. Element selection from a fuzzy subset using the fuzzy integral. 
IEEE l+ansactions on System, Man and Cybernetics, pages 467-477, 1993. 
X. Yao. Evolutionary artificial neural networks. International Journal of 
Neural Networks, 4(3):203-222, 1993. 

B. Yegnanarayana. Artificial Neural Networks. Prentice Hall, New Delhi, 
India, 1998. 
M. Yoneda and S. F'ukami. Interactive determination of a utility function 
represented as a fuzzy integral. Information Sciences, 71:43-64, 1993. 

B .  Yuan, G. J .  Klir, and J. F. Swan-Stone. Evolutionary fuzzy C-means 
clustering algorithm. In Proceedings of First IEEE Conference on f izzy 
Systems (Yokohama), pages 2221-2226, March 1995. 

X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural 
networks. IEEE l+ansactions on Neural Networks, 8 (3 ) ,  May 1997. 

X. Yao and Y. Liu. Making use of population information in evolutionary 
artificial neural networks. IEEE Transactions on System, Man and Cyber- 
netics, 28(B2), April 1998. 

L. A. Zadeh. Fuzzy sets. Information and Control, pages 338-353, 1965. 

L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. f izzy Sets and 
Systems, 1:3-28, 1978. 



PUBLICATIONS 

PAPERS IN JOURNALS 

1. M. Sarkar and B. Yegnanarayana,"Feedforward neural network classifiers: Back- 
propagation learning algorithm with fuzzy objective functions", accepted in IEEE 

Tkansactions on Systems, Man and Cybernetics. 

2. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy membership functions in classifi- 

cation", accepted in f izzy Sets and Systems. 

3. M. Sarkar, B. Yegnanarayana and D. Khemani, "Backpropagation learning algo- 

rithms for classification with fuzzy mean square error", Pat tern Recognition Letters, 

vol. 19/1, pp 43-51, 1998. 

4. M. ~arkar-;  B. Yegnanarayana and D. Khemani, "A clustering algorithm using 

an evolutionary programming-based approach", Pattern Recognition Letters, vol. 

18/10, pp. 975-986, 1997. 

5. B. Yegnanarayana, D. Khemani and M. Sarkar, "Neural networks for contract 

bridge bidding", Sadhana, vol. 21, no. 3, pp. 395413, June 1996. 

PAPERS COMMUNICATED TO JOURNALS 

1. M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough membership functions in classifi- 

cation", communicated to IEEE Transactions on f izzy Systems. 

2. M. Sarkar and B. Yegnanarayana, "Feedforward neural networks configuration us- 

ing evolutionary programming", communicated to Pattern Recognition. 

3. M. Sarkar and B. Yegnanarayana, "Evolutionary programming-based hybrid clus- 

tering technique", communicated to IEEE fiansactions on Systems, Man and Cy- 
bernetics. 

4. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy set-based approach for selecting 

input features in classification", communicated to IEEE Transactions on Neural 
Networks. 

PAPER IN EDITED VOLUME 

M. Sarkar and B. Yegnanarayana, "Application of fuzzy-rough sets in fuzzy integral- 

based modular neural networks", Rough-Fuzzy Hybridization: A New Trend i n  Decision- 
Making, ed. S. K.  Pal and A. Skowron, Springer Verlag (in press). 



PAPERS I N  INTERNATIONAL CONFERENCES 

1. M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough membership functions", accepted 

in IEEE International Conference on Systems, Man and Cybernetics, San Diego, 

California, USA, October 11-14, 1998. 

2. M. Sarkar and B. Yegnanarayana, "A review on merging some recent techniques 

with artificial neural networks", accepted in IEEE International Conference on 
Systems, Man and Cybernetics,  an Diego, California, USA, October 11-14, 1998. 

3. M. Sarkar and B. Yegnanarayana, "Fuzzy-Rough neural networks for vowel classi- 
fication", accepted in IEEE International Conference on Systems, Man and Cyber- 

netics, San Diego, California, USA, October 11-14, 1998. 

4. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy membership functions", in Pro- 
ceedings olf IEEE International Conference on Fuzzy Systems, Anchorage, USA, pp. 

796-801, May 3-9, 1998. 

5 .  M. Sarkar and B. Yegnanarayana, "Application of fuzzy-rough sets in modular neu- 
ral networks", Proceedings of IEEE International Conference on Neural Networks, 

Anchorage, USA, pp. 741-746, May 3-9, 1998. 

6. M. Sarkar and B. Yegnanarayana, "Incorporation of fuzzy classification properties 
into backpropagation learning algorithm", in Proceedings of IEEE International 

Conference on Fuzzy Systems, Barcelona, Spain, vol. 3, pp. 1701-1706, July 1-5, 
1997. 

7. M. Sarkar and B. Yegnanarayana, "Rough-Fuzzy set theoretic approach to evaluate 
the importance of input features in classification", in Proceedings of IEEE Interna- 
tional Conference on Neural Networks, Houston, USA, vol. 3, pp. 1590-1595, June 
9-12, 1997. 

8. M. Sarkar and B. Yegnanarayana, "Feedforward neural networks configuration us- 

ing evolutionary programming", in Proceedings of IEEE International Conference 
on Neural Networks, Houston, USA, vol. 1, pp. 438-443, June 9-12, 1997. 

9. M. Sarkar and B. Yegnanarayana, "An evolutionary programming-based probabilis- 
tic neural network construction technique", in Proceedings of IEEE International 
Conference on Neural Networks, Houston, USA, vol. 1, pp. 456-461, June 9-12, 

1997. 

10. M. Sarkar, B. Yegnanarayana and D. Khemani, "Feedforward neural networks and 

fuzzy classification", in Proceedings of Fourth International Conference on Ad- 
vanced Computing, Bangalore, India, pp. 65-72, December 16-18, 1996. 



11. M. Sarkar and B. Yegnanarayana, "A clustering algorithm using evolutionary pro- 

gramming", in Proceedings of IEEE International Conference on Neural Networks, 
Washington, USA, vol. 2, pp. 1162-1167, June 3-6, 1996. 

12. M. Sarkar, "Evolutionary programming-based fuzzy clustering", in Proceedings of 

Fifth Annual Conference on Evolutionary Programming, MIT Press, Cambridge, 

Massachusetts, San Diago, USA, pp. 247-256, 1996. 

13. B. Yegnanarayana, D. Khemani and M. Sarkar, "Hierarchical neural networks - 
An application in contract bridge", in Proceedings of International Conference on 

Automation, Indore, India, pp. 9-12, December 12-14, 1995. 

PAPERS IN NATIONAL CONFERENCES 

1. M. Sarkar, Evolutionary programming-based fuzzy clustering and its applica- 

tions", in Proceedings of the 84th Indian Science Congress-1997, Delhi University, 

New Delhi, India, January 3-8, 1997. 

2. M. Sarkar, B. Yegnanarayana and D. Khemani, "Application of neural networks in 

contract bridge bidding", in Proceedings of National Conference on Neural Networks 
and Fuzzy Systems, Anna University, Madras, India, pp. 144151, March 16-18, 

1995. 


