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ABSTRACT 

of the Thesis on 

Solutions to Some Ill-Posed Problems in Sensor Array Imaging 

Ill-posed problems are those for which there may not be a 

solution or there may be many widely varying solutions. Sensor 

Array Imaging (SAI) is a problem of reconstructing an image 

from data collected by an array of sensors. since the data 

is sparse, image reconstruction in SAI is an ill-posed problem. 

This thesis addresses some issues in SAI and suggests some new 

methods of solving the problems in SAI. We discuss the theory and 

develop a method of reconstructing an image from sparse data 

measured at multiple frequencies. We study the effects of noise 

in the measured data on the reconstructed image, and develop a 

method to reconstruct an image from noisy sparse data collected 

at multiple frequencies. We extend the studies to the case when 

the measured data is partial. In particular, we consider phase 

only data. We study methods for image reconstruction from 

partial noisy sparse data collected at multiple frequencies. As 

the data available becomes lesser and more noisy, the image 

reconstruction problem becomes more ill-posed, and it becomes 

more difficult to formally characterise the situation. We will 

have to rely on visual observation to assess the performance of 

any method for image reconstruction. 

In a typical SAI situation, such as acoustic holography, 

the number of sensors is small. Hence the amount of initial 

data available to reconstruct an image is sparse giving rise to a 

wide variety of possible solutions. To reduce the size of the 

solution set, we propose that the array data be collected for 



different frequencies of the waves illuminating the object. The 

problem is now to find an image that generates the measured array 

data obtained at various frequencies. We show through simulation 

studies that the quality of the reconstructed image improves as 

the number of frequencies is increased. The iterative procedure 

used for reconstructing an image is based on the method of 

Projection Onto Convex Sets (POCS). 

If the initial data is noisy, as it is likely to be in a 

practical situation, the method of POCS will not be directly 

applicable. We propose two solutions to this problem. Our first 

attempt is to compute a ggfeasiblegg solution that matches the 

original data to within a certain degree. The second approach is 

to apply the method of Projection Onto NonIntersecting Convex 

Sets (PONICS) which is proposed in this thesis. PONICS is 

essentially a modification of the method of POCS and uses a 

relaxation technique to converge to a solution. The relative 

merits of the two methods are brought out by means of simulation 

studies. We argue that the method of PONICS is better suited for 

image reconstruction from noisy sensor array data. 

The problem of image reconstruction from the noisy phase of 

the sensor array data is also considered. An iterative method for 

image reconstruction is proposed. In this figure of merit for 

terminating the iterative procedure. Studies show that an image 

can be reconstructed from full as well as 2-bit quantised noisy 

phase data. 

In a nutshell, the thesis suggests a method of reducing the 

number of sensors and the measurement complexity at sensor 

elements by increasing the computational complexity. 



Chapter 1 

INTRODUCTION 

1.1 Major Objectives 

This thesis addresses some issues in Sensor Array Imaging 

(SAI) and discusses solutions to some of these imaging problems. 

We view SAI as a general problem of recovering a signal or 

information from partial and noisy data available from a sensor 

array [21]-[24]. In general, as these problems.are ill-posed and 

hence, we explore the use of some available techniques for 

solving ill-posed problems [44],[58]. Some of these techniques 

involve the use of both symbolic and numeric constraints of a 

given problem, together with some empirical and heuristic 

procedures to obtain an acceptable solution [5],[43]. In order 

to study the performance of these techniques in imaging context 

we consider a simplified imaging setup, where the conditions of 

ill-posedness can be simulated easily. Before we discuss ill- 

posed problems we describe the problem of information recovery 

from partial data. 

1.2 Information Recovery from Partial Data 

When two systems communicate with one another, the signal 

that is transmitted from one system to the other undergoes some 

transformation. In this process part of the signal may be 

distorted or even lost. In addition noise may also be added to 

the signal. Usually there is redundancy in the transmitted data. 

Therefore the transmitted information can still be recovered 



from the partial noisy signal. But if the adverse effects of 

noise and loss of signal dominate, it may be impossible to 

retrieve the signal unambiguously. In some cases only part of the 

signal needs to be recovered and pattern recognition/artificial 

intelligence techniques can be used to recover useful 

information from this partial signal [5],[43]. However no precise 

characterization of what constitutes useful information has been 

made for any practical domain, although there have been several 

attempts to model some restricted domains like the blocks world 

[62]. We restrict our attention to signal recovery problems that 

can be stated formally. 

1.3 Inverse Problems 

Signal recovery is an inverse problem and may be posed in 

all its generality as follows: Let g be the transmitted signal 

transformed by an operator T to produce a signal f. That is, 

f = Tg. (1.1) 

It is required to compute g = ~'lf , given f and T, and hence the 

name inverse problem. 

As mentioned earlier there is usually loss of signal 

information upon transmission. Signal recovery may be possible 

in spite of the loss because of the redundancy in the data. Of 

all possible signals that could be transmitted, only a small 

subset of them carries meaningful information in a given 

context. The set of transmitted signals can be characterized by 

certain known properties. From the data available at the 

receiver, it is required to conjecture a signal at the 

transmitter end that satisfies the known properties, and which 



could have given rise to the data at the receiver end. 

Obviously the derived signal must depend on the known data, 

otherwise there would be no need to transmit the signal. The 

problem may have no solution at all if, for example, the 

received signal is noisy and there exists no signal belonging 

to the class of solutions which could have given rise to the 

known data. If the data is sparse, there may exist more than 

one solution, each different from the other. This is because for 

a given partial data there may be.many solutions that could have 

given rise to the known data and satisfying the constraints 

known a priori. The partial data situation may arise due to 

poor sampling or quantisation or collection of only a part of 

the signal. Problems such as these which have no solutions or 

very different solutions are referred to as ill-posed problems. 

1.4 Ill-Posed Problems[57] 

1.4.1 What are Ill-Posed Problems 

Ill-posed problems occur in many areas like pattern 

recognition, computer vision and speech processing. A problem is 

ill-posed if it has no unique solution that is robust to small 

changes in the initial data. A formal definition is as 

follows [ 5 7 ]  : 

Defiizition : A problem is said to be well-posed if a solution 

exists, is unique and depends continuously on the initial data. A 

problem that is not well-posed is ill-posed. 

Some of the methods of solving ill-posed problems are: 

(a) to reformulate them as well-posed problems by the use of some 



cost functions to be optimized and (b) to compute any arbitrary 

solution from among the set of possible solutions that satisfy 

some constraints/properties known a priori. The first approach is 

used for example in Wiener filtering and maximum entropy methods. 

The second approach which we try to adopt in this thesis is 

suitable if the size of the solution set is small. This approach 

may in fact be reduced to the problem of finding a common element 

of a collection of sets. In other words if multiple solutions to 

a given initial data are possible and it is required to find one 

that satisfies some constraints or properties known a priori, 

then the problem can be formulated as one of finding a solution 

that (a) belongs to the set of all functions satisfying the 

initial data and (b) belongs to the set of all functions 

satisfying the given constraints/properties. 

1.4.2 Methods of Solving Ill-Posed Problems 

Let T:G*F denote an operator T whose domain G and range F 

are metric spaces1. Our first attempt at solving ill-posed 

problems is to convert them to a well-posed problem if possible. 

Such a method, known as the selection method attempts to find a 

unique g for a given f such that f = Tg and geG0, where Go is 

a known set. The following Theorem 1.1 states that the 

selection method can be applied if Go is compact. A compact set 

, is defined as follows [63]: 

.................... 
1. A brief introduction to metric and Hilbert spaces is given in 

Appendix, 



Definition: A set Go in a metric space G is said to be compact if 

every sequence in Go contains a subsequence that converges to a 

limit in itself. 

Theorem 1.1 [57]: Suppose that a compact (in itself) subset Go of a 

metric space G is mapped onto a subset Fo of F. If the mapping 

Go+Fo is continuous and one to one, then the inverse mapping 

Fo+Go is continuous and one to one. 

If, as it usually happens, the known signal is noisy, the 

selection method cannot be applied as there may exist no solution 

g€G0 such that f=Tg. Hence we restrict our attention to finding 

g such that geG0 and 

where PF is a metric on the space of received signals. Such a 

solution is called a quasisolution. Sufficient conditions for 

the existence and uniqueness of a quasisolution can be stated 

through Theorem 1.2 and Theorem 1.3. 

Theorem 1.2 [57]: If the equation f = Tg can have more than one 

solution on the compact set G I  and if the projection of each 

element of the set F onto the set TG is unique, then the 

quasisolution of 'the equation f = Tg is unique and depends 

continuously on the initial data f. Here 

TG = {f=Tg: g€G) (1.3) 

and F is the space of functions containing f. 

The projection of an element x onto a set C is an element 



Px of C such that 

Informally, Px is a point in C that is closest to x. If XEC then 

Px=x. If T is a linear operator, a more general theorem may be 

stated as follows [ 5 7 ] :  

Theorem 1.3 [57]: If T is a linear operator and the homogeneous 

equation Tg = 0 has only the zero solution on the convex set 

GocG, and if every sphere in the set G is strictly convex, then a 

quasisolution to the equation f = Tg on the compact set Go is 

unique and depends continuously on f. 

Notice that when the conditions required by the above 

theorems are satisfied the problem is no longer ill-posed. If the 

solution set Go is not compact then we need other techniques to 

tackle the problem of signal reconstruction. One of these is to 

make use of a stabilizing functional Dg optimizing which, will 

hopefully give a solution that is at least close to the desired 

solution. This method is known as regularization. In general 

there are three methods of using the stabilizing functional. 

These are [42]: 

1. Min PF(f , T ~ )  such that Dg < d, for given d, 
2. Min Dg such that PF(f,Tg) I d, for given d. 

3. Min (PF(f,~g) + aDg). 

The last functional is known as the smoothing functional and a is 

a relaxation parameter. In the next section we shall see 

examples of some well known regularization procedures. 



1.4.3 Regularization 

Some well known statistical methods of signal reconstruction 

like Wiener filtering and maximum entropy method can be cited 

as examples of regularization. In this section we shall see how 

some ill-posed problems are regularized. Note, however that the 

regularization merely suggests a solution to the problem, but the 

manner of computing a regularized solution is sometimes quite 

involved and hence approximations are made to the actual problem. 

Let us begin with Wiener Filtering. For convenience, we restrict 

our attention to the discrete one dimensional space. 

Wiener Filtering 

Let 

f. = Tg + n, (1.5) 

where f is the received signal, g is the transmitted signal and 

n is the noise signal. Let Qg be the stabilizing functional 

where Q is a linear 'operator. It is required to minimize 
I' 

ll~gll subject to llf - ~ ~ 1 1 ~  = lln((2. (1- 6 )  

Here 11.11 refers to a norm in a nonned vector space. By using the 

method of Lagrange multipliers [29],[53] we can show that the 

desired solution satisfies the following equation ['l], [45]: 

(TIT + aQtQ)g = T'f (1-7) 

where TI and Q' denote the adjoint of the operator T and Q 

respectively and l/a denotes the Lagrange multiplier to be chosen 

such that 

I l f  - ~ 1 1 ~  = lln112- (1.8) 

In the case of one dimensional vectors the operators T and Q are 



matrices and the adjoint of these matrices are their Hermitian 

transposes. This method of signal recovery is referred to as 

-1 constrained restoration [1],[43]. By substituting QgQ= Rgg Rnn 

where Rgg and Rnn represent the autocorrelation matrices of 

g and n respectively, the above filter reduces to the 

parametric Wiener filter. Hence g may be estimated as, 

g = (TIT + ~Q@Q)'~T@~ (1-9) 

In addition if a=1, then we obtain the Wiener filter. If a>l in 

the parametric Wiener filter, then the effect of noise and 

signal statistics is emphasized and if a<l, then it is de- 

emphasized. To compute an optimal solution a must be chosen to 

satisfy (1.8). Note that g and n are assumed to be wide sense 

stationary [l] , [45]. 
In the two dimensional case, using the block circulant 

properties of certain square matrices (1.4) can be written as 

Here G (u, v) , F (u, v) , T (u,v) , Sn (u,v) and Sg (u, v) represent the 

Fourier transforms of g(x,y), f(x,y), t(x,y), Rnn(x,y) and 

Rgg(x,y) respectively (The superscript * denotes complex 

conjugate). In practice Sn(u,v) and S (u,v) are not usually 
g 

known and some empirically determined constant is used in place 

[I]. The stabilizing functional used so far reflected noise and 

signal statistics. It can also be used to reflect a measure of 

smoothness [45]. We shall not go into the details. Suffice here 

to say that the stabilizing functional can be used to reflect 



many an objective or subjective criterion. 

Maximum Entroqv Metlt od T11.r91 
Let us consider the maximum entropy method which has been 

used extensively for image restoration [I], [7], [61], [74]. Here 

the stabilizing functional is the entropy function g [ln (g) 1'. 

(The superscript It1 denotes transpose and g denotes a vector 

of values of g at discrete points in the 1-D case). The problem 

can be formulated as 

Min g[ln(g)]t subject to If - T ~ J I ~  = IInl12 (1.11) 

Again applying the Lagrange multiplier method we derive [1],[9]: 

i = exp(1 - 2 a ~ * ~ ( f  - Ti)) (1.12) 

Here g denotes the estimated value of g. Notice in this method 

that g is positive and if g[i] is close to zero then the 

computation is numerically unstable. Also note that a must again 

be chosen such that 

11 1  - Tg1I2 = llnIl2 (1.13) 

One inherent drawback of this method is that the method is 

numerically unstable when the signal to noise ratio (SNR) is 

low. Moreover it can be used only for reconstructing real 

positive signals. 

Minimum Norm Solutioq 

The minimum norm solution for a set of simultaneous 

equations [18] is also a method of regularization when the set of 

equations is underdetermined. In the overdetermined case it is 

akin to the computation of linear predictor coefficients in 

signal estimation and hence is really a quasisolution. In the 

underdetermined case the stabilizing functional is llgll, the norm 



being defined in the Euclidean sense. The method of computing 

the solution is by Singular Value Decomposition (SVD) [18]. In 

[44] a method similar to SVD has been described. Here the 

desired solution is assumed to belong to a compact set of the 

Hilbert space and can be computed by expanding it in terms of the 

eigenfunctions of the operator TIT. 

A note regarding regularized solutions is well in place 

here. In Weiner filtering, for example, we could ignore noise 

effects altogether by setting a to zero. However the resulting 

inverse operator is numerically unstable since the denominator 

might tend to zero at a faster rate than the numerator. To avoid 

this instability we have to settle for an operator that cannot in 

general yield exact results even in the absence of noise. Hence a 

regularized procedure will necessarily produce estimates that 

loose some of the detail and fine structure of the reconstructed 

signal. The exact way in which the fine structure is lost 

ultimately depends upon the noise level. Notice in this context 

the use of the name smoothing functional to a method of 

regularization mentioned in Section 1.7. In short, regularization 

is a compromise between numerical instability arising due to 

noise and loss of detail. 

The main drawback of these methods is that they do not make 

explicit use of constraints in various domains such as band- 

limitedness or finite support. In iterative procedures where the 

solution is refined at every iteration these constraints can be 

applied easily. Hence we advocate the use of iterative 

techniques. 



1.5 Iterative Methods of Signal Recovery 

1.5.1 Gerchberg-Papoulis Iterative Procedure 

The iterative method is resorted to if there exists no 

closed form solution for the problem. But the main difference 

between an iterative method like the method of Projection Onto 

Convex Sets (POCS) - to be described later - and an algorithm is 
that the latter must terminate after a finite number of steps, 

while the former merely tends to a solution. There are some 

situations where even the POCS method can be shown to compute a 

solution in a finite number of steps but such cases are not 

often encountered in ill-posed problems. In practice, the 

result after a few iterations is sufficiently close to the 

desired solution. Thus iterative methods are also advantageous 

in terms of speed and numerical stability, as they are less 

prone to roundoff error. 

Iterative methods of signal reconstruction have been in vogue 

for a long time [8],[10],[39],[44],[50],[54],[59]. There are 

many instances where a noniterative procedure, even if available, 

is not used due to numerical instability [59]. Moreover there are 

instances where noniterative algorithms are not available. 

Iterative methods for signal reconstruction were proposed by 

Gerchberg [lo], Papoulis [39], Feinup [8] besides several others. 

In literature they are referred to as tPapoulist, 'Gerchberg- 

Saxtont or IFeinupt iterative method. The methods are 

essentially the same although they have been applied to different 

problems. As an example of an instance where iterative methods 

are applied we shall discuss the problem and its solution as 



given in [ 3 8 ] .  The problem is interpolating a bandlimited 

discrete signal. In the Papoulis method the values to be 

interpolated are initialized to some bounded value say zero and 

the procedure consists of the following steps at every 

iteration: 

1. Compute the Fourier transform of the signal and set the 

value outside the known band to zero 

2. Take inverse Fourier transform of the resulting function and 

replace the computed signal values with the known ones where 

they are available. 

The Papoulis method was shown to converge. Let us now 

briefly trace the history of such iterative methods 'or more 

specifically their proof of convergence. We start with Von 

Neumannls theorem on alternating projections in the Hilbert 

space [69]. 

1.5.2 Alternating Projection Theorem 

Let H denote a Hilbert space [24], [63] with inner product 

denoted by <x, y> and norm . ((x(( = <x, x> . Let Pa and Pb denote 

the projections onto linear subspaces C, and Cb. The orthogonal 

complement of a set C denoted as LC is the set (y: <x,y> = 0, for 

XEC). Let Qa and Qb denote the projection operators onto LC, and 

1Cb respectively. The alternating projection theorem [70] states 

that 

for any ~ E H ,  where fc is the projection of f onto the Closed 

Linear Manifold (CLM), Pc=P,nPb. ~f fepb, then Youlals theorem 



(Theorem 1 of [70]) states that f is uniquely determined by its 

projection onto Pa if and only if 

Furthermore, the following sequence converges to f in norm 

(strong convergence): 

fk+l = g + QaPbfk (1.16) 

The above iterative procedure of computing a solution is called 

the method of alternating projection. Youlaws theorem can be used 

to show uniqueness of solution for various problems [54]. In fact 

it can also be used to show convergence of the Papoulis method. 

Now if noise changes g to g+Ag and if we assume that CanlCb = (0) 

(implying that the solution is unique), then for Lim fk = fo 
k+ aJ 

(where fo = f+Af) in (1.16) it can be shown that [70] 

where 
<X,Y' - 

cos ($ (Cat 1Cb) ) = inf 
XEC, Ilxll * l l ~ l l  

(Here 'inf refers to the greatest lower bound, or loosely 

speaking, minimum). Thus, in the presence of noise the change in 

the reconstructed signal depends on the noise in the transformed 

signal and the divergence between the two closed linear 

manifolds. 

1.6 Method of Projection Onto Convex Sets (POCS) 

The method of Projection Onto Convex Sets (POCS) extends the 

method of alternating projections to include an arbitrary 

collection of closed convex sets with nonempty intersection. The 



e a r l i e s t  r e f e r e n c e s  t o  t h i s  method a r e  i n  [ 2 ]  and [13 ] .  However 

w e  s h a l l  p r e s e n t  ou r  d i s c u s s i o n  based on a l a t e r  work by Youla 

and Webb [71] .  

1.6.1 TIteoreticaZ Basis of the .POCS Method 

L e t  C1,C2, ..., Cn b e  a c o l l e c t i o n  of  c lo sed  convex s u b s e t s  of 

a H i l b e r t  space  H and l e t  PC denote  t h e  p r o j e c t i o n  o p e r a t o r  on to  

a c l o s e d  convex set C. Define T = 1 + X  (PC-1) w i t h  O < X < 2 .  H e r e  1 

d e n o t e s  t h e  i d e n t i t y  o p e r a t o r .  L e t  T i  b e  t h e  c o r r e s p o n d i n g  

o p e r a t o r  f o r  t h e  c lo sed  convex set Ci. The theorem t o  fol low 

s u g g e s t s  an i t e r a t i v e  method of computing an  e lement  of CAI 

n 
where CA = n C i .  But f i r s t  w e  s h a l l  d e f i n e  t h e  n o t i o n  of  s t r o n g  

i=1 
and weak convergence [26 ] ,  [71] .  These i d e a s  a r e  r e q u i r e d  f o r  a 

d i s c u s s i o n  of t h e  POCS method. 

Definition : sequence s a i d  converge s t r o n g l y  t o  

Lim f k  = f and is w r i t t e n  a s  f k + f .  I t  converges  weakly i f  
k+ a 
Lim ( f k t g )  = ( f l g )  f o r  every  geH, and is w r i t t e n  a s  fkAf.  
k+ a 

Note t h a t  s t r o n g  convergence imp l i e s  weak convergence b u t  

n o t  v i c e  v e r s a .  The theorem' r ega rd ing  t h e  proof of  convergence 

of t h e  POCS method can  now b e  s t a t e d  a s :  

Theorem 1.4 [71]: L e t  CA b e  nonempty. Then f o r  every  XEH and every 

c h o i c e  of r e l a x a t i o n  c o n s t a n t s  A l l  X 2 ,  ..., A n ,  i n  the  i n t e r v a l  

O<X i < 2 ,  t h e  sequence ( T , ~  (x )  ) converges weakly t o  a p o i n t  i n  

C t n .  The convergence is s t r o n g  i f  and on ly  i f  a t  l e a s t  one of t h e  

subsequences of ( T ~ ~  (x )  ) converges s t r o n g l y .  H e r e  To=T1T2.. .Tn. 



Note that if the result of every iteration belongs to a 

compact set [26],[69], then the sequence converges strongly. 

Methods based on POCS will be used in many of our later 

studies. For the sake of future reference, a result which may in 

fact be taken to be the definition of projection onto a convex 

set, is given below. 

Lemma 1.5[71]: Let Px denote the projection of XEH onto a closed 

convex set CcH and let y be an arbitrary element of C. Then 

Re<x-Px,y-Px> 5 0, where Re refers to the real part. 

In the next subsection we shall present some examples of 

convex sets. Prior to that we would like state some of the 

applications of the method of POCS. One of the areas where POCS 

has found extensive use is in signal reconstruction. The method 

has been used for imaging even in the presence of noise 

[52],[60]. This is done by reducing the constraint that the 

reconstructed signal must satisfy the initial data exactly to the 

condition that it must be satisfied to within a certain degree. 

Of late the method has been applied in image enhancement [4] and 

acoustic imaging [46],[64]-[66]. In the next section we shall see 

some examples of convex sets which are found in many signal 

reconstruction problems. 

1.6.2 Convex Sets Defined by .the Fredlzolm's Operator 

In this section we shall see some examples of convex sets. 

In keeping with our earlier objective of considering a general 

signal recovery problem we consider the Fredholmts operator of 



the first kind. Without loss of generality we shall consider the 

one dimensional case. 

The Fredholmls equation of the first kind [23] is given by: 

where h (x, y) continuous function in both x and and 

is defined in the interval [c,d] . Let R denote the Fredholm's 

operator. Some examples of convex sets for given f (y) are given 

below. 

(i) Define 

Bp = {g(x): Rg(x) = f(y) = 0, for lyl > w) 

where w is a real constant 

(ii) Define 

Ca = {g(x): Rg(x) = fa(y), for fa(y) known at ~€1,) (1.21) 

where I, is a closed convex set. 

(iii) Define 

CO = {g(x): Rg(x)= A(y)exp(jO(~))~ for a given phase 

function @I (y) ) . (1.22) 

(iv) Define 

Cfsc = {g(x): g(x) = 0 for xeCp), (1.23) 

where Cp, known as the region of support, is a compact set. 

Although convex sets have been defined for various operators, an 

attempt has been made here to define it for a general operator 

such as the Fredholmls operator. The extension is quite 

straightforward though. The following theorem holds: 



Theorem 1.6: Bp, Ca, Cg, and Cfsc a r e  closed convex sets. 

Proof: 

(i) B is a c losed  convex set  devoid of i n t e r i o r  po in t s  [71] .  
P  

(ii) It has  been shown t h a t  t h e  set  of f ( y )  whose va lue  i n  t h e  

set  I, is f a ( y )  is  a  c losed  convex set [71]. Since g ( x )  is  

transformed by a bounded l i n e a r  opera tor  t o  f  (y)  it follows 

t h a t  Ca is a  c losed  convex s e t .  

(iii) CG is a  c losed  l i n e a r  manifold [71].  

( i v )  Cfsc is a  closed convex set  devoid of i n t e r i o r  po in t s  [71] .  

(End of proon 

W e  s h a l l  now see how t h e  p ro jec t ion  onto t h e s e  sets a r e  

computed. W e  consider  only those  cases  where t h e  problem of 

Min llgl-g2 11 
g2'=C 

f o r  given gl can be reduced t o  t h e  problem of 

Min I1 W1-Rg2 II 
Rg2€R ( C )  

Define t h e  opera t ion  R- 'Q~(x)  a s  follows: 

s o ( x )  = R - ~ Q ~ ( x )  

such t h a t  

Here QR is  t h e  p r o j e c t i o n  o n t o  t h e  r ange  of R and Q i s  an  

opera to r  t o  be defined.  Notice t h a t  go (x)  is t h e  p ro j ec t i on  of 

g ( x )  onto t h e  set Cg defined a s  

cg = ( g '  (x)  : Rg' (x)  = QRQg(x) ( 1 . 2 9 )  

The p ro j ec t i on  is unique i f  t h e  range of R is  c losed  and convex. 



Let Pb, Pa, P@ and Pfsc denote the projection operators onto the 

sets B Cat C@ and Cfsc 
PI 

respectively. 

(i) Pbg(x) = R-l(pb(y)R(x) ) (1.30) 

where 

pb(y) = 11 for yzw, 

= 0, otherwise. 

(ii) Pag(x) = R-l(pa(y) fa(Y) + (~-P,(Y) )Rg(x) 

where 

Pa(y) = 11 for yeIa, (1.33) 

= 0, otherwise. 

(iii) Let @ (y) represent the phase function of Rg (x) and (y) , 
the known phase. Now, 

p@g(x) = R - ~ Q ~ ( x )  (1.34) 

where 

Qg(x) = I~g(x) lcos(@(y) - @,(Y) exp(j@,(y) , 
for cos(Q(Y) - @o(Y)) L 0 

= 0, otherwise. (1.35) 

(iv) PfScg(x) = g(x), for XECI~, 

= 0, otherwise. (1.36) 

The derivation of these equations can be found in [71]. The 

POCS method has one serious restriction that the collection of 

sets must have at least one element in common. In some cases 

this is not possible as the problem may have been formulated in 

such a way that there is no common element. Such situations can 

occur if the initial data is noisy and the noise characteristics 

are not known. One way of dealing with such problems is to expand 

the sets by reducing the constraints and thus ensure a point of 

intersection among them. This can be done, for example, by 



allowing the solution to satisfy the initial data not exactly but 

to within a certain degree. For such an approach to work, the 

sets must be expanded as to be so large that there is always a 

common element. This will result in a situation where, for most 

cases, the solution set will be so large that an arbitrary 

element of the solution set will not be close to the desired 

solution. The approach that we suggest is to find a solution that 

satisfies the known constraints and fits the initial data to the 

best possible extent. The new method which we call the method of 

projection onto nonintersecting convex sets will be discussed in 

detail in Chapter 5 .  

1.7 Iterative Methods of Computing a Regularized Solution 

In Section 1.4.3 we saw how a problem could be regularized. 

Some methods of computing a regularised solution were also given 

for certain case. In this subsection we shall see some iterative 

methods of regularizing a solution. Such methods of computing a 

solution have been reported in literature. In fact most of the 

regularized solutions discussed earlier can be computed 

iteratively. However iterative methods are resorted to when the 

inverse operator is not well defined. For example in Wiener 

filtering the operator (TIT + aQ1Q)" may not be well defined for 

some operators T and Q. Let us consider one such problem where a 

regularised solution is computed iteratively. 

Consider the problem of solving the Fredholmts equation of 

the first kind. It is required to compute g (x) given f (y) , where 

R is an ideal low pass filter and it is known that g(x)~Cf,,. 

The method of POCS can be applied for computing a solution. In 



fact, as we shall show later, the method can be modified to 

compute a quasisolution even if f (y) is noisy (See Chapter 5). 

We shall now see an approach using some energy constraints for 

the noise and reconstructed signal [30]. 

The problem is to compute g(x) such that )lf-~~l1~<)(n()~ and 

l l g l 1 2 < ~ 2  for given llnll and E. Although even this problem could be 

solved by the method of POCS it was reformulated to 

Min (Ilf-~gll~ + (lInl2/E2) llgS2) (1.37) 

Note that we have come across this problem earlier while 

discussing Wiener filtering. Here the relaxation parameter is 

n2/E2. After suitable manipulation we can show that the desired 

solution satisfies the following equation [30]: 

g = pfsc{ pb9+( l-IInll 2/~2) (l-pb) Pfscg) t (1.38) 

where Pfsc and Pb are as defined in (1.36) and (1.30) . Moreover 
the following iterative scheme was shown to converge: 

9k = Pfsc{Pb9 + ( 1 - l l n 1 1 2 / ~ 2 )  (l-Pb)Pfscgk-l)~ (1.39) 

where gk is result of the k-th iteration and go = 0. 

A similar approach was used in [31]. Here the non- 

negativity constraint was sought to be applied.  his can be done 

in an iterative procedure by simply setting all the negative 

values in go to zero. These methods have not been extended to 

the case where more than two convex sets are involved. Such a 

situation occurs in image reconstruction from digital holograms 

which will be discussed later. 

1.8 Sensor Array Imaging (SAI) 

1.8.1 A Typical SAI System 

Sensor array imaging (SAI) can be formulated as a problem of 



numerically solving the Fredholmts equation of the first kind. In 

this thesis we shall consider mainly one instance of SAI, namely 

digital holography. We shall now discuss some of the basic 

principles of SAI. 

Fig.l.1 shows the block diagram of a typical sensor array 

imaging system. The received signal is the transmitted or 

reflected wavefield from the object of interest. This signal is 

first sensed by a sensor array, which converts the incoming 

acoustic or electro-magnetic wave into an equivalent electrical 

form, by a process known as transduction. Detection which follows 

next is the process of digitizing the electrical signal so as to 

be able to store it in a digital computer. From the data thus 

collected the wavefield at the object plane of interest is 

computed by means of suitable inverse transformation. This is 

known as spatial processing. 

1.8.2 Issues in MI 

Since all sensor array imaging systems follow the same basic 

procedure there are a number of issues that are common to all of 

them. Consider the input to the system first. Due to noise and 

other medium disturbances this signal is not the actual reflected 

or transmitted signal from the object plane but a corrupted form 

of it. Moreover the transformation the signal undergoes in its 

path from the object plane to the receiver is known only 

approximately. Hence in practice it is almost impossible to 

recover the original object wavefield accurately. Noise also 

creeps in through the poor fidelity of the sensors. But the most 

important problem with sensor array imaging systems is that, due 



to the small number of sensors the received signal is known only 

at a few points. That is, we have problems of poor sampling and 

truncation. In fact the goal is to obtain an acceptable quality 

of image using as few sensors as possible. In the detection stage 

the issue is the level of quantization. Fine quantization 

requires high fidelity sensors and precise analog to digital 

converters, neither of which is economical. Coarse 

quantization, on the other hand, yields poor results since the 

data is not accurate. 

1.8.3 Ill-Posed Nature of the SAI Problem 

We consider sensor array imaging (SAI) as an illustration 

of finding solutions to ill-posed problems. The problem in SAI is 

to reconstruct an image from the data collected by an array of 

sensors in a certain fashion. SAI is an ill-posed problem, the 

ill-posed nature of the problem arising due to (a) the sparsity 

of data, (b) noise in the data and (c) inadequate knowledge of 

the process of imaging. 

The sparsity of the data results in a large number of 

solutions that could have given rise to the known data. Thus the 

solution set is large and two possible candidate solutions could 

be very different from one another. Consider the set 

Ca = {g(x): f(y) = Tg(x), for f(y) known for ~€1,) (1.40) 

where T:C1+C2. For the problem to be well-posed, ClnCa must 

contain a unique element. However if the data were sparse, Ca is 

a large set in that the diameter of Ca is large. Hence ClnCa will 

admit very different feasible solutions. In other words the 

variance of the estimate of an arbitrary solution will be quite 



large. This, for obvious reasons is not desirable. 

Noise in the data causes ill-posedness because there may be 

no solution (with the known constraints) that could have given 

rise to the known data. More formally, let T:C1+C2 be a mapping 

from C1 to C2. Let f be the known noisy data. There may be no 

g€C1 such that f = Tg. In other words ClnCa may be empty. Now if 

the data were sparse the size of Ca will be large. Hence even in 

the presence of noise, if the initial data is sparse the solution 

set may be nonempty. Notice that the effect of noise is to shift 

the set C, so that there is no point of intersection. If the 

data were sparse, Ca is expanded and hence it is likely that 

C1nCa will have a common point of intersection. This suggests one 

way of noise reduction and was used in [42] for image 

reconstruction from digital holograms. Here the data is made 

deliberately sparse by discarding the less significant phase 

bits. The drawback of this method is that it does not make full 

use of the known initial data. A more appealing solution is to 

find g€C1 such that llf-~gllis minimized for an appropriate norm. 

Inadequate knowledge of the transformation operator T will 

have the same effect on the solution set as noise. Iterative 

methods are sometimes not used when T is not known accurately, 

since the error might propagate over successive iterations [44]. 

In our work we shall not consider this issue, as we wish to 

focus our attention on the computational aspect of the problem. 

1.8.4 Definition of a Solution in SAI 

A solution in SAI is one that could have given rise to the 

known initial data and portrays the image of a real and possible 



object. Hence the set of possible objects must be characterized 

precisely. This is a complex task and no successful attempt has 

been reported for any (practical) domain. Some simple heuristics 

are possible. For example, the reconstructed image may be known 

to have large homogeneous regions, or to be enclosed within a 

known compact region of support. Ultimately the goodness of a 

solution depends on how much relevant information it gives to 

the human viewer. 

1.8.5 Mapping SAI to Finding a Common Point of u Collection of Sets 

SAI is a problem of finding an image function that (a) could 

be a possible solution to the initial data and (b) has some 

properties known a priori. Hence it is a problem of finding a 

common element of two or more sets. Moreover if the sets are 

convex then the POCS method can be used. If the initial data is 

noisy then there may exist no image function with the constraints 

known a priori satisfying the initial data. Here the method of 

projection onto nonintersecting convex sets can be applied. This 

method converges to a function whose exact nature is not 

understood fully. In the case of two nonintersecting sets it can 

be shown that it converges to a quasisolution. For more than two 

sets the method converges to a fixed point of the operator 

applied in the method. Experimental verification is required to 

show that the fixed point is indeed acceptable. 

1.8.6 Imaging and Image Processing 

Some image processing techniques like histogram 

equalization, edge enhancement and mean/median filtering for 



noise reduction can be used on an image to bring out some of its 
I 

essential features. These methods, while good, are not sufficient 

to overcome the poor resolution due to the sparsity of the data 

and noise. Moreover image processing methods are not applicable 

on poorly sampled images. Thus noise cleaning and improvement of 

resolution must be done during imaging itself. 

1.8.7 Image Characterization 

For a human being who is familiar with the class of objects 

being imaged it is not very difficult to eliminate certain images 

as being unrealistic. But it is difficult to characterize 

formally the class of plausible images. Hence attempts have been 

made to take recourse to heuristics that are more often than not 

effective in eliminating implausible images, and retaining the 

plausible ones [5], 1391. The,use of such heuristics might, in 

some cases, lead to divergence in the iterative reconstruction 

procedure. Hence they must be employed carefully. 

1.9 Digital Holography 

1.9.1 A Simplified Model 

In order to study the issue of imaging from sparse data, we 

consider the implementation of a typical SAI problem namely 

digital holography. A simplified model of the system is used so 

as to focus our attention on some of the problem solving issues 

mentioned earlier. 

1.9.2 Description of Imaging Setup 

In this thesis we shall consider the problem of image 



reconstruction from digital holograms [15],[63]. Fig.l.2 shows 

a typical digital holographic system. A plane wave is incident 

on the object plane and the reflected wave is received at the 

receiver plane by an array of sensors which transduces the wave 

at the receiver point into a suitable electrical signal, which 

is then digitized and fed into a computer. The received signal 

is assumed to be a steady state periodic signal of one temporal 

frequency and hence the magnitude and relative phase at every 

point can be measured. The goal is to compute the field 

distribution on the object plane using the phase and magnitude 

data thus collected. The intensity of the field distribution in 

the object plane gives the image of the object. 

Thus the problem of image reconstruction from digital 

holograms is one of signal recovery from partial and noisy data. 

Hence without restricting the class of reconstructed signals no 

worthwhile signal recovery is possible, since for any sensor 

array data it is possible to conjecture a large number of widely 

different signals that could have given rise to the known data. 

1.9.3 Theory of Imaging 

The theory of imaging can be derived from the Rayleigh- 

Sommerfield equation [ll]. Let f (x,y) be the wavefield at the 

receiver plane and g(x,y) be the wavefield at the aperture also 

referred to as object plane. ~eglecting constant factors the 

relation between f(x,y) and g(x,y) can be given by the following 

equation after suitable approximation [51]: 



where 

r = [ (x-xOl2 + (Y-Yo) 2 + z2]1/2, (1.42) 

z is distance between the object and receiver planes, 

and X is the wavelength of the transmitted wave. 

(For a derivation of the above equation from first principles 

[ll] is a good reference) . Note that the object and image planes 
are assumed parallel to one another. 

1.10 Outline of Thesis 

In this thesis we consider the problems of sparse data and 

noise for a particular implementataion of sensor array imaging 

namely digital holography. We have seen that sensor array 

imaging is an ill-posed problem and we have discussed some ways 

of solving ill-posed problems. Some of these methods are 

considered in the context of imaging through digital holography. 

Prior to discussing the solutions we have to investigate the 

nature of digital holography to decide what are the more 

fundamental issues. We decided to use a simplified model of an 

actual imaging setup in order to study the computational problems 

involved. Simulation studies show that accurate knowledge of 

parameters like wavelength, sampling rate and distance between 

object and receiver plane is necessary for a good reconstruction 

of the image of the object. We also show that as the number of 

samples is reduced the quality of the reconstructed image 

degrades rapidly. 

We restrict our attention to the problem of poor sampling 



and noise. The samples are sparse because the receiver array is 

usually small and contains only a few sensors. However we need to 

have more information regarding the object field to obtain a 

'good' quality for the reconstructed image. One way of doing 

this, which we have not considered, is to put some restrictions 

on the class of objects to be imaged. Such methods have been 

attempted with varying degrees of success for some narrow 

domains. In our work we have not considered any particular 

domain although we feel that a good image reconstruction 

procedure is 'good1 because it yields meaningful information to 

the human viewer. Thus although we shall prove convergence of 

our iterative procedures with respect to the squared norm we 

must point out that squared error is not a good indicator of the 

quality of the reconstructed signal. 

The other way of obtaining more information would be to 

collect more data on the same sensor array by altering the 

transformation operator. This is achieved by changing some 

parameters that are involved in the transformation. The parameter 

that we have in mind is the wavelength. For some practical 

reasons to be discussed later we do not consider changing other 

parameters. Thus on the same array many different set of data can 

be obtained for the same object. The data thus collected can be 

combined to produce a better quality image. Earlier methods 

using, what will henceforth be referred to as multispectral 

data, combined the reconstructed images for each set of data as 

a weighted sum. In this thesis we have made use of such data in 

an iterative algorithm so that the computed solution satisfies 

the known data. Moreover iterative methods are better because 



many nonlinear constraints can be imposed on the solution. 

Simulation studies showed that this method is indeed effective in 

reconstructing a good quality image. 

We consider next the problem of noise. Some existing 

methods of image reconstruction in the presence of noise are 

investigated. In particular we study the performance of the POCS 

method for noise reduction. These methods are not found 

satisfactory as they require too much a priori knowledge 

regarding the signal. Hence we develop a new method of image 

reconstruction in the presence of noise. This method, which we 

call the method of projection onto nonintersecting convex sets, 

is found to perform much better than the methods considered - 
earlier, and yet required little additional data about the 

signal. Signal reconstruction from phase has received 

considerable attention in recent years [16],[17],[27],[52],[67]. 

We address in this thesis the problem of signal reconstruction 

from the noisy phase of digital holograms. The relative merits 

of quantised phase over full phase are also discussed. We 

conclude this report by summarizing some of the new results in 

this thesis. Some issues that warrant further investigations are 

also pointed out. 

1.11 Thesis Organization 

The rest of this thesis is organized as follows. In 

Chapter 2 we shall discuss two methods of reconstructing an 

image from its hologram. These methods are known as backward 

propagation and Fresnel/Fourier transform respectively. We shall 

see the need for simulation studies. A description of the 



simulation setup and the results of some preliminary 

investigations are presented. Chapter 3 describes a way of using 

the data collected at multiple frequencies. This method is 

suggested as a means to overcome the sparsity of sampling 

points. Simulation studies bring out the effectiveness of our 

proposed method. In Chapter 4 we consider the problem of error 

in the measurement of data. Here we assume that the error is 

bounded. If the error were due to the addition of random noise 

then the boundedness assumption will not hold. To overcome 

this drawback we develop the method of PONICS which is 

essentially a modification of the method of POCS. This is 

discussed in Chapter 5. Some simulation studies are presented to 

bring out the efficaciousness of the method of PONICS. Chapter 6 

discusses the problem of image reconstruction from phase of 

digital holograms. The last chapter (Chapter 7) gives a summary 

of the thesis. The broad conclusion is that measurement 

complexity can in some cases be traded for computational 

complexity without losing image quality. 



Trans-  
duc t ion  

Detect ion  S p a t i a l  
Process ing  

COMPUTER 
Received . 

/ 

S i g n a l  

F i g . l . 1  Block diagram of a  t y p i c a l  s e n s o r  a r r a y  
imaging system. 

o b ' e c t  1 p a n e  

t r a n s m i  

<---- 

SENSOR 
ARRAY 

t t e d  

/ 

- 

DIGITISER 

w a v e  

A 

y 

r e c e i v e d  w a v e  

F i g . l . 2  A t y p i c a l  s e n s o r  a r r a y  imaging system. 



Chapter 2 

SIGNAL RECONSTRUCTION FROM DIGITAL HOLOGRAMS 

2.1 Introduction 

We view sensor array imaging (SAI) as an ill-posed problem 

and consider digital holography as an instance of SAI, where 

conditions of ill-posedness can be easily simulated and studied. 

In this chapter we describe the methods of image reconstruction 

from digital holograms and some practical problems that arise in 

implementing these reconstruction procedures. 

As described earlier hologram formation is a function 

dependent on the wavelength and the distance between object and 

image planes. Thus these two parameters must be known a priori. 

In addition when the data is digitised, the choice of the 

sampling rate, the quantisation and the choice of the components 

of data such as phase and magnitude must be made. If the data 

available is noise free and precise, and if sufficient quantity 

of data is available, image reconstruction from digital holograms 

would be fairly simple. In practice such ideal conditions are 

seldom encountered. In fact in some applications even the 

wavelength and the distance between the object and image planes 

are not known precisely. Studies are made to investigate the 

quality of the image reconstructed under various adverse 

conditions. It is found that that wavelength and sampling rate 

must be known precisely. This result can be explained 

theoretically. Moreover as in other signal recovery problems we 

find that phase is more important than magnitude for a good 



reconstruction. Inadequate number of samples results in poor 

quality of the reconstructed image. 

The sparsity of samples arises due to the inevitably small 

number of sensors. However with a few sensors it is still 

possible to collect a large number of data and Chapter 3 

discusses a new method of collecting and using the data. The 

other important aspect of the problem of digital holography is 

noise. Standard methods of of filtering are inadequate for our 

problem and hence some new methods are proposed in Chapter 4 and 

Chapter 5.  

There are two methods of reconstructing a signal in digital 

holography namely Fresnel/Fourier transform and backward 

propagation. A discussion of these methods of image reconstruc- 

tion follows in the next section. The issues of performance of 

these methods with regard to resolution of the reconstructed 

image and computational complexity are also addressed. In 

Section 2.3 we point out the advantages and inadequacies of 

simulation studies. We make use of simulation studies in all our 

investigations. A description of our simulation setup and the 

results of our preliminary investigations with regard to noise, 

sparsity of data and error in measurement of parameters are 

presented in Section 2.4. We conclude with a summary of the 

problems encountered in digital holography and point out the 

issues which we shall address in the rest of our thesis. 

2.2 Theory of Image Formation 

The equation relating the field distribution on the object 

plane denoted as g(x,y) and the field distribution on the 



receiver plane denoted as f(x,y) is given as: 

- 

f (x,Y) = - $$ exp(j2~r/x) dxody0 
jxr -a 

where 
r = [ (x-x012 + (Y- YO) 2 + z211/2 

x,y are the co-ordinates along the x and y axes in the 
receiver plane 

Xotyo are the co-ordinates along the x and y axes in the 
object plane 

z is the distance between the image and object plane 

k = 27r/x is the wavenumber 

and 1 is the wavelength of the transmitted wave. 

The above equation can be viewed as a convolution. Hence, we can 

write 

f(x1y) = h(xtY) * g(xty) 
where * denotes convolution and 

h(x,y) = e ~ ~ ( j k ( x ~ + ~ ~ + z ~ ) ~ / ~ ) .  

2.2.1 Fresnel/Fourier Transform: 

When r = z [1+ (x-xo) 2/ (2z) + (y-yo) 2/ (2z) 1, some approximations 

can be made in (2.1) resulting in the following equation: 

1 a0 

f(xly) = - h 1  (xty) exp(jkz) $$ [hl (x,,~~) I 
jxz -a 

exp (j 2~ ( X X ~ + Y Y ~ )  /zx dxody0 

(2.4) 
where 

Note that the above approximation holds only in the 

Fresnel zone where DczcD2/~ and D is the size of the aperture 

along the x or y axis. In the above equation the integral is 

the Fourier transform of the term within square brackets. Thus 



t h e  computat ion of f ( x , y )  i nvo lves  one F o u r i e r  t r ans fo rm 

operat ion i f  w e  use ( 2 . 4 )  t o  compute f (x ,y )  from g (x ,y ) .  Now 

l e t  A X  and AX, represent  t h e  sampling i n t e r v a l  i n  t h e  object  

and image planes respect ively  along t h e  x-axis and Ay and Ayo 

represent  t h e  sampling i n t e r v a l  i n  t h e  object  and image planes 

respec t ive ly  along t h e  y-axis. L e t  N represent  t h e  number of 

samples along every row and column. For proper computation of 

t h e  Fourier  transform t h e  following r e l a t i o n s  must hold: 

NAxo = xz/Ax (2.5a) 

NAyo = Xz/Ay (2.5b) 

Furthermore, i f  t h e  phase is t o  be computed accura te ly ,  w e  have 

[ 5 8 ]  : 

AXo 5 Xz/lox (2.6a) 

AYo 5 Wloy (2.6b) 

where lox and loy a r e  t h e  s i z e  of t h e  aper tu re  and may be given 

by lox=NAxo and loy=NAyo. Hence from (2.5a) and (2.6a) w e  der ive  

AxO 5 AX. S imi lar  r e l a t i o n s  may be derived i f  it is required 

t o  compute g(x ,y)  from f ( x , y ) .  I n  t h i s  case t h e  reso lu t ion  i n  

t h e  reconstructed image is lower than t h e  sampling i n t e r v a l  on 

t h e  rece iver  plane. The advantage is t h a t  a l a r g e  object  can 

be imaged using a small array.  I f  t h e  phase of f ( x , y )  has t o  

be computed from g ( x , y )  , o r  v i c e  v e r s a ,  t h e n  t h e  sampling 

i n t e r v a l  on both t h e  planes must be equal and 

Ax = Axo = (Xz/N) I/ 2 (2.7a) 

I/ 2 Ay = Ayo = (Xz/N) (2.7b) 

2.2.2 Backward Propagation 

Another method of  computing f ( x ,  y )  from g ( x ,  y )  is by 



applying the convolution theorem [33] and is referred to as 

backward propagation [51]. Here the hologram or the received 

signal can be viewed as a linear shift invariant system. Hence 

using convolution theorem we can write 

F(u,v) = G(u,v)H(u,v) (2 8 )  

where F(u,v) , G(u,v) and H(u,v) are the Fourier Transforms of 

f (x,y) , g(x,y) and h(x,y) respectively. H(u,v) is given as [51] : 

H(u,v) = exp(jkz(1 - (Au12 - ( v ) ~ ) ~ )  , for ( ~ u ) ~ + ( A v ) ~  ( 1 

= 0, otherwise ( 2  9) 

Computationally backward propagation is more intensive since it 

involves two Fourier transform operations. However, unlike the 

previous case, the sampling interval on the receiver plane is the 

same as the sampling interval on the object plane and is not 

dependent on the distance between the planes or the wavelength. 

Hence backward propagation is more amenable for use in iterative 

methods where f(x,y) and g(x,y) have to be computed one from the 

other repeatedly. In view of this we shall consider only 

backward propagation in the rest of the work. 

2.3 Need for Simulation Studies 

As mentioned in the previous chapter the problem in imaging 

due to the following factors: (a) sampling, (b) truncation, (c) 

quantization and (d) noise. Given a fixed number of sensors there 

are various ways of configuring an array. It is possible to place 

them far apart and thus increase the extent of imaging or they 

could be kept closely so as to improve the sampling rate. The 

results in the two cases may be quite different. Again, the level 

of quantization is an important and crucial decision to be made. 



If the quantization is high then, in general, the reconstructed 

image quality will be better, but will involve large overheads in 

terms of precise transducers, anolog to digital conversion and 

communication lines. Finally the problem of noise must be 

considered and suitable methods must be applied to reduce its 

effects. 

In digital holography there is yet another important 

consideration and that is the measurement of parameters such as 

distance, wavelength and the spacing between samples. In 

applications such as underwater acoustic imaging (for which 

digital holography is used) the wavelength will be known quite 

accurately, but the measurement of distance may be inaccurate. 

In some other applications such as geophysical prospecting 

[37],[38] it is the wavelength that is the suspect. As we shall 

soon see, the effect of wrong measurement of parameters will 

significantly affect the quality of the reconstructed image. 

In order to study each of the above mentioned problems we 

need to conduct experimental studies. But such a proposition is 

not feasible due to practical considerations. In the first place, 

in an experimental study we will have to consider many other 

extraneous factors and hence we will not be in a position to 

isolate the issues for study. Moreover an experimental set up is 

too costly and it is not possible to modify the setup at will, 

once a physical system is built. Hence we take recourse to 

simulation studies. But we do add a note of caution. In an 

experimental study we will come across problems that might have 

been overlooked in a simulation study and hence ultimately 

experimental studies are needed before an actual system is built. 



2.4 Description of Simulation Studies 

In this section we describe simulation studies to 

demonstrate the effect of (a) error in the measurement of 

parameters, (b) noise in phase and magnitude and (c) sparsity of 

samples on the quality of the reconstructed image. In what 

follows we will consider each of them separately. However, let us 

first give a brief description of our computer simulation setup. 

The equation used for simulating the hologram is given by 

Here h(mAx,nAy) is the discrete version of h(x,y) given in (2.3). 

The steps in the reconstruction of an image from the field data 

f(i~x,j~y) are : 

(a) Compute the DFT of f (iAx,jAy) as F(mAu,nAv) 

2 1/2) (b) Divide F (mAu,nAV) by exp (jkz (1- (AmAu) 2- ( A ~ A v )  ) 

(c) Compute the inverse DFT of the result to obtain the object 

wavefield distribution. 

A 64x64 pixel image shown in Fig.2.l(a) is used for our 

studies. The image matrix is appended with zeros to form a 

128x128 point object field matrix which is used to generate a 

128x128 point hologram. The default values of the parameters z, 

A and AX are z=2000.0 units, A=0.25 units and ~x=0.5 units. 

If all the received field data is used for image reconstruction 

we get back the original image as shown in Fig.2.l(b). Throughout 

the remaining studies only 64x64 points corresponding to the 

object region of the reconstructed image are shown. 



24.1 Errors in Memement  of Parameters 

A. Distance 

Measurement of the distance z between object and receiver 

plane is usually not very accurate. Notice in (2.8) that any 

change in z changes linearly the phase function of H(u,v) which 

effect is reflected in G (u,v) and hence in g (x ,  y) . It has been 

well established that the phase of the Fourier transform of a 

real valued signal captures most of the information of the signal 

while the magnitude plays a relatively insignificant role 

[16],[68]. Let az denote the error between the actual and 

measured values of z. Now the Fourier transform G(u,v) of g(x,y), 

the object wavefield will contain the additional phase factor 

exp ( j h z  (l- (nu) 2- (AV) 2 ,  'I2) . Hence the degradation due to error 
in the measurement of z depends on the absolute value of error 

and not on the relative error with respect to the actual 

distance. This implies that for imaging objects farther away the 

measurement of z will have to be more accurate to retain the same 

quality for the reconstructed image. We demonstrate this through 

simulation studies. 

Fig.2.2 shows the reconstructed images when there is an 

absolute error of 2.0, 20.0 and 200.0 units when the actual 

distance between object and image plane is 2000.0,. 10000.0 and 

20000.0 units. Notice that immaterial of the actual distance the 

reconstructed images appear identical for the same absolute error 

in distance. 

B. Wavelength 

In underwater acoustic imaging, where digital holography may 



be used, the excitation frequency is usually known accurately 

since it is under operator control. However the velocity of sound 

in water changes with depth and temperature [55] and hence there I 
may be small errors in the computation of the wavelength. In 

other applications like seismic exploration the excitation 

frequency is known only approximately and estimation of the 

wavelength becomes a major issue. Notice in (2.8) that X occurs 

in the denominator of the phase function of H(u,v). Hence any 

error in the measurement of wavelength is going to affect the I 
phase of H(u,v) significantly. This implies that the quality of 

the image reconstructed will also be poor. 

Simulation studies bear this out as can be judged from 

Fig.2.3. Fig.2.3(a)-FigS2.3(d) show the reconstructed images when 

the error in wavelength ranges between 0.1% and +lo%. For a large 

error (10%) in wavelength the reconstructed image is not 

intelliglible at all. 

I 

I C. Spacing between Sensors 

I The spacing between sensors is usually known. But we still 

1 examine the effect of error in the measurement of A X  (the spacing 

1 between adjacent sensor elements) on the reconstructed image. 

I Note that u and v are inversely related to AX. Therefore for a 

1 small error in AX  there is a large change in the phase function 

1 of H(u,v) - Hence the quality of the reconstructed image can be 

I expected to degrade significantly for a small error in the 

1 measurement of spacing. This is seen'from Fig.2.4(a) where there 

is a +Owl% difference between the actual and estimated values of 

AX. Fig. 2.4 (b) -Fig. 2.4 (d) show similar results, where the error 



between the actual and estimated values of A X  is 1%, 5% and 10% 

respectively. 

These three studies show that the quality of the 

reconstructed images is very sensitive to errors in the 

measurement of parameters. This is because when there is an 

error in the measurement of parameters the actual system 

transfer function is different from the known one. 

2.4.2 Noise and Error in Measurement of Signal 

We now consider the effect of error in the measurement of 

signal and the effect of random noise introduced by the medium. 

While the former error can be to same extent taken care of by 

the use of sophisticated hardware, the latter - noise by medium - 
is beyond our control although we can attempt to reduce its 

effects. In what follows we will present results of simulation 

studies, to see the effect of error and noise in the received 

data on the reconstructed image. 

A. Error in Measurement of Magnitude 

Let ( f (x, y) 1 represent the magnitude of f (x, y) . Fig. 2.5 (a) 
shows the reconstruction when the measured value of lf(x,y)l has 

a random error of at most 10% of its true value. Fig.2.5(b) - 
Fig.2.5(d) show the results when the error is 25%, 50% and 75% 

respectively. Even for large errors (50% and 75%) in the 

measurement of magnitude the quality of the reconstructed image 

is still good. 



B. Error in Measurement of Phase 

Here we shall study the effect of improper measurement of 

phase of f(x,y) on the reconstructed image. Fig.2.6(a) shows 

the result of reconstruction when the error in phase varies 

randomly between a/16 and -a/16. Fig. 2.6(b) - Fig. 2.6(d) show 
the result when the error is a/8, a/4and a/2 respectively. For 

large errors (a/4 and a/2) in the measurement of phase, the 

quality of the reconstructed image is poor. 

As a result of these two studies we see that noise in phase 

degrades the images more than noise in magnitude. Hence phase 

is more important than magnitude. However in any practical setup 

measurement of magnitude and phase are not made separately. . 
Hence we shall consider the effect of error in the measurement 

of signal as a whole. 

C. Noise 

Let us now present the results of the study carried out to 

investigate the effect of noise in the received data on the 

reconstructed image. Gaussian distributed random noise was added 

to the received data and Fig.2.7 shows the result of 

reconstruction for different levels of noise. 

2.4.3 Reconstmction from Sparse Data 

In the studies mentioned earlier all the 128x128 data 

generated was used for reconstruction although the data itself 

may be noisy or the parameters may be known inaccurately. If 

only part of these samples are known then, even if the data were 

noise free, the reconstructed image quality will be poor. The 



iterative method of reconstruction using sparse data will be 

given in the next chapter. Here we shall present simulation 

studies of reconstructing images using sparse data by a straight 

forward application of the reconstruction procedure used until 

now. Where the sample values are not known a value of zero is 

assumed. Fig.2.8(a) shows the reconstructed image when every 

alternate sample (64x64 samples) is known. Fig. 2.8 (b) -Fig. 2.8 (d) 

show the result when only 32x32, 16x16 and 8x8 samples 

respectively are known. Thus we see that as the number of samples 

decrease there is a degradation in the quality of the 

reconstructed image. 

2.4.4 Reconstruction porn Phase and Magnitude 

We consider here another form of partial data namely phase 

only and magnitude only. Fig.2.9(a) and Fig.2.9(b) show the 

result of using phase only and magnitude only respectively of the 

received data. Note that while the essential features of the 

original image are seen in the reconstruction from phase only the 

reconstruction from maginitude only is not intelligible. This 

reiterates our earlier conclusion that phase is more important 

than magnitude for the reconstruction of an image from digital 

holograms. 

2.5 Inadequacy of Direct Methods 

In this chapter we have focused our attention on digital 

holography and have discussed the problems that arise in a 

typical imaging setup. A brief description of the theory of 

imaging and two methods of reconstructing the image from the 



transformed signal was presented. It is seen from the studies 

conducted that direct methods of image reconstruction are 

inadequate to handle the problems of noise and sparse data. These 

problem are the subject of the rest of the thesis. We shall 

investigate the problem of sparsity of samples in the next 

chapter. In Chapter 4 we shall discuss some methods to overcome 

the problem of bounded error in measurement of the signal. 

Subsequently in Chapter 5, we shall consider Gaussian distributed 

random noise and suggest an iterative method to reduce the noise 

effects. 



Fig.2.1 Original and reconstructed image: (a) A 64x64 pixel 
image appended with zeros to form a 128x128 point data 
array. denoting the object field distribution. (b) 
Image reconstructed from the the sensor array data. In 
this case the reconstruction is exact. Note that the 
image part corresponding to the object is only the 
middle 64x64 points shown in the square. 



Fig.2.2 Effect of errors in the measurement of distance, z. The 
figures are given for three different distances between 
the object and the receiver planes and for three 'cases 
of errors. It is to be noted that generally the quality 
of the reconstructed image depends on the absolute er- 
ror in the distance measurement. 



Fig. 2.3 Effect of errors in the measurement of wavelength, A : 

(a) for 0.01% error in A ,  (b) for 0.1% error in A ,  (c) for 1% er- 

ror in A and (d) for 10% error in A. Even for a small (0.01%) er- 

ror in A the degradation in the reconstructed image is sig- 

nificant. 

Fig. 2.4 Effect of random errors in the measurement of spacing 

(AX,A~) between sensors for three different cases: (a) for 0.01% 

error in spacing, (b) for 0.1% error in spacing (c) for 1% er- 

ror in spacing and (d) for 10% error in spacing. The error is as- 

sumed random within the limits specified.The figure shows that 

even for a small(O.l%) error in spacing causes significant 

degradation in the quality of the reconstructed image. 



Fig. 2.5 Effect of random errors in magnitude of the received 
field for four different cases: (a) for maximum 5% er- 
ror in magnitude, (b) for maximum 10% error in Tag- 
nitude, (c) for maximum 25% error in magnitude and (d) 
maximum 50% error in magnitude. The error at each 
point is random within the limits specified. The figure 
shows that even large(50%) errors in magnitude do not 
seem to affect the quality of the reconstructed image 
significantly. 

Fig.2.6 Effect of random errors in phase of the received field 
for four different cases: (a) for phase errors of 
+a/16, (b) for phase errors of +a/8, (c) for errors of 
+n/4 and (d) for phase errors of +a/2. The error at 
each point is random within the limits specified. 

Fig.2.7 Effect of random noise in the measured complex field 
data for three different cases of signal to noise 
ratios(SNR): (a) for SNR=10 dB (b) for SNR= 0 dB and 
(c) SNR=-10 dB. Since both magnitude and phase are af- 
fected, there is a progressive degradation in the 
quality of the reconstructed image as SNR decreases. 
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Fig.2.8 Image reconstruction from sparse data for four dif- 
ferent cases: (a) from 64x64 points of received data, 
(b) from 32x32 points of received data, (c) from 16x16 
points of received data and (d) from 8x8 points of 
received data. The data is created by appropriate down- 
sampling and setting the values in between to zero. As 
expected, there is a systematic degradation as the num- 
ber of samples of data are decreased. 

Fig.2.9 Image reconstruction from partial data: (a) reconstruc- 
tion from magnitude only and (b) reconstruction from 
phase only. The results show that significant features 
of the original image are preserved in the reconstruc- 
tion from phase, indicating that phase is more impor- 
tant than magnitude. 



Fig.2.2 Effect of errors in the measurement of distance, z. The 
figures are given for three different distances between 
the object and the receiver planes and for three 'cases 
of errors. It is to be noted that generally the quality 
of the reconstructed image depends on the absolute er- 
ror in the distance measurement. 



Fig. 2.3 Effect of errors in the measurement of wavelength, X : 

(a) for 0.01% error in A ,  (b) for 0.1% error in A ,  (c) for 1% er- 

ror in X and (d) for 10% error in 1. Even for a small (0.01%) er- 

ror in X the degradation in the reconstructed image is sig- 

nif icant. 

Fig. 2.4 Effect of random errors in the measurement of spacing 

(AX,A~) between sensors for three different cases: (a) for 0.01% 

error in spacing, (b) for 0.1% error in spacing (c) for 1% er- 

ror in spacing and (d) for 10% error in spacing. The error is as- 

sumed random within the limits specified.The figure shows that 

even for a small(O.l%) error in spacing causes significant 

degradation in the quality of the reconstructed image. 



Fig. 2.5 Effect of random errors in magnitude of the received 
field for four different cases: (a) for maximum 5% er- 
ror in magnitude, (b) for maximum 10% error in Tag- 
nitude, (c) for maximum 25% error in magnitude and (d) 
maximum 50% error in magnitude. The error at each 
point is random within the limits specified. The figure 
shows that even large(50%) errors in magnitude do not 
seem to affect the quality of the reconstructed image 
significantly. 

Fig. 2.6 Effect of random errors in phase of the received field 
for four different cases: (a) for phase errors of 
+a/16, (b) for phase errors of f?r/8, (c) for errors of 
fr/4 and (d) for phase errors of h/2. The error at 
each point is random within the limits specified. 

Fig.2.7 Effect of random noise in the measured complex field 
data for three different cases of signal to noise 
ratios(SNR): (a) for SNR=10 dB (b) for SNR= 0 dB and 
(c) SNR=-10 dB. Since both magnitude and phase are af- 
fected, there is a progressive degradation in the 
quality of the reconstructed image as SNR decreases. 
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Fig.2.8 Image reconstruction from sparse data for four dif- 
ferent cases: (a) from 64x64 points of received data, 
(b) from 32x32 points of received data, (c) from 16x16 
points of received data and (d) from 8x8 points of 
received data. The data is created by appropriate down- 
sampling and setting the values in between to zero. A s  
expected, there is a systematic degradation as the num- 
ber of samples of data are decreased. 

Fig.2.9 Image reconstruction from partial data: (a) reconstruc- 
tion from magnitude only and (b) reconstruction from 
phase only. The results show that significant features 
of the original image are preserved in the reconstruc- 
tion from phase, indicating that phase is more impor- 
tant than magnitude. 



Chapter 3 

MULTISPECTRAL HOLOGRAMS 

3.1 Previous Approaches to Sparse Data Problem 

In the previous chapter we saw that as the number of sensors 

decreases the quality of the reconstructed image reduces sharply. 

In this chapter we suggest a way of overcoming this problem by 

collecting the dataat multiple frequencies. We consider for the 

present noisefree data only. Noise considerations are treated in 

the subsequent two chapters. 

Without additional information or data it is not possible to 

improve the resolution of the reconstructed images. Information 

regarding the domain of objects imaged may help in generating 

good quality images. It is desirable to describe formally the 

class of objects being imaged, since the search space of 

solutions for a given sensor array data would then be reduced. 

However, as of now, formal descriptions are available only for a 

very restricted class of objects [61] that do not have much 

relevance to any practical situation. It is not our aim to make 

yet another attempt in that direction. We hope to improve the 

quality of the reconstructed image by using additional data and 

the knowledge that the object is located within a certain known 

compact region, referred to as region of support. In other 

words, we assume that the wavefield distribution on the object 

plane is zero outside the known compact region of support. This 

assumption, though seldom true in any practical situation, is 

however a good approximation for most cases. Note that 



i n t e r p o l a t i o n  w i l l  no t  he lp  i n  inc reas ing  t h e  reso lu t ion .  

A d d i t i o n a l  d a t a  r e q u i r e d  f o r  b e t t e r  r e s o l u t i o n  can  be  

obtained us ing  s y n t h e t i c  ape r t u r e  methods a s  i n  r ada r  and sonar.  

The aim i n  t h e s e  methods is t o  g e t  d a t a  a t  a  l a r g e  number of  

sampling p o i n t s  by moving t h e  ob j ec t  o r  sensor  a r r a y  r e l a t i v e  t o  

t h e  o t h e r .  An example o f  t h i s  t y p e  of  imaging is  computer 

tomography. Here t h e  specimen t o  be imaged is made s t a t i o n a r y  

and t h e  sensor  is moved along an a r c  o r  s t r a i g h t  l i n e  and da ta  

is t h u s  c o l l e c t e d  a t  many p o i n t s  u s i n g  j u s t  one  s e n s o r .  I n  

nondestruct ive t e s t i n g  t h e  specimen is moved r e l a t i v e  t o  t h e  

s t a t i o n a r y  sensor  a r ray .  The t h i r d  method of s y n t h e t i c  aper tu re  

imaging is t o  move both ob j ec t  and sensor  a r r a y  r e l a t i v e  t o  one 

another.  

The o the r  method of obta in ing  add i t iona l  d a t a ,  i n  d i g i t a l  

holography e s p e c i a l l y , i s  t o  genera te  holograms of t h e  same ob jec t  

u s i n g  d i f f e r e n t  e x c i t a t i o n  f r e q u e n c i e s .  E a r l i e r  a t t e m p t s  

[ 1 9 ] , [ 3 2 ] , [ 4 5 ]  u s i n g  t h i s  approach were r e s t r i c t e d  t o  two o r  

t h r e e  holograms. I n  essence t he se  methods computed a  weighted 

sum of  t h e  images o b t a i n e d  from v a r i o u s  f r e q u e n c i e s ,  t h e  

weighting c o e f f i c i e n t s  being chosen on t h e  b a s i s  of some noise  

and s i g n a l  s t a t i s t i c s .  I n  a n o t h e r  approach u s i n g  m u l t i p l e  

f r e q u e n c i e s  t h e  o b j e c t  f i e l d  e s t i m a t i o n  is done by c r o s s  

c o r r e l a t i n g  t h e  s e n s o r  a r r a y  d a t a  o b t a i n e d  f o r  m u l t i p l e  

f requencies  with t h e  c l a s s  of a l l  images t h a t  a r e  poss ib le  f o r  a  

p a r t i c u l a r  context  [36]. Es sen t i a l l y ,  i n  t h e  e a r l i e r  approaches 

t o  image r ecove ry  from m u l t i p l e  f requency  holograms,  a l l  

m a n i p u l a t i o n s  were done on t h e  image domain. Here we s h a l l  

c o n s i d e r  a  way of  u s i n g  a r b i t r a r y  number of holograms i n  an 



iterative procedure that integrates the process of imaging with 

image processing. Holograms thus obtained for the same object at 

multiple frequencies are henceforth referred to as multispectral 

holpgrams. 

In Section 3.2 we shall state what we mean by a solution to 

the sparse data problem. We shall see that the need for 

multispectral holograms arises only because of poor sampling and 

truncation. In other words if data is sampled adequately over an 

infinite plane an exact reconstruction is theoretically 

possible, even for such data collected at only one frequency. 

We then present arguments to show that the size of the solution 

set may be expected to decrease as the number of frequencies for 

which the data is collected is increased. We propose to use an 

iterative procedure based on the method of POCS for image 

reconstruction from multispectral holograms. As mentioned in the 

previous chapter there are two methods of reconstructing an 

image from a hologram, namely the Fresnel/Fourier transf orm and 

the backward propagation method. We shall discuss the 

suitability of the backward propagation method compared to the 

Fresnel/Fourier transform method for the iterative procedure. 

Although the method of POCS for ima-ge reconstruction from 

multispectral holograms will be discussed in detail in Section 

3.3, suffice here to state that it is similar in many respects 

to some of the well known iterative procedures for 

deconvolution, bandlimited interpolation,etc. We shall discuss 

two different ways of applying the POCS method namely the 

sequential and parallel method. We can show strong convergence 

for both these methods. Simulation studies presented in 



Section 3.4 show that the quality of the reconstructed image 

improves significantly with the increase in the number of 

frequencies at which the holograms are collected. The main 

drawback of the proposed method is its inadequacy to handle 

noise. This is considered in the subsequent two chapters. 

3 2  A Solution to the Sparse Data Problem 

3.2.1 Problem Statement 

The functions of interest in this study are elements of 

L2X2 (n) space of all two dimensional functions square integrable 

over n. The associated Hilbert space is the quotient space 

induced by the equivalence relation Ilgl-g211 = 0, where 

g1 , g2€LZX2 (n) . The problem is to compute g (x, y) €Cf sc such that 
f0(x,y) = g(x,y) * h(xty) (3 1) 

for fo(x,y) known on (x,y)sIp and h(x,y) as given in (2.4). Here 

Ip is a compact set of points for which the data is known. 

3.2.2 Uniqueness of Solution 

Let us consider the case when all the data f (x,y) is known, 

in the equation (2.1) . Notice that according to (2.2) , (2.7) and 

(2.8) hologram formation may be viewed as an ideal low pass 

filter. We can show that if the solution set consists of bounded, 

piecewise continuous functions with compact regions of support, 

then the solution is unique. An exact solution may not be 

possible on account of noise. In such cases it can be shown that 

a quasisolution is unique. The latter result will be discussed 

in Chapter 5. Here we consider the noise free case only. 

For ease of notation let us consider the one dimensional 



problem first. This may be posed as follows: Let 

f (x) = g (x) * h (x) . (3 2) 

Let H(w) , the Fourier transform of h(x) , vanish outside some 

compact subset of the real line. In other words, H(w) = 0, for 

we%, where Bw is some compact subset of the real line, and 

H(u) is piecewise continuous and bounded in Bw. Let the solution 

set be 

Cfsc = g(x) : g(x) = 0, xecpt 

and g(x) is piecewise continuous), (3.3) 

where Cp is a compact subset of the real line. It is required 

to compute g(x) given f(x). Using convolution theorem we can 

write 

F(w) = G(w) -H(w), ( 3  4) 

where F(w) , G(w) and H(w) denote the Fourier transforms of f (x) , 

g(x) and h(x) respectively. Since H(w) is bandlimited, F(w) is 

also restricted to the same band as H(w). Hence, 

G(w) = F(w)/H(w) t for &BW. (3 5) 

Since g(x) ,has finite support its Fourier transform is 

analytic[34] and hence by analytic continuation G(o) can be 

computed uniquely. 

This result can be extended to the two dimensional case. Thus 

if g(x,y) is a piecewise continuous function belonging to L2X2(n) 

space with compact regions of support then its Fourier transform 

is analytic and the solution to (2.1) is unique. 

3.2.3 Use of Additional Data 

We have of course assumed that f (x, y) and h (x, y) are known 

completely. In practice this is not the case since f(x,y) is 



sampled and known only over a finite set of points. Hence, even 

in the noise free case there may be many g(x,y) having 

the said finite region of support such that f(x,y) = g(x,y) * 
h(x,y), for (x,y)~I , the set of sampling points. That is if gl P 
and g2 are two solutions then IIg1-g211 need not necessarily be 

zero. In this section we shall see how more data can be collected 

for the same number of sampling points by changing the 

frequency of excitation. Prior to that we must show that 

collecting more data aids in reconstructing a better quality 

image in that the computed solution using more data is likely 

to be closer to the desired solution than otherwise. 

Let 

CfO = { g(x,y) : fO(XtY) = ~(xIY)*~(xIY) 1 

for fo(x,y) known on (xty)~Ip). (3-6) 

Suppose n holograms are collected for various wavelengths A l l  

121 - = I  ln* Let f(x,y;xi) denote the hologram for a wavelength 

Xi. Define 

cfi = { ~ ( X I Y )  : g(xtY)*h(xt~;Xi) = f(xt~;Xi)t 

for ( ~ I Y ) E I ~ )  (3.7) 

Let Ci = CfinCfsc. We will show later that every bounded subset 

of Cfsc is compact. We assume that the desired solution is 

bounded and hence belongs to a bounded subset of Cfsc. Without 

loss of generality we shall refer to the bounded subset of Cfsc 

containing the solution, as Cfsc itself. Since Cfsc is compact 

and any closed subset of a compact set is also compact, Ci is 

compact. Let g,(x,y) be the solution computed from n holograms 

and gn+l(~Iy) be the solution obtained from n+l holograms. Let 



n 
CA = n Ci. Hence g,(x,y)~CA and gn+l(xl~)~CA+lD Let g0(x,y) be 

i-1 

the desired solution and Pr ( Ilgo (x,y) -gn (x, y) )I>€) denote the 

probability that llgo(x,y) -gn(x,y) for some and 

pr(~~go(xI~) -9n+1 ( x,y) 1 > E )  the probability that !!go (x,y) - 
9n+1 ('1~) It>& 

Since each of the sets Ci is compact, the diameter of the set 

CII, denoted as D(CII,) is finite. Here diameter of a set C is 

defined as 

Max Ilg1(xty) - g2(x,y) I1 ( 3  8) 
91 1 9 p C  

Also, slnce CA 2 CA+l, it follows that D(CA+l) -< D(CA) , and 

hence pr( llg,(x,y) -gn(x,y) lI>€ )  2 pr( lIgo(x,~)-9,+~(x,~) lI>e) 

Thus as the number of holograms increases one would expect to 

arrive at a solution that is closer to the desired solution. Note 

also that f (x,y) is not linearly dependent upon the wavelength. 

Hence by varying the wavelength we obtain two linearly 

independent sets of data. While this may not necessarily be true . 
if the number of samples is finite it is obvious that if the 

number of samples is much more than the number of frequencies for 

which the data is known then the data obtained for one frequency 

will be independent of that obtained for another. 

At this point we need to mention why we do not consider 

changing other parameters practical. The parameters that could be 

altered in an imaging setup are wavelength, distance and sampling 

rate. changing distance or the sampling rate is same as 

synthetic aperture imaging mentioned earlier. This means that we 

have to move the sensor array relative to the object', which is 

difficult to implement in practice. 



3.2.4 Suitability of Backward Propagation 

We have just seen that if data is collected at multiple 

frequencies, we can hope to reduce the size of the solution set 

and thus improve the quality of the reconstructed image. As was 

mentioned in the previous chapter there are two methods of image 

reconstruction from digital holograms namely Fresnel/Fourier 

transform and backward propogation. In this section we shall see 

which of the two methods is more useful for image reconstruction 

from multispectral holograms. 

In the Fresnel/Fourier trasform the resolution of the 

reconstructed image depends upon the wavelength used and is given 

by (2.5) which is reproduced below: 

AX = XZ/NAX, Ay = Xz/NAyo (3.9) 

Hence the resolution on the reconstruced image varies with 

wavelength. Therefore to combine the data from different 

frequencies, every reconstructed image must be transformed into 

one with a common base band resolution. Transforming an image of 

one resolution into another of a different resolution is 

computationally intensive. Moreover it is not suitable for use in 

an iterative procedure for reasons that we shall now discuss. For 

correct computation of phase the sampling rate must be 

(Xz/N)li2. In other words for a given sampling interval and 

distance there is only one frequency that can be used to compute 

the phase exactly. In an application like underwater acoustic 

imaging it is not feasible to change the sampling rate since the 

sensors are fixed on an array. Thus it is not possible to use 

Fresnel/Fourier transform to reconstruct an image from holograms 

obtained by changing the wavelength. The same argument holds for 



reconstructing an image from multiple holograms obtained by 

varying the distance between object and image plane. 

In backward propogation the imaging system can be treated as 

a linear shift invariant system and the sampling rate is the 

resolution on the reconstructed image. This resolution depends 

on the wavelength only in so far as it specifies the best 

resolution possible for the reconstructed image. Note however 

that the physical sampling rate need not be a limitation on the 

resolution of the reconstructed image. We may assume the presence 

of phantom sensors where sampled data is not available. The 

signal on these phantom sensors may be computed using data 

collected at other frequencies. Thus backward propogation is more 

suitable for iterative computation since (a) the resolution is 

independent of wavelength within a broad range of operation and 

(b) the resolution can be improved by increasing the number of 

frequencies. 

3.3 POCS Method of Computing a Solution 

In this section we shall discuss the POCS method of computing 

a solution. Recall that the problem of reconstructing an image 

from sparse data reduces to finding a common element of 

CfScnCf1nCf2n.. .nCfn. These sets as we know are closed convex 

sets. Hence the POCS method of computing a solution can be 

applied. POCS is an iterative method and the computation 

performed at the k-th iteration is given by 

gk(xt~) ' PfscTf1Tf2***Tfngk-l(~ty) t (3.10) 

where Tfi = l+sfi(Pfi-l) , Pfi is the projection onto Cfi and 

O<sfi<2. For reasons of faster convergence we could choose sfi 



such t h a t  s f i > l .  However such a c h o i c e  must be  made j u d i c i o u s l y  

and  y i e l d s  f a s t e r  c o n v e r g e n c e  o n l y  i n  t h e  i n i t i a l  s t a g e s  o f  

computation.  g , (x ,y) ,  t h e  i n i t i a l  e s t i m a t e  of t h e  s o l u t i o n  is 

u s u a l l y  chosen such t h a t  it belongs Cfsc. The computation of t h e  

p r o j e c t i o n  on to  Cfsc is t r i v i a l  and h a s  been g iven  i n  Chapter  1. 

The computation o f  t h e  p r o j e c t i o n  o p e r a t o r  P f i  is a l i t t l e  more 

involved and is d i scussed  i n  t h e  nex t  subsec t ion .  To show s t r o n g  

convergence of  o u r  i t e r a t i v e  procedure  it is enough i f  w e  show 

t h a t  Cfsc is precompact. T h i s  is d i scussed  i n  S e c t i o n  3.3.2. 

L a t e r  w e  s h a l l  a l s o  see how t h e  computation involved a t  every 

i t e r a t i o n  c a n  b e  s p e e d e d  up i n  a m u l t i p r o c e s s o r  s y s t e m  by 

apply ing  t h e  o p e r a t o r s  i n  p a r a l l e l  r a t h e r  t h a n  i n  sequence. W e  

can show t h a t  t h e  s o l u t i o n  set is the same whether t h e  o p e r a t o r s  

are a p p l i e d  i n  p a r a l l e l  o r  i n  sequence. 

3.3.1 Computation of Projection Operator 

Given f o ( x , y )  known a t  t h e  set  o f  p o i n t s  Ip and a func t ion  

g ( x , y )  it is  r e q u i r e d  t o  compute g (x ,y )  a s  a s o l u t i o n  of  P 

Min I l g ( x t ~ ) -  g0 (x ty )  11 (3.11) 

such t h a t  

g0 (x ty )  * ~ ( X I Y )  = f ( x t ~ )  I f o r  ( x t y ) ~ I p .  ( 3 . 1 2 )  

S i n c e  )I .)I is a l w a y s  p o s i t i v e ,  m i n i m i s i n g  it is  same a s  

minimising i ts squared va lue .  Hence c o n s i d e r  

By P a r s e v a l ' s  r e l a t i o n ,  t h e  above exp res s ion  can be  w r i t t e n  a s  

where  G ( u , v )  and  G ( u , v )  r e p r e s e n t  t h e  F o u r i e r  t r a n s f o r m s  o f  P 



g(x,y) and gp(x,y) respectively. Let F(u,v) denote the Fourier 

transform of f (x,y) = g(x,y) *h(x,y) and Fp(u.v) the Fourier 

transform of fp(x, y) = gp(x,y) *h(x, y) . Now 

G(ufv)=F(u~v)/H(u~v) f for ( u f v ) ~ B w  
and 

Gp(ut~)=Fp(U,v)/H(u,v)t for ( u , v ) ~ B ~  

2 2 2 where B, = {(u,v):u +v Sl/X ). 

Hence (3.14) may be written as 

1 / ( 2 n ) ~ ~ ~ ~ ( u , v ) - ~ ~ ( u , v )  l 2  dudv + 1/(2n)lJ I~(u,v)-~~(u,v) l 2  dudv 
Bw Bw 

Ow 
To minimise the second term we let 

Gp(ufv) = G(u,v), for (u,v)EB~ (3.18) 

Thus we are left with 

Since (~(u,v)l = 1, the above expression can be written as 

Again, using Parseval's theorem the expression can be wriiten as 
00 

Since f and fp are bandlimited functions, the expression can be 

reduced to the following form : 
a0 00 

If(iax.jay) - f p ( i ~ ~ f j ~ y ) 1 2  
i=-a =-a j 

Now by the statement of the problem, 

f ( i ~ x ~ j n y )  = f,(i~x,j~y), for (i,j)€Ip. P 

Hence to minimise the expression we let 

f  AX, jay) = f   AX, jay), 
P for (it j)eIp 



Notice that F(u,v) can be computed from f (x, y) and hence Gp (u,v) 

can be computed using (3.16) and (3.18). Thus gp(x,y) can be 

computed from' G (u, v) . P 

3.3.2 Compactness of C 

The set Cfsc first mentioned in Chapter 2 is defined 

formally, for the one dimensional case. Then we shall go on to 

show that CfSc is precompact. This result will then be extented 

to two dimensions. We shall begin with the definition of a 

compact set. 

Definition[63]: A set C is said to be compact if every sequence in C 

contains a subsequence that converges to a limit in C. A set is 

said to be relatively compact if its closure is compact and is 

known as a precompact set if any bounded subset of it is compact. 

Note that boundedness is a necessary condition for 

compactness and is sufficient for any finite dimensional space. 

For example L~ (s) space is not a finite dimensional space and 

hence boundedness is not a sufficient condition for compactness. 

Here S is the entire real line. The following result which is a 

restricted form of the Frechet-Kolmogrov theorem [63] states the 

necessary and sufficient conditions for B c L~ (S) to be 

precompact. 

Theorem 3.1 1631: A set B c L~ (S) is precompact if sup (1 x(l < oo 
B 

and, for every XEB, 

uniformly, 



and Lim I Ix(s)12ds = 0 uniformly. 
a-+m I sl >a 

In order to show compactness of Cfsc, let us first define the 

set. Let K be a compact subset of S and K1, K2, . . . Kn be 

collection of pairwise disjoint relatively compact subsets whose 

union is K and each of whose Lebesgue measure [69] is nonzero. 

cfsc is defineh as the set of all functions x(s), continuous in 

each Kit i = 1,. ..n, and zero elsewhere. 

To show that Cfsc is precompact we can apply Theorem 3.1. 

Consider any bounded x(s)eCfsc. The first criterion of the above 

theorem holds, since x(s) is, by definition, bounded. The second 

criterion can be shown as follows. 

n 
Lim I Ix(t+s)-x(s)12ds=Lim Z I  Ix(t+s)-x(t)12ds (3.21) 
t-+O S t-0 i=1 Ki 

Since in KOi, the interior of Kit x(s) is continuous 
11 

Lim z J lx(t+s)-x(t)12ds = o 
t-0 i=1 KOi 

Hence (3.21) may be written as 
n 

Lim J ~x(t+s)-x(s) l 2  ds = Lim z J ~x(t+s)-x(t) 12ds (3.23) 
t-+O S t-+O i=1 Ki-K" i 

Now as the measure of the set Ki-KOi is zero and x(t+s) -x(t) is 

bounded the last expression tends to zero. Thus the second 

condition is fulfilled. The third condition of Theorem 3.1 holds 

by definition of Cfsc. 

Thus in the one dimensional case Cfsc is precompact. It is 

easy to see that all the results from Theorem 3.1 can be 

extended to any finite dimensional field. 

3.3.3 Convex Combination of Nonexpansive Operators 

In this section we wish to show that a convex combination 



of nonexpansive operators is nonexpansive. This result is useful 

to develop distributed algorithms for a multiprocessor 

environment. Earlier we saw that sparse data of the hologram 

f (x,y;Ai) known on a set Ip for a wavelength Xi defines a convex 

set Ci of functions g(x,y) that could have given rise to the 

known data. Hence if we have the data for n frequencies then it 

is possible to compute a g(x,y) belonging to each Ci by the 

method of POCS. Here the operators Pfi are applied in succession. 

In a mu1t iprocessorenvi ronment  it would be advantageous if all 

operators Pii (or Tfi) are applied in parallel and the results 

combined in a suitable fashion so that the desired solution is 

obtained. This, we show, can be done by a convex combination of 

the result of each of these operators. We begin with some 

definitions. 

Definition [18]: T is a nonexpansive operator if 

I I T ~  - ~ ~ 1 1 5  k Ilx - Y ~ I  (3.24) 

where k is .a real positive number such that 1 T is a 

contraction mapping if k < 1. 

Definition: x is said to be a fixed point of an operator T if 

T(x)=x. 

Theorem 3.2 : Let T1, T2 , .. . Tn be a collection of nonexpansive 

operators from C+C, where C is a closed convex set in a Hilbert 

space H. Let, 

T = alTl + a2T2 ....+ anTn (3.25) 

where al+a 2....+an = 1 and all a2 . . . an are all greater than 
zero. T is a nonexpansive operator from C+C. Furthermore if Ti 

for some i, lsisn, is a contraction mapping, then so is T. 



Proof: 

[~x-~yll = [al~lx +. . .+ anTnx - (alTly +. . .+ a,~,y) 11 (3.26) 

5 alII~l~-~l~II + *  * * +  anII~nx-~n~II (3.27) 

5 alllx-~Il +-  * +  anllx-yll (3.28) 

5 Ilx-~ll (3.29) 

If Ti is a contraction mapping, then (3.28) becomes a strict 

inequality and the second part of the result follows. 

(End of proofl 

3.3.4 Nature of the Solution 

Let us consider the nature of the solutions provided by the 

two operators PfscTIT 2...Tn and Pfsc(alTl+aZT2+ ...+ anTn), where 

a11 a21 - * I  an denote a set of real numbers satisfying the 

constraints specified in Theorem 3.2. The two operators may not 

necessarily have the same fixed points. However if the set CA 

is nonempty, then we can show that the set of fixed points of 

the two. operators is identical and is precisely the set CA. It 

has been shown earlier that the set of fixed points of the 

operator PfscT1T2. . . Tn is the set CA. Our aim is to show that 

the set of fixed points of Pfsc (alTl+a2T2+. . . +anTn) is also 
CA. It is obvious that CA is a subset of the fixed points of 

Pfsc(alT1 +a2T2+...+anTn) since every ~ E C A  is also a fixed point 

of Pfsc(alT1 +a2T2+... +anTn). The containment in the other 

direction can be shown as follows: Let gl be fixed point of 

Pisc (alTl+a2T2+. . . +anTn) and g2€CA. Consider 11  g2-g1 11  . Since g2 
is also a fixed point of Pfsc(alTl+a2T2+ ... +anTn), 

IIg2-glII IIpfsc (al~l+a2~2+* =+anTn) g2 - 
Pisc (alTl+a2T2+ +anTn) g2 II (3.30) 



Again, s i n c e  Pfsc is a l i n e a r  o p e r a t o r  t h e  above equa t ion  can be 

w r i t t e n  a s  

5 a111g2-4111 + + anllg2-4111 (3.33) 

= 1192-glll (3.34) 

(3.31) fo l lows  from t r i a n g u l a r  i n e q u a l i t y  and (3.32) fo l lows  from 

t h e  f a c t  t h a t  PfscTi is a nonexpansive ope ra to r .  Hence w e  d e r i v e  

alll (PfscT1g2-PfscT141) 1 1 +  +an! (PfscTng2 - PfscTngl)  11 
= allg2-gll+ • +anllg2-4111 (3.35) 

Now PfscTig2 = g2 f o r  1c i5n t  s i n c e  g2€CA. Hence 

alIIg2-~fsc~1g111+ + anIIg2 - pfscTngl 11 
= a111g2-g111+ * * *  + a n ~ ~ g 2 - g 1 ~ ~  (3.36) 

S ince  t h e  above equa t ion  h o l d s  f o r  any cho ice  of  ( a i ) ,  w e  deduce 

t h a t ,  f o r  i = 1, 2,  ..., n, 

IIg2-pfSc~ jglII = 1 1 ~ 2 - ~ 1 1 1  (3.37) 

I f  gleCA, t h e n  llg2-~fsc~ig111 <l]g2-glll . Hence by c o n t r a d i c t i o n  

g l€CA.  Thus g l € C A .  S i n c e  g1 is  a n  a r b i t r a r y  f i x e d  p o i n t  o f  

Pfsc (alTl+a2T2+. . . +anTn) it fo l lows  t h a t  every  f i x e d  p o i n t  of 

a T +a T +. . . +anTn) a l s o  belongs t o  C;. Th i s  imp l i e s  t h a t  P f s c ( 1 1  2 2  

t h e  f i x e d  p o i n t s  o f  Pfsc(a1Tl+a2T2+ ...+ anTn) are j u s t  t h e  f ixed  

p o i n t s  of PfscTIT 2...Tn. Notice however t h a t  t h i s  r e s u l t  does n o t  

hold i f  CA is empty. 

3.3.5 Strong Convergence of POCS Method 

Theorem 1.4 assures s t r o n g  convergence i f  t h e r e  e x i s t s  a t  



least one subsequence that converges strongly. Consider the 

operator PoP1P2.. .Pn, where P1, Pa, . . .Pn are as discussed 

earlier and Po is the projection onto a precompact convex set. 

Now the result of every iteration of the POCS method is bounded 

and belongs to a precompact set. By definition any bounded 

sequence in a precompact set has a convergent subsequence and 

hence the method of POCS assures strong convergence if the result 

of every iteration belongs to a precompact set. 

We have shown earlier that Cfsc is compact and in all our 

iterative schemes we apply the operator Pfsc last. Hence strong 

convergence is guaranteed. However since we are dealing with a 

digital computer for all our computation we are forced to 

consider only finite dimensional spaces. In such a situation weak 

convergence implies the strong convergence. 

3.4 Image Reconstruction from Multispectral Holograms 

3.4.1 Termination of the Iterative Procedure 

The termination of an iterative procedure in a practical 

implementation can be done in several ways. The simplest way is 

to decide the number of iterations a priori. This is not 

advisable in most cases as the number of iterations required for 

an acceptible solution may vary with the initial data. One 

method often used in numerical analysis is to stop when the 

result of two successive iterations does not change much. In 

other words let xk be the result of the k-th iteration. The 

iterations stop when ek = Ilxk-xk-lll < E ,  where e is some 

predetermined value. It is advisable to normailse ek by 

dividing it by llxkll, provided llxkll does not tend to zero. 



For inverse problems such as signal reconstruction it is 

required to compute f=Tg. An iterative procedure like POCS may 

not compute an exact solution in a finite number of iterations. 

Hence it is necessary to decide a priori the level of accuracy of 

the solution. The accuracy of the solution is measured as the 

normalised mean square error between the computed solution and 

the known data. More formally the error at the k-th iteration is 

given by 

In the simulation studies to follow the iterative procedure was 

terminated when ek attained a value of 0.05 or less. 

3.4.2 Sparse Data 

To show the need for multispectral holograms in a practical 

situation we shall first conduct studies for sparse number of 

samples. The simulation setup is as mentioned in the previous 

chapter. The object field distribution used fo= the studies is 

shown in Fig.2.1. The distance between object and sensor planes 

is 2000.0 units. The distance between adjacent samples along 

both axes is 0.5 units. We shall consider four sampling rates 

namely when the hologram is available on (a)64x64 points, (b) 

32x32 points,' (c) 16x16 points and (d) 8x8 points. For each of 

these cases it is possible to configure the samples in different 

ways. We consider (a) offset data, (b) down sampling, (c) 

extrapolation and (d) random sampling. These terms will be 

defined shortly. 

Let the 128x128 square mesh of equally spaced sampling 



points be indexed as i,j = -64, -63, ..., 63. We shall 

consider the down sampled case first. When there are 64x64 

elements in the array the sampling points are indexed as i,j = 

-64, -62, . . . , 62 (in steps of two). The result of the iterative 
reconstruction procedure is shown in Fig.3.l(a). We shall now 

consider the case when only 32x32 samples are known. The values 

the indices take are i,j = -62, -58, ..., 62 (in steps of four). 

The result of applying the iterative procedure is show in 

Fig. 3.l(b) . For 16x16 samples the elements of Ip take indices 

i,j = -60,- 52,...60, (in steps of eight). The result of applying 

the iterative procedure is shown in Fig. 3.1 (c) . When there are 

8x8 samples the values the indices take are i,j= -56,-40, ..., 56. 
The result of the iterative procedure is shown in Fig.3.l(d). 

We shall consider offset data next. By offset data for 64x64 

samples we refer to a collection of samples wherein the 

indices are given as i,j = -64,-63, . . . , -1. This then 

constitutes the set Ip of sampling points. Using these sampling 

points and applying the - POCS procedure as described earlier 

the reconstructed image is shown in Fig.3.l(e). For 32x32 the 

elements of Ip take indices i,j = -32,-31,...,-1. The results of 

the iterative reconstruction procedure is shown in Fig.3.l(f). 

When there are just 16x16 samples the indices are it j = -16, 

-15, ..., -1. The result of the iterative reconstruction 

procedure is given in Fig.3.l(g). For 8x8 array, the values the 

.................... 
1. See Algorithm 3.1 for the pseudo code of image reconstruction 

from digital hologram using finite support constraint. 



indices take are i,j = -8, -7, . . . , -1. The result of the 
reconstruction is shown in Fig.S.l(h) 

By extrapolation with 64x64 samples we mean that the 

indices of the elements of the set Ip are chosen as, it j = -32, 

-31, ... 31. The result of applying the POCS procedure in this 

case is shown in Fig.S.l(i). We now consider extrapolation with 

32x32 samples. Here the elements of Ip take indices i,j = -16, 

-15, ..., 15. If there are just 16x16 samples the elements of Ip 

take indices i, j= -8, -7, . . . ,7. When there are just 8x8 elements 
the values the indices take are i,j=-4,-3, ..., 3. Fig.3.l(j), 

Fig.3.l(k) and Fig.3.1(1) show the result of applying the 

iterative procedure for 32x32, 16x16 and 8x8 samples 

respectively. 

Finally let us consider random sampling. In Fig.S.l(m) is 

shown the result of using 4096 randomly chosen samples in the 

image reconstruction procedure. In Fig.S.l(n) is shown the image 

obtained by using 1024 randomly chosen samples. In Fig.S.l(o) the 

result shown is obtained by using 256 samples. And in Fig.S.l(p) 

the result shown is obtained by using 64 samples. 

The results of these experiments show that, as the number 

of samples is reduced the reconstructed images are very poor in 

quality. Moreover when the data is sparse, down sampling and 

random sampling appear to be more promising. Notice also that 

although offset data is just another form of extrapolation, the 

result of using offset data is better than that of 

ltextrapolationlt. These tentative conclusions will be seen to 

hold for multispectral hologram data as well. In the next section 

we shall show that by collecting data at multiple frequencies it 



is possible to reconstruct a good quality image even if the 

number of sampling points is a mere 16x16. 

3.4.3 Simulation Studies for Multispectral Hologram 

There are two ways of combining data from multiple holograms. 

The first method is to apply the operators in sequence and the 

second is to apply them in parallel and obtain a convex 

combination of the results. The second approach is useful only in 

a multiprocessor system and hence all our studies are based on 

the sequential appr~ach.~ Moreover notice that if the convex sets 

intersect the set of fixed points in both cases are the same. 

As mentioned earlier, it is likely that as the number of 

frequencies increases, the computed solution will be closer to 

the desired solution. Here we conduct simulation studies to show 

the effectiveness of the proposed method to combine data from 

multispectral holograms. First we shall present the results 

using 64x64 sampling points for offset data, down sampling, 

extrapolation and random sampling, using two, four, eight and 

sixteen wavelengths. The next study will be on an array of 32x32 

elements. Following that we shall present the results obtained 

using a 16x16 array of elements. Finally we shall consider a 8x8 

array. The terms offset data, down sampling, extrapolation and 

.................... 
2. See Algorithm 3.2 for the pseudo code of the sequential image 

reconstruction procedure from multispectral digital holograms and 

Algorithm 3.3 for the pseudo code of the parallel image 

reconstruction procedure from multispectral digital holograms 



random sampling have been defined earlier. The wavelengths used 

are 0.25 and 0.26 units when two wavelengths are used. When 

four frequencies are used the wavelengths are 0.25, 0.26, 0.27 

and 0.28 units. When eight frequencies are used the wavelengths 

in addition to the four mentioned are 0.29, 0.30, 0.31, and 

0.32. When sixteen frequencies are used the wavelengths chosen 

are 0.25, 0.255, . . . , 0.325. Fig. 3.2 to Fig. 3.5 show the results 

of using multiple frequencies on a 64x64, 32x32, 16x16 and 8x8 

array respectively. 

A few remarks regarding the results are in order here. 

Notice first that as for the single frequency case the results of 

down sampling and random sampling are indeed better than those 

for offset data and extrapolation. If we consider hologram 

formation as some sort of a Fourier transform, then, in down 

sampling or random sampling the distribution of the samples is 

spread evenly over the entire frequency range. In extrapolation 

there is little sampling on the high frequency region. In offset 

data the sampling is spread over all frequencies but in a narrow 

region. Hence offset data yields results in between down sampling 

and extrapolation. 

Another interesting feature of Fig.3.2 is that as the number 

of frequencies is increased from four to sixteen in the down 

sampled or randomly sampled case the quality of the reconstructed 

image does not show significant improvement. In a subsequent 

chapter we shall see that if the data is noisy there is a 

significant improvement as the number of frequencies is increased 

from four to eight for a 64x64 array. 



3.5 Tradeoff between Computational and Receiver Co~nplexi ty 

In this chapter we saw that if all the data is available 

then there exists a unique solution for the problem of computing 

g(x,y) given f(x,y) and h(x,y). We have seen that if the samples 

are sparse the quality of the reconstructed image is poor and 

degrades as the number of samples reduces. One method of 

increasing the amount of data for the same sampling array is by 

obtaining holograms for different wavelengths. Multispectral 

holograms, as we call them, can be used in an iterative 

algorithm for improving the quality of the reconstructed image. 

We proved the convergence of the iterative procedure used for 

image reconstruction. We also saw that there are two ways of 

combining the data namely the sequential and parallel method and 

showed that the two methods have essentially the same solution. 

Simulation studies were conducted for image reconstruction from 

multispectral holograms using the sequential method. The results 

show that by using multiple frequencies an intelligible 64x64 

image can be reconstructed using just 8x8 sensors. However there 

is a tradeoff in that the number of frequencies for which the 

data is collected must be increased. Also the amount of 

computation required for an acceptible solution increases as the 

number of holograms is increased. Rather than using a large 

array, we could use a small array and increase the number of 

frequencies. Every increase in the size of the array increases 

the circuit complexity almost exponentialy as it is necessary to 

synchronise each one of the sensors to a common synchronising 

element. Increasing the number of frequencies is not as complex 

as increasing the number of sensors. 



Let us now discuss some of the limitations of the proposed 

procedure. An implicit assumption in our work is that g(x,y), 

the field distribution on the object plane is independent of 

the wavelength. This is not strictly true although the 

variation is not much if the wavelengths are close. Actual 

field tests must be conducted to find out how much the dependency 

is. An interesting issue that we have not been able to address 

satisfactorily is the optimum interval between adjacent 

frequencies. Finally, notice that the method is applicable for 

noise free data or more precisely if C; is nonempty. The next 

two chapters address the problem when such a condition does not 

hold. 



I(1) g ( x , y )  = cons tan t ,  f o r  (x ,y )  i n  reg ion  of  suppor t ,  I 
I = 0, otherwise.  I 1 Repeat I 
1 ( 2 )  Compute G(u,v) t h e  Four ie r  t ransform of g ( x ,  y)  1 
(3)  For a l l  (u ,v )  do 

I 2 2 I f  u  +v 5 1 / X 2  t hen  I 
else F(u ,v)  = 0 

endi f  

1 ( 4 )  Compute f (x ,  y )  t h e  inve r se  Four ie r  t ransform of F (u ,v)  

I (5)  Replace f (x ,y)  = f (x ,y )  f o r  ( x I y ) ~ I p  ,. I 1 ( 6 )  Compute Fw (u ,v )  the Four ier  t ransform of f (x ,  y )  I 
( 7 )  For a l l  (u ,v )  do 

2 2 If u  +v 5 1 / x 2  t hen  

e l s e  

G1(u ,v)  = G(u,v) 

endi f  

( 8 )  Compute g t  (x ,y)  t h e  i n v e r s e  Four ie r  t ransform of G(u,v) 

(9) g ( x , y )  = g 1  (x ,y)  f o r  (x ,y)  i n  region of  suppor t  

= 0 o therwise  

until s a t i s f a c t o r y  s o l u t i o n  obtained.  I 
Algorithm3.1: The POCS procedure t o  r econs t ruc t  an image wi th  

f i n i t e  suppor t  from hologram d a t a  f ( x , y )  known 
a t  a s e t  of p o i n t s  ( x , y ) ~ I ~  



Initialise: 

(1) go(x,y) = constant, for (x,y) in region of support, 

= 0, otherwise. 

(2) k = l  

Repeat 

(3 For i = 1 to n, ( *  n denotes number of frequencies * )  

do steps 4 to 6 

(4) Compute fk(x,y;xi) = gk,l(x1y) *h(xt~;xi) 

as in Algorithm 3.1 (Steps 2-5). 

(5 Compute gk(x, y) from fk (x, y t 1 i) 

as in Algorithm 3.1 (Steps 6-9). 

(6) k = k+l 

until satisfactory solution obtained. 

Algorithnz3.2: The sequential POCS procedure to reconstruct an 
image using multispectral hologram data f(x,y;xi) 
known for n different frequencies. 



1 i 

Initialise: 

I(1) go (x, y) = constant, for (x. y) in region of support, 1 
I = 0, otherwise. I 

1 Repeat I 
For i = 1 to n, ( *  n denotes number of frequencies * )  I 

I do steps 4 to 7 I 
(4) Compute fk ( X  I y ; 1 i) = g k - l ( ~ ~ ~ )  *h(xtY;Xi) 

as in Algorithm 3.1 (Steps 2-5). 

(5) Compute g(x,y;i) from fk(xIy;X i) 

as in Algorithm 3.1 (Steps 6-9) . 

u n t i l  satisfactory solution obtained. 

Algorithm3.3: The parallel POCS procedure to reconstruct an image 
using multispectral hologram data f(x,y;~i) known for 
n different frequencies. 
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Fig.3.1 Effect of poor sampling of the received data on the 
reconstructed image. The complete receLved data con- 
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for four sets of under sampled values. The unknown 
sample values are set to zero. 
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Fig.3.1 Effect of poor sampling of the received data on the 
reconstructed image. The complete received data con- 
sists of 128x128 sainples. The figure shows the image 
reconstructed for four different types of sampling and 
for four sets of under sampled values. The unknown 
sample values are set to zero. 
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Fig.3.2 E f f e c t  o f  m u l t i p l e  f r e q u e n c y  d a t a  on  t h e  image  
r e c o n s t r u c t e d  from s p a r s e  r e c e i v e r  a r r a y .  The d a t a  con- 
sists o f  64x64 s a m p l e s .  The f i g u r e  shows t h e  image 
r e c o n s t r u c t e d  f o r  f o u r  t y p e s  of sampling and f o u r  cases  
of m u l t i p l e  f requenc ies .  
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Fig.3.2 E f f e c t  o f  m u l t i p l e  f r e q u e n c y  d a t a  on  t h e  image  
r e c o n s t r u c t e d  from s p a r s e  r e c e i v e r  a r r a y .  The d a t a  con- 
sists o f  64x64 s a m p l e s .  The f i g u r e  shows t h e  image 
r e c o n s t r u c t e d  f o r  f o u r  t y p e s  of sampling and f o u r  c a s e s  
of m u l t i p l e  f r equenc ie s .  
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Fig.3.3 Effect of multiple frequency data on the image 
reconstructed from sparse receiver array. The data con- 
sists of 32x32 samples. The figure shows the image 
reconstructed for four types of sampling and four cases 
of multiple frequencies. The quality of the image 
reconstructed improves as the number of frequencies are 
increased. 
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Fig.3.3 Effect of multiple frequency data on the image 
reconstructed from sparse receiver array. The data con- 
sists of 32x32 samples. The figure shows the image 
reconstructed for four types of sampling and four cases 
of multiple frequencies. The quality of the image 
reconstructed improves as the number of frequencies are 
increased. 
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r e c o n s t r u c t e d  from s p a r s e  r e c e i v e r  a r r a y .  The d a t a  con- 
s is ts  o f  16x16 s a m p l e s .  The f i g u r e  shows t h e  image 
r e c o n s t r u c t e d  f o r  f o u r  t y p e s  of  sampl ing and f o u r  c a s e s  
of m u l t i p l e  f r equenc i e s .  
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Fig.3.4 Effect of multiple frequency data on the image 
reconstructed from sparse receiver array. The data con- 
sists of 16x16 samples. The figure shows the image 
reconstructed for four types of sampling and four cases 
of multiple frequencies. 
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Fig.3.5 E f f e c t  o f  m u l t i p l e  f r e q u e n c y  d a t a  on t h e  image  
recons t ruc ted  from s p a r s e  r e c e i v e r  a r r a y .  The da ta  con- 
s is ts  of  8x8 samples .  The f i g u r e  shows t h e  image 
recons t ruc ted  f o r  four  types  of sampling and four  cases  
of mul t ip l e  f requencies .  The f i g u r e  shows t h a t  even f o r  
very  low sampling r a t e  it is p o s s i b l e  t o  g e t  a  good 
image provided t h e  number of f requencies  a r e  l a r g e ( l 6 ) .  



Chapter 4 

IMAGING WITH NOISE 

4.1 111-Posedness arising due to Absence of Solution 

W e  saw i n  t h e  p rev ious  c h a p t e r  t h a t  c o l l e c t i n g  d a t a  a t  

m u l t i p l e  f r e q u e n c i e s  h e l p s  i n  improving t h e  q u a l i t y  of t h e  

reconstructed image. Application of t h e  methods proposed e a r l i e r  

t o  noisy da ta  is not  s traightforward s ince  w e  have not  proved 

convergence f o r  such data .  I n  t h i s  chapter  w e  attempt t o  apply 

t h e  method of POCS by a l t e r i n g  t h e  cons t r a in t s  of t h e  problem. 

Unlike i n  t h e  previous chapter ,  where w e  t r y  t o  reconst ruct  an 

image t h a t  matches with t h e  known data  exact ly ,  here  w e  attempt 

t o  compute an image t h a t  matches with t h e  known data  t o  within a 

c e r t a i n  degree. The drawback of t h e  method proposed here  is t h a t  

c e r t a i n  c o n s t a n t s  d e f i n i n g  t h e  degree  of  accuracy  of t h e  

reconstructed s igna l  must be known prec i se ly  a p r i o r i .  I n  t he  

next chapter  w e  s h a l l  d iscuss  a method t h a t  does not  requ i re  t h e  

knowledge of t h e s e  paramete rs .  A comparat ive  s t u d y  of t h e  

r e s u l t s  obtained by t h e  methods proposed i n  t h i s  chapter  and 

those  proposed i n  t h e  next a r e  given i n  Chapter 5. 

Imaging wi th  n o i s e  is  an i l l - p o s e d  problem a s  t h e r e  may 

e x i s t  no ob jec t  f i e l d  d i s t r i b u t i o n  with known cons t r a in t s  t h a t  

could have given r , i s e L t o  t h e  known i n i t i a l  da ta .  The problem of 

n o i s e  i n  image r e c o n s t r u c t i o n  h a s  been s t u d i e d  e x t e n s i v e l y  

[ 1 ] , [ 9 ] .  To reduce  t h e  e f f e c t s  of  n o i s e  i n  t h e  r e c o n s t r u c t e d  

s igna l  one needs t o  have ex t r a  information regarding t h e  s igna l  

and some c h a r a c t e r i s t i c s  of t h e  noise.  I n  Sect ion 1 . 4  some 



methods of noise filtering were discussed. Most of the noise 

filtering methods were based on regularisation techniques, which 

attempt to compute an optimal solution of some sort using noise 

and signal statistics. These techniques are not applicable for 

the problem of image reconstruction from digital holograms as the 

only information available a priori is the extent of the object 

and not noise or signal statistics. Moreover the application of 

the regularization techniques for image reconstruction from 

digital holograms is not obvious. 

Our approach in this chapter is to adapt the method of POCS 

described in Chapter 1 for the problem of image reconstruction in 

the presence of bounded noise in the digital holograms. The 

assumptions we make here are: 

(a) the extent of the field of the object is compact and 

(b) the noise is bounded. 

Note that for noisy data the convex sets defined by the known 

data and Cfsc (the set of all signals with finite support) may 

have no common element. A graphical illustration of the effect 

of noise on the solution set is shown in Fig.4.1. The set of all 

signals satisfying the known data moves away from the set Cfsc 

if the data is noisy. Hence it is not possible to ignore the 

noise and apply the POCS method directly as for the noise free 

case since convergence is not assured when the intersection of 

the convex sets is empty. To force an intersection we may expand 

Cgfo by relaxing the constraint that the reconstructed signal 

matches the known data exactly. As shown in Fig. 4.1, if the 

expansion is too small, intersection of the convex sets may still 

not be possible. If the expansion is too large then a wide 



v a r i e t y  of  s o l u t i o n s  a r e  p o s s i b l e  and hence an a r b i t r a r y  s o l u t i o n  

f rom among t h e  s e t  o f  a l l  p o s s i b l e  s o l u t i o n s  may n o t  b e  

s a t i s f a c t o r y .  Hence t h e  bound on t h e  s e p a r a t i o n  be tween  t h e  

r e c o n s t r u c t e d  s i g n a l  and t h e  known d a t a  must be  known p r e c i s e l y .  

F o r m a l l y ,  i f  f ( x , y )  i s  t h e  known d a t a  and  R is  a  l i n e a r  

t r ans fo rma t ion  o p e r a t o r , t h e n  o u r  aim is t o  f i n d  g ( x , y )  such  t h a t  

P ( f ( x , y ) ,  Rg(x,y)  ) z b .  H e r e  P is a  d i s t a n c e  measure and Ib1  is a  

known c o n s t a n t .  I n  g e n e r a l ,  it is i n  v a i n  t o  compute g ( x , y )  such 

t h a t  p ( f ( x , y )  , R g ( x , y ) )  < b ,  s i n c e ,  i f  w e  d i d ,  w e  w i l l  b e  

computing a  s o l u t i o n  t h a t  is more a c c u r a t e  t h a n  t h e  o r i g i n a l  d a t a  

i t s e l f .  I n  f a c t  it h a s  been argued e lsewhere  [60] t h a t  f o r  ' b e s t 1  

r e s u l t s  w e  must compute g ( x , y )  such t h a t  P ( f ( x , y ) , R g ( x , y ) ) = b .  I f  

t h e  se t  of  a l l  s o l u t i o n s  g ( x , y )  such t h a t  P ( f ( x , y ) , R g ( x , y ) ) ~  b,  

which is hence fo r th  r e f e r r e d '  t o  a s  the  " f e a s i b l e  s o l u t i o n  setv1, 

is convex ,  and  i f  C f s c  and  t h e  f e a s i b l e  s o l u t i o n  s e t  have  

nonempty i n t e r s e c t i o n ,  t hen  t h e  POCS method can b e  app l i ed .  A 

f e a s i b l e  s o l u t i o n  s e t  is  convex  i f  t h e  d i s t a n c e  measure  

s a t i s f i e s  t h e  t r i a n g u l a r  i n e q u a l i t y .  W e  s h a l l  come a c r o s s  some 

d i s t a n c e  measures t h a t  a r e  n o t  s t r i c t l y  m e t r i c s  b u t  which d e f i n e  

convex f e a s i b l e  s o l u t i o n  sets. 

I n  the  nex t  s e c t i o n  w e  s h a l l  d e s c r i b e  some f e a s i b l e  s o l u t i o n  

sets f o r  t h e  Fredholmts  equa t ion  of t h e  first k i n d .  These sets 

a r e  shown t o  b e  c l o s e d  and convex. The method of  computing t h e  

p r o j e c t i o n  o p e r a t o r s  f o r  t h e s e  sets a r e  d i scus sed .  I n  S e c t i o n  4 . 3  

w e  show how t h e s e  r e s u l t s  can  b e  a p p l i e d  t o  t h e  problem of  image 

r e c o n s t r u c t i o n  from d i g i t a l  holograms. I n  s e c t i o n  4 . 4  w e  s h a l l  

d i s c u s s  t h e  i m p l i c a t i o n s  and l i m i t a t i o n s  of  t h e  methods proposed 

here t o  t h e  g e n e r a l  problem of s i g n a l  recovery.  



4 3  Feasible Solutions for the Fredholm's Equation 

The Fredholmfs equation of the first kind is given by (see 

Equation (1.10) ) 

where h(x,y) is a continuous function in both x and y, and f(y) 
is defined in the interval [c,d] . Let R denote the Fredholmfs 

operator. Note that for ease of notation we restrict our 

discussion to one dimensional signals. The results of our 

disccssion are applicable in a straight forward way to all finite 

dimensional signals. It is required to define a distance measure 

P on the space of functions f (y) such that a feasible solution 

set defined by the measure has practical significance. Some of 

the common metrics that we shall use later are given below: 

and 

f r f  ) = (~lf~(r)-f~(~)l~ dy~l'~ = llfl-f21IL2* (4.4) PL~( 1 2 

The following functional is not a metric although it can be 
used 

to define a closed convex feasible solution set, 

where 4(y) may be defined by 

f(y) = If (Y) lexp(j (@(Y) 1 )  
(4.6) 

Note that @(y) refers to the wrapped phase function of f(y) and 

p@ is the smallest positive difference between @l(y) and G2 (y) . 
More formally if 0 5 @l(y)r e2 (y) 5 2'7 then 



P#(#1(~)t#2(~)) = 91(~)-#2(~)t for 0<#1(~)-#2(~)5rt 

= #2(~)-#1(~)t for 0<#2(Y)-#1(Y)<"' (4-7) 

The feasible solution sets that are defined by the functionals 

just mentioned are given in Equations (4.8) - (4.11) below. 

Cd = {g(x) : PC(f t~g) 5 d) t ( 4 - 8 )  

where f(y) and d are given. 

Cr = {g(x): PL2(ftRg) 5 r)t (4.9) 

where f (y) and r are given. 

Ct = {s(x) : PLl(f ,~ 9 )  < tJ t 
where f(y) and t are given. 

Ce = {g(~) : . P e ( f t W )  5 8) t 

where f(y) and 8 are given and 8<r/2. 

We claim the following: 

Lemma 4.1: Cdt Crt Ct and C8 are closed convex sets. 

Proof: In what follows we shall prove only the convexity of the 

sets mentioned. To prove their closure we make use of the fact 

that if R:CA+CB is a linear operator in a Hilbert Space and CB is 

closed then CA is also closed. This result which is a corollary 

to the open mapping theorem can be proved by contradiction as 

follows. Let CA be not closed. There exists a g€EA such that 

every open set containing 'g' has at least one element belonging 

to CA. This implies that RgBR(CA) = CB and every neighbourhood 

of Rg E R(CA) contains an Rgo E R(CA) . Hence R(E~) is not open, 
implying that R(CA) is not closed which is a contradiction. Let 

us now consider each of the sets individually. 

(i) Let gl(x) and g2(x) belong to Cd. Hence 

Pc(ft~g1) 5 d 



and 

P c ( f t W 2 )  5 d -  ( 4 . 1 3 )  

Consider 

g3 (x)  = a g l ( x )  + 92 ( X )  t ( 4 . 1 4 )  

where O<a<l. To prove t h e  convexi ty  of  Cd it is r e q u i r e d  t o  show 

t h a t  PC(f 5 d. Due t o  t h e  l i n e a r i t y  of R w e  can w r i t e  

Rg3 = aRgl + (1-a)Rg2 (4.15) 

Hence 

Pc(f t  &I3]  ' Ila(f-Rgl) + (1-1 (f-Rq2) llCt (4.16) 

S a l l f - ~ g ~ l l ~  + ( l - a ) ~ l f - ~ g ~ ~ l ~ t  (4.17) 

< ad + (1-a)d = d. - ( 4 . 1 8 )  

( 4 . 1 7 )  fo l lows  from t r i a n g u l a r  i n e q u a l i t y  and ( 4 . 1 8 )  from t h e  

g iven  assumptions of t h e  Lemma. Not ice  t h a t  R(Cd)  is a  c losed  

b a l l  i n  t h e  C metric and i s  a  c l o s e d  set  d e v o i d  o f  i n t e r i o r  

p o i n t s  i n  L2 m e t r i c .  I n  o t h e r  words no open b a l l  a b o u t  any 

element of R(Cd)  is a proper  s u b s e t  of R ( C d )  . From t h e  reasoning 

given a t  t h e  beginning of t h e  proof Cd is a l s o  c losed .  

(ii) The c o n v e x i t y  o f  C r  c a n  be p roved  i n  a  s i m i l a r  way. L e t  

g l ( x )  and g 2 ( x )  belong t o  Cr. Hence 

& ( f t ~ g ~ )  5 r ( 4 . 1 9 )  

and 

PL2( f tW2)  5 r.  ( 4 . 2 0 )  

Consider g3 (x )  = agl (x)  + (1-a)g2 (x)  where O<a<l. To prove t h e  

convexi ty  of Cr it is requ i red  t o  show t h a t  PL2 ( f  ,Rg3) 5 r. Due 

t o  t h e  l i n e a r i t y  of R w e  can w r i t e  

Rg3 = aRgl + (1-a)Rg2 ( 4 . 2 1 )  



Hence 

PL2(ftRg3) = Ib(f-Wl) + (1-1 (f-Rg2) IL2t (4.22) 

5 allf-~g~ll~~ + (1-1 llf-~g~II~~t (4.23) 

< ar + (1-a)r = r. - (4.24) 

(4.23) follows from triangular inequality and (4.24) from the 

given assumptions of the Lemma. Notice that R(Cr) is a closed 

ball in the L2 metric. 

(iii) Let gl(x) and g2 (x) belong to Ct. Consider g3 (x) = agl(x) 

+ (1-a)g2 (x) where O<a<l. To prove the convexity of Ct it is 

required to show that Pt(ftRg3) - < t. Due to the linearity of R 

we can write 

Rg3 = aRgl + (1-a)Rg2 (4.25) 

Hence 

Pt(f 1~43) = Ila(f-~g~) + (1-1 (f-W2) IIL1t (4.26) 

< all f-Rgl II L1 + ( 1-a) ll f -Rg2 II L1t - (4.27) 

< at + (1-a)t = t. - (4.28) 

(4.27) follows from triangular inequality and (4.28) from the 

given assumptions of the lemma. Notice that R(Ct) is a closed 

ball in the L1 metric. It is a closed set in L2 metric. 

(iv) To prove convexity of Ce consider 

93 (XI = agl(x) + bg2 (x) t (4.29) 

where gl(x) and g2(x) belong to Ce and la1 and 'bt are real 

positive numbers. Now 

Rg3 = aRgl + bRg2. (4.30) 

In pther words 

I~g~lexp(j@~) = al~g~lexp(j@l) + bl~g~lexp(j@2) - (4.31) 



Now 

5 ~ a x ( f @ ( @ f t @ ~ )  t P @ ( @ f ~ @ ~ )  ) I  (4.32) 

< 8. - (4.33) 

Thus g3€C8 and Ce is a  l i n e a r  subspace.  To show t h e  c lo sedness  of 

Ce n o t i c e  t h a t  t h e  set of  a l l  f  such t h a t  P@ ( @ f f  @f ) 5 8 is a  

c l o s e d  cone. Hence C8 is a l s o  a  c l o s e d  convex cone. 

(End of Proofl 

4.3 Computation of the Projection Operator 

W e  s h a l l  now see how t h e  p r o j e c t i o n  o n t o  t h e s e  s e t s  a r e  

computed.  R e c a l l  t h a t  t h e  o p e r a t i o n  R - l Q g ( x )  i s  d e f i n e d  a s  

fol lows:  

i f ,  

Ilg,(x) - sex, Il = Min Ils' (x )  - sex, I I  1 

g '  (x )  
and 

where QR is t h e  p r o j e c t i o n  on to  t h e  range  of R.  Not ice  t h a t  

go (x )  is t h e  p r o j e c t i o n  of  g ( x )  on to  t h e  set  

Cg = ( g '  ( x )  : Rg' ( x )  = QRQg(x) 1 (4.37) 

The p r o j e c t i o n  is  u n i q u e  i f  Cg is  a  c l o s e d  convex  s e t .  A s  

d i s c u s s e d  i n  t h e  p rev ious  s e c t i o n ,  s i n c e  R is a  l i n e a r  bounded 

nonzero o p e r a t o r  C is a  c l o s e d  convex set.  Le t  u s  now cons ide r  4  

t h e  computation of  t h e  p r o j e c t i o n  on to  t h e  sets Cd, Cr ,  Ct and 

C8 r e s p e c t i v e l y .  A s  i n  Chapter  1 w e  s h a l l  c o n s i d e r  on ly  t h o s e  

o p e r a t o r s  R f o r  which t h e  problem of 

Min 119-9111 
g 1~ c 

can be  reduced t o  t h e  problem o f  



(i) Let Pd denote t h e  p r o j e c t i o n  opera tor  onto t h e  s e t  Cd. Let 

f  (x )  r ep resen t  t h e  known da ta  and l e t  g ( x )  be t h e  funct ion  whose 

p r o j e c t i o n  on Cd needs t o  be computed. I t  is requi red  t o  f i n d  

gp(x)  such t h a t  

- 
and 

llf(x) - Rgp(x)llc = d. 

From Kuhn-Tucker [ 2 9 ]  c o n d i t i o n s  we know t h a t  t h e  o p t i m a l  

s o l u t i o n  must s a t i s f y  e i t h e r  of t h e  following two condi t ions :  

I n  t h e  first case  t h e  condi t ion  t u r n s  out  t o  be redundant. I n  t h e  

second case  l]g(x) - gp(x)  11 can be minimised i f  

where 

I n  t h e  f i r s t  i n s t ance ,  we have 

Rgp(x) = R g ( x )  

I n  s h o r t  

Qg(x)  = Rg(x) 1 

= aRg (x)  + (1-a) f  (y )  , otherwise.  

The p r o j e c t i o n  is simply R - ~ Q ~  (x)  . 

(ii) L e t  Pr d e n o t e  t h e  p r o j e c t i o n  o p e r a t o r  o n t o  Cr.  B y  

arguments s i m i l a r  t o  those  j u s t  presented ,  we can w r i t e  



Prg(x) = g ( x )  t for I I ~ ( Y )  - Rg(x) I I S r  
= R-' (a Rg (x) + (1-a) f (y) ) , otherwise (4.46) 

where 

a = r/llf(~)-~g(x)ll. (4.47) 

(iii) For continuous signals the projection onto the set Ct is 

very involved. To simplify matters let us consider the discrete 

situation. Here the set Ct may be defined as: 

ct= ( g: ~ l f - ~ g l  ( t), (4.48) 

where H is a matrix operator. The projection of Hg B H(Ct) onto 

H(Ct) is computed as shown in Fig.4.2 for the two dimensional 

case. For an arbitrary but finite number of dimensions, we can 

derive 

where 

a = e/(lf[i]-~g[i] I), for YEK, 

= 1, otherwise. 

K is defined as 

K = (i: )f[i]-~g[i]l>e) 

and 'el is given by 

I K I  denotes the cardinality of the set K. The above result is 

easily proved using the proof by contradiction technique. It 

holds for the continuous case also with summation replaced by 

integration and cardinality replaced by the Lebesgue measure 

1691. 

(iv) Let Pe denote the projection operator onto Ce. It is 



required to compute g(x) such that 

- 
and 

Pe(ft~g) 5 8. (4.54) 

The method of computing the projection onto Ce is illustrated 

graphically in Fig.4.3. In the figure Rg(x) is projected onto the 

line whose phase is ef + 8. It is seen from the figure that for 

Rg(x) as shown Qg(x) can be given by 

Qg(x) is the point in the shaded area that is closed to Rg(x) . 
Now, if Rg(x) is on the opposite side of ef then we have, 

Moreover if I@f(y) - I > 8+7r/2 then Qg(x) can be given by 

Qg(x) = 0- (4.57) 

Summing up, we have 

for ef(y) - eRg(y) < -8- 

(4.58) 

In this section we have considered the computation of the 

projection onto various convex feasible solution sets. In the 

next section we shall see the relevance of these sets the problem 



of image r e c o n s t r u c t i o n  from d i g i t a l  holograms. 

4.4 Image Reconstruction from Noisy Holograms 

4.4.1 Sign@ance of Cd, C,, Ct and Ce 

The p r e v i o u s  s e c t i o n  d e a l t  w i t h  a  v e r y  g e n e r a l  o p e r a t o r  

namely t h e  F r e d h o l m ' s  o p e r a t o r .  H e r e  w e  s h a l l  c o n s i d e r  t h e  

computation of  t h e  f e a s d i b l e  s o l u t i o n  t o  the  problem of  image 

r e c o n s t r u c t i o n  from no i sy  d i g i t a l  holograms. I n  p a r t i c u l a r  w e  

w i l l  c o n s i d e r  image r e c o n s t r u c t i o n  from bounded e r r o r .  Not ice  

t h a t  t h e  s e t s  C r ,  C d t  C t t  and Ce c a n  b e  d e f i n e d  f o r  t h e  

convolu t ion  o p e r a t i o n  s i n c e  convolu t ion  is only  a  s p e c i a l  c a s e  of 

Fredholm's o p e r a t o r .  A f t e r  a  b r i e f  d i s c u s s i o n  of  what t h e s e  s e t s  

mean i n  p r a c t i c e  w e  s h a l l  go  on t o  d e s c r i b e  t h e  i t e r a t i v e  

procedures  i n  each of t h e s e  ca ses .  

Consider  t h e  s e t  Cd first. E r r o r s  may a r i s e  i n  p r a c t i c e  i n  

t h e  measurement  o f  s i g n a l s  d u e  t o  s e v e r a l  f a c t o r s .  I n  many 

s i t u a t i o n s  t h e r e  is an  i n h e r e n t  l i m i t a t i o n  on t h e  accuracy  of t h e  

m e a s u r i n g  d e v i c e .  H e r e  w e  a im t o  r e c o n s t r u c t  an  image t h a t  

a g r e e s  w i t h  t h e  known d a t a  t o  t h e  e x t e n t  d e s c r i b e d  by  t h e  

accuracy  of  t h e  measuring dev ices .  Moreover the  r e c o n s t r u c t e d  

image must a l s o  have a  f i n i t e  r eg ion  of suppor t .  A n o n i t e r a t i v e  

procedure  f o r  computing such a  s o l u t i o n  is  n o t  obvious.  However, 

an  i t e r a t i v e  procedure  f o r  computing a  s o l u t i o n  s a t i s f y i n g  t h e  

two c o n s t r a i n t s  may converge Very s lowly.  I n  t h e  nex t  subsec t ion  

w e  s h a l l  g i v e  a  d e t a i l e d  account  o f  t h e  i t e r a t i v e  procedure .  

Cr is t h e  set  of a l l  s o l u t i o n s  t h a t  cou ld  have g iven  rise 

t o  t h e  known f i e l d  d i s t r i b u t i o n  t o  w i t h i n  an  e r r o r  energy of r. 

I n  many i n s t a n c e s  it is p o s s i b l e  t o  e s t i m a t e  t h e  l e v e l  of  no i se  



energy. In fact this statistic is often used to model the noise 

as a Gaussian distributed random process with zero mean and known 

variance. In computing a solution that belongs to Cr the value 

of 'rf must be known accuartely. In general, if r is known an 

attempt should be made to compute a solution such that Ilf-h*gll=r. 

This equality can not be ensured in the POCS method. However, it 

is possible to compute g such that llf-h*gll~r. The iterative 

procedure to compute such a solution is given in Section 4.5.2. 

Ct is the set of all functions g(x) such that is within a 

distance It from f in the LI metric. This set is not of much 

interest to us and was given merely to cite yet another example 

of using a metric for defining a feasible solution set. 

In [25] and [42] the problem of signal reconstruction from 

phase for digital holography has been treated at length. In 

Chapter 6 we shall deal exclusively with the problem of noise in 

phase. If the error in the phase is bounded, then Ce denotes 

the set of all object field distributions that could have 

given rise to a receiver field distribution whose phase 

function is within an error of lev to @(x,y). 

Before we go on to specific problems of image reconstruction 

in the presence of bounded noise, we will recall the definition 

of the operator R - ~ Q ( ~ ( x , ~ )  ) for our problem, since it is 

required in computing every one of the projection operators. Let 

gp(xI~) = R-~Q(~(x,Y) 1.  (4.59) 

Now 

Gp(utv) = G(utv) t for u2 + v2 > I/A~, 

= F(u,v) t otherwise, (4.60) 

where G (u,v) and G(u,v) are the Fourier transforms of g (x,y) P P 



and g(x,y) respectively and F(u,v) is the Fourier transform of, 

f ( ~ I Y )  = Q(g(x,~)) (4.61) 

gp (x, y) may be computed from Gp (u, v) . Notice that for each of 

the sets Crl Cd and Cg we can consider sparse data and use 

multispectral holograms. Q(g(x,y)) will be defined separately 

for each one of the projection operators onto these set 

including the case of multispectral holograms. 

4.4.2 Bounded Magnitude of Noke 

In this section we shall describe an iterative procedure 

for image reconstruction from digital holograms in the presence 

of bounded noise. Let 

~ ( X I Y )  = ~ ( X I Y )  * ~ ( X I Y )  + ~ ( X I Y )  (4.62) 

where h(x,y) is as given in Chapter 2, and ln(x,y) l ~ d .  It is 

required to compute a two dimensional signal g(xIy)~Cfsc such 

that 

I f  ( ~ I Y )  - ~ ( X I Y )  * ~ ( X I Y )  1 5 d- (4.63) 

In other words we wish to compute a g(x,y)~C~,,nC~, where Cd is 

now defined as 

cd = (~(xIY) : I f  ( ~ I Y )  - ~ ( X I Y )  * ~ ( X I Y )  1 5 dl* (4.64) 

This can be done by the method.of POCS. The function computed at 

the k-th iteration is given by 

gk = PfscTdgk-ll (4.65) 

where 

Td = 1 + sd(Pd-1) , (4.66) 

and the initial estimate go~Cfs,. The sequence {gk) converges 

strongly since the result of every iteration belongs to Cfsc. 

If f(x,y) is known only at a sparse set of sampling points, 



the method would require some minor modifications which is 

discussed below. Define 

Qg(xt~) = ~(x,Y) *g(x.y), 
for (xty)~I~. 

- - ( 1 )  ( A i )  + ah(x,y;Ai) *g(x,y), otherwise. 

where 

a = 1, for Ig(xtY)*h(xt~;*~) - f(x,y;~~) 1 <dl - 
" d/Ig(xt~)*h(xt~;li) - ( x ~ )  1 otherwise. (4.69) 

Thus the projection operation can also be performed if we use 
(4.68) . This means that we can now use multispectral holograms. 
The computation to be performed at the k-th iteration is given by 

gk 'fscTdlTd2 *Tdngk-lf (4.70) 

where gk is image function computed at the k-th iteration, n is 

the number of holograms and Tdi = 1 + sdi(Pdi-l) t for ocsdi<2* 

Pdi is the projection onto the set Cdi. 

The POCS method merely converges to a solution and will not 

in most cases attain the desired solution in a finite number of 

iterations. Hence a condition to terminate the iterative 

procedure must be formulated a priori. Terminating the 
iterative 

procedure after a fixed finite number of iterations is clearly 

not advisable. In our work we propose to terminate the iterative 

procedure when the reconstructed signal satisfies the known data 

at 95% of the points. To be more explicit, let 

Ik = ( (x.Y) : (X,Y)EI~ and 1 f (X.Y)-~(X~Y) *g(x.y) J<d). (4.71) 

Let 1 1 ~ 1  denote the cardinality of the set Ik. The iterative 



procedure is terminated when )rkl/(r I attains a value 0.95 or P 
more. For multispectral holograms we use the ratio I ~ ~ ~ l / ( n l ~ ~ l )  

where 

Iki = { (x.Y) : (x1y)~Ip and 1 f (~,y;*~)-h(xty;A~) *g(xt~) I<d) 

(4.72) 

4 1 Bounded Noke Energy 4 
Let 

f (xty) = h(xtY) *g(xtY) + n(x,y) (4.73) 

where h (x,y) is as given in (2.2) and 11 n (xty) 11 5 r. Here the norm 
refers to the root mean squared value. The problem here is to 

compute g(xty) such that 11 f (x,y) -h(x,y) *g(xty) (1 5 r. As before 

our intention is to compute a solution by the method of POCS. 

The operator to be applied at each iteration is PfscPr where Pr 

has been defined in Section 4.2.3. Although the simulation 

studies are presented in the next chapter let us give here a 

brief description of the actual procedure. 

Without loss of generality we consider only multispectral 

holograms. For a given f (xty;A i) , define 
2 2 < r ) .  Cri ' tg(xtY) : 14(x1~)*h(xt~;*~) - f(xt~;Ai) 1 - 

(X,Y)EI~ 
(4.74) 

The projection onto the set Cri is computed as follows: Let 

Qg(x1y) h(xty;i)* ~ ( X I Y )  I for (x,Y) @ Ipt 

= (1-a) f (x,y;Ai) + ah(xty;Ai) *g(xty) I otherwise* 

(4.75) 

where 

a = 1, for r&r , 
= r/rOl otherwise. 



Here 

Thus the projection Pri can be computed from Q(g(x,y)). The 

computation to be performed at the k-th iteration is given by: 

gk = Pfsc Trl Tr2 " Trn gk-1 (4.78) 

where gk is image function computed at the k-th iteration, 

Tri = l+ sri(Pri - 1) (4.79) 

O<sri<2 and Pri is the projection onto the set Cri. AS usual 

go(x,y) will be a constant function in Cfsc. A detailed 

description of the above iterative procedures for the single and 

multiple frequency holograms is given in Algorithm 4.3 and 

Algorithm 4.4. 

4.6 Need for a Method That Does Not Rely on a Priori Parameters 

This chapter brought out the use of the POCS method in 

signal reconstruction in the presence of noise. We considered the 

Fredholm's equation of the first kind and described some examples 

of convex sets and their projection operators. We then applied 

the results to the problem of image reconstruction from noisy 

digital holograms. These methods are applicable when the noise 

is bounded by some known value. However if the estimated values 

for the bounds are lower than the actual values, then the method 

of POCS may not converge. To avoid this situation we may attempt 

to make a very conservative estimate of the bound. In this case 

the variance of the estimate of the solution may be large, which 

is again an undesirable situation. Hence we need a procedure that 

converges to a common point of a collection of convex sets if 



there exists one. Moreover it should converge even if there 

exists no common point. Such a procedure is given in the next 

chapter. Simulation studies were conducted to study the 

effectiveness of the proposed procedure for imaging with noise. 

The results are presented in the next chapter, where we shall 

give a comparative study of the methods proposed in this chapter 

and the next. 



I n i t i a l i s e :  

(1) go(x,y) = constant, for (x,y) in region of support, 

= 0, otherwise. 

(2) k = l  

Repeat 

(3 Compute fl(xty) = gk-l(x,~)*h(xt~) 

as in Algoritm 3.1 (Steps 2-5). 

( 4 )  For all ( x t y ) ~ I p  do ( *  Compute projection onto Cd * )  

If ( 1  f' (xt~)-f(x,u) lld) then 
fk(xty) = f' (XIY) 

else 

a = d/ 1 f' (xty) -f ( ~ 1 ~ 1  1 
~ ~ ( x I Y )  = af' (xty) + f ( x t ~ )  

end if 

(5) Compute gk(xtY) from fk(xtY) 

as in Algorithm 3.1 (Steps 6-9) 

(6 k = k + l  

u n t i l  satisfactory solution obtained. 

Algorithm 4.1: The POCS procedure to reconstruct an image with 
finite support from hologram data f(x,y) known at 
a set of points (xty)~Ip subject to bounded noise 
magnitude. 



Initialise: 

(1) go(x,y) = constant, for (x,y) in region of support, 

= 0, otherwise. 

(2 k = l  

Repeat 

(3) For i = 1 to n, ( *  n denotes number of frequencies * )  

do steps 4 to 7 

( 4 )  Compute f (xly) = gk,l(~ly)*h(~ly;x 1 * )  

as in Algoritm 3.1 (Steps 2-5) 

(5 Compute fk (x, y) from f (x, y) 

as in Algorithm 4.1 (Step 4) 

(GI gk(x,y) from fk(x,y) 

as in Algorithm 3.1 (Steps 6-9) 

(7 k = k + l  

until satisfactory solution obtained. 

Algorithm 4.2: The POCS procedure to reconstruct an image using 
multispectral hologram data f(x,y;x-) known for n 
different frequencies subject to bounhed magnitude of 
noise 



Initialise: 

(1) go(xly) = constant, for (x,y) in region of support, 

= 0, otherwise. 

( 2 

Repeat 

(3) Compute f'(xty) = gk-l(xty)*h(xt~) 

as in Algoritm 3.1 (Steps 2-5) 

( 4 )  squared-error = 0 

( 5 )  For all (xIy)~Ip do { *  Compute total error energy * )  

squared-error= squared-error+ I f (x, y) -f (x, y) 1 
(6) If (squared-error 2 r2) then 

a = r/ { (squared-error) 

For all (xIy)~Ip do 

fk(x,y) = (1-a) s f  (x,y) + a-f (x,Y) 

endif 

( 7 )  Compute gk(xly) from fk(x,y) 

as in Algorithm 3.1 (Steps 6-9) 

( 8 )  k = k + l  

until satisfactory solution obtained. 

AlgoritI1rn4.3: The POCS procedure to reconstruct an image with finite 
support from hologram data f(x,y) known at a set of 
points (xIy)~Ip subject to bounded noise energy 
constraint. 



Initialise: 

(1) go(x,y) = constant, for (x,y) in region of support, 

= 0, otherwise. 

( 2 )  k = l  

Repeat 

(3 For i =1 to n, { *  n denotes number of frequencies * )  

do steps 4 to 9 

( 4  Compute f' (x,y;Ai) = gk-l(~,~) *h(x/y;Ai) 

as in Algorithm 3.1 (Steps 2-5) 

(5) squared-error = 0 

(6) For all (xty)~Ip do { *  Compute total error energy * )  

2 squared-error= squared-error+(fv (x,y)-my) 1 ) 

(7 If (s@ared-error2 r2) 

then 

a = r/ { (squared-error) 

For all (x,y)~I~ do 

fk(xty) = (1-a) ' f' (xty) + a' f (x~Y) 

endif 

(8) Compute gk(x,y) from fk(xt~) 

as in Algorithm 3.1 (Steps 6-9) 

(9) k = k + l  

until satisfactory solution obtained. 

Algorithm 4.4: The POCS procedure to reconstruct an image with 
finite support from multispectral hologram data 
f (x,y) known at a set of points (x,y)~I~ subject to 
bounded noise energy constraint. 



-- 

s ignals with signals correspondinq t o  
f in i te suppor t  noisefree da ta  

f in i te suppor t  

Fig.4.1 Effect of noise on the solution set. 



Fig.4.2 Projection onto Ct. The hatched region denotes the set 

set H(Ct) and Qy is the projection of Rg onto Ct. Note 

that the magnitude difference between Qg and R9 is lev 

in every dimension. In other words, if N denotes the 

number of dimensions 

Ne = ~(~g[n]-f[n]l - t. 



Fig.  4 . 3  P r o j e c t i o n  onto  Cm. The hatched reg ion  denotes  t h e  set  

Cm . The p o i n t  c l o s e s t  t o  Rg i n  Cm is Qg. Hence Qg may 

be given by 

~g = 9 cos(mgg - ( m f  + i)) exp( j (mf  + i l l .  



Chapter 5 

IMAGE RECONSTRUCTION BY THE METHOD OF 

PROJECTION ONTO NONINTERSECTING CONVEX SETS 

5.1 Need for an Alternative toPOCS 

In Chapter 4 an attempt was made to reconstruct a feasible 

solution from the available noisy data. The drawback of this 

method is that accurate knowledge of some particular statistic 

of the signal is required. In this chapter we develop another 

method of computing a solution to the problem of image 

reconstruction from digital holograms in the presence of noise. 

This method does not require any a priori statistics. Simulation 

studies were conducted to compare the effectiveness of the 

proposed solution with the feasible solution. Although a precise 

characterisation of the proposed solution is not known, 

simulation studies show that sometimes it yields better results 

than the feasible solution. 

The process of hologram formation of a finite aperture 

signal can be viewed as a linear mapping from the set of signals 

with finite support to the set of bandlimited signals. In other 

words if R represents the hologram forming operator then 

R:Cfsc+Bp is a mapping from Cfsct the set of signals with finite 

support to B the set of bandlimited signals. Consider the P' 
equation 

1 

f(xty) = Rg(xty) + n(x,y) (5.1) 

It is required to compute g(x,y) from f (x,y) given the operator 

R. Here n(x,y) is some noise function. It is obvious that on 



account of noise f(x,y) may not belong to Bp. Hence it would be 

inappropriate to look for a g(x,y) such that f(x,y) = R g(x,y). 

Our first attempt at reducing the effect of noise would be 

to remove that component of noise that is not limited to within 

the known band. This can be done by bandlimiting f(x,y) to obtain 

fl(x,y). In Chapter 3 we showed that if f(x,y) is noisefree then 

there exists a unique g(x,y) E Cfsc such that f (x, y) = Rg (x, y) . 
This is because the Fourier transform of g(x,y) is an analytic 

function and the Fourier transform of f(x,y) can be extended by 

analytic continuation uniquely. If f (x,y) is noisy then its 

Fourier transform may not be analytic within the prescribed band. 

Thus the Fourier transform of f(x,y) cannot be extended 

analytically. However we can show that if we consider only a 

bounded subset of Cfsc then there exists a unique function g(x,y) 

such that llf-~gll is minimised. 

Let us now see why the method of POCS cannot be applied to 

compute such a solution. Recall that in Chapter 3 we formulated 

the problem of image reconstruction in the noisefree case as: 

Find g(xty)~CfonCfSc where 

Cf0 = (g(x,y) : f (XlY) = R g(x,y) 1 (5.2) 

When the given data is noisy there may exist no solution to the 

problem. Thus CfscnCfo may be empty. In such a situation the 

method of POCS is not guaranteed to converge. In fact simulation 

studies indicate that the method indeed diverges. Some other 

attempts to solve the problem of signal reconstruction from noisy 

data are based on regularisation techniques, which we have seen 

in Chapter 1. No work has been reported in literature extending 

these techniques to the problem of image reconstruction from 



m u l t i s p e c t r a l  holograms. An ex tens ion  of t h e s e  t echn iques  t o  t h i s  

problem is n o t  obvious e i t h e r .  I n  Chapter  4 an  a t t empt  was made 

t o  compute a  f e a s i b l e  s o l u t i o n  which is s o  d e f i n e d  t h a t  a t  l e a s t  

o n e  e x i s t s .  The POCS method c a n  b e  a p p l i e d  f o r  comput ing  a  

f e a s i b l e  s o l u t i o n  i f  t h e  f e a s i b l e  s o l u t i o n  s e t  is  c l o s e d  and 

convex. The drawback of  t h i s  method is t h a t  a c c u r a t e  knowledge of 

some p a r t i c u l a r  s t a t i s t i c  of t h e  s i g n a l  is r e q u i r e d .  For example 

it is assumed t h a t  t h e  n o i s e  magnitude is bounded by a  v a l u e  Id t  

o r  t h a t  t h e  n o i s e  e n e r g y  is  bounded by a  v a l u e  I r l .  I f  t h e  

e s t ima ted  v a l u e  of Id1 o r  r is h i g h e r  t h a n  t h e  t r u e  va lue ,  

t h e n  t h e  v a r i a n c e  of  t h e  e s t i m a t e  of t h e  s o l u t i o n  g ( x , y )  may be  

l a r g e  and t h e  r e s u l t  is u n s a t i s f a c t o r y .  I f  t h e  v a l u e  of Id1 o r  

r is i n  r e a l i t y  more than  t h e  e s t ima ted  v a l u e  t h e n  t h e  POCS 

method may n o t  c o n v e r g e  a t  a l l  a s  t h e  f e a s i b l e  s o l u t i o n  s e t  

d e f i n e d  by t h e s e  v a l u e s  may n o t  i n t e r s e c t  w i th  Cis,. To overcome 

t h i s  problem w e  propose h e r e  a  method t h a t  does  n o t  r e q u i r e  t h e  

knowledge o f  t h e s e  v a l u e s .  Moreover ,  a s  w e  s h a l l  soon  show 

through s imu la t ion  s t u d i e s ,  t h e  method p re sen ted  i n  t h i s  chap te r  

y i e l d s  comparable performance even when such a c c u r a t e  s t a t i s t i c s  

a r e  a v a i l a b l e .  However a l t h o u g h  t h e  method c a n  b e  p r o v e d  t o  

c o n v e r g e ,  c o n v e r g e n c e  t o  a  f e a s i b l e  s o l u t i o n  s e t  c a n n o t  b e  

a s su red .  

The rest of t h i s  c h a p t e r  is organised  a s  fol lows:  I n  t h e  

n e x t  s e c t i o n  w e  s h a l l  d e s c r i b e  t h e  t h e o r y  o f  t h e  method o f  

P r o j e c t i o n  Onto NonIn te rsec t ing  Convex Sets (PONICS), which is 

based on a  theorem on t h e  f i x e d  p o i n t  of  nonexpansive ope ra to r s .  

The method of  PONICS was proposed e a r l i e r  i n  a  d i f f e r e n t  form i n  

[32] and [73] f o r  s i g n a l  s y n t h e s i s  and s i g n a l  r e c o n s t r u c t i o n .  I n  



Section 3 we shall discuss the application of the method for 

image reconstruction from digital holograms. In Section 4 

simulation studies for the methods presented here and in the 

previous chapter are described. A comparison of the two methods 

shows the effectiveness of PONICS for signal reconstruction in 

the presence of noise. 

5.2 Projection Onto Nonintersect ing Convex Sets (PONICS) 

5.2.1 Theoretical Background 

The method of PONICS is based on a theorem on the 

computation of the fixed point of a nonexpansive operator. Prior 

to stating the method we shall first state a few results required 

to show the validity of the proposed method. Recall that the 

projection onto a closed convex set is a nonexpansive operator 

and so is the operator PfscTflT f2...Tfn defined in Chapter 3. 

Moreover the POCS method aims at computing the fixed point of 

PfscTflTf2 " *Tfn and the method is applicable if Cfsc n Cfi is 

nonempty. The following theorem suggests a method of computing 

the fixed point even if that condition does not hold. 

Theorem 5.1: Let T be a nonexpansive mapping from C + C with a 

nonempty set of fixed points where C is a closed convex subset of 

a Hilbert space H. Let Ts = s + (1-s)T, where O<s<l. (T~~(X) ) 

converges weakly to a fixed point of T. Moreover the convergence 

is strong if at least one of the subsequences converges strongly. 

Definition: T is called an asymptotically regular operator at x if 

Lim ~ T ~ X  - T~+'xII = 0 
N+ aJ 



Let C denote a closed convex set that is a subset of a Hilbert 

space H. T is said to be asymptotically regular at C, or simply 

asymptotically regular, if it is asymptotically regular at all 

XEC. Notice that asymptotic regularity and convergence are 

related concepts. In fact convergence implies asymptotic 

regularity though the converse is not always true. Consider for 

example the sequence generated by, xN = 1 + 1/2 + 1/3 +...+ 1/N. 

Although the sequence {xN) is asymptotically regular, it does not 

converge to a finite limit. The following theorem states a 

sufficient condition for a continuous operator to be 

asymptotically regular. 

Theorem5.2: [18] Let a continuous operator T:C+C have a nonempty 

set of fixed points and choose s in (0,1), then the mapping 

Ts (x) = s (x) + (1-s)T(x) (5.3) 

(a) is a mapping from C+C, 

(b) has the same fixed points as T and 

(c) is asymptotically regular. 

The above theorem holds for a nonexpansive operator also 

since any nonexpansive operator is also continuous. As stated 

earlier asymptotic regularity does not imply convergence. The 

following theorem states the conditions for asymptotic 

regularity to imply convergence. 

Theorem 5.3[71]: Let T: C+C be an asymptotically regular nonexpansive 

operator with closed convex domain CcH and let its set of fixed 

points F be nonempty. Then for any XEC the sequence ( ~ ~ ( x ) )  

converges weakly to an element of F. Moreover the convergence 



is strong if and only if at least one of the subsequences 

converges strongly. 

Proof of Tlteorern 5.1 : From Theorem 5.2 we know that Ts is 

asymptotically regular at all points in C and has the same fixed 

points as T. Applying Theorem 5.2 the desired result follows. 

(End of Proofl 

From the above three theorems and using the result that a 

nonexpansive operator on a convex bounded set has at least one 

fixed point [43], the following corollary to Theorem 5.1 follows. 

Corollary5.4: Let T:C-.C be a nonexpansive operator with closed 

convex bounded domain CcH. Then for any XEC the sequence {T,~ (x) ) 

converges weakly to an element of F. Moreover the convergence is 

strong if and only if at least one of the sub-sequences converges 

strongly. Here 

Ts = s + (1-s)T (5.4) 

Consider the conditions required by the above result and the 

condition required by method of POCS. In the first case 

boundedness of the set C is necessary while in the method of POCS 

convergence is assured to a common elenlent of a collection of 

closed convex sets none of which need be bounded. While in 

theory boundedness implies a severe restriction, in practice we 

deal only with bounded sets although the exact bound is not 

known. Hence boundedness is not necessarily a serious 

limitation. Let us now see how to make use of Corollary 5.4 to 

develop an iterative method for signal reconstruction in the 

presence of noise. 



Consider the operator P = PIP2, where P1 and P2 are 

projection operators onto convex sets C1 and C2 respectively. P 

is a nonexpansive operator from C1+C1, since P1 and P2 are 

nonexpansive operators and any finite concatenation of 

nonexpansive operators is also nonexpansive. If C is a bounded 

set then there exists at least one fixed point in Cl for the 

N operator P. Moreover the sequence (Ps (x) ) converges to a fixed 

point of P. Here Ps=l+s(P-l), where O<s<l. Note that C1 and C2 

may have no element in common. This argument can be extended to 

an arbitrary number of sets. Let P=PIP 2...Pn, where P1, P2,.., Pn 

are projection operators onto closed convex sets C1, C2, ..., Cn. 
P is a nonexpansive operator from C1+C1. Again if C1 is bounded 

then the sequence (P;(X) ) converges to a fixed point of P for 

all x€C1. Here Ps is understood in the sense as mentioned before. 

Thus even though the sets C1, C2, ..., Cn have no element in 
common there exists a fixed point of the operator PIP 2...Pn which 

can be computed by the above mentioned method. We shall 

henceforth refer to it as the method of projection onto 

nonintersecting convex sets or PONICS for short. Although the 

method of PONICS assures convergence, nothing has been said so 

far about the nature of the solution. In the method of POCS, 

convergence is to an arbitrary common element of C1, C2, ..., Cn. 
In case there are no common elements, PONICS will still converge 

to a solution. In other words we are at a loss to state in 

precise terms the computational problem that the method solves. 

Although the method is ambiguous in its aim we will show through 

simulation studies that it indeed helps in computing an 

acceptable solution to the problem of image reconstruction from 



multispectral digital holograms. If only two convex sets are 

involved the method of PONICS computes a quasisolution. This is 

shown in the next section. 

5.2.2 Quaskolutions 

If there are only two convex sets a quasisolution can be 

defined and as we shall soon see the method of PONICS computes a 

quasisolution. Also, in certain cases the quasisolution is 

unique. The following result which states the conditions for the 

existence and uniqueness of a quasisolution is a corollary to 

Theorem 1.3. 

Lemma 5.5: If for a given Fredholm's operator R, g=O is the only 

solution to the equation Rg=O on a compact set Go then a 

quasisolution to the equation f=Rg on Go for given f is unique 

and depends continuously on the initial data. 

In other words,even if there exists other geG0 such that 

Rg=O, the uniqueness of a quasisolution is assured if there 

exists only one geG0, which is identically zero, satisfying the 

equation Tg=O. It was pointed in Chapter 3 that Cfsc is 

precompact and that for any deconvolution problem such as image 

reconstruction from digital holograms, if the impulse response is 

nonzero in any finite band then g=O is the only solution in Cfsc 

for h*g=O. Recall that image reconstruction from digital 

holograms is a deconvolution problem where the system transfer 

function is a low pass filter. Let us now show that the method of 

PONICS computes a quasisolution. 



Consider the operator Q = 1 + s(PfscPfo-1) operating on the 

set Cfsc, where Pfsc and Pfo are defined earlier. We wish to show 

that the fixed point of PfscPfo to which the sequence {Q:) 

converges satisfies the following condition: 

where gt is a fixed point of PfscPfo. This is shown as follows: 

By definition of the projection operator, 

11s'-pfogt Il = lls'-cfoll 

Also since PfsCPfog'=gt, we can write 

I1 pfscpfog ' - Pf04 ' I1 = S pfog -cfsc I1 (5.7) 

That is, 

11gt-~folI = llpfog - cfscll (5.8) 

Now let gl€CfSc and g2€Cf0 be two elements such that 

It is obvious that g2=Pfogl and g1=Pfscg2. In other words 

gl=PfscPfogl. We now wish to show that the pair gl and g2 is 

either unique or if there exists another function gt such that 

U = Pfogl - 911 
v = 91 - g t ,  
w = 91 - Pf09', 
x = gt - Pfogt, 

Y = Pfogt - Pfoglr 
and z = gt - Pfogl. 
Notice that 



and x + v = w. (5.19) 

Taking t h e  squared norm of both s i d e s  of t h e  above four  equat ions 

w e  d e r i v e  

11x1I2 + llY1I2 + 2 R e  < X l Y >  = 1 1 ~ 1 1 ~ r  

llu1I2 + llYIl2 + 2 R e  < U I Y >  = Ilwl12, 

llul12 + llvI2 + 2 R e  <u,v> = 1 1 ~ 1 1 ~ ~  
llxl12 + llvl12 + 2 R e  <xrv>  = Ilwl12. 

From t h e  Lemma 1.5,  w e  know t h a t  <x,y>,  <u,y>,  <u ,v>,  and <x,y> 

a r e  a l l  g r e a t e r  than  zero. Hence w e  d e r i v e  

1 1 ~ 1 1 ~  f llY1I2 < I I z ~ ~ ~ I  (5.24) 

llu1I2 + l Y I l 2  5 Ilwl12t (5.25) 

llu1I2 + llvl12 5 11Z112t (5.26) 

1 1 ~ 1 1 ~  + llv1I2 L llw1I2* (5.27) 

Adding (5.24) and ( 5 . 2 6 ) ,  and (5.25) and (5.27) w e  d e r i v e  

1 1 ~ 1 1 ~  + IlYl12 + I I u ~ ~ ~  + I I v ~ ~ ~  ( 211Z112t (5.28) 

1 1 ~ 1 1 ~  + IlYl12 + Ilul12 + Ilvl12 5 211wl12- (5.29) 

From t h e  t tparal le logram lawtt , w e  d e r i v e  

211x1I2 + 2 1 1 ~ 1 1 ~  = llx+Y1I2 + l l x - ~ l l ~  > 11z1I2. 

That is, 

211xI2 + 2 1 1 ~ 1 1 ~  > IIZI12* (5.31) 

S i m i l a r i l y  , 

2 1 1 ~ 1 1 ~  + 211vl12 2 I lZ1I2t  (5.32) 

211x112 + 211vl12 > Ilw1I2t (5.33) 

and 211ul12 + 2 1 1 ~ 1 1 ~  > lIwl12. (5.34) 

Adding (5.31) and (5 .32) ,  and (5.33) and (5.34) w e  de r ive ,  



I1x1l2 + l l ~ 1 1 ~  + llu1I2 + llv1I2 1 1 1 ~ 1 1 2 1  (5.35) 

1 1 ~ 1 1 ~  + l l ~ 1 1 ~  + llu1I2 + llvl12 2 llw1I2* (5.36) 

From the Equations (5.28) and (5.29), and (5.35) and (5.36) we 

derive 

211z112 = 211~11~ = llu1I2 + llvl12 + llxl12 + I l ~ l l ~ .  
It trivially follows from the above equations that 

<x,y> = <UIV> = <XIV> = <u,y> = 0 

Subtracting (5.23) from (5.22), we get 

llu1I2 = 11x1I21 

which is the desired result. 

We have just seen how a quasisolution can be computed. The 

uniqueness of a quasisolution follows if we can show that g=O is 

the solution to h*g=O. In the next section we shall see a 

method of speeding up the convergence to a fixed point of 

PfscPfo* 

5.2.3 Modified Method of POCS 

In this section we shall show that the operator 

1 + ao(PfscPfo-1) for O<a0<2 can be used to converge to a fixed 

point of PfscPfo. Using a value of ao>l will help to speed up 

convergence in the initial stages of the iterative procedure. 

Consider the operator Tfo=l+sfo(Pfo-l), where O<sf0<2. Recall 

that Tfo is a nonexpansive operator and that the fixed points of 

PfscPfo and PfscTfo are same and are just the common elements of 

Cfsc and Cfo* 

We will now show that if for the unbounded set Cfsc the set 

of fixed points of PfscPfo is nonempty then the set of fixed 

points of TfscPfo is identical to the set of fixed points of 



PfscPfo even if Cfsc and Cfo have no common element. Consider 

the operator PfscTfo. Since PfscTfo is a nonexpansive operator 

we can use Q=l+s(PfscTfo-l), where O<s<l, to converge to a fixed 

point of PfscTfo. We wish to show that Qs=l+ao(PfscPfo-1) for 

ao=s.sfo. This may be shown as follows. For any ~ E C ~ ~ ~ ~  

g + s(PfscTf;g - g) = g + s(Pfsc(g + sfo(Pfog - g)) - g )  

(5.40) 

Since Pfsc is a linear operator and for ~EC~,,, Pfscg = g, the 

above equation reduces to 

g + (PfscTfo9 - g) = g + s(Pfscg + Pfscsfo(Pfog - g) - g) 1 

(5.41) 

= (3 + ~ ~ ~ o ~ ~ s c ( ~ f o ~  ' g) 1 (5.42) 

= g + ssfo(pfscpfo~ - g) (5.43) 

From the above equation the desired result trivially follows. Let 

us now show that the fixed points of PfscPfo and PfscTfo are 

identical. We shall attempt to do so by showing that the fixed 

points of Pf scPf and Qs are same. That the fixed points of 

PfscPfo are also fixed points of Qs is obvious. To show the 

converse consider gl, a fixed point of Q,. Now, 

gl = Qgl = gl + ao(PfscPfo~l ' g') (5.44) 

Hence 

aO(PfscPfO~'- gl) = 0- (5.45) 

Since ao+O, it follows that g1 is also a fixed point of PfscPfo. 

Thus the fixed points of PfscPfo and Qs are identical. In other 

words (pSN (g) } converges to a fixed point of PfscPfo. If we 

choose ao=l, Qs=PfscPfor which is the operator usually applied 

for the noisefree case. We have just shown that PfscPfo can be 



applied for the noisy case also and that it converges to a 

quasisolution. We conclude this section by showing that the 

fixed points of PfscTfo and PfscPfo are identical. In the next 

section we shall see how the methods discussed in this chapter 

can be applied to the problem of image reconstruction from 

digital holograms in the presence of noise. 

5 3  Image Reconstruction fromMultispectral Digital Holograms 

The problem of image reconstruction from digital holograms 

may be stated as follows. Let 

f ( x t ~ ; ~ i ) = h ( x t ~ ; ~ i ) * g ( ~ t ~ )  + ni(xt~) t for i=1,2, ..., n 
( 5 . 4  6 )  

where 

f (x,y;Xi) is the hologram known at a fixed set of points I P 

for a wavelength Xi, 

h(x,y;Xi) is the impulse response at a wavelength Xi, 

g(xtY) is the object field distribution that is indepen- 

dent of wavelength, 

ni(xt~) is some noise function. 

It is required to compute g(xty)~CfSc given f(x,y;Xi) at (xty)~Ip 

and for wavelengths X1, X2, ..., An. Notice that the problem as 

stated is ill-posed as there may exist no solution. As a 

simplification consider the case of only one hologram. 

It was shown in the previous section that if f(x,y;Xi) is 

known completely then it is possible to compute a quasisolution 

belonging to Cfsc. However if f(x,y;Xi) is known only at a finite 

set of points, then g(x,y)=O is not the only solution to 

h(x,y)*g(x,y) = 0 for (xty)~Ip. Hence the quasisolution is not 



unique. However an a r b i t r a r y  q u a s i s o l u t i o n  can be computed by 

applying t h e  method of PONICS. W e  s h a l l  d e s c r i b e  how t h i s  may 

be done. L e t  

C f o  = ( g ( x , y )  : f ( x t y )  = h ( x , y )  * g ( x , y )  1 

f o r  f ( x , y )  given on ( x , y ) ~ I ~ ) .  (5.47) 

C f o  would be n u l l  i f  f ( x , y )  is noisy  and is known over  t h e  e n t i r e  

r e c e i v e r  p l a n e .  I n  t h a t  c a s e  w e  s h o u l d  u s e  f l ( x , y ) ,  t h e  

p r o j e c t i o n  of f  (x ,y )  on to  t h e  set of bandl imited func t ions ,  i n  

t h e  d e f i n i t i o n  of Cfo.  I f  t h e  c a r d i n a l i t y  of I is f i n i t e  then  
P  

C f o  is nonempty. S ince  t h e  s o l u t i o n  set is a  s u b s e t  of Cfsc,  w e  

can apply t h e  ope ra to r  PfscPfo i t e r a t i v e l y  on any g€CfSc. Notice 

t h a t  C f o  is a  c losed  convex set .  

I f  t h e  hologram d a t a  is known f o r  n  d i f f e r e n t  wavelengths 

111 1-21 ...I A n ,  t hen  our  aim would be t o  gene ra t e  a  sequence 

belonging t o  Cfsc and depends on t h e  i n i t i a l  d a t a .  However w e  

a r e  no t  i n  a  p o s i t i o n  t o  g i v e  a  p r e c i s e  c h a r a c t e r i s a t i o n  of t h e  

p o i n t  t o  which it converges. 

There a r e  i n  gene ra l  two ways of producing such a  sequence 

c o r r e s p o n d i n g  t o  t h e  s e q u e n t i a l  and p a r a l l e l  methods.  I n  t h e  

p a r a l l e l  method w e  apply t h e  ope ra to r  

R ~ a r  = 1 + sPfsc(slTfl  + s 2 T f 2  + ... + snTfn) (5.48) 

where 

T f i  = 1 + s f i ( P f i  - I ) ,  O < s f i < 2  (5.49) 

and 

s1 + s2 + ... + sn = 1. (5.50) 

S ince  Tfi is a  nonexpansive ope ra to r ,  us ing  Theorem 3 .1  w e  can 

show t h a t  slTfl  + s 2 T f 2  + . . . + s n T f n  is a  nonexpansive ope ra to r  

N and t h u s  it is s e e n  t h a t  t h e  sequence  ( R p a r ( g ) ) ,  g€Cfsc w i l l  



converge to a fixed point of Pfsc (slTfl+S2Tf2+ .. . +snTfn) In the 

sequential method the operator applied at every iteration is, 

%eq = 1 + sPfsc(Tfl + Tf2 + ... + Tfn) (5.51) 

Although we are not formally able to characterise the nature of 

the solution given by either of these two operators Rpar is 

appealing intuitively as sl, s2, . . . , sn can be suitably chosen 
to reflect the relative emphasis of each of the known data on the 

solution. The sequential method gives unknown relative importance 

to each of the known data. In the next section we shall present 

simulation studies to show the efficacy of the method of PONICS. 

5.4 Simulation Studies 

5.4.1 Overview 

The purpose of simulation study is threefold namely (i) to 

show the convergence of the PONICS method, (ii) to compare the 

computation involved for signal reconstruction in the presence of 

bounded noise magnitude by the method of POCS and PONICS and 

(iii) to compare the effectiveness of the parallel and sequential 

methods of PONICS. Accordingly the simulation studies are 

organised in two parts: (i) comparison of the method of PONICS 

and POCS for image reconstruction in the presence of uniformly 

distributed noise and (ii) comparison of the sequential and 

parallel methods of PONICS for image reconstruction in the 

presence of uniformly distributed noise. 

Let us consider the method of POCS to compute a feasible 

solution. First we shall consider bounded noise energy. Here the 

method of POCS can be applied. But we can show that applying the 

method of PONICS will result in practically the same solution. 



C o n s i d e r  t h e  c a s e  o f  j u s t  one  ho logram d a t a .  I f  t h e  s e t  Cr  

( d e f i n e d  i n  E q u a t i o n  ( 4 . 1 0 )  ) and  C f s c  i n t e r s e c t ,  b o t h  t h e  

method o f  POCS and  t h e  method o f  PONICS w i l l  c o n v e r g e  t o  a n  

e lement  of CrnCfsc. I n  t h e  method of PONICS w e  t a k e  a  p r o j e c t i o n  

o n t o  C f o  which is a  s u b s e t  of  Cr. Thus t h e  p r o j e c t i o n  on to  C f o  

w i l l  r e s u l t  i n  an  i n t e r i o r  element of  Cr. Hence convergence t o  

an element o f  CfscnCr w i l l  be  f a s t e r .  Not ice  t h a t  it is s imple  

t o  v e r i f y  whether t h e  s o l u t i o n  belongs t o  CfscnCr o r  no t .  Thus 

t h e  method o f  PONICS c a n  b e  a p p l i e d  w i t h  t h e  t e r m i n a t i o n  

c r i t e r i o n  be ing  t h a t  t h e  s o l u t i o n  belong t o  CfscnCr. Not ice  t h a t  

convergence can  b e  speeded up i n  t h e  method of  POCS by us ing  

Tr = 1 + s r (P r -1 ) ,  O < s r < 2 ,  i n s t e a d  of  Pr. H e r e  sr must b e  chosen 

such t h a t  T r ( g ( x , y ) )  must belong t o  an  element of  Cr where r is 

t h e  a c t u a l  v a l u e  of  n o i s e  energy.  Thus us ing  t h e  o p e r a t o r  Tr it 

is p o s s i b l e  t o  apply  t h e  method of POCS wi th  a  sma l l  margin of 
> 

e r r o r  on t h e  e s t ima ted  v a l u e  of n o i s e  energy.  However t h e  method 

o f  PONICS d o e s  n o t  r e q u i r e  t h e  v a l u e  o f  r a t  a l l  e x c e p t  f o r  

t e r m i n a t i n g  t h e  i t e r a t i v e  procedure .  Hence w e  s h a l l  n o t  cons ide r  

t h e  POCS method f o r  image r e c o n s t r u c t i o n  i n  t h e  p r e s e n c e  o f  

bounded n o i s e  energy.  

The o t h e r  t y p e  of  f e a s i b l e  s o l u t i o n  invo lves  t h e  u s e  of  t h e  

in format ion  t h a t  t h e  magnitude of  t h e  n o i s e  is bounded. Here w e  

s h a l l  c o n s i d e r  bo th  t h e  POCS and t h e  PONICS method. Consider t h e  

c a s e  when on ly  one hologram d a t a  is a v a i l a b l e .  Let  f ( x , y )  be  t h e  

g i v e n  f i e l d  d i s f r i b u t i o n  and  f o ( x , y )  a  f u n c t i o n  s u c h  t h a t  

11 f  ( x , y )  - fo  (x ,  y )  l l C  5 d .  Not ice  t h a t  L~ d i s t a n c e  between f  (x ,y )  and 

f o ( x , y )  may b e  unbounded.  Moreover  t h e  s e t  ( g ( x , y ) :  h ( x , y )  * 
g(x, y)  = f, (x ,  y )  ) is a  s u b s e t  of Cd (de f ined  i n  Equation ( 4 . 9 )  ) . 



Hence Cd is an unbounded set. An arbitrary element geCfScnCd may 

be far removed from the actual solution, in terms of the l2 

norm. In other words the variance of the estimate of the 

solution will be large. On the other hand, using the method of 

PONICS we can compute a quasisolution. However the result may 

not necessarily belong to Cd. Yet as we see later the method of 

PONICS converges faster to a point that is close to the desired 

solution. 

For multispectral noisy holograms the PONICS method has both 

a sequential and parallel implementation. Recall from Chapter 3 

we saw that for the noisefree multispectral data the sequential 

and parallel methods have the same solution set. For noisy data 

however no such statement can be made. Hence simulation studies 

were carried out for noisy data comparing both the methods. But 

the results did not bring out any appreciable difference between 

the two methods. 

5.4.2 Comparison of the Method of POCS and PONICS 

In this subsection we shall consider uniformly distributed 

noise. Uniformly distributed noise is in reality random noise 

with bounded magnitude. We shall compare the POCS and PONICS 

method of image reconstruction. Before we go on to describe the 

results let us first describe the criterion used for terminating 

the iterative procedure. A fixed number of iterations decided a 

priori is unsatisfactory as it cannot reveal the tradeoff 

between accuracy of the desired result and the computational 

complexity. Of the many error criteria that could have been used 

to judge how far the current solution is from the actual, the one 



t h a t  was s imples t  t o  compute is chosen. The e r r o r  c r i t e r i o n  has 

been descr ibed  i n  Chapter 4 .  I n  t h e  a c t u a l  implementation some 

minor m o d i f i c a t i o n s  were i n t r o d u c e d .  L e t  u s  d e s c r i b e  t h e  

procedure proposed e a r l i e r  f i r s t .  

The i t e r a t i v e  procedure may be terminated when t h e  Figure 

Of Merit  (FOM) ,  

I1fl/llpl 5 kd* (5.52) 

Here 1 1 ~ 1  and 1 1 ~ 1  r e f e r  t o  t h e  c a r d i n a l i t y  of t h e  s e t s  If and 

Ip respec t ive ly .  If is defined a s  

If = ( ( x t y ) :  I f  ( x ty )  - h(x.y)  *g(xty)  1 < dl  f o r  ( ~ , Y ) E I ~  1 

(5.53) 

Here 'd l  is a known maximum bound on t h e  magnitude of noise .  For 

m u l t i s p e c t r a l  holograms t h e  f i g u r e  of mer i t  is (X 1 1 ) / (n 1 1 ) , 
where n is t h e  number of f requencies  and Ifi is t h e  s e t  If f o r  a 

wavelength X i .  I n  o t h e r  words, 

Keeping i n  l i n e  with t h e  s imula t ion  s t u d i e s  conducted e a r l i e r ,  we 

chose kd=0.95. The d i f f i c u l t y  encountered was t h a t  t h e  number of 

i t e r a t i o n s  requi red  t o  ob ta in  t h i s  accuracy was q u i t e  l a r g e  and 

hence  t h e  i t e r a t i o n s  were t e r m i n a t e d  when t h e  number of  

i t e r a t i o n s  t i m e s  t h e  number of  f r e q u e n c i e s  r e a c h e d  50. Yet 

another  r e l a x a t i o n  was made t o  te rminate  t h e  i t e r a t i v e  procedure 

when t h e  f i g u r e  o f  m e r i t  d e f i n e d  above d i d  n o t  improve over  

success ive  i t e r a t i o n s .  

Fig.5.1 shows t h e  r e s u l t s  obtained using t h e  POCS and PONICS 

methods f o r  a 64x64 a r ray .  The r e s u l t s  a r e  given f o r  a SNR of 

OdB and -10dB. T a b l e  5 . 1  g i v e s  compara t ive  f i g u r e s  f o r  t h e  



computational complexity and FOM. The FOM is meant merely to 

compare the results obtained using the POCS and PONICS methods 

for the same initial conditions. It does not indicate in a 

proper sense the absolute figure of merit of the solution 

obtained. Hence it would not be reasonable to compare the FOM 

values along a column. Notice from Fig.5.1 that for a 64x64 

array the results obtained using the POCS and PONICS method do 

not show appreciable difference. However Table 5.1 shows that an 

FOM of 95% is attained for nearly all cases of the PONICS method 

and for hardly any case of the POCS method. Moreover the table 

also indicates that the PONICS method takes fewer iterations to 

attain an FOM of 95%. The method of POCS in most cases had to be 

terminated because the number of iterations exceeded 50. In fact 

the only instance where the POCS method appears to give better 

results than the method of PONICS is when the SNR is -10dB and 

when 16 frequencies are used. For a large signal to noise ratio 

the bound on the maximum magnitude of the noise is also large. 

Hence notice that the FOM for -10dB is in general higher than 

for the corresponding 0 dB case. 

Let us also caution that since we are conducting simulation 

studies the bound on the maximum magnitude of the noise is known 

precisely. Hence the POCS method, as can be seen from the 

figure, gives results comparable to those obtained by the 

method of PONICS. In practice the bound on the noise is only 

approximately known. To reiterate what was mentioned earlier if 

the actual bound is more than the estimated bound then the POCS 

method will not converge even in the l2 norm. But the PONICS 

method can be applied even if the known bound is erroneous. At 



worst it might diverge in the FOM, but will converge in the l2 

norm. In sum, the POCS method was applied under ideal 

conditions. Even in such case the POCS method does not give 

significantly better results. Thus these experimental studies 

indicate that computing a solution by the method of PONICS is 

better than computing a feasible solution by the method of POCS. 

Let us now consider the 32x32 array (down sampled) . Fig. 5.2 
shows the results of the images reconstructed from multispectral 

noisy holograms by the methods of POCS and PONICS when the SNR is 

OdB and -10dB. The figures indicate that the method of PONICS 

appears to give better results than the method of POCS under the 

same initial conditions. As in the previous study a table 

comparing the computational complexity and the FOM for the 

results obtained using the two methods was made. Table 5.2 shows 

that whereas the PONICS method attained the desired accuracy 

within a few iterations, the POCS method failed to converge for 

the two frequency case or exceeded the prescribed limit on the 

number of iterations for other cases. For the sake of completion, 

the figures corresponding to the 16x16 array and 8x8 array are 

given in Fig. 5.3 and Fig. 5.4 respectively, although they do not 

give any useful information even at low noise levels (SNR=OdB and 

SNR=-lOdB) . 
These studies show that the performance of the method of 

PONICS for image reconstruction from multispectral holograms in 

the presence of uniformly bounded noise is in most cases at least 

as good as the method of POCS for the same initial data. A look 

at the corresponding values in Table 5.1 to Table 5.4 shows 

that the method of PONICS converges faster if the samples are 
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convergence rate falls sharply as the number 
fewer. Horeover the 

of fre4yencies is increased fron 4 to 1 6  in the case of a 64x64 

array. This indicates that when there is an increasing 

amount of 

inconsistent data the size of the soiution set keeps decreasing 

and hence it takes nore computation to 

the same level of 

5.4.3 Cmnparison of Sequential and P~alle1 Metboh 

In our second study we compare the sequential and parallel 

implementation, of the methods of PONICS, We s h a l l  

only multispectral holograms. We also assume a uniform 

distribution of noise. We did not consider Gaussian distributed 

noise since the method of PONICS does not make explicit use of 

the property that noise is Gaussian distributed. In our 

simulation study we assume that noise is independent and 

identically distributed at every point. In such a situation the 

method of PONICS can be applied irrespective of the distribution 
I 

of noise. The comparative study of the sequential and parallel 

methods was made using a 32x32 array and for two SNRs, namely, 

OdB and -1OdB. The results as indicated by Fig.5.5 do not show 

appreciable difference between the two methods. 
The termination 

criterion for the iterative procedures remain the same as in the 

previous case. 

A note regarding the parallel method may be mentioned here. 

Let gi = Pfig, where Pfi denotes the projection onto the set Cfi. 

It is possible to write gi as 

- 9 i - g o  +"it (5.55) 

where ni is some noise function. In the parallel implementation 



fewer. Moreover the convergence rate falls sharply as the number 

of frequencies is increased from 4 to 16 in the case of a 64x64 

array. This indicates that when there is an increasing amount of 

inconsistent data the size of the solution set keeps decreasing 

and hence it takes more computation to achieve the same level of 

FOM. 

5.4.3 Cornparkon of Sequential and Parallel Methoh 

In our second study we compare the sequential and parallel 

implementations of'the methods of PONICS. We shall consider 

only multispectral holograms. We also assume a uniform 

distribution of noise. We did not consider Gaussian distributed 

noise since the method of PONICS does not make explicit use of 

the property that noise is Gaussian distributed. In our 

simulation study we assume that noise is independent and 

identically distributed at every point. In such a situation the 

method of PONICS can be applied irrespective of the distribution 

of noise. The comparative study of the sequential and parallel 

methods was made using a 32x32 array and for two SNRs, namely, 

OdB and -10dB. The results as indicated by Fig.5.5 do not show 

appreciable difference between the two methods. The termination 

criterion for the iterative procedures remain the same as in the 

previous case. 

A note regarding the parallel method may be mentioned here. 

Let gi = Pfig, where Pfi denotes the projection onto the set Cfi. 

It is possible to write gi as 

9 i = g o  +nit (5.55) 

where ni is some noise function. In the parallel implementation 



w e  compute ( l /n )Cg i -  Note t h a t  w e  are i n  essence computing t h e  

t i m e  average.  From t h e  c e n t r a l  l i m i t  theorem w e  know t h a t  a s  n  

t ends  t o  i n f i n i t y  t h e  t i m e  average t ends  t o  t h e  ensemble average. 

Since t h e  no i se  is assumed t o  h ive  a  zero mean t h e  t i m e  average 

can be expected t o  reduce t h e  noise .  I n  o t h e r  words (l/n)Cni w i l l  

t e n d  t o  z e r o .  The i m p l i c i t  a s sumpt ion  h e r e  is  t h a t  go is  

independent of l i '  . This  assumption is not  s t r i c t l y  t r u e  s i n c e  

f o r  a  given s p a r s e  sensor  a r r a y  d a t a  t h e r e  can be many l lcor rec tm 

s o l u t i o n s .  Even i f  go is  dependen t  on i , t h e  e f f e c t  of  

a v e r a g i n g  w i l l  b e  t o  r e d u c e  t h e  n o i s e .  Note h e r e  t h a t  t h e  

p a r a l l e l  procedure is s imilar  t o  t h e  Jacobi  -- i t e r a t i o n  f o r  so lv ing  

a  se t  simultaneous l i n e a r  equat ions  [26] while  t h e  sequen t i a l  

p r o c e d u r e  i s  s i m i l a r  t o  t h e  Gauss- Siede l  i t e r a t i o n .  The 

disadvantage with t h e  p a r a l l e l  method is  t h a t  it does no t  update 

t h e  e s t i m a t e  of  t h e  s o l u t i o n  each  t i m e  t h e  p r o j e c t i o n  P f i  is  

computed. Hence t h e  p a r a l l e l  procedure can be expected t o  t a k e  

more number i t e r a t i o n s  t o  . a r r i v e  a t  a  p r e s c r i b e d  FOM f o r  t h e  

s o l u t i o n .  I n  o t h e r  words ,  i f  o n l y  a  s e q u e n t i a l  computer  is  

a v a i l a b l e  it is b e s t  t o  use t h e  s e q u e n t i a l  method s i n c e  it w i l l  

converge  f a s t e r .  A s  w e  s h a l l  soon see t h e  r e s u l t s  of  o u r  

experiments appear t o  v a l i d a t e  our  conclusion.  
I 

Fig.5.5 shows t h e  r e s u l t s  obtained by us ing  t h e  s e q u e n t i a l  

and p a r a l l e l  methods. I t  can be seen t h a t  t h e  q u a l i t y  of t h e  

r e c o n s t r u c t e d  images o b t a i n e d  by t h e  two methods a r e  n o t  

s i g n i f i c a n t l y  d i f f e r e n t .  Table 5.5 shows t h e  r e l a t i v e  performance 

of t h e  s e q u e n t i a l  and p a r a l l e l  methods. A s  i n  t h e  previous case ,  

t h e  va lues  f o r  t h e  FOM do n o t ,  r ep resen t  i n  any abso lu te  sense  

t h e  q u a l i t y  of t h e  recons t ruc ted  image. I t  is given merely t o  



compare the sequential and parallel methods for the same initial 

conditions. Notice that while the FOM is nearly equal in most of 

the cases, the sequential method gives better performance in 

terms of the number of iterations. However in a parallel machine 

the parallel method will be speeded up by a factor nearly equal 

to the number of frequencies. Hence the parallel method will be 

faster in such a situation. 

In this section, we have performed some simulation studies 

for image reconstruction from digital holograms in the presence 

of noise. We have considered two methods of image reconstruction 

from multispectral holograms in the presence of noise. In the 

first case we attempted to compute a I1feasible solutionv by the 

method of POCS. In the second case we applied the method of 

PONICS. The studies indicate that in many cases the method of 

PONICS gives better results than the method of POCS. The method 

of PONICS can be implemented sequentially or in a parallel 

fashion. We have considered both versions and the studies 

indicate that the sequential method converges faster than the 

parallel method in a sequential computer. Hence, unless we have a 

parallel machine it would be better to use the sequential method. 

5.5 Application to other Signal Recovery Problems 

In this chapter we discussed the method of projection onto 

nonintersecting convex sets (PONICS) for image reconstruction 

from noisy sensor array data. Through simulation studies we 

have shown its effectiveness in reconstructing a good quality 

image from multispectral holograms. Simulation studies were 

conducted to compare the results by both the method of PONICS 



and the method of POCS. It was found that the method of PONICS 

gave much better performance in terms of computational 

complexity than the method of POCS, although the former is not 

guaranteed to converge to the desired solution while the latter 

is. Note that the POCS method was applied under ideal 

conditions and even in such a case the POCS method does not 

give significantly better results. The PONICS method has both 

sequential and parallel implementations. Simulation studies 

reported here do not show any appreciable difference between the 

two versions. Finally, note that a precise characterisation of 

the solution computed by the method of PONICS is not known except 

for the case of two convex sets, when the method was shown to 

converge to a quasisolution. 

There are a number of signal recovery problems that can 

possibly be dealt with using the method of PONICS. Computer 

tomography is a good example. Here, as in multispectral digital 

holography, it is required to find an element of the intersection 

of a number of convex sets. An empty intersection may result if 

there is a large amount of noisy data. In such cases one may be 

tempted to discard part of the data so as to be able to compute a 

solution by the method of POCS. Using the method of PONICS, 

however, we can compute a solution that makes use of all the 

available data. 



Table 5.1 

Figure of merit versus computational complexity for image 
reconstruction from multispectral holograms in the presence 
of uniformly distributed noise for a 64x64 array. 
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Table 5.2 

Figure of merit versus computational complexity for image 
reconstruction from multispectral holograms in the presence 
of uniformly distributed noise for a 32x32 array. 
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Figure of merit versus computational complexity for image 
reconstruction from multispectral holograms in the presence 
of uniformly distributed noise for a 16x16 array. 
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Table 5.4 

Figure of merit versus computational complexity for image 
reconstruction from multispectral holograms in the presence 
of uniformly distributed noise for an 8x8 array. 
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Table 5.5 

Comparison of the sequential and parallel methods. Table 
shows the figure of merit versus computational complexity 
for image reconstruction from multispectral holograms the 
presence of uniformly distributed noise for 32x32 array. 
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Initialise: 

(1) go(xly) = constant, for (x,y) in region of support, 

= 0, otherwise. 

( 2 )  k = 1 ; s = 0.9 

Repeat 

(3) For all (x,y) do 

gl(xty) = gk-l(xt~) 

( 4 )  For i = 1 to n 

do steps 5-7 

(5) Compute f (x,y) = g1 (x,y) *h(x,y;xi) 

as in Algoritm 3.1 (Steps 2-5) 

(6) For all (xty)~Ip do 

fk(xty) = f(x,y;xi) 

(7) Compute gl(x,y) from fk(x,y) 

as in Algorithm 3.1 (Steps 6-9) 
(8 k = k + l  

(9) For all (x,y) do 

gk(xty) = gk-l(xty) + s(g' (x~~)-gk-~(xtY)) 

until satisfactory solution obtained. 

Algorithm 5.1 : The PONICS procedure to reconstruct an image with 
finite support from hologram data f(x,y) known at a 
set of points (x,y)~I for n different frequencies. P 
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PONICS POCS PONICS POCS 
SNR=OdB SNR=OdB SNR=-lOdB SNR=-lOdB 

Fig.5.1 Comparison of POCS and PONICS methods for reconstruc- 
tion of images from noisy sensor array data. Uniformly 
distributed noise is used. The data is collected from a 
64x64 array at different frequencies. Comparison is 
made for two different SNR1s. 
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Fig.5.1 Comparison of POCS and PONICS methods for reconstruc- 
tion of images from noisy sensor array data. Uniformly 
distributed noise is used. The data is collected from a 
64x64 array at different frequencies. Comparison is 
made for two different SNR's. 
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Fig.5.2 Comparison of POCS and PONICS methods for reconstruc- 
tion of images from noisy sensor array data. Uniformly 
distributed noise is used. The data is collected from a 
32x32 array at different frequencies. Comparison is 
made for two different SNR1s. 
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Fig.5.3 Comparison of POCS and PONICS methods for reconstruc- 
tion of images from noisy sensor array data. Uniformly 
distributed noise is used. The data is collected from a 
16x16 array at different frequencies. Comparison is 
made for two different SNR's. 
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Fig.5.4 comparison of POCS and PONICS methods for reconstruc- 
tion of images from noisy sensor array data. Uniformly 
distributed noise is used. The data is collected from a 
8x8 array at different frequencies. comparison is 
made for two different SNR1s. 
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Fig.5.5 comparison of sequential and parallel methods of PONICS 
for image reconstruction from noisy (uniformly 
distributed) multiple frequency hologram data using a 
32x32 array for two SNR values (OdB and -10 dB). The 
figures show the similarity of the results in the 
sequential and parallel implementation. 



Chapter 6 

IMAGE RECONSTRUCTION FROM NOISY PHASE 

6.1 Problem Statement 

61.1 Signal Reconstruction fram Phase 

In the previous three chapters we considered the problems of 

sparse data and noise. The sparsity of data arose due to the 

small number of sensors. In this chapter we consider partial 

data namely phase only data. This problem is similar to the one 

mentioned in the previous chapter with the added complexity that 

only the phase of the signal is known. We consider both full 

phase and quantised phase. An iterative procedure based on the 

alternating projection theorem is proposed. The termination of 

the procedure is done on the basis of a figure of merit of the 

solution. Simulation studies show that images can be 

reconstructed from noisy phase even when the phase is quantised 

and when only a few sensors are available for collecting the 

data. 

The problem of signal reconstruction from the phase of the 

Fourier and other linear transforms has of late received wide 

attention [7],[16],[67]. Signal reconstruction from noisy phase 

has been considered by Epsy and Lim [ll] and Yegnanarayana, 

et a1 [67]. In [ll] the problem of recontruction of a signal 

from the noisy phase of its Fourier transform was considered. 

The noise added to phase was uniformly distributed between -O 

and +a. The closed form solution for signal reconstruction from 

phase was used. As this solution is valid only for noisefree 
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data, it was found that even for very low noise levels such as 

Q=~/10 the reconstruction was poor. This method of solution is 

inadequate in other respects too. First it cannot be easily 

extended to other transforms. Besides, it does not make explicit 

use of the fact that the signal has finite duration. This can be 

done in an iterative procedure, as in [67]. Here the noisy phase 

is quantised in the hope that the quantised noisy phase is 

likely to be the same as the quantised noise free phase also. 

The method of Projection Onto Convex Sets (POCS) can be used to 

iteratively compute a solution that has finite region of support 

and that satisfies the known phase data. It was found that 

reconstruction from quantised phase sometimes produced better 

quality images than reconstruction from full phase for noisy 

data. This phenomenon can be explained by considering the 

angular separation between linear subspaces as discussed below. 

6.1.2 Separation between Linear Spaces 

Let C1 and C2 be two linear subspaces of a Hilbert space H. 

For x,y E H, define 

cos($(x,y)) = l~e(xt~3I/(llxll. Ilyll) f 

and 

where $ (x,y) measures the angular separation between C1 and C2 

and is nonzero if and only if the zero element is the only 

element common to both C1 and C2 [70]. 



6.1.3 Noisy Phase 

Let us consider the problem of signal reconstruction from 

phase. Let Cfsc denote the set of signals with finite support 

and let 

f = Tg = Iflex~(j@), (6.3) 

where T is a linear transform operator on H. Let 

C9 = { 9: Tg = I~glexp(j@)). (6.4) 

for given phase @. By noisy phase we refer to the phase function 

of Tg + n, where n is some random noise function. If @ is noisy 

then C and Cfsc may have null intersection (having only the zero @ 
element) and for high noise levels J(Cfsc,CQ) can also be large. 

Note here that C4 and Cfsc can be shown to be closed linear 

subspaces [43]. Consider now the quantised phase. Let denote 

the phase quantised to q bits and let 

Cq = {g: Tg = I~glexp(j@) and 

@ when quantised to q bits is @ ) ,  
q (6.5) 

for a given @q. Cq includes the set Cg and hence J (Cq,Cfsc) 5 

4 ( C p  cfsc) • In other words the separation between Cq and Cfsc 

is not more than the separation between C@ and Cfsc. Moreover 

the separation is lesser as the quantisation is made finer until 

it becomes zero. J(Cq,Cfsc) may never attain the zero value for 

high noise levels and for low noise levels it may be zero for a 

fine grain quantisation. The POCS method used in [67] converges 

to a solution such that cos (J (g , P@g) ) = cos (J (Cf ,, , Cg) ) , where 

P@ is the projection onto the set C*. For high noise levels the 

quantised phase was found to give better results because the 

separation between Cfsc and Cq is less than that between Cis, 

and C4. If J (CfsctCg) is zero for some quantisation q then 



making the quantisation finer will not serve any purpose since 

the solution set will become larger and hence the varaiance of 

the estimate of the solution will be large. Ideally, given noisy 

phase we would like to quantise the phase such that $(Cfsc,Cq) 

just attains the zero value or use 2-bit quantised phase if it 

does not attain the zero value. However it is difficult to 

decide a priori the right level of quantisation. 

6.1.4 Figure of Merit for Image Reconstruction from Phase 

In an earlier work [ 6 7 ]  on image reconstruction from noisy 

phase of multiple frequency holograms it was shown that for many 

cases when the noise level is high the image reconstructed from 

quantised phase is better than the image reconstructed from full 

phase. In that study only real noise was considered. Here we 

shall consider complex noise. As we shall soon see, for complex 

noise also the image reconstructed from full phase is no better 

than the image reconstructed from quantised phase for high noise 

levels. However for low levels of noise the image reconstructed 

using quantised phase is a poor estimate. In this chapter we 

develop an algorithm based on the method of POCS for image 

reconstruction from noisy phase. We define a Figure Of Merit 

(FOM) based on phase that plays a crucial role in terminating 

the iterative image reconstruction procedure. Simulation studies 

were conducted to bring out the effectiveness of the proposed 

algorithm. 

The rest of this chapter is organised as follows: In 

Section 6.2 we review the method of image reconstruction from 

phase of multiple frequency holograms. Iterative image 



reconstruction from quantised phase is also described. We define 

the FOM that is used to develop a condition for terminating the 

iterative procedure. Simulation studies using the new algorithm 

are presented in Section 6.3. Studies are also made for image 

reconstruction from quantised phase. The results show that the 

differences are small in images reconstructed from full phase and 

quantised phase even for at noise levels. 

6.2 Iterative Reconstruction from* Phase 

6.2.1 The Method of POCS for Image Reconstruction 

The reconstruction procedure is based on the method of POCS 

which we have seen in Chapter 1. We reproduce it here for ease of 

reference. Let C1, C2, . . . Cn be a collection of convex sets and 
let P1, P2, ..., Pn be the projection operators onto these 

convex sets. To find a common element of each of these sets the 

following iteraive procedure may be used: 

9~ = PIP2. --pngK-l* (6.6) 

Here gK and gK-l are the estimates at the end of the K-th and 

(K-1)th iteration respectively. If C1, C2, ... Cn are closed 
linear subspaces then there is at least one element namely the 

zero element that is common to each of these sets. Moreover the 

above iterative procedure converges strongly [5]. 

6.2.2 Image Reconstruction from Full PIaase 

#We shall now apply this iterative procedure for image 

reconstruction from digital holograms. It is required to compute 

a signal that has finite region of support and that gives rise to 

the known phase data on the receiver plane at a finite number of 



points. The phase could be full phase or quantised phase. Let us 

consider full phase first. The problem may be formally stated as: 

Find g(xty) E CfscnC@, where 

CO = {g(x.y) : ~(X~Y)*~(X.Y) = I f  (x.Y) 1 exp(j@(xfy) 1 )  (6.7) 

Here @(x,y) is the known phase function and f(x,y) is the unknown 

magnitude function. It is obvious that Cis, and C+ are closed 

linear subspaces and the POCS method can be applied to compute 

the desired solution. The iterative procedure is obtained by 

substituting P1 = Pfsc and P2 = P@, with n = 2. Here Pfsc and P@ 

are projection operators onto the set Cfsc and C@ respectively. 

The projection onto C@ is computed as described below. Let 

P@(~(x,Y) = gp(xty) (6.8) 

and G (u,v) be the Fourier transform of gp(xty) and G(utv) the P 

Fourier transform of g(x,y). Now 

Gp(utv) = G(utv)t for u2 + v2 - < 1/12, 

= GO (U ,v) , otherwise. 

Go(u,v) is computed as shown below. Let 

fp(xty) = h(x,y) * g(xty) 
= I fp(xty) I ~XP(~@~(X.Y) 

and 

fO(xty) = Ifp(x,y) Ices( @(x,Y) - @p(xt~) )exp(j (@p(xt~) 1 ) .  

for cos(@(xt~) - @p(xt~)) > 01 

= 0, otherwise. (6.12) 

Now 

GO(utv) = FO(~,~)H(~t~) t for u2 + v2 - < 1/12, (6.13) 

where Fo(ufv) is the Fourier transform of fo(x,y) . If the data 
@(x,y) is known only at a finite set of points I then fo(x,y) P 

may be computed as 
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Fig.5.3 Comparison of POCS and PONICS methods for reconstruc- 
tion of images from noisy sensor array data. Uniformly 
distributed noise is used. The data is collected from a 
16x16 array at different frequencies. Comparison is 
made for two different SNR1s. 



fo(x.Y) = fp(xt~) t for (~,Y)EI~, 

= f&(xtY)t otherwise. 

Here f&(x,y) is fo(x,y) of (6.12). 

6.2.3 Quantked Phase 

If only quantised phase @ is known then our problem is to 4 
compute g(x,y) E CfscnCqt where 

cq = (g(x,y) : h(x,y) *g(x,y) = 1 f (x,Y) (exp(j (@(x,Y) 1 )  and 

I@( x ~ Y ) - @ ~ ( x ~ Y )  1 5 7r/2q} (6.15) 

Here Oq is given as 

@q = 7ri/24-', 

for 7ri/2q-l-7~/24 - < @ - < 7ri/29-'-7r/24 

and i = 0, 1, ... 29-1. (6.16) 

Note that eq is ambiguously defined for @ = ai/2q-l-n/2q. In 

such cases we choose the lower value of i. The choice is made 

arbitrarily to maintain consistency. If eq is defined 

unambiguously incorporating the above conventLon then C will 
4 

not be closed. Again it can be easily shown that Cq is a closed 

linear space. The following iterative procedure can be used to 

find g(x,y)~C nCfSc: 4 
- 

gK - Pfs~Pqg~-l* (6.17) 

Here Pq the projection onto Cq may be computed in the same 

fashion as P@ except that 

fo(xtY) = fp(xt~) t 

for @q(x,~)-n/2q 5 @p(x,~) ' 0~(x.~)+n/2qt 
= f; (x, y) , otherwise, (6.18) 

where 



f;(xIy)= I fp(xI~) I C O S ( @ ~ ( X , Y ) - ~ / ~ ~ - @ ~ ( X ~ Y )  )exp(j (Q~(x.Y)-~/z~) 1 )  , 
for 

cos(@q(x,~) -*/2q-@p(xf~) >cos(@q(xt~)+n/2q-@p(xt~) 

and cos(@q(xt~)-n/2q-@p(xt~))>Of 

= Ifp(xt~) ~ c o s ( ~ q ( ~ f ~ ) + ~ / 2 ~ - @ p ( x t ~ ) ) e x ~ ( j ( @ q ( x t ~ ) + ~ / ~ q ) ) ) t  

for 

cos (@q(~t~)+n/2q-@p(xl~) >cos(@q(~t~) -~/2q-@~(xtY) 

and cos(@q(xt~)+n/2q-@p(xf~) )>0, 

= 0, otherwise. (6.19) 

The derivation of the above equation is straightforward and has 

been described with an illustration in Fig.4.3. Notice that €3 in 

Fig.4.3 is n/2q here and Gf is @ As in the previous case if @ q ' q 

is known only at a finite set of points Ip then 

f0(xty) = fp(xty) 1 for (XfY) @ Ipt 

= fA(x,y) , otherwise, (6.20) 

where fA(x,y) is the same as fo(x,y) of the previous case. 

If the phase data is available at n different frequencies, 

that is for n different wavelengths, then the iterative procedure 

n 
to compute g(xty)~CfSc.n C@i may be given as 

i-1 - 
gK - PfscP@1P@2 ' P@ng~-lf (6.21) . 

where Pei is the projection onto the set CGi which is the set 

c@ for a wavelength xi. Similarily if the quantised phase is 

available for n different frequencies then the iterative 

n 
procedure to compute g(xty)~CfsC n Cqi may be given as 

i=1 
gK = 'f scPqlPq2 ' ' Pqng~-lt (6.22) 

where Pqi is the projection onto the set C which is the set qi 
Cq for a wavelength Xi. 



6.2.4 Description of Figure of Merit 

We have just seen a detailed description of the iterative 

procedure. Before it can be implemented it is necessary to decide 

the criterion for terminating the iterative procedure. In [67] 

the number of iterations was chosen arbitrarily. This is not 

satisfactory as the number of iterations may be too few or too 

many to attain a certain accuracy of the result depending on the 

initial data. Hence we develop a FOM based on phase so that the 

iterative procedure can be terminated when the FOM of the result 

attains a predetermined value of FOM. We shall define FOM for 

full phase and quantised 1-bit and 2-bit phase. 

For 1-bit quantised phase the FOM has been proposed in 

[7]. The FOM for full phase, which we propose shortly, is similar 

to that for quantised phase. In both cases the intuitive appeal 

of the FOM is that it gives a measure of how close the 

reconstructed signal is from the known data. The definition of 

FOM is based on a notion of phase metric which we shall see 

below. 

Consider first the definition of phase metric for 1-bit 

quantised phase for one dimension. The result is easily 

extendible to 2-bit quantisation for two or more dimensions. Let 

Sf denote the known 1-bit phase quantisation of the received 

signal f(x) and let Sf, denote the 1-bit phase quantisation of 

fo (x) , where fo (x) = h (x) *go (x) and go (x) represents the current 

estimate of the solution. Recall that the range of the 1-bit 

quantised phase of f(x) is the set ( 0 , ~ ) .  This corresponds to the 

sign of the real part of f (x). The phase metric can now be 

defined as 



Eq(ftfo) = J eq(ftfo) dx 
where 

eq(ftfo) = 1, for Sf(X) = Sfo(x) 1 

= 0, otherwise. 

In the discrete case the integral may be replaced by a summation. 

The phase metric for 2-bit quantised phase may be defined in 

like manner. Recall that the range of the 2-bit phase function 

S1If (x) is the set (a/4,3a/4,5a/4,7a/4 ) . This corresponds to the 
sign of the real and imaginary parts of f(x). We can also define 

e q (ftf,) as 

eq(ftfo) = 2, for I ~ 1 1 ~  (x) - S I I ~ ~ ( X )  1 = ~ / 2 ,  

= 1, for I sllf (x) - SII~~(X) 1 = a/4, 

= 0, otherwise. (6.25) 

However it was felt that this added complexity will not 

significantly alter the results for reconstruction from quantised 

phase. Hence we elect to use the earlier definition (6.24). 

Let us now define the phase metric for full phase. Let 

ef(x) represent the wrapped phase function of f(x) . Define the 
error function e@ as 

e@(x) = 1 1  for I@f (XI - @fo(X) I < el 

= 0, otherwise. (6.26) 

Here the minus ( -1  operator represents the minimum phase angle 

difference and 8 is a predetermined value. The phase metric can 

be defined, as in earlier cases, as an integral or summation of 

the error function. The choice of the value for 8 will be 

discussed now. Notice that while using quantised 2-bit phase we 

presume or hope that the true phase could have a variation of 

a/4 at most from the known quantised phase. Hence for defining 



the phase metric for full phase we chose €3 to be n/4. 

The FOM may be given as 

= 1 - ~(ftf~)/(Jdx)t (6.27) 

where E(.) is Eq(.) or Eg(.) as the case may be. When the 

hologram is available for n frequencies the FOM may be given as 

Again in the discrete case ldx may be replaced by the total 

number of known samples. In [7] the iterative procedure was 

terminated when FOM attains a value of 95%. Where possible we 

shall follow the same procedure. However if the phase is noisy 

the FOM may never attain a predetermined value. Hence, in such 

cases the iterative procedure is terminated when the FOM falls 

over successive iterations. 

6.3 SimuIation Studies 

The purpose of simulation study is to demonstrate the 

effectiveness of the proposed iterative procedure for image 

reconstruction from noisy phase of multiple frequency holograms 

and to compare the reconstructions from full phase and quantised 

phase. Before we present the studies let us first describe the 

setup. A s  in previous chapters a 64x64 pixel image shown in 

Fig.Z.l(a) is appended with zeros to form a 128x128 object plane 

data matrix. The data is transformed using (2.7) to obtain the 

wavefield distribution on the receiver plane. The distance 

between the object and receiver planes is 2000 units. The 

wavelength is 0.25 units and the sampling rate is two samples per 

unit distance (inter sampling distance along x and y axes is 0.5 



units). 

In the first of the studies we shall use all the receiver 

elements (128x128) in the reconstruction of an image. To begin 

with let us consider noise free data. Fig.6.l(a) and Fig.6.l(e) 

show the images reconstructed from full phase and 2-bit quantised 

phase respectively. In both cases the quality of the 

reconstructed image is good. This shows that 2-bit quantised 

phase is sufficient to derive the image in most cases. The 

experiment is repeated with zero mean Gaussian distributed 

random complex noise added to the signal. We shall consider 

three noise levels, namely OdB, -10dB and -30dB. Fig.6.l(b) shows 

the reconstructed image using phase only when the noise level is 

OdB. ~ig.6.l(f) shows the reconstruction for the same noise level 

from quantised 2-bit phase. Fig.G.l(c) and Fig.6.l(g) show the 

results using full and quantised phase when the noise level is 

-10dB and Fig. 6.l(d) and Fig.6.l(h) show the results using full 

and quantised phase when the noise level is -30dB. Notice that as 

the noise level increases the quality of the image reconstructed 

degrades significantly. Moreover at a high noise level (SNR = 

-10dB) the image reconstructed from full phase is no better than 

the image reconstructed from quantised pahse.   his goes to 

confirm our earlier study1671 where a similar result was obtained 

for real noise. 

We will now present the results obtained using noisy sparse 

data collected at multiple frequencies. Fig.6.2 and Fig.6.4 show 

the results of using full phase for various array sizes and 

multiple frequencies for SNR=OdB and SNR=-lOdB, respectively. 

Fig.6.3 and Fig.6.5 show the corresponding results using 2-bit 



quantised phase for various array sizes and multiple frequencies. 

The figures show that as the number of frequencies are increased 

the quality of the reconstructed image improves. Moreover the 

image reconstructed from 2-bit quantised data is in general no 

worse than the image reconstructed from full phase data for the 

same array size and number of frequencies. 

Fig.6.2(a) shows the image reconstructed using a 64x64 array 

with only one frequency (A=0.25). Fig.6.2(e) shows the image 

reconstructed using two frequencies (A=0.25,0.26) for the same 

array. Fig.6.2(i) shows the result of using four frequencies 

(A=O.25,0.26, ... 0.28). Fig.6.2(m) shows the image reconstructed 

using eight frequencies and Fig. 6.2 (q) shows the result of using 

sixteen frequencies (A=O.25,0.255, ..., 0.325). Notice that the 

quality of the image reconstructed improves as the number of 

frequencies are increased. Fig.6.2(b), Fig.6.2(f), Fig.6.2(j), 

Fig.6.2(n) and Fig.6.2(r) show the images reconstructed from full 

phase using one, two, four, eight and sixteen frequencies 

respectively with data collected on a 32x32 array. Fig.6.2(c), 

Fig.6.2(g), Fig.6.2(k), Fig.6.2(0) and Fig.6.2(s) show the images 

reconstructed from full phase using one, two, four, eight and 

sixteen frequencies respectively with data collected using a 

16x16 array. It can be seen that as the number of samples are 

reduced the quality of the image reconstructed degrades 

significantly. In fact with only 16x16 samples the reconstructed 

image is barely visible even if the number of frequencies are 

sixteen. The images reconstructed from an 8x8 array is not 

visible at all even if we use sixteen frequencies as can be seen 

from Fig. 6.2 (t) . Fig. 6.2 (d) , Fig. 6.2 (h) , Fig. 6.2 (1) , Fig. 6.2 (p) 



and Fig.6.2(t) show the images reconstructed from full phase 

using one, two, four, eight and sixteen frequencies respectively 

with data collected on a 8x8 array. 

Let us now consider quantised phase. Fig.6.3 shows the image 

reconstructed using 2-bit quantised phase. ~ig.6.3(a) to 

Fig. 6.3 (t) are the same as Fig. 6.2 (a) to Fig.6.2 (t) except that 

only 2-bit quantised phase is used. Fig.6.4 and Fig.6.5 show the 

results using full phase and quantised 2-bit phase respectively 

for various array sizes and multiple frequencies. The SNR is 

-10dB in both cases. Note that in most cases the image 

reconstructed from 2-bit cases is as good as the image 

reconstructed from full phase. 

A study was made for image reconstruction from noisy phase 

without the use of the FOM. It was found that for sufficiently 

noisy data the iterative procedure begins to diverge after a few 

iterations. Specifically, using a 64x64 array with sixteen 

frequencies the iterative procedure tends to diverge after 20 

iterations if the SNR is -10dB or less. For 2-bit quantised phase 

the divergence in the FOM sense occurs after many more 

iterations. These studies indicate that it is possible to 

reconstruct a good quality image from phase only. Moreover the 

two most significant bits of the phase seem to carry most of the 

information of the signal. By quantising the phase we appear to 

be rejecting more noise than signal information. Hence in some 

cases the image reconstucted using quantised phase gives results 

that are comparable in quality to that obtained from full phase. 

However the amount of computation required for obtaining an 

acceptible quality of the image for 2-bit quantised phase is 



somewhat higher. But the reduction in measurement complexity due 

to quantising the phase more than offsets the increase in 

computation. 

6.4 Conclusion 

In this chapter we have addressed the problem of image 

reconstruction from noisy phase with special emphasis on signal 

recovery from multiple frequency digital holograms. An iterative 

algorithm based on the method of POCS was applied. A FOM for 

phase was proposed. This FOM was used to develop a condition for 

terminating the iterative signal reconstruction procedure. It 

was pointed out that the iterative procedure converges to a 

solution (perhaps the trivial solution) in the l2 norm. Since 

for noisy data the trivial solution may be the only solution, 

the iterative procedure was terminated when the FOM fails to 

improve over succesive iterations. 

Simulation studies were conducted using noisy phase. Both 

full phase and quantised phase were used. It was found that the 

image reconstructed from 2-bit quantised phase was no worse than 

that reconstructed from full phase for high noise levels (SNR= 

-10dB). We also confirmed the earlier reported result [67] that 

increasing the number of frequencies significantly improves the 

quality of the reconstructed image. It was verified that after a 

certain number of iterations the solution tends to diverge if the 

procedure is continued indefinitely. 

The fact that we have not been able to obtain better quality 

images from full phase than from the same phase quantised to 2 

bits indicates that we have not been able to make effective use 



of full phase information. Hence we conjecture that there must 

be better algorithms for image reconstruction from noisy phase. 
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Fig.6.1 Image Reconstruction from full and quantised phase for 
four different noise levels. All the receiver elements 
(128x128) are used in the reconstruction. The figure 
shows that the image reconstructed from quantised phase 
is as good as the image reconstructed from full phase 
at high noise levels. 



# f requ 
encies 

#array 
elements 64x64 

Fig.6.2 Image reconstructed from full phase for SNR=OdB using 
sparse data collected at multiple frequencies. The 
figure demonstrates that it is possible to reconstruct 
an acceptible quality image from phase alone. 
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Fig.6.3 Image reconstructed from 2-bit phase for SNR=OdB using 
sparse data collected at multiple frequencies. The 
figure demonstrates that it is possible to reconstruct 
an acceptible quality image from 2-bit quantised phase. 
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Fig.6.4 Image reconstructed from full phase for SNR=-lOdB using 
sparse data collected at multiple frequencies. The 
quality of the image reconstructed degrades as the 
noise level is increased. 
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Fig. 6.5 Image reconstructed from 2 -bit phase for SNR=-lOdB 
using sparse data collected at multiple frequencies. 
The quality of the image reconstructed from 2-bit quan- 
tised phase is no worse than that reconstructed from 

'full phase for most cases. 



Chapter 7 

SUMMARY AND CONCLUSIONS 

7.1 Problem in Sensor Array Imaging 

In this chapter we shall sum up the thesis, point out its 

achievements and discuss directions for further study. A brief 

discussion of the main contributions of this work is given in 

this section. A summary' of the thesis follows in the next 

section. In the third section we discuss some related issues not 

addressed in this thesis. Some suggestions to investigate these 

issues are also given. 

The aim of this thesis has been to investigate the problem 

of information recovery from partial data. Specifically, we have 

considered the case when the initial data was available in 

different domains and the knowledge of some characteristic of 

the signal is known a priori. We found that an iterative 

procedure like POCS could be applied to solve such a problem if 

a solution existed. 

When the initial data is noisy there may exist no solution 

to the originally stated problem. Hence we have relaxed the 

constraint that the reconstructed signal should satisfy the 

initial data exactly. We have computed a feasible solution. The 

method of PONICS gives another solution to the problem of signal 

recovery from noisy data. This method was shown to converge even 

for certain instances when the method of POCS might fail to do 

so. Our studies on the problem of signal reconstruction from 

noisy phase show that the existing algorithms are inadequate to 



r ecove r  t h e  in format ion  from t h e  g iven  d a t a ,  s i n c e  quan t i s ed  

phase i n  many i n s t a n c e s  g i v e s  b e t t e r  r e s u l t s  t h a n  f u l l  phase .  I n  

s h o r t ,  ou r  conc lus ion  is t h a t  an i t e r a t i v e  procedure  l i k e  POCS 

c a n  b e  a p p l i e d  t o  c o m p u t e  a  s o l u t i o n  s a t i s f y i n g  some 

c o n s t r a i n t s .  Note t h a t  p rev ious  approaches cons ide red  a  w e l l -  

posed problem, whereas h e r e  we have addressed  i l l - p o s e d  problems. 

The problem a d d r e s s e d  is  one  o f  i n v e r s e  t r a n s f o r m a t i o n  

where  t h e  s o l u t i o n  s e t  i s  t h e  s p a c e  of  p i e c e w i s e  c o n t i n u o u s  

f u n c t i o n s  t h a t  van i sh  o u t s i d e  a  compact r eg ion  o f  suppor t .  The 

problem could  be addressed  i n  one dimension b u t  t h e  aim was t o  

develop a lgo r i t hms  t h a t  make u s e  of t h e  c h a r a c t e r i s t i c s  of  image 

f u n c t i o n  s o  a s  t o  judge i f  t h e  l e a s t  squa re s  s o l u t i o n  is c l o s e  

t o  t h e  d e s i r e d  s o l u t i o n  from t h e  p o i n t  o f  v i ew  o f  human 

pe rcep t ion .  Furthermore t h e  s p e c i f i c  problem addressed ,  namely 

t h e  d i g i t a l  holography,  is r e l a t e d  t o  some p r a c t i c a l  a p p l i c a t i o n s  

l i k e  underwater a c o u s t i c  imaging and a c o u s t i c  microscopy. Hence 

a l l  s t u d i e s  were made wi th  r ega rd  t o  two dimensions.  

7.2 Summary of the Thesis 

I n  Chapter  2 w e  have seen  t h a t  hologram format ion could  be 

viewed a s  a  convolu t ion  o r  a  F re sne l /Four i e r  t rans form.  Although 

t h e  l a t t e r  t r ans fo rm is computa t iona l ly  l e s s  i n t e n s i v e  s i n c e  it 

r e q u i r e s  t h e  c o m p u t a t i o n  o f  o n l y  one  F o u r i e r  t r a n s f o r m ,  t h e  

method of convolu t ion  is more s u i t a b l e  f o r  i t e r a t i v e  a lgo r i t hms  

due t o  sampling c o n s i d e r a t i o n s .  We have a l s o  seen  t h a t  phase 

t h e  phase  of t h e  r ece ived  d a t a  p l a y s  a  more impor tan t  p a r t  i n  t h e  

r e c o n s t r u c t i o n  than  t h e  magnitude. 

I n  Chapter  3 we have cons idered  t h e  problem of  s p a r s e  d a t a .  



We have shown how to combine data from multiple frequencies. 

Simulation studies show the effectiveness of the proposed 

method. 

In Chapter 4 we have dealt with errors in the measurement of 

signal. We have shown that the method of POCS which was applied 

in the previous chapters could be applied here too, though not 

in the same way. The method as applied in the previous chapters 

may not converge, as there may exist no signal with the known 

compact region of support that could have given rise to known 

data when there is noise in the signal. The method applied here 

is to obtain a convex set which includes all the functions 

which could have given rise to the known data subject to some 

bounded error. This method works well if the error bound is 

known accurately and fails to work otherwise. This is especially 

true in the case of multispectral holograms. If the known value 

of the error bound is larger than the actual value, then the 

variance of the computed estimate of the signal will be large. If 

it is less, then the iterations may not converge at all. To take 

care of such problems the method of PONICS was developed in 

Chapter 5. 

The method of Projection Onto NonIntersecting Convex Sets 

(PONICS) was meant to deal with the situation when the convex 

sets are nonintersecting. Consider the example of two convex 

sets C1 and C2, where C1 is compact. If C1 and C2 have nonempty 

intersection, then the method of POCS will diverge. The aim is 

to compute a point in C1 that is closest to an element of C2. It 

was shown that such a solution is a quasisolution. 

If the number of sets are more than two, then the 



quasisolution may not be definable. Simulation studies were 

performed to compare the results obtained by the method of 

Projection Onto Convex Sets (POCS) and the method of PONICS. The 

studies have shown that even when the noise statistics are 

accurately known, the quality of the results obtained by the two 

methods are not significantly different. Moreover the method of 

PONICS was found to converge faster. A comparison of the 

sequential and parallel methods of implementation of PONICS did 

not bring out any significant difference in the quality of the 

images reconstructed by the two implementations, although the 

parallel method was found to converge slower in many cases. 

In Chapter 6 the problem of image reconstruction from the 

noisy phase of digital holograms was addressed. A figure of merit 

for the goodness of an image reconstructed from full and 

quantised phase was suggested. It was found that image 

reconstructed from quantised phase gives results that are as good 

or even better in quality as those reconstructed from full phase. 

7.3 Suggestions for Further Study 

A simplified model of digital hologram setup was used in our 
* 

studies to develop methods for image reconstruction from sparse 

data. In practice a holographic setup has several problems such 

as diffraction, medium disturbance, frequency shift, nonlinear 

effects, etc. Some of these factors may severly affect the 

performance of the methods developed in the thesis for image 

reconstruction from partial data. Efforts have to be made to 

incorporate these factors in a systematic way in simulation 

studies. 



The method o f  PONICS a t t e m p t s  t o  s o l v e  t h e  problem of  

s i g n a l  r e c o n s t r u c t i o n  from noisy  i n i t i a l  d a t a .  It i s  an ex tens ion  

of t h e  method of POCS t o  t h e  c a s e  when t h e  convex sets have no 

i n t e r s e c t i o n  i n  common. W e  have skown t h a t  t h e  method converges,  

a l t h o u g h  w e  have  n o t  been  a b l e  t o  p r e c i s e l y  c h a r a c t e r i s e  t h e  

n a t u r e  o f  t h e  s o l u t i o n .  I t  i s  o u r  b e l i e f  t h a t  no p r e c i s e  

c h a r a c t e r i s a t i o n  can be  g iven  i n  a gene ra l  ca se .  However it may 

be p o s s i b l e  t o  do s o  f o r  p a r t i c u l a r  i n s t a n c e s .  Not ice  t h a t  f o r  

t h e  c a s e  o f  two convex se t s  w e  have  shown t h a t  t h e  method 

converges t o  a q u a s i s o l u t i o n .  

I n  t h e  problem of  s i g n a l  r e c o n s t r u c t i o n  from phase we found 

t h a t  i n  many c a s e s  t h e  image r econs t ruc t ed  from quan t i sed  phase 

is a s  good a s  t h e  image r e c o n s t r u c t e d  from f u l l  p h a s e .  T h i s  

imp l i e s  t h a t  w e  have n o t  been a b l e  t o  make f u l l  u s e  of t h e  less 

s i g n i f i c a n t  b i t s  of phase informat ion.  Hence e f f o r t s  must be 

made t o  f i n d  a  better s o l u t i o n  t o  t h i s  problem. 

I n  t h i s  t h e s i s  we have  examined t h e  p rob lems  i n  image 

r e c o n t r u c t i o n  from s p a r s e  d a t a ,  from noisy  s p a r s e  d a t a  and from 

p a r t i a l  n o i s y  s p a r s e . d a t a .  A s  t h e  d a t a  becomes l e s s  and less  

r e l i a b l e ,  t h e  problem of image r e c o n s t r u c t i o n  becomes more ill- 

posed .  A l s o  it becomes p r o g r e s s i v e l y  d i f f i c u l t  t o  f o r m a l l y  

c h a r a c t e r i s e  t h e s e  s i t u a t i o n s .  T h e r e f o r e  one  h a s  t o  r e l y  on 

v i s u a l  obse rva t ion  of t h e  image t o  a s s e s s  t h e  performance of  any 

method f o r  image r e c o n s t r u c t i o n .  



Appendix 

HILBERT SPACES 

A brief introduction to the theory of Hilbert Spaces is 

given here. The depth of treatment will be enough to follow the 

references to Hilbert Spaces in this work. Most of the material 

in this section is from [ 2 4 ] .  We will first define a metric 

space. Then we will define a normed space and then state the 

definition of the L~ normed space we are dealing with. Finally 

we will define the Hilbert space. 

A metric space is a pair (X,P) where X is a set and p is a 

metric on X (also known as distance function), that is, p is a 

real valued function on XxX, such that for all x,y,z in XI 

(i) P(x,Y) , 01 
(ii) P(x,y) = 0, if and only if x = y 

(iii) P(x,Y) = P(Y,x) (symmetry) 

(iv) P(x,y) 5 P(x, z) + P(z,y) ( triangular inequality) 

A sequence {xn) in a metric space (X,P) is said to be Cauchy 

if for every e > 0 there is an N = N(e) such that 

P(xntxm) < el for every m,n > N. 

The space X is said to be complete if every Cauchy sequence 

converges to a limit in X. 

A vector space is nonernpty space X with two algebraic 

operations namely vector addition and multiplication of vectors 

by scalars. 

A norm on a vector space is a real valued function whose 

value at xeX, denoted by Ilxll, has the following properties: 



(i) Ilxll 2 0  

(ii) Ilxll = 0, if and only if x=O 

(iii) (la.xI1 = 1 a 1 . llxll , where a is any scalar 

(iv) llx + yll 5 llxll + l l y l l  (triangular inequality). 

P(x,y) = (x - yll is called the metric induced by the norm. 

Let L2[0,1] be the set of all functions square integrable 

over [O,l]. Hence for x(t)~L~[0,1], (1x11 is defined as 

11x11 = ( j ix(t)12dt 1/2 . , 
O2 However L [0,1] is not a normed space. This can be seen 

considering two functions xl, x2 which differ at a finite or 

countable number of points. Here ilxl-x211 = 0 although xl # x2. 

Let M = {x: ~~x~~=o). xl and x2 are equivalent, if (xl-x2)€M. 

This equivalence relation induces a partition of L2[0,1] into 

pairwise disjoint class of sets. Let y denote a representative of 

one of these sets. The set of all such y is called the quotient 

set denoted by L2 [O, l]/M. Now L2 [Or 1]/M is a normed vector space. 

An inner product on X is a mapping of XxX onto a scalar 

field (real or complex) and is denoted as <x,y> with the 

following properties: 

(i) <x+y,z>. = <x,z> + <y,z> 
(ii) <ax,y> = a<x,y>, where 'a' is a scalar, 

(iii) <x,y> = <y,x>*, where * denotes complex conjugate 
(iv) <x,x> 2 0 

(v) <x,x>=O, if and only if x = 0. 

An inner product on X defines a norm 11 xll , given by 11 xll =<xt x>li2. 

An inner product space is a vector space X with an inner product 

defined on X. A Hilbert space is a complete inner product space. 
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reconstructed from sparse receiver array. The data 
consists of 8x8 samples. The figure shows the image 
reconstructed for four types of sampling and four cases 
of multiple frequencies. The figure shows that even for 
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Comparison of POCS and PONICS methods for 
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