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ABSTRACT
d the Thesis on
Solutions to Some IllI-Posed Problems in Sensor Array Imaging

[Il-posed problens are those for which there nay not be a
solution or there may be nmany w dely varying solutions. Sensor
Array Imaging (SAl) is a problem of reconstructing an inage
from data collected by an array of sensors. Since the data
I's sparse, image reconstruction in SAl is an ill-posed problem
This thesis addresses sonme issues in SAl and suggests sone new
nmet hods of solving the problens in SAl. W discuss the theory and
devel op a nethod of reconstructing an i mage from sparse data
measured at rmultiple frequencies. W study the effects of noise
in the nmeasured data on the reconstructed image, and develop a
nmethod to reconstruct an inmage from noisy sparse data collected
at multiple frequencies. W extend the studies to the case when
the neasured data is partial. In particular, we consider phase
only data. We study methods for image reconstruction from
partial noisy sparse data collected at multiple frequencies. As
t he data avail able becones | esser and nore noisy, the inmage
reconstruction problem becones nore ill-posed, and it becones
nore difficult to formally characterise the situation. W wll
have to rely on visual observation to assess the performance of
any method for inmage reconstruction.

In a typical SAl situation, such as acoustic hol ography,
t he nunber of sensors is small. Hence the amount of initial
data available to reconstruct an image is sparse giving rise to a
w de variety of possible solutions. To reduce the size of the

solution set, we propose that the array data be collected for



different frequencies of the waves illumnating the object. The
problemis nowto find an i mage that generates the neasured array
data obtained at various frequencies. W show through sinulation
studies that the quality of the reconstructed inage inproves as
t he number of frequencies is increased. The iterative procedure
used for reconstructing an imge is based on the method of
Projection Onto Convex Sets (POCCS).

If the initial data is noisy, as it is likely to be in a
practical situation, the nmethod of POCS wll not be directly
applicable. W propose two solutions to this problem Our first
attenpt is to conpute a “feasible" solution that matches the
original data to within a certain degree. The second approach is
to apply the method of Projection Onto NonIntersecting Convex
Sets (PONICS) which is proposed in this thesis. PONICS is
essentially a nodification of the nmethod of POCS and uses a
rel axation Eechnique to converge to a solution. The relative
merits of the two nethods are brought out by nmeans of sinulation
studies. We argue that the nmethod of PONICS is better suited for
i mge reconstruction from noisy sensor array data.

The problem of inmage reconstruction fromthe noisy phase of
the sensor array data is also considered. An iterative nmethod for
| mge reconstruction is proposed. In this figure of nerit for
terminating the iterative procedure. Studies show that an inage
can be reconstructed from full as well as 2-bit quantised noisy
phase data.

In a nutshell, the thesis suggests a nethod of reducing the
number of sensors and the neasurement conplexity at sensor

el ements by increasing the conputational conplexity.



Chapter 1

INTRODUCTION

11 Major Objectives

This thesis addresses sone issues in Sensor Array |naging
(SAl) and discusses solutions to sone of these inmagi ng probl ens.
W view SAl as a general problem of recovering a signal or
information from partial and noisy data avail able froma sensor
array [21]-[24]. | n general, as these problems .are ill-posed and
hence, we explore the use of sone avail able techni ques for
solving ill-posed problens [44],158]. Sone of these techniques
i nvol ve the use of both synbolic and numeric constraints of a
given problem together with sonme enpirical and heuristic
procedures to obtain an acceptable solution {s3,[(43]. |In order
to study the performance of these techniques in imaging context
we consider a sinplified imaging setup, where the conditions of
I Il -posedness can be sinulated easily. Before we discuss ill-

posed probl ens we describe the problem of information recovery

frompartial data.

1.2 Information Recovery from Partial Data

Wien two systens communicate with one another, the signal
that is transmtted fromone systemto the other undergoes sone
transformation. In this process part of the signal may be
distorted or even lost. In addition noise may al so be added to
the signal. Wually there is redundancy in the transmtted data.

Therefore the transmtted infornation can still be recovered



fromthe partial noisy signal. But if the adverse effects of
noi se and | oss of signal dom nate, it may be inmpossible to
retrieve the signal unanbiguously. In sonme cases only part of the
signal needs to be recovered and pattern recognition/artificial
intelligence techni ques can be used to recover useful
information fromthis partial signal [5],[43). However no precise
characterization of what constitutes useful information has been
made for any practical domain, although there have been severa
attenpts to nodel sonme restricted domains |like the blocks world

[62]. We restrict our attention to signal recovery problens that

can be stated fornmally.

1.3 Inverse Problems

Signal recovery is an inverse problem and may be posed in
all its generality as follows: Let g be the transmtted signal
transformed by an operator T to produce a signal f. That is,

f = Tg. (1.1)
It is required to conpute g = T-1f , given f and T, and hence the
name inverse problem

As nmentioned earlier there is usually |oss of signa
informati on upon transm ssion. Signal recovery may be possible
Iin spite of the |oss because of the redundancy in the data. O
all possible signals that could be transmtted, only a snall
subset of them carries nmeaningful information in a given
context. The set of transmtted signals can be characterized by
certain known properties. From the data available at the
receiver, it 1is required to conjecture a signal at the

transmtter end that satisfies the known properties, and which



could have given rise to the data at the receiver end.
Qobvi ously the derived signal nmust depend on the known data,
ot herwi se there would be no need to transmt the signal. The
probl em may have no solution at all if, for exanple, the
received signal is noisy and there exists no signal bel ongi ng
to the class of solutions which could have given rise to the
known data. If the data is sparse, there may exist nore than
one solution, each different fromthe other. This is because for
a given partial data there may be -many solutions that could have
given rise to the known data and satisfying the constraints
known a priori. The partial data situation may arise due to
poor sanpling or quantisation or collection of only a part of
the signal. Problenms such as these which have no sol utions or

very different solutions are referred to as ill-posed problens.

14 1ll-Posed Problems[57]
141 What are Ill-Posed Problems

I1l-posed problems occur in many areas |ike pattern
recogni tion, conputer vision and speech processing. A problemis
ill-posed if it has no unique solution that is robust to small

changes in the initial data. A formal definition is as

foll ows[57]:

Definition - A problem is said to be well-posed if a solution
exi sts, is unique and depends continuously on the initial data. A
problemthat is not well-posed is ill-posed.

Some of the nmethods of solving ill-posed problens are:

(a) to reformulate them as wel | - posed problens by the use of sone



cost functions to be optimzed and (b) to conpute any arbitrary
solution from anmong the set of possible solutions that satisfy
some constraints/properties known a priori. The first approach is
used for exanple in Wener filtering and maxi nrum entropy nethods.
The second approach which we try to adopt in this thesis is
suitable if the size of the solution set is small. This approach
may in fact be reduced to the problem of finding a common el ement
of a collection of sets. In other words if multiple solutions to
a given initial data are possible and it is required to find one
that satisfies sonme constraints or properties known a priori,
then the problem can be formulated as one of finding a solution
that (a) belongs to the set of all functions satisfying the
initial data and (b) belongs to the set of all functions

satisfying the given constraints/properties.

1.4.2 Methods of Solving Ill-Posed Problems

Let T:G+F denote an operator T whose domain G and range F
are metric spacesl. Our first attempt at solving ill-posed
problems is to convert themto a well-posed problem if possible.
Such a method, known as the selection nethod attenpts to find a
unique g for a given f such that f = Tg and geG,, where G, 1is
a known set. The followi ng Theorem 1.1 states that the

sel ection nethod can be applied if G5 is conpact. A conpact set

is defined as follows [63]:

1. A brief introduction to netric and Hilbert spaces is given in

Appendi X,



Definition:. A set G, in a metric space G is said to be conpact if

every sequence in G, contains a subsequence that converges to a

limit in itself.

Theorem 11 [57]: Suppose that a conpact (in itself) subset G, of a
metric space G is mapped onto a subset F, of F If the mapping
G,+F, s continuous and one to one, then the inverse mapping
F,»G, is continuous and one to one.

If, as it usually happens, the known signal is noisy, the
selection net hod cannot be applied as there may exist no solution
geG, such that f=Tg. Hence we restrict our attention to0 finding
g such that geG, and

Pr(£,Tg) = Min Pr(£,Tg,), (1.2)

goeGo
where Pp 1is a metric on the space of received signals. Such a
solution is called a quasisolution. Sufficient conditions for

the existence and uniqueness of a quasisolution can be stated

t hrough Theorem 1.2 and Theorem 1.3.

Theorem 12 [57]: |f the equation f = Tg can have npbre than one
solution on t he compact set G, and if the projection of each
el ement of the set F onto the set T; is unique, then the
gquasisolution of 'the equation f = Tg is unique and depends
continuously on the initial data f. Here

Te = {f=Tg: geG) (1.3)
and F is the space of functions containing f.

The projection of an element x onto a set C is an el enent



Px of C such that

P(x,Px) = Min P(x,Y) (1.4)
yeC

Informally, Px is a point in cthat is closest to X. If xeC then

Px=x. If T is a linear operator, a nore general theorem nay be

stated as follows [57]:

Theorem 13 [57]: | f T is a |linear operator and the honogeneous
equation Tg = o0 has only the zero solution on the convex set
GocG, and if every sphere in the set Gis strictly convex, then a
quasi solution to the equation f = Tg on the conpact set G S

(o]
uni que and depends continuously on f.

Notice that when the conditions required by the above
t heorens are satisfied the problemis no longer ill-posed. If the
solution set G, is not conpact then we need other techniques to
tackl e the problem of signal reconstruction. One of these is to
make use of a stabilizing functional Dg optimzing which, wll
hopefully give a solution that is at least close to the desired
solution. This method is known as regularization. In genera
there are three methods of using the stabilizing functional.
These are [42]:
1. Min Pgp(f,Tg) such that Dy <4, for given 4,
2. Mn Dg such that Pg(f,Tg) < d, for given d
3 Min (Pg(f,Tg) + aDg).
The last functional is known as the snoothing functional and a is
a relaxation paranmeter. In the next section we shall see

exanpl es of sonme well known regul arizati on procedures.



1.4.3 Regularization

Some well known statistical nethods of signal reconstruction
like Wener filtering and maxi num entropy nethod can be cited
as exanples of regularization. 1In this section we shall see how
some ill-posed problens are regularized. Note, however that the
regul arization nmerely suggests a solution to the problem but the
manner of conmputing a regularized solution is sonetines quite
i nvol ved and hence approxi mations are nade to the actual problem
Let us begin with Wener Filtering. For convenience, we restrict

our attention to the discrete one dinmensional space.

Wiener Filtering

Let

f = Tg + n, (1.5)
where f is the received signal, g isthe transmtted signal and
n is the noise signal. Let Qy be the stabilizing functional
where Qis a Iinear'opergtor. It isrequired to mnimze

logll subject to If - Tgl? = |nf2. (1.6)
Here ||.]| refers to a normin a normed vector space. By using the
nmet hod of Lagrange nultipliers [29],([53] we can show that the
desired solution satisfies the follow ng equation (1], (451]:

(T'T + aQ'Q)g = T'f (1.7)
where T' and Q' denote the adjoint of the operator T and Q
respectively and 1/a denotes the Lagrange nultiplier to be chosen
such that

I£ - Tgl2 = |nl2. (1.8)

In the case of one dinensional vectors the operators T and Q are



matrices and the adjoint of these nmatrices are their Hermitian
transposes. This nethod of signal recovery is referred to as

constrained restoration [1],[43]. By substituting Q'Q= Rg -1

g nn
wher e Ryg and Ry, represent the autocorrelation matrices of
g and n respectively, the above filter reduces to the

parametric Wener filter. Hence g may be estimted as,

g = (T'T + aQ'Q)~lo'¢ (1.9)
In addition if a=1, then we obtain the Wener filter. If a>1 in
the parametric Wener filter, then the effect of noise and
signal statistics is enphasized and if «a<1, then it is de-
enphasi zed. To conpute an optimal solution a nust be chosen to
satisfy (1.8). Note that g and n are assuned to be wi de sense
stationary ({[1],[45].

In the two dimensional case, using the block circul ant
properties of certain square matrices (1.4) can be witten as
(1]):

F(u,v) 1

G(u,v) = " (1.10)
- T(u,v) T(u,v)T (u,v) + asn(u,v)/sg(u,v)

Here qu,v), Hu,v), T(u,v), Si(u,v) and sg(u,v) represent the
Fourier transforms of g(x,y), f£(x,y), t(x,¥), Rpp(x,y) and

Rgyq(x,Y) respectively (The superscript *

denotes conpl ex
conjugate). In practice Sp,(u,v) and Sg(u,v) are not usually
known and some enpirically determned constant is used in place
[1]. The stabilizing functional used so far reflected noise and
signal statistics. It can also be used to reflect a neasure of
smoot hness [45]. We shall not go into the details. Suffice here

to say that the stabilizing functional can be used to reflect



many an objective or subjective criterion
Maximum ropy Method [1

Let us consider the maxinum entropy nmethod which has been
used extensively for inmage restoration [1], [7], [61], [74]. Here
the stabilizing functional is the entropy function g[ln(g)]t.
(The superscript 't*' denotes transpose and g denotes a vector
of values of g at discrete points in the 1-D case). The problem
can be formulated as

Min g[ln(g)1t subject to |£f - Tg|2 = |n]? (1.11)
Again applying the Lagrange nultiplier nethod we derive [1],[9]:
g = exp(1l - 2aT*t (£ - 1q)) (1.12)
Here g denotes the estimated value of g. Notice in this nethod
t hat & Is positive and if &[i] is close to zero then the
conputation is nunerically unstable. Also note that a nust again
be chosen such that

I - rgll2 = |n|? (1. 13)
One inherent drawback of this method is that the nmethod is
numerically unstable when the signal to noise ratio (SNR) is
low. Moreover it can be used only for reconstructing real

positive signals.

Minimum_Ne 1
The mnimum norm solution for a set of simultaneous

equations [18] is also a nethod of regularization when the set of

equations is underdetermned. In the overdeterm ned case it is
akin to the conmputation of |inear predictor coefficients in
signal estimation and hence is really a quasisolution. 1In the

underdetermined case the stabilizing functional is |gl, the norm



being defined in the Euclidean sense. The nethod of conputing
the solution is by S ngular Value Deconposition (SVD [18]. In
[44] a nethod simlar to SVD has been described. Here the
desired solution is assumed to belong to a conpact set of the
Hilbert space and can be conputed by expanding it in terms of the
ei genfuncti ons of the operator T'T.

A note regarding regularized solutions is well in place
here. In Winer filtering, for exanple, we could ignore noise
effects altogether by setting a to zero. However the resulting
I nverse operator is nunerically unstable since the denom nator
maght tend to zero at a faster rate than the nunerator. To avoid
this instability we have to settle for an operator that cannot in
general yield exact results even in the absence of noise. Hence a
regul ari zed procedure wll necessarily produce estinates that
| oose sone of the detail and fine structure of the reconstructed
signal. The exact way in which the fine structure is |ost
ultimatel y depends upon the noise level. Notice in this context
the use of the name snoothing functional to a nethod of
regul ari zation nentioned in Section 1.7. In short, regul arization
I's a conprom se between nunerical instability arising due to
noi se and | oss of detail.

The mai n drawback of these nethods is that they do not nake
explicit use of constraints in various domains such as band-
limtedness or finite support. In iterative procedures where the
solution is refined at every iteration these constraints can be

applied easily. Hence we advocate the use of iterative
t echni ques.

10



1.5 Iterative Methods of Signal Recovery
1.5.1 Gerchberg-Papoulis |terative Procedure

The iterative method is resorted to if there exists no
closed form solution for the problem But the main difference
between an iterative nmethod |ike the nmethod of Projection Onto
Convex Sets (POCS) - to be described later - and an algorithmis
that the latter nust termnate after a finite nunber of steps,
while the forner nerely tends to a solution. There are sone
situations where even the POCS nethod can be shown to conpute a
solution in a finite nunmber of steps but such cases are not
often encountered in ill-posed problens. In practice, the
result after a few iterations is sufficiently close to the
desired solution. Thus iterative methods are al so advantageous
in terms of speed and numerical stability, as they are |ess
prone t o roundoff error.

Iterative methods of signal reconstruction have been in vogue
for a long time [8],[10],[39],[44],[50]1,[54],[59]). There are
many instances where a noniterative procedure, even if available,
is not used due to nunerical instability [59]. Moreover there are
instances where noniterative algorithms are not avail able.
Iterative methods for signal reconstruction were proposed by
Gerchberg [10), Papoulis [39], Feinup [8] besides several others.
In literature they are referred to as ‘'Papoulis’, 'Gerchberg-
Saxton' or ‘'Feinup' iterative method. The methods are
essentially the same although they have been applied to different
problems. As an exanple of an instance where iterative nethods

are applied we shall discuss the problem and its solution as



given in (38)., The problemis interpolating a bandlimted

di screte signal. In the Papoulis nethod the values to be

interpolated are initialized to sone bounded value say zero and

the procedure consists of the follow ng steps at every

Iteration:

1. Conmpute the Fourier transformof the signal and set the
val ue outside the known band to zero

2. Take inverse Fourier transformof the resulting function and
repl ace t he conputed signal val ues with the known ones where

they are avail abl e.

The Papoulis nethod was shown to converge. Let us now
briefly trace the history of such iterative nethods'or nore
specifically their proof of convergence. W start with Von
Neunmann's theorem on alternating projections in the Hilbert

space (69].

1.5.2 Alternating Projection Theorem

Let H denote a Hlbert space [24], [(é63] with inner product
denoted by <x,y> and norm [[x| = <x,x>. Let p, and Py denote
the projections onto linear subspaces ¢, and c,. The orthogonal
conpl ement of a set C denoted as +Cc is the set (y: <x,y> =0, for
xeC). Let Q, and @, denote the projection operators onto 1C, and

1C, respectively. The alternating projection theorem [70] states
t hat

Lim (P,Pp)¥ £ = f_ (1.14)

K-+

for any feH, where £, is the projection of f onto the d osed

Li near Manifold (CLM), P.=P,nPy. If fePy, then yvoula's theorem

12



(Theorem 1 of [70]) states that f is uniquely determned by its
projection onto P, if and only if

C,niC, = (0) (1.15)
Furt her nor e, t he followi ng sequence converges to f in norm
(strong convergence):

fre1 = 9 + QPpfy (1.16)
The above iterative procedure of conputing a solution is called
the nmethod of alternating projection. Youla's theorem can be used
t o show uni queness of solution for various problems [54]. I n fact
it can also be used to show convergence of the Papoulis method.
Now if noi se changes g to g+ag and if we assune that cynicy = (0)
(implying that the solution is wunique), then for Limf, = £y

k-
(where £, = £+af) in (1.16) it can be shown that [70]

lagll
lag] < (1.17)
sin(y(C,,1Cp))
wher e
<xX,y>
COoS(¥(Cy,1Cp)) = inf ——— (1.18)
xeC, x| -yl

yexcb
(Here 'inf' refers to the greatest |ower bound, or |oosely
speaking, mnimun). Thus, in the presence of noise the change in
the reconstructed signal depends on the noise in the transfornmed

signal and the divergence between the two closed |inear

mani f ol ds.

1.6 Method of Projection Onto Convex Sets (POCS)
The nmethod of Projection Onto Convex Sets (POCS) extends the
met hod of alternating projections to include an arbitrary

coll ection of closed convex sets wth nonenpty intersection. The



earliest references to this method are in [2] and [13]. However

we shall present our discussion based on a later work by Youla
and Webb [71].

1.6.1 Theoretical Badgs of the POCS Method

Let C;,Cp,...,Cp be a collection of closed convex subsets of
a Hilbert space H and let P, denote the projection operator onto
a closed convex set C. Define T = 1+x (P.-1) with 0<x<2. Here 1
denotes the identity operator. Let T; be the corresponding
operator for the closed convex set c;. The theorem to follow
suggests an iterative method of computing an element of c},

n

where € = n cj. But first we shall define the notion of strong
and weak coln—vlergence [26],[71]. These ideas are required for a

discussion of the POCS method.

Definition: A sequence (fy) is said to converge strongly to £ if
Lim £, = f and is written as f~f. It converges weakly if

k-0

Lim (fy,9) = (£,9) for every geH, and is written as fy—~f.
k-0

Note that strong convergence implies weak convergence but

not vice versa. The theorem' regarding the proof of convergence

of the PBROCS method can now be stated as:

Theorem1.4 [71]: Let ¢} be nonempty. Then for every xcH and every
choice of relaxation constants xq, x5, ..., Ay, in the interval
0<x3<2, the sequence {T,N(x)) converges weakly to a point in
c',. The convergence is strong if and only if at least one of the

subsequences of {TON(X)) converges strongly. Here Tg=TqT,...Tp.
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Note that if the result of every iteration belongs to a
conpact set [26],[69], then the sequence converges strongly.
Met hods based on POCS will be used in many of our |ater
studies. For the sake of future reference, a result which may in
fact be taken to be the definition of projection onto a convex

set, is given bel ow

Lemma 1.5 [71]: Let Px denote the projection of xeH onto a closed
convex set ccH and let y be an arbitrary element of C Then

Re<x-Px,y-Px> < 0, where Re refers to the real part.

In the next subsection we shall present sone exanples of
convex sets. Prior to that we would |like state sone of the
applications of the nethod of POCS. (One of the areas where PQOCS
has found extensive use is in signal reconstruction. The method
has been used for imaging even in the presence of noise
[52],[60]. This is done by reducing the constraint that the
reconstructed signal nust satisfy the initial data exactly to the
condition that it nust be satisfied to within a certain degree.
G late the nmethod has been applied in i rage enhancenent [4] and
acoustic imaging [46],[64]-[66]. | n the next section we shall see
sone exanpl es of convex sets which are found in many signal

reconstruction probl ens.

162 Convex Sets Defined by .the Fredholm’s Operator
In this section we shall see sone exanpl es of convex sets.
In keeping with our earlier objective of considering a general

signal recovery problem we consider the Fredholm's operator of



the first kind. Wthout |oss of generality we shall consider the

one di nensi onal case.

The Fredhol ms equation of the first kind [23] is given by:
b

£(y) = J h(x,y)g(x) dx = Rg(x) (1.19)

a
where h(x,y) is a continuous function in both x and y, and £(y)
Is defined in the interval [c,d]. Let R denote the Fredholm's

operator. Sone exanples of convex sets for given f(y) are given

bel ow

(i) Define
B, = {g(x): Rg(x) = £(y) =0, for |y| >w (1.20)
where wis a real constant

(ii) Define

C, = {9(x): Rg(x) = f5(y), for £5(y) known at yer,) (1.21)

where I, is a closed convex set.

(iii)Defi ne
Cp = (g(x): Rg(x)= A(y)exp(je(y)), for a given phase
function #y) ). (1.22)
(iv) Define
Ceoe = (9(X): g(x) = 0 for xecp}, (1. 23)
wher e Cps known as the region of support, is a conpact set.

Al t hough convex sets have been defined for various operators, an
attenpt has been nade here to define it for a general operator
such as the Fredhol ms operator. The extension is quite

strai ghtforward t hough. The foll ow ng t heorem hol ds:
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Theorem 1.6: By, Car Cy, and Ceg are closed convex sets.
Proof:
a) BP Is a closed convex set devoid of interior points {71].
(ii) It has been shown that the set of f£(y) whose value in the
set I, is f,(y) is a closed convex set [71]. Since g(x) is
transformed by a bounded linear operator to f(y) it follows
that ¢, is a closed convex set.
(iii) Co IS a closed linear manifold {71].
(iv) Cggc iS a closed convex set devoid of interior points [71].
(End of proof)
We shall now see how the projection onto these sets are
computed. We consider only those cases where the problem of
Min [gy-g,| (1.24)
g,€eC
for given g; can be reduced to the problem of

Min ||Rg;-Rq,ll. (1.25)
Rg,€R(C)

Define the operation R™1Qg(x) as follows:

go(x) = R™1log(x) (1.26)
if

lggx)=g(x) | = Min [g' (x)-g(x)| (1.27)
such that

Rg'(x) = QrQ9(xX) = Rggy(Xx). (1.28)

Here Qg is the projection onto the range of R and ¢ is an
operator to be defined. Notice that gy(X) is the projection of
g(x) onto the set Cg defined as

Cy = {(g'(x): Rg'(x) = QrQI(X)}. (1.29)

The projection is unique if the range of R is closed and convex.
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Let Py, P,, Py and Pgg. denote the projection operators onto the

sets Bp, Car Cg and Cgg, respectively.

(1) Pug(x) = R™1(py(Y)R(x)) (1.30)
wher e
Pp(y) =1, for y<w, (1.31)
= 0, ot her wi se.
(ii) Pg(x) = R-l(Pa(Y)fa(Y) + (1-pa(Y))Rg(x)) (1.32)
wher e
Pa(y) =1, for yeI,, (1.33)

= 0, ot her wi se.
(iii) Let ¢(y) represent the phase function of Rg(x) and ¢o(y),
t he known phase. Now,
Py (x) = R™1Qg(x) (1.34)
wher e
Qg(x) = |Rg(x)|cos(p(y) = ¢o(Y)) exp(iog(y)),
for cos(¢(y) - ¢o(y)) > O

= 0, ot herw se. (1.35)
(iv) Pggc9(x) = g(x), for xeCIp,
= 0, ot herw se. (1.36)

The derivation of these equations can be found in [71]. The
POCS nmethod has one serious restriction that the collection of
sets nust have at |east one elenment in common. In sonme cases
this is not possible as the problem may have been forrmulated in
such a way that there is no conmon elenent. Such situations can
occur if the initial data is noisy and the noise characteristics
are not known. One way of dealing with such problens is to expand
the sets by reducing the constraints and thus ensure a point of

i ntersection anong them This can be done, for exanple, by



allowing the solutionto satisfy the initial data not exactly but
to within a certain degree. For such an approach to work, the
sets nust be expanded as to be so large that there is always a
common elenent. This will result in a situation where, for nost
cases, the solution set will be so large that an arbitrary
el ement of the solution set will not be close to the desired
sol ution. The approach that we suggest is to find a solution that
satisfies the known constraints and fits the initial data to the
best possi bl e extent. The new net hod which we call the nethod of

projection onto noni ntersecting convex sets will be discussed in

detail in Chapter 5.

1.7 Iterative Methods of Computing a Regularized Solution

In Section 1.4.3 we saw how a probl em coul d be regul ari zed.
Sone net hods of conputing a regul arised solution were al so given
for certain case. In this subsection we shall see sone iterative
nmet hods of regularizing a solution. Such nethods of conputing a
solution have been reported in literature. In fact nmost of the
regul ari zed solutions discussed earlier can be conputed
iteratively. However iterative nethods are resorted to when the
I nverse operator is not well defined. For exanple in Wener
filtering the operator (T'T + aQ'Q)~! nmay not be wel|l defined for
sonme operators T and Q Let us consi der one such problem where a
regul ari sed solution is conputed iteratively.

Consi der the problem of solving the Fredholm's equation of
the first kind. It is required to conpute g(x) given f(y) , where
R is an ideal low pass filter and it is known that g(x)eCgge-

The method of POCS can be applied for conputing a solution. In



fact, as we shall show later, the nethod can be nodified to
conpute a quasisolution even if f(y) is noisy (See Chapter 5).
VW shall now see an approach using sone energy constraints for
t he noi se and reconstructed signal [30].

The problem is to conpute g(x) such that |£-Rg|?<|n}? and
lgll2<g2 for given |n| and E A though even this problemcould be
sol ved by the nmethod of POCS it was refornulated to

Min (|£-rgl? + (lIn]2/E%)|g]?) (1.37)
Note that we have conme across this problem earlier while
di scussing Wener filtering. Here the relaxation paraneter is
n2/E2. After suitable nmanipul ation we can show that the desired
solution satisfies the follow ng equati on [30]:

g = Pegc(PLa+(1-[nf|2/E2) (1-P) Peg ) s (1.398)
where Pgsc and P, are as defined in (1.36) and (1.30) . Moreover
the following iterative schenme was shqvvn t o converge:

gk = Pegc{Ppa + (1-Inf2/E2) (1-Pp) PegcOk-11} s (1.39)
where gy is result of the k-th iteration and g4 = O.

A simlar approach was used in [31]. Here the non-
negativity constraint was sought to be applied. This can be done
in an iterative procedure by sinply setting all the negative
values in g, to zero. These nethods have not been extended to
t he case where nore than two convex sets are involved. Such a
situation occurs in image reconstruction from digital hol ograns

which will be discussed | ater.

18 Sensor Array Imaging (SAl)
181 A Typicd SAI System

Sensor array inmaging (SAl) can be formul ated as a probl em of



nunerically solving the Fredholm's equation of the first kind. In
this thesis we shall consider nainly one instance of SAl, namely
di gital hol ography. W shall now di scuss sone of the basic
principles of SA.

Fig.1.1 shows the block diagram of a typical sensor array
I magi ng system The received signal is the transmtted or
reflected wavefield fromthe object of interest. This signal is
first sensed by a sensor array, which converts the incom ng
acoustic or electro-magnetic wave into an equivalent electrica
form by a process known as transduction. Detection which foll ows
next is the process of digitizing the electrical signal so as to
be able to store it in a digital conputer. Fromthe data thus
collected the wavefield at the object plane of interest is
conputed by nmeans of suitable inverse transformation. This is

known as spati al processing.

182 |Issues in SAI

Since all sensor array imaging systens foll owthe sane basic
procedure there are a nunber of issues that are common to all of
them Consider the input to the systemfirst. Due to noise and
ot her medi um di sturbances this signal is not the actual reflected
or transmtted signal fromthe object plane but a corrupted form
of it. Mreover the transformation the signal undergoes in its
path from the object plane to the receiver is known only
approximately. Hence in practice it is alnost inpossible to
recover the original object wavefield accurately. Noise al so
creeps in through the poor fidelity of the sensors. But the nost

i nportant problemw th sensor array inmaging systens is that, due



to the small nunber of sensors the received signal is known only
at a few points. That is, we have problens of poor sanpling and
truncation. In fact the goal is to obtain an acceptable quality
of image using as few sensors as possible. In the detection stage
the issue is the level of quantization. Fine quantization
requires high fidelity sensors and preci se analog to digital
converters, neither of which I's economcal. Coarse

guanti zation, on the other hand, vyields poor results since the

data i s not accurate.

1.8.3 Ill-Posed Nature of the SAl Problem

W consider sensor array imaging(SAl) as an illustration
of finding solutions to ill-posed problens. The problemin SAl is
to reconstruct an inmage fromthe data collected by an array of
sensors in a certain fashion. SAl is an ill-posed problem the
ill-posed nature of the problemarising due to (a) the sparsity
of data, (b) noise in the data and (c) inadequate know edge of
t he process of inaging.

The sparsity of the data results in a |arge nunber of
solutions that could have given rise to the known data. Thus the
solution set is large and two possi bl e candi date sol utions could
be very different fromone another. Consider the set

Ca = {(g(x): £(y) = Tg(x), for £(y) known for yer,} (1. 40)
where T:c,-C,. For the problemto be well-posed, c;nc, nust
contain a unique elenent. However if the data were sparse, ¢4 is
a large set in that the diameter of c, is large. Hence cinc, will
admt very different feasible solutions. In other words the

variance of the estinmate of an arbitrary solution will be quite



| arge. This, for obvious reasons is not desirable.

Noi se in the data causes ill-posedness because there may be
no solution (wth the known constraints) that could have given
rise to the known data. Mre formally, let T:Cy+C, be a nmapping
fromc¢y to ¢,. Let f be the known noisy data. There nmay be no
geC, such that f = Tg. In other words ¢y;nc; may be enpty. Now if
the data were sparse the size of ¢, will be large. Hence even in
t he presence of noise, if the initial data is sparse the solution
set may be nonenpty. Notice that the effect of noise is to shift
the set ¢, so that there is no point of intersection. |f the
data were sparse, C, is expanded and hence it is likely that
¢,nC,; will have a common point of intersection. This suggests one
way of noise reduction and was used in [42] for i mage
reconstruction from digital holograms. Here the data is nmade
del i berately sparse by discarding the | ess significant phase
bits. The drawback of this nethod is that it does not make full
use of the known initial data. A nore appealing solution is to
find gec; such that [[£-Tgllis minimzed for an appropriate norm

| nadequat e knowl edge of the transformation operator T will
have the sanme effect on the solution set as noise. Iterative
met hods are sonmetinmes not used when T is not known accurately,
since the error mght propagate over successive iterations [44].
In our work we shall not consider this issue, as we wish to

focus our attention on the conputational aspect of the problem

184 Dédiinition d a Solution in SAl
A solution in SAl is one that could have given rise to the

known initial data and portrays the imge of a real and possible



object. Hence the set of possible objects nust be characterized
precisely. This is a conplex task and no successful attenpt has
been reported for any (practical) donmain. Sone sinple heuristics
are possible. For exanple, the reconstructed inmage nay be known
to have | arge honogeneous regions, or to be enclosed within a
known conpact region of support. Utinmately the goodness of a

sol ution depends on how nuch relevant information it gives to

t he human vi ewer.

1.85 Mapping SAl to Finding a Common Point of « Collection of Sets

SAl is a problemof finding an inmage function that (a) coul d
be a possible solutionto the initial data and (b) has sone
properties known a priori. Hence it is a problem of finding a
common el enment of two or nore sets. Mireover if the sets are
convex then the POCS nethod can be used. |If the initial data is
noi sy then there nmay exist no inmage function with the constraints
known a priori satisfying the initial data. Here the nethod of
proj ection onto noni ntersecting convex sets can be applied. This
nmet hod converges to a function whose exact nature is not
understood fully. In the case of two nonintersecting sets it can
be shown that it converges to a quasisolution. For nore than two
sets the nethod converges to a fixed point of the operator
applied in the nmethod. Experinental verification is required to

show that the fixed point is indeed acceptabl e.

186 Imaging and Image Processng
Some i mage processing techniques |ike histogram

equal i zati on, edge enhancenent and mean/median filtering for



noi se reduction can be used on an image to bring out sone of its
essential features. These met hods, while good, are not sufficient
to overcone the poor resolution due to the sparsity of the data
and noi se. Mboreover image processing nethods are not applicable
on poorly sanpled inmages. Thus noi se cl eaning and i nprovenent of

resol uti on nust be done during imaging itself.

1.8.7 Image Characterization

For a human being who is famliar with the class of objects
being inmaged it is not very difficult to elimnate certain i nages
as being unrealistic. But it is difficult to characterize
formally the class of plausible inmages. Hence attenpts have been
made to take recourse to heuristics that are nore often than not
effective in elimnating inplausible imges, and retaining the
pl ausi bl e ones (5), (39]. The_use of such heuristics mght, in
sone cases, lead to divergence in the iterative reconstruction

procedure. Hence they nust be enpl oyed careful ly.

1.9 Digital Holography
191 A Simplified Modd

In order to study the issue of inmaging fromsparse data, we
consider the inplenmentation of a typical SAl problem nanely
digital hol ography. A sinplified nodel of the system is used so

as to focus our attention on sone of the problem solving issues

menti oned earlier.

1.9.2 Description o Imaging Setup

In this thesis we shall consider the problem of inmage



reconstruction fromdigital holograns [(15],(63). Fg.l.2 shows
a typical digital holographic system A plane wave is incident
on the object plane and the reflected wave is received at the
receiver plane by an array of sensors which transduces the wave
at the receiver point intoa suitable electrical signal, which
is then digitized and fed into a conputer. The received signa

I's assuned to be a steady state periodic signal of one tenpora

frequency and hence the nagnitude and rel ative phase at every
point can be neasured. The goal is to conpute the field
distribution on the object plane using the phase and nagni t ude
data thus collected. The intensity of the field distribution in
t he obj ect plane gives the i mage of the object.

Thus the problem of image reconstruction from digita
hol ograns i s one of signal recovery frompartial and noi sy data.
Hence without restricting the class of reconstructed signals no
worthwhile signal recovery is possible, since for any sensor
array data it is possible to conjecture a |arge nunber of widely

different signals that could have given rise to the known dat a.

1.9.3 Theory of Imaging

The theory of imaging can be derived fromthe Rayleigh-
Sommerfield equation [11]. Let f(x,y) be the wavefield at the
recei ver plane and g(x,y) be the wavefield at the aperture also
referred to as object plane. Neglecting constant factors the
rel ati on between f£(x,y) and g(x,y) can be given by the follow ng
equation after suitabl e approxi mation [51]:

1 0

£(x,y) = — [[ 9(xg,¥5)exp(j2nr/r) dx,dy,, (1.41)
JAY o0



wher e

r = [(x-%X5)% + (y-yo)2 + 2271/2, (1. 42)

z i s distance between t he object and receiver pl anes,
and A Is the wavel ength of the transmtted wave.
(For a derivation of the above equation from first principles
[11] is a good reference). Note that the object and image pl anes

are assumed parallel to one another.

1.10 Outline of Thesis

In this thesis we consider the problens of sparse data and
noi se for a particular inplenmentataion of sensor array inaging
namely digital hol ography. We have seen that sensor array
imaging i s an ill-posed problemand we have di scussed sone ways
of solving ill-posed problens. Sonme of these nethods are
considered in the context of inaging through digital hol ography.
Prior to discussing the solutions we have to investigate the
nature of digital holography to decide what are the nore
fundanental issues. W decided to use a sinplified nodel of an
actual inmaging setup in order to study the conputational problens
i nvol ved. Sinulation studies show that accurate know edge of
paraneters |ike wavel ength, sanpling rate and distance between
obj ect and receiver plane is necessary for a good reconstruction
of the inmage of the object. W also show that as the nunber of
sanples is reduced the quality of the reconstructed imge
degrades rapi dly.

W restrict our attention to the problem of poor sanpling



and noise. The sanples are sparse because the receiver array is
usually small and contains only a few sensors. However we need to
have nore information regarding the object field to obtain a
'good!' quality for the reconstructed imge. One way of doing
this, which we have not considered, is to put sone restrictions
on the class of objects to be imaged. Such nethods have been
attenpted with varying degrees of success for some narrow
domains. In our work we have not considered any particular
domai n although we feel that a good image reconstruction
procedure is 'good' because it yields neaningful information to
t he human vi ewer. Thus al though we shall prove convergence of
our iterative procedures with respect to the squared norm we
nust point out that squared error is not a good indicator of the
quality of the reconstructed signal

The other way of obtaining nore information would be to
collect mpre data on the same sensor array by altering the
transformati on operator. This is achieved by changing sone
parameters that are involved in the transformation. The paraneter
that we have in mnd is the wavelength. For some practica
reasons to be discussed |later we do not consider changing other
paraneters. Thus on the sanme array many different set of data can
be obtained for the same object. The data thus collected can be
conbi ned to produce a better quality image. Earlier nmethods
using, what will henceforth be referred to as nultispectra
data, conmbined the reconstructed imges for each set of data as
a weighted sum In this thesis we have nade use of such data in
an iterative algorithm so that the conputed solution satisfies

the known data. Mdireover iterative nethods are better because
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many nonlinear constraints can be inposed on the solution.
Simul ati on studi es showed that this nmethod is indeed effective in
reconstructing a good quality inage.

We consider next the problem of noise. Sonme existing
nmet hods of inmage reconstruction in the presence of noise are
investigated. I n particular we study the perfornmance of the PGCS
method for noise reduction. These nethods are not found
satisfactory as they require too nuch a priori know edge
regardi ng the signal. Hence we devel op a new nethod of image
reconstruction in the presence of noise. This nethod, which we
call the nethod of projection onto nonintersecting convex sets,
is found to pgrforn1nuch better than the nethods considered
earlier, and yet required little additional data about the
signal. Signal reconstruction from phase has received
consi derabl e attention in recent years (16),(17),(27),(52),(67).
VW address in this thesis the problem of signal reconstruction
from the noisy phase of digital holograns. The relative nerits
of quanti sed phase over full phase are also discussed. W
conclude this report by summarizing sonme of the new results in
this thesis. Sone issues that warrant further investigations are

al so poi nted out.

1.11 Thesis Organization

The rest of this thesis is organized as follows. 1In
Chapter 2 we shall discuss two nethods of reconstructing an
image from its hologram These nethods are known as backward
propagati on and Fresnel/Fourier transformrespectively. V¢ shall

see the need for simul ati on studies. A description of the
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simul ation setup and the results of some prelimnary
i nvestigations are presented. Chapter 3 describes a way of using
the data collected at nultiple frequencies. This method is
suggested as a means to overconme the sparsity of sanpling
points. Sinmulation studies bring out the ef fectiveness of our
proposed nethod. In Chapter 4 we consider the problem of error
in the measurenent of data. Here we assune that the error is
bounded. If the error were due to the addition of random noise
then the boundedness assunption wll not hol d. To overcone
this drawback we develop the method of PONICS which IS
essentially a nodification of the nmethod of POCS. This is
di scussed in Chapter 5 Some sinulation studies are presented to
bring out the efficaciousness of the nethod of PONICS. Chapter 6
di scusses the problem of image reconstruction from phase of
digital holograms. The |ast chapter (Chapter 7) gives a sunmmary
of the thesis. The broad conclusion is that measurenent
conplexity can in some cases be traded for conputational

conplexity wthout losing inmage quality.
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Chapter 2

SIGNAL RECONSTRUCTION FROM DIGITAL HOLOGRAMS

2.1 Introduction

VW view sensor array imaging (SAl) as an ill-posed problem
and consider digital holography as an instance of SAl, where
conditions of ill-posedness can be easily sinulated and studi ed.
In this chapter we describe the nethods of inmage reconstruction
fromdigital holograns and sone practical problens that arise in
I npl ement i ng t hese reconstruction procedures.

As described earlier hologram formation is a function
dependent on the wavel ength and the di stance between object and
I mage planes. Thus these two paraneters must be known a priori.
In addition when the data is digitised, the choice of the
sanpling rate, the quantisation and the choice of the conponents
of data such as phase and magnitude nust be nade. If the data
available is noise free and precise, and if sufficient quantity
of data is avail able, image reconstruction fromdigital hol ograns
would be fairly sinple. In practice such ideal conditions are
sel dom encountered. In fact in sonme applications even the
wavel ength and the di stance between the object and inage planes
are not known precisely. Studies are nade to investigate the
guality of the image reconstructed under various adverse
conditions. It is found that that wavel ength and sanpling rate
nmust be known precisely. This result can be explained
theoretically. Mreover as in other signal recovery problens we

find that phase is nore inportant than nmagnitude for a good



reconstruction. I|nadequate nunber of sanples results in poor
quality of the reconstructed inage.

The sparsity of sanples arises due to the inevitably snall
number of sensors. However with a few sensors it is still
possible to collect a |arge number of data and Chapter 3
di scusses a new nethod of collecting and using the data. The
other inportant aspect of the problem of digital holography is
noi se. Standard methods of of filtering are inadequate for our
probl em and hence sone new nmet hods are proposed in Chapter 4 and
Chapter 5.

There are two nethods of reconstructing a signal in digital
hol ography namely Fresnel/Fourier transform and backward
propogation. A discussion of these nmethods of inmage reconstruc-
tion follows in the next section. The issues of performance of
these methods with regard to resolution of the reconstructed
i mge and computational conplexity are also addressed. In
Section 2.3 we point out the advantages and i nadequacies of
simul ati on studies. We nake use of sinulation studies in all our
investigations. A description of our sinulation setup and the
results of our prelimnary investigations with regard to noise,
sparsity of data and error in neasurenent of paraneters are
presented in Section 2.4. W conclude with a summary of the
probl ems encountered in digital holography and point out the

i ssues which we shall address in the rest of our thesis.

2.2 Theory of Image Formation

The equation relating the field distribution on the object

pl ane denoted as g(x,y) and the field distribution on the



recei ver plane denoted as f(x,y) IS given as:

1 o
f(x,¥) = — Jf g(xg,¥o)exp(j2nrr/x) dxody, (2.1)

JAr -
wher e N
r = [(X"Xo) + (y- YQ)Z + 22]1/2

x,y are the co-ordinates along the x and y axes in the
recelver plane

Xo1¥o are the co-ordinates along the x and y axes in the
obj ect plane

z is the distance between the image and object plane

k = 2n/x is the wavenunber
and 2 is the wavelength of the transmtted wave.
The above equation can be viewed as a convolution. Hence, we can
wite

£(x,y) = h(x,¥) * g(x,y) (2.2)
where * denotes convolution and

h(x,y) = exp(jk(x2+y2+z2)1/2y, (2.3)

2.2.1 Fresnel/Fourier Transform
When r z'z[1+(x—xo)2/(2z)+(y—yo)2/(2z)], Some approxi mations
can be made in (2.1) resulting in the following equati on:
1 ©
f£(x,y) = e h'(x,y) exp(jkz) {i [h' (Xq,Yo) 9(Xg5,¥o)]
) exp (j2m (xx +YYy) /22 )dxdy,

(2.4)
wher e

h' (x,y)= exp(I(x®+y?)/(rz)).
Note that the above approximation holds only in the
Fresnel zone where D<z<D3/x and D is the size of the aperture
along the x or y axis. In the above equation the integral is

t he Fourier transformof the termwthin square brackets. Thus



the computation of f£(x,y) involves one Fourier transform
operation if we use (2.4) to compute f(x,y) from g(x,y). Nw
let ax and axg represent the sampling interval in the object
and image planes respectively along the x-axis and ay and AYg
represent the sampling interval in the object and image planes
respectively along the y-axis. Let N represent the number of
samples along every row and column. For proper computation of

the Fourier transform the following relations must hold:

NAX,

AzZ/A% (2.5a)

NAYy, = Az/Ay (2.5b)
Furthermore, if the phase is to be computed accurately, we have
[58]:

Axo < Az/lox (2.6a)

AYg < Az/lgy (2.6Db)
where 15, and 15, are the size of the aperture and may be given
by l,4=Naxg, and 1°y=NAyo. Hence from (2.5a) and (2.6a) we derive
AX, < AX. Similar relations may be derived if it is required
to compute g(x,y) from f£(x,y). In this case the resolution in
the reconstructed image is lower than the sampling interval on
the receiver plane. The advantage is that a large object can
be imaged using a small array. |If the phase of £f(x,y) hasto
be computed from g(x,y), Or vice versa, then the sampling
interval on both the planes must be equal and

AX = Axy = (rz/N)1/2 (2.7a)

Ay = Ay, = (rz/N)1/2 (2.7b)

2.2.2 Backward Propagation

Another method of computing f (Xx,y) from g(x,y) is by
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applying the convolution theorem [33] and is referred to as
backward propagation [51]. Here the hol ogram or the received
signal can be viewed as a linear shift invariant system Hence
using convolution theoremwe can wite

F(u,v) = G(u,v)H(u,v) (2.8)
where F(u,v), G(u,v) and H(u,v) are the Fourier Transforms of
f(x,y), 9(x,y) and h(x,y) respectively. H(u,v) is given as [51]:

H(u,v)

exp(jkz(1 - (Au)2 - (Av)z)l/z), for (Au)2+(xv)2 <1
= 0, ot herw se (2.9)

Conmput ational |y backward propagation is nmore intensive since it
i nvol ves two Fourier transform operations. However, unlike the
previous case, the sanpling interval on the receiver plane is the
same as the sanpling interval on the object plane and is not
dependent on the distance between the planes or the wavel ength

Hence backward propagation is nore anenable for use in iterative
met hods where f£(x,y) and g(x,y) have t o be conputed one from the
other repeatedly. In view of this we shall consider only

backward propagation in the rest of the work

2.3 Need for Simulation Studies

As nentioned in the previous chapter the problem in inaging
due to the followng factors: (a) sanpling, (b) truncation, (c)
quanti zation and (d) noise. Gven a fixed nunber of sensors there
are various ways of configuring an array. It is possible to place
them far apart and thus increase the extent of inmaging or they
could be kept closely so as to inprove the sanpling rate. The
results in the two cases may be quite different. Again, the |eve

of quantization is an inmportant and crucial decision to be made.



If the quantization is high then, in general, the reconstructed
I mage quality will be better, but will involve |arge overheads in
terms oOf precise transducers, anolog to digital conversion and
communi cation lines. Finally the problemof noise nust be
considered and suitable nethods nust be applied to reduce its
ef fects.

In digital holography there is yet another inportant
consideration and that is the neasurenent of paraneters such as
di stance, wavelength and the spacing between sanpl es. I n
applications such as underwater acoustic imaging (for which
digital holography is used) the wavelength will be known quite
accurately, but the neasurenent of distance nay be inaccurate.
In sonme other applications such as geophysical prospecting
[37]1,(38] it is the wavelength that is the suspect. As we shall
soon see, the effect of wong neasurenent of paraneters wll
significantly affect the quality of the reconstructed i nage.

In order to study each of the above nentioned problens we
need to conduct experinmental studies. But such a propositionis
not feasible due to practical considerations. In the first place,
in an experinmental study we will have to consider many ot her
extraneous factors and hence we will not be in a position to
I solate the i ssues for study. Mboreover an experinental set up is

too costly and it is not possible to nodify the setup at wll

once a physical systemis built. Hence we take recourse to
sinmul ati on studies. But we do add a note of caution. In an
experinmental study we will conme across problens that mght have

been overlooked in a sinmulation study and hence ultimately

experinmental studies are needed before an actual systemis built.



2.4 Description of Simulation Studies

In this section we describe sinmulation studies to
denonstrate the effect of (a) error in the neasurenent of
paraneters, (b) noise in phase and nagnitude and (c) sparsity of
sanples on the quality of the reconstructed inmage. |n what
follows we will consider each of themseparately. However, |et us
first give a brief description of our conputer simulation setup

The equation used for simulating the hol ogramis gi ven by

f(iax,jay) = = I h(max,nAy) g(iax-max, jay-nAy) (2.10)
n n

Here h(max,nay) i S the discrete version of h(x,y) givenin (23).
The steps in the reconstruction of an inmage fromthe field data
f(iax,jay) are :

(a) Conpute the DFT of f (iax,3jay) as F(mau,nav)

(b) Divide F(mau,nav) by exp(jkz(1l-(imau)2-(inav)?)2/?)

(c) Conpute the inverse DFT of the result to obtain the object

wavefield distribution.

A 64x64 pixel image shown in Fig.2.1(a) is used for our
studies. The image matrix is appended with zeros to forma
128x128 point object field matrix which is used to generate a
128x128 poi nt hol ogram The default val ues of the paraneters z,
A and ax are z=2000.0 UNits, x=0.25 units and ax=0.5 units.
If all the received field data is used for inage reconstruction
we get back the original inage as shown in Fig.2.1(b). Throughout
the remai ning studies only 64x64 points corresponding to the

obj ect region of the reconstructed i nage are shown.
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24.1 Hras in Measurement of Parameters
A. Digtance

Measurement of the distance z between object and receiver
plane is usually not very accurate. Notice in (2.8) that any
change in z changes linearly the phase function of H(u,v) which
effect is reflected in G(u,v) and hence in g(x,y). It has been
wel | established that the phase of the Fourier transform of a
real val ued signal captures nost of the information of the signa
while the magnitude plays a relatively insignificant role
(16],[68]. Let az denote the error between the actual and
measured val ues of z. Now the Fourier transform G(u,v) of g(x,y),
the object wavefield will contain the additional phase factor
exp(jkaz(1-(nu) 2-(av)2)1/2) . Hence the degradation due to error
in the nmeasurenment of 2z depends on the absolute value of error
and not on the relative error with respect to the actual
distance. This inplies that for imaging objects farther away the
measurenent of z wll have to be nore accurate to retain the same
quality for the reconstructed inmage. We denonstrate this through
simul ati on studi es.

Fig.2.2 shows the reconstructed imges when there is an
absolute error of 2.0, 20.0 and 200.0 units when the actual
di stance between object and image plane is 2000.0,. 10000.0 and
20000.0 wunits. Notice that inmmaterial of the actual distance the

reconstructed i mages appear identical for the sane absol ute error

in distance.

B. Wavelength

| n underwat er acoustic imaging, where digital holography nay



be used, the excitation frequency is usually known accurately
since it is under operator control. However the velocity of sound
in water changes wth depth and tenperature [55) and hence there
may be small errors in the computation of the wavelength. In
other applications like seismc exploration the excitation
frequency is known only approximtely and estimation of the
wavel ength becomes a mmjor issue. Notice in (2.8 that ax occurs
in the denom nator of the phase function of H(u,v). Hence any
error in the neasurenent of wavelength is going to affect the
phase of H(u,v) significantly. This inplies that the quality of
the image reconstructed will also be poor.

Si mul ati on studies bear this out as can be judged from
Fg 23 Fig.2.3(a)-Fig.2.3(d) showthe reconstructed imges when
the error in wavel ength ranges between 0.1% and +10%. For a |large

error (109 in wavelength the reconstructed imge is not

intelliglible at all.

C Spacing between Sensors
The spacing between sensors is usually known. But we still

exam ne the effect of error in the nmeasurenent of ax (the spacing

bet ween adjacent sensor elenents) on the reconstructed inage.
Note that u and v are inversely related to AX Therefore for a
smal|l error in AX there is a large change in the phase function
of H(u,v). Hence the quality of the reconstructed inage can be
expected to degrade significantly for a small error in the

measurenment of spacing. This is seen'from Fig.2.4(a) where there
is a +0.1% difference between the actual and estimated val ues of

AX. Fig.24(b)-Fig. 24(d) show simlar results, where the error
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bet ween the actual and estinmated values of ax is 1%, 5% and 10%
respectively.

These three studies show that the quality of the
reconstructed inmages is very sensitive to errors in the
measur ement of paranmeters. This is because when there is an
error in the measurenent of paraneters the actual system

transfer function is different fromthe known one

24.2 Noise and Era in Measurement of Sgnal

We now consider the effect of error in the measurenment of
signal and the effect of random noi se introduced by the nedi um
Wiile the former error can be to sane extent taken care of by
t he use of sophisticated hardware, the latter - noise by nmedium -
is beyond our control although we can attenpt to reduce its
effects. In what follows we will present results of simulation
studies, to see the effect of error and noise in the received

data on the reconstructed inage

A Hra in Measurement of Magnitude

Let |f(x,y)| represent the magnitude of f(x,y). Fig.25(a)
shows the reconstruction when the neasured value of |f(x,y)| has
a random error of at nost 10% of its true value. Fig.2.5(b) -
Fig.2.5(d) show the results when the error is 25%, 50% and 75%
respectively. Even for large errors (50% and 75% in the

nmeasurenment of magnitude the quality of the reconstructed inmage

is still good.
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B. Error in Measurement of Phase

Here we shall study the effect of inproper neasurenment of
phase of f(x,y) on the reconstructed image. Fig.2.6(a) shows
the result of reconstruction when the error in phase varies
random y between /16 and -m/16. Fig. 2.6(b) - Fig. 2.6(d) show
the result when the error is n/8, w/4and w/2 respectively. For
| arge errors (wm/4 and w/2) in the measurenment of phase, the
quality of the reconstructed i mage is poor

As a result of these two studies we see that noise in phase
degrades the imges nore than noise in magnitude. Hence phase
is nore inportant than magni tude. However in any practical setup
measur ement of magni tude and phase are not nmade separately.
Hence we shall consider the effect of.error in the neasurenent

of signal as a whole.

C. Noise

Let us now present the results of the study carried out to
investigate the effect of noise in the received data on the
reconstructed image. Gaussian distributed random noi se was added
to the received data and Fig.2.7 shows the result of

reconstruction for different | evels of noise.

2.4.3 Reconstruction from Sparse Data

In the studies nentioned earlier all the 128x128 data
generated was used for reconstruction although the data itself
may be noisy or the paraneters may be known inaccurately. |
only part of these sanples are known then, even if the data were

noi se free, the reconstructed inmage quality wll be poor. The
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iterative method of reconstruction using sparse data will be
given in the next chapter. Here we shall present sinulation
studi es of reconstructing i mages using sparse data by a straight
forward application of the reconstruction procedure used until
now. Were the sanple values are not known a value of zero is
assumned. Fig.2.8(a) shows the reconstructed imge when every
alternate sanple (64x64 sanples) is known. Fig. 28(b)-Fig. 28(d)
show the result when only 32x32, 16x16 and 8x8 sanples
respectively are known. Thus we see that as the nunber of sanples
decrease there is a degradation in the quality of the

reconstructed inage.

2.4.4 Recondruction from Phase and Magnitude

We consider here another form of partial data namely phase
only and magnitude only. Fig.2.9(a) and Fig.2.9(b) show the
result of using phase only and magnitude only respectively of the
received data. Note that while the essential features of the
original image are seen in the reconstruction from phase only the
reconstruction from maginitude only is not intelligible. This
reiterates our earlier conclusion that phase is nore inportant
than magnitude for the reconstruction of an inmage from digital

hol ogr ans.

25 Inadequacy of Direct Methods

In this chapter we have focused our attention on digital
hol ography and have discussed the problens that arise in a
typical imging setup. A brief description of the theory of

i mgi ng and two methods of reconstructing the imge fromthe



transformed signal was presented. It is seen from the studies
conducted that direct methods of inmage reconstruction are
i nadequate to handl e the probl ens of noise and sparse data. These
probl em are the subject of the rest of the thesis. W shall
investigate the problem of sparsity of sanples in the next
chapter. In Chapter 4 we shall discuss sone nethods to overcone
t he problem of bounded error in neasurement of the signal

Subsequently in Chapter 5 we shall consider Gaussian distributed

random noi se and suggest an iterative nethod to reduce the noise

effects.
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Fig.2.1

(a) (b)

Oiginal and reconstructed image: (a) A 64x64 pixe
| mage appended with zeros to forma 128x128 poi nt data
array. denoting the object field distribution. (b)
| mage reconstructed fromthe the sensor array data. In
this case the reconstruction is exact. Note that the
I mge part corresponding to the object is only the
m ddl e 64x64 poi nts shown in the square.



AZ=2 AZ2=20 Az=200

z2=2000

z=10000

z=20000

(9) (h) (1)

Fig 22 Ef fect of errors in the neasurenent of di stance, z. The
figures are given for three different distances between
t he object and the receiver planes and for three'cases
of errors. It is to be noted that generally the quality
of the reconstructed i nage depends on the absol ute er-
ror in the distance measurenent.

46



(b)  (e) (d)

Fig. 2.3 Effect of errors in the measurenment of wavel ength, A:
(a) for 0.01% error in A, (b) for 0.1% error in A, (c) for 1%er-
ror in A and (d) for 10%error in A Even for a small (0.01% er-

ror in x the degradation in the reconstructed imge is sig-

ni ficant.

E N

.’ T
11%'
LR
N
\ot-t )

-
4

2 .
gl » .

(d)

Fig. 224 FEfect of random errors in the measurenent of spacing
(ax,8y) between sensors for three different cases: (a) for 0.01%
error in spacing, (b) for 0.1% error in spacing (c) for 1%er-
ror in spacing and (d) for 10%error in spacing. The error is as-
suned random within the limts specified.The figure shows that
even for a small(0.1%) error in spacing causes significant

degradation in the quality of the reconstructed i mage.
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Fig.2.5 Effect of random errors in magnitude of the received
field for four different cases: (a) for nmaxi num 5% er-
ror in nagnitude, (b) for mnaxi mum 10% error in mag-
ni tude, (c) for maxi mum 25% error in magnitude and (‘d)
maxi mum 50% error in magnitude. The error at each
point is randomwithinthe limts specified. The figure
shows that even large(50%) errors in nmagnitude do not
seemto affect the quality of the reconstructed inage
significantly.

a0

‘4

(a)
Fig.2.6

Fig.2.7

(d)

Effect of random errors in phase of the received field
for four different cases: (a) for phase errors of
+r/16, (b) for phase errors of *x/8, (c) for errors of
tw/4 and (d) for phase errors of #*wx/2. The error at
each point is randomwi thin the [imts specified.

(b)

(b) (c)

Ef fect of random noise in the measured conplex field
data for three different cases of signal to noise
ratios(SNR): (a) for sNR=10 dB (b) for sNrR= 0 dB and
sc) SNR=-10 dB. Since both nagnitude and phase are af-
ected, there is a progressive degradation in the
quality of the reconstructed i nage as SNR decr eases.

48



FHg29

(4)

| mrage reconstruction from sparse data for four dif-
ferent cases: (a) from 64x64 points of received data,
(b) from 32x32 points of received data, (c) from 16x16
poi nts of received data and (d) from 8x8 points of
recei ved data. The data is created by appropri ate down-
sanpling and setting the values in between to zero. As
expected, there is a systenati c degradati on as the num

ber of sanples of data are decreased.

(b)

| mage reconstruction fromparti al

tion from nagnitude only and (b)
phase only. The results show that significant features
of the original image are preserved in the reconstruc-
tion from phase, indicating that phase is nore inpor-
t ant t han magnit ude.

data: (a)

reconstruc-
reconstruction from



AZ=2 AZ=20 A2=200

z=2000

(a) (b) (c)

z=10000

z=20000

(9) (h) (1)

Fig 2.2 Effect of errors in the neasurenment of distance, z. The
figures are given for three different distances between
the object and the receiver planes and for three'cases
of errors. It isto be noted that generally the quality
of the reconstructed i mrage depends on the absol ute er-
ror in the distance neasurenent.
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(a) (b) (d)

Fig. 23 Effect of errors in the neasurenent of wavel ength, i:
(a) for 0.01% error in x, (b) for 0.1% error in A, (c) for 1%er-
ror in x and (d) for 10%error in x. Even for a snmall (0.01% er-
ror in x the degradation in the reconstructed imge is sig-

ni ficant.

e
(d)

Fig. 2.4 Effect of random errors in the neasurenent of spacing
(ax,ay) between sensors for three different cases: (a) for 0.01%
error in spacing, (b) for O.1%error in spacing (c) for 1%er-
ror in spacing and (d) for 10%error in spacing. The error is as-
suned random within the limts specified.The figure shows that
even for a small(0.1%) error in spacing causes significant

degradation in the quality of the reconstructed inage.
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(a)

Fig.2.5

(P) (c) (d)

Effect of randomerrors in magnitude of the received
field for four different cases: (a) for maxi num 5% er-
ror in magnitude, (b) for naximum 10% error in mag-
nitude, (c) for maxi mum 25%error in magni tude and’(dy
maxi mum 50% error in magnitude. The error at each
point is randomwi thinthe limts specified. The figure
shows that even large(50%) errors in nagnitude do not
seemto affect the quality of the reconstructed inage
significantly.

(a)
Fig. 2.6

Fig.27

(b) (d)

Ef fect of random errors in phase of the received field
for four different cases: (a) for phase errors of
tr/16, (b) for phase errors of +w/8, (c) for errors of
tr/4 and (d) for phase errors of *n/2. The error at
each point is randomwithin the limts specified.

(b) (c)

Effect of random noise in the neasured conplex field
data for three different cases of signal to noise
ratios(SNR): (a) for SNR=10 dB (b) for SNR= 0 dB and
?c) SNR=-10 dB. Since both nagnitude and phase are af -
ected, there is a progressive degradation in the
quality of the reconstructed i mage as SNR decr eases.
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Fig.2.8 |Image reconstruction from sparse data for four dif-
ferent cases: (a) from 64x64 points of received data,
(b) from 32x32 points of received data, gc) from 16x16
poi nts of received data and (d) from 8x8 points of
recei ved data. The data is created by appropriate down-
sanpling and setting the values in between to zero. As
expected, there is a systematic degradati on as t he num
ber of sanpl es of data are decreased.
(b)
Fig.2.9 Inmage reconstruction frompartial data: (a) reconstruc-

tion from magnitude only and (b)
phase only. The results show that significant features
of the original inmage are preserved in the reconstruc-
tion from phase, indicating that phase is nore inpor-
t ant t han nagnit ude.
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Chapter 3

MULTISPECTRAL HOLOGRAMS

3.1 Previous Approaches to Sparse Data Problem

I n the previous chapter we saw that as the nunber of sensors
decreases the quality of the reconstructed i mage reduces sharply.
In this chapter we suggest a way of overcomng this problem by
collecting the data at multiple frequencies. W consider for the
present noi sefree data only. Noi se considerations are treated in
t he subsequent two chapters.

Wthout additional information or data it is not possible to
i nprove the resolution of the reconstructed inages. |nformation
regarding the donmain of objects inmaged may help in generating
good quality inmages. It is desirable to describe fornmally the
class of objects being inmaged, since the search space of
solutions for a given sensor array data would then be reduced.
However, as of now, fornal descriptions are available only for a
very restricted class of objects (s1] that do not have nuch
rel evance to any practical situation. It is not our aamto nake
yet another attenpt in that direction. W hope to inprove the
quality of the reconstructed i nage by using additional data and
the know edge that the object is located within a certain known
conpact region, referred to as region of support. In other
words, we assune that the wavefield distribution on the object
plane is zero outside the known conpact region of support. This
assunption, though seldomtrue in any practical situation, I's

however a good approximtion for nost cases. Note that

50



interpolation will not help in increasing the resolution.

Additional data required for better resolution can be
obtained using synthetic aperture methods as in radar and sonar.
The aim in these methods is to get data at a large number of
sampling points by moving the object or sensor array relative to
the other. An example of this type of imaging is computer
tomography. Here the specimen to be imaged is made stationary
and the sensor is moved along an arc or straight line and data
Is thus collected at many points using just one sensor. In
nondestructive testing the specimen is moved relative to the
stationary sensor array. The third method of synthetic aperture
imaging is to move both object and sensor array relative to one
another.

The other method of obtaining additional data, in digital
holography especially, is to generate holograms of the same object
using different excitation frequencies. Earlier attempts
[19],[32],[45]) using this approach were restricted to two or
three holograms. In essence these methods computed a weighted
sum of the images obtained from various frequencies, the
weighting coefficients being chosen on the basis of some noise
and signal statistics. In another approach using multiple
frequencies the object field estimation is done by cross
correlating the sensor array data obtained for multiple
frequencies with the class of all images that are possible for a
particular context [36]. Essentially, in the earlier approaches
to image recovery from multiple frequency holograms, all
manipulations were done on the image domain. Here we shall

consider a way of using arbitrary number of holograms in an



iterative procedure that integrates the process of inmaging with
I mage processing. Holograms thus obtained for the same object at
multiple frequencies are henceforth referred to as nultispectra
hol pgr ans.

In Section 3.2 we shall state what we nean by a solution to
the sparse data problem W shall see that the need for
mul ti spectral holograns arises only because of poor sanpling and
truncation. In other words if data is sanpled adequately over an
infinite plane an exact reconstruction is theoretically
possi ble, even for such data <collected at only one frequency.
We then present argunments to show that the size of the solution
set may be expected to decrease as the nunber of frequencies for
which the data is collected is increased. W propose to use an
iterative procedure based on the nethod of POCS for imge
reconstruction from nultispectral holograns. As mentioned in the
previous chapter there are two methods of reconstructing an
image from a hologram nanely the Fresnel/Fourier transform and
t he backward propagation method. We shall di scuss the
suitability of the backward propagation nethod conpared to the
Fresnel/Fourier transform nmethod for the iterative procedure.
Al though the method of POCS for image reconstruction from
nmul ti spectral holograns will be discussed in detail in Section
3.3, suffice here to state that it is simlar in many respects
to some of the well known iterative procedures for
deconvol ution, bandlimted interpolation,etc. We shall discuss
two different ways of applying the POCS nmethod nanely the
sequential and parallel method. W can show strong convergence

for both these nethods. Simul ation studies presented in



Section 34 show that the quality of the reconstructed inage
i mproves significantly with the increase in the nunber of
frequencies at which the holograms are collected. The main
drawback of the proposed method is its inadequacy to handle

noise. This is considered in the subsequent two chapters.

32 A Solution to the Sparse Data Problem
3.2.1 Problem Statement
The functions of interest in this study are elements of
Lyxo () space of all two dinensional functions square integrable
over fi. The associated Hilbert space is the quotient space
induced by the equivalence relation llgy-g, = o, where
gq,92€Loxo ()« The problemis to conpute g(X,Yy)eCege Such that
fo(x,¥) = g(x,¥) * h(x,y) (3.1)
for f£5(x,y) known on (x,y)eIp and h(x,y) as given in (2.4). Here

Iy is a conpact set of points for which the data is known.

3.2.2 Uniqueness of Solution

Let us consider the case when all the data f (x,y) is known,
in the equation (2.1) . Notice that according to (2.2) , (2.7) and
(2.8) hologram formation may be viewed as an ideal |ow pass
filter. We can show that if the solution set consists of bounded,
pi ecewi se continuous functions wth conpact regions of support,
then the solution is unique. An exact solution may not be
possi bl e on account of noise. In such cases it can be shown that
a quasisolution is unique. The latter result wll be discussed
in Chapter 5 Here we consider the noise free case only.

For ease of notation let us consider the one dinensional



problemfirst. This may be posed as follows: Let

f(x) =g(x) * h(x). (3.2)
Let H(w), the Fourier transform of h(x), vanish outside sone
conpact subset of the real line. In other words, H(v) = 0, for
wgB,, Wwhere B, 1is some conpact subset of the real 1line, and

H(w) is piecew se continuous and bounded in Bg,. Let the solution

set be
Cege = g(x) : g(x) =0, xecp,
and g(x) is piecew se continuous), (3.3)
wher e Co s a conpact subset of the real line. It is required

to conpute g(x) given f(x). Using convolution theorem we can
wite

F(v) = G(w) -H(w), (3.4)
where F(w), G(w) and H(w) denote the Fourier transforms of f(x),
g(x) and h(x) respectively. Since H(w) iS bandlimited, F(w) iS
also restricted to the same band as H(w). Hence,

G(w) = F(w)/H(w), for weB (3.5)

W
Since g(x) has finite support its Fourier transform is
analytic[34] and hence by analytic continuation G(w) can be
conputed uniquely.

This result can be extended to the two di nensional case. Thus
if g(x,y) is a piecew se continuous function belonging to Lyy,(0)
space with conpact regions of support then its Fourier transform

Is anal ytic and the solution to (2.1) is unique.

3.2.3 Use of Additional Data
We have of course assuned that f(x,y) and h(x,y) are known

conpletely. In practice this is not the case since f(x,y) is



sanmpl ed and known only over a finite set of points. Hence, even
inthe noise free case there may be many g(x,y) having
the said finite region of support such that f(x,y) = g(x,y) *
h(x,y), for (x,y)eIP, the set of sampling points. That is if 97
and g, are two solutions then [lg;-g,| need not necessarily be
zero. Inthis section we shall see how nore data can be collected
for the same number of sampl i ng points by changing the
frequency of excitation. Prior to that we nust show that
collecting nore data aids in reconstructing a better quality
image in that the conputed solution using nore data is likely
to be closer to the desired solution than otherw se.
Let
Ceo = { g(x,y) ¢ £,(x,y) = g(x,y)*h(x,Y),
for £45(x,y) known on (x,y)eIp). (3.6)
Suppose n holograns are collected for various wavelengths 4,
Agsr +--+ *n° Let f(x,yixj) denote the hologram for a wavel ength
Xi. Define
Cei = ( 9(x,y) ¢ g(x,¥)*h(x,yixj) = £(x,¥i)3),
for (x,y)eIp) (3.7)

Let ¢; _
1 = Cfiansc.

of Cgge is conpact. We assume that the desired solution is

We will show later that every bounded subset

bounded and hence belongs to a bounded subset of Cggo- Wthout
| oss of generality we shall refer to the bounded subset of Cggo
containing the solution, as Cggo itself. Since Cgg. is conpact
and any cl osed subset of a conpact set is also conpact, C; s
conpact. Let gp(x,y) be the solution conputed from n hol ograms

and gp41(x,y) be the solution obtained fromn+l holograns. Let



n
Cp =N Cy. Hence g, (x,y)ec) and gnp4q(x,¥Y)€C)H, . Let go(x,y) be

the desired solution and Pr(lgg(x,y)-g4X,y)ll>€) denote the
probability that |gg(x,y)-gn(x,y)[|>e for some e>0, and
Pr(llgo(x,¥)-gn41(x,y)l>¢) the probability that [gg(x,y)-
In+1 (X, V) 1>e.

Since each of the sets c¢; is conpact, the diameter of the set
¢y denoted as D(cp) is finite. Here dianeter of a set Cis

defi ned as

Max  |lgy(x,¥) - g5(x, 7). (3.8)
gl,gzeC .
A so, since C} 2 Chiq, it follows that bp(cp,q) = D(c}), and

hence Pr(lgy(x,y)-gn(x,¥)l>€) = Pr(llgg(x,¥)=gpe1(x,¥)>€).
Thus as the nunber of holograns increases one would expect to
arrive at a solutionthat is closer to the desired solution. Note
also that f(x,y) is not linearly dependent upon the wavel ength.
Hence by varying the wavelength we obtain two linearly
i ndependent sets of data. Wile this nmay not necessarily be true
I f the nunber of sanples is finite it is obvious that if the
nunber of sanples is much nore than the nunber of frequencies for
which the data is known then the data obtai ned for one frequency
w || be independent of that obtained for another.

At this point we need to nention why we do not consider
changi ng ot her paraneters practical. The paraneters that coul d be
altered in an inagi ng setup are wavel ength, di stance and sanpl i ng
rate. changing distance or the sanpling rate is sane as
synthetic aperture inmaging nentioned earlier. This neans that we
have to nove the sensor array relative to the object', which is

difficult to inplenent in practice.



3.2.4 Suitability o Backward Propogation

We have just seen that if data is collected at nmultiple
frequenci es, we can hope to reduce the size of the solution set
and thus inprove the quality of the reconstructed inmage. As was
mentioned in the previous chapter there are two methods of inage
reconstruction fromdigital holograns nanely Fresnel/Fourier
transformand backward propogation. In this section we shall see
whi ch of the two nmethods is nore useful for inmage reconstruction
frommul tispectral hol ograns.

In the Fresnel/Fourier trasform the resolution of the
reconstructed i nrage depends upon t he wavel ength used and i s given
by (2.5 which is reproduced bel ow

AX = xz/NAXg sy = Az/NAy, (3.9)
Hence the resolution on the reconstruced inmage varies wth
wavel ength. Therefore to combine the data from different
frequenci es, every reconstructed inage nust be transforned into
one with a common base band resolution. Transform ng an i mage of
one resolution into another of a different resolution is
conputationally intensive. Mreover it is not suitable for use in
an iterative procedure for reasons that we shall now di scuss. For
correct conputation of phase the sanpling rate mnust be
(xz/N)Y/2_ | n other words for a given sanpling interval and
di stance there is only one frequency that can be used to conpute
t he phase exactly. In an application |ike underwater acoustic
imaging it is not feasible to change the sanpling rate since the
sensors are fixed on an array. Thus it is not possible to use
Fresnel/Fourier transformto reconstruct an image from hol ograns

obt ai ned by changi ng t he wavel ength. The sane argunent hol ds for
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reconstructing an inmage from nultiple hol ograns obtai ned by
varyi ng t he di stance between obj ect and i nage pl ane.
I n backward propogation the imagi ng system can be treated as

a linear shift invariant systemand the sanpling rate is the

resolution on the reconstructed image. This resol ution depends
on the wavelength only in so far as it specifies the best

resol ution possible for the reconstructed inmage. MNote however
that the physical sanpling rate need not be a limtation on the
resol ution of the reconstructed i nage. W nay assune the presence
of phantom sensors where sanpled data is not avail able. The
signal on these phantom sensors nay be conputed using data
col | ected at other frequencies. Thus backward propogation i s nore
suitable for iterative conputation since (a) the resolution is
i ndependent of wavel ength within a broad range of operation and
(by the resolution can be inproved by increasing the number of

f requenci es.

33 POCS Method of Computing a Solution

In this section we shall discuss the PGCS et hod of conputi ng
a solution. Recall that the problem of reconstructing an inage
from sparse data reduces to finding a common el enent of
CescNCe1NCeaN e+ .nCepn- These sets as we know are closed convex
sets. Hence the POCS nethod of computing a solution can be
applied. POCS is an iterative nethod and the conputation
perforned at the k-th iteration is given by

9k (X,¥) = PggcTe1Teae+-Tendk-1(%/¥), (3. 10)

where Tey = 1tsei(Ppy-1)/ Pgy is the projection onto Cg; and

o<sgi<2. For reasons of faster convergence we could choose sgj



such that sgy>1. However such a choice must be made judiciously
and yields faster convergence only in the initial stages of
computation. gg4(x,y), the initial estimate of the solution is
usually chosen such that it belongs Cgg.- The computation of the
projection onto Cgg. is trivial and has been given in Chapter 1.
The computation of the projection operator Pg; is a little more
involved and is discussed in the next subsection. To show strong
convergence of our iterative procedure it is enough if we show
that Cgg, IS precompact. This is discussed in Section 3.3.2.
Later we shall also see how the computation involved at every
iteration can be speeded up in a multiprocessor system by
applying the operators in parallel rather than in sequence. We
can show that the solution set is the same whether the operators

are applied in parallel or in sequence.

331 Computation of Projection Operator
Given f,(x,y) known at the set of points Ip and a function

g(x,y) It is required to compute gP(x,y) as a solution of

Min [lg(x,y)- go(x, 1) | (3.11)
such that

go(X,y¥) * h(x,y) = £(x,¥), for (x,y)ely. (3.12)
Since |.| is always positive, minimising it is same as

minimising its squared value. Hence consider

- o]
I laGe,y) = gp(x,y)|? ax ay (3.13)
-0
By Parseval's relation, the above expression can be written as
m ~
1/(27m) [f |G(u,v) - Gp(u,v)|2 du dv (3.14)
—c0

where G(u,v) and GP(u,v) represent the Fourier transforms of



g(x,y) and gp(x,y) respectively. Let F(u,v) denote the Fourier
transform of f(x,y) = g(x,y)*h(x,y) and Fp(u,v) the Fourier
transform of fp(x,y) = gp(x,y)*h(x,y). Now

G(u,v)=F(u,v)/H(u,v), for (u,v)eB, (3.15)
and

Gp(U,V)=Fy (W, V)/H(u,v),  for (u,v)eB, (3.16)
where By, = {(u,v):u?+vig1/a2).

Hence (3.14) nmay be witten as

1/(2m) [f|6(u,v) =Gy (u,v) |? dudv + 1/(2ﬂ)Ij|G(u,v)—Gp(u,v)|2 dudv
B

Bw W
= 1/(2m) [ |F(u,v)/H(u,V) = Fy(u,v)/H(u,v)|? du av +
B
v 1/ (2m) [[|G(u,v) - Gy(u,v) |2 du av (3.17)
B

A
To minimise t he second term we | et

Gp(ulv) = G(u,v), for (u,v)eﬁw (3 18)
Thus we are left with

1/(2m) [f |F(u,v)/H(u,v) - Fp(u,v)/H(u,v) |2 qu av
Bw

Since |H(u,v)| =1, the above expression can be witten as

1/(2m) [f |F(u,v) - Fp(u,v)|2 du dv

Agai n, using Parseval's theoremthe expression can be wriiten as

[+ o]
JI 1£0x,y) = £5(x,y)|? ax gy
)

Since f and £, are bandlimted functions, the expression can be

reduced to the followmng form :
o0 [

T |f£(iax,jay) - f£y(isx,jay) |2
j==00 j=-00
Now by the statenent of the problem
fp(iax,jay) = f5(iax,jay), for (i,3)ely. (3.19)

Hence t 0 minimise t he expression we |et

fP(iAx,jAy) = f (iax,j ay), for (i,3)ely (3.20)



Notice that F(u,v) can be conputed from £f(X,yY) and hence Gp (u,v)
can be conputed using (3.16) and (3.18). Thus gp(x,y) can be
conput ed fronﬁC%(u,v).

3.3.2 Compactness of Cg

The set Cggq first nmentioned in Chapter 2 is defined
formally, for the one dinensional case. Then we shall go on to
show that Cgg. is preconpact. This result will then be extented

to two dinensions. W shall begin with the definition of a

conpact set.

Definition [63]: A set C is said to be conpact if every sequence in ¢
contai ns a subsequence that converges to a limt in C A set is
said to be relatively conpact if its closure is conpact and is

known as a preconpact set if any bounded subset of it is conpact.

Note that boundedness is a necessary condition for
conpactness and is sufficient for any finite dinensional space.
For exanple LXs) space is not a finite dinensional space and
hence boundedness is not a sufficient condition for compactness.
Here Sis the entire real line. The followi ng result which is a
restricted form of the Frechet-Kol nogrov theorem (63] states the

necessary and sufficient conditions for B ¢ L?%S) to be

pr econpact .

Theorem 31 [63]: A set Bc L2(S) is preconpact if ﬁgp I < «
and, for every xeB,

Lim [x(t+s) = x(s)]| = 0 uni formy,
t-0

61



and Lim [ |x(s)|? ds =0 uni formy.

a»o |s|>a

In order to show conpactness of Cgg., let us first define the
set. Let K be a conpact subset of S and K;, Ky, ... K, be
coll ection of pairwise disjoint relatively conpact subsets whose
union is K and each of whose Lebesgue neasure [69] iS nonzero
Cege IS defined as the set of all functions x(s), continuous in
each Ky, i =1,...n, and zero el sewhere.

To show that Cggo is preconpact we can apply Theorem 3.1
Consi der any bounded x(s)eCgg.. The first criterion of the above

t heorem hol ds, since x(s) is, by definition, bounded. The second

criterion can be shown as foll ows.

n
Lim [ |x(t+s)-x(s)|2 ds = Lim T [ |x(t+s)-x(t)|2 ds (3.21)
t-0 S t-0 i=1 Ki
Since in K°j, the interior of Kj, x(s) is continuous

n
Lim P I |x(t+s)=-x(t)|%ds = 0 (3.22)
t-0 i=1 K°y

Hence (3.21) may be witten as

n
Lim [ |x(t+s)-x(s)|2 ds = Lim = [ |x(t+s)-x(t)|3ds (3.23)
t+0 5 t+0 i=1 K;-K°i

Now as the neasure of the set Kj-K°j is zero and x(t+s)=-x(t) is
bounded the |ast expression tends to zero. Thus the second
condition is fulfilled. The third condition of Theorem 3.1 holds
by definition of Cgge-

Thus in the one dimensional case Cgg, IS preconpact. It is
easy to see that all the results from Theorem 3.1 can be

extended to any finite dinensional field.

3.3.3 Convex Combination of Nonexpansive Operators

In this section we wish to show that a convex conbi nati on



of nonexpansi ve operators i s nonexpansive. This result is useful

to develop distributed algorithnms for a nultiprocessor

environnent. Earlier we saw that sparse data of the hol ogram
f (x,yixij) known on a set Iy for a wavel ength a; defines a convex
set ¢; of functions g(x,y) that could have given rise to the
known data. Hence if we have the data for n frequencies then it
is possible to conpute a g(x,y) belonging to each ¢y by the
met hod of POCS. Here the operators Pgy are applied in succession.
In a multiprocessor. environment it would be advantageous if all

operators Pgy (Or Tgy) are applied in parallel and the results
combined in a suitable fashion so that the desired solution is
obtai ned. This, we show, can be done by a convex conbi nati on of
the result of each of these operators. W begin with sone

defini tions.

Definition [18]: T i s a nonexpansi ve operator if

lrx = Tyl < k [x - v, (3.24)
where k is a real positive nunber such that 1 T is a
contraction mapping if k < 1.
Definition: x is said to be a fixed point of an operator T if
T(x)=Xx.
Theorem32: Let T, Tp,... T, be a collection of nonexpansive
operators from c»c, where Cis a closed convex set ina Hlbert
space H Let,

T =aT; + a;T, ....+ a T (3.25)
where a;+a,....+a;, =1 and a,, a, ... a, are all greater than
zero. T is a nonexpansive operator from c¢-c. Furthernore if Ty

for sone i, 1sisn, is a contraction mapping, then sois T.
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Proof:

Itx-Tyl = la;Tx +. ..+ a Tyx = (a;Tyy +. ..+ a,Ty) |l (3.26)
s aqflTyx-Tovll +...+ aplTx-T VI (3.27)
s agllx=yll +...+ ajllx-yl (3.28)
s Ix-vl (3.29)

If Ty is a contraction mapping, then (3.28) becones a strict
inequality and the second part of the result follows.
(End of proof)

3.34 Nature o the Solution

Let us consider the nature of the solutions provided by the
two operators Pgg T1Ty...T, and Pego(aTi+ayTo+...+a Ty), Wwhere
ai;s a3, ...+ a, denote a set of real numbers satisfying the
constraints specified in Theorem 3.2 The two operators nay not
necessarily have the sane fixed points. However if the set cCJ
Is nonenpty, then we can show that the set of fixed points of
the two operators is identical and is precisely the set c¢}. It
has been shown earlier that the set of fixed points of the
operator Pgg TiT,...T, IS the set cj. Qur aimis to show that
the set of fixed points of Pego(agTytasTo+.n. +aTy) is also
Ch- It is obvious that cf is a subset of the fixed points of
Pego(aiTy +a,To+...+a Ty) Since every gec) is also a fixed point
of Pggco(agTy +a,To+... +apTy). The containment in the other
direction can be shown as follows: Let g, be fixed point of
Pego(a)Ty+a,To+.ata Ty) and gpech. Consider  [lgx-g;ll. Since g,
is also a fixed point of Pego(a;Ty+aTo+us. +a,Ty),

lgo=g, |l [Pegc(aiTy+asTo+. . -+a Tyl gy =

Pfsc(alT1+a2T2+...+anTn)g2" (3.30)



Again, since Pg,. is a linear operator the above equation can be
written as
laz-g1ll = lay (PegcT192-PegcT2g1) +- - - +an (PegcTrda~PrgcTnda) |
(3.31)

s a1"(PfscT192’Pfschgl)"+"'+an"(PfscTngz'PfscTngl)"

(3.32)
s 31“92‘91" + e+ aanz-glﬂ (3.33)
= llgy-9,4 (3.34)

(3.31) follows from triangular inequality and (3.32) follows from
the fact that Pgg Ty IS a nonexpansive operator. Hence we derive
a1l (PegcT195-PescT191) If -+ *apll (PegcTnas - PescTndy)
= 31"92'91"+ _y +an"gz'91" (3.35)
Nov PeoT3g, = g, for 1l<i<n, since g,eCy. Hence
a1llg,-PeecTy91l+ -+ + apllgy - PegcTrasl
= a;llgp-g4l+ ... +agllgy-g,l (3.36)
Since the above equation holds for any choice of (aj}, we deduce

that, for i =21, 2, ..., N,

"gz-Pfs¢Tiglﬂ = "92'91" (3.37)

| f g,€Cy, then "gz'PfscTi91"<"92"91|- Hence by contradiction
g,€Cj. Thus g,€Cy. Since g, is an arbitrary fixed point of
Pfsc(a1T1+a2T2+... +a,T,) it follows that every fixed point of
Pfsc(a1T1+a2T2+... +anTn) also belongs to Cf. This implies that
the fixed points of Pggo(ajTi+ayTy+...+a,Ty) are just the fixed
points of PggeT1T3...Tp. Notice however that this result does not

hold if C} is empty.

335 Srong Convergence of POCS Method

Theorem 1.4 assures strong convergence if there exists at



| east one subsequence that converges strongly. Consider the
operator P, P,P,...P,, where P,, P,, ...P, are as discussed
earlier and P, is the projection onto a preconpact convex set
Now the result of every iteration of the POCS method is bounded
and belongs to a preconpact set. By definition any bounded
sequence in a preconpact set has a convergent subsequence and
hence t he nethod of POCS assures strong convergence if the result
of every iteration belongs to a preconpact set.

W have shown earlier that Cgg. is conpact and in all our
iterative schenes we apply the operator Pgg. last. Hence strong
convergence is guaranteed. However since we are dealing with a
digital conputer for all our conmputation we are forced to
consider only finite dinmensional spaces. In such a situation weak

convergence inplies the strong convergence.

34 Image Reconstruction from Multispectral Holograms
3.4.1 Termination of the lterative Procedure

The termination of an iterative procedure in a practical
i npl ementation can be done in several ways. The sinplest way is
to decide the nunber of iterations a priori. This is not
advi sable in nost cases as the nunber of iterations required for
an acceptible solution my vary with the initial data. One
met hod often used in nunmerical analysis is to stop when the
result of two successive iterations does not change nuch. In
other words let x, be the result of the k-th iteration. The
iterations stop when ep = [xp-xp_q1[l < €, where € is some
predeterm ned value. It is advisable to normailse e, by

dividing it by [Ix.ll, provided |[x,| does not tend to zero.



For 1inverse problens such as signal reconstruction it 1is
required to conpute f£f=Tg. An iterative procedure |ike POCS may
not conpute an exact solution in a finite nunber of iterations.
Hence it is necessary to decide a priori the |evel of accuracy of
the solution. The accuracy of the solution is measured as the
normalised nean square error between the conputed solution and
the known data. Mre formally the error at the k-th iteration is
gi ven by

ex = ( T_|£(x,y) - h(x,¥)*qu(x,¥)|®)/ T [£(x,¥)|%  (3.38)

x,yeIp x,y«aIp
In the sinmulation studiesto followthe iterative procedure was

term nat ed when ex attained a value of 0.05 or |ess.

3.4.2 Sparse Data

To show t he need for nultispectral hologranms in a practical
situation we shall first conduct studies for sparse nunber of
sanpl es. The sinmulation setup is as nentioned in the previous
chapter. The object field distribution used for the studies is
shown in Fg.2.1 The distance between object and sensor planes
iIs 2000.0 wunits. The distance between adjacent sanpl es al ong
both axes is 0.5 units. W shall consider four sanpling rates
nanmely when the hologram is available on (a)64x64 points, (b)
32x32 points,' (c) 16x16 points and (d) 8x8 points. For each of
t hese cases it is possible to configure the sanples in different
ways. We consider (a) offset data, (b) down sanpling, (c)
extrapol ation and (d) random sanpling. These terms wll be

defi ned shortly.

Let the 128x128 square nmesh of equally spaced sanpling



poi nts be indexed as i,j = -64, -63, ..., 63. W shall
consider the down sanpled case first. When there are 64x64
elements in the array the sanpling points are indexed as i,j =
-64, -62, ..., 62 (in steps of two). The result of the iterative
reconstruction procedure is shown in Fig.3.1(a). We shall now
consi der the case when only 32x32 sanples are known. The val ues
t he indices take are i,j =-62, -58, ..., 62 (in steps of four).
The result of applying the iterative procedure is show in
Fig. 3.1(b). For 16x16 sanples the elenents of Ip take indices
i,j =-60,- 52,...60, (in steps of eight). The result of applying
the iterative procedure is shown in Fig.31(c). Wen there are
8x8 sanpl es t he values the indices take are i,j= -56,-40, ...,56.
The result of the iterative procedure is shown in Fig.3.1(d).

We shal | consider offset data next. By offset data for 64x64
sampl es we refer to a collection of sanples wherein the
i ndices are given as i,j = -64,-63, ..., -1. This then
constitutes the set Ip of sanmpling points. Using these sanpling
points and applying the - POCS procedure as described earlier
the reconstructed image is shown in Fig.3.1(e).l For 32x32 the
el ement s of Ip take indices 4i,j = -32,-31,...,-1. The results of
the iterative reconstruction procedure is shown in Fig.3.1(f).
When there are just 16x16 sanples the indices are i,j = -16,
-15, ..., -1. The result of the iterative reconstruction
procedure is given in Fig.3.1(g). For 8x8 array, the values the

1. See Algorithm 3.1 for the pseudo code of image reconstruction

fromdigital hologramusing finite support constraint.



indices take are i,j = -8, -7, «ss, -1. The result of the
reconstruction is shown in Fig.3.1(h)

By extrapolation with 64x64 sanples we nean that the
i ndi ces of the elenents of the set I, are chosen as, i,j = -32
-31, ... 31. The result of applying the POCS procedure in this
case is shown in Fig.3.1(i). W now consider extrapolation wth
32x32 sanples. Here the el enents of Ip take indices i,j = -16,
-15, ..., 15. If there are just 16x16 sanples the el enents of Ip
take indices i,j= -8,-7, +..,7. When there are just 8x8 elenents
t he values the indices take are i,j=-4,-3,...,3. Fig.3.1(3),
Fig.3.1(k) and Fig.3.1(1) show the result of applying the
iterative procedure for 32x32, 16x16 and 8x8 samples
respectively.

Finally let us consider random sanpling. In Fig.3.1(m) isS
showmn the result of wusing 4096 randomy chosen sanples in the
i mage reconstruction procedure. In Fig.3.1(n) is shown the inage
obt ai ned by using 1024 randomy chosen sanples. In Fig.3.1(o) the
result shown is obtained by using 256 sanples. And in Fig.3.1(p)
the result shown is obtained by using 64 sanpl es.

The results of these experinents show that, as the nunber
of sanples is reduced the reconstructed inmages are very poor in
quality. Moreover when the data is sparse, down sanpling and
random sanpling appear to be nore promsing. Notice also that
al though offset data is just another form of extrapolation, the
result of using offset data is better than that of
"extrapolation". These tentative conclusions will be seen to

hold for multispectral hologramdata as well. In the next section

we shall show that by collecting data at multiple frequencies it



I s possible to reconstruct a good quality 1inage even if the

nunber of sanpling points is a nere 16x16.

3.4.3 Smulation Sudes for Multispectral Hologram

There are two ways of conbining data frommultiple hol ograns.
The first nethod is to apply the operators in sequence and the
second is to apply themin parallel and obtain a convex
conbi nation of the results. The second approach is useful only in
a multiprocessor system and hence all our studies are based on
t he sequential approach.? Mreover notice that if the convex sets
Intersect the set of fixed points in both cases are the sane.

As nentioned earlier, it is likely that as the nunber of
frequenci es increases, the conputed solution will be closer to
the desired solution. Here we conduct sinmulation studies to show
the effectiveness of the proposed nethod to conbine data from
mul ti spectral holograns. First we shall present the results
usi ng 64x64 sanpling points for offset data, down sanpling,
extrapol ati on and random sanpling, using two, four, eight and
si xteen wavel engt hs. The next study will be on an array of 32x32
elenents. Following that we shall present the results obtained
using a 16x16 array of elenents. Finally we shall consider a 8x8
array. The terms offset data, down sanpling, extrapolation and
2 See Algorithm 3.2 for the pseudo code of the sequential inage
reconstruction procedure frommultispectral digital hol ograns and
Algorithm 3.3 for the pseudo code of the parallel inage

reconstruction procedure fromnmultispectral digital hol ograns
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random sanpl i ng have been defined earlier. The wavel engths used
are 0.25 and 0.26 units when two wavel engths are used. When
four frequencies are used the wavel engths are 0.25, 0.26, 0.27
and 0.28 units. Wen eight frequencies are used the wavel engths
in addition to the four nmentioned are 0.29, 0.30, 0.31, and
0.32. Wen sixteen frequencies are used the wavel engths chosen
are 0.25 0.255, ..., 0.325. Fig.32 to Fig. 35 showthe results
of using multiple frequencies on a 64x64, 32x32, 16x16 and 8x8
array respectively.

A few remarks regarding the results are in order here
Notice first that as for the single frequency case the results of
down sanpling and random sanpling are indeed better than those
for offset data and extrapolation. If we consider hol ogram
formation as some sort of a Fourier transform then, in down
sanpling or random sanpling the distribution of the sanples is
spread evenly over the entire frequency range. In extrapolation
there is little sanpling on the high frequency region. In offset
data the sanpling is spread over all frequencies but in a narrow
region. Hence offset data yields results in between down sanpling
and extrapol ati on.

Anot her interesting feature of Fig.3.2 is that as the nunber
of frequencies is increased from four to sixteen in the down
sanpl ed or randomy sanpled case the quality of the reconstructed
I mge does not show significant inprovement. |In a subsequent
chapter we shall see that if the data is noisy there is a
significant inprovement as the nunber of frequencies is increased

fromfour to eight for a 64x64 array.



3.5 Tradeoff between Computational and Receiver Complexity

In this chapter we saw that if all the data is available
then there exists a unique solution for the problemof conputing
g(x,y) given f£(x,y) and h(x,y). W have seen that if the sanples
are sparse the quality of the reconstructed inmage is poor and
degrades as the nunber of sanples reduces. One nethod of
i ncreasi ng the anount of data for the sane sanpling array is by
obt ai ning hol ograns for different wavel engths. Miltispectra
hol ograns, as we call them can be used in an iterative
algorithmfor inproving the quality of the reconstructed inage.
V¢ proved the convergence of the iterative procedure used for
I mage reconstruction. W al so saw that there are two ways of
conbi ning the data nanely the sequential and parallel nethod and
showed that the two nethods have essentially the sane sol ution
Simul ation studi es were conducted for inage reconstruction from
mul ti spectral hol ograns using the sequential nethod. The results
show that by using multiple frequencies an intelligible 64x64
i mage can be reconstructed using just 8x8 sensors. However there
IS a tradeoff in that the nunber of frequencies for which the
data is collected nust be increased. A so the amount of
conputation required for an acceptible solution increases as the
nunber of hol ograns i s increased. Rather than using a large
array, we could wuse a small array and increase the nunber of
frequencies. Every increase in the size of the array increases
the circuit conplexity al nost exponentialy as it is necessary to
synchroni se each one of the sensors to a common synchroni sing
elenent. Increasing the nunber of frequencies is not as conpl ex

as increasing the nunber of sensors.



Let us now discuss sone of the [imtations of the proposed
procedure. An inplicit assunption in our work is that g(x,y),
the field distribution on the object plane is I ndependent of
t he wavelength. This is not strictly true although t he
variation is not nmuch if the wavel engths are close. Actual
field tests nmust be conducted to find out how rmuch t he dependency
Is. An interesting issue that we have not been able to address
satisfactorily is the optimm interval between adjacent
frequencies. Finally, notice that the nethod is applicable for
noise free data or nore precisely if ¢} is nonenpty. The next

two chapters address the probl em when such a condition does not
hol d.



Initialise:

(1) g(x,y) constant, for (x,y) in region of support,
= 0, otherwise.

Repeat

(2) Compute G(u,v) the Fourier transform of g(x,y)

(3) For all (u,v) do

If u2+v2 < 1722 then

F(u,v) = G(u,v)*exp(jkz(1-(ru)2-(av)2)1/2)
0

else F{(u,v)
endif
(4) Compute f'(x,y) the inverse Fourier transform of F(u,v)
(5) Replace ft(x,y) = f(x,y) for (x,y)eIp

(6) Compute F"(u,v) the Fourier transform of f'(x,y)
(7) For all (u,v) do

If u2+v2 < 1/22 then

G'(u,v) = F(u,v)exp(-jkz(1-(ru)3-(av)?)1/2)
el se
G*(u,v) = G(u,v)
endif

(g8) Compute g'(x,y) the inverse Fourier transform of G(u,v)
(9) g(x,¥y) = g'(x,y) for (x,y) in region of support

= 0 otherwise

until satisfactory solution obtained.

Algorithm 3.1: The POCS procedure to reconstruct an imagekWH
finite supPort_from hologram data £(x,y)
at a set of points (x,y)eIp
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Initialise:

(1) go(x,y) = constant, for (x,y) in region of support,
= 0, ot herw se

(2) k =1

Repeat

(3) For i =1 to n, (*n denotes nunber of frequencies *)

do steps 4to 6

(4) Compute £y (X,yYixj) = gx-1(X,¥)*h(x,yixj)
as in Algorithm 3.1 (Steps 2-5)

(5) Conmput e gy (x,y) from £ (x,yirj)
as in Algorithm 3.1 (Steps 6-9).
(6) k = k+l

until satisfactory solution obtained.

Algorithnz3.2: The sequential POCS procedure to reconstruct an

i mage using nultispectral hologram data £(x,yixy)
known for n different frequencies.




Initialise:

(1) gd X, y) = constant, for (X. y) in region of support,
= 0, ot herw se.

(2) k=1

Repeat

(3) For i = 1ton, (*n denotes nunber of frequencies *)

do steps 4 to 7
(4) Conput e £y (%,¥Yid3) = gyp_q(X,¥)*h(X,¥i){)

as in Algorithm3.1 (Steps 2-5).
(5) Conpute g(x,y;i) from £y (x,y:xy)

as in Algorithm3.1 (Steps 6-9).
(6) k = k+l

(7) gy (x,y) = 0.9(a1g(x,y;1)+...+ang(x,y;n)) + 0.1gyk_q(x,Y)

until satisfactory sol uti on obtai ned.

Algorithm 3.3: The parallel POCS procedure to reconstruct an image
using nmultispectral hologramdata f£(x,y:x;) known for
n different frequencies.
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Chapter 4

IMAGING WITH NOISE

4.1 Ill-Posedness arising due to Absence of Solution

We saw in the previous chapter that collecting data at
multiple frequencies helps in improving the quality of the
reconstructed image. Application of the methods proposed earlier
to noisy data is not straightforward since we have not proved
convergence for such data. In this chapter we attempt to apply
the method of ROCS by altering the constraints of the problem.
Unlike in the previous chapter, where we try to reconstruct an
image that matches with the known data exactly, here we attempt
to compute an image that matches with the known data to within a
certain degree. The drawback of the method proposed here is that
certain constants defining the degree of accuracy of the
reconstructed signal must be known precisely a priori. In the
next chapter we shall discuss a method that does not require the
knowledge of these parameters. A comparative study of the
results obtained by the methods proposed in this chapter and
those proposed in the next are given in Chapter 5.

Imaging with noise is an ill-posed problem as there may
exist no object field distribution with known constraints that
could have given rise'to the known initial data. The problem of
noise in image reconstruction has been studied extensively
[1],[9]. To reduce the effects of noise in the reconstructed
signal one needs to have extra information regarding the signal

and some characteristics of the noise. In Section 1.4 some



met hods of noise filtering were di scussed. Mdst of the noise
filtering nethods were based on regul ari sati on techni ques, which
attenpt to conpute an optinal solution of sone sort using noise
and signal statistics. These techniques are not applicable for
t he probl emof inmage reconstruction fromdigital hol ograns as the
only information available a priori is the extent of the object
and not noise or signal statistics. Mreover the application of
the regularization techniques for image reconstruction from
digital holograns is not obvious.

Qur approach in this chapter is to adapt the nethod of POCS
described in Chapter 1 for the problemof inmage reconstruction in
t he presence of bounded noise in the digital holograns. The
assunpti ons we nmake here are:

(a) the extent of the field of the object is conpact and

(b) the noise is bounded.

Note that for noisy data the convex sets defined by the known
data and cgg. (the set of all signals with finite support) nay
have no common element. A graphical illustration of the effect
of noise on the solution set is show in Fg.4.1. The set of al
signals satisfying the known data noves away fromthe set Cggo
if the data is noisy. Hence it is not possible to ignore the
noi se and apply the POCS nethod directly as for the noise free
case since convergence is not assured when the intersection of
the convex sets is enpty. To force an intersection we nay expand
C'¢c by relaxing the constraint that the reconstructed signa
mat ches the known data exactly. As shown in Fig.4.1, if the
expansion is too small, intersection of the convex sets nay still

not be possible. If the expansion is too large then a w de



variety of solutions are possible and hence an arbitrary solution
from among the set of all possible solutions may not be
satisfactory. Hence the bound on the separation between the
reconstructed signal and the known data must be known precisely.

Formally, if f(x,y) is the known data and R is a linear
transformation operator, then our aim isto find g(x,y) such that
P(f(x,y), Rg(x,y))<b. Here P is a distance measure and 'b' is a
known constant. In general, it is in vain to compute g(x,y) such
that P(f(x,y),Rg(x,y)) < b, since, if we did, we will be
computing a solution that is more accurate than the original data
itself. In fact it has been argued elsewhere [(60] that for 'best'
results we must compute g(x,y) such that P(f(x,y),Rg(x,y))=b. If
the set of all solutions g(x,y) such that P(f(x,y),Rg(x,y))< b,
which is henceforth referred'to as the "feasible solution set",
is convex, and if Cggo and the feasible solution set have
nonempty intersection, then the ROCS method can be applied. A
feasible solution set is convex if the distance measure
satisfies the triangular inequality. We shall come across some
distance measures that are not strictly metrics but which define
convex feasible solution sets.

In the next section we shall describe some feasible solution
sets for the Fredholm's equation of the first kind. These sets
are shown to be closed and convex. The method of computing the
projection operators for these sets are discussed. |In Section 4.3
we show how these results can be applied to the problem of image
reconstruction from digital holograms. In section 4.4 we shall
discuss the implications and limitations of the methods proposed

here to the general problem of signal recovery.



43 Feasble Solutions for the Fredholm's Equation

The Fredholm's equation of the first kind
Equation (1. 10) )

is given by (see

b
£(y) = [ h(x,y)g(x) dx = Rg(x), (4.1)
a
where h(x,y) is a continuous function in both x and y, and £(y)
is defined in the interval [c,d]. Let R denote the Fredholm's

operator. Note that for ease of notation we restrict our

di scussion to one dinensional signhals. The results of our
discussion are applicable in a straight forward way to all finite

dinensional signals. It is required to define a distance neasure
P on the space of functions f(y) such that a feasible solution
set defined by the measure has practical significance. Sone of

t he common metrics that we shall use later are given bel ow

Po(f1,8,) = sup|f£1(y) - £(v)| = lf1-£2ll¢ (4.2)
Pry(fy,52) = SIE2(Y) = £2(¥)] dy = [£1-f2llpy (4.3)
and
Pra(fi f) = (J1E M -E2(N 1% an)¥/2 = lgy-£5ll1p- (4.4)
used

The follow ng functional is not a netric although it can be

t o define a cl osed convex feasibl e solution set,

Pg(fq,E3) = Sup P¢(¢1(Y)r¢2(Y)): (4.5)
b4

where ¢(y) nay be defined by
£(y) = |£(y)|exp(I(a(¥y)))"
Note that ¢(y) refers to the wapped phase function of £(y) and

(4.6)

Py is the snmal l est positive difference between ¢9(Y) and o¢,(y) .

Mre formally if o < ¢1(¥)s ¢4 y) < 27 then



Pa(e1(¥) 183(Y)) = @1(¥)=05(y), for 0<e,(y)=-¢,(y)<m,
= ¢5(Y) =95 (Y), for 0<¢,(Yy)-d;(Y)<m. (4.7)
The feasible solution sets that are defined by the functionals
just nentioned are given in Equations (4.8) - (4.11) bel ow
Cq = {g(x): Po(f,Rg) < d), (4.8)
where f£(y) and d are given.

Cr = (g(x): Pry(f,Ry) < 1}, (4.9)
where f(y) and r are given.

Ct = (g(x): Pri(£,Rg) < t), (4.10)
where f(y) and t are given

Co = {9(x): fg(f,Rg) < 8}, (4.11)

where f£(y) and 8 are given and e<w/2.

We claimthe fol | ow ng:

Lenma4 1l cy, Cp, C¢ and cg are closed convex sets.

Roof: In what follows we shall prove only the convexity of the
sets nentioned. To prove their closure we nmake use of the fact
that if R:cp~cg is a linear operator in a Hilbert Space and Cg i s
closed then c, is also closed. This result whichis a corollary
to the open nmapping theoremcan be proved by contradiction as
follows. Let ¢, be not closed. There exists a geC, such that
every open set containing ‘g' has at |east one el enent bel ongi ng
to c,. This inplies that rRgeR(C,) = cg and every nei ghbourhood
of Rg € R(C,) contains an Rg, = R(Cp). Hence R(C,) is not open,
inplying that R(cp) is not closed which is a contradiction. Let
us now consi der each of the sets individually.

(i) Let g,(x) and g,(x) belong to c4. Hence

Po(f,Rgy) < @ (4.12)



and

Pc(f,Rgy) < d. (4.13)
Consider
g3(x) = agy(x) + (1-a) gy(x), (4.14)

where o<a<i. To prove the convexity of ¢4 it is required to show

that Pc(f,Rg3) < d. Dueto thelinearity of R we can write

Rgy = aRg; t (1-a)Rg, (4.15)
Hence

Po(f,Ra3) = lla(£-Rgy) + (1-a) (£-Rgy) |, (4.16)

< alf-rgyllg + (1-a)lf-Ryylc, (4.17)

< ad t+ (1-a)d = d. (4.18)

(4.127) follows from triangular inequality and (4.18) from the
given assumptions of the Lemma Notice that R(Cy) is a closed
ball in the c metric and is a closed set devoid of interior
points in L2 metric. In other words no open ball about any

element of R(Cy) is a proper subset of R(C4q). From the reasoning

given at the beginning of the proof c4 is also closed.

(ii) The convexity of ¢, can be proved in a similar way. Let
g,(x) and g,(x) belong to ¢,.. Hence

Pi2(£,RYy) < x (4.19)
and

Pio(£,Rgy) < r. (4.20)
Consider g5 (x) = agy(x) + (l-a)g,(xX) where o<a<l. To prove the
convexity of c,. it is required to show that jom (f,Rg3) < r. Due

to the linearity of R we can write

Rgz = aRgy; t+ (1-a)Rg, (4.21)
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Hence

Pro(£,Ra5) =  lla(f-Rgy) + (1-a) (£-Rg,) l1,. (4.22)
s a||f—Rg1||L2 + (1-a) | f"Rgzllez (4.23)
<ar + (1-a)r =T, (4. 24)

(4.23) follows from triangular inequality and (4.24) from the

given assunptions of the Lemma. Notice that RrR(c,) is a closed
bal| in the 12 netric.

(iii) Let gq(x) and g,(Xx) belong to c.. Consider g4X) = agj(x)
t (1-a)gy(X) where o<a<i. To prove the convexity of ci it is

required to showthat P, (f,Rgy) < t. Due to the linearity of R
we can wite

Rg; = aRg, t+ (1-a)Rgq, (4. 25)
Hence

Pe(£,Rg3) = lla(f-Rgp) + (1-a) (£-Rgy)lipq, (4. 26)

< allf-Rgqlly; + (1-a) s -Rgyllyy, (4.27)

<at + (1-a)t = t. (4. 28)

(4.27) follows from triangular inequality and (4.28) from the
given assunptions of the lemma. Notice that R(cy) is a closed

ball inthe L.l netric. It is a closed set in 1.2 netric.

(iv) To prove convexity of cg consider

g3(x) = agy(x) + bg,(x), (4.29)
where g,(x) and g,(x) belong to cg and 'a' and 'b' are real
positive nunbers. Now

Rg; = aRg; * bRg,. (4.30)
| N other words

|Rg5 |exp(j¢3) = a|Rgq|exp(i¢l) + b|Rg,|exp(je2). (4.31)



,P¢(¢f:¢3)

In

Max (P (b5, ¢1) L p(dg.82)), (4.32)
< 8. (4.33)

Thus g3zeCg and Cgq is a linear subspace. To show the closedness of

Cq notice that the set of all f' such that ,p¢(¢f,¢f.) < 6 isa

closed cone. Hence ¢y is also a closed convex cone.
(Endd Proof)

4.3 Computation of the Projection Operator

We shall now see how the projection onto these sets are

computed. Recall that the operation R‘ng(x) is defined as

follows:
go(x) = R tog(x), (4.34)
i f,
lag(x) - g(x)| = Min {g*(x) - g(x), (4.35)
g' (%)
and
Rg'(x) = QRQI(X), (4.36)

where Qp is the projection onto the range of R. Notice that
do(X) is the projection of g(x) onto the set

Cg = {g'(x): Rg'(X) = QRpQg(X)). (4.37)
The projection is unique if Cq is a closed convex set. As
discussed in the previous section, since R is a linear bounded
nonzero operator Cy IS a closed convex set. Let us now consider
the computation of the projection onto the sets c3, €., C¢ and
Cg respectively. As in Chapter 1 we shall consider only those
operators R for which the problem of

Min [g-g,|

g,€C
can be reduced to the problem of



Min  [[Rg-Rg; [ -

Rg,€R(C)
(i)Let py denote the projection operator onto the set cy. Let
f (x) represent the known data and | et g(x) be the function whose

projection on ¢y needs to be computed. It is required to find

gp(x) such that

Min |g(x) - 9o = lg(x) - g0 (4.38)
9o (%)

and
I£(x) - Rgp(x) ¢ = a. (4.39)

From Kuhn-Tucker (29] conditions we know that the optimal
solution must satisfy either of the following two conditions:
|£(y) - Rg(x)| < 4, (4.40)
or
|£(y) - Rgp(x)| = 4. (4.41)
In the first case the condition turns out to be redundant. In the

second case |g(x) - 9p (%) | can be minimised if

Qgp(x) = a Rg(x) + (1l-a) f(y), (4.42)
where
a = d/|Rg(x)-£(y) |- (4.43)

In the first instance, we have

Rgp(x) = R g(x). (4.44)
In short
Qg (%) = Rg(x), for |f(y)-Rg(x)]| < 4,
= aRg(x) + (1-a)f (y), otherwise. (4.45)

The projection is simply rR™1gg (X).

(ii) Let p,. denote the projection operator onto c,. By

arguments similar to those just presented, we can write



Prg(x) = g(x), for [f(y) - Rg(x)lzxr,
= R Ya RYX) +(1-a) f(y)), otherwise (4. 46)
wher e
a = r/[f(y)-Ra(x)|. (4. 47)

(iii) For continuous signals the projection onto the set ¢ is
very involved. To sinplify matters | et us consider the discrete
situation. Here the set ¢, may be defined as:

C¢= ( g: Z|f-Hg| < t}, (4. 48)
where H is a matrix operator. The projection of Hg « H(cy) onto
H(Cy) is conputed as shown in FHg.4.2 for the two dinensiona
case. For an arbitrary but finite nunber of dinensions, we can
derive

Qg[i] = af[i] + (l-a)Hg[i], (4.49)
wher e

a=e/(|f[1)-Hg[i)]|), for TYek,

=1, ot herw se. (4.50)
K is defined as

K =(i: |£[i]-Hg[i]]>e} (4.51)
and 'e' is given by

[XK|e = JE | f[i)-Hg[i]]| - t. (4.52)

kek
|K| denotes the cardinality of the set K The above result is
easily proved using the proof by contradiction technique. It
holds for the continuous case also with summation replaced by
integration and cardinality replaced by the Lebesgue neasure
(69].

(iv) Let Pg denote the projection operator onto Ccg. It is



required to conpute g(x) such that

lg(x) = gl = Min | g(x) - go(x) | (4.53)
9o (x%)
and
Pe(t,Rg) < o. (4.54)
The nethod of conputing the projection onto cg is illustrated

graphically in FHg.4.3. Inthe figure Rg(x) is projected onto the
| ine whose phase is ¢¢ + 8 It is seen fromthe figure that for
Rg(x) as shown Qg(x) can be given by
Qg (x) = Rg(x) cos(¢f(y)-drg(y)+6) exp(J(d¢(Y)-drgq(Y)+6))
(4.55)
Qg(x) Is the point in the shaded area that is closed to Rg(x).
Now, if Rg(x) is on the opposite side of ¢ then we have,
Qg (x) = Rg(X) cos(¢g(Y)-dpy(Y)-0) exp(j(¢e(y)= ¢pq(y)-9))
(4.56)
Moreover if |ege(y) - ¢Rg(y)| > e+mr/2 then Qg(x) can be given by
Qg(x) = 0. (4.57)
Summ ng up, we have
Qg(x) = Rg(x), for |gpg(y) - ¢g(¥)| < 8,
=0, for |¢g(y) - dpq(Y)| > &+m1/2,
= Rg(x)cos(¢g(y)~Ppg(Y)—8) exp(J(¢s(y)-¢rg(y)-6)),
for ¢g(y) - ¢gq(y) > ©

Rg (%) cos (¢rg(y) ~¢£(¥)+6) exp(J(¢¢(Y)-drg(Y)+8)),
for ¢g(y) - #rgly) < -©.
(4. 58)
In this section we have considered the conputation of the
projection onto various convex feasible solution sets. In the

next section we shall see the rel evance of these sets the probl em



of image reconstruction from digital holograms.

4.4 Image Reconstruction from Noisy Holograms
4.4.1 Significance d cg, C., Cy and cg

The previous section dealt with a very general operator
namely the Fredholm's operator. Here we shall consider the
computation of the feasgible solution to the problem of image
reconstruction from noisy digital holograms. In particular we
will consider image reconstruction from bounded error. Notice
that the sets ¢, Cc4, ¢, and cg can be defined for the
convolution operation since convolution is only a special case of
Fredholm's operator. After a brief discussion of what these sets
mean in practice we shall go on to describe the iterative
procedures in each of these cases.

Consider the set c4q first. Errors may arise in practice in
the measurement of signals due to several factors. |In many
situations there is an inherent limitation on the accuracy of the
measuring device. Here we aim to reconstruct an image that
agrees with the known data to the extent described by the
accuracy of the measuring devices. Moreover the reconstructed
image must also have a finite region of support. A noniterative
procedure for computing such a solution is not obvious. However,
an iterative procedure for computing a solution satisfying the
two constraints may converge very slowly. In the next subsection
we shall give a detailed account of the iterative procedure.

¢, isthe set of all solutions that could have given rise
to the known field distribution to within an error energy of r.

In many instances it is possible to estimate the level of noise



energy. In fact this statistic is often used to nodel the noise
as a Gaussi an distributed random process with zero nean and known
variance. In conputing a solution that belongs to ¢, the value
of 'r' nust be known accuartely. In general, if r is know an
attenpt should be nade to conpute a sol ution such that |f-h*g|=r.
This equality can not be ensured in the POCS nethod. However, it
is possible to compute g such that |f-h*g|<r. The iterative
procedure to conpute such a solutionis givenin Section 4.5 2

Cy 1is the set of all functions g(x) such that is within a
distance 't' from 'f' in the r! netric. This set is not of nuch
interest to us and was given nerely to cite yet another exanple
of using a netric for defining a feasible solution set.

In [25]) and (42] the problem of signal reconstruction from
phase for digital hol ography has been treated at length. In
Chapter 6 we shall deal exclusively with the problemof noise in
phase. If the error in the phase is bounded, then cg denotes
the set of all object field distributions that could have
given rise to a receiver field distribution whose phase
functionis wthinan error of 'e'to e¢(x,y).

Before we go on to specific problens of i nage reconstruction
in the presence of bounded noise, we will recall the definition
of the operator R™1Q(g(x,y)) for our problem since it is

required in conputing every one of the projection operators. Let

gp(X,¥) = R71Q(g(x,y)) - (4. 59)
Now
Gp(u,v) = G(u,v), for u2 + v2 > 1712,
= F(u,v), ot herw se, (4. 60)

wher e Gb(u,v) and G(u,v) are the Fourier transforns of gP(x,y)



and g(x,y) respectively and F(u,v) is the Fourier transformof,
f(X,¥) = Q(g(x,Y)). (4.61)
gp(x,y) nmay be conputed from Gp(u,V). Notice that for each of
the sets ¢, C¢q and c, we can consider sparse data and use
nmul ti spectral holograns. Q(g(x,y)) will be defined separately
for each one of the projection operators onto these set

I ncl udi ng the case of nultispectral hol ograns.

44.2 Bounded Magnitude of Noise

In this section we shall describe an iterative procedure
for image reconstruction fromdigital holograns in the presence
of bounded noise. Let

£(x,¥) = h(x,y) * g(x,y) + n(x,y) (4. 62)
where h(x,y) is as given in Chapter 2, and |n(x,y)|<d. It is
required to conpute a two dinensional signal g(x,y)eCegc such
t hat

|£(x,y) = h(x,y) * g(x,y)| < 4d. (4. 63)
In other words we wish to conpute a g(x,y)eCegNCq, Where Cq is
now defi ned as

Cq = {g(x,¥): |£(x,y) = h(x,y) * g(x,y)| < d}. (4. 64)
Thi s can be done by the method of POCS. The function conputed at
the k-th iteration is given by

9k = PescTa9k-1/ (4. 65)
wher e

Tqg = 1 + s3(P3-1), (4. 66)
and the initial estimate g,eCggc- The sequence (gy) converges
strongly since the result of every iteration belongs to Cgge-

If £(x,y) is known only at a sparse set of sanpling points,



the nmethod would require sonme mnor nodifications which is
di scussed bel ow Define

Cai = (g9(x,y): lg(x,y)*h(x,y:xi)-f(x,y:x

i),sdl for (X,Y)EIP}
4.
Q(9(x,y)) is given by e
Qg(X,Y) = h(XIY)*g(XIY)r

for (x,y)el ,
- (l-a)f(X,y:Ai) + ah(x,y;;i)*g(x,y), otherwise,

4.
wher e (4-68)

a=1, for ]g(x,y)*h(x,y;)i) - f(x,yixng)| =4,

d/1g(x,¥)*h(x,y:2q) - £(x,yir;)], Otherwise. (4. 69)

Thus the projection operation can al SO be performea if We

i

use
(4.68). This means that we can now use multispectral hol ograns.

The conputati on t o be performed at the k-th iteration is given by
Ik = PrscTaiTaz: - TanIk-1- (4. 70)

where g, is inmage function conputed at the k-th iteration, . ;g

the number Of holograms and Tg; = 1 + sqj(Pgi~1)/ for O<syj<2.

Pgj is the projection onto the set cg;.

The PQCS nethod nerely converges to a solution and will not
in nost cases attain the desired solution in a finite number of
iterations. Hence a condition to termnate the iterative
procedure nust be formulated a priori. Terninating the Iterative
procedure after a fixed finite nunber of iterations is clearly

not advisable. In our work we propose to termnate the iterative
procedure when the reconstructed signal satisfies the known data
at 95% of the points. To be more explicit, let

Ip = ((x,¥): (x,¥)€lp and |£(x,y)-h(X,¥)*g(x,y)|<d}. (4.71)

Let |1y| denote the cardinality of the set Iyx. The iterative



procedure is termnated when |Ik|/|IP| attains a value 0.95 or
nore. For multispectral hol ograns we use the ratio |Iki|/(n|Ip|)
wher e

Ip; = ((x,¥)3 (x,¥)€Iy and |f (x,¥ix1)-h(x,¥yix;)*g(x,y)[<d).

(4.72)
44.5. Bounded Noise Energy
Let
f (x,Y) = h(x,Y)*9(x,¥Y) + n(x,Y) (4.73)

where h(x,y) is as given in (22 and |In(x,y)| <r. Here the norm
refers to the root nean squared value. The problemhere is to
conpute g(x,y) such that |f (x,y)-h(x,y)*g(x,y)|l <r. As before
our intentionis to conpute a solution by the nethod of PCCS.
The operator to be applied at each iteration is Pgg P, Where Py
has been defined in Section 4.2.3. Although the simnulation
studies are presented in the next chapter let us give here a
brief description of the actual procedure.

Wthout |oss of generality we consider only multispectral

hol ograns. For a given f (x,yix;), define

Cri = (9(x,¥): lg(x,y) *h(x,yix5) - £(x,¥i33)|? < r?).

(XIY)EIP
_ (4.74)
The projection onto the set ¢c,.; is conputed as follows: Let

Qg(x,y) = h(x,y:ij)* g9(x,Y), for (x,y) € Ip,
= (1-a) f (x,y:xy) + ah(x,yixj)*g(x,¥), otherwise.
(4. 75)
wher e
a=1, for rgy<r,
= r/r,, Otherw se. (4.76)
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Her e
ro? = I |g(x,y)*h(x,yir;) - £(x,¥ir5) |2, (4.77)
(x,y)el,

Thus the projection p.; can be conputed fromQ(g(x,y)}. The
conputati on to be performed at the k-th iteration is given by:

9k = Pfsc Tr1 Tr2:+:Trn k-1 (4.78)
where gy is image function conputed at the k-th iteration,

Tri = 1+ Spi(Pry ~ 1) (4.79)
0<s,j<2 and P,y 1is the projection onto the set c.j. As usual
do(x,y) Wl be a constant function in cCg;.. A detailed
description of the above iterative procedures for the single and

mul ti ple frequency holograns is given in Algorithm4.3 and
A gorithm4. 4

4.6 Need for a Method That Does Not Rely on a Priori Parameters

Thi s chapter brought out the use of the POCS nethod in
signal reconstruction in the presence of noise. W& considered the
Fredholm's equation of the first kind and descri bed sone exanpl es
of convex sets and their projection operators. W then applied
the results to the problem of image reconstruction from noisy
digital holograns. These nethods are applicable when the noise
I s bounded by sone known value. However if the estinated val ues
for the bounds are | ower than the actual values, then the method
of POCS nmay not converge. To avoid this situation we may attenpt
to nake a very conservative estimate of the bound. In this case
the variance of the estinmate of the solution may be |arge, which
i s agai n an undesirabl e situati on. Hence we need a procedure that

converges to a common point of a collection of convex sets if



t here exists one. Mreover it should converge even if there
exi sts no common point. Such a procedure is given in the next
chapter. Simul ation studies were conducted to study the
ef fectiveness of the proposed procedure for inmaging wth noise.
The results are presented in the next chapter, where we shal

give a conparative study of the nethods proposed in this chapter

and t he next.



Initialise:
(1) go(x,y) = constant, for (x,y) in region of support,
= 0, ot herw se
(2) k =1
Repeat
(3) Compute f'(X,Y) = gx_j(X,¥)*h(x,y)
as in Algoritm 3.1 (Steps 2-5)
(4) For all (x,y)eIp do (* Conpute projection onto Cq *}
If (|£'(x,y)-f(x,Y)]|<d) then
fr(x,y) = £'(x,y)
el se
a = da/|f"(x,y)-£(x,y) |
fy(x,y) = af'(x,y) + (1-a)f (X,Y)
end if
(5) Compute gy (x,y) from fy(x,Y)
as in Algorithm 3.1 (Steps 6-9)
(6) k=k +1
until satisfactory sol ution obtained

Agrithm4 X The POCS procedure to reconstruct an inage wth

finite support from hologram data f£(x,y) known at

a set of points (x,y)eIp subj ect to bounded noi se
magni t ude.




(1)

(2)

Repeat

(3)

(4)

(5)

(6)

(7)

until

Initialise:

do(x,y) = constant, for (x,y) in region of support,
= 0, ot herw se.

For i =1ton, (* n denotes nunber of frequencies *)
do steps 4 to 7
Compute f'(x,¥) = gyp_;(x,¥)*h(x,yix1)
as in Algoritm3.1 (Steps 2-5)
Conpute £3(x,y) from f¥x,y)
as in Algorithm4.1 (Step 4)
Compute gy (x,y) from £ .(x,y)
as in Algorithm3.1 (Steps 6-9)
k=k+1

sati sfactory sol uti on obt ai ned.

Algorithm 4 2 The PQOCS procedure to reconstruct an i nage using

mul tispectral hologram data f(x,y:X; known for n

)
different frequenci es subject to pounded magni t ude of
noi se
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Initialise:

(1) go(x,y) = constant, for (x,y) in region of support,
= 0, ot herwi se.

(2) k=1

Repeat

(3) Compute f'(x,y) = dk.j;(X,¥)*h(x,y)

as in Algoritm 31 (Steps 2-5)
(4) squared-error = o
(5) For all (x,y)el, do (» Conpute total error energy *)
squar ed- error= squar ed- error +|f ' (x,y) ~£(x,y) |2
(6) | f (squared-error > r2) then
a = r/{(squared-error)
For all (x,y)el, do

fk(xIY) = (1-3)'f'(xIY) + a-f(x,y)

endif
(7) Compute gk(x,y) from fy (x,Y)
as in Algorithm3.1 (Steps 6-9)
(8) k=k+ 1

until satisfactory sol ution obtained.

Algorithin 4.3: The POCS procedure to reconstruct an image with finite
support fromhol ogramdata £(x,y) known at a set of

points (x,y)el, subject to bounded noise energy
constraint.

102



r

Initialise:

(1)

(2)

Repeat

(3)

(4)

(3)
(6)

(7)

(8)

(9)

unti |

go(x,y) = constant, for (x,y) in region of support,
= 0, ot herw se.

For i =1 to n, {(* n denotes nunber of frequencies *)
do steps 4to0 9
Conpute £'(x,¥Yixj) = Ix-1(X,¥)*h(x,¥yi)\y)
as in Algorithm3.1 (Steps 2-5)
squared-error = 0
For all (x,y)€ely do (* Conpute total error energy *)
squar ed- error = squared-error+|£' (x,y)-£(x,y) |2)
| f (sduared_errorz r2)
t hen
a = r/{(squared-error)
For all (x,y)eI, do
fy(x,y) = (1-a)-f'(x,y) + 2a‘f(x,Y)
endif
Compute gy (x,y) from fy(x,Y)
as in Algorithm3.1 (Steps 6-9)
k=%k+ 1
sati sfactory sol uti on obt ai ned.

Algorithrm4.4 The ©pocs procedureto reconstruct an image with

finite support from multispectral hologram data
f (x,y) known at a set of points (x, y)eI, subject to
bounded noi se ener gy constraint.
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Fig.4.1 Ef fect of noise on the solution set.
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Fig.4.2 Projection onto Cy. The hatched region denotes the set
set H(Cy) and Qg is the projection of Ry onto Cy. Note
that the magnitude difference between Qy and Rg is 'e'
in every dinmension. In other words, if N denotes the
nunmber of di mensions
Ne = =|Hg[n]-f[n]| - t.



Fig.4.3 Projection onto Cop- The hatched region denotes the set
Co- The point closest to Rg in Co is Qg. Hence Qg may
be given by

Qg = |Rg| cos(¢gy = (¢¢ + 1)) exp(J(ee + 1)).
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Chapter 5

IMAGE RECONSTRUCTION BY THE METHOD OF
PROJECTION ONTO NONINTERSECTING CONVEX SETS

51 Need for an Alternativeto POCS

In Chapter 4 an attenpt was nmade to reconstruct a feasible
solution fromthe avail abl e noisy data. The drawback of this
method is that accurate know edge of sone particular statistic
of the signal is required. In this chapter we devel op anot her
nmet hod of conputing a solution to the problem of inmage
reconstruction from digital holograns in the presence of noise.
Thi s met hod does not require any a priori statistics. Sinulation
studies were conducted to conpare the effectiveness of the
proposed solution wth the feasible solution. A though a precise
characterisation of the proposed solution is not known,
simul ati on studies show that sonetines it yields better results
than t he feasi bl e sol ution.

The process of hologram formation of a finite aperture
signal can be viewed as a linear mapping fromthe set of signals
with finite support to the set of bandlimted signals. In other
words if R represents the hologram form ng operator then

R:CpgoB is a mapping fromces,, the set of signals with finite

supportr1o Bp, the set of bandlimted signals. Consider the
equati on

f(x,y) = Rg(x,y) + n(x,y). (5.1)
It is required to conpute g(x,y) from f (x,y) given the operator

R Here n(x,y) is sone noise function. It is obvious that on



account of noise f(x,y) nay not belong to B,. Hence it would be

p-
I nappropriate to | ook for a g(x,y) such t hat £(x,y) = Rg(x,y).

Qur first attenpt at reducing the effect of noise would be
to renove that conponent of noisethat is not limted to within
t he known band. This can be done by bandlimting £(x,y) to obtain
£'(x,y). In Chapter 3 we showed that if f(x,y) is noisefree then
there exists a unique g(x,y) s Cgqe Such that fx,y) = RAX,Y).
This is because the Fourier transformof g(x,y) is an analytic
function and the Fourier transformof f£(x,y) can be extended by
anal ytic continuation uniquely. If f(x,y) is noisy then its
Fourier transformmnay not be anal ytic within the prescribed band.
Thus the Fourier transform of f(x,y) cannot be extended
anal ytically. However we can show that if we consider only a
bounded subset of Cgg. then there exists a unique function g(x,y)
such that [£-rRg|l i s mni msed.

Let us now see why the nethod of POCS cannot be applied to
conpute such a solution. Recall that in Chapter 3 we formulated
the problem of inmage reconstruction in the noisefree case as:
Find g(x,y)eCe,NCege WhEre

Ceo = {9(x,y): £ (X,¥) = R g(X,Y)}. (5.2)
When the given data is noisy there may exist no solution to the
problem Thus Cg,nCe, may be enpty. In such a situation the
nmet hod of POCS is not guaranteed to converge. In fact simulation
studies indicate that the nethod indeed diverges. Sone ot her
attenpts to sol ve the problemof signal reconstruction from noi sy
data are based on regul arisation techniques, which we have seen
in Chapter .. No work has been reported in literature extendi ng

t hese techniques to the problemof inage reconstruction from
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multispectral holograms. An extension of these techniques to this
problem is not obvious either. In Chapter 4 an attempt was made
to compute a feasible solution which is so defined that at |east
one exists. The POCS method can be applied for computing a
feasible solution if the feasible solution set is closed and
convex. The drawback of this method is that accurate knowledge of
some particular statistic of the signal is required. For example
it is assumed that the noise magnitude is bounded by a value 'a:?
or that the noise energy is bounded by a value 'r'. If the
estimated value of 'd' or r is higher than the true value,
then the variance of the estimate of the solution g(x,y) may be
large and the result is unsatisfactory. If the value of 'd‘* or
r isin reality more than the estimated value then the ROCS
method may not converge at all as the feasible solution set
defined by these values may not intersect with c¢g.. To overcome
this problem we propose here a method that does not require the
knowledge of these values. Moreover, as we shall soon show
through simulation studies, the method presented in this chapter
yields comparable performance even when such accurate statistics
are available. However although the method can be proved to
converge, convergence to a feasible solution set cannot be
assured.

The rest of this chapter is organised as follows: In the
next section we shall describe the theory of the method of
Projection Onto NonIntersecting Convex Sets (PONICS), which is
based on a theorem on the fixed point of nonexpansive operators.
The method of PONICS was proposed earlier in a different form in

[32] and (73] for signal synthesis and signal reconstruction. In



Section 3 we shall discuss the application of the nmethod for
I mge reconstruction fromdigital hologranms. In Section 4
simulation studies for the nethods presented here and in the
previ ous chapter are described. A conparison of the two nethods
shows the effectiveness of PONNCS for signal reconstruction in

t he presence of noi se.

5.2 Projection Onto Nonintersecting Convex Sets (PONICYS)
5.2.1 Theoretical Background

The method of PONICS is based on a theorem on the
conputation of the fixed point of a nonexpansive operator. Prior
to stating the nethod we shall first state a fewresults required
to show the validity of the proposed nethod. Recal|l that the
projection onto a closed convex set is a nonexpansi ve operator
and so is the operator Pg T Tgy.-.Tg, defined in Chapter 3.
Moreover the POCS method ains at conputing the fixed point of
PescTeiTe2 - *Ten  and the nethod is applicable if Cgge n Cgy is
nonenpty. The follow ng theorem suggests a nethod of conputing

the fixed point even if that condition does not hol d.

Theorem 5.1: Let T be a nonexpansive mapping from ¢ - c with a
nonenpty set of fixed points where Cis a closed convex subset of
a Hilbert space H Let T, = s + (1-s)T, where o0<s<l. (TN(x))
converges weakly to a fixed point of T. Mreover the convergence

is strong if at | east one of the subsequences converges strongly.

Definition: T is called an asynptotically regular operator at X if

Lim |™Nx - ™™*1x| = o
N-+w



Let C denote a closed convex set that is a subset of a H I bert
space H T is said to be asynptotically regular at C, or sinply
asynptotically regular, if it is asynptotically regular at all
xec. Notice that asynptotic regularity and convergence are
related concepts. |In fact convergence inplies asynptotic
regularity though the converse is not always true. Consider for
exanpl e t he sequence generated by, xy =1+ /2 + /3 +...+ 1/N.
Al though the sequence (xy) is asynptotically regular, it does not
converge to a finite limt. The followng theorem states a
sufficient condition for a continuous operator to be

asynptotically regul ar.

Theorem5.2: [18] Let a continuous operator T:c-c have a nonenpty
set of fixed points and choose s in (0,1), then the mapping

TS X) = s(X) * (1-s)T(x) (5.3)
(a) i1s a mapping fromc-c,

(b) has the sane fixed points as T and
(c) is asynptotically regular.

The above theorem holds for a nonexpansive operator also
since any nonexpansive operator is also continuous. As stated
earlier asynptotic regularity does not inply convergence. The
followmng theorem states the conditions for asynptotic

regularity to inply convergence.

Theorem 5.3 [71]: Let T:c~c be an asynptotically regul ar nonexpansi ve
operator with closed convex domain ¢ccH and let its set of fixed

points F be nonenpty. Then for any xec the sequence (TN (%))

converges weakly to an elenent of F. Mreover the conver gence



Is strong if and only if at |east one of the subsequences

converges strongly.

Proof of Theorem 51 : From Theorem 5.2 we know that Tg is
asynptotically regular at all points in C and has the sane fixed
points as T. Applying Theorem 5.2 the desired result follows.
(B of Proof)

From the above three theorens and using the result that a
nonexpansi ve operator on a convex bounded set has at |east one

fixed point [43], the follow ng corollary to Theorem5.1 foll ows.

Corollary 5.4: Let T:c-C be a nonexpansi ve operator with closed
convex bounded domai n ccH. Then for any xec the sequence {TSW)Q )
converges weakly to an el enent of F. Mreover the convergence is
strong if and only if at |east one of the sub-sequences converges
strongly. Here

Tg = S 1t (1-s)T (5.4)

Consi der the conditions required by the above result and the
condition required by nethod of POCS. In the first case
boundedness of the set Cis necessary while in the nethod of POCS
convergence is assured to a common element of a collection of
cl osed convex sets none of which need be bounded. Wile in
t heory boundedness inplies a severe restriction, in practice we
deal only with bounded sets although the exact bound is not
known. Hence boundedness is not necessarily a serious
limtation. Let us now see how to nmake use of Corollary 54 to
develop an iterative method for signal reconstruction in the

presence of noi se.
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Consi der the operator P = p,P,, where P, and p, are
proj ection operators onto convex sets ¢, and ¢, respectively. P
is a nonexpansive operator from c,~c,, since p, and p, are
nonexpansi ve operators and any finite concatenation of
nonexpansi ve operators is also nonexpansive. If C is a bounded
set then there exists at |least one fixed point in ¢, for the
operator P. Moreover the sequence (ng) ) converges to a fixed
point of P. Here Pg=1+s(P-1), where o0<s<1. Note that ¢, and c,
nmay have no el enment in common. This argunent can be extended to
an arbitrary number of sets. Let P=P,P,...P,, wWhere P,, P,,.., P

n
are projection operators onto closed convex sets ¢, C,,

.1 Cpe
P is a nonexpansive operator from c,~c,. Again if c, is bounded
then the sequence (PN(x)) converges to a fixed point of P for
all xecy. Here Pg is understood in the sense as nentioned before.
Thus even though the sets ¢,, ¢c,, ..., ¢, have no elenent in
common there exists a fixed point of the operator P,P,...P, Which
can be conputed by the above nentioned nethod. W shall
henceforth refer to it as the nethod of projection onto
noni ntersecti ng convex sets or PONICS for short. A though the
nmet hod of PONI CS assures convergence, nothing has been said so
far about the nature of the solution. In the nmethod of PCCS,
convergence is to an arbitrary common el erent of c¢,, ¢, ..., C,.
In case there are no common elenents, PONCS wi Il still converge
to a solution. In other words we are at a loss to state in
preci se terms the conputational problemthat the nethod sol ves.
Al though the nethod is anbiguous inits aimwe wll show through
simulation studies that it indeed hel ps in conputing an

acceptabl e solution to the problemof inmage reconstruction from



mul tispectral digital holograns. If only two convex sets are
i nvol ved the nethod of PONICS conputes a quasisolution. This is

shown i n the next section.

5.2.2 Quasisolutions

If there are only two convex sets a quasisolution can be
defined and as we shall soon see the nethod of PONI CS conputes a
guasi solution. Also, in certain cases the quasisolution is
uni que. The followi ng result which states the conditions for the
exi stence and uni queness of a quasisolution is a corollary to

Theorem 1. 3.

Lemma5.5: |f for a given Fredholm's operator R, g=O is the only
solution to the equation Rg=0 on a conpact set G, then a
quasi sol ution to the equation f=Rg on G, for given f is unique
and depends continuously on the initial data.

In other words,even if there exists other geG, such that
Rg=0, the uniqueness of a quasisolution is assured if there
exists only one geG,, which is identically zero, satisfying the
equation Tg=0. It was pointed in Chapter 3 that cCgq. is
preconpact and that for any deconvol ution problem such as inmage
reconstruction fromdigital holograns, if the inpul se response is

nonzero in any finite band then g=Ois the only solution in Cgg.
for h*g=0. Recall that inmage reconstruction from digital
hol ograns is a deconvol ution problem where the system transfer
function is a low pass filter. Let us now showthat the nethod of

PONI CS conput es a quasi sol uti on.



Consi der the operator Q = 1 + s(Pg;.Pg,~1) Operating on the
set Ceg., Where pe . and pgy, are defined earlier. W wsh to show
that the fixed point of Pg .Pe, to which the sequence (¥

converges satisfies the follow ng condition:

lg'-Peog'l =  Min [g; - g5l (5.5)
91€Cfsc
92€C¢0
where g' is a fixed point of Pe  Pey. This is shown as follows:
By definition of the projection operator,
"g'-Pfog'" = "g'-cfo"' (5.6)

Al 'so since Pg  Peog'=g', We can wite

"Pfscpfog' - Pfog'" = "Pfog'-cfsc"- (5.7)
That i s,
”g'_cfo" = "Pfog - Cfsc" (5.8)

Now | et g;eCegq. and g,eCey be two el enents such that
lgy=g5l = Min [lgq' - g5 (5-9)
91 '€Crsc
92'€Ceo
It is obvious that g,=Pgogy and g,=Pgg.g,. | N other words
91=PfscProd1- V& now wish to show that the pair g, and g, is

either unique or if there exists another function g' such that

PescProd' = g', then |gy-g,l = llg'-PegProg'll. Let
u = Pgogq - 99, (5.10)
v=9g9; -9, (5.11)
W =g; - Peog', (5.12)
X =g' = Pgog'y (5.13)
Y = Peo9' - Peo97s (5.14)
and z = g' - Pgog9;- (5.15)

Noti ce t hat



XxX+y= 2, (5.16)
u+y=-w, (5.17)
u+ v = -z, (5.18)
and x *t v = w. (5.19)

Taking the squared norm of both sides of the above four equations

we derive

12 + lyl2 + 2 Re <x,y> = |z]2, (5.20)
lul? + Iyl? + 2 Re <u,y> = |w|?2, (5.21)
lull2 + [Ivl? + 2 Re <u,v> = |2|?, (5.22)
Ix2 + [[vl? + 2 Re <x,v> = ||w|2. (5.23)

From the Leamma 1.5, we know that <x,y>, <u,y>, <u,v>, and <¥%,Y>

are all greater than zero. Hence we derive

%12 + lyl? < 1212, (5.24)
lall? + lyl? < lvi?, (5.25)
lal2 + IvI2 < lz12, (5.26)
%2 + vl < lwl?. (5.27)

Adding (5.24) and (5.26), and (5.25) and (5.27) we derive

=12 + Nyl? + hul2 + Ivl? < 2lz]2, (5.28)

%12 + Nyl? + lul? + Ivl2 < 2fvli?. (5.29)
From the "parallelogram law", we derive

2[x12 + 2lyl? = Ix+vl2 + Ix-yI2 > lz]2. (5.30)
That is,

2lx1? + 20yl? > l=z]2. (5.31)
Similarily,

2lull? + 2|vl?2 > |22, (5.32)

2llx12 + 2fvlZ > [wl?, (5.33)
and 2ful? + 2llyl? > |wl®. (5.34)

Adding (5.31) and (5.32), and (5.33) and (5.34) we derive,



v

=012 + lyl? + lul? + Ivl2 > [z]2, (5. 35)

112 + lyll2 + a2 + (viZ > [w]2. (5. 36)
Fromthe Equations (5.28) and (5.29), and (5.35) and (5.36) we
derive

212 = 2wl = ull2 + vl + =12 + lyl2. (5.37)
It trivially follows fromthe above equations that

<X,y> = <u,v> = <x,v> = <u,y> =0 (5.38)
Subtracting (5.23) from (5.22), we get

lul? = IIxl2, (5.39)
which is the desired result.

V& have just seen how a quasi sol ution can be conputed. The
uni queness of a quasisolutionfollows if we can showthat g=O is
the solution to h*g=0. |In the next section we shall see a

net hod of speeding up the convergence to a fixed point of

PfscPfo'

523 Modified Method of POCS

In this section we shall show that the operator
1 + ag(PggcPro-1) foOr o<ag<2 can be used to converge to a fixed
poi nt of Pec Peo. Wsing a value of ag>1 will help to speed up
convergence in the initial stages of the iterative procedure.
Consi der the operator Tg,=1+s¢ (Pgo-1), Where 0<sg <2.  Recal
that T¢, i s a nonexpansive operator and that the fixed points of
PescPro and Pe  Teo are sane and are just the conmon el enents of
Cege and Cgg,.

Ve will now showthat if for the unbounded set Cg;. the set
of fixed points of Pgs Pgo IS Nnonenpty then the set of fixed

points of Teg, Pg, IS identical to the set of fixed points of



PescPro €VEN if Ceo and cgy, have no common el enment. Consi der
the operator Peg Teg- SiNCE Pe Teg, S @ nonexpansive operator
We can use Q=1+s(Pgg Tgo-1), Where o<s<i, to converge to a fixed
point of Pe o Teo- V& Wi sh to show that Qg=l+ag(PggoPeo-1) for

ag=s-sggy. This may be shown as follows. For any geCgg.,

g + S(Pfschég -9g) = g+ S(Pfsc(g + sfo(Pfog -9)) - 49)
(5. 40)
Since Pgg, is a linear operator and for geCego, Pggcd = ¢, the

above equation reduces to

9 + (PegcTeod - 9) = 9 + S(Pegc9 + PegeSeo(Prod - 9) - 9),
(5.41)

= g + SSgoPrgc(Prog - 9)y (5.42)

— g 4+ sSpo(PrecProd - 9) - (5. 43)

Fromt he above equation the desired result trivially follows. Let
us now show that the fixed points of Pgg Pg, and Pgg Te, are
identical. W shall attenpt to do so by showing that the fixed

points of Pg . Pgy 2and Qg are sane. That the fixed points of

PrscPfo are also fixed points of Qg is obvious. To show the
converse consider g', a fixed point of Q5. Now,

g' = Qg' = g' ¥ 3 (PegcPro9' - 97, (5. 44)
Hence

ag(PggcPgo9'~ 9') = O. (5. 45)
Since ag«0, it follows that g' is also a fixed point of Pe  Pgq-
Thus the fixed points of Pe; Pey and Qg are identical. In other
words (QcN(g)) converges to a fixed point of PggPey. If we
choose ag=1, Qg=Pgg Py, Which is the operator usually applied

for the noisefree case. W have just shown that Pg; Pe, Can be
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applied for the noisy case also and that it converges to a
quasi sol ution. We conclude this section by show ng that the
fixed points of Pe, Tey, and Pe, Pey are identical. In the next
section we shall see how the nethods discussed in this chapter
can be applied to the problem of image reconstruction from

digital holograns in the presence of noise.

53 Image Reconstruction from Multispectral Digital Holograms

The problem of image reconstruction from digital hol ograns
may be stated as fol |l ons. Let

£(x,yix3)=h(x,y:2;) *g(x,y) + nj(x,Y), for i=1,2,...,n

(5.46)

wher e

f(x,y:;x;) is the hologramknown at a fixed set of points I p

for a wavelength X,
h(x,y:x;) 1S the inpulseresponse at a wavelength aj,
g(x,y) Is the object field distribution that is indepen-
dent of wavel engt h,

n; (x,y) i s sone noi se function.
It isrequired to conpute g(x,y)eCege given f£(x,yixj) at (x,y)el,
and for wavelengths x,, x5, ..., x,. Notice that the problem as
stated is ill-posed as there may exist no solution. As a
sinplification consider the case of only one hol ogram

It was shown in the previous section that if f£(x,y;xy) is
known conpletely then it is possible to conpute a quasisol ution
bel onging to cgeg.. However if f(x,y:;r;) is known only at a finite
set of points, then g(x,y)=0 is not the only solution to

h(x,y)*g(x,y) = 0 for (x,¥)€elp. Hence the quasisolution is not



unique. However an arbitrary quasisolution can be computed by
applying the method of PONICS we shall describe how this may

be done. Let

Ceo = {9(x,¥): f(x,¥) = h(x,¥)* g(x,y),

for £(x,y) given on (x,y)eIp). (5.47)
Cso would be null if f£(x,y) is noisy and is known over the entire
receiver plane. 1In that case we should use f'(x,y), the

projection of f(x,y) onto the set of bandlimited functions, in
the definition of cgy. If the cardinality of b is finite then
o is nonempty. Since the solution set is a subset of Cgo, We

Ce
can apply the operator Pgg Pg, iteratively on any geCeg.. Notice
that Cg, is a closed convex set.

If the hologram data is known for n different wavelengths
A1s A4 ee+s AL, then our am would be to generate a sequence
belonging to C¢g. and depends on the initial data. However we
are not in a position to give a precise characterisation of the
point to which it converges.

There are in general two ways of producing such a sequence
corresponding to the sequential and parallel methods. In the

parallel method we apply the operator

Rpar = 1 t SPrgo(51Tgq T 5,Tey + .00+ s5Tg) (5.48)
where

Teg = L 1 sgi(Pey -1), O0<sgy<2 (5.49)
and

sy t s, + ... + s, =1. (5.50)

Since T¢y IS a nonexpansive operator, using Theorem 3.1 we can
show that sTg t s,Te, T oo + 5. Tg, iS a nonexpansive operator

and thus it is seen that the sequence {Rgar(g)), geCege Will



converge to a fixed point of Peg (s1Tg1+sS,Tep+. o+ Tey). IN the

sequential method the operator applied at every iteration is,

Rseq = 1 + sPego(Tgy * Tgp + .00 + Tgp) (5.51)

Although we are not fornally able to characterise the nature of
the solution given by either of these two operators Rpsy, is
appealing intuitively as s;, s,, ..., s, can be suitably chosen
toreflect the relative enphasis of each of the known data on the
solution. The sequential nethod gi ves unknown rel ative inportance
to each of the known data. In the next section we shall present

simul ation studies to showthe efficacy of the nethod of PON CS.

5.4 Simulation Studies
54.1 Overview

The purpose of sinmulation study is threefold nanely (i) to
show t he convergence of the PONCS nethod, (ii) to conpare the
conputation invol ved for signal reconstruction in the presence of
bounded noise nagnitude by the nethod of POCS and PON CS and
(iii) to conpare the effectiveness of the parallel and sequenti al
met hods of PONICS. Accordingly the sinulation studies are
organised in two parts: (i) conparison of the nmethod of PON CS
and PCCS for inmage reconstruction in the presence of uniformy
di stributed noise and (ii) conpari son of the sequential and
parall el nethods of PONICS for inmage reconstruction in the
presence of uniformy distributed noise.

Let us consider the nethod of POCS to conpute a feasible
solution. First we shall consider bounded noi se energy. Here the
nmet hod of POCS can be applied. But we can show that applying the

nmethod of PONCS wll result in practically the sane sol ution.



Consider the case of just one hologram data. If the set C,
(defined in Equation (4.10)) and Cg¢g. intersect, both the
method of POCS and the method of PONICS will converge to an
element of Cc.nCgg .. IN the method of PONICS we take a projection
onto Cg¢, Which is a subset of C.. Thus the projection onto Cgq
will result in an interior element of c.. Hence convergence to
an element of cg . nC. will be faster. Notice that it is simple
to verify whether the solution belongs to CggnC,. Or not. Thus
the method of PONICS can be applied with the termination
criterion being that the solution belong to Cg;,.nC.. Notice that
convergence can be speeded up in the method of ROCS by using
Ty = 1 + s, (Py~1), 0<s,.<2, instead of P.. Here s, must be chosen

such that T.(g(x,y)) must belong to an element of ¢ where r is

r
the actual value of noise energy. Thus using the operator T, it
is possible to apply the method of ROCS with a small margin of
error on the estimated value of noise energy. However the method
of PONICS does not require the value of r at all except for
terminating the iterative procedure. Hence we shall not consider
the POCS method for image reconstruction in the presence of
bounded noise energy.

The other type of feasible solution involves the use of the
information that the magnitude of the noise is bounded. Here we
shall consider both the ROCS and the PONICS method. Consider the
case when only one hologram data is available. Let f (x,y) be the
given field distribution and fo(x,y) a function such that
If (x,¥y)-£5(x,y)llc < d. Notice that L2 distance between f (x,y) and
*

fo(x,yY) may be unbounded. Moreover the set {(g(x,y): h(x,y)

g(x,y) = £5(X,y)) is a subset of c4 (defined in Equation (4.9)).



Hence cq is an unbounded set. An arbitrary el enent geCggnCq Nay
be far removed fromthe actual solution, in ternms of the 12
nor m In other words the variance of the estimate of the
solution will be large. Onh the other hand, using the nethod of
PONICS we can conpute a quasisolution. However the result nay
not necessarily belong to cg. Yet as we see |ater the nethod of
PONI CS converges faster to a point that is close to the desired
sol uti on.

For mul ti spectral noisy hol ograns t he PONI CS net hod has bot h
a sequential and parallel inplenentation. Recall from Chapter 3
we saw that for the noisefree nultispectral data the sequenti al
and parallel methods have the same solution set. For noisy data
however no such statenent can be made. Hence simul ati on studies
were carried out for noisy data conparing both the nethods. But

the results did not bring out any appreciable difference between

t he two net hods.

542 Comparison of the Method of POCS and PONICS

In this subsection we shall consider uniformy distributed
noise. Uniformy distributed noise is in reality random noise
wi t h bounded nagnitude. We shall conpare the POCS and PONI CS
met hod of imnage reconstruction. Before we go on to describe the
results let us first describe the criterion used for termnating
the iterative procedure. A fixed nunber of iterations decided a
priori is unsatisfactory as it cannot reveal the tradeoff
bet ween accuracy of the desired result and the conputati onal
conplexity. 0 the many error criteria that coul d have been used

to judge how far the current solution is fromthe actual, the one



that was simplest to compute is chosen. The error criterion has
been described in Chapter 4. In the actual implementation some
minor modifications were introduced. Let us describe the
procedure proposed earlier first.

The iterative procedure may be terminated when the Figure
O Merit (FOM),

| Tel/1Tp] < kg. (5.52)
Here |I¢| and |Ip| refer to the cardinality of the sets I and

I respectively. I, is defined as

P
If = ( (x,y): |£(x,y) - h(x,y)*g(x,y)| < 4, for (x,y)el, )

(5.53)
Here 'd' is a known maximum bound on the magnitude of noise. For
multispectral holograms the figure of merit is (E|Ifi|)/(n|Ip|),
where n is the number of frequencies and I¢; is the set 1, for a
wavelength xi. In other words,
Ieg = € (x,y): [£(X,¥:X3) - h(x,yixj)*g(x,y)| < d, (x,y)elp}
(5.54)
Keeping in line with the simulation studies conducted earlier, we
chose k4=0.95. The difficulty encountered was that the number of
iterations required to obtain this accuracy was quite large and
hence the iterations were terminated when the number of
iterations times the number of frequencies reached 50. Yet
another relaxation was made to terminate the iterative procedure
when the figure of merit defined above did not improve over
successive iterations.
Fig.5.1 shows the results obtained using the POCS and PONICS

methods for a 64x64 array. The results are given for a SNR of

0dB and -10dB. Table 5.1 gives comparative figures for the



conput ati onal conplexity and FOM The FOM is neant nerely to
conpare the results obtained using the POCS and PON CS net hods
for the sane initial conditions. It does not indicate in a
proper sense the absolute figure of nerit of t he sol ution
obtained. Hence it would not be reasonable to conpare the FQM
val ues along a colum. Notice fromFig.5.1 that for a 64x64
array the results obtained using the POCS and PONCS nethod do
not show appreci abl e di fference. However Table 5.1 shows that an
FOM of 95%is attained for nearly all cases of the PONNCS nethod
and for hardly any case of the POCS nethod. Mreover the table
also indicates that the PONCS nethod takes fewer iterationsto
attain an FOM of 95% The nmethod of POCS in nost cases had to be
terminated because the nunber of iterations exceeded 50. In fact
the only instance where the POCS method appears to give better
results than the nethod of PONCS is when the SNR is -10dB and
when 16 frequencies are used. For a large signal to noise ratio
t he bound on the naxi mrum nagnitude of the noise is also |arge.
Hence notice that the FOM for -10dB is in general higher than
for the correspondi ng o dB case.

Let us also caution that since we are conducting sinmulation
studi es the bound on the maxi mum nagni tude of the noise is known
precisely. Hence the POCS nethod, as can be seen from the
figure, gives results conparable to those obtained by the
nmethod of PONCS In practice the bound on the noise is only
approximately known. To reiterate what was nentioned earlier if
the actual bound is nore than the estimated bound then t he POCS
method will not converge even in the 12 norm But the PON CS

nmet hod can be applied even if the known bound is erroneous. A



worst it might diverge in the FOM but will converge in the 12
norm |In sum the POCS nethod was applied under ideal
conditions. Even in such case the POCS net hod does not give
significantly better results. Thus these experinental studies
indicate that conputing a solution by the nethod of PONCS is
better than conputing a feasible solution by the method of PCCS.

Let us now consider the 32x32 array (down sanpled). Fig. 52
shows the results of the images reconstructed from nul tispectral
noi sy hol ograns by the nmethods of POCS and PONI CS when the SNRis
odB and -10dB. The figures indicate that the nethod of PON CS
appears to give better results than the method of POCS under the
sane initial conditions. As in the previous study a table
conparing the conputational conplexity and the FOM for the
results obtained using the two nethods was nade. Table 5.2 shows
t hat whereas the PONI CS nethod attai ned the desired accuracy
within a few iterations, the POCS nethod failed to converge for
the two frequency case or exceeded the prescribed [imt on the
nunber of iterations for other cases. For the sake of conpletion,
the figures corresponding to the 16x16 array and 8x8 array are
given in Fig.53 and Fig. 54 respectively, although they do not
gi ve any useful information even at | ow noi se | evel s (SNR=04B and
SNR=-10dB) .

These studies show that the performance of the nethod of
PONCS for image reconstruction fromnultispectral holograns in
t he presence of uniformy bounded noise is in nost cases at | east
as good as the nethod of PCCS for the sane initial data. A | ook
at the corresponding values in Table 5.1 to Table 5.4 shows

that the method of PONICS converges faster if the sanples are



U

conver gence rate fa||s sharply as the nunber
fewer. Horeover the anount of

of frequenci®s ;o yncreased grom 4 to 16 in the case of a 64x64

array. This indicates that when there is an increasing 1 ot
) ) ) 1eve the game level o
i nconsi stent data the size of the solutdohigeg keeps decr easi ng
and nence it takes pore computation

FOM.

5.4.3 Comparisont of Sequential and Parallel Methods
sequential and parallel
I n our second study we conpare the seq P nsider
implementations ¢ the methods of pONICS. We shall

only multispectral holograns. We also assume a uniform
distribution of noise. We did not consider Gaussian distributed
noi se since the nethod of PONCS does not make explicit use of
the property that noise is Gaussian distributed. |In our
simulation study we assune that noise is independent and
identically distributed at every point. In such a situation the
nethod of PCONI CS can be applied irrespective of the distribution

of noise. The conparative study of the sequential and parallel

methods was nmade Using 5 35432 array and for two SNRs, namely,
0dB and -10aB. The results as indicated by Fig.s5.5 do not show

appreci abl e difference between the two nethods.
o . . . The termination
criterion for the iterative procedures remain the same as In {Re

previ ous case.

A note regarding the parallel nethod may be nentioned here.
Let g; = Pgjg, Where Pg; denotes the projection onto the set cgy.

It is possibleto wite g; as

9i = 9o * Dy, (5.55)
where n; js sonme noise function. In the parallel inplenentation



fewer. Mreover the convergence rate falls sharply as the nunber
of frequencies is increased froma4 to 16 in the case of a 64x64
array. This indicates that when there is an increasi ng anmount of
I nconsi stent data the size of the solution set keeps decreasing

and hence it takes nore conputation to achieve the sane | evel of
FQM

543 Comparison of Sequential and Paralld Methods

In our second study we conpare the sequential and parall el
| npl ementations of 't henethods of PONICS. We shall consider
only multispectral hologranms. We also assume a uniform
distribution of noise. W did not consider Gaussian distributed
noi se since the nmethod of PONCS does not make explicit use of
the property that noise is Gaussian distributed. In our
sinmulation study we assune that noise is independent and
identically distributed at every point. In such a situation the
net hod of PONICS can be applied irrespective of the distribution
of noise. The conparative study of the sequential and parallel
nmet hods was nade using a 32x32 array and for two SNRs, nanely,
0dB and -10d4B. The results as indicated by Fg.5.5 do not show
appreci abl e difference between the two nethods. The termnation
criterion for the iterative procedures remain the sane as in the
pr evi ous case.

A note regarding the parallel nethod nay be nentioned here.
Let g; = Pgjg, where Pg; denotes the projection onto the set Cgy.
It is possibleto wite g; as

gi = 9o + Ny, (5.55)
where n; is sone noise function. In the parallel inplenentation



we compute (1/n)Zg;. Note that we are in essence computing the
time average. From the central |imit theorem we know that as n
tends to infinity the time average tends to the ensemble average.
Since the noise is assumed to have a zero mean the time average
can be expected to reduce the noise. In other words (1/n)Zn; will
tend to zero. The implicit assumption here is that g, is
independent of 'i*. This assumption is not strictly true since
for a given sparse sensor array data there can be many "correct"
solutions. Even if g, is dependent on 'i', the effect of
averaging will be to reduce the noise. Note here that the
parallel procedure is similar to the Jacohi iteration for solving
a set simultaneous linear equations [26] while the sequential
procedure is similar to the Gauss-Siedel iteration. The
disadvantage with the parallel method is that it does not update
the estimate of the solution each time the projection Pgy is
computed. Hence the parallel procedure can be expected to take
more number iterations to arrive at a prescribed Fom for the
solution. In other words, if only a sequential computer is
available it is best to use the sequential method since it will
converge faster. As we shall soon see the results of our
experiments appear to validate our conclusion.

Fig.5.5 shows the results obtained by using the sequential
and parallel methods. It can be seen that the quality of the
reconstructed images obtained by the two methods are not
significantly different. Table 5.5 shows the relative performance
of the sequential and parallel methods. As in the previous case,
the values for the FOM do not,represent in any absolute sense

the quality of the reconstructed image. It is given merely to
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conpare the sequential and parallel nethods for the sane initial
conditions. Notice that while the FOMis nearly equal in nost of
the cases, the sequential nmethod gives better perfornmance in
ternms of the nunber of iterations. However in a parallel machine
the parallel nethod will be speeded up by a factor nearly equal
to the nunber of frequencies. Hence the parallel method will be
faster in such a situation.

In this section, we have performed sone simulation studies
for image reconstruction from digital holograns in the presence
of noise. W have considered two nethods of inage reconstruction
from multispectral holograns in the presence of noise. In the
first case we attenpted to conpute a "feasible sol uti onV by the
method of POCS. In the second case we applied the method of
PONCS. The studies indicate that in nmany cases the method of
PONI CS gi ves better results than the nmethod of POCS. The nethod
of PONICS can be inplemented sequentially or in a parallel
fashion. We have considered both versions and the studies
indicate that the sequential method converges faster than the
parallel method in a sequential conputer. Hence, unless we have a

paral |l el machine it would be better to use the sequential method.

5.5 Application to other Signal Recovery Problems

In this chapter we discussed the method of projection onto
nonintersecting convex sets (PONNCS) for image reconstruction
from noisy sensor array data. Through simulation studies we
have shown its effectiveness in reconstructing a good quality
i mage from nultispectral holograns. Sinulation studies were

conducted to conpare the results by both the nethod of PON CS



and the nmethod of POCS. It was found that the nethod of PON CS
gave nuch better performance in terns of conputati onal
conplexity than the nethod of PCCS, although the former is not
guaranteed to converge to the desired solution while the latter
I S. Not e t hat the POCS nethod was applied under ideal
conditions and even in such a case the POCS nethod does not
give significantly better results. The PONICS nethod has both
sequential and parallel inplenmentations. Sinmulation studies
reported here do not show any appreciable difference between the
two versions. Finally, note that a precise characterisation of
t he sol uti on conputed by the method of PONICS i s not known except
for the case of two convex sets, when the method was shown to
converge to a quasi sol ution.

There are a nunber of signal recovery problenms that can
possi bly be dealt with using the nethod of PON CS. Conputer
tonography is a good exanple. Here, as in nultispectral digital
hol ography, it is required to find an el enent of the intersection
of a nunber of convex sets. An enpty intersection may result if
there is a large anount of noisy data. In such cases one may be
tenpted to discard part of the data so as to be able to conpute a
solution by the nmethod of POCS. Using the nethod of PONICS,
however, we can conpute a solution that nmakes use of all the

avai | abl e dat a.



Figure of

merit versus conputationa
reconstruction frommultispectra

Table 5.1

of uniformy distributed noise for

a 64x64 array.

conpl exity for
hol ogr ans

| mage

i n the presence

PONI CS PCCS

SNR | #Frequ- : :

(dB) encl es #l%Fgﬁg |If|/|Ip| #;fgﬁg- |If|/|Ip|
0 1 2 97.77 50 87. 67
0 2 4 95. 58 50 87.28
0 4 8 96. 26 52 87. 69
0 8 56 94. 90 56 90. 87
0 16 64 95. 56 64 84. 25

- 10 1 7 99. 44 11 93. 41

- 10 2 26 98. 72 50 98. 11

- 10 4 32 96. 18 52 95. 06

-10 8 40 93.73 56 95. 13

- 10 16 48 92.53 64 95. 30




Fi gure of

nmerit

Table 5.2

: versus conput ati ona
reconstruction fromnul ti spectra

of uniformly di stributed noi se for

a 32x32 array.

conpl exity for
hol ogr ans

| mage

i n the presence

PONI CS POCS

SNR | #Frequ- : :

(dB) encl es #1F$g;; 1Tel/11p] #{}ggg- |Tel/ | Tp]
0 1 2 98. 31 13 88. 37
0 2 4 96. 53 42 84. 60
0 4 12 97. 29 52 81.76
0 24 95. 69 56 82. 39
0 16 48 95. 51 64 84. 25

- 10 1 2 99. 42 6 94. 82

- 10 2 4 99. 66 12 93. 89

- 10 4 8 99. 02 36 94. 84

-10 8 16 97.93 56 94. 66

- 10 16 32 95. 94 64 94.75




Fi gure of

merit

Table 5.3

_ versus conputationa
reconstruction from nul ti spectra
of uniformy distributed noise for

conplexity for image
hol ograns in the presence

a 16x16 array.

PONI CS PCCS
SNR | #Frequ-

(dB) enci es #ifﬁgﬁ; VAR #{}gag— |1¢1/11p]
0 1 2 96. 49 13 85.94
0 2 6 98. 22 16 82. 43
0 4 12 97. 67 44 80. 38
0 8 24 96. 83 56 78. 62
0 16 48 95. 08 64 77.79

-10 1 2 99. 61 2 93. 75
-10 2 4 98. 83 6 93. 17
-10 4 8 98. 93 16 94. 15
-10 8 16 99. 37 40 94. 05
-10 16 32 99. 76 64 94. 95




Figure of nerit versus conputationa
reconstruction frommltispectra
of uniformy distributed noise for an 8x8 array.

Table 5.4

conpl exity for
hol ograns in

| rage

t he presence

PON CS PCCS

SNR | #Frequ-

(dB) enci es (ith%hS |If|/|Ip| #{}gag— |If|/|Ip|
0 1 2 98. 44 7 82. 82
0 2 4 99. 32 18 85. 04
0 4 8 99. 02 24 82. 66
0 8 24 97.37 56 75. 98
0 16 48 97.37 64 76. 27

- 10 1 2 95. 32 2 94. 22

- 10 2 2 96. 88 . 4 94. 29

- 10 4 8 99. 61 8 93. 44

- 10 8 16 99. 61 24 92. 66

- 10 16 32 99. 61 32 94. 15
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Conpari son of

Table 5.5

shows the figure of nmerit
for image reconstruction

presence of

the sequenti al

and parall el

Ver sus

from mul ti spectral
uniformy distributed noise for

met hods.

Tabl e

conput ati onal conplexity

hol ograns the
32x32 array.

Sequent i al Par al | el
SNR #Frequ- :
encies| #itera- FOM #itera- FOV
tions tions
0 2 4 96. 53 8 97. 46
0 4 12 97. 29 28 96. 00
0 8 24 95. 69 56 91. 45
0] 16 48 95. 51 64 83. 40
- 10 2 4 99. 66 4 98. 78
-10 4 8 99. 02 8 96. 99
-10 8 16 97.93 16 95.70
-10 16 32 95. 94 48 95. 83
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Initialise:
(1) do(x,y) = constant, for (x,y) in region of support,
= 0, ot her wi se.
(2) k =1; s =009
Repeat
(3) For all (x,y) do
g'(x,¥Y) = gg-1(x,Y)

(4) For i =1ton

do steps 5-7
(5) Comput e f (x,y) = g'(x,y)*h(x,yixry)

as in Algoritm3.1 (Steps 2-5)

(6) For all (x,y)el, do

fr(x,y) = £(x,yixj)
(7) Conpute g'(x,y) from £y (x,y)

as in Algorithm3.1 (Steps 6-9)
(8) k=X +1

(9) For all (x,y) do

g (X,¥Y) = gg-1(x,¥) + s(g'(X,¥)~gx-1(%,Y))
until satisfactory sol ution obtained.

Agoithmal: The PONCS procedure to reconstruct an inmage with
finite support fromhologram data f£(x,y) known at a
set of points (x,y)elp for n different frequencies.
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(q) (r)

(s) (t)

PONI CS POCS PONI CS POCS
SNR=0dB SNR=0dB SNR=-10dB SNR=-10dB
Fig.5.1 Conparison of POCS and PONICS nethods for

reconstruc-
tion of images from noisy sensor array data. Uniformy

distributed noise is used. The data is collected from a

64x64 array at different frequencies. Conparison is
made for two different SNR's.
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Chapter 6

IMAGE RECONSTRUCTION FROM NOISY PHASE

6.1 Problem Statement
61.1 Sgna Recongruction from Phase

In the previous three chapters we consi dered t he probl ens of
sparse data and noise. The sparsity of data arose due to the
smal | nunber of sensors. In this chapter we consider partial
data narmely phase only data. This problem is simlar to the one
mentioned in the previous chapter with the added conpl exity that
only the phase of the signal is known. W consi der both full
phase and quantised phase. An iterative procedure based on the
alternating projection theoremis proposed. The termination of
the procedure is done on the basis of a figure of nerit of the
solution. Sinmulation studies show that inmages can be
reconstructed from noi sy phase even when the phase is quantised
and when only a few sensors are available for collecting the
dat a.

The problem of signal reconstruction fromthe phase of the
Fourier and other linear transforns has of late received w de
attention [7]),[16],[67]. Signal reconstruction from noisy phase
has been considered by FEpsy and Lim (11} and Yegnanarayana,
et al [67]. In [11] the problem of recontruction of a signal
from the noisy phase of its Fourier transform was considered.
The noise added to phase was uniformy distributed between -¢
and +&. The closed formsolution for signal reconstruction from

phase was used. As this solutionis valid only for noisefree
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data, it was found that even for very |ow noise |levels such as
$=1/10 t he reconstruction was poor. This method of solution is
I nadequate in other respects too. First it cannot be easily
extended to other transforns. Besides, it does not nake explicit
use of the fact that the signal has finite duration. This can be
done in an iterative procedure, as in [67]. Here the noisy phase
I's quantised in the hope that the quantised noisy phase is
likely to be the sane as the quantised noise free phase also.
The nethod of Projection Onto Convex Sets (POCS) can be used to
iteratively conpute a solution that has finite region of support
and that satisfies the known phase data. It was found that
reconstruction from quantised phase sonetimes produced better
quality inmages than reconstruction fromfull phase for noisy
dat a. Thi s phenonenon can be explained by considering the

angul ar separation between |inear subspaces as di scussed bel ow

612 Separation between Linear Spaces

Let ¢, and c, be two linear subspaces of a Hlbert space H
For x,y < H, define

cos(¥(x,y)) = |ReCx,y>|/ (Ix]-l¥l), (6.1)
and
COS(¢(C1,C2)) = Sup cos(¥(x,Y)), (6.2)
xXeC

where ¥ (x,y) neasures the angul ar separation between c; and c,
and is nonzero if and only if the zero elenent is the only

el enent common to both ¢, and c, [70].



6.1.3 Noisy Phase

Let us consider the problem of signal reconstruction from

phase. Let Cgg. denote the set of signals with finite support

and | et

f =Tg = |[f]lexp(j¢), (6.3)
where T is a linear transformoperator on H Let
Cyp = { 9t Tg = |Tg|exp(je¢)}, (6.4)
for given phase ¢. By noisy phase we refer to the phase function
of Tg + n, where n is sone random noi se function. If ¢ is noisy
t hen C@ and Cgg. may have null intersection (having only the zero
el ement) and for high noise |evels ¥ (CggcrCy) CanN al so be Il arge.
Not e here that Cy and Cggo Can be shown to be closed [Iinear
subspaces [43]. Consider now t he quanti sed phase. Let bq denot e
t he phase quantised to q bits and |et
Cq ={9 Tg = | Tg|exp(j¢) and
¢ when quantised to q bits is ¢q},

(6.5)
for a given bq- cq i ncludes t he set Co and hence ¢(cq,cfsc) <

¥(CpsCrsc) - In other words the separation between €y and Cggg

q
is not nmore than the separation between Co and Cggo. Moreover

the separation is lesser as the quantisation is made finer until
it becomes zero. ¢(cq,cfsc) may never attain the zero value for
hi gh noise levels and for |ow noise levels it may be zero for a
fine grain quantisation. The POCS method used in [67] converges

to a solution such that COS(J(g,P¢g)) = €0S(J (CggeiCy)) , Where

Is the projection onto the set Ce- FoOr hi gh noi se | evel s the

P
@
guanti sed phase was found to give better results because the
separation between Cg, and Cq is Iess than that between Cgge

and Cy. If  $(CggeiCy) is zero for some quantisation g then



making the quantisation finer will not serve any purpose since
the solution set will beconme |arger and hence the varai ance of
the estimate of the solution will be large. Ideally, given noisy
phase we would like to quantise the phase such that ¥(Cggo,Cq)
just attains the zero value or use 2-bit quantised phase if it
does not attain the zero value. However it is difficult to

decide a priori the right level of quantisation.

6.1.4 Figure of Meit for Image Recongtruction from Phase

In an earlier work (é7) on inage reconstruction from noi sy
phase of multiple frequency hol ograns it was shown that for nany
cases when the noise level is high the image reconstructed from
quanti sed phase is better than the image reconstructed from full
phase. In that study only real noise was considered. Here we
shal | consider conplex noise. As we shall soon see, for conplex
noi se al so the inmage reconstructed fromfull phase is no better
than the i nage reconstructed from quanti sed phase for hi gh noise
| evel s. However for |low levels of noise the i nage reconstructed
using quantised phase is a poor estimate. In this chapter we
devel op an algorithm based on the nethod of POCS for inmage
reconstruction from noi sy phase. We define a Figure O Merit
(FOVM) based on phase that plays a crucial role in terminating
the iterative inmage reconstruction procedure. Simulation studies
were conducted to bring out the effectiveness of the proposed
al gorithm

The rest of this chapter is organised as follows: In
Section 6.2 we review the nmethod of image reconstruction from

phase of multiple frequency holograns. Iterative inage



reconstruction from quantised phase is al so described. W define
the FOMthat is used to develop a condition for termnating the
iterative procedure. Sinulation studies using the new algorithm
are presented in Section 6.3. Studies are also nade for inmage
reconstruction from quantised phase. The results show that the
differences are snmall in images reconstructed fromfull phase and

guanti sed phase even for at noi se | evels.

6.2 lterative Reconstruction from: Phase
6.2.1 The Method of POCS for Image Reconstruction

The reconstruction procedure is based on the nmethod of POCS
whi ch we have seen in Chapter 1. W reproduce it here for ease of
reference. Let ¢4, C5, ... C, be a collection of convex sets and
let Py, P,, ..., P, be the projection operators onto these
convex sets. To find a common el ement of each of these sets the
following iteraive procedure nay be used:

gg = P1Py-..P gg._q- (6.6)
Here gy and gg_, are the estimates at the end of the K-th and
(K-1)th iteration respectively. If ¢y, ¢, ... Cc, are closed
| i near subspaces then there is at |east one elenent nanely the
zero elenment that is coomon to each of these sets. Mreover the

above iterative procedure converges strongly (5].

6.2.2 Image Reconstruction from Full Phase

-We shall now apply this iterative procedure for inage
reconstruction fromdigital holograns. It is required to conpute
a signal that has finite region of support and that givesriseto

t he known phase data on the receiver plane at a finite nunber of



poi nts. The phase could be full phase or quantised phase. Let us
consider full phase first. The problemmay be fornally stated as:
Find g(x,y) = CescNCoyy wher e

Cy = (I(x,¥): h(x,¥)*g(x,y) = [£0,Y)]| exp(Jo(x,¥))} (6.7)
Here ¢(x,y) is the known phase function and f(x,y) i s the unknown
magni tude function. It is obvious that ces. and c, are closed
| i near subspaces and the POCS nmethod can be applied to conpute
the desired solution. The iterative procedure is obtained by
substituting Py = Pego and P, = Py, Wth n =2 Here Pggo and Py
are projection operators onto the set Cgg. and Co respectively.

The projection onto Co I s conputed as descri bed bel ow. Let

Po(a(x,¥)) = 9gp(x,Y) (6.8)
and Gb(u,v) be the Fourier transform of gp(x,y) and G(u,v) the
Fourier transformof g(x,y). Now

Gp(u,v) = G(u,v), for U2 + v2 < 1/12,

= G4uU,v), Otherw se. (6.9)

Go(u,v) is conputed as shown bel ow Let

£5(x,¥) = h(x,¥) * g(x,y) (6.10)
= [fp(x,¥) | exp(Jp(x,¥)) (6.11)
and
fo(x.y) = [fp(x,¥) [cos( ¢(xX,¥) - ¢,(x,¥))exp(3(¢p(%X,¥))),
for cos(¢(x,y) - ¢p(xly)) >0,
=0, ot herw se. (6.12)
Now
Go(u,v) = Fg(u,v)H(u,v), for u2 + v2 < 1/12, (6. 13)

where Fgy(u,v) is the Fourier transform of f,(x,y). If the data
¢(x,y) is known only at a finite set of points Ip then f4(x,y)

may be conputed as
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(q) (r) (s)
PONI CS POCS PONI CS
SNR=0dB SNR=0dB SNR=-10dB SNR=-10dB

Conparison of POCS and PONI CS nethods for reconstruc-
tion of imges from noisy sensor array data. Uniformy
di stributed noise is used. The data is collected froma

16x16 array at different frequencies. Conparison is
made for two different SNR's.



fo(XIY) = fp(le)/ for (XIY)EIpI

£4(x,Y), ot her wi se. (6.14)
Here f£l(x,y) is fg(x,y) of (6.12)

6.2.3 Quantised Phase

If only quantised phase ¢q i's known then our problemis to

conpute g(x,y) = CggcnCq, Where

Cq = (9(x,¥): h(x,¥)*g(x,y) = |[f(x,y)|exp(i(é(x,y))) and
|6 (x,¥) =g (x,y)| < m/29) (6. 15)
Her e bq IS given as
®q - ni/zq-l,

for wi/297l-r/29 < ¢ < wi/2971-g/29

and i =0, 1, ...29-1, (6. 16)
Not e t hat bq i s ambi guously defined for ¢ = wi/29"1-g/29, |n
such cases we choose the |ower value of i. The choice is nade
arbitrarily to maintain consistency. |If bq I's defined
unanbi guously incorporating the above convention then Cﬁ Wil |

not be closed. Again it can be easily shown that c, is a cl osed

q
| i near space. The following iterative procedure can be used to
find 9 (x,Y)eCynCeqct

9k = PrscPqIk-1- (6.17)
Her e Pq t he projection onto Cq May be conputed in the sane
fashion as P, except that

£o(X,Y) = f5(x,¥),
for ¢q(x,¥)-1/29 < ¢p(x,¥) < ¢q(x,y)+m/29,

= fF',( X, Y) , ot herw se, (6.18)
wher e
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£5(x,Y)= |£5(x,¥) |cos(eq(x,y)-1/29-¢,(x,¥) ) exp (I (¢q (x,y)-1/29))),

for
COS(¢q(XIY)-F/2q-¢p(X,Y))>COS(¢q(X.Y)+W/2q-¢p(x,Y))

and cos(¢q(x,y)-1/2%9-¢,(x,y))>0,

H

| £5(%,¥) [cos (g (x,¥)+7/29-¢, (x,7) )exp (I (g (x,¥)+1/29))),
for
cos (¢ (x,¥)+71/29-¢, (x,Y) ) >cos (¢ (x,¥) -1/29-0, (x,¥) )
and cos(¢q(x,y)+w/2q-¢p(x,y))>0,
= 0, ot herwi se. (6.19)
The derivation of the above equation is straightforward and has
been described with an illustrationin Fg.4.3. Noticethat 8 in
Fg.43 is n/29 here and ¢¢ is tq As in the previous case if bq
Is known only at a finite set of points I, t hen
fo(x,y) = fp(x,y), for (x,Yy) ¢ Ip,
= f£4(x,y), otherw se, (6. 20)
where £4(x,y) is the sane as £, (x,y) of the previous case.
If the phase data is available at n different frequencies,
that is for n different wavel engths, then the iterative procedure

n
to conpute g(x,y)eCeg N Cpi NAY be given as
i=1

9k = PrscPp1Pp2- - - PonIr-1+ (6.21)
where Py; is the projection onto the set Cpi Wnich is the set
Cq for a wavelength xi. similarily if the quantised phase is

available for n different frequencies then the iterative

n
procedure to conpute g(x,y)eCego N Cqi MY be gi ven as
i=1
9k = PescPgl Pg2- -+ PqnIk-1- (6.22)
wher e Pqi 1s the projection onto the set Cﬁi which is the set

Cq for a wavelength ij.
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6.2.4 Description of Figure of Merit

W have just seen a detailed description of the iterative
procedure. Before it can be inplenented it is necessary to decide
the criterion for termnating the iterative procedure. In [67]
the nunber of iterations was chosen arbitrarily. This is not
satisfactory as the nunber of iterations nay be too few or too
many to attain a certain accuracy of the result depending on the
initial data. Hence we devel op a FOM based on phase so that the
iterative procedure can be termnated when the FOM of the result
attains a predetermned value of FOM W shall define FQM for
full phase and quantised 1-bit and 2-bit phase.

For 1-bit quantised phase the FOM has been proposed in
(7]1. The FQM for full phase, which we propose shortly, is simlar
to that for quantised phase. In both cases the intuitive appeal
of the FOM is that it gives a neasure of how close the
reconstructed signal is fromthe known data. The definition of
FOM is based on a notion of phase netric which we shall see
bel ow.

Consider first the definition of phase netric for 1-bit
quanti sed phase for one dinension. The result is easily
extendible to 2-bit quantisation for two or nore di mensions. Let
S¢ denote the known 1-bit phase quantisation of the received
signal f£(x) and let sg, denote the 1-bit phase guanti sati on of
£4{Xx) , where £{x) = h(X) *gf{x) and gfx) represents the current
estimate of the solution. Recall that the range of the 1-bit
gquanti sed phase of f£(x) is the set (o,r}. This corresponds to the

sign of the real part of f(x). The phase netric can now be

defined as



Eq(f,£y) = J eq(f,fy) dx (6.23)
wher e

eq(f,fo) =1, for Sg(x) = Sf£o(X),

= 0, ot herwi se. (6.24)

In the discrete case the integral may be replaced by a sunmati on.
The phase netric for 2-bit quantised phase nay be defined in
|i ke manner. Recall that the range of the 2-bit phase function
S"{X) is the set (w/4,3m/4,57/4,7n/4). This corresponds to the
sign of the real and inmaginary parts of f(x). W can al so define

eq(f,f,) as

eq(flfo) = 2, for IS“f(X) = S“fo(X)I =r/2,
=1, for |s"gX) = S"eo(x)| = 7/4,
= 0, ot herwi se. (6.25)
However it was felt that this added conplexity wll not

significantly alter the results for reconstruction from quanti sed
phase. Hence we elect to use the earlier definition (6.24).

Let us now define the phase netric for full phase. Let
¢¢(x) represent the wapped phase function of f(x). Define the
error function eq as

e¢(x) = 1, for |¢g(x) - ¢eo(x)| < B,

= 0, otherw se. (6. 26)
Here the mnus (-) operator represents the mnimum phase angl e
difference and 8 is a predetermned value. The phase netric can
be defined, as in earlier cases, as an integral or sumation of
the error function. The choice of the value for 8 will be
di scussed now Notice that while using quantised 2-bit phase we
presune or hope that the true phase could have a variation of

/4 at nost from the known quantised phase. Hence for defining



t he phase netric for full phase we chose 8 to be n/4.

The FOM may be given as

€ =1 - E(f, £,)/(fdx), (6.27)
where E(.) IS Eq(.) Or Eg4z(.) as the case may be. Wen the
hol ogramis available for n frequencies the FOM nmay be gi ven as

n

€ =1 —iﬁlE(fi,foi)/(n(Idx)) (6.28)
Again in the discrete case fax may be replaced by the total
nunber of known sanples. In [7] the iterative procedure was
termnated when FCOM attains a value of 95% Were possible we
shall follow the sane procedure. However if the phase is noisy
the FCM may never attain a predetermned value. Hence, in such
cases the iterative procedure is termnated when the FOM falls

over successive iterations.

6.3 Simulation Studies

The purpose of sinmulation study is to denonstrate the
ef fectiveness of the proposed iterative procedure for inmage
reconstruction from noi sy phase of multiple frequency hol ograns
and to conpare the reconstructions fromfull phase and quanti sed
phase. Before we present the studies let us first describe the
setup. As in previous chapters a 64x64 pixel imge shown in
Fig.2.1(a) is appended with zeros to forma 128x128 object plane
data natrix. The data is transformed using (2.7) to obtain the
wavefield distribution on the receiver plane. The distance
between the object and receiver planes is 2000 wunits. The
wavel ength is 0.25 units and the sanpling rate i s two sanpl es per

unit distance (inter sanpling distance along X and y axes is 0.5
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units).

In the first of the studies we shall use all the receiver
el ements (128x128) in the reconstruction of an inmage. To begin
with let us consider noise free data. Fig.6.1(a) and Fig.6.1(e)
show t he i mages reconstructed fromfull phase and 2-bit quantised
phase respectively. 1In both cases the quality of the
reconstructed image is good. This shows that 2-bit quantised
phase is sufficient to derive the image in nost cases. The
experinment is repeated wth zero nean Gaussian distributed
random conpl ex noi se added to the signal. W shal consi der
three noi se | evel s, nanely 0dB, -10d4B and -30dB. Fig.6.1(b) shows
the reconstructed i mage usi ng phase only when the noise level is
0dB. Fig.6.1(f) shows the reconstruction for the sane noise |evel
from quantised 2-bit phase. Fig.6.1(c) and Fig.6.1(g) show the
results using full and quantised phase when the noise level is
-10dB and Fig. 6.1(d) and Fig.6.1(h) show the results using ful
and quanti sed phase when the noise |l evel is -30dB. Notice that as
t he noise level increases the quality of the inage reconstructed
degrades significantly. Mreover at a high noise level (SNR =
-10dB) the image reconstructed fromfull phase is no better than
the imge reconstructed from quantised pahse. This goes to
confirm our earlier study[e7] where a simlar result was obtained
for real noise.

W will now present the results obtained using noisy sparse
data collected at multiple frequencies. Fig.6.2 and Fig.6.4 show
the results of using full phase for various array sizes and
multiple frequencies for SNR=0dB and SNR=-104B, respectively.

Fg.6.3 and Fg.6.5 show the corresponding results using 2-bit

153



gquanti sed phase for various array sizes and nmultipl e frequenci es.
The figures showthat as the nunber of frequencies are increased
the quality of the reconstructed image inproves. Mreover the
I mage reconstructed from 2-bit quantised data is in general no
worse than the inmage reconstructed from full phase data for the
sane array size and nunber of frequenci es.

Fig.6.2(a) shows the i mage reconstructed usi ng a 64x64 array
with only one frequency (x=0.25). Fig.6.2(e) shows the inmage
reconstructed using two frequencies (x=0.25,0.26) for the sane
array. Fig.6.2(i) shows the result of using four frequencies
(r=0.25,0.26,...0.28). Fig.6.2(m) shows the inage reconstructed
usi ng eight frequencies and Fig.6.2(q) shows the result of using
si xteen frequencies (x=0.25,0.255,...,0.325). Notice that the
quality of the inage reconstructed i nproves as the nunber of
frequenci es are increased. Fig.6.2(b), Fig.6.2(f), Fig.6.2(j),
Fig.6.2(n) and Fig.6.2(r) show the i mages reconstructed from ful
phase using one, two, four, eight and sixteen frequencies
respectively with data collected on a 32x32 array. Fig.6.2(c),
Fig.6.2(g), Fig.6.2(k), Fig.6.2(o) and Fig.6.2(s) showt he inages
reconstructed from full phase using one, two, four, eight and
si xteen frequencies respectively with data coll ected using a
16x16 array. It can be seen that as the nunber of sanples are
reduced the quality of the inmage reconstructed degrades
significantly. In fact with only 16x16 sanpl es t he reconstructed
image is barely visible even if the nunber of frequencies are
sixteen. The images reconstructed froman 8x8 array is not
visible at all even if we use sixteen frequencies as can be seen

from Fg.6.2(t). Fg.6.2d) , Fig.6.2(h), Fig.6.2(1) , Fig.6.2(p)



and Fig.6.2(t) show the images reconstructed from full phase
using one, two, four, eight and sixteen frequencies respectively
with data collected on a 8x8 array.

Let us now consi der quanti sed phase. Hg.6.3 shows the inage
reconstructed using 2-bit quantised phase. Fig.6.3(a) to
Fg. 6.3t) are the sane as Fig.6.2(a) to Fg.6.2 (t) except that
only 2-bit quantised phase is used. Fg.6.4 and Fg.6.5 showthe
results using full phase and quantised 2-bit phase respectively
for various array sizes and multiple frequencies. The SNR i s
-10dB in both cases. Note that in npbst cases the inmage
reconstructed from 2-bit cases is as good as the inmage
reconstructed fromfull phase.

A study was nade for inage reconstruction from noi sy phase
without the use of the FOM It was found that for sufficiently
noi sy data the iterative procedure begins to diverge after a few
iterations. Specifically, using a 64x64 array with sixteen
frequencies the iterative procedure tends to diverge after 20
iterations if the SNRis -10dB or less. For 2-bit quanti sed phase
the divergence in the FOM sense occurs after many nore
iterations. These studies indicate that it is possible to
reconstruct a good quality inmage from phase only. Moreover the
two nost significant bits of the phase seemto carry nost of the
information of the signal. By quantising the phase we appear to
be rejecting nore noise than signal information. Hence in sone
cases the image reconstucted using quanti sed phase gives results
that are conparable in quality to that obtained fromfull phase.
However the anmount of conputation required for obtaining an

acceptible quality of the inmage for 2-bit quanti sed phase is



sonmewhat higher. But the reduction in neasurenent conplexity due
to quantising the phase nore than offsets the increase in

conput at i on.

6.4 Conclusion

In this chapter we have addressed the probl em of inmage
reconstruction from noi sy phase with special enphasis on signa
recovery frommultiple frequency digital holograns. An iterative
al gorithm based on the nmethod of POCS was applied. A FOM for
phase was proposed. This FOM was used to develop a condition for
terminating the iterative signal reconstruction procedure. It
was pointed out that the iterative procedure converges to a
solution (perhaps the trivial solution) in the 12 norm Since
for noisy data the trivial solution may be the only solution,
the iterative procedure was termnated when the FOM fails to
| Mprove over succesive iterations.

Sinmul ation studies were conducted using noisy phase. Both
full phase and quanti sed phase were used. It was found that the
i mage reconstructed from2-bit quanti sed phase was no worse than
that reconstructed from full phase for high noise levels (sNRr=
-10d4B). W also confirned the earlier reported result (57) that
I ncreasing the nunber of frequencies significantly inproves the
quality of the reconstructed inage. It was verified that after a
certain nunber of iterations the solution tends to diverge if the
procedure is continued indefinitely.

The fact that we have not been able to obtain better quality
images from full phase than from the sanme phase quantised to 2

bits indicates that we have not been able to nake effective use



of full phase information. Hence we conjecture that there nust

be better algorithms for image reconstruction from noisy phase.
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Fig.6.1 | mmge Reconstruction from full and quantised phase for
four different noise levels. Al the receiver elenents
(128x128) are used in the reconstruction. The figure
shows that the inage reconstructed from quanti sed phase
is as good as the image reconstructed from full phase
at high noise | evels.
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quality of the image reconstructed degrades as the
noi se level is increased.
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| mge reconstructed from 2-bit phase for SNR=-10dB
using sparse data collected at multiple frequencies.

The quality of the inmage reconstructed from 2-bit quan-
tised phase is no worse than that reconstructed from
"full phase for npbst cases.



Chapter 7

SUMMARY AND CONCLUSIONS

7.1 Problem in Sensor Array Imaging

In this chapter we shall sum up the thesis, point out its
achi evenents and discuss directions for further study. A brief
di scussion of the main contributions of this work is given in
this section. A summary' of the thesis follows in the next
section. In the third section we discuss sone related issues not
addressed in this thesis. Sonme suggestions to investigate these
I ssues are al so given

The aim of this thesis has been to investigate the problem
of information recovery from partial data. Specifically, we have
considered the case when the initial data was available in
different donmains and the know edge of some characteristic of
the signal is known a priori. We found that an iterative
procedure |ike POCS could be applied to sol ve such a problemif
a sol ution existed.

Wien the initial data is noisy there may exist no solution
to the originally stated problem Hence we have rel axed the
constraint that the reconstructed signal should satisfy the
initial data exactly. W have conputed a feasible solution. The
met hod of PONI CS gi ves another solution to the problemof signa
recovery fromnoi sy data. This method was shown t o conver ge even
for certain instances when the nethod of POCS mght fail to do
so. Qur studies on the problem of signal reconstruction from

noi sy phase show that the existing algorithns are inadequate to



recover the information from the given data, since quantised
phase in many instances gives better results than full phase. In
short, our conclusion is that an iterative procedure like PROCS
can be applied to compute a solution satisfying some
constraints. Note that previous approaches considered a well-
posed problem, whereas here we have addressed ill- posed problems.

The problem addressed is one of inverse transformation
where the solution set is the space of piecewise continuous
functions that vanish outside a compact region of support. The
problem could be addressed in one dimension but the aim was to
develop algorithms that make use of the characteristics of image
function so as to judge if the least squares solution is close
to the desired solution from the point of view of human
perception. Furthermore the specific problem addressed, namely
the digital holography, is related to some practical applications
like underwater acoustic imaging and acoustic microscopy. Hence

all studies were made with regard to two dimensions.

7.2 Summary of the Thesis

In Chapter 2 we have seen that hologram formation could be
viewed as a convolution or a Fresnel/Fourier transform. Although
the latter transform is computationally less intensive since it
requires the computation of only one Fourier transform, the
method of convolution is more suitable for iterative algorithms
due to sampling considerations. We have also seen that phase
the phase of the received data plays a more important part in the

reconstruction than the magnitude.

In Chapter 3 we have considered the problem of sparse data.



V¢ have shown how to conbine data from nultiple frequencies.
Si mul ati on studies show the effectiveness of the proposed
net hod.

In Chapter 4 we have dealt with errors in the nmeasurenent of
signal. W have shown that the method of POCS which was applied
in the previous chapters could be applied here too, though not
in the sane way. The method as applied in the previous chapters
may not converge, as there may exist no signal with the known
conpact region of support that could have given rise to known
data when there is noise in the signal. The nethod applied here
is to obtain a convex set which includes all the functions
whi ch could have given rise to the known data subject to some
bounded error. This nmethod works well if the error bound is
known accurately and fails to work otherwi se. This is especially
true in the case of multispectral holograns. |If the known val ue
of the error bound is l|arger than the actual val ue, then the
variance of the conputed estinmate of the signal will be large. If
it is less, then the iterations may not converge at all. To take
care of such problens the nethod of PONI CS was devel oped in
Chapter 5.

The nethod of Projection Onto NonIntersecting Convex Sets
(PONCS) was neant to deal with the situation when the convex
sets are nonintersecting. Consider the exanple of two convex
sets ¢; and c,, where ¢; is conpact. If c¢; and c, have nonenpty
intersection, then the nethod of POCS will diverge. The aimis
to conpute a point in c; that is closest to an elenent of c,. It
was shown that such a solution is a quasisolution.

If the nunber of sets are nore than two, then the



gquasi sol ution may not be definable. Sinulation studies were
performed to conpare the results obtained by the nethod of
Projection Onto Convex Sets (PGCS) and the nmethod of PONCS. The
studi es have shown that even when the noise statistics are
accurately known, the quality of the results obtained by the two
nethods are not significantly different. Mreover the nethod of
PONICS was found to converge faster. A conparison of the
sequential and parallel nethods of inplenmentation of PONCS did
not bring out any significant difference in the quality of the
I mages reconstructed by the two inplenentations, although the
paral |l el nmethod was found to converge sl ower in nany cases.

In Chapter 6 the problem of inage reconstruction from the
noi sy phase of digital hol ograns was addressed. A figure of nerit
for the goodness of an image reconstructed from full and
quanti sed phase was suggested. It was found that i nmage
reconstructed from quanti sed phase gives results that are as good

or even better in quality as those reconstructed fromfull phase.

7.3 Suggestions for Further Study

A sinplified nodel of digital hol ogramsetup was used in our
studies to devel op nethods for inage'reconstruction from sparse
data. In practice a hol ographic setup has several problens such
as diffraction, medium disturbance, frequency shift, nonlinear
effects, etc. Sone of these factors may severly affect the
performance of the nethods developed in the thesis for inage
reconstruction frompartial data. Efforts have to be nade to

I ncorporate these factors in a systematic way in sinulation

st udi es.
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The method of PONICS attempts to solve the problem of
signal reconstruction from noisy initial data. It is an extension
of the method of ROCS to the case when the convex sets have no
intersection in common. We have shown that the method converges,
although we have not been able to precisely characterise the
nature of the solution. 1t is our belief that no precise
characterisation can be given in a general case. However it may
be possible to do so for particular instances. Notice that for
the case of two convex sets we have shown that the method
converges to a quasisolution.

In the problem of signal reconstruction from phase we found
that in many cases the image reconstructed from quantised phase
is as good as the image reconstructed from full phase. This
implies that we have not been able to make full use of the less
significant bits of phase information. Hence efforts must be
made to find a better solution to this problem.

In this thesis we have examined the problems in image
recontruction from sparse data, from noisy sparse data and from
partial noisy sparse data. As the data becomes less and less
reliable, the problem of image reconstruction becomes more ill-
posed. Also i1t becomes progressively difficult to formally
characterise these situations. Therefore one has to rely on

visual observation of the image to assess the performance of any

method for image reconstruction.
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Appendix
HILBERT SPACES

A brief introduction to the theory of H |l bert Spaces is
given here. The depth of treatnment will be enough to followthe
references to Hlbert Spaces in this work. Mst of the materia
in this section is from (24], V& wll first define a netric
space. Then we will define a norned space and then state the
definition of the L2 norned space we are dealing with. Final ly
we wll define the H I bert space.

A netric space is a pair (X,P) where Xis a set and Pis a
nmetric on X (also known as distance function), that is, Pis a
real valued function on XxxX, such that for all x,y,z in X,

(1) P(x,Y) o 0,

(ii) P(x,y) =0, if and only if X =y

(1ii) P(x,y)

P(y,x) (symet ry)
(iv) P(x,y) < P(x,2) * P(z,y) (triangular inequality)
A sequence {x,)} in a netric space (X,P) is said to be Cauchy

if for every e > 0 thereis an N = N(e) such that
P(xn, %) < e, for every m,n > N.

The space X is said to be conplete if every Cauchy sequence

converges toalimt in X.

A vector space is nonernpty space X with two al gebraic
operations nanely vector addition and multiplication of vectors
by scal ars.

A norm on a vector space is a real valued function whose

val ue at xex, denoted by |x|, has the follow ng properties:



(1) I} > o

(ii) Ix] = o, if and only if x=0

(iii) la-x|| = |a].|xl|, where a is any scal ar

(iv) Ix+ vyl < Ixll + |yl (triangular inequality).
P(x,y) = llx = yll is called the netric induced by the norm

Let L2[0,1] be the set of all functions square integrable

over [0,1]1. Hence for x(t)eL?[0,1], |x] is defined as

Ixll = ({1) |x(t)|%at )1/2 u,

However L2[0,1] is not a normed space. This can be seen
considering two functions x,, x, which differ at a finite or
count abl e number of points. Here |x;-x,ll = 0 al though x; # x,.

Let M= {x: lx[|=0}. %, and x, are equivalent, if (x;~x,)eM.
This equival ence relation induces a partition of L?[0,1] into
pairwise disjoint class of sets. Let y denote a representative of
one of these sets. The set of all such y is called the quotient
set denoted by L2[0,1]/M. Now L2[0,1]/M i s a normed vector space.

An inner product on X is a mapping of Xxxx onto a scalar
field (real or conplex) and is denoted as <x,y> with the
following properties:

(i) <xX+y,2>. = <x,2> T <y, 2>

(ii) <ax,y> = a<x,y>, where 'a' is a scal ar,

(iii) <x,y> = <y,x>*, where * denotes conpl ex conjugate

(iv) <x,x>>0

(v) <x,x> = 0, if and only if x =0
An inner product on x defines a norm [xll, given by [x|=<x,x>1/2.
An inner product space is a vector space X with an inner product

defined on X A Hlbert space is a conpl ete i nner product space.
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Bl ock diagram of the various stages of a sensor array
i magi ng system

A typi cal seensor array imnmaging system The transmtted
wave which is reflected by the object is received by
t he sensor array.

Qiginal and reconstructed inages. (a) A 64x64 pi xel
| mage appended with zeros to forma 128x128 poi nt data
array, denoting the object field distribution. (b)
| mage reconstructed fromthe the sensor array data. In
this case the reconstruction is exact. Note that the
I mge part corresponding to the object is only the
m ddl e 64x64 poi nts shown in the square.

Effect of errors in the neasurenent of distance, z. The
figures are given for three different di stances between
t he object and the receiver planes and for three cases
of errors. It isto be noted that generally the quality
of the reconstructed i mage depends on the absolute
error in the di stance neasurenent.

Effect of errors in the neasurenent of wavel ength, A
(a)yfor 0.01% error in a, (b) for 0.1% error in A %c)
for 1%error in x» and (d) for 10%error in A Even for
a small (0.01% error in » the degradation in the
reconstructed inmage i s significant.

Ef fect of random errors in the nmeasurenent of spacing
(ax,ay) between sensors for three different cases: (a)
for 0.01% error in spacing, (b) for 0.1% error in
spacing (c) for 1%error In spacing and (cc? for 10%
error In spacing. The error is assumed random within
the limts specified.The figure shows that even for a
small(0.1%) error in spacing causes significant
degradation in the quality of the reconstructed inage.

Ef fect of randomerrors in nagnitude of the received
field for four different cases: (a) for maxi num 5%
error in magnitude, (b) for maxi mum 10% error in
magni tude, (c) for maxi num 25% error in magnitude and
(d) maxi mum 50% error in magnitude. The error at each
point is randomwithinthe limts specified. The figure
shows that even large(50%) errors in magnitude do not

seemto affect the quality of the reconstructed inage
significantly.

Ef fect of random errors in phase of the received field
for four different cases: (a) for phase errors of
tr/16, (b) for phase errors of #w/8, (c) for errors of
tr/4 and (d) for phase errors of *w/2. The error at
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Fig. 3.2
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each point is randomwthin the limts specified.

Effect of random noise in the mneasured conplex field
data for three different cases of signal to noise
ratios(SNR): (&) for SNR=10 dB (b) for SNR= 0 dB and
(c) sNR=-10 dB. Since both magnitude and phase are
affected, there is a progressive degradation in the
quality of the reconstructed i mrage as SNR decr eases.

| mge reconstruction from sparse data for four
different cases: (a) from 64x64 points of received
data, (b) from 32x32 points of received. data, %c) from
16x16 points of received data and (d) from 8x8 points
of received data. The data is created by appropriate
down- sanpling and setting the values in between to
zero. As expected, there is a systematic degradation as
t he nunber of sanpl es of data are decreased.

| mge reconstruction from partial data: a
reconstruction from magnitude only and (b
reconstruction from phase only. The results show that
significant features of the original image are
preserved in the reconstruction from phase, indicating
t hat phase is nore inportant than nmagnitude.

Effect of poor sanpling of the received data on the
reconstructed imge. The conplete received data
consi sts of 128x128 sanples. The figure shows the inmage
reconstructed for four different types of sanpling and
for four sets of under sanpled values. The unknown
sanpl e val ues are set to zero.

Effect of multiple frequency data on the image
reconstructed from sparse receiver array. The data
consi sts of 64x64 sanples. The figure shows the inage

reconstructed for four types of sanpling and four cases
of multiple frequencies.

Ef fect of multiple frequency data on the inmage
reconstructed from sparse receiver array. The data
consi sts of 32x32 sanples. The figure shows the inage
reconstructed for four types of sanpling and four cases
of multiple frequencies. The'ﬂyality of the inmage
reconstructed inproves as the nunber of frequencies are
| ncr eased.

Effect of nultiple frequency data on the image
reconstructed from sparse receiver array. The data
consi sts of 16x16 sanples. The figure shows the inage
reconstructed for four types of sanpling and four cases
of multiple frequenci es.

Effect of nultiple frequency data on the imge
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reconstructed from sparse receiver array. The data
consists of 8x8 sanples. The figure shows the inage
reconstructed for four types of sanpling and four cases
of multiple frequencies. The figure shows that even for
very low sanpling rate it is possible to get a good
i mage provi ded the nunber of frequencies are large(16).

Ef f ect of noise on the solution set.

Proj ection onto . The hatched region denotes t he set
set H(C¢) and Qg Is the projection of Ry onto ¢c¢. Note
that thé nmagnitude difference between Qg and Rg is 'e!
in every dinmension. In other words, if N denotes the
nunber of di nensi ons

Ne = Z|Hg[n]-£[n]| - t.

Projection onto c,. The hatched region denotes the set
C,. The point cloBest to R in C Is . Hence @ nay
bé gi ven by ¢

Qg = |Rg| cos(érg - (¢f + 1)) exp(J(¢g + 1i)).

Comparison of POCS and PONICS methods for
reconstructi on of images from noi sy sensor array data.
Unifornty di stributed noise is used. The data is
collected froma 64x64 array at different frequencies.
Conparison is made for two different sNR's.

Compari son of POCS and PONICS methods for
reconstructi on of inages from noi sy sensor array data.
Unifornty di stributed noise is used. The data is
collected froma 32x32 array at different frequencies.
Conparison is nade for two different sNR's.

Comparison of POCS and PpoNICg methods for
reconstruction of images from noisy sensor array data.
Unifornky distributed noise is used. The data is
collected froma 16x16 array at different frequencies.
Conparison is nmade for two different sNR's.

Comparison of POCS and PONICS methods for
reconstructi on of images from noi sy sensor array data.
Uni form distributed noise is used. The data is
collected froma 8x8 array at different frequencies.
Conparison is nade for two different SNR's.

Conpari son of sequential and parallel nethods of PCN CS
for image reconstruction.from noisy (uniformy
distributed) multiple frequency hol ogram data u5|n% a
32x32 array for two SNR values (odB and -10 dB). The
figures show the simlarity of the results In the
sequential and parallel inplenentation.

| mage Reconstruction from full and quanti sed phase for
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Fig.6.2

Fig.6.3

Fig.6.4

Fig.6.5

four different noise levels. Al the receiver el enents
(128x128) are used in the reconstruction. The figure
shows that the i mage reconstructed from quanti sed phase
is as good as the inage reconstructed from full phase
at hi gh noi se | evels.

| mage reconstructed from full phase for SNR=0d4B usi ng
sparse data collected at multiple frequencies. The
flgure denonstrates that it is possible to reconstruct
an acceptible quality inmage from phase al one.

| mage reconstructed from 2-bit phase for SNR=0dB usi ng
sparse data collected at nultiple frequencies. The
firgure denonstrates that it is possible to reconstruct
an acceptible quality inmage from2-bit quanti sed phase.

I mage reconstructed fromfull phase for SNR=-10dB usi ng
sparse data collected at nultiple frequencies. The

quality of the inmage reconstructed degrades as the
noi se level is increased:

| mage reconstructed from 2-bit phase for SNR=-10dB
using sparse data collected at multiple frequencies.
The quality of the image reconstructed from 2-bit
quanti sed phase is no worse than that reconstructed
fromfull phase for nost cases.
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Algorithm4.2

Algorithm4.3
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Algonithm 5.1

LISTOFALGORITHMS

The POCS procedure to reconstruct an inmage wth

finite support from hol ogram data f(x,y) known at
a set of points (x,y)elp

The sequential POCS procedure to reconstruct an
i mage using nultispectral hol ogram data £(X,y; ;)
known for n different frequencies.

The parallel POCS procedure to reconstruct an
i mage using multispectral hologram data f (x,y:ix;)
known for n different frequencies.

The POCS procedure to reconstruct an inmage wth
finite support from hol ogram data f (x,y) known at

a set of points (x,y)elp subj ect to bounded noi se
nmagni t ude.

The POCS procedure to reconstruct an inmage using
mul tispectral hologramdata f(x,y:x;) known for n

di fferent frequencies subject to bounded magnitude
of noi se

The Pocs procedure to reconstruct an inage wth
finite support from hologramdata f(x,y) known at
a set of points (%,y)€l, subj ect to bounded noi se
energy constrai nt-.

The POCS procedure to reconstruct an inmage wth
finite support from multispectral hologram data
f(x,y) known at a set of points (x,y)ely subj ect

t o bounded noi se energy constraint.

The PONICS procedure to reconstruct an inmage wth
finite support fromhol ogramdata f(x,y) known at

a set of points (x,y)ely for n different
f requenci es.
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Tableb.2

Tableb.3

Table5.4

Table 5.5
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?

Figure of nerit versus conputational conplexity for
I mage reconstruction from multispectral holograns in

t he presence of uniformy distributed noise for a
64x64 array.

Figure of nerit versus conputational conFIexity for
| mage reconstruction from multispectral holograns in
t he- presence of uniformy distributed noise for a
32x32 array.

Figure of nerit versus conputational conplexity for
i mage reconstruction from rmultispectral holograns in
t he presence of uniformy distributed noise for a
16x16 array.

Figure of nerit versus conputational conplexity for
I mage reconstruction from multispectral holograns in

t he presence of uniformly distributed noise for an 8x8
array.

Conpari son of the sequential and parallel nethods.
Table shows the figure of nerit versus conputationa
conplexity for inmage reconstruction from multi-
spectral holograns in the presence of uniformy dis-
tributed noise for 32x32 array.

183



LIST OF SYMBOLS

nmetric on the space of functions F
netric spaces

Hilbert Sspace

transformoperators

stabi lising functional

functions

vectors

proj ecti on operat or

(i) closed convex set

(ii) closed linear nmanifold

Fredholm's operator of the first kind
ort hogonal conpl enent of a linear set C
phase function

quanti sed phase

aut ocorrel ation of a vector ¢

aut ocorrel ati on of a noise vector n
field distribution on the receiver plane
field distribution on the object plane
| mpul se response of system

convol ution

noi se function

Fourier transformof £(x,y)

Fourier transformof g(x,y)

Fourier transformof h(x,y)

regi on of support

set of sanpling points

set of signals with finite region of
suppor t

bandwi dt h

wavel engt h

sanpling interval on the receiver plane
sanpling interval on the object plane



set of bandlimted signals

set of signals with prescribed transform
phase

set of signals with prescribed gquantised
phase

set of object field distributions that
could have given rise to a given
recei ver field distribution
set of object field distributions that
could have given rise to a given
receiver field distribution for a
wavel ength

di st ance bet ween obj ect and i mage pl ane
real nunber in (0,1)

real nunbers in (0,2)

nor m

interior of a set C

complement of a set C

projection onto the range of R

{g(x): Po(f, Rg) < d)

{g(x): Pr2(f,Rg) < r)
{g(x): pPr1(£,Rg) < t}



LIST OF PUBLICATIONS

B.Yegnanarayana, C.P.Mariadassou and Pranod Saini, 'signal
Reconstruction fromPartial Information for Acoustic |nmaging
Applications,' presented at | EEE ASSP, EURASI P V Wrkshop on
MDSP, Noordjwickhout, The Net herl ands, Sept. 14-16, 1987.
B.Yegnanarayana, C.P.Mariadassou and Pranod Saini, 'Inage
Reconstruction from Sensor Array Data,' presented at the
I ndo- US Wor kshop, Bangalore, India, Jan.11-14, 1988.
B.Yegnanarayana, C.P.Mariadassou and Pranod Saini, 'studies
on Reducing the Receiver Conplexity in Acoustic Imaging,
EUSI PCO, G enobl e France, Sept.2-5, 1988.

B.Yegnanarayana, C.P.Mariadassou and P.Saini, 'Signal
Reconstruction from Partial Data for Acoustic |maging
Applications,' Signal Processing, Feb.1990.

C.P.Mariadassou and B.Yegnanarayana, 'Image Reconstruction
from Noi sy Holograms,' |EE-Proc. Part F (accepted for
publ i cation).

C.P.Mariadassou and B.Yegnanarayana, 'Signal Processing
| ssues in Sensor Array Imaging,' submtted to Proc. IEEE.
C.P.Mariadassou and B.Yegnanarayana, 'lterative Methods for
| mrage Reconstruction fromD gital Holograms,' submtted to
| EE-Proc. Part F



