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ABSTRACT

Keywords: Speech recognition; syllables; language modelling; latent semantic anal-
ysis; large span constraint models, speech-based language model, speaker recognition;

idiolectic characteristics;

In spoken communication among humans, the message content of the speech is
spread over a large duration of the discourse. The semantics of the message cannot
normally be obtained by processing short segments of speech. For example, consider
the sentence “the doctor cut open the stomach during surgery”. In this sentence, the
words doctor and surgery are semantically related to each other in this context. This
relationship exists even though the words are separated by a large number of words
and cannot be captured by small windows of speech. Such constraints are called large
span constraints. These large span constraints pertain to a language, and can be
captured using language models in the framework of Latent Semantic Analysis (LSA).
The LSA uses the information about the co-occurrence of words in text documents
(set of semantically coherent sentences) to derive the large span constraints. Language
models that use these large span constraints also perform better for most speech tasks.
These models are called large span constraint language models.

Large span constraints exist in the speech signal as well. The semantic constraints
among the words can be inferred from the language associated with the speech without
the explicit transcription of the speech into text. Besides the semantic constraints, the
speech signal contains information related to the associated language such as syntax,
prosody, legal sound units and coarticulation constraints all of which are not available
when a text corpus is used for language modelling.

Language models are conventionally developed from large text corpora. For many



spoken languages such corpora do not exist, especially for non-literary languages. For
such languages, it is easy to record speech data in large volumes with minimal effort.
The main issue addressed in this thesis is, whether a language model can be derived
directly from the speech data. We show that it is indeed possible to do so using
the framework of LSA. Due to the absence of a complete and reliable front end of
a speech recognition system, the performance of the proposed models of large span
language constraints is tested using perplexity measure. Perplexity is the measure of
performance of a language model. The perplexity can be considered as the average
number of words (units) that can follow a given word (unit) in a language. The
smaller the perplexity of a model, the better is the ability of the model to predict
the word sequence. When the large span constraint language model is combined with
the standard bigram language model, it performs better than the bigram model alone.
This model is similar to the combined bigram + LSA (bi-LSA) model normally derived
from text transcripts.

The task of developing a speech recognizer for Indian languages requires a good
recognition rate at the level of the subword units in speech. Using syllable as the
subword unit, the usefulness of the large span constraint models at the syllable level
is examined using both the speech and text corpus. We show that latent constraints
exist even among the syllables as captured by the LSA model. The performance of
the syllable level bi-LSA model is better than a syllable-level bigram model. The
bi-LSA model can be used in a speech recognizer to improve its performance. The
issue of errors in speech recognition need to be addressed while developing large span
constraint models from speech. We study the effect of these errors by simulating the
errors at the word level while developing the large span constraint model.

When a person speaks, his idiolectic characteristics are embedded in the speech.
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The indicator words characterising the idiolectic traits of the speaker are often repeated
and spread over the entire conversation. We propose an approach to capture the
idiolectic characteristics of a speaker using large span constraint models.

To understand the issues in the development of a speech recognizer, the statistical
characteristics of the basic subword units of a language are studied. A syllable-level
recognizer is developed for two Indian languages. Some of the issues in modelling the
dynamics of the syllables in the framework of hidden Markov models are discussed, and
some approaches to improve the performance of the syllable recognizer are presented.

The main contributions of this thesis are summarised as follows:

1. Large span constraint language models are derived directly from the speech

signal for the first time.

2. It is shown to a limited extent that large span constraints exist at the syllable
level also. An approach is proposed to construct a large span constraint model

at the syllable level.

3. The performance of the speech-based bi-LSA model is shown to be better than
the bigram language models both at the word and syllable level. The per-
formance is equivalent to and perhaps marginally better than the text-based

bi-LSA model at the word level.

4. A large span constraint language model is proposed to capture the latent idi-
olectic characteristics of a speaker. It extends the use of the LSA concept for

the speaker recognition task.

5. A support vector machine based preclassifier is proposed to reduce the search

space in the speech recognizer and to improve its performance.

6. From an information theoretic perspective, it is shown that the syllable is an
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appropriate subword unit for speech recognition.
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CHAPTER 1

LARGE SPAN CONSTRAINTS: AN INTRODUCTION

“The doctor cut open the stomach with a scalpel during surgery”

In this sentence it is observed that there exists a relationship between the words
doctor and surgery. Such relationships arise due to the semantic constraints that exist
among the words used in describing a particular concept or story. These constraints
exist though the words are separated by a large number of words (8 in this case).
Such constraints are called large span constraints. These large span constraints can be
captured from the topic of discourse to express the semantic context without regard
to the syntax of the words used. An approach to model these large span constraints is
to use Latent Semantic Analysis (LSA). The LSA uses the co-occurrence information

of words in a large text corpus to model the semantic constraints.

1.1 IMPORTANCE OF LARGE SPAN CONSTRAINTS

When humans want to communicate their thoughts among themselves either in spoken
or written form, they make use of a language. Constraints exist at various levels
among the different components of speech and language. The constraints in speech
could be due to physiological characteristics of the speech production process, or the
psychological characteristics that motivates the thought process behind the act of
communication. The constraints could also be related to the characteristics of the

language at the phonological, morphological, syntactic, semantic or pragmatic levels.



Every constraint imposed by the language and speech can be used to disambiguate
among the many possible alternative hypotheses at each stage of decoding the message
being conveyed. It is desirable to incorporate as many constraints as possible into the
speech systems for better performance.

Large span constraints exist in speech and the associated language. They are
implicit (i.e., latent) rather than explicit (i.e., governed by rules). These constraints
are useful in language modelling, speech recognition, speaker recognition and many
other speech systems. In a language, the large span constraints exist at different
levels. For example, at the syntactic level, the idea of tagging the words in a sentence
with Parts of Speech (POS) tags, is to group words into similar categories. This
information is used to determine what words are likely in the vicinity of a word. It
can also be used in a text-to-speech system to determine the correct pronunciation of
a word. The large span constraints in terms of the POS grouping can be seen in the
sample sentence considered earlier. It reveals that the words doctor and scalpel would
come under the category of Noun Phrase (NP). Likewise, a parsing of much larger
sentences also would reveal the underlying large span relationships that exist among
the words and phrases. At the semantic level, as we saw earlier, the words doctor and
surgery are semantically related, though the words are separated by a large span. If
the sentence is followed by “whereas the scheduled surgical procedure was an open heart
surgery”, we now understand from this discourse that the original surgical procedure
was a mistake. This correct interpretation of the discourse can be arrived at only when
all the words and the large span constraints/relationships among the sentences and
words are taken into account. Thus we see that large span constraints exist at various
levels in a language.

The large span constraints also exist in speech. If the previous example sentence is



spoken, the listener still understands that the words doctor and surgery are semantically
related to the discourse, though the words are far apart and no textual representation is
used. Other large span constraints like intonation in speech are useful in decoding the
message content in the speech signal. Likewise, when a person speaks, idiolectic traits
are embedded in the conversational speech. Frequent use of back channels like umm. . . ,
ltp smack or phrases like “I mean” are idiolectic traits specific to a speaker, and they
manifest over large spans in conversational speech. These large span constraints are
useful in speaker recognition studies. In applications involving dialogue modelling, the
large span constraints play a vital role in disambiguating between different possible
interpretations of the user response. Thus we see that large span constraints exist in

speech and language, and these constraints are useful in many speech systems.

1.2 CONSTRAINTS IN A LANGUAGE

The language associated with speech can be analysed at various levels. The purpose
of analysis is to derive constraints that can be used in various speech systems. (a)
At the phonetic level, the characteristics of the basic sound units (say, phonemes)
in a language, and the similarities among them is dealt. (b) At the morphological
level, the way words are built from the basic meaning bearing stem of the word is
analysed. Morphology together with phonetics is useful in developing a good lexicon
for use in a speech recognizer. The lexicon is used to describe the words in terms of
the component phones. Ambiguities arise out of the acoustic-phonetic analysis of the
speech recognizer. This can often be resolved by subjecting the word hypotheses of
the speech recognizer to syntactic, semantic and pragmatic analysis. These types of
analysis incorporate higher levels of knowledge which provide additional constraints to

disambiguate among the possible hypotheses of words in the recognizer. (c) Syntactic



knowledge is used to determine whether a particular sequence of words can occur in
a grammatically correct sentence. (d) Semantic level constraints can be used to de-
termine whether the syntactically correct sentence is actually meaningful. Semantic
knowledge can also be used to predict words and phrases that are similar in meaning to
the current context. (e) Pragmatic constraints are used to disambiguate if the mean-
ingful sentence is appropriate in the context of the ongoing dialogue. The syntactic,
semantic and pragmatic constraints can extend over large spans, and can be called as

large span constraints.

1.3 CONSTRAINTS IN SPEECH

Speech contains constraints at various levels. When a person listens to speech in
a language, he uses all the knowledge (syntactic, semantic and pragmatic) of the
language that he has acquired to decode the message being conveyed. If the listener
hears speech in an unknown language, since he/she does not know the legal sound units
of the language spoken and neither the syntactic, semantic or pragmatic constraints
of the language he/she is unable to decode the message. Each of these knowledge
sources can be viewed as constraints useful to decode the message. These large span
constraints are essential for decoding speech. Speech implicitly contains the identity,
gender, emotional state and stress level of the speaker, and the language spoken, in
addition to the message being conveyed. Each of these information sources can also
be considered as constraints derivable from speech. Many of these constraints are not
present in the written (text) form of the message. In any speech system it is desirable
to incorporate as many of these constraints as possible to improve its performance.
Speech can be analysed (based on the frame size) at the sub-segmental (<5 msec),

segmental (10 to 30 msec) and suprasegmental (>100 msec) levels. These divisions are



in relation to the normal values of the fundamental frequency or pitch period (5 to 10
msec). The purpose of analysis at the different levels is to understand the constraints
that exist at these levels, so that they can be used appropriately in various speech sys-
tems. At the suprasegmental level, the variation in intonation, duration of the syllables
or words, the stress on a syllable, the speaking rate of the syllables and the influence of
one sound unit on another (coarticulation effects) can be studied. The suprasegmental
features display large span relationships. The suprasegmental or prosodic features also
carry constraints related to phonology, morphology, syntax, semantics and pragmat-
ics. At the segmental level the spectral characteristics in short segments of speech
are captured by various types of features like Linear Prediction Coefficients (LPC),
Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear Prediction coef-
ficients (PLP). These features predominantly capture the local constraints. If wider
windows are used in PLP type of features like RASTA-PLP, large span constraints
are indirectly incorporated. The segmental features reflect the changes due to pho-
netic contexts. The subsegmental analysis is mainly guided by the speech production
mechanism. It aims at bringing out the local constraints. When pitch synchronous
analysis is performed at the subsegmental level, it may be possible to capture the
consistent variations in similar segments of successive glottal cycles. It also helps to
reduce the effect of the fundamental frequency on the linear prediction analysis. Con-
straints at the suprasegmental, segmental and subsegmental level are not completely
independent of each other. For example, constraints at the suprasegmental level like
intonation patterns or stress on syllables are known to influence the characteristics of
the voice source in continuous speech. These constraints provide important cues at

different levels which can appropriately be used in various speech systems.



1.4 MODELLING CONSTRAINTS FOR SPEECH SYSTEMS

1.4.1 Modelling large span constraints in a language

When large span or local constraints are used to model a language, then such models
are also called language models. Language models conventionally have always been
derived from a text corpus. Statistical language models are widely used in most speech
and natural language applications like speech recognition, machine translation, optical
character recognition and information retrieval. The most widely used statistical lan-
guage model is the n-gram model. The n-gram models use the history of the previous
n — 1 words to predict the current word. For n-gram models, if more history (large
n) is known, the better is the prediction. The difficulty in using models with large n
is the need for large amounts of data. For example, using a moderate vocabulary of
2000 words and a trigram model (n = 3), the number of possible word combinations
is about 20002 or 8 billion. The probabilities of all these large number of parameters
needs to be estimated from a finite text corpus. Though all such combinations are
not permissible in a language, the number of possible parameters in the model is still
large. It has been observed that even with the best smoothing techniques and backing
off of the language models, the performance of n-gram models peak for n = 5 [1].
Informal estimates by IBM suggest that bigram models peak at 250 million words [2].
The n-gram models primarily capture the local constraints. In the example sentence
considered earlier, to bring out the dependency between doctor and surgery using an
n-gram model, one would require n = 11. This is clearly not feasible using the current
corpus sizes and estimation techniques. But large span constraints in speech and lan-
guage can be effective in disambiguating/predicting the hypotheses output by a speech

recognizer and need to be modelled.



An approach to modelling large span constraints in a language is using latent
semantic analysis. The LSA is widely used in information retrieval studies [3] [4], and
in models of human cognition and learning [5]. The LSA technique uses the knowledge
of the co-occurrence of words in text passages/documents to infer the possible semantic
relatedness of the words in a document. An LSA model derived from the text corpus
is shown to improve the performance of the language model in terms of reduction in
perplexity [6] [7]. When these large span constraint models are used in tandem with
a speech recognizer, the error rates of the recognizer are reported to have reduced [8].

One basic requirement to develop a language model is the availability of a large
text corpus. Language models are generally domain dependent. For example, a lan-
guage model developed using the corpus for news transcription task cannot be used
for a medical transcription task. As the domain is different, the vocabulary and style
of discourse would be different, causing the language model to perform poorly. Also,
it is generally difficult to obtain a large clean text corpus of medical transcription. In
all similar tasks it is likely that the audio data pertaining to the domain under con-
sideration (say medical transcription) running to thousands of hours may be available.
The situation is also similar for dialogue modelling applications, where the text corpus
has to be derived manually by listening to the dialogue or is to be obtained from a
preliminary speech recognizer. In India there are 3372 languages and dialects spoken
(as per census 1991) [9]. Many of these languages are non-literary. For non-literary
languages a text corpus is not likely to be available for developing language models.
In all such situations, and even in the case of literary languages, it is much easier
to record speech data for any desired volume. Given such a database, it is desirable
to derive a language model capturing local and global constraints directly from the

speech signal. Investigating this idea constitutes a major contribution of this work.



1.4.2 Modelling segmental constraints in speech

In speech recognition an n-gram language model or a large span constraint language
model is used to constrain the recognizer and recover from errors in recognition. The
underlying principle is to use higher level linguistic knowledge to recover from the
errors. The basic requirement for this approach to work is a good recognition of the
basic sound units in the speech utterance. Also, the word hypothesis of the speech
recognizer should be ‘fairly good’. Otherwise no amount of linguistic or domain specific
knowledge can help to recover from the basic flaws in the recognition hypothesis.

Study of the characteristics of the sound units in a language is the first step in
designing a speech recognizer. The statistical properties of the sound units is studied in
Chapter 3. There are different types of sound units like phonemes, biphones, triphones,
demisyllables, syllables, words, etc., that can be used in a speech recognizer. Each
type of unit captures constraints to varying degrees. The biphones and triphones are
artificial units created from a machine recognition perspective. They are designed to
incorporate local contextual constraints in them. The syllables are naturally occurring
linguistic units. A unit that is linguistic in nature and inherently capable of capturing
the constraints at the level of sound units is desirable. An information theoretic
approach can be adopted to determine the most suitable subword unit for speech
recognition. This study shows that syllable seems to be an appropriate unit for speech
recognition, as they capture the constraints better.

Acoustic modelling of the syllables to capture the segmental constraints can be
done using different techniques like Support Vector Machines (SVM), Hidden Markov
Models (HMM) or Artificial Neural Networks (ANN). Each modelling technique at-
tempts to capture the variability in the speech sounds. Syllables are large dynamic

units. The hidden Markov model can be appropriately used to capture the dynamics



of the syllables. Once a syllable recognizer is developed with good recognition perfor-
mance, then a word level or sentence level recognizer can be developed. In this work,

we focus on the development of a syllable recognizer.

1.5 SCOPE OF THE THESIS

One of the main objectives of this thesis is to derive a large span constraint model
directly from the speech signal, and examine the performance of this model in relation
to the large span constraint model derived from a text corpus. Methods are proposed to
derive large span constraint models from the speech signal. To understand the effect of
errors in speech recognition on the performance of language models, the performance of
the large span constraint model is examined for erroneous transcriptions (text) at the
word level. An efficient syllable recognizer is also developed for two Indian languages
in the framework of HMM. Using a transcribed text corpus for the Indian language
Tamil, large span constraint models are also examined at the word and syllable level.
For the syllable level model the span length is limited to a small number of syllables.

Studies on modelling the large span constraints are extended to capture speaker-
specific information from a corpus of large but somewhat erroneous transcription of
speech. The evidences from these large span models are combined with the evidence
obtained from other speaker recognition systems using speech-based features to im-

prove the speaker recognition performance significantly.

1.6 ORGANISATION OF THE THESIS

The evolution of ideas presented in this thesis is given in Table 1.1.
Chapter 2 deals with the review of related work in developing large span constraint

models from a text corpus, and the use of LSA concept in information retrieval studies.



The chapter also reviews work related to recognition of syllables, and the use of large
span constraints for the task of speaker recognition.

In Chapter 3 the development of the speech database for Indian languages is de-
scribed. The database is analysed to study the statistical characteristics of the sound
units in the languages from a speech recognition perspective. The issue of choice of
subword unit for speech recognition is also addressed in the chapter. The syllable
seems to be an appropriate unit for speech recognition from an information theoretic
perspective. The development of a syllable recognizer for Indian languages is dis-
cussed in Chapter 4. The approaches to improve the performance of the basic syllable
recognizer are also discussed in the chapter.

Large span constraint models are developed using the LSA framework for a test
corpus, both at the word and syllable level in Chapter 5. The effect of erroneous
transcripts (as expected in transcribed speech) on the performance of these models is
discussed in Chapter 6.

Chapter 7 deals with the development of speech-based large span constraint mod-
els at the word and syllable levels. Approaches to model the latent idiolectic speaker
characteristics using the large span constraint models is described in Chapter 8. Chap-
ter 9 summarises the work presented in the thesis, and lists some directions for future

work.
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Table 1.1 Evolution of ideas presented in the thesis.

Large Span Constraint Models for Speech Systems
e Development of a speech recognizer for Indian languages

— Choice of subword unit: syllable, based on information theoretic criteria

— Modelling the dynamics of the syllable, improving the recognition rate
e Performance improvements to the syllable recognizer

— Reduction in search space- Neural network-based preclassifiers

— Incorporation of higher level linguistic constraints: n-gram models, large span con-

straint language models
e Large span constraint language models from text corpus

— Semantic constraints: LSA-based models for incorporating large span semantic con-

straint
— Large span constraint models

x Word level
x Syllable level

e Large span constraint models from erroneous transcripts
— Effect of errors due to speech recognition on the large span constraint models

e Speech-based large span constraint models

— DTW-based approach

— Template-based approach
e Extension of large span constraint models for other speech systems

— Large span constraint models for speaker recognition

11




CHAPTER 2

REVIEW OF APPROACHES TO INCORPORATE

CONSTRAINTS IN SPEECH SYSTEMS

2.1 INTRODUCTION

In this chapter, the previous works on modelling short span and large span constraints
in speech and language for use in language modelling, speech recognition and speaker
recognition systems are reviewed. The task of statistical speech recognition is to
automatically transcribe the speech signal into a sequence of words W. Assume that
the signal is a sequence of symbols O = 04,09, ...,0,,. The symbol o; can be thought
of as acoustic feature vectors generated in time as denoted by the index i. Let W =
w1, Ws, . .., wy denote a string of words, each belonging to some fixed vocabulary.
If we denote P(W|O) as the probability that the words W were spoken, given the
observation sequence O, the recognizer should try to find the word string W* such

that
W* = arg max P(W10) (2.1)

That is, the recognizer should find the most likely word sequence given the observed
acoustic sequence. It is difficult to compute P(W|O) directly, hence using Bayes

formula, P(W|O) can be written as

POW)P(W)
pPO)

P(W|0) = (2.2)

12



where P(W) is the probability that the word string W is spoken, P(O|W) is the

probability that when a speaker says W, the acoustic evidence is O. Thus,

 _ P(OW)P(W)
W* = arg max P(O)
= arg max P(O|W)P(W) (2.3)

The P(O) can be ignored since we are maximising over all possible W and P(O)
is constant for a given input/test data. The likelihood P(O|W) is called the acoustic
model, and the prior probability P(W) is called the language model [10,11]. The
acoustic model P(O|W) can be estimated using hidden Markov models, hybrid ANN-
HMM systems or similar systems [12]. Hidden Markov models are widely used in
most current speech recognizers for acoustic modelling. These models have their lim-
itations. But with appropriate design it is possible to incorporate, (1) the phonetic
characteristics of the unit being modelled, (2) the duration of the sound units (2"¢
order models), (3) a fixed duration for a state if desired, (4) contextual information
(diphone models) and (5) discriminative training procedures. The language model is
usually estimated by statistical language modelling techniques. It is used to constrain
the speech recognizer. The constraints could be of short or large spans. The larger
the number of constraints, the easier it is to recover from errors in the recognition
process. It is desirable to incorporate the short and large span constraints into both
the acoustic and language models.

In this chapter we review the work done in selecting an appropriate unit for speech
recognition, with a focus on modelling the dynamics of the units in Section 2.2. The
review of HMM-based approaches to speech recognition is given in Section 2.3. The
techniques adopted for modelling large span constraints are discussed in Section 2.4.

The development of LSA along with its use for language modelling is described in

13



Section 2.5. Work on the use of large span constraints in speaker recognition studies

is discussed in Section 2.6.

2.2 CHOICE OF SUBWORD UNIT FOR SPEECH RECOGNITION

To recognize the words in a speech utterance, a model for each word in the vocabulary
would be a simplistic and ideal choice. Word based systems provide good performance
for task-specific applications having a small and fixed vocabulary [13]. For large vo-
cabulary continuous speech recognition task, this approach is not feasible due to the
lack of sufficient training examples to develop word level models that capture all the
variability in speech. The alternative is to use subword models. As the subwords are
smaller units compared to words, it is likely that there may be sufficient examples to
train these models. The most popular choice of subwords used in the literature are the
phonemes. Due to the significant coarticulation between phonemes, the recognition
rate of phonemes has been poor. To model the local coarticulation and contextual con-
straints that manifest at the (segmental) level of sound units, larger (than phoneme)
size subwords like syllables, triphones, diphones, and large-sized lexical or acousti-
cally derived units have been tried. In this section we trace the previous works in the

exploration of suitable basic units for speech recognition.

2.2.1 Units based on machine recognition perspective

A demisyllable contains the second half of the first phoneme and the first half of the
next phoneme. The unit is designed to model the coarticulation effects. Using demi-
syllable as a base unit, a set of domain-specific larger units called macro-demisyllables
(MDS) can be created [14]. These MDS units are formed by concatenating the demi-

syllables, and can grow up to the size of words or even phrases using an iterative
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procedure. The size of the MDS is restricted such that they occur frequently enough
to train HMM models for each unit. The MDS is good at capturing local coarticu-
lation constraints [14]. When the size of the unit is large, it can even capture some
amount of large span constraints among the demisyllables comprising the MDS unit.
The performance of the MDS units which are trained in a context independent fashion
is similar to a recognizer trained using context dependent triphones. For highly in-
flected languages, deriving a good pronunciation lexicon for use in a Large Vocabulary
Continuous Speech Recogniser (LVCSR) is a difficult task, as there are many out of
vocabulary words. Morphemes are the smallest meaningful units that can be derived
morphologically. Morphemes as subword units provide a feasible solution, but the
number of morphemes could be very large. In [15] small morphemes were merged us-
ing knowledge of the linguistic Parts Of Speech (POS) to provide more local contextual
constraints. This improved the recognition rate of the morpheme units. The author
also reported that if syllable is used as a subword unit instead of large morpheme-
based units, the out of vocabulary rate was nearly zero. The recognition rate of the
syllable-based unit however was poorer than morpheme-based units. Alternative sub-
word units were also proposed in [16-18]. The different choices of subword units are
driven from a machine recognition view point. They are tailored to suit the model

being designed or to overcome the limitations of the existing modelling techniques.

2.2.2 TUnits based on acoustics

In spontaneous speech, which is highly coarticulated, it is difficult to map a linguisti-
cally fixed phoneme sequence to the acoustics. If a set of subword units can be derived
from the acoustic signal and a pronunciation lexicon is constructed in terms of these

acoustic segment units, it may form a viable alternative to phoneme-based systems. In
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[19] an automatic method for word model generation based on acoustic segment units
was proposed. It relied on a technique developed in [20] to derive the acoustic segment
units. The recognition performance using this technique was reported to be better
than a phoneme-based system for spontaneous speech. Alternatively, the acoustic unit
derived could also be like multigrams as described in [21]. The multigram is a variable-
length sequence of elementary acoustic observations. For each multigram, depending
on its frequency of occurrence, a HMM model was constructed. Using the multigram
HMM models, the sequence of multigrams in the signal was derived using the Viterbi
algorithm. The multigram symbol sequence and the actual phonetic transcription of
the signal were used to align the two transcriptions. The alignment was used to con-
struct a lexicon based on the multigram sequence [22]. This approach was found to
be better than a triphone-based recognizer, when the language model constraints were
not used. The multigram sequence approach was also used for language modelling
[23,24]. The approaches mentioned above tried to derive subword units directly from
speech, and incorporate more constraints at the subword unit level. It would be better
if the unit modelled for speech recognition is motivated based on how humans produce

and perceive speech. The syllable is one such unit.

2.2.3 Units based on speech production and perception mechanism

The syllable has a central vowel called the nucleus. The nucleus may be optionally pre-
fixed or suffixed by one or more consonants, termed as the onset and coda, respectively.
Syllable as a subword unit is intuitive for representation of speech sounds. Syllables
are inherently natural units that are linguistically motivated. There is a close relation
between the syllable and the speech production and perception mechanism [25-28|.

Perceptually listeners are able to identify syllable boundaries in a word with a high
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degree of interlabeler agreement [26]. Some of the advantages of using syllables as a

basic unit for automatic speech recognition system are as follows [29].

1. The human auditory system integrates time spans of about 200 msec of speech
[30], which corresponds roughly to the duration of syllables [26]. Thus the robust
human perception can be modeled more accurately by the use of syllables instead

of phonemes.

2. The relative duration of syllables is less dependent on variation in speaking rate

than the relative duration of the phonemes [26].

3. The system will be robust against changes in speaking rate, speaking style (spon-
taneous vs continuous speech) and channel distortion (additive or multiplicative

noise), especially if these changes are not seen during training [14].

4. Syllable boundaries are more precisely identified than phonemic segment bound-

aries both in the speech waveform and spectrographic display [31].

5. Syllables are inherently of longer duration and they capture the coarticulation

between sounds better than phonemes.

A syllable-based recognizer was proposed for English in [32]. The approach showed
an improvement over a monophone recognizer for a medium sized vocabulary. The
authors also suggested that the number of training examples required for a syllable
model may be higher due to the larger size of the unit. Towards obtaining an ideal
large unit for Greek speech recognition a syllable based approach was adopted. A set
of syllables with different vowel and phoneme combinations were used to obtain an
improved performance over a comparable phoneme system [13]. In certain situations,
it may be possible to combine the advantages of different modelling techniques to

arrive at a better performance for the task at hand. In [29] it was shown that an
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ANN-HMM hybrid system that used syllable as the subword unit, outperformed a
phoneme-based system in classification of the subword unit in terms of frame error
rate (frames misclassified by the ANN). On the ‘OGI numbers’ task [33] for cross-
database test, the syllable-based system showed robustness against changes in speaking
style, and outperformed the phoneme-based system, indicating that the syllable can
model the variability better. It is also possible to view the phoneme and syllable-based
systems as two different approaches which can be combined for improving the overall
performance. In [34], syllable and phoneme systems were combined at three different
levels, namely, frame level, syllable level and utterance level. The study showed that
a combination at the syllable level reduced the word error rates. This may be due to
the fact that there exists some temporal organization of speech at the syllable level.
An alternative design for the recognition system is to use a two-stage process. In the
first stage, phoneme or syllable graphs are computed, which are domain-independent.
The result of the first stage is then passed on to a domain-dependent second stage
to determine the best word hypothesis. In such an approach proposed in [35], it was
found that syllable representation with a bigram or trigram language model provided
better constraints than a phonetic representation with higher n-gram language model
(up to 6-gram). The performance of this approach was found to be similar to that of
a conventional single-stage word-based recognizer.

Modelling the temporal dynamic behavior of the speech signal is complicated. If
the information regarding transition regions is incorporated during modelling, it would
lead to a better word recognition performance [36,37]. Different approaches exist to
model the transition regions, like (a) using diphone transitions [38]. (b) At the segment
boundaries there is a rapid change in spectral characteristics of the signal. More

features can be extracted around these segment boundaries by increasing the frame
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rate to capture the change [39]. (c) The vowel onset point can also be used as an anchor
to capture the dynamics of the syllable [40]. As a segment-based approach to model
larger units of speech close to the size of syllables was proposed in [41]. Modelling
these large syllable-like units captures the dynamics within phoneme boundaries and
in the transition regions. The performance of the segment-based system was similar
to that of a equivalent frame-based system.

Most Indian languages are syllabic in nature. Previous work on speech recognition
for Indian languages had focussed on modelling syllable-like units. The focus had been
to model the dynamics of the large size syllable-like units using approaches anchored
around the vowel-onset point [42,43]. Compression of feature vectors for efficient rep-
resentation of the syllables had been proposed for use in ANN classifiers [44]. Different
modelling techniques like ANN models [45], modular neural networks [28], constraint
satisfaction neural networks [46], HMMs [28,37,47] and support vector machines [48]
had been adopted for the task.

The suitability of modelling large subword units like syllables for the speech recog-
nition task was discussed in this section. In the next section we look at some of the

approaches to recognize syllable-like units.

2.3 ACOUSTIC MODELLING OF SUBWORD UNITS FOR CONTIN-

UOUS SPEECH RECOGNITION

One of the basic problems in speech recognition is to match the acoustic patterns of
two words. The matching technique used must account for the contextual phonetic
effects like coarticulation and the large span constraints, like position of the sound in
the whole sentence. It must also accommodate differences between speakers due to

sex, age, speaking accent etc., intra-speaker variation due to stress, speaking rate and
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environmental conditions. Techniques used for recognition vary from template match-
ing, dynamic time warping, hidden Markov models, segment based models and neural
network architectures to hybrid ANN-HMM approaches. Most state of the art LVCSR
systems make use of hidden Markov models for acoustic modelling. Each of the above
systems could be improved in a number of ways. Segment based models and neural
network based connectionist approaches overcome some of the assumptions made in
HMM-based modelling (discussed later in this section). There is no conclusive evidence
that connectionist speech recognition algorithms are better than other approaches [49].
Except for the acoustic likelihood estimation, all systems use the framework of HMM
to combine linguistic and acoustic information into a single network representing all
possible sentences [12]. Comprehensive reviews on large vocabulary continuous speech
recognition with insight into current trends and promising areas of improvement are
provided in [12,50]. A tutorial type introduction for connectionist approach to speech
recognition is given in [49,51]. A similar review on HMM-based speech recognition is
given in [52,53]. In this section we briefly review previous work in continuous speech
recognition using HMMs.

Early speech recognition systems used the dynamic programming (DP) approach.
In dynamic programming approach, time normalisation and pattern matching are ac-
complished in a single discrete optimisation procedure. In the DP approach the in-
coming speech signal was decomposed into a sequence of feature vectors and matched
against precomputed reference vectors [52]. An unconstrained end-point DP algorithm
proposed in [54] had a limited performance. Use of speech knowledge and imposition
of local continuity constraints and global constraints on the time normalisation process
improved the matching performance. This was one of the approaches where segment

level constraints were directly used for automatic speech recognition.
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Most current successful automatic speech recognition systems use hidden Markov
models for acoustic modelling [55]. The purpose of an acoustic model is to calculate
the likelihood of a feature vector sequence O given a word w. The HMM is a finite
state machine in which at every time instant ¢ that a state ¢; is entered, an acoustic
speech vector o, is generated with an associated probability by, (o;). The state vector
¢; can take any one among the N possible states (¢; = 1,2,---, N). The probability
of transition from state ¢; to state g;1 is given by agq,,,.- The joint probability of
the vector sequence O and state sequence q = (¢i,¢a, - - ., gr) given some model J, is

calculated as the product of the transition probabilities and output probabilities

T-1

P(an|/\) = 7rQ1b111(01) Haqult+1blh+1(0t+l)’ (24)

t=1

where ¢ is the entry and ¢r the exit state, and 7, is the probability of the initial
state. The model X is specified in terms of m = [my, 79, - -+ , mx], the state transitional
probabilities A = [a;;], and the observation symbol probabilities B = [b;(0;)]. The
observation sequence O is generally known, but the underlying state sequence ¢ is
hidden. Hence these models are called hidden Markov models [50]. The required
probability P(O|)) can be obtained by summing (2.4) over all possible (NT) state
sequences using a forward-backward algorithm [11], where N is the number of states
and T is the total number of symbols or feature vectors in the observation symbol
sequence.

Some of the advantages of a HMM-based approach for speech recognition are [56]:
(1) It provides a tractable mathematical framework that can be studied analytically.
The model can easily generalise to unseen data. The HMM framework can take into
account constraints imposed at the subword, syntactic and semantic levels. These
constraints could be local or extending over large spans. (2) The statistical HMM

approach imposes no particular structure, but provides sufficient degrees of freedom to
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acquire the details during training. This is in contrast to knowledge-based approaches
that attempted to build a general model of speech by listing every important aspect
in detail, which were not too successful. However, specialised knowledge of speech
has been used to constrain the models [57]. (3) The other important aspect is the
flexibility of the model. It can be tailored such that the model topology and number
of states match the typical duration, spectral complexity and variability of the sound
being modelled [58].

There are certain assumptions made in the modelling of HMMs that are in variance

with our knowledge of speech [56].

1. Piece-wise stationarity assumption: The HMM framework assumes that a speech
pattern is produced by a piece-wise stationary process. But it is known that
the speech patterns are derived from signals produced by a continuously moving
physical system, the vocal tract system. The effect of this assumption can be
reduced by modelling segments of speech. That is, by increasing the number
of states, a sequence of piece-wise stationary segments may better approximate

the dynamics [59].

2. Independence assumption: It is assumed that the probability that a given acous-
tic vector corresponds to a given state of the HMM depends only on the vector
and the state, and is independent of the sequence of acoustic vectors preceding
and succeeding the current vector and state. Thus the model takes no account
of the dynamic constraints of the physical system which generated the sequence

of acoustic data.

3. State duration distribution assumption: It is also implicitly assumed that the
probability of a model staying in the same state for several frames is deter-

mined by the self loop transition probability. Thus the state duration in HMM
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conforms to a geometric probability density function, which assigns maximum
probability to state duration of one instant and smaller probabilities to longer

durations.

The HMM-based systems have been built at the word level [11] [60], syllable level
[61], and phoneme and triphone levels [62]. Syllables form ideal subword units for
recognition as mentioned in Section 2.2.3. As the syllables are larger sized units the
number of such syllables in a language (>5000) is also higher as compared to phonemes.
But it is lesser than similar sized triphones in the language. Due to the large sized
syllable inventory, more volume of data is required to get sufficient training examples
for the rarely occurring syllables. Good performance at the subword level is essential
for high overall recognition rate. In this thesis we focus on approaches for recognition
of syllables using HMMs. An approach to recognizing syllables in continuous speech is
to first identify the syllable boundaries (segmentation), and then perform recognition
within the identified boundaries. Discrete HMMs and MultiLayer Perceptron (MLP)
in combination with some heuristics can be used to spot vowels. A HMM-ANN system
can then be used to identify the syllables between the vowel boundaries as discussed
in [63]. The hybrid HMM-ANN systems have the discriminating power of ANN and
also model the temporal variability. In this framework, using syllable as a unit, the
recognition system outperforms a comparable phoneme-based system [29].

Presegmenting the speech signal into syllables prior to recognition was attempted
as early as in 1975 [64]. Group delay based segmentation of speech into syllabic units
followed by recognition of the syllables using HMM for Indian languages was proposed
in [65]. The vowel onset point was also proposed as the basis for determining syllables
in continuous speech [66]. This approach showed a marked improvement in recognition

rate over a plain HMM-based system [67].
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For the Greek language, the design of a syllable-like unit as a combination of
multiple phonemes was reported to improve the performance by 9% over a phoneme-
based system within the HMM framework [13]. A HMM-based syllable recognizer for
the English language was shown to outperform a monophone recognizer by over 25%
[32]. The stop-consonant vowels are some of the most difficult sound units to model due
to variation in the acoustic signal. These stop sounds are studied extensively. Stops
in Vowel-Consonant-Vowel (VCV) units were modelled as segments using continuous
density HMMs. A high recognition rate (84.4%) was reported for a set of 5 stop sounds
excised from continuous speech [68]. An approach to recognize of the stop consonants
based on phonetic feature description of the speech signal using the HMM framework
is reported in [69]. It assumed that the underlying Markov chain in the model was
able to track the temporal evolution of the features [70]. The word initial and word
final stop consonants were modelled at the subphonemic level (microsegmental level).
This approach reduced the word error rates on CVC word list by 35%, when compared
to a system using a single HMM for each stop consonant.

In languages like Japanese and Chinese, which are syllabic in nature, syllable has
been widely used as the subword unit for modelling. For the Chinese tonal language,
an approach to individually recognize the syllables and the tone was proposed in [71].
The recognition of the base syllables was modified periodically to take into account
the tonal likelihood computed from a separate HMM of tones. The performance of
the system was comparable to the standard approaches. It was achieved at a reduced
computational cost. In a similar work, to simplify the recognition of syllables in
LVCSR, a set of 416 base syllables were identified. These syllables, in combination
with the tones, constituted the 1345 tonal syllables of the Chinese language [72]. A

separate tone recognizer that recognized four different tones was developed. The 416
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syllables were further decomposed into INITIAL consonant of a syllable and FINAL
vowel with nasal or medial ending. A continuous HMM was used to model these
decomposed units. A high recognition accuracy of 92.2% was reported for decoded
Chinese characters. A similar subsyllable approach for Chinese was reported in [73].
A syllable-based LVCSR system for conversational telephone speech in English was
reported in [74]. The system performed marginally better than a comparable triphone-
based system for an evaluation on the switchboard corpus. A word error rate of 49.1%
was reported. The syllable-based system outperformed the triphone system by nearly
20% on the alpha-digit task. The best recognition system reported in this work used
a mixture of acoustic models like syllable, monosyllabic words and context dependent
phones.

These previous studies have shown the utility of syllable as a subword unit. We
have also seen that HMM models are capable of modelling temporal variations, and
it is possible to incorporate constraints at various levels within the HMM framework.
Local constraints of the language in terms of n-gram language models can also be taken
into account while decoding. In the next section we look at some of the attempts to

incorporate large span constraints into the language model.

2.4 APPROACHES TO MODELLING LARGE SPAN CONSTRAINTS

USING LANGUAGE MODELS

The principal aim of language modelling is to characterize, capture and exploit the
regularities in natural language. Statistical language models are widely used in most
natural language applications. In statistical language modelling, a large text corpora

is used to automatically determine the model parameters. Recalling the statistical
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formulation of the speech recognition problem from (2.3)
W* = arg max P(O|W)P(W),

the estimate of P(W) is obtained from the language model. Let W = wy, w, ..., w, be
the sequence of words that make up the hypothesised sentence. One way to estimate

P(W) is to use the chain rule

n

PWw) = []Pwilwi,...,w) (2.5)
i=1
where (w;_1,w;_2...,w;) is termed as the history. Since it may be difficult to compute

P(W) for large i, the length of the history is limited to n — 1 in conventional n-gram

models. For a trigram model (2.5) reduces to

P(wi\wi_l, e ,’LUl) ~ P(’LUZ'|’LUZ'_2, wi_l) (26)

The performance of a language model is evaluated using a measure called perplexity
[75]. The perplexity can be interpreted as the average branching factor of the language
according to the model. It is a function of both the text and the model. When
comparing perplexities of different models, the vocabulary of the model and the text
used for testing must be the same. In such a situation a model with lower perplexity
is supposed to be better. A good review of statistical language modelling techniques
can be found in [1,76].

The simplest of the statistical models are the n-gram models. An n-gram model
uses the last n — 1 words of the history to predict the next word. The larger the n,
the higher is the differentiating power of the n-gram model. For a large n, due to the

sparsity of data, the parameters of the model are poorly estimated. This reduces the
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reliability of the prediction. For small n, the model is reliable, but its predictive power
is limited. This is the trade off on n. the The advantages of the n-gram models are
that they are easy to implement and interface with an application. They are good at
capturing short term dependencies.

The main disadvantages of the statistical language models in general are [77]
1. They do not capture the semantics of the text.

2. Statistical models require a large amount of text, which may not always be

available.
3. Statistical models often make no use of other linguistic or domain knowledge.

Despite the disadvantages, efforts have been made to extend the language mod-
elling concept to model large span dependencies. The simplest extension of the n-gram
approach to model large scale dependencies is to use higher order n-grams like 5-gram
or higher. But, for a 5-gram, it is most likely that no sequence of w;_4, w;_3, w;_o, w;_1
would have been seen in the training data. Hence the system needs to be backed
off or interpolated with four-grams, trigrams, bigrams or even unigrams. However,
it was shown in [1] that, for a large training corpus (about 250 million words), im-
provements in performance was observed for 5-gram, and even 6-gram models. The
gain was obtained primarily due to improved smoothing techniques like interpolated
Kneser-Ney smoothing. For a small training corpus, trigrams seemed to work best.
The n-gram technique was extended up to a 20-gram model, and the improvement in
performance tapered off after 6-gram model. But for most systems, going beyond tri-
grams is often impractical due to the trade off between memory and performance. As
an extension of n-gram models, there are variable length n-gram [78-80] and X-gram
models [81], where the goodness of the estimation of the probabilities is established by

other criteria, which is not the length of the conditioning history.
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When n-gram models with a large n are used, it is less likely that the context was
seen before, but the chances of having seen a similar context will be high. Skipping
models [77,80, 82|, use this information. For a 5-gram context, we could consider
the contexts like P(w;|w;_4,w;_3,w;_2) or P(w;|w;_4,w;_2,w;_1). For example it is
likely that we have never seen the phrase “This is a Communist philosophy”. A 5-
gram predicting P(philosophy| This is a Communist) would assign it a low probability.
There are skipping models of the form P(w;|w;_4,w;_3,w;_3), which would assign a
higher probability to P(philosophy|This is a ... ), since similar contexts like “This is a
socialist/capitalist /religious/good philosophy” may have been observed in the training
data. But the skipping models have only shown marginal improvements in performance
over other approaches [1].

To reduce the number of parameters in the n-gram model and to improve the
reliability of the parameter estimates, class-based n-gram models can be used, where
the words can be clustered into classes. If Cj is the cluster to which word w; is assigned,

then a trigram class model in different forms could be one of the following:

P(w3|w1,w2) = P(w3|Cg)P(Cg|w1,w2) or (27)
P(ws|wy,ws) = P(ws|C3)P(Cs|lwy,Cs) or
P(w3|w1,w2) = P(’LU3|03)P(03|01,02) or

P(’IU3|’11)1,U]2) = P(’LUg'Cl,CQ)

The quality of the model depends on the clustering technique. There exist automatic
clustering procedures [83,84] that can be used to derive the clusters, some of which
are based on information theoretic criteria. This type of model gave good results
for limited domains like ATIS (Air Traffic Information System) [85], or when manual

clustering of the words was done [86]. For less constrained domains, the technique
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does not seem to work so well. Decision trees and Classification And Regression Trees
(CART) were also used to model long term history [87]. But this approach is highly
computation intensive, and the gains (a 4% reduction in perplexity) over a trigram
model was very small [76].

In the data corpus such as the Wall Street Corpus, there may be different sen-
tence types like business sentences (information about many promotions, mergers,
demotions), financial sentences (combining stock names, many numbers, stock mar-
ket terminology) and general news sentences. There exists large span correlations
among the words in a sentence (many numbers, promotions etc.,). To capture these
constraints, sentence mixture models can be used [88]. In these models topic depen-
dencies can be represented by using a sentence level mixture of m component models.
The models constrain the topic to be consistent within a mixture component. Each
mixture component can be identified with n-gram statistics of a specific topic or a
broad class of sentences. The ‘topics’ can be determined by automatic clustering pro-
cedures. Here topic means any broad class of sentences that share a common subject
matter or style. These models perform better than the conventional n-gram models,
but involve a large computation cost in search, which may be reduced using a n-best
re-scoring frame work.

To capture large span constraints, one could alternatively use trigger-based maxi-
mum entropy language models. The idea is that a word like school would increase its
own probability as well as the probability of a similar word like teacher. Using these
triggers, a 25% reduction in perplexity was reported in [77]. The difficulty with this
approach is in determining the trigger pairs. Different pairs display markedly different
behavior which limits the potential of low frequency triggers [89]. A variation of the

maximum entropy approach is the whole sentence maximum entropy approach [90].
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Here the probability of the whole sentence is predicted instead of individual words.
The main difficulty with the whole sentence approach is that the training is compli-
cated [91]. The benefits of the whole sentence model may be small when divided over
all words [1].

If it is assumed that a suitable parser is available for the domain concerned, then
the large span dependencies such as between a subject and its direct or indirect object
can be taken into account. Such models are called structured language models or
dependency language models. The syntactic information can be used to determine
equivalence classes on the n-gram history [92,93]. A good 11% and 24% reduction in
perplexity over a baseline trigram model was reported in [94] and [95] respectively, for
this approach. The main problem with this model is the reliance on the parser, and
the assumption that the correct phrase will be assigned a high probability [96], which
may not always be true.

High level semantic information can be used to incorporate large span constraints.
The semantic information is diffused across the entire text under consideration. An
approach that models the semantic information uses topic mixture models. In this
approach, a document is defined as a set of semantically homogeneous sentences. Each
document can be characterised by drawing from a large set of topics, usually predefined
from a hand labelled hierarchy which covers the relevant semantic domain [88,97]. The
main disadvantage of this approach is the granularity of the clustering procedure [8].
One of the simpler approaches to incorporate large span semantic constraints and
which tries to extend the word trigger concept is the use of latent semantic analysis

for language modelling. This technique is discussed in the next section.
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2.5 LATENT SEMANTIC ANALYSIS FOR MODELLING LARGE SPAN

CONSTRAINTS

Latent semantic analysis is a theoretical method of extracting contextual-usage and
meaning of words using statistical computations applied to large corpus of text [98].
The concept is that the aggregate of all contexts in which a word does or does not
appear provides a set of mutual constraints that largely determine the meaning of words
and sets of words with each other [5]. The LSA has been used as a tool to explain the
acquisition and induction of knowledge in humans, as a source to estimate coherence
of passage of texts and related areas in human cognitive phenomenon. The LSA uses a
mathematical technique called Singular Value Decomposition (SVD), which is similar
to factor analysis. The LSA is widely used in the field of indexing and retrieval, where
it is referred to as Latent Semantic Indexing (LSI). The LSA has been adapted for
language modelling. In this section we briefly review the work in latent semantic
indexing and the use of LSA concepts to model large span constraints for language
modelling.

Latent semantic analysis can be viewed as an approach to obtain approximate es-
timates of the contextual usage substitutability (semantic similarity based on context)
of words in a large text segment. That is, large span semantic constraints among
words based on their co-occurrence information can be captured by LSA. The LSA
produces measures of word-word, word-document, document-document relationships,
which are well correlated with human cognitive phenomenon. The similarity estimates
derived by LSA are not simple contiguity frequencies, co-occurrence counts or corre-
lations in usage. They depend on a powerful mathematical analysis that is capable of
correctly inferring the deeper relationship that is not explicit but latent. This is the

reason the approach is termed as latent semantic analysis. The similarities derived
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by LSA between words and passages arise from the analysis of the text documents
under consideration. It does not depend on any external information derived from
the environment or experimental results obtained externally, or any other manual
human interpolations. It makes no use of word order, and hence of syntactic rela-
tions, dictionaries, knowledge bases, semantic networks, grammars, syntactic parses
or morphology. The LSA does not use the data being analysed as summed contigu-
ous pairwise or tuple-wise co-occurrence of words. It considers the data as detailed
patterns of co-occurrence of a very large number of words over a very large number of
local meaning-bearing contexts, such as sentences or paragraphs treated as a whole.
It ignores how the order of words produces the meaning of a sentence, but captures
how the differences in word choice and differences in passage meanings are related. In
the LSA approach the meaning of a word is represented as a kind of average of the
meanings of all the documents in which it appears, and the meaning of a document as
a kind of average of all the words it contains [5].

The latent semantic analysis is a technique that can look beyond local constraints
or short span history. It was proposed as a fundamental computational theory of the
acquisition and representation of knowledge [98]. It had been shown that the meaning
similarities derived by LSA closely match those of humans. It was also observed that
the rate of acquisition of such knowledge from text approximates that of humans. This
was demonstrated on a variety of tasks based on human verbal concepts and synonym
tests [99], in simulating subject-matter knowledge, predicting learning from texts, to
explain the theory of acquisition, induction and representation of knowledge [98], as
a computational basis of learning [100] and in other related areas [5]. These tasks of
human cognition are not confined to a small window of words (short span constraints),

but necessarily need to span the context under study. That is, large span constraints
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are to be used. Use of LSA implies that large span constraints are being modelled
implicitly. LSA has traditionally been explained in terms of statistical methods. A
probabilistic interpretation of LSA can be found in [101]. The probabilistic LSA was
introduced as a technique for the analysis of two-mode and co-occurrence data. In
[102] latent semantic indexing was compared to statistical regression and Bayesian
methods to explain its performance.

The LSA has been widely used in indexing and retrieval applications where it is
termed as latent semantic indexing. The main deficiency in most indexing methods is
that the words used for searching is not the same as those by which the information
has been indexed. A user in different contexts, or with different needs, knowledge or
linguistic habits, will describe the same information in different terms. It is unlikely
there will be a good word to word match in the search. There is a need to capture
the implicit structure and relations among the words used in a document. That is,
the span under consideration is the entire document, or in other words, it is of large
spans. Using the concepts of LSA it is possible to construct a semantic space of terms
and documents such that documents that are closely associated are placed near one
another. Thus in a retrieval query, the query is placed in the semantic space, and
documents near that point are retrieved and returned. A good introduction to the LSI
technique and relevant efforts on trying to bring out the relatedness among documents
and words can be found in [4].

One of the earliest use of SVD for indexing and retrieval was reported in [103]. It
was shown that SVD captures the implicit higher order structure in the association
of terms and documents in a collection of texts. Many later experiments reported
that LSI improved precision and recall rates in the information retrieval task [4,104].

A query expansion interpretation of LSI and a normalisation technique to improve
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precision rates was proposed in [105]. In the information retrieval task normally large
volume of text data would be continually added to the database collection. Differ-
ent approaches to add in new terms and documents into an existing LSI-generated
database were discussed in [3]. Likewise, novel applications of the concept of LSA that
include cross language retrieval, matching people instead of documents, and the utility
of the approach in case of noisy input was also discussed. Instead of using LSI to index
text documents, it was shown in [106] how LSI in combination with Self Organising
Map (SOM) can be used to index spoken audio documents. The documents were rep-
resented as a vector of word counts, whose dimensionality was reduced by a technique
called random mapping [107]. In spoken documents, the documents are short and the
important words rare. To get meaningful distributions of the index words, smoothing
by SOM is employed. The SOM also provides a way to visualise the results. A fast
version of this procedure was reported in [106].

The effectiveness of the LSA depends on the SVD, and in turn, on the values arising
out of SVD. The values arising out of SVD of the term x term co-occurrence matrix
were first studied for the word sense disambiguation task in [108]. The normalised
average (centroid) of the vectors of the words in a context (history) was used as an
approximation of the semantic context. If at least some of the words in the context
are frequently used to describe what the current context is about, then their vectors
would pull the centroid towards the direction of that context or topic. This type of
representation was found useful in the word sense disambiguation task. A theoretical
framework for understanding the values in the reduced form of the term x term matrix
using transitivity was given in [109,110]. The improved performance of LSI over other
approaches was due to its use of higher orders of co-occurrence information. It was

shown that a connectivity path exists for every nonzero element in the truncated
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term X term matrix computed by LSI. The higher order of co-occurrence among words
influences the values in the truncated term X term matrix. Connectivity paths up to
degree six were noticed when LSI was used in some standard document collections.
It was shown that the value in the matrix at location (7,j) can be considered as the
similarity between term ¢ and term j. By extension, if it contains a negative value,
then it represents the anti-similarity between term ¢ and term j [111]. It was also
shown in [112] that all the values in the term x dimension (order of truncation of
SVD) matrix are not important for LSI. Removal of up to 70% of the values in the
term x dimension matrix resulted in similar or improved retrieval performance (as
compared to the standard LSI).

The use of latent semantic analysis for the task of developing language models that
capture the large span constraints was first proposed in [6]. It is similar to word trigger
based language modelling. The LSA provides a more comprehensive framework to han-
dle trigger pairs across the entire document. Every word combination in the vocabulary
that occurs in the document is viewed as a potential trigger combination. It is this
approach that leads to the systematic integration of large span semantic constraints
into the analysis [8]. The theoretical formulation, different smoothing techniques that
can be employed on words and documents and the integration of the LSA language
model with the standard n-gram model were discussed in [113]. The integration of the
large span language model with a speech recognizer and consequent reduction in word
error rates of the speech recognizer were discussed in [113]. Approaches to combine the
n-gram model with the LSA model and estimate the LSA language model probabilities
were described in [7].

The LSA language model does not make use of syntactic information, as it ignores

the word order. A mathematical framework to incorporate the preceding syntactic
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information into the model was proposed in [114]. This leads to a statistical model
that uses the preceding syntactic model that uses the preceding syntactic information
along with long distance semantic information to assign probabilities. This approach
is called latent syntactic semantic analysis. Its performance is marginally poorer than
the LSA model, but results in better probabilities than LSA for syntactic-semantically
regular words. A probabilistic framework to simultaneously take into account the local
word interactions (as in Markov chains), syntactic structure and semantic document
information was proposed in the maximum entropy framework. This approach showed
a significant (21%) reduction in perplexity over a baseline trigram model. In the LSA
based language models, as the history of the document increases, it may sometimes
contain irrelevant information for predicting the next word. The history can be dis-
counted as in [115]. In another approach, the history was partitioned into three levels
corresponding to document, paragraph and sentence levels [116]. Information derived
from these three levels was combined using a soft max network to obtain improvement
in the perplexity over a trigram baseline.

It is difficult for the LSA language model to capture the large span word dependen-
cies at the beginning of a document. Due to the shortness of the history, in [117], the
word to be predicted was treated as an LSI query, and the closest matching document
was retrieved. This was used as the history for the word. Further, the LSA-based
parameter smoothing, and ways to determine interpolation coefficients for the lan-
guage models was also suggested. This approach reduced the perplexity by 49% when
compared to a bigram model.

In this section we have seen how LSA initially proposed for indexing and retrieval
task was also shown to model human cognitive behavior. This was due to the ability

of the model to look at large passages/documents and derive the latent constraints
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among the words. This model was adapted for language modelling due to its ability
to model large spans. In the next section we see how large span constraints can be

used to improve speaker recognition systems.

2.6 APPROACHES USING LARGE SPAN CONSTRAINTS IN SPEAKER

RECOGNITION

Humans are able to recognize a person by his voice from among a familiar set of
speakers. Humans can use knowledge right from the speech segment level to discourse
level depending on the requirement to come up with a decision on the identity of the
speaker. A wide variety of approaches to automatic speaker recognition by machine
exist [118,119], but very few approaches explore large span constraints for the task.
Voices of two persons differ due to the physical differences in the vocal organs and
the manner in which they use them during speech production. The characteristics of
the vocal chords are reflected in the pitch information. It was shown in [120] that
pitch contour (a suprasegmental large span feature) has some advantages over spectral
information for speaker recognition. Pitch contours of the entire sentence provide
useful information to distinguish between speakers, as it is unlikely that an impostor
can mimic the entire variation of pitch as a function of time. Pointers to several studies
on the acoustic features suitable for speaker recognition was reported in [121]. They
found that long term parameter averaging of pitch, gain and reflection coefficients for
up to 1000 frames was shown to improve the between-to-within speaker variance ratio.
Other attempts to model the pitch contour to capture speaker-specific information
were also successful. Pitch, accent features and word durations were used as features
to train multiple neural network to capture speaker specific information. The evidence

was combined to arrive at a decision for text dependent speaker verification task [122].
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In another related work piecewise linear model is fitted on the pitch contour to obtain
a stylized pitch contour. Combining this evidence with a Gaussian Mixture Model
(GMM) based system for speaker recognition improved the performance of the system.

Traditionally work on speaker recognition has focused on characterising the statis-
tics of the speakers amplitude spectrum. Humans are able to distinguish between
speakers who are familiar to them far better than those who are unfamiliar. They
are able to identify a speaker easily based on his idiosyncrasies like indicator words
(e.g., I, OK, yeah, uh-uh, right), conversational-style features such as pause and turn
lengths, discourse markers (e.g., you know), back channel expressions (e.g., all right,
sure), editing markers (e.g., I mean) [123,124]. These idiolectic characteristics are
spread over the entire conversations (large spans), and need to be modelled. Extensive
literature on similar work based on authorship attribution is available for determining
the authorship of disputed /unclaimed text based on samples of text by target authors.
We first briefly review the work in this area since a similar approach is adopted in this
work for speaker recognition.

The task of authorship attribution is to determine the identity of the author of
anonymous or doubtful text, given some prior stylistic characteristics of the author’s
writing, extracted from a corpus of his known works. Here the text is derived from a
speech recognizer. The first studies in 1887, 1901 on stylometry was based on word-
length distribution [125]. A naive Bayes classifier approach was used to determine
the authorship of the Federalist papers [126]. In this approach, the independence of
function words usage was assumed, which may not be true. A Support Vector Machine
(SVM) based approach to identify the authors of the Federalist papers was reported in
[127]. An approach based on style markers derived from multiple parses of a sentence

was proposed for the Greek language [128]. The approach avoided the use of lexical
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based measures such as word frequency, and can be used even when the training data is
small. A character level n-gram language model based approach which uses Bayesian
decision theory for identification was proposed in [129]. The reported advantage of the
approach is that minimal preprocessing and feature selection was involved.

Just as an author is identified by his writing style, the subject expertise and areas
of his interest may be derived from his previous written works. The tedious task of
routing papers for review in conferences based on the reviewers’ expertise and choice
of review areas was automated based on the principles of information retrieval and
latent semantic indexing [130,131]. The reviewers’ interests were represented based
on abstracts of the papers written by them (i.e., treated as documents for LSA). The
paper to be assigned was treated as a query, and the closest reviewer based on his
abstracts (documents) was chosen for routing the paper. The performance of the
system was found to be fairly reasonable when compared to the manual assignment.
For speaker recognition we adopt an approach to derive the identity of the speaker
from the words spoken by him, in which his idiolectic characteristics are embedded.

Each speaker has a set of idiosyncrasies like usage of certain words or phrases, in-
tonation, stress and timing of the words. These patterns of speech manifest in conver-
sational speech over large spans. A large volume of conversational speech of a speaker,
and the transcription of the speech, were available in the NIST extended data speaker
detection task [118]. This was the motivation to capture the speaker idiosyncrasies
from text corpora [132]. From the text transcription of the conversations, the word
unigrams and bigrams for the corpus was found. Using the target/background likeli-
hood ratio framework, it was shown that the idiolectic characteristics can be captured.
In this framework the performance of the speaker recognition system was reported

to be the highest when the most frequent bigrams were used. Thus it was suggested
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that commonly used word patterns have speaker discrimination power. The Stanford
Research Institute (SRI) database of prosodic features for the Switchboard-I corpus
includes a wide range of prosodic, lexical and disfluency information. In [124] the
pitch related features, duration related features, indicator word usage, conversational
style features, pause fillers, discourse markers, back channel expressions and other
such features were used in conjunction with a Gaussian Mixture Model GMM and
Language Model (LM) based speaker recognition systems. The individual GMM and
LM speaker recognition system performance improved when these large span prosodic
features were included. The best performance was obtained when all the three systems
(GMM, LM and prosodic) were combined using interpolation.

In this work, we try to model the speaker idiosyncrasies that can be derived by
using n-gram terms in the LSA framework. This approach provides complementary

information that can be combined with other approaches for speaker recognition.

2.7 SUMMARY

In this chapter we reviewed the work related to selection of appropriate units for
speech recognition, and discussed how these units could be modelled acoustically. The
constraints that can be imposed on the recognizer in terms of a language model and the
usefulness of large span constraints in a language model were reviewed. The usefulness
of these constraints for speaker recognition and approaches to incorporate large span
constraints into a speaker detection system were also reviewed. In the next chapter we
discuss the development of a speech database for Indian languages, select appropriate
subword units for speech recognition in Indian languages, and study the statistical
characteristics of the words and subword units from the perspective of developing

speech systems.
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CHAPTER 3

ANALYSIS OF SPEECH DATABASE

3.1 INTRODUCTION

Speech research is geared towards providing a spoken language interface to converse
freely with a machine. Spoken language input to a machine may involve different
technologies like language identification, speaker recognition, speech recognition, nat-
ural language understanding, dialogue management and concatenative text-to-speech
synthesis to varying extents. In this study our focus is on speech recognition. Speech
recognition involves transformation of the input speech signal into a sequence of sym-
bols (units). The sequence of symbols is then converted into a sequence of words of
the target language corresponding to the message in the speech signal using linguistic
knowledge. The large variability in the speech signal makes speech recognition a diffi-
cult task. The main sources of variability can be categorised into acoustic variability,

inter-speaker variability and intra-speaker variability.

1. The acoustic variability could be due to: (a) the different realisations of a sound
(phoneme) in different contexts, termed as phonetic variability, (b) the changes
in the acoustic environment (e.g. people speak differently in noisy and quiet

environments) and (c¢) the differences in the channel or transducer type.

2. Certain wide variations can also be caused in the speech signal due to changes
in the speaker’s physical and emotional state, speaking rate and elocution mode
(read speech, spontaneous speech or conversational speech). These can be

termed as intra-speaker variability.
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3. Inter-speaker variability may occur due to the socio-linguistic background of the
speaker, speaker-specific mannerisms (idiolectic traits), the dialect spoken, and

due to the shape and size of the speaker’s vocal tract.

A large annotated speech database, structured and organised to address the issues
of variability, is required to develop robust models for speech recognition. The task
of generating and annotating a large speech corpus is labour intensive and expensive.
To address the diverse speech tasks (speech recognition, speaker recognition, etc), it
is desirable to have a speech corpus addressing each specific task. This is preferable,
as the type of data required for each task is different. This would increase the effort
involved in data collection many fold. For Indian languages the need for an annotated
database, suitable for use in speech recognition, speaker recognition, text-to-speech
synthesis, language identification and information retrieval was felt. Towards this goal
we developed the Indian Institute of Technology Madras (II'TM) speech corpus [133],
the design and development of which is described in Section 3.2.

The vocal tract is unique for every speaker, like fingerprints. Sounds produced by
it are also distinct. But there is a commonality at the perceptual level that is useful
in identifying the basic sounds in a language. Phonemes are the basic sound units
in a language that are perceptible, and are useful to distinguish between words. The
number of phonemes in a language is usually small. The phonemes have been the
choice as the subword unit for most speech recognizers. The speech databases are thus
usually annotated in terms of phonemes for speech recognition purposes.

To develop robust acoustic models for subword units in a speech recognizer, knowl-
edge of the acoustic-phonetics of the basic speech sounds in different contexts and
environments is desirable. A thorough study of the characteristics of the subword unit

at the segmental level and their interactions at the suprasegmental level is desirable.
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To facilitate our understanding of the speech sounds and the issues involved in the
development of a speech recognizer, we studied some of the acoustic, prosodic, statis-
tical and information theoretic aspects of the sound units in three Indian languages,
namely, Tamil, Telugu and Hindi. The details of the studies are presented in the
following sections.

Previous studies on the phonetic properties of the sound units in five European
languages suggested a cohort (equivalent class) type classification of the sound units.
These cohorts could then be used as the basic classes for a preliminary recognizer [134].
Properties of words in large lexicons and their structural properties with implication
to isolated word recognition was discussed in [135]. In [136] a study of the duration of
the vowels and consonants in Telugu in different contexts, and its usefulness for text-
to-speech synthesis and speech recognition was described. Studies on the statistical
properties of words and syllables in text corpora of Indian languages was reported in
[137,138]. These previous studies throw light on the characteristics of the sound units
in a language which may be used for the development of a speech recognizer.

The following sections deal with the study of the statistical properties of words and
subword units suitable for speech recognition in Indian languages. Observations on the
relative frequency of the sound units, the structural properties of words and subword
units and their durations are presented. The consonants can be grouped based on
their acoustic-phonetic descriptions. Observing the transitions of the consonant sounds
between the different groups, rules can be derived to constrain the search space of a
speech recognizer. Rules defining the permissible and prohibited consonant cluster
transitions in a language can also be derived. These rules may be useful in language

identification systems.
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3.2 DATABASE DESIGN AND DEVELOPMENT

To develop speech systems in Indian languages, a large speech and text corpora that
cover the domain of interest are required. It is preferable that the corpus conform to
the requirements of multiple speech systems. The corpus should be uniform across all
the languages. Uniformity here refers to the amount of text and audio per language,
quality of data such as recording conditions (noise, channel, microphone etc.), collec-
tion scenario (task, setup, speaking style etc.) and transcription conventions [139].

This uniformity would enable a comparison of results in a task across languages.

3.2.1 Issues in database design

In addition to the inter-speaker, intra-speaker and contextual variability that need to
be addressed during database design, the following issues also need consideration [140]:
1. The quality of the database (quality of the audio signal and annotations).

2. The content of the database (items to record, sentences, numbers, isolated

words/syllables, spontaneous speech).
3. Quality of speakers used for recording.

4. Cost of collection of data (renumeration for participation, annotation, supervi-

sion).
5. Validation cost (validation by humans).
6. Development cost (cost of hardware and software).

3.2.2 Corpus development

For developing speech systems in Indian languages, we need a database suitable for
multiple tasks described earlier. A database of clean speech is preferred over telephone

speech so as to reduce the channel effects. Due to resource constraints, read speech
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was preferred over spontaneous speech. Also, it is faster and less labour intensive
to process read speech than spontaneous speech. The speech recorded should have
minimal disfluencies. It was observed that not everybody is capable of reading text
aloud with minimal errors [141]. The spoken realisation of a word depends on the
accent used by the speaker. Further, journalistic type of writing is lengthy and is more
difficult to read for recording purpose by the general population. It is also preferable if
the text selected for reading is of the same genre as the text corpora used for language
modelling, as it helps improve speech recognition performance. Considering these
issues, our preferred choice is to use TV news bulletins. The TV news is read speech
and the speakers are trained to read aloud with minimal disfluencies. Generally the
accent of the TV news readers is neutralised. The speech recorded after transmission
is close to clean speech, and can be obtained using a good quality recording equipment.
As a large text corpus is required for language modelling, online newspaper archives
can be used, whose genre would be similar to those of the news bulletins. For text-to-
speech synthesis this read speech would be useful to derive durations of the base units
[142]. The news bulletin speech corpora can also be used for information retrieval, and

for close-set speaker recognition studies.

3.2.3 Speech data collection

TV news bulletins broadcast by Doordarshan in 3 Indian languages Tamil, Telugu and
Hindi are recorded during the same period. The goal is to record similar news content
in all the languages. This would facilitate language independent information retrieval
studies where the semantic content is similar. For man-machine dialogue systems and
information retrieval systems, names of people and places form an important part of
the dialogue items/search terms. A database with similar news content would contain

a large number of examples of these terms, enabling development of language indepen-
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dent audio content analysis and dialogue systems. The TV broadcast is recorded on
a high quality VHS video tape. The audio signal from the tape is sampled at 16 kHz
with 16 bit resolution using a high quality ‘sound blaster’ sound card on a personal
computer, and stored in standard wave format. Each news bulletin comprises of about
10 to 15 minutes of read speech. The total duration of the digitised audio in each

language is about 5 hours.

3.2.4 Speech transcription

For speech recognition, the transcription of the spoken sentences should represent what
is actually spoken rather than the grammatically correct version of the sentence. This
would enable developing better acoustic models. To facilitate transcription, the read
speech is segmented into short segments of approximately 3 sec duration, containing
only sentences spoken by the news reader. Speech by all other speakers in the news
bulletins are ignored, since the speaking style, dialect and speaking rates are likely to
vary widely. Speech utterances corrupted by channel effects or other disturbances are
removed. The speech segments were then orthographically transcribed manually into
the common Indian language TRANSIiteration (ITRANS) code for Indian languages,
which uses the Roman script [143]. The ITRANS code is chosen, as it used the same
symbol to represent common sounds across Indian languages. This forms a good
intermediate script to compare, contrast and represent the sound units of different
Indian languages. The transcribed sentences are parsed into syllables based on the
rules of the language. The speech segments are then segmented into syllables manually
by trained persons. During transcription, the mispronounced phrases are removed. For
words with multiple pronunciation, the transcription is based on the actual manner
in which the word is spoken in the utterance. The transcription and annotation has

been verified by at least two people. Errors in the transcription have been corrected.
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Any misalignments in the marking of the boundaries of syllables have been realigned.
The database is organised in a TIMIT-like format [144]. Each news bulletin in the
speech database is organised into separate directories. The original wave files, the
transcription of the speech files and time aligned segmentation of the speech file in
terms of words and syllables are contained in four separate subdirectories. The Tamil
database has 33 news bulletins, of which 10 are spoken by males and 23 by females.
The Telugu database has 20 news bulletins, of which 11 are spoken by males and 9
by females. Similarly for Hindi, of the 19 bulletins 6 are spoken by males and 13 by

females. The statistics of the database is given in Table 3.1.

Table 3.1 Description of Indian languages database.

Total 4 bulletins # speech | Total # | # distinct | Total # | # distinct
Language || duration segments | words words syllables | syllables
(min.) | Male | Female
Tamil 242.1 10 23 7,359 30,688 8,947 100,707 1,975
Telugu 219.7 11 09 6,484 25,463 9,218 84,349 2,273
Hindi 139.1 06 13 4,191 26,090 5,162 50,237 2,002

3.2.5 Database used for studies in this thesis

For the purpose of developing speech systems, the characteristics of the sound units in
three Indian languages, Tamil, Telugu and Hindi are studied. To study the statistical
properties of various subword units from an information theoretic perspective, the
transcribed text of speech in the Tamil language is used as an illustration. The viability
of developing syllable-based speech recognition systems using the framework of HMM
is illustrated with the Tamil and Telugu languages. The development of text-based
and speech-based large span constraint models both at the word level and the syllable

level are illustrated with the Tamil language. The concept of speech-based large span
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constraint models is language independent and can be extended to any number of
languages. In general, all the above mentioned studies can be extended to other

languages.

3.3 STATISTICAL ANALYSIS OF THE SPEECH DATABASE

Each language has different types and number of basic speech units, different pronun-
ciations, syntactic, semantic and pragmatic constraints which affect the production of
the speech signal. Most Indian languages are syllabic in nature. A syllable has an
obligatory vowel (V) which forms the nucleus. It may be preceded by one or more
consonants (C) in the onset. The coda consist of the consonants following the vowel.
In general the syllabic units are of the form C™VC", where m,n > 0. The total
number of such syllabic units in a language is large, typically more than 5,000. The
statistical characteristics of these syllabic units is described in the following sections.
The statistics presented in the following section pertain to the speech corpus described

in Table 3.1. The inferences are provided from speech recognition point of view.

3.3.1 Frequency of occurrence of syllabic units

A consonant in speech is generally pronounced along with a vowel, either preceding or
succeeding it (as CV or VC). In most Indian languages, most characters are represented
as a single CV type unit. Another characteristic of Indian languages is that most
characters are written in the same manner as they are spoken, i.e., they are phonetic
in nature. The languages of India have a common phonetic base. The syllables are
built from the basic set of sounds represented by the vowels and consonants of the
language. The vowels number between thirteen and eighteen, while the consonants
vary from eighteen in Tamil to as many as thirty eight in Telugu and Malayalam. The

basic CV part of every syllable, ignoring the multiple consonants if any occurring in
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the onset or coda, is considered for computation of the statistics shown in Table 3.2.
As an illustration, the frequency counts for the Telugu language is shown. From the
Table it is observed that the CV units with long vowels, are less frequent than the
corresponding CV units with short vowels. The exception being CV units containing
the long vowel /E/. Similarly the aspirated CV units are less frequent compared to
the unaspirated CV units. This is in tune with Zipf’s principle of least effort which
states that an individual behaves in such a way that he tends to minimize the work he
has to do [145]. More effort is required to pronounce the aspirated sounds and those
with long vowels. Hence the aspirated CV units and the CV units containing long
vowels used in spoken language are lesser in number. In Telugu it is also seen that,
CV units with semivowels /r/ and /1/ are most frequent, followed by CV units with
nasal consonants in Telugu. If the most frequently occurring syllables in a language
are considered, it is observed that a small subset of the syllables in the database cover
about 75%to 85% occurrences of the syllables in the database. Table 3.3 shows the
number of most frequently occurring syllables required for a specific coverage of the
database. From Table 3.3 one can conclude that if such a small subset of the syllable
vocabulary is modelled efficiently in a speech recognizer, a majority of the syllables in

spoken utterances can be recognized.
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Table 3.2 Number of occurrence of different Vowels and CV classes in Telugu expressed as percentage.

| _a [ A [ 1 [ T | w | U | e [ E [ ai | o | O [ au |

1.6355 | 0.8824 [ 0.5894 [ 0.7899 [ 0.5029 [ 0.0083 | 0.7389 | 0.2467 | 0.1459 | 0.2277 [ 0.0356 | 0.0024

k 2.0684 | 1.2299 | 0.7128 | 0.0806 | 1.2773 | 0.1447 | 0.1091 | 0.2989 | 0.0178 | 0.3416 | 0.3190 | 0.0202

kh 0.3843 | 0.0593 | 0.0059 | 0.0036 | 0.0083 0 0 0 0.0071 0 0.0012 0

g 0.7958 | 0.7602 | 0.4447 | 0.0557 | 0.5171 | 0.0130 | 0.0119 | 0.0332 | 0.0083 | 0.0937 | 0.0486 | 0.0474

gh 0.1791 | 0.0451 | 0.0119 | 0.0036 | 0.0036 0 0 0 0 0 0.0119 0

~N || 0.0083 | 0.0012 0 0 0 0 0 0 0 0 0 0

ch 0.6226 | 0.5266 | 0.8124 | 0.0237 | 0.1174 | 0.0119 | 0.3463 | 0.8337 | 0.0285 | 0.1139 | 0.0047 | 0.0285

chh || 0.0036 | 0.0036 | 0.0012 | 0.0024 0 0 0 0.0036 0 0 0 0

] 0.8883 | 0.2087 | 0.1803 | 0.1032 | 0.3771 | 0.0190 | 0.0676 | 0.1554 | 0.0083 0 0.0166 | 0.0012

jh 0 0 0 0 0 0 0 0 0 0 0 0

~n 0.0202 | 0.0036 0 0 0.0024 0 0 0 0 0 0 0

T 0.8729 | 0.2751 | 0.6499 | 0.4625 | 0.5029 | 0.0178 | 0.1115 | 0.0593 | 0.0296 | 0.0059 | 0.0273 | 0.0012

Th 0.0344 | 0.0047 | 0.0059 0 0 0 0 0 0 0 0 0

D 0.3653 | 0.3143 | 0.5242 | 0.0735 | 0.9298 | 0.0273 | 0.0510 | 0.0296 | 0.0451 | 0.0107 | 0.0308 0

Dh 0.0036 | 0.0178 | 0.0700 | 0.0047 0 0 0 0 0 0 0 0

N 0.4222 | 0.1340 | 0.0889 | 0.0083 | 0.0166 0 0 0 0 0.0059 | 0.1174 0

t 1.7434 | 0.6808 | 0.7270 | 0.3143 | 0.7009 | 0.1909 | 0.3333 | 0.1044 | 0.0036 | 0.1162 | 0.4341 | 0.0024

th 0.1471 | 0.1364 | 0.0700 | 0.0024 | 0.0154 | 0.0036 | 0.0024 0 0 0 0 0

d 1.5714 | 0.3487 | 1.1172 | 0.0996 | 0.6037 | 0.0439 | 0.0285 | 0.3926 | 0.0249 | 0.0178 | 0.0463 | 0.0047

dh 0.1992 | 0.3095 | 0.4032 | 0.0700 | 0.0806 | 0.0012 | 0.0047 0 0.0024 | 0.0024 0 0

n 3.1749 | 1.2726 | 3.3860 | 0.1328 | 1.0591 | 0.0522 | 0.0961 | 0.1909 | 0.0273 | 0.0012 | 0.0320 | 0.0047

p 1.4018 | 1.4516 | 0.3973 | 0.1589 | 0.3997 | 0.0901 | 0.1186 | 0.1233 | 0.2787 | 0.1233 | 0.2455 | 0.0166

ph 0.0605 | 0.0249 | 0.0142 | 0.0095 | 0.0130 | 0.0024 | 0.0320 0 0.0356 | 0.0012 | 0.0178 | 0.0024

b 0.3902 | 0.5456 | 0.1743 | 0.1222 | 0.1115 | 0.0095 | 0.0463 | 0.0119 | 0.0237 | 0.0083 | 0.0427 0

bh 0.3439 | 0.3902 | 0.1388 | 0.0142 | 0.1886 | 0.0427 0 0.0036 | 0.1067 | 0.0012 | 0.0083 | 0.0095

m 1.8822 | 0.8148 | 0.4507 | 0.1826 | 0.5230 | 0.1696 | 0.1281 | 0.0795 | 0.1506 | 0.0866 | 0.0818 | 0.0095

y 2.8808 | 0.7780 | 0.5218 | 0.0059 | 0.2574 | 0.1174 | 0.0498 | 0.0901 | 0.0095 | 0.0178 | 0.1257 0

r 4.5151 | 1.8442 | 1.7090 | 1.0603 | 2.2700 | 0.1222 | 0.5977 | 0.1767 | 0.1020 | 0.0296 | 0.5195 | 0.0047

R 0 0 0.0024 0 0 0 0 0 0 0 0 0

I 3.4026 | 0.4210 | 0.6582 | 0.1803 | 1.7434 | 0.0415 | 0.0403 | 0.2455 | 0.0463 | 0.0249 | 1.9391 | 0.0036

L 0.0961 | 0.0925 | 0.0463 | 0.0059 | 0.0178 | 0.0047 0 0.0059 | 0.0012 0 0 0

v 1.8146 | 0.9251 | 1.0875 | 0.1210 | 0.2230 | 0.0083 | 0.1637 | 0.3807 | 0.2704 | 0.0249 | 0.0249 0

sh 0.4554 | 0.5420 | 0.1886 | 0.0415 | 0.0415 0 0.0036 | 0.0415 | 0.0047 0 0.0142 0

Sh 0.3534 | 0.0510 | 0.0996 | 0.0178 | 0.1198 0 0.0225 | 0.0190 0 0 0.0036 0

S 1.8027 | 0.5657 | 0.6843 | 0.1720 | 0.3582 | 0.0380 | 0.2467 | 0.0854 | 0.1660 | 0.0107 | 0.0451 | 0.0142

h 0.3143 | 0.2443 | 0.1898 | 0.0071 | 0.0225 | 0.0012 | 0.0510 | 0.0308 | 0.2040 | 0.0012 | 0.0344 | 0.0012

kSh || 0.0059 | 0.0024 0 0 0 0 0.0142 | 0.0154 0 0 0.0036 0




Table 3.3 Number of frequently occurring distinct syllables required for a specific
coverage of the database.

# distinct | Coverage (%)

Language | nbles | 85 | 80 | 75
Tamil 1,975 301 | 230 | 177
Telugu 2,273 278 | 207 | 160
Hindi 2,002 465 | 326 | 239

3.3.2 Word and syllable patterns

Among the words in the database, the number of vowels in a word varies from 1 to
12 in Tamil and Telugu, and between 1 to 10 in the Hindi language. The average
number of vowels per word and the consonant to vowel ratio is listed in Table 3.4.
The average number of vowels per word in Telugu is high. This correlates with the
known phonetic knowledge of the language (most words in Telugu end with a vowel).
Since monosyllabic words are more frequent in Hindi, the average number of vowels
per word is lower in Hindi. Due to the syllabic nature of Indian languages, and the
predominance of CV and CVC type of syllables (discussed in the next section), it
is seen from Table 3.4 that the C/V ratio is smaller for the three languages studied
when compared to the European languages French, English, Swedish and German,
which have a C/V ratio of 1.35, 1.41, 1.58 and 1.71, respectively [134]. The C/V ratio
is indicative of the larger consonant clusters that occur in the words of a particular

language. This suggests that Indian languages have smaller consonant clusters.
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Table 3.4 Average number of vowels per word and consonant to vowel ratio for the
three languages.

Language Average number C/V ratio
of vowels/word
Tamil 3.28 1.31
Telugu 3.31 1.26
Hindi 1.93 1.28

3.3.2.1 Structural patterns of syllables

The study of the distribution of the sound units and the constraints among the sound
sequences is useful in constraining the search space and correcting the errors in recog-
nition [135]. The structural patterns of the syllables occurring in the database are
studied. For the syllable vocabulary in a language, the different C™V(C"™ structural
patterns are obtained by replacing the consonants in the syllables by (C) and the
vowels by (V). The patterns thus obtained are listed in Table 3.5.

Each type of structural pattern can be considered as an equivalent class. The set
of syllables that map onto an equivalent class are called ‘cohorts’. From Table 3.5
we see that the syllables that occur most frequently are of CV type, followed by the
syllables of CVC type in all the three languages. In combination, these two types of
syllables cover around 89% of the frequently spoken syllables in a language. For better
performance of a syllable recognizer, accurate modelling of these CV and CVC type
of syllables would be desirable. If a broad phonetic preclassification/analysis of the
speech input in terms of these syllable patterns (equivalent classes) is conducted, it

would vastly reduce the size of the syllable lexicon to the number of cohorts in that
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Table 3.5 Frequency of occurrence of syllable patterns.

Type of syllable || Frequency of occurrence (%)
patterns Tamil | Telugu | Hindi
CCCV 0.004 0.002 0.004
CCCVC - 0.002 0.002
CCV 0.81 3.79 2.65
CCVC 0.46 1.10 0.83
CCVCC 0.17 0.03 0.09
Cv 56.56 65.70 62.63
CVvC 33.94 23.04 24.80
CVCC 0.11 0.47 1.35
CVCCC 0.003 - 0.02
\% 4.57 3.43 3.65
VC 3.50 2.42 3.83
VCC 0.006 0.01 0.15
VCCC - 0.001 0.004

equivalent class [135]. Consequently, the search space is reduced and this improves
the overall recognition performance. In [25] such a preliminary classification into stop
consonant vowels and nonstop consonant vowels prior to recognition of the syllables
yielded a better recognition rate. We show in Section 4.6 approaches to preliminary
classification of these syllable patterns and their utility for speech recognition [146].
The number of syllables per word in each of the three languages and their coverage
of the database is listed in Table 3.6. Among the three languages Hindi seems to have
the most number of monosyllabic words. Tamil has more bisyllabic words, while Telugu
has maximum number of trisyllabic words. The coverage by these multisyllabic words
seems to suggests that bigram or trigram language models at the syllable level may

perform better as, within word syllable sequence constraints would be modelled better.

3.3.2.2 Structural patterns of words

Similar to syllable structural patterns, the word patterns are determined by converting

all the words in the database into a sequence of C’s and V’s. It is observed that there
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Table 3.6 Coverage of database by multisyllabic words.

# syllables || Coverage of database (%)

per word Tamil | Telugu | Hindi
1 4.73 8.85 32.72
2 31.20 22.41 23.76
3 28.04 28.22 23.26
4 17.43 21.60 11.04
5 10.26 11.00 5.91
6 4.33 5.12 2.11
7 2.69 1.80 1.00
8 0.90 0.63 0.16
9 0.22 0.15 0.04
10 0.13 0.09 -
11 0.03 0.03 -
12 0.01 0.01 -

are more than 1,100 different Structural Patterns of Words (SPW) in all the three
languages together. Among these structural patterns, there exist some SPW that
occur frequently in one language and do not occur in the other languages. These
unique SPW may be useful in distinguishing among a small set of languages.
Observing the most frequently occurring words (those with at least 500 occur-
rences) that have the same SPW in the database, we see from Table 3.7 that most of
these word patterns have less than 5 syllables in them. The duration of most of these
words are all less than 450 msec. The more frequently used words have fewer syllables,

and are of smaller duration, which is again in tune with Zipf’s principle of least effort.
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Table 3.7 Most frequently occurring structural word patterns with the number of occurrences greater than 500, along with their
average durations for the three languages.

Tamil Telugu Hindi

Word # occurrences Avg. Word # occurrences Avg. Word # occurrences Avg.
pattern in transcripts | duration || pattern in transcripts | duration || pattern in transcripts | duration

msec. msec. msec.
CVCVv 2117 | 2299 CVCVCV 1849 3717 Cv 5472 150.1
CvCcv 1572 314.4 CvVCCV 1509 314.6 CvC 3010 196.3
CVCCVC 1526 361.6 CVCV 1413 279.9 CvCv 2777 | 269.3
VCCV 1522 2777 CVCCVCV 1208 398.5 CVCVC 1837 324.7
CVCVCV 1256 368.2 CVCVCVCV 1195 | 4354 CVCCV 1399 328.7
CVCVCVC 1098 | 411.1 VCVCV 700 | 314.6 VC 1247 164.4
CVCVC 1050 | 298.6 CCV 637 | 2214 CVCCVC 926 391.3
CVCVCCV 895 | 362.4 CVCCVC 551 367.6 CVCVCV 874 | 388.1
CVCCVCVC 842 | 448.0 Cv 527 166.9 CVCVCVC 609 | 422.3
Cv 634 168.6 CVCVC 514 | 329.8
CVCCVCV 616 | 406.3 CVCCVCVCV 514 | 541.1
CVCVCVCVC 603 | 491.6 CvCvCev 512 | 426.2
VCCVCV 589 | 389.2
CVCVCVCV 575 | 458.9
VCV 514 | 244.1




3.3.3 Common sound units across languages

For multi-lingual speech recognition, one basic approach is to integrate several mono-
lingual recognizers with a front end language identification system [147]. Another
approach is to develop models by pooling data from all the languages for similar
sound units. The number of syllables common between any two languages and those
common across all three languages are shown in Table 3.8. For these syllables, data
can be pooled together for developing acoustic models. Telugu and Hindi have aspi-
rated sounds, while Tamil does not have them. Due to this reason, though Tamil and
Telugu belong to the same family of languages unlike Hindi, Telugu and Hindi have
more syllables in common. Tamil and Hindi have the least number of common sylla-
bles. Analysing the individual frequency of occurrence of the 540 syllables commonly
occurring across all the three languages, it is observed that only 192 of them have
more than 30 examples in each of the languages. This indicates that only a subset of
the common syllables may have sufficient examples to train acoustic models of speech

syllables.

Table 3.8 Number of syllables common across languages.

Language # common
combination syllables
Tamil - Telugu 834
Telugu - Hindi 992
Hindi - Tamil 636
Tamil - Telugu - Hindi 540
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3.3.4 Duration of syllables

In text-to-speech systems, knowledge of the duration of the basic sound units is im-
portant. Duration knowledge can be used to incorporate constraints at the local and
global level. At the level of subword units, duration knowledge provides local con-
straints that can be used in acoustic modelling of the sound units. At the word and
phrase level, duration knowledge forms part of the prosody constraints that operate
at the global level, and can be used in most speech-based applications. Incorporation
of durational constraints in HMM based recognizers marginally improves the perfor-
mance of the system. In this section some aspects of the durations of the syllabic units
are studied. The average duration of the syllables in the three languages is plotted as

a histogram in Fig. 3.1. The range of durations of the syllables vary from 50 to 420
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Fig. 3.1 Histogram of average duration of the syllables in three languages.

msec. The average duration of the syllables is around 140 to 160, msec in the three
languages.

In each of the three languages, the average duration of the frequently occurring
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syllables (with at least 100 occurrences) in the database is computed. There are 194,
166, and 100 such syllables in Tamil, Telugu and Hindi, respectively. The average
durations of this subset of frequently used syllables is 173.3, 165.3 and 190.8 msec for
Tamil, Telugu and Hindi, respectively. The scatter plots of the average durations of
the syllables is shown in Fig. 3.2. It is seen from the figure that the average duration
of the most frequently occurring syllables is less than the overall average durations
mentioned above. This is again in tune with Zipf’s principle of least effort, that an
individual tries to minimize the work he has to do by using smaller durations for the
most frequently used syllables. The average duration of the syllables in Hindi is larger

than that of the other two languages.

3.3.5 Consonant-consonant transition

The consonants in a language can be broadly grouped into velar, retroflex, dental,
bilabial, nasal, semivowel, fricative, affricate, flap, lateral and trill classes. Study of
the pattern of occurrence of these consonant combinations provides information about
the permissible consonant combinations and their occurrence in word initial, medial
or final positions in a language. Transition probabilities between a pair of consonant
groups in each of the three languages is given in Tables 3.9, 3.10 and 3.11. The symbol
< /s > in the table denotes sentence end. The study is limited to transitions between
a pair of consonants due to the difficulty in interpretation of transition probabilities for
higher orders. The rules derived from the transition probabilities can act as pointers
for language identification systems, and in understanding the local constraints that
govern consonant clusters in a language.

From the tables it is observed that in Tamil velar to velar and retroflex to retroflex
transition probabilities are the highest. These transition probabilities are highest for

any consonant combinations among all the three languages. Another feature in Tamil
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is that the transition probability among the consonant geminates is highest. Such high
frequency of occurrence of geminates is not observed in the other languages. Likewise,
the probability of transition from a sound unit in any other consonant group to a sound
unit in the dental group is much higher in Tamil than in the other two languages.
Though the consonant geminates are very frequent in Tamil, the flap-flap geminate is
not observed in this study. As the database is small (around 25,000 to 30,000 words),
it is not possible to conclusively comment that certain inter-group transitions are
impossible/excluded in a language. But a study of the transitions between consonant
groups gives us an important insight into the structure of the language. Rules derived
from a study of these transition probabilities may be useful as additional knowledge
sources to constrain speech systems. The transition probabilities of the sequence of
sound units is by default used in n-gram language modelling to serve as constraints to
the speech recognizer, and is derived automatically by standard language modelling
toolkit [148]. In [149] transition probabilities between linguistic units has been used

to evaluate the performance of speech recognition systems.
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Table 3.9 Transition probabilities between consonant groups in Tamil.

Freq. | < /s> || Velar | Retroflex | Dental | Bilabial | Nasal | Vowel | Semivowel | Fricative | Affricate | Flap | Lateral | Trill

Velar 13244 | 0.183 || 0.2652 | 0.0065 | 0.0010 | 0.0003 | 0.0005 | 0.7038 0.0005 0.0025 - 0.0053 | 0.0042 | 0.0002
Retroflex 9845 0.009 || 0.0063 | 0.2244 | 0.0003 | 0.0095 | 0.0006 | 0.7199 0.0006 0.0001 0.0329 | 0.0049 | 0.0004 | 0.0001
Dental 17562 | 0.089 || 0.0002 - 0.1599 - 0.0004 | 0.8321 0.0018 0.0003 0.0001 | 0.0049 | 0.0001 | 0.0001
Bilabial 9602 0.009 || 0.0005 | 0.0012 | 0.0012 | 0.2031 | 0.0001 | 0.7546 0.0010 0.0001 - 0.0334 | 0.0008 -

Nasal 24064 | 0.194 || 0.0551 | 0.0504 | 0.1024 | 0.0232 | 0.0429 | 0.6393 0.0201 0.0048 0.0129 | 0.0013 | 0.0003 | 0.0743
Vowel 106320 | 0.165 || 0.0453 | 0.0707 | 0.0904 | 0.0316 | 0.1987 | 0.0632 0.1105 0.0631 0.0117 | 0.1315 | 0.1355 | 0.0478
Semivowel || 13096 | 0.008 || 0.0008 - 0.0229 | 0.0018 | 0.0018 | 0.9575 0.0127 0.0005 0.0011 | 0.0003 | 0.0002 -

Fricative 8529 0.044 | 0.0022 | 0.0055 | 0.0438 | 0.0020 | 0.0189 | 0.9043 0.0121 0.0013 - 0.0038 | 0.0041 | 0.0018
Affricate 3310 0.448 || 0.0003 - - 0.0164 | 0.0006 | 0.7512 0.0006 0.0013 0.2289 | 0.0003 | 0.0003 -

Flaps 1296 0.237 || 0.0325 | 0.0007 | 0.0295 | 0.0169 | 0.0209 | 0.7939 0.0104 0.0905 0.0037 - 0.0004 | 0.0005
Lateral 13378 | 0.304 || 0.0170 | 0.0039 | 0.0067 | 0.0042 | 0.0153 | 0.7888 0.0251 0.0104 0.0110 | 0.0001 | 0.1175 | 0.0001
Trill 6741 0.002 || 0.0746 - 0.0003 | 0.0213 | 0.0004 | 0.7416 0.0001 - 0.0076 | 0.0010 - 0.1532
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Table 3.10 Transition probabilities between consonant groups in Telugu.

Freq. | < /s> Velar | Retroflex | Dental | Bilabial | Nasal | Vowel | Semivowel | Fricative | Affricate | Flap | Lateral
Velar 10751 | 0.021 0.0160 0.0215 | 0.0093 | 0.0017 | 0.0025 | 0.8153 0.0219 0.0445 0.0009 | 0.0620 | 0.0035
Retroflex 6117 | 0.050 0.0009 0.0587 | 0.0003 | 0.0005 | 0.0091 | 0.8074 0.0057 0.0010 0.0009 | 0.0532 | 0.0625
Dental 11858 | 0.020 0.0010 - 0.0412 | 0.0011 | 0.0039 | 0.8060 0.0558 0.0055 - 0.0817 | 0.0037
Bilabial 8804 | 0.009 0.0009 0.0036 | 0.0095 | 0.0478 | 0.0015 | 0.7510 0.0179 0.0010 0.0002 | 0.1621 | 0.0044
Nasal 22766 | 0.088 0.0490 0.0391 0.1110 | 0.0205 | 0.0740 | 0.6020 0.0080 0.0128 0.0522 | 0.0026 | 0.0285
Vowel 84351 | 0.248 0.1051 0.0512 | 0.0968 | 0.0525 | 0.2802 | 0.0007 0.0705 0.0769 0.0255 | 0.1348 | 0.1058
Semivowel || 8852 | 0.015 0.0005 0.0003 | 0.0002 | 0.0002 | 0.0005 | 0.9590 0.0317 0.0009 0.0001 | 0.0064 | 0.0001
Fricative 9693 | 0.052 0.0100 0.0582 | 0.0913 | 0.0098 | 0.0316 | 0.6750 0.0218 0.0094 0.0033 | 0.0853 | 0.0042
Affricate 5004 | 0.014 || 0.00060 | 0.0002 | 0.0002 | 0.0111 | 0.0016 | 0.9426 0.0083 0.0010 0.0318 | 0.0010 | 0.0014
Flaps 14044 | 0.041 0.0226 0.0272 | 0.0236 | 0.0135 | 0.0198 | 0.8106 0.0357 0.0168 0.0104 | 0.0007 | 0.0192
Lateral 8969 | 0.039 0.0110 0.0021 0.0031 | 0.0086 | 0.0079 | 0.8814 0.0057 0.0140 0.0022 | 0.0007 | 0.0633
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Table 3.11 Transition probabilities between consonant groups in Hindi.

Freq. | < /s> Velar | Retroflex | Dental | Bilabial | Nasal | Vowel | Semivowel | Fricative | Affricate | Flap | Lateral
Velar 10275 | 0.0879 || 0.0016 | 0.0070 0.0204 - 0.0007 | 0.9052 0.0139 0.0275 - 0.0173 | 0.0063
Retroflex 2088 | 0.2055 || 0.0018 | 0.0096 0.0030 | 0.0012 | 0.0108 | 0.8813 0.0036 0.0024 - 0.0856 | 0.0006
Dental 6465 | 0.2196 || 0.0004 - 0.0314 | 0.0004 | 0.0031 | 0.8323 0.0360 0.0021 0.0006 | 0.1028 | 0.0002
Bilabial 5542 | 0.0655 - 0.0033 0.0133 | 0.0030 | 0.0012 | 0.8757 0.0027 0.0025 0.0041 | 0.0909 | 0.0037
Nasal 12167 | 0.2752 || 0.0427 | 0.0262 0.0630 | 0.0146 | 0.0178 | 0.7738 0.0196 0.0272 0.0120 | 0.0018 | 0.0011
Vowel 54768 | 0.2734 || 0.0904 | 0.0300 0.0843 | 0.0424 | 0.2147 | 0.1301 0.0785 0.1067 0.0344 | 0.1345 | 0.0538
Semivowel || 5082 | 0.0551 || 0.0010 - 0.0002 | 0.0002 | 0.0002 | 0.9767 0.0181 0.0021 - 0.0015 -
Fricative 9457 | 0.1242 || 0.0053 | 0.0240 0.0625 | 0.0054 | 0.0089 | 0.8358 0.0144 0.0059 0.0037 | 0.0304 | 0.0035
Affricate 2818 | 0.1600 - - 0.0004 | 0.0021 | 0.0008 | 0.9480 0.0232 0.0004 0.0215 - 0.0034
Flaps 7746 | 0.2894 || 0.0093 | 0.0200 0.0213 | 0.0071 | 0.0238 | 0.8699 0.0199 0.0158 0.0087 | 0.0035 | 0.0007
Lateral 3084 | 0.2231 || 0.0013 | 0.0038 0.0054 | 0.0046 | 0.0042 | 0.0998 0.0050 0.0100 0.0008 - 0.0651




3.4 INFORMATION THEORETIC PERSPECTIVE ON SUBWORD UNITS
FOR SPEECH RECOGNITION
Most speech recognition systems use phonemes and context dependent biphones or tri-
phones as the subword unit to model the acoustics of the speech signal. The difficulty
with the use of phonemes is that they are often deleted/merged in continuous speech.
The advantages and disadvantages of the use of these units is detailed in Section 4.1.
Modelling speech as a sequence of phonemes is not entirely valid, as a one-to-one map-
ping between the acoustic signal, and the phoneme sequence supposed to have been
spoken is not straightforward. Using biphones and triphones as subword units may
improve the performance of the recognizer, as some amount of local constraints are
incorporated. As more amount of local constraints are incorporated, the performance
of the speech recognizer improves. In this section we show, from an information theo-
retic perspective, that syllable is a natural linguistic unit that captures the constraints

in the language better, and hence may be an appropriate unit for speech recognition.

3.4.1 Tamil Text corpus

The statistical properties of various subword units are studied in the information the-
oretic perspective. This is illustrated using the transcribed text of the Tamil speech
database. In Tamil there are 35 phonemes native to the language [150]. In addition, to
handle borrowed words from other languages, especially Sanskrit, this set is augmented
with 5 phonemes. Altogether for this study we considered a set of 40 phonemes for the
language, of which 38 phonemes are present in the database. The database contains
1975 distinct syllables. The analysis is done for different subword units like phonemes,

biphones, triphones and syllables.
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3.4.2 Entropy and redundancy computation

Consider the natural language spoken as one generated from a source (.5) containing ¢
symbols, and that the source symbol s; is dependent on a finite number m of preceding
symbols. Such a source is called an m™ order Markov source [151]. For an m order
Markov source the probability of emitting a given symbol is known if we know the
preceding m symbols. At any given time the m preceding symbols are called the state
of the m® order Markov source at that time. As there are g possible symbols, an m
order Markov source will have ¢™ possible states.

If we are in a state specified by (sj,,s;,, - ,8;,.), i-e., the previous m symbols
emitted are s;,, s;,,- -+, 8j,, then the conditional probability of receiving symbol s; is
P(si|Sj,, S5, S, ). Following [151], the average amount of information per symbol
while in state (s;,, Sj,, -, Sj,.) is given by

H(S|8j1’8j2"" ’Sjm) = _ZP(SZ'|SJ'1’S]'2"" ’Sjm)logp(8i|3j1’sj2"" ’Sjm) (3'1)
S

Averaging the quantity over all g™ possible states, the entropy of the m*-order Markov
source S is given by

H(S) = _ZP(SJ'U Sjas " 78jm)ZP(5i‘3j1: Sjar :Sjm) logP(Si‘SjU Sjas " ’Sjm)(3‘2)
sm S

If S is a zero-memory source rather than Markov, then P(s;|s;,, Sjp, -+, Sjn) = P(si)

and (3.2) reduces to

H(S) = =3 P(s:) log P(s:) (33)

(3.4)



The H,.; occurs when all the ¢ symbols are equiprobable, and it is given by
log, ¢. Redundancy (R) measures the amount of constraints imposed on the text in
the language due to its syntactical rules. Every syntactic rule in the language imposes
some constraints, which in turn introduces some redundancy [152]. The redundancy

is defined as the difference between H,,,, and H(S), expressed as a fraction of Hy,4;.

Hipow — H(S)

R =
Hinaz

=1—H, . (3.5)

Just as entropy measures on an average, the uncertainty of the outcome of an
event, we can view redundancy as an average measure of our confidence in the out-
come. It is difficult to correctly estimate the number of words or syllables (units) in
a language. In most speech recognition or NLP tasks it is not required to do so. The
development of a lexicon is task specific and is also governed by the training data set.
For a specified training set and lexicon the number of triphones or syllables are fixed.
Even in such situations the number of triphones exceeds the number of syllables. The
large sized units capture the coarticulation among the phonemes and are better identi-
fied in speech. Among the multiphone models, triphones and cross word triphones are
popularly used. These units led to a progressively better performance of the speech
recognizer. Such speech units are not naturally observed in speech. These units are
forcefully created from a machine recognition point of view. The main purpose of
creating larger sized units is to incorporate constraints within the unit. When more
constraints are present in the unit it will be recognised better in a speech recognizer.
Syllable is a natural unit and is easily identified in the speech signal. The syllables cap-
ture the coarticulation among the sound units efficiently and naturally. Since syllables
are tightly bound by the rules of the language they have more constraints incorporated

within them (compared to phonemes/biphones). For such units the redundancy will be
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higher. Compared to the triphones this higher redundancy of the syllables is possible
due to the smaller symbol set. The smaller symbol set for the syllable will also reduce
the confusability and improve the recognition rate of the syllables. Hence it desirable
to use syllable as a unit for speech recognition.

The efficiency of five different subword units used in speech recognition, namely
phonemes, context dependent biphones and triphones, nonoverlapping triphones and
syllables in capturing the syntactic constraints is analysed. Pronunciations of the
words in the database in terms of phonemes are determined. These phonemes are
the first set of subword units considered. Using these phonemic representation of the
words, within word left context dependent biphones and context dependent triphones
are determined in a conventional manner as used in the standard speech recognition
toolkits [153]. For example, the word [pala] (meaning many) would be parsed into
phonemes as /p a 1 a/, into biphones and monophones as /p-a a-l 1-a/, and into
triphones and biphones as /p+a p-a+l a-l+a l-a/. Similarly it would be parsed into
nonoverlapping triphones, biphones and monophones as /p-a+1 a/ and into syllables
as /pa la/. The context dependent biphones along with the monophones at word
beginnings are 807 in number, out of the possible 382 + 38 = 1482. These symbols
form the second set of subword units for analysis. The triphones and their associated
word-begin and word-end biphones that occurr in this word set are 5,286 of the possible
383 4+ 382 = 56316 units. These symbols are the third set of subword units used. The
syllables are derived by parsing the text based on rules of the language. A total of 1975
distinct syllables occur in the database. The structure of the biphones and triphones
are driven from a machine recognition point of view. The structure of a triphone is
such that the center phoneme of one triphone becomes the left phoneme of the next

triphone. Such overlaps are not seen in the syllables, with the exception of consonant
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geminates (e.g. vanakkam /va nak kam/). To compare the properties of the syllable
with a structurally similar unit, the nonoverlapping triphone is generated. This unit
is obtained by concatenating three phonemes of the same word. These nonoverlapping
triphones and the associated word-end biphones are similar to syllables in construction
but nonlinguistic in nature. In the context of speech recognition, to analyse how
well each unit individually captures the constraints, we assume a zero memory source
approximation of the language. For the 5 different units, the entropy and redundancy
are shown in Table 3.12.

Table 3.12 Entropy and redundancy of the subword units for a zero-memory source
approximation.

Subword Size of H, o Entropy Redundancy
unit symbol set | (bits/symbol) | (bits/symbol) (%)
Phoneme 38 5.25 4.55 13.33
Biphone 807 9.66 7.82 19.05
Triphone 5286 12.37 10.16 17.87
Nonoverlapping
triphone 3164 11.62 943 18.85
Syllable 1975 10.95 8.43 23.01

The characteristics of the five subword units in approximating the language as a
first and second order Markov source is studied. The entropy and redundancy of the
subword units is given in Tables 3.13 and 3.14. For the first and second order Markov
source assumption, the redundancy for the syllable is better than that of the phoneme
and biphones. In the case of second order Markov source assumption, the redundancy

of the syllables is comparable to that of triphones, but achieved with a smaller set of
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Table 3.13 Entropy and redundancy of the subword units for a first order Markov
source approximation.

Subword unit Size of H,ox Entropy Redundancy

symbol set | (bits/symbol) | (bits/symbol) (%)
Phoneme 38 5.25 2.92 44.38
Biphone 807 9.66 2.12 78.05
Triphone 5286 12.37 1.30 89.49

Nonoverlapping

triphone 3164 11.62 1.52 86.92
Syllables 1975 16.95 2.33 78.72

units. This is useful for reducing the search space in speech recognition. As mentioned
earlier, due to large redundancy built into triphones by way of construction, and due
to the additional constraints of a first and second order Markov source, we find that
the redundancies of the triphones for a first order Markov source to be higher than
the redundancies of the syllables. Studying the redundancies, we hypothesize that
for recognition of subword units in speech, syllable as a unit may perform better
than the other units considered in this study. Due to the high first and second order
redundancies of the syllable, a syllable-based n-gram language model is likely to further

improve the performance of the speech recognizer.

3.5 SUMMARY

In this chapter, we studied the statistical characteristics of the basic subword units and
the words in the language. The suitability of a subword unit for speech recognition

using information theoretic principles was studied. A unit that incorporates a large
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Table 3.14 Entropy and redundancy of the subword units for a second order Markov
source approximation.

Subword unit Size of H,ox Entropy Redundancy

symbol set | (bits/symbol) | (bits/symbol) (%)
Phoneme 38 5.25 2.04 61.14
Biphone 807 9.66 1.35 86.02
Triphone 5,286 12.37 0.73 94.10

Nonoverlapping

triphone 3,164 11.62 0.51 95.34
Syllables 1,975 10.95 0.74 93.24

amount of constraints within itself would perform better for the speech recognition
task. For such units, the redundancy would be higher. We find that the syllable has
a higher redundancy compared to the other conventionally used subword units like
phonemes, biphones and triphones. The frequency of occurrence of the syllables in the
corpus was studied. This study revealed that a small subset comprising of the most
frequently occurring syllables cover nearly 89% of the occurrence of the syllables in the
database. Thus, it is essential to focus on modelling of these syllables. The frequency
of occurrence of the different word and syllable patterns (e.g, CV, CCVC, CVCC) were
studied. A study of the duration of the syllables in continuous speech revealed that
the most frequently used syllables are of smaller durations, while less frequently used
syllables, on the average, have larger durations. The knowledge of the duration and
the frequency of occurrence of syllables was found useful in the development of the
HMM models. In the next chapter, we discuss the development of a syllable recognizer

using the framework of HMM. This is illustrated for the two Indian languages, Tamil
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and Telugu. Approaches to model the dynamics of a syllable, and methods to reduce

the search space in the recognition system are discussed.

Table 3.15 Summary of studies on the statistical characteristics of sound units in
Indian languages.

e Knowledge of the characteristics and distribution of the sound units in a language is

essential for the development of a speech recognizer.

e The frequency of occurrences of the different sound units in a language were studied. These

studies were useful in deciding on the parameters of the HMM models in the recogniser.

e From an information theoretic perspective it was shown that syllables seem to be an

appropriate unit for speech recognition.
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CHAPTER 4

RECOGNITION OF SYLLABLES IN CONTINUOUS
SPEECH

4.1 INTRODUCTION

In this chapter the focus is to develop a speech recognizer capable of recognizing the
sequence of the basic subword units like syllables with the highest accuracy possible.
Once the basic subword units in the speech signal are recognized, it is easier to use
a lexicon of words in terms of syllables to identify the word corresponding to the
recognized syllable sequence. In the following sections the development of a HMM-
based syllable recognizer for continuous speech in Tamil and Telugu is described.
The number of distinct syllables that occur in a language is large. A syllable
recognizer with a vocabulary encompassing all these syllables would perform poorly.
This is due to the insufficient examples of all the syllables required to train the models,
and due to the large search space. The frequency of occurrence of the syllables in the
database is given in Table 4.1. It is observed that about half of the syllables in the
database have less than 5 examples. To train a HMM model we assume a minimum
of at least 50 training examples to be present in the database, to consider the syllable
as part of the vocabulary. Thus a set of 328 syllables for Tamil and 267 syllables for
Telugu formed the syllable vocabulary. The majority of these syllables are of CV or

CVC type. A syllable recognizer is developed for this vocabulary.

4.2 PRELIMINARY SPEECH RECOGNITION SYSTEM

An unconstrained syllable recognizer in which any syllable in the vocabulary follows

any other syllable can be modelled as shown in Fig. 4.1 for the two languages. No
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Table 4.1 Varying # occurrences of the syllables in the database.

# occurrence # Syllables
Tamil | Telugu
Greater than 1000 13 10
501 to 1000 32 25
101 to 500 148 132
5 to 100 817 512
Less than 5 938 1294

Fig. 4.1 Syllable loop grammar used for recognition.

silence model is used. The lexicon for this task maps a syllable onto itself.

The speech corpus is split into training and test sets as given in Table 4.2. The
database contains information about the manually marked syllable boundaries. Using
this information from the continuous speech utterance in the training set, segments
corresponding to each syllable in the utterance are spliced out. All the segments of
speech corresponding to a syllable are pooled together for training the syllable. From

each speech frame of 15 msec, shifted by 5 msec, a 39 dimension vector, comprising of 13

73



Table 4.2 Description of Tamil and Telugu language data sets used for speech recog-
nition.

# Bulletins # speech | Total # | # distinct | Total # | # distinct
Language Male | Female | segments | words words syllables | syllables
Train | 08 21 6410 26903 88169
Tamil Test 02 02 949 3785 12538
Total | 10 23 7359 30688 8947 100707 1975
Train | 09 08 5501 21400 71005
Telugu Test 02 01 983 4063 13344
Total | 11 09 6484 25463 9218 84349 2273

dimension mel-frequency cepstral coefficients, along with their delta and acceleration
coefficients, is derived [153]. The acoustic model for each syllable is a 5-state left-to-
right HMM with entry and exit states [11]. The models are trained in an isolated
word fashion. This forms the preliminary system. This system is tested against a
set of 949 continuous speech utterance in Tamil and 983 utterances in Telugu, which
form the test set as given in Table 4.2. The output of the syllable recognizer for
a continuous speech test utterance is the sequence of syllables hypothesised for that
utterance. As the syllable vocabulary is a subset of the syllables in the database,
many Out of Vocabulary (OOV) syllables that appear in the test utterance would be
hypothesised with the closest syllable in the vocabulary. This results in substitution
errors proportional to the OOV rate. The performance of the recognizer is given in
terms of the number of syllables recognized correctly out of the total number of valid

syllables (syllables in the vocabulary) that occur in the test utterance (%correct). The
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Table 4.3 Performance of preliminary syllable recognition system.

Language || Syllable recognition

(% correct)

Tamil 24.2

Telugu 26.6

Table 4.4 Details of the number of mixtures used for syllables with varying frequency
of occurrence for Tamil and Telugu syllable recognizers.

# examples # mixtures |  # syllables
used Tamil | Telugu

> 1000 64 13 10
701 to 1000 39 0 | 17
401 to 700 16 s | 18
201 to 400 8 s | s
101 to 200 A |
250 2 135 | 103

performance of the preliminary system is given in Table 4.3.

4.3 IMPROVEMENTS TO THE PRELIMINARY SYSTEM
The preliminary system uses a single Gaussian per state of the HMM model. As the
distribution of the feature vectors can be better modelled using a mixture of Gaussians,

based on an empirical guideline of using one mixture per 25 examples [32], we chose

the number of mixtures per state per model as given in Table 4.4. The performance
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Table 4.5 Recognition performance using syllable level bigram language model.

Language || Syllable recognition Relative
(% correct) improvement (%)
Tamil 57.6 36
Telugu 61.0 19

of this system with a mixture of Gaussians improves the recognition rate to 42.4%
for Tamil and 51.2% for Telugu. The local syntactic constraints of a language can be
incorporated using language models. The language models are sensitive to the type
and genre of data used. Due to the lack of large text corpus of the same genre as
the TV news data, the transcription of the limited training corpus is used to derive
a syllable level bigram language model. The local constraints at the syllable level
when incorporated as a bigram language model in the syllable recognizer, improves
its performance as shown in Table 4.5. The relative improvement over the Gaussian

mixture system is 36% for Tamil and 19% for Telugu.

4.4 MODELLING THE DYNAMICS OF THE SYLLABLES

Syllables are dynamic sounds. Some of the regions like closure, burst, aspiration,
transition and steady vowel regions are observed in their acoustic signals. The states
of a HMM corresponds to the events in the speech signal. For some syllables the
change in the dynamics of the acoustic signal may be such that it may be inefficient
to characterise them by a 5-state HMM. Conversely, it is not desirable to use a large
number of states for all the syllables, as the parameters for all the models may not be

estimated accurately due to limited amount of training data. As a trade off, we use
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Table 4.6 The size of the syllable set and the number of states used for modelling the
HMMs in Telugu.

# states # syllables
in the model || modelled
4 17
5 7
6 91
7 48
8 27
9 7

half the number of frames in the median duration of the syllables as the basis for the
number of states to be used [74]. To study the effect of modelling the dynamics of the
syllable using larger number of states, experiments are conducted using Telugu only,
as an illustration. The language model and Gaussian mixtures are not used for the
study.

The 267 syllables in the vocabulary of Telugu are modelled using 4 to 9 states,
depending on the durations of the syllables. The number of states used for the syllables
is varied as given in Table 4.6. The recognition rate of the syllables for the continuous
speech test utterances is determined. We observe that 58% of the syllables perform
better with increased number of states than their 5 state counter parts. For 17% of
the syllables there is no improvement due to the change in number of states derived
based on their median duration. In 25% of the cases where syllables have their number
of states larger than 5, the performance decreased marginally.

To study the effect of increase in the number of states in a model, the recognition
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rates of individual syllables is determined. Based on the number of states in the median
duration of the syllable, a set of 17 syllables are modelled with 4 states as given in
Table 4.6. Among these syllables, 13 performed poorly as compared to the 5-state
models. This suggests that it is inappropriate to model the dynamic syllabic units
with 4 states or less. When the syllables are modelled with larger number of states (6
and above) the performance of the syllable recognizer improves. The recognition rate
of some of the syllables modeled with 5 and 6 state HMMSs is shown in Table 4.7. All

the syllables shown here have improved recognition rates.

Table 4.7 Recognition performance for some CV units in Telugu for increased number
of states.

Recognition performance

Syllable % correct

4-State | 5-State | 6-State

/Da/ 184 | 237

/Du/ || 247 | 402

/la/ 07.3 | 125

/lu/ 444 | 49.8

/ru/ 33.3 46.3

/Ti/ 328 | 50.0
/Tu/ 26.9 | 30.8
/ja/ 074 | 158
/ka/ 04.3 | 10.2
/na/ 189 | 218
/pa/ 123 | 259
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For a continuous speech test utterance the optimal path chosen by the decoder is
influenced by the number of states in each model. If the number of states in a model
change, then the optimal path taken while decoding could be different, affecting the
overall performance for continuous speech. To study the significance of the increase
in the number of states, an arbitrary set of 34 CV and CVC type of syllables are
chosen, and the number of states for each of the syllables are varied from 4 to 10.
The models are trained and tested in an isolated word fashion. Gaussian mixtures are
not used to represent the distribution of feature vectors. The recognition rate of the
syllables for the 5-state model and for the model with the optimal number of states
is given in Table 4.8. It is observed from the Table 4.8 that for some syllables the
5-state model performs best. For all other syllables, the models with larger number
of states perform better. The improvement in performance of these models over that
of the 5-state model varies from 1% to 55%. This suggests that we may be able to
model the dynamics of the syllables better with larger number of states in the HMM
framework. Using varying number of states for the syllables in the syllable recognizer,
of Section 4.3, we observe that the performance of the syllable recognizer improves by
4% in relative terms as given in Table 4.9. This is the best syllable recognition rate

achieved for this database.
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Table 4.8 Recognition rate of a subset of 37 syllables in Telugu for a 5-state model and a model with

optimal number of states.

Syllable || Optimal o-state Optimal Syllable || Optimal o-state Optimal
# states model # states # states model # states
(%) correct | (%) correct (%) correct | (%) correct
/Da/ 8 13.2 40.5 /vE/ 7 49.0 55.1
/Du/ 6 58.1 58.1 /pA/ 5 70.4 70.4
/bu/ 6 91.7 100.0 /pra/ 9 49.6 60.3
/da/ 5 52.4 52.4 /man/ 8 87.5 94.4
/du/ 6 33.3 37.5 /kAr/ 7 32.7 76.9
/gi/ 4 55.6 63.0 /pAr/ 9 22.6 7.4
/gu/ 8 49.1 58.2 /tri/ 5 82.1 82.1
/1a/ 8 55.1 62.0 /tun/ 6 78.0 82.9
J1i/ 8 64.0 64.9 /ram/ 6 60.0 60.0
/ra/ 8 19.5 25.2 /sam/ 6 90.2 98.0
/ri/ 9 49.5 61.5 /rASh/ 7 98.1 100.0
/ru/ 8 56.4 62.0 /mukh/ 10 40.6 75.0
/va/ 7 23.5 27.8 /chin/ - 100.0 100.0
/vu/ 5 70.0 70.0 /bAd/ 8 57.9 68.4
/ya/ 7 24.5 33.2 /gam/ 8 44.4 55.6
/yi/ 8 75.9 71.3 /mup/ 6 75.0 83.3
/yu/ 6 19.4 29.0 /Tram/ - 100.0 100.0
/DA/ 9 36.6 63.4 /hA/ 8 65.8 81.6




Table 4.9 Recognition performance using larger number of states.

Language Syllable Relative

recognition (%) | improvement (%)

Tamil 99.9 4

Telugu 63.5 4

4.5 EQUIVALENT CLASSES FOR RECOGNITION OF SYLLABLES

In certain application like man-machine dialogue and command and control applica-
tions, keywords in the spoken utterances are of interest. As the task is generally of
limited vocabulary and restricted domain, it is preferable to map all the pronunciation
variations of similar syllables to one base form. It may also be desirable not to distin-
guish between similar consonants like /D/ and /d/. For example, the pronunciation
variation due to dialect and accents or mispronunciation like /maD-rAs/ and/mAd-
ras/ may all have to be mapped to the base form of the word /mad-ras/ in a dialogue
system. The simplest approach for such an application is that, equivalent classes of
syllables are formed by combining syllables that have the same consonant clusters, but
a long or short version of the vowel ({/ka/,/kA/} ->/KA/). Syllables with conso-
nants that sound similar are mapped onto one equivalent class ({/na/,/NA/,/Na/} ->
/NA/). In the syllable recognizer of Section 4.4, if such a mapping to equivalent classes
is carried out, the number of distinct syllables (classes) in the vocabulary reduces from
267 to 220. Using the equivalent class label as the output of the syllable recognizer,

the performance of the recognizer improves to 62.1% for Tamil and 67.5% for Telugu.
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4.6 EQUIVALENT CLASS BASED PRECLASSIFICATION FOR RECOG-
NITION OF SYLLABLES
Hidden Markov models are capable of modelling the variability in the speech sound,
and absorbing the variability in the duration of a sound unit. Discriminative training
is not normally provided in these models. Neural networks on the other hand provide
discriminative training, and are good as classifiers. The neural networks are capa-
ble of capturing the nonlinear surfaces separating different classes. But they require
fixed dimension patterns representing the speech sound. It is possible to combine the

strengths of HMM and neural network to improve the recognition rate.

In this section we explore a method of enhancing the recognition rate of syllables
extracted from continuous speech by preclassifying them using a neural network based
preprocessor. This preclassification step is followed by recognition of the syllables using
conventional HMM models. The syllables are initially grouped into a set of equivalent
classes based on their syllable structure. The syllables within an equivalent class are
called ’cohorts’. A support vector machine model is trained to classify the syllable
into the equivalent class to which it belongs. In the next stage, a HMM-based syllable
recognizer is used to recognize the syllables within the equivalent class. This reduces
the search space of the recognizer from the list of syllables in the vocabulary to the
number of syllables within a particular equivalent class. This approach reduces the
confusability among the syllables and increases the recognition rate. The feasibility of

this approach is studied for the Telugu language, as an illustration.
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Fig. 4.2 Block diagram of SVM-HMM hybrid system.

4.6.1 System description

The block diagram of the proposed system is shown in Fig. 4.2. The syllable boundary
information available in the database is used to segment the speech signal into sylla-
bles. For every syllable segment, 13 dimension MFCC are extracted for every frame
of 15 msec with a frame shift of 5 msec [11]. A fixed 130 dimension pattern vector, is
formed by concatenating the 10 frames corresponding to the syllable segment. These
frames are chosen by the method of linear compaction and elongation as described in
[154]. These large dimension pattern vectors are expected to capture the dynamics of
the syllables. These pattern vectors are used to train a 6 class SVM classifier. The
equivalent class to which a syllable maps to is determined by replacing all the conso-
nants in it with ‘C’ and the vowels by ‘V’. The resulting syllable structure represents
the equivalent class label for the syllable. The 267 syllables in the Telugu vocabulary

map onto 6 equivalent classes. The patterns corresponding to all the cohorts in an
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equivalent class forms the training set for that class. The SVM classifier is trained to
map the input pattern into one of these six classes. In the testing stage, the output
of the preclassifier is the equivalent class label of the syllable being recognized. If
the group classification is correct, then a HMM-based syllable recognizer that recog-
nizes the cohorts within that class is used. For a missed classification, an alternative
HMM-based syllable recognizer developed for the entire syllable vocabulary is used for
recognition. The prior knowledge of the equivalent class is used to hypothesize the

correct/missed classification.

4.6.2 Database used in the study

The objective is to study if a preclassifier can improve the performance of the syllable
recognizer. This study is illustrated using the Telugu language database. The syllables
in the vocabulary form the following equivalent classes: CCV, CCVC, CV, CVC, V
and VC. The training and test dataset of syllables spliced from continuous speech for

the equivalent classes is shown in Table 4.10.

4.6.3 SVM preprocessor

The SVM preclassifiers are trained with the 130 dimension pattern vectors. One
against the rest approach is used for this multiclass task. Given a test pattern vector,
the class label of the SVM model which gives the highest score is hypothesized as the
class label for the test pattern. The performance of the SVM preclassifier is given in
Table 4.11. It is observed that the recognition rate of frequently occurring classes,

namely, CV, CVC and V, is high. The overall classification rate is 87.17%.

4.6.4 HMDM-based syllable recognizer

For the SVM-HMM hybrid system, in the case of a correct classification by the SVM

preclassifier, a HMM subgroup recognizer is required. For a misclassification by the
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Table 4.10 Syllables in the vocabulary categorised into equivalent classes for the Tel-

ugu language database.

Table 4.11 Performance of the SVM preprocessor in recognizing equivalent classes.

Equivalent || # training | # testing
class examples | examples
CCV 2660 427
CCVC 248 41
Ccv 44499 8333
CvC 9361 1774
\Y% 2348 472
VC 1031 185
Total 59547 11232

Equivalent class

Recognition rate

(% correct)

CCV 53.40
CCVC 48.78
cv 94.64
CVC 69.22
M 70.76
Ve 52.43
Overall

performance 87.17
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SVM preclassifier, a whole vocabulary syllable recognizer is required. There are 6
equivalent classes. A HMM-based subgroup recognizer is developed to recognize the
cohorts within each of the 6 equivalent classes. The full vocabulary recognizer recog-
nizes one among the 267 syllables in the vocabulary. The syllable loop grammar is
used for all the recognizers. All recognizers use 8-state HMM models and 2 to 64 Gaus-
sian mixtures per state depending on the training examples available for each syllable.
The models are trained and tested in an isolated word fashion. The performance of
the full vocabulary recognizer, without the use of language models, is 56.85%. The
performance of the recognizer in Section 4.3 for continuous speech was 52.73%. The

results are given in Table 4.12.

Table 4.12 Comparison of performance of the preprocessor based hybrid system and
the HMM-based system for recognition of syllable segments in continuous speech.

. Percentage of correct
Recognition system
classification

HMM-based continuous speech recognition system

52.73
without syllable boundary information
HMM-based speech recognition system with sylla-

56.85
ble boundary information
SVM-HMM hybrid recognizer with syllable bound-

61.58
ary information

4.6.5 SVM-HMM Hybrid System

The results of the preprocessing stage is the class label of the syllable. If the output of

the SVM preprocessor is correct, then the subgroup HMM syllable recognizer appro-
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priate for that equivalent class is used to recognize the syllable. On the other hand, for
a missed preprocessor classification the global HMM syllable recognizer designed for
the entire syllable vocabulary is used for recognition. The performance of the hybrid
SVM-HMM system is given in Table 4.12. We observe that the performance of the
hybrid system is better than the HMM-based syllable recognizer.

Conventionally the knowledge of the equivalent class label is not available at the
testing stage. The recognition system would be treated as a black box. Given an
input signal, the syllable label is the output desired. In such a situation the class
label output by the SVM preprocessor is taken as the correct classification. The
subgroup recognizer within this class is used to recognize the syllable in the speech
segment. The performance of the SVM-HMM system is 54.44%. When two systems
are cascaded together then the performance of the combine system is influenced by
the first system. For the SVM-HMM preprocessor system the expected performance
is 87.17 x 56.85 = 49.55%. The actual performance the hybrid system is better than
this.

In this section we showed that preprocessing followed by recognition can reduce
the confusion and search space among the syllables. This improves the recognition
rate of the syllables. Here knowledge of the class labels is used in testing. The
performance of the hybrid system when treated as a black box is reduced due to
the limited performance of the individual systems. The performance of the syllable
recognizer may further be improved by using the n-best output of the hybrid system

and rescoring the hypothesis in using a syllable bigram language model.

4.7 SUMMARY

In this chapter, we developed a syllable recognizer capable of recognizing the sylla-

bles in continuous speech. This preliminary system used standard 5-state left-to-right
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HMM models. The performance of this system was improved by using a mixture of
Gaussians and bigram level language models. To improve the recognition rate of the
syllables, SVM-based preclassifiers was proposed to reduce the search space. This
approach improved the recognition rate of the syllables extracted from continuous
speech, and tested in an isolated word fashion. The knowledge of the group to which
the syllable belongs was used. Incorporating language models into this recognizer may
improve its performance further. In the next chapter we discuss the basic concepts of
LSA and the development of a word based large span constraint language model. We
also extend this concept to show that latent large span constraints exist at the syllable

level also.

Table 4.13 Summary of the studies in development of the syllable recognizer for
Indian languages.

e Syllables are ideal subword units for speech recognition. They are highly confusable units

and their dynamics change rapidly. These units need to be modelled accurately.
e Previous approaches have used HMM and ANN models for the task.

e In this work we developed a syllable recogniser for Indian languages. The dynamics of the

syllables were modelled using larger number of states.

e A SVM based preclassifier was proposed to reduce the search space in the recogniser.
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CHAPTER 5

LSA FOR LANGUAGE MODELING

5.1 INTRODUCTION

Constraints exist at various levels in natural languages. As mentioned in Chapter 1,
the constraints exist from the phonetic level to the pragmatic level. Modelling these
constraints is important for most speech systems. These constraints can be captured
using language modelling techniques. The models help determine the permissible se-
quences of words and sounds in a language. The most popular language models are the
n-gram models. The ability of the n-gram models to capture the constraints depends
upon its ability to distinguish between different strings of n-words. When the value
of n is large, the parameter estimates of the n-gram model is poor. Consequently, the
predictive power of the n-gram model is reduced.

Semantic constraints that are spread over large spans need to be captured. One
of the approaches in modelling these large span constraints is LSA. The LSA uses the
information about the co-occurrence of words in the entire document to derive the
relationship among the words. Since the scope of the analysis is the entire document,
the approach is able to capture the semantic constraints over large spans. Latent
semantic analysis approach originally designed for information retrieval can be adapted
to language modelling. The LSA paradigm can be integrated with n-gram language
models. It is shown that this integration reduces the perplexity to a substantial extent.
The development of the LSA language model and its integration with the n-gram
language model as detailed in [7] and [8] is described here. The approach presumes

the availability of a database of documents. The documents should preferably contain
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a set of sentences that are semantically homogeneous, describing a concept or a story.

5.1.1 Feature extraction

Let v, | v | = M, be some vocabulary and 7 a training text corpus, comprising of N
articles (documents) relevant to the domain of interest. Typically M and N are of the
order 10000 and 100000, respectively. 7 might comprise of a hundred million words
or so.

The LSA paradigm defines a mapping between the discrete sets v and 7 and a
continuous vector space ¥, whereby each word w; in v is represented by a vector #; in
¥, and each document d; in 7 is represented by v; in W.

The first in the development of a LSA-based model is the construction of a matrix
W of co-occurrences between words and documents. Here word order is ignored un-
like n-gram modelling. LSA is a bag of words approach that disregards co-locational
information in word strings. The context of a word is in that sense the entire docu-
ment. Which word is associated with what document is the information sought to be
captured. The word count, i.e., the number of times a particular word appears in a
particular document, is used. The documents will be of different lengths. Based on
experiments in the field of information retrieval, it is preferable to normalise the word

count for the document length and the word entropy. Thus every cell (i,7) in W is

given by
Ciyj
wi; = (1-¢) (5.1)
n;
where, ¢;,; is number of times word w; occurs in document d;,

n; is total number of words present in d;,

€; is normalised entropy of w; in the corpus 7

Weighting the word count by (1 — ¢;) means that two words that appear the
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same number of times in a document do not necessarily convey the same amount of
information about the document. This depends on the distribution of the words in
the document collection 7. The value for ¢; is obtained as follows:

If we denote t; = > ;Ciyj 88 the total number of times w; occurs in T, then

N
1 Ci 5 Cij

o= 2 1og 24 0.2

“ logN; ot (5-2)

By definition 0 < ¢; < 1, with equality if and only if ¢;; = ¢; and ¢;; = t;/N,
respectively. If ¢; is close to 1 it means that the word is present across the documents
throughout the corpus, and if ¢; is close to 0 it means that it occurs only in a few
specific documents. The global weight 1 — ¢; is therefore a measure of the indexing

power of w;.

5.1.2 Singular value decomposition

The matrix W of size (M x N) resulting from the above feature extraction defines
two representations for the words and documents. Each word w; can be associated
with a row vector of dimension N, and each document d; can be associated with a
column vector of dimension M. These vectors are sparse, and of large dimensions. The
spaces spanned by them are distinctly different. Singular value decomposition (of W)
is performed retaining only the R largest singular values and their associated singular
vectors. SVD maps the row and column vectors onto a smaller continuous space ¥ as

follows:
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W~W = USVT (5.3)
where, U is (M x R) left singular matrix with row vectors u; (1 < i < M),
S is (R x R) diagonal matrix of singular values s; > s9--- > sg > 0,
V is (N x R) right singular matrix with row vectors v;(1 < j < N),
R < min(M, N) is order of the decomposition, and

T is matrix transposition.

We know that the matrices U and V are column orthonormal, which means that,
UTU = VIV = I}, the identity matrix of R-dimension. Thus the column vectors of
U and V each, define an orthonormal basis for the R dimensional space ¥, spanned by
the vectors u; and v;. The matrix W is the best rank-R approximation to the matrix
W. The row vectors of W are projected onto the orthonormal basis formed by the
column vectors of the right singular matrix V. This defines a new representation of the
words in this space. That is, the row vector u;S (where multiplying by the diagonal
matrix S is just a fixed scaling of each element) characterises the position of the word
w; in the underlying ¥ dimensional space, for 1 < ¢ < M. Similarly the column vector
of W are projected onto the orthonormal basis formed by the column vector of the
left singular matrix U. This defines a new representation of the documents in W. The
row vector v;S characterises the position of document d; in R, for 1 < j < N. We can
call each of the M scaled vectors @; = u;S as a word vector, uniquely associated with
word w; in the vocabulary, and each of the N scaled vectors ¥; = v;S as the document
vector, uniquely associated with the document d; in the corpus.

The SVD mechanism defines a transformation between the high dimensional dis-

crete entities (v and 7) and a low dimensional continuous vector space ¥, the R
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dimensional space spanned by u;s and v;s. The matrix W captures the major struc-
tural associations in W, and ignores the higher order effects. The closeness between
vectors is determined by the overall pattern in the language used in 7. If two words

are close, they appear in similar documents conveying similar meanings.

5.1.3 Advantages and limitations of LSA framework

The latent semantic framework has interesting properties like

Single vector representation for both words and documents in the same contin-

uous vector Space.

An underlying topological structure reflecting semantic similarity.

A well-motivated natural metric to measure the distance between words and

between documents in the space.

A low dimensionality that makes clustering meaningful and practical.

The feature of the LSA is that it is a bag of words approach. It does not take
into account the order of the words in a sentence. It is suitable for capturing the
semantics of the paragraph. But this does not take advantage of the syntactic and
pragmatic constraints available. An alternative is to use word n-tuples that are formed
by n successive words in the original document, and characterising the W matrix by
co-occurrences of these n-tuples instead of words. Though the number of terms in the

W matrix increases, it would still be feasible to use the LSA paradigm.

5.2 N-GRAM + LSA LANGUAGE MODELLING

A major application of the LSA framework is in statistical language modelling. Here

it best works when it is applied in conjunction with the n-gram approach. To use
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LSA for language modelling, we need a representation for the word and its history, a
measure of closeness, and a method for computing probabilities.

The history (hg—1) of a word w, in a test document is defined as all the words
occurring before the current word. The history is represented by the centroid (m) of

all the words it contains up to that point and is computed as:
-1
1

)

<.
Il

The cosine of the angle between #, the representation of w, and the centroid of
the history is used as a measure of closeness. The cosine is computed between the LSA
vector for the ¢ word w, in the document and the centroid (m) of all the words in
the history hq_1.

(g - m)

Tug Mo | (5:5)

cos(ug, m) =

To convert these cosine values into probabilities, the cosines are normalised be-
tween 0 and 1 by the following procedure. The smallest cosine ¢, between the history

and the word w; which ranges over the vocabulary of M items is found.

¢, = mincos(u;, m 5.6
» = mincos(i;, m) ()
The cosines are converted into probabilities by deducting c;, from all the cosines

for a given history, and then normalising. As a first estimate, the LSA probability

P!(.) of the word w, for the history h,_; is obtained as:

cos(tg, m) — ¢y,

3252 [cos(@j, m) — ¢

pl(ququl) = (5.7)

The superscript [ refers to LSA model.
If the vocabulary is large, then the probability values will hover around 1/M, not
differing enough to contribute significantly. The dynamic range of the LSA probability

A

PY(.) is increased by raising it to some power () and renormalising it.
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Pl(wq|hq—1)7
Zjﬂ/; PHw;lhg-1)"

where, the value of v needs to be determined empirically.

Pl(wq|hq—1) =

(5.8)

5.3 INTEGRATION WITH N-GRAM MODEL

The LSA model is a good predictor of content words, while the n-gram model is good
at predicting the immediate context. It is desirable that at least half the probability
value predicted is contributed by the nm-gram model. This is achieved by discounting
the LSA probabilities. A confidence measure \,, derived from (5.2) for normalised
entropy €,, is used to discount the LSA probabilities [7]. The confidence measure is
defined as A, = (1 —¢;)/2. A high value of 1 — ¢, implies that the word w, occurs less
frequently and is likely to be a content word. In this case, the LSA model will predict
the probability better. In such cases, when A, is high, it ensures that the probabilities
from both the LSA and n-gram model is considered equally (5.9). A low value of 1 —¢,
implies that the word w, occurs frequently in the data. In this case, the n-gram model
predicts the word better. Here, A\, gives a higher weightage to the n-gram probability.

The LSA model often predicts words that are syntactically disallowed. A linear
combination with the n-gram model does not help. It is desirable to use a nonlinear
combination function that gives higher probability when the two models agree, i.e.,
the word prediction is both syntactically and semantically plausible, and gives a low
probability if either model considers the word implausible. The geometric mean is the
nonlinear combination function that seems to work well. The probabilities from the

LSA model (P') and the n-gram model (P") can be combined as follows:

1-,

Pl(wg|wy, wg, - -+, we—1)* P™ (wy|wy-1) (5.9)

P(wg|wy,we, -+ ,wy 1) {
e Sy Phwjlwy, wa, -+ wi )N Pr(wjfw; 1) N
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The performance of the language models is measured using perplexity. If () is the

total number of words in the test set, the perplexity (3) of the model in (5.9) is given

by:
1 Q
B = exp 3 > " log P(wg|hy-1) (5.10)
qg=1
where h,_; is the history (wy, ws, -+, wy_1) of the word w,.

5.4 DATABASE OF NEWS STORIES IN TAMIL

In LSC type of lanaguage modeling it is desirable to have text documents pertaining
to one semantic content like a news story or a passage. A large text corpus of news
bulletins is not available for most Indian languages. To realise this, the transcrip-
tion pertaining to the speech corpus as manually categorised into 8 different story
categories, namely, economics, events, others, politics, sport, war, weather and world
politics. The categorisation also indicates the diversity of the database. The descrip-
tion of the database in terms of news stories and the number of words in the news
stories is given in Table 5.1 and 5.2, respectively. The corpus is partitioned into a
training set and test set. Four news bulletins were used for testing and the rest for

training. The categories of stories that appear in these bulletins is shown in Table 5.1.

5.5 WORD-BASED BIGRAM LANGUAGE MODEL

Due to the small size of the text corpus, deriving trigram language models is not
appropriate. A limited vocabulary of 1277 words which have at least 4 occurrences in
the database is chosen. A bigram language model at the word level is derived using the
CMU toolkit [148] for that corpus. The performance of the bigram language model is
determined in terms of perplexity using (5.10). For the computation of the perplexity

of the bigram model, h,_; reduces to wy_;. The perplexity of the bigram model for
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Table 5.1 Description of the Tamil news database in terms of stories.

Story # documents
category Training set | Test set
Economics 44 2
Events 104 23
Others 124 24
Politics 104 4
Sports 34 3
War 163 32
Weather 6 1
World politics 64 3
Total 643 92

the test set is 233.

5.6 WORD-BASED BIGRAM + LSA LANGUAGE MODEL

The latent semantic analysis language model is derived from the training corpus us-
ing the procedure detailed in Section 5.2. This model is combined with the bigram
language model to derive the large span constraint (bi-LSA) language model. One
important step in developing the language model is the dimensionality reduction by
means of SVD. The optimal dimension to be used has to be determined. The dimen-
sionality reduction is done to project the words onto a lower dimensional space ¥ .
Based on some suitable distance metric, the semantic similarity between two words in

U is greater, if the distance between them is small.
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Table 5.2 Statistics of the database of news stories.

Training set | Test set
Total # documents 643 92
Total # words 26380 3706
Min. # words/story 6 8
Max. # words/story 159 136
Avg. # words/story 41 40

The optimum dimension is not known a priori [98]. In the studies conducted, the
dimensionality reduction by SVD is varied to obtain the best results.

A matrix W is created as described in Section 5.1.1. There are 1278 words in
the vocabulary. The training set comprises of 643 documents. The cell w;; contains
the weighted count of the number of times word ¢ occurred in the document j. The
SVD is performed on this W matrix. The matrix S of singular values is truncated to
different orders of decomposition. The corresponding singular vectors of U and V are
retained. The LSA model based on (5.8) is derived. This model is combined with the
bigram language model. The perplexities of both the bigram language model and the
combined bi-LSA language model for truncation of SVD to order 200 is given in Table
5.3. The optimal performance is obtained for a truncation order of 200. From the
table we observe that the combined bi-LSA model performs better than the bigram
model as expected. The perplexity is reduced by 64.3% when the combined large span
constraint model is used, as compared to the bigram model. Another factor in (5.9)
is the value of A\,. It depends on the frequency of occurrence of the word w, in the

database and varies for every word as shown in Equation (5.9). If a word is infrequent
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Table 5.3 Perplexity values for the word-based bi-LSA model for the test set where
the SVD is truncated to order 200.

Language model || Perplexity

Bigram 233
LSA 536
bi-LSA 84.3

it may be a content word. For these words A\, will be high, closer to 0.5. In such cases
both the bigram and the LSA model will have about equal weightage in the combined
model. Conversely for frequent words the entropy will be high and A, low. Then more
weightage would be given to the bigram model. The effect of A\, on all the different

SVD truncation orders and membership thresholds is uniform.

5.7 SYLLABLE-BASED LARGE SPAN CONSTRAINT LANGUAGE MODEL

The syntactic and semantic constraints associated with a word were exploited in the
previous section to develop a large span constraint model. Syllables are sound units
smaller than words. In spoken language, arbitrary sequence of syllables is not per-
missible, as no meaningful message can be then conveyed. Hence there exist some
constraints at the level of syllables. The contextual constraints in the syllable se-
quence can be determined using a standard bigram language model using syllables as
the basic unit. If the training corpus is parsed into syllables, then a standard language
modelling toolkit [148] can be used to derive the bigram language model at the level of
syllables. One such model was used in the syllable recognizer in Section 4.3 to improve
its performance.

Syllables are not normally associated with semantics. If two syllables co-occur in
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a paragraph describing some topic of discourse, it cannot be directly inferred that the
syllables are related to each other. But there exists some constraints of the language
that precludes some syllables following a syllable in certain context. It is desirable
to model these latent constraints to achieve an improved performance in language
modelling.

In large passages of text like a paragraph, the number of syllables is large. In such
cases, the co-occurrence constraints if any, are likely to be masked. If there exist some
weak constraints between co-occurring syllables, it is more likely to be manifested
when the document size is small.

The latent constraints among the syllables is modelled in the LSA framework. The
database in table 5.1 is parsed into syllables. A vocabulary of syllables is chosen similar
to the vocabulary of words in the large span language models. Using an arbitrary
threshold of at least 4 occurrences of a syllable in the Tamil database, the vocabulary
of 1044 syllables is derived. For this vocabulary, the optimum number of syllables
per document and the truncation order of the SVD decomposition that yields best
performance need to be determined. Strings of nonoverlapping syllables of varying
length are considered as the training documents.

To better exploit the latent dependencies among the syllables, if any, the syllable-
based LSA and bigram models are combined. This syllable-based bi-LSA language
model is used for evaluating the test set. The perplexity of the bi-LSA language
model is determined for training documents of different lengths and different orders
of SVD truncation, as given in Table 5.4. The perplexity increases marginally as the
number of syllables in the document increases. This is because, for larger document
sizes the syllables are co-occurring with many other syllables, and the model is unable

to capture the latent constraints, leading to poorer performance. The table also shows
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Table 5.4 Perplexity values for the syllable-based bi-LSA model for different SVD
orders and various sizes of the documents in training (Perplexity for the syllable level
bigram language model is 29.3).

SVD order # syllables per document
5 10 20 | 75 | 300
75 23.7 | 23.7 1 24.2 | 249 | 25.5
100 23.1 | 23.7 | 24.2 | 24.8 | 25.5
150 23.9 | 239|242 | 248 | 255
200 24.1 1239|242 |248 | 255
250 243 1239 (242|249 | 248

that for syllable-based large span language models, the truncation order of SVD does
not seem to influence the performance greatly as the size of the database is small. The
best performance (perplexity of 23.1) is observed for documents of size 5 syllables,
where the order of truncation of the SVD is 100. The corresponding perplexity of the
bigram model for the test set is 29.3.

We have shown that there may be some latent constraints in the co-occurrences of
some syllables, and that they can be modelled using the large span language models.
The reduction in perplexity of this model over the standard syllable level bigram model
is 22%. If such a model is incorporated into a syllable recognizer, the performance of

that recognizer is likely to improve further.

5.8 SUMMARY

In this chapter, we reviewed the basic concepts of LSA and its adaptation for use as a

language model. A database of news stories, suitable for LSA studies, was developed
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from the speech corpus. An LSA-based large span constraint language model was
developed at the word level for the Tamil language. This model was combined with
a standard bigram language model to obtain an improvement in the performance
of the language model. We showed that latent large span constraints exist at the
syllable level also. A syllable level large span constraint model was combined with
the standard syllable-based bigram model. The performance of this syllable-based bi-
LSA model was studied for various syllable level document sizes and orders of SVD
truncation. The performance of this model was poorer when the number of syllables
in a document was increased. Conventionally bi-LSA language models are developed
using large databases comprising of millions of documents and vocabularies of about
10,000 words. The order of The order of SVD truncation has a significant effect on
the performance of those models. In the speech-based bi-LSA model, the size of the
database used is small. The order of SVD truncation does not seem to affect the
performance of the model. Overall, the performance of the bi-LSA model was better
than the syllable level bigram model by 22%. The summary of the issues discussed
in this chapter is given in Table 5.5. In the next chapter, we discuss the effect of
erroneous transcripts (simulating errors due to speech recognition) on the large span

constraint models.
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Table 5.5 Summary of techniques to use LSA for language modelling.

e There exist semantic constraints among the words in a paragraph or news story. These
constraints are spread over large spans. If these constraints are incorporated into a speech

system the performance is likely to improve.

e The extension of LSA for language modelling was recollected. A text-based bi-LSA model

was created for Indian languages.

e It was shown that large span constraints seem to exist at the syllable level also. The
syllable level text-based bi-LSA model was developed and shown to be better than the

syllable level bigram model.
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CHAPTER 6

LARGE SPAN CONSTRAINT LANGUAGE MODEL
USING ERRONEOUS TRANSCRIPTS

In certain situations, the erroneous transcriptions from speech recognition systems may
be the only text available for developing language models. For example, in dialogue
modelling applications, no database of textual dialogues is available. The text corpus
would be derived from speech transcripts. For many languages, especially non-literary
languages, large text corpus may not be available. For these languages, it is easy to
record speech data in large volumes. In such situations, it may be required to derive
a language model directly from the speech signal. In all such cases, the effect of the
errors, introduced due to decoding, on the generation of a language model needs to be
studied. In this chapter we study the effect of noisy text input on large-span language

models.

6.1 TYPES OF ERRORS IN SPEECH TRANSCRIPTION

In speech recognition, errors are normally of three different types, insertion, deletion
and substitution. Various combinations of these errors are simulated by altering the
matrix of row counts W before normalisation. The effects of different combinations
of these errors are studied. The errors of the speech recognition system result in the
production of erroneous transcriptions. When these erroneous transcripts are used to
develop a large span constraint language model, they may affect its performance.
Insertion errors occur when an extra word is inserted in the sentence recognition

hypothesis, leading to more number of words than those actually present in the spoken
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utterance. If the output of the speech recognizer is aligned with the reference transcript
for maximal matching, we may find that some words are deleted or are not recognized
in the output. These errors are termed as deletion errors. Due to the confusability
among the words in the vocabulary and the variability in speech, a particular word
is misrecognized as some other word close to it. These types of errors are termed
as substitution errors. The substitution errors are generally more frequent than the
other two types of errors. These three types of errors do not occur in isolation. While
developing the recognizer, generally the parameters of the recognizer are so adjusted
that the insertion and deletion errors are minimal. In simulating the effects of the
errors, we have limited our scope to simulating erroneous source transcripts to be used
by the large span constraint model. This is done, as we are interested in determining
the effect of the errors in recognition on the language model, when it is derived directly
from the speech signal as detailed in the next chapter. In this study, the errors are
simulated in the transcripts used to build the large span constraint model. The bigram
model is trained on a clean text (as used in the previous chapter). These two models

are combined to obtain the bi-LSA model.

6.2 INSERTION ERRORS

Erroneous transcripts with insertion errors are simulated as follows. Let W be the
matrix of raw counts. Each column of the matrix contains the frequency counts of
the words in the vocabulary for a document in the database. That is, the number of
columns of W correspond to the number of documents in the database, and the rows
correspond to the number of words in the vocabulary. These are raw counts before
being normalised for the entropy and the length of the document. A sparse random
matrix N; of ones, of the same size as W, and of desired sparseness (say 95%) is

created. The density (defined as [# of nonzero elements of the matrix]/[product of the
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dimensions of the matrix|) of this matrix N; (1-0.95) is the amount of insertion errors
(e;) we desire to simulate, i.e. 5%. The matrix N; is added to W to give us W.
V~V1 now contains 5% insertion errors at random locations. This matrix is weighted by
the entropy of the word and normalised for the length of the documents. The error
simulated W is used in the place of W in Section 5.2 for developing the integrated
bi-LSA model. The simulation of errors is carried atleast 5 times and the average
values are reported in the tables of this chapter. The performance of this model is
determined for the test set. The performance is evaluated for different insertion error
rates, and is given in Table 6.1. The density of the matrix W, for different error rates
is also given. As the insertion rate increases, the density of the matrix Wi increases
rapidly and the perplexity reduces marginally. Because the values of the components
of the vectors in the reduced dimensional space V¥ increases, the cosine measure results
in a higher prediction probability for words close by and thus a marginal reduction in

perplexity.

Table 6.1 Perplexity values for the combined bi-LSA model derived from erroneous
transcripts for various insertion error rates e;. The truncated SVD is of order 200.

er (%) || Density of W, | Perplexity
05 6.56 83.38
10 11.1 81.43
15 15.5 81.00
20 19.6 80.45
35 30.8 78.94
50 40.5 78.26

106



6.3 DELETION ERRORS

When a deletion occurs in a word string, the resulting sequence of words may be
linguistically incorrect. If a n-gram language model is trained on such erroneous tran-
scripts, its performance would be poor. As the large span constraint model ignores the
word order, sequencing information is not important. However, this model is a good
predictor of content words. If the function (frequently used) words are deleted, the
performance of the large span constraint model is unlikely to be affected. In contrast,
if the content words are deleted, the performance of the model may suffer.

To simulate the deletion errors, a sparse random matrix N, of ones is created as
in the previous section. This matrix is subtracted from W only where positive counts
exist to give W . The elements of W, are then weighted by entropy and normalised
for the lengths of the documents. As mentioned in the previous section, the matrix
W) is used in the place of W to derive the probabilities of the LSA model. The
performance of the language model for different deletion rates is shown in Table 6.2.
As the original matrix W is sparse, the deletion errors cause only a small reduction
in the density of Wp. We observe from Table 6.2 that as the deletion error rate
increases, the performance of the combined bi-LSA language model reduces, with the
worst performance when the error rate is 35%. One reason for the fall in performance
could be that, when the rate of the deletion errors is high, it is more likely that content

words are deleted.

6.4 SUBSTITUTION ERRORS

Substitution errors generally occur between words with similar acoustic realisations.
They can occur due to poor training of the models, and large out of vocabulary rates.

This error is simulated by a deletion followed by an insertion as follows: A sparse
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Table 6.2 Perplexity values for the combined bi-LSA model derived from erroneous
transcripts for various deletion error rates ep. The truncated SVD is of order 200.

ep (%) || Density of Wy | Perplexity
05 1.70 78.16
10 1.63 73.42
15 1.56 76.43
20 1.45 72.28
35 1.32 74.38
50 1.17 73.82

random matrix N, of the desired sparseness is created. If there is a non-zero count in
W at locations corresponding to the location of ones in Ny, the counts are reduced
by one. Depending on the number of deletions in a column vector of W, the same
number of ones are added back to the column vector of W at some random locations
to obtain the matrix Wg. The density of the matrix W would vary, depending on
the locations of addition and deletion of counts. If the deletion occurs in locations
having single counts but additions occur in locations with previously non-zero counts,
then the density will reduce. Similarly other situations exist which would modify the
density of the matrix Ws.

The performance of the bi-LSA model for different substitution errors is shown in
Table 6.3. The perplexities of this model at 10% substitution error is the least. But
as the error rate increases, the perplexity also increases. In all these trials on error
simulations it must be noted that a 20% error does not mean that actually 20% of
the words were deleted /substituted. This 20% error would occur when the matrix W

is fully dense. Thus the actual errors introduced into the matrix would be less than
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that simulated due to the sparse nature of the matrix. This can be inferred from the
density of the matrices. For visualisation the three different types of errors are plotted

in Figure 6.1.

Table 6.3 Performance of the combined bi-LSA model derived from erroneous tran-
scripts for various substitution error rates eg. The truncated SVD is of order 200.

es (%) || Density of Wg | Perplexity
05 1.71 86.28
10 1.64 82.30
15 1.60 85.51
20 1.52 86.30
35 1.36 88.68
50 1.32 90.40

6.5 COMBINATION OF RECOGNITION ERRORS

In the transcription from a speech recognizer, the insertion, deletion and substitution
errors occur in some combination. Different combinations of speech recognition errors
are simulated. To study the effect of all three errors together, two type of errors
were kept constant while varying the third. The Table 6.4 shows the effect of different
combinations of all the errors encountered. As expected the perplexities for the test set
is higher for the combination of insertion, deletion and substitution errors as compared
to their individual occurrence. But the overall perplexity of the bi-LSA model trained
with erroneous transcripts is about the same as that trained with error-free transcripts.
Thus, it is unlikely that speech recognition errors will severely degrade the performance

of a large span constraint model derived from the speech signal.
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Fig. 6.1 Perplexity of the test set for various levels of insertion, deletion and substi-
tution errors.

Table 6.4 Perplexity values for the combined bi-LSA model derived from erroneous
transcripts for various combination of insertion, deletion and substitution error rates.

The truncated SVD is of order 200.

Perplexity

es (%) || er=5% | e =10% | e = 10%

6D25% 6D:5% epzlo%

05 83.9 81.5 82.0
10 84.4 82.2 82.4
15 83.9 82.4 83.0
20 83.6 82.8 81.6
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6.6 SUMMARY

Towards developing speech-based large span constraint models, one of the main issues
that needs to be addressed is the likely errors at the recognition stage. To understand
the effect of these errors on the large span constraint models, the commonly occurring
insertion, deletion and substitution errors were simulated, in isolation and in combi-
nation. It was observed that at a maximum of 20% error rate, the performance of the
bi-LSA model trained on erroneous transcripts gives about the same performance as
that of the model trained on error-free transcripts. This suggests that a speech-based
bi-LSA model is unlikely to be greatly affected by moderate levels of recognition errors.
The issues discussed in this chapter is summarised in Table 6.5. In the next chapter,

we discuss the development the speech-based bi-LSA model.

Table 6.5 Summary of studies on developing large span constraint models from
erroneous transcripts.

e In many situations, error-free text corpus in electronic form may not be available. Either
erroneous transcripts from a speech recognizer, or speech data may only be available.
Previous studies do not reveal the effect of erroneous (transcripts) input to the language

model.

e In this chapter, the effect of erroneous transcripts on the large span constraint model, for

different errors, was studied.

e Insertion, deletion and substitution errors of up to 20%, in isolation or in combination, do

not seem to affect the performance of the large span constraint model.

e It was thus inferred that, the performance of the large span constraint model developed

directly from the speech signal may not be severely affected.
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CHAPTER 7

SPEECH-BASED LARGE SPAN CONSTRAINT
LANGUAGE MODEL

7.1 INTRODUCTION

In the previous chapters, the use of latent semantic analysis (LSA) to capture the
global semantic constraints, and bigram models to capture local syntactic constraints,
were shown to reduce the perplexity of the test set for the text-based bi-LSA model.
In this chapter, we propose approaches to derive LSA-based large span constraint
language models directly from the speech signal. A reference segment is derived from
the speech signal for each word in the vocabulary. Based on the normalised distance
between the reference word segment and the word segment in the training data, the
LSA model is derived. We show that this speech-based bi-LSA model in combination
with the standard bigram model performs better than the conventional text-based
bi-LSA model. The results are demonstrated for a limited vocabulary on the Tamil
database.

One of the main applications of statistical language models is in speech recognition.
The use of speech knowledge, prosodic constraints, large span semantic and local
syntactic constraints, when integrated with the speech recognizer would improve its
performance. We propose a method in which the semantic constraints, in terms of
the co-occurrence of words in a document, can be captured indirectly from the speech
signal in the framework of latent semantic analysis. We show that the speech-based
large span constraint model performs better than the bigram model, and the text-

based bi-LSA model. The reduction in perplexity for a test set is used as a measure of

112



performance of the model. In the following sections, we give details of the construction
of the matrix W from the acoustic signal. Using this speech-based matrix W, we

develop the speech-based bi-LSA model.

7.2 DEVELOPMENT OF THE MATRIX W

The first step in developing the large span constraint model is to construct the matrix
W from the speech signal. Given the speech signal, the objective is to determine the
word boundaries in the speech signal and recognize the word present in the speech
segment. The ideal situation would be to use a speech recognizer to recognize the
sequence of words present in the speech signal. The need for the language model is to
improve the performance of the speech recognizer as it is poor. In most cases a good
speech recognizer may not be available. We explore two basic approaches in pattern
recognition for the task, namely, the Dynamic Time Warping (DTW) approach and
the template matching approach to identify a word in the segment of speech, and also

to find the other closest matches. This information is used in deriving the matrix W.

7.2.1 Dynamic time warping approach

Dynamic programming is used in speech processing applications for time alignment
and normalisation to compensate for variability in speaking rate in template based
systems [11]. Let us consider two speech patterns A and B representing the spectral
vector sequences (ajp,ag,---,a,---,am) and (by,ba,---,bj, -+, bn), respectively,
where a; and b; are parameter vectors of short-time acoustic features. Dissimilarity
or distance between the two sequences A and B for a particular path ¢ is given by
ds(A, B). Time normalisation of A and B is obtained by finding the best temporal

match given by the minimum dissimilarity d(A, B), defined as:
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Fig. 7.1 Block diagram for construction of W in the proposed speech-based LSA
language model using DTW.

d(4,B) = min(dy(A, B)). (7.1)

When A and B represent segments of two utterances of the same word class, the
choice of the best path implies that the dissimilarity is measured using the best pos-
sible alignment between the different regions of the two segments. In dynamic time
alignment, a set of local continuity constraints is imposed on the warping function,
which does not result in the omission of any important information bearing events in
the speech signal. The definition of the dissimilarity measure given by (7.1) involves a
minimisation process that can be effectively implemented by dynamic programming.
The optimal warping path between two word segments provides the best match be-
tween the segments. The dissimilarity (distance) gives the measure of how close the
two word segments are to each other.

The objective is to fill up the matrix W with counts if a word in the vocabulary
is present in a document. In the speech context, the document is a set of spoken

utterances (speech file). We need to find if a word in the vocabulary is present in the
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spoken document or not. If present, the corresponding element of W is incremented.
To identify the words in a speech utterance using dynamic time warping, word segments
are required. The knowledge of the word boundaries is known, as the Tamil database
is segmented in terms of words and syllables. Fig. 7.1 shows the block diagram of
the DTW approach to construct the matrix W from the speech signal. To perform
DTW, a reference segment is required for each word in the vocabulary. The acoustic
realisations of the words vary largely. Hence an appropriate reference segment for each
word in the vocabulary is chosen manually. From the speech signal 13 dimensional
MFCC vectors are derived for each frame of 20 msec using a 10 msec shift, for every
word segment in the speech document, and for the reference word segments. Given
a speech document and the word boundaries, in the model building stage for every
word segment in the document, the DTW alignment between that word segment and
all the valid reference word segments in performed. The path constraints in DTW
restrict the length of the test segment to be in the range of half to twice the length
of the reference segment. Thus a word segment in the speech document is matched
only with those reference segments that fall within this range. The result is a distance
value between the word segment in the speech document and each reference pattern in
the vocabulary. The distances are then normalised between 0 and 1, and are denoted
by d,. Ideally the reference word with the least distance would be the choice for
the closest match, and the count in the corresponding cell of matrix W would be
incremented. Instead we define a membership (s;) based on the normalised distances
(dpn;). The normalised distance d,, denotes the dissimilarity between a word pattern
vector and the ** reference pattern. Thus s; = 1 — dp, is the membership of a word
pattern to the iy, reference pattern. It indicates how close a reference word segment

is to the training/test word segment. If the membership is above a certain threshold
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(c) then the appropriate element w; ; is incremented by the membership value. The
elements of W are also scaled for the length of the document (# words) and weighted
by the entropy of the term. This procedure is carried out for each word segment in
the document, and for all the documents in the database, thus deriving the matrix W

from the speech signal.

7.2.2 DTW-based bi-LSA model

For the Tamil database a vocabulary of 1277 words is chosen (words with at least 4
examples in the database). The matrix W is constructed using the procedure detailed
in the previous section. The DTW is performed between every word segment of a
document in the training set and all the reference word segments of similar durations.
The membership threshold, for deciding on the closeness of a word, is varied. Similarly,
the truncation order of the SVD is also varied. For different values of these parameters,
the combined bi-LSA model is derived from the speech signal. For the test set the
perplexities obtained are tabulated in Table 7.1. From the resulting perplexities it is
observed that the model derived from the speech signal using DTW performs better
than the bigram model (perplexity 233) and the text based bi-LSA model (perplexity

84.3). The reduction in perplexity over the text based bi-LSA model is 7%.

7.2.3 Template matching approach

The approach described in the previous section used DTW. The inherent drawbacks
of DTW is that it is speaker dependent. It does not work well when large variations
in the speaker characteristics are observed. However, this is not a limiting factor in
the DTW-based approach, since we are not interested in the best match, but a few
closely matching words. In the DTW approach, there is a limitation on the length of

the reference/test segment. That is, segments of arbitrary lengths cannot be matched.
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Table 7.1 Perplexity values for the speech-based combined bi-LSA model derived using
DTW approach for various membership threshold values (Perplexity for the text-based
bi-LSA model was 84.3).

SVD truncation Membership threshold «
order 0.85 1096 | 0.97 | 0.98
75 79.13 | 80.8 | 80.83 | 80.94
100 79.30 | 81.2 | 81.73 | 81.00
150 79.11 | 81.4 | 82.20 | 80.47
200 79.02 | 82.0 | 82.59 | 82.42
250 79.32 | 83.1 | 83.85 | 82.57

Another problem is that every word segment in the training corpus needs to be matched
with all the reference patterns in the vocabulary. When the vocabulary and the training
corpus is large, the time consumed in developing the model is prohibitively expensive.
Hence an alternate approach is desirable. In this section we discuss a template-based
approach. In the template-based approach, a fixed dimensional representation for
each word segment is defined. A reference template for each word in the vocabulary is
constructed using this word representation. A similar fixed dimensional representation,
called word pattern vectors, is determined for each word in the training documents.
The similarity between the reference template and each word pattern vector is used
to derive the matrix W using the same procedure as described in the DTW-based
approach. The main advantage of this approach is that, the template for a word
needs to be constructed only once. This reduces the time consumed for matching the
reference template with the word pattern vectors in the model building or testing stage

as it involves computation of the distance measure only once.
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The block diagram of the proposed template-based approach to develop the matrix
W from the speech signal is shown in Fig. 7.2. The first step is to derive fixed
dimensional pattern vectors to represent a word. This is achieved as follows: From
the speech signal of a word segment, 13 dimensional MFCC vectors are derived for
each frame of 15msec using a 1msec shift. A small frame size and frame shift is used
to minimize the dissimilarity between the adjacent frames. The Euclidean distance
between the adjacent pairs of feature vectors is determined for the entire sequence
of feature vectors in the word segment. Based on the average duration of the word
in the database, the number of frames required to represent a word is determined.
The feature vectors corresponding to the desired frames are concatenated to form a
pattern vector that represents a word segment. If the number of frames in the word
segment is less than that required to construct the word pattern, then the frame with
the smallest Euclidean distance with its neighbour is replicated. For a word segment
where the number of frames extracted is larger than desired, the frame with the least
Euclidean distance to its neighbor is dropped. This procedure is repeated until the
desired number of frames for a word segment is obtained. It is assumed that there is
minimal distortion/loss in adding/dropping the above frames. The selected frames are
concatenated to form a fixed dimensional pattern vector representing the word. The
resulting pattern vector has large dimensions. Comparing pattern vectors in such a
high dimension space is not preferable. It has been shown that non-linear compression
of large dimensional pattern vectors of speech using Auto Associative Neural Networks
(AANN) models does not degrade the speech recognition performance [155]. In this
study AANN models are used to compress the large dimensional pattern vector to
around 60 dimensions. Thus a reduced dimension pattern vector is derived for each

word segment in the entire training set. All the (reduced dimension) pattern vectors
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Fig. 7.2 Block diagram for construction of W in the proposed speech-based LSA
language model using template matching.

corresponding to a word in the training set are used to derive a mean pattern vector,
which serves as the reference pattern vector for that word in the vocabulary. One such
reference pattern vector is derived for each word in the vocabulary.

For every word segment in a training document (speech file), a word pattern vector
is derived as explained. The Euclidean distance between this pattern vector and all
the reference pattern vectors in the vocabulary is determined. The resulting distances
are normalised between zero and one. As in the previous section, the membership is
defined as s; = 1—d,,, where d,,, is the normalised distance. The membership indicates
how close the word pattern vector is to each of the reference pattern vectors in the
vocabulary. If this membership is above a certain threshold «, then the appropriate
element w; ; is incremented by the membership value. The elements of W are also
scaled for the length of the document and weighted by the entropy of the term. Thus

the W matrix is derived from the acoustic signal using the template-based approach.

7.2.4 Template-based bi-LSA model

In this section, we first discuss the actual development of the matrix W using the

template-based approach as outlined in the previous section. The average duration
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of the words in the database is found. Based on this, a compact representation of 30
frames for each word is chosen. The 13 dimension MFCCs corresponding to each of
the 30 frames are concatenated to obtain a 390 dimensional pattern vector. The 390
dimensional pattern vector is chosen, since it performed better than pattern vectors of
various other dimensions experimented with. This pattern vector is nonlinearly com-
pressed to 60 dimension using an AANN model. Other compact dimension are also ex-
plored. The structure of the AANN model used is 390L 585N 60N 585N 390L,
where L refers to a linear unit and N to a nonlinear unit, the numbers represent the
number of nodes in a layer. The AANN model was trained for 200 epochs using all the
pattern vectors in the training data. The compressed vectors are obtained from the
compression layer of the AANN. This compressed 60 dimensional pattern vector is the
word pattern vector. Such pattern vectors are derived for each of the word segments
occurring in the training data. These word pattern vectors are used to construct the
matrix W as described previously.

The performance of the speech-based bi-LSA model derived using the template-
based approach is given in Table 7.2 for different membership threshold values, and
various SVD orders.

Different SVD orders are used to determine the optimal dimension that captures
the semantic relatedness better. If the threshold is high (say 0.98) the W matrix is
similar to its text based counterpart in its sparseness. As the threshold is lowered,
more elements of the W matrix are filled, which is like smoothing. The performance
of the model improves. For low thresholds the performance is likely to deteriorate.

When DTW or template matching approach is used to recognize words, the correct
word may not always be the best match. If the top few matching words are considered

by defining a closeness measure, then the procedure will result in the acoustically clos-
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Table 7.2 Perplexity values for the speech based combined bi-LSA model derived using
template-based approach for various membership threshold values and SVD truncation
orders. The word pattern vectors are compressed from 390 to 60 dimension using

AANN models.

SVD truncation || Membership threshold
order 0.92 1 0.96 | 0.97 | 0.98
75 78.0 | 783 | 77.8 | 79.2
100 77.8 | 784 | 78.2 | 78.9
150 77.5 | 78.9 | 78.3 | 79.9
200 78.0 | 79.5 | 79.4 | 80.7
250 78.6 | 80.1 | 78.2 | 81.3

est set of words being considered. The word counts corresponding to these words will
be incremented. The bi-LSA model will learn the relationship among these acoustically
confusable words. As an illustration the template based approach is executed using a
membership threshold of 0.92. Shown below are three words and their closest matches
as determined by the threshold. The membership values are shown in parenthesis. We
see that in this approach at times there is an exact match, no match or many possible
matches.
Reference word is not the first match.
inda—— > ellA (0.993) enda (0.987) inda (0.965) indap (0.968) indiyA (1) nalla

(0.930) piritiar (0.932)

Reference word is the exact match.

sadavihida—— > sadavihida 1
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Reference word has no match among the top few.

peRRadu—— > piRahu (0.935) terivittaniar (1) tiRandu (0.959)

In the speech-based bi-LSA model, using only the 1-best match is not desirable.
The primary reason can be seen from the matches above. The 1-best in most cases may
not be the correct word. Further when we increment counts for more number of words,
it has a smoothing effect. In earlier studies word level and document level smoothing
is shown to improve the performance of the bi-LSA model [8]. For the purpouse of
illustration a sample document (column) of the speech-based and text-based matrices
is shown in Table 7.3. It contains only the non-zero elements of W. As expected
the speech-based W matrix has more non-zero entries than the text-based W. This
will have a smoothing effect. If we measure the actual number of insertions, deletions
and substitutions, as in Chapter 6 for the template-based approach we find theat the
insertions are 262%, substitutions 25% and deletions near 0%. In the template-based
bi-LSA model the 1-best match was used to construct the W matrix. The perplexity
of the resulting bi-LSA model increased to 81.2 as against the previous 78 shown in
Table 7.2. This shows that it is better to use soft counts rather than the 1-best match.

The performance in terms of perplexity of the test set for the three different lan-
guage models is given in Table 7.4. The perplexity of the speech-based bi-LSA model
is better than the standard bigram model by 66% and shows an improvement of 7%

over the conventional text based bi-LSA model for an SVD order of 200.

7.3 SYLLABLE LEVEL SPEECH-BASED BI-LSA MODEL

In Chapter 5 we showed that a bi-LSA model can be derived at the syllable level using
a text corpus. In this section, we develop a bi-LSA model from the speech signal at

the syllable level.
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Table 7.3 Non-zero entries in the speech and text-based bi-LSA raw matrices. The
entries pertain to a single column (document 5) when a threshold of 0.92 is used.

S.No of | Member- | Weighted | S.No. of | Member- | Weighted | S.No. of | Member- | Weighted
word in ship counts word in ship counts word in ship counts
vocab. vocab. vocab.

2 0.92 0 378 0.93 0 932 1 0
12 0.93 0 403 1 0 934 0.92 0
23 0.97 0.01 418 0.94 0 953 0.94 0
25 0.96 0 451 0 0.00 956 1.97 0.01
29 1 0 466 0.95 0 958 1 0
35 0.95 0 470 1 0 960 0.93 0
45 0.99 0 471 1.91 0 962 0.92 0
46 1 0.03 496 0.94 0 967 0.95 0
47 0.93 0 499 0.93 0 972 0.96 0
48 1 0.01 501 0.94 0.01 1007 0.92 0
54 0.92 0 510 0.94 0 1014 0.92 0
88 0.97 0 512 0.98 0 1017 2.81 0
89 0.94 0 568 0.93 0 1031 0.96 0
100 0.92 0 574 0 0.01 1037 0.95 0
110 0.93 0 590 1 0 1041 0 0.01
112 0.92 0 660 0.97 0 1062 1 0
148 2 0.01 667 1 0.00 1063 0.93 0
150 0.92 0 672 0.97 0 1068 0.92 0
156 0.98 0 686 0.92 0 1076 1 0
157 0.98 0 687 0.92 0 1079 0.95 0
172 1 0 723 0.94 0 1087 0.97 0.00
173 0.92 0 726 0.96 0 1089 1 0
194 0.92 0.00 727 0.96 0 1092 0.99 0
197 0 0.01 728 1.92 0 1104 0.96 0
198 0.99 0 729 1.91 0 1107 0.95 0
199 1.91 0 743 0.97 0 1108 0.92 0
213 0.93 0 77 0.95 0 1112 0.96 0
222 1 0.01 780 1.87 0 1114 0.93 0
228 1 0 786 0.97 0 1117 0.93 0.01
233 0.93 0 787 0.98 0 1118 1.90 0
240 1.87 0.01 788 0.93 0 1136 0.94 0
242 0.92 0 790 0.96 0.01 1138 0.92 0
243 0.93 0 801 0.93 0 1157 0.98 0
244 1.93 0 808 0.94 0 1158 0.94 0
247 0 0.01 835 0.92 0 1167 1 0
265 0.92 0 836 1.86 0 1173 0.94 0
273 1 0.01 843 0.97 0 1191 0.96 0
277 0.99 0.00 844 0.93 0 1198 1.86 0
281 0.94 0 849 0.93 0 1201 0.94 0
282 0.98 0 860 0 0.01 1209 0.99 0
285 0.95 0 867 0.95 0 1213 0.95 0
291 1 0 869 1.87 0 1252 1.89 0
294 0.93 0 872 0.93 0 1268 0.96 0
296 0 0.00 876 0.93 0 1274 1 0
302 0 0.00 885 0.92 0 1276 1 0
308 0.93 0 891 0.95 0 1277 0.98 0
312 1.95 0 892 0.92 0 1278 0 0
318 0.99 0 900 1 0
332 0 0.01 901 0.96 0
337 0.93 0 924 0.95 0
354 2.88 0 926 0.94 0
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Table 7.4 Comparison of performance of three different language models. All LSA
models use a SVD truncation of order 200.

Model Perplexity Improvement
over bigrams
Bigram 233 -
Bi- LSA 84.3 63.8%

Speech-based
bi-LSA 79.0 66.0%

using D'TW

Speech-based

bi-LSA using 78.0 66.5%

template matching
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Table 7.5 Perplexity values for the test set for three different language models at the
syllable level. The speech-based bi-LSA model uses the DTW approach. All LSA
models use an SVD truncation order of 200.

Language model Perplexity

Bigram 29.3

Text-based bi-LSA 23.1

Speech-based bi-LSA 24.1

Segments of syllables are required for the development of the speech-based bi-LSA
model. The Tamil database contains manually marked syllable boundary information.
This is used to derive the syllable segments. For the 1044 syllables chosen as the
vocabulary, reference syllable segments are chosen manually. Based on studies in
Section 5.7, the length of the documents is restricted to 5 syllables.

The DTW approach is adopted to construct the matrix W as described previously.
The perplexity of the test set for the syllable-based bi-LSA model using an SVD
truncation order of 200 is 24.1. This performance is similar to the text-based syllable
level bi-LSA model and better than a text-based syllable level standard bigram model.
The perplexities are given in Table 7.5.

We have shown that it is indeed possible to model the large span constraints that
exist among the words and the syllables directly from the speech signal. We have also

shown that large span constraint models are appropriate for the task.

7.4 SUMMARY

In this chapter the development of a speech-based large span constraint model was

explained. Two simple techniques were used to derive the speech-based bi-LSA model.
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In the DTW-based approach, the matrix of membership values which is similar to
the matrix of counts was developed. For every word segment in the training data,
the DTW was performed with each reference word segment in the vocabulary. The
distance measure was converted into a membership value which was used to derive
the matrix of membership values directly from the speech signal. The performance
of this speech-based bi-LSA model was superior to the bigram model, developed both
at the word level and the syllable level. The DTW approach was time consuming,
as the DTW had to be performed between every word segment in the training data
and all the words in the vocabulary. As an alternative, we proposed a template-
based approach to develop the speech-based bi-LSA model. The performance of this
model was similar to the model derived based on the DTW approach. Smoothing at
the word level and document level, and parameter optimisation may further improve
the performance of the language model [8]. This method of indirect incorporation of
the speech information may be a small step towards using speech level constraints in
language models to improve the performance of speech recognition. One limitation
in extending the study is the lack of a large speech corpus of the size required for
language modelling, segmented in terms of words. A summary of the issues discussed
in this chapter is given in Table 7.6. In the next chapter, we extend the use of the

large span constraint models to the speaker recognition task.
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Table 7.6 Summary of approaches to develop speech-based large span constraint
models.

e Large span constraints exist in speech.
e Previous approaches have always modelled constraints from text corpora.

e We proposed two approaches to model the large span constraints directly from the speech

signal, using simple matching techniques.

e The performance of these models were better than the standard bigram language model

and equivalent text-based large span constraint models.
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CHAPTER 8

LARGE SPAN CONSTRAINT MODELS FOR SPEAKER
RECOGNITION

8.1 INTRODUCTION

Inconsequently the previous chapters we used the large span constraint model for lan-
guage modelling. In this chapter we propose to extend the use of large span constraint
models to the speaker recognition task. The idea is to see if there exist latent idi-
olectic characteristics of a speaker that can be modelled in the framework of LSA and
whether such a large span constraint model can perform well independently for the
speaker recognition task. Alternatively, as in the case of language modelling if the
large span constraint speaker model provides sufficient additional constraints (comple-
mentary information), it can be used in combination with other speaker recognition
approaches to improve the overall performance of the system.

There exist certain traits specific to a speaker that help in easy identification
of the speaker among a set of familiar speakers. These include certain disfluencies
and mannerisms like stress for certain words, frequent usage of certain phrases or
back channel expressions and manner of pronunciation. The focus of this study is
identification of a speaker using such idiolectic traits in conversational speech. Every
normal conversation by a speaker contains his idiolectic signature. The idiosyncratic
patterns in speech are likely to be speaker dependent. These patterns are noticed more
in unrestricted conversational speech. They are not so pronounced in read speech or
news bulletin type of speech. A large span constraint model is developed to capture

the idiolectic signature of each target speaker to be represented in the system. The
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similarity of the idiolectic signature in the claimant utterance to that captured by the
model is used to hypothesise the target speaker. The technique is demonstrated for
the NIST 2003 extended data task [118].

In conventional speaker recognition studies, short-time acoustic features are ex-
tracted from the speech signal and Gaussian mixture models or neural network models
are trained to estimate the distribution of the feature vectors in higher dimensional
space [156] [157]. The advantage of such modelling is its simplicity and robustness.
These techniques make no effort to capture the higher level knowledge present in
speech. To improve the performance of conventional speaker recognition systems, aug-
menting the scores from the GMM-based system with prosodic and lexical information
to identify speakers had been explored [124] [120]. A task similar to speaker recogni-
tion based on idiolectic characteristics is that of authorship attribution. The objective
of authorship attribution is to establish the authorship of anonymous or doubtful texts
based on the idiosyncrasies observed in the previous writings of the authors. The work

in this area was reviewed in Section 2.6.

8.2 LATENT SEMANTIC ANALYSIS FOR SPEAKER RECOGNITION

For every conversation of a speaker, the co-occurrences of words or phrases (n-gram)
called terms in the conversations, are sought to be captured in the latent semantic
analysis framework. A (ferm X conversation) matrix, W is constructed with rows
representing M terms and columns representing N conversations. Each element w; ;
contains the frequency count of the term ¢ in the conversation j. Fig. 8.1 depicts
the the block diagram of the proposed system. From the Switchboard corpus based
on the NIST 2003 evaluation plan, a set of 4/8/16 conversations belonging to the
target speaker are combined and used as the training data for the speaker. The com-

bined conversation is now considered as one conversation for computing the frequency
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Fig. 8.1 Block diagram of the proposed large span constraint based speaker recognition
system.

counts. The frequency counts of the terms in the conversations are used to construct
a column of the matrix W representing the speaker. To facilitate decision making,
conversations of background speakers are also used. Background speakers are those
speakers who are not part of the training or test set. Conversations from these speak-
ers are used to create the background (reference) model. For each conversation of a
background speaker, one column of W is derived in a manner similar to the target
speaker. Thus the matrix W is composed of N = N; + N, columns where, there
are N; columns corresponding to the target speaker conversations (usually one) and
N5 columns correspond to the background speaker conversations. The matrix W, is
decomposed into a product of three matrices using SVD. Only the £ largest singular
values and their associated vectors are retained such that, W ~ T.S.C” where, T and
C are the matrices of singular vectors, and S is the matrix of singular vectors, similar

to that mentioned in Section 5.1.2. Instead of U and V the notation 7" and C' are used
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at the matrices are related to the terms and conversations. The matrix W captures
the major structural associations in the data. One model (T, S and C) is derived for
each target speaker. The similarity between a test conversation and the model reveals
whether the conversation is similar to that of the target speaker or the background
speakers. The use of background speakers also helps in test score normalisation. Term
usage (frequency counts) by a speaker is directly used in building the model since this
could be an indicator of speaker idiosyncrasies as in authorship attribution studies.
Term counts in W can be weighted by the inverse of the term entropy in the corpus
as it emphasises speaker specific terms [132].

If N;(s;) is the number of times a term ¢ is spoken by speaker s;, and N¢(C) is the
total number of times the term ¢ has occurred in the corpus C, then the probability

that a given token of word ¢ was spoken by speaker s; is given by

Ps)) = %((C)) . (8.1)

Then the entropy of the term ¢, over all the speakers is given by

E, = —ZPt(si)logPt(si) : (8.2)

During testing a column of terms is constructed from the claimant speaker’s con-
versation (X,) in a manner similar to the columns of matrix W. The column (X,)
is projected on to the orthonormal basis for the column space of W formed by the
column vectors of T. This representation in the reduced R-dimension space is given
by ¢, = XqTTS. Likewise the representation of the target speaker/background speaker
in the R-dimensional space is obtained by projecting the columns of W onto the
orthonormal basis formed by the columns of T. The rows of CS represent the pro-
jected vectors. The similarity between the claimant speaker and the target speaker

or the background speaker is found as the normalised cosine between their respective
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projected vectors. If the similarity between the target speaker and the claimant is
highest then the claim is accepted, otherwise the claim is rejected. Different similarity

measures may be used in arriving at the similarity scores.

8.3 DATABASE FOR IDIOLECTIC SPEAKER RECOGNITION

As part of the NIST 2003 speaker evaluation plan, multiple conversations of a speaker,
each of 5 minute duration are available for training. This data is part of the Switch-
board corpus phase 2 and 3. The data in this corpus has been organised into different
sets containing different combinations of speakers for the evaluation. Set I of the ex-
tended data task was considered for our study. This set contains 31 speakers. For
each speaker different combinations of 4, 8 or 16 conversations involving him/her are
used to build models for that speaker. A total of 265 models are thus built as dictated
by the evaluation. The claimant utterances are of 2 minutes duration. Only the text
transcriptions pertaining to the conversations are used in the development of the LSA-
based model. A total of 3663 tests are conducted against these 265 models. As part of
the evaluation auxiliary information was also provided. Some of the information pro-
vided are: (1) Text transcription of the entire corpus derived from a speech recognizer
(word error rate ~ 30%). (2) Scores obtained from a GMM based speaker recognition
system for this evaluation data. (3) Scores from a language modelling based speaker

recognition system (LM) and (4) Pitch contour estimates for the entire speech data.

8.4 EXPERIMENTAL EVALUATION

The terms in the matrix W are n-gram of order 1 to 5, i.e., phrases containing 1
to 5 words. All conversation pertaining to a target speaker (say 4 or 8 or 16) were
combined to derive one column (N; = 1, first column) in the matrix W. Conversations

pertaining to 300 background speakers (N, = 300) are used to derive the other columns
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of the matrix W. Thus the matrix W is of size M x 301, where M is the number
of terms. As explained earlier the columns of W contains the number of times a
term has occurred in the conversations pertaining to the speaker which are used for
training. SVD is performed on W retaining only 34 largest singular values and their
associated column vectors in the three matrices. The resulting matrices are of the
following sizes, T nrx34, S34x34, C301x34- The order of SVD truncation is derived based
on the trade off between maximising noise suppression and minimising reconstruction
error. The models were evaluated as described in the Section 8.2. The different
similarity measures used in the study are the cosine measure, Pearson correlation, and
the Jaccard coefficient [158].

The advantage of the cosine measure is that it is scale invariant and does not
depend on the length of the conversation. The cosine measure (s{©)) between two
vectors X,,X; is given by

T

(C) Xa Xp

S X,, X _—
() = Tl

where || @ || denotes the Ly norm.

Correlation is often used to predict a feature from a highly similar set of objects

whose features are known. The normalised Pearson correlation (s(F)) is defined as

sPx x _ 1 (Xa — ia)T(Xb — Xp)
(a0 ) (||< B 1) &4

2 Xq — Xq)|[2]| (%5 — Xp)

where X, is the average value of x over all dimensions.

The binary Jaccard coefficient (s')) measures the degree of overlap between two
sets, and is computed as the ratio of shared attributes (words) of x, AND x; to the
number possessed by x, OR x,. For example given the two sets of binary vectors
x, = (0,1,1,0)T and x; = (1,1,0,0)7, the cardinality of their intersection is 1 and the

cardinality of their union is 3, rendering the Jaccard coefficient 1/3. Extending this
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to discrete non-negative features the similarity is given by

T
X Xb

[1%all3 + 1115 — %7

(8.5)

s (Xq,Xp)

The effectiveness of the lower dimensional representation of the speaker conversa-
tions obtained after SVD is compared with the uncompressed raw vector of weighted
counts. The scores are obtained using the similarity measures. The similarity between
the claimant and the target model (first row of CS) results in the score for the target
model. Likewise the scores obtained between the claimant and the rest of the rows of
CS give the background scores. Test utterance normalisation is carried out using the
background scores. Using these scores the Detection Cost Function (DCF) is computed

to evaluate the performance of the model [118].

8.5 RESULTS

The detection cost for the large span constraint model trained using bigrams is shown
in Table 8.1. The list of bigrams used as terms are those which occur at least 4 times
in the conversations used for training the model. From the table we see that the
DCEF for uncompressed representation of the conversations vectors is about the same
as that for the representation derived after SVD. Conventionally if a larger number of
speakers are used then the background model is better. In such cases the SVD-based
representation would perform better compared to the uncompressed representation.
Hence results obtained from the SVD based representation of the conversation vectors
are reported in the rest of the tables.

As an alternative representation for the target speaker, among the conversations
(4/8/16) available for training the target model, one column vector is derived for
each of the conversations (i.e., Ny = 4/8/16. Thus the matrix W would be of size

(M x 304/308/316). During testing the similarity score of the claimant with each of
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Table 8.1 Detection cost for bigram term types without entropy weighting. The DCF
is given for three similarity measures and raw uncompressed vectors.

Term type/ Similarity Detection cost
# background Speakers/ measure SVD-based | Uncompressed
# Models per target speaker used representation | representation
Bigrams/ Correlation 46.95 46.58
30 Bg. speakers/ Cosine 46.90 46.51
Single model Jaccard 46.92 46.45
Bigrams/ Correlation 49.31 49.51
30 Bg. speakers/ Cosine 49.60 49.60
Multiple models Jaccard 49.44 49.52
Bigrams/ Correlation 30.99 30.01
300 Bg. speakers/ Cosine 32.62 32.19
Single model Jaccard 31.00 30.17
Bigrams/ Correlation 33.25 34.19
300 Bg. speakers/ Cosine 33.75 32.84
Multiple models Jaccard 31.88 31.57
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the 4/8/16 vectors pertaining to the target model is determined. The maximum of
these scores is taken as the score for the target speaker. The DCF based on these
scores is given as single model per speaker and multiple models per speaker in Table
8.1. Likewise the performance when the terms are unigrams is given in Table 8.2. We
see from both the tables that the single model per speaker approach performs better
than the multiple models per speaker approach. It is also observed that models using
larger number of background speakers (300 instead of 30) perform better.

To determine which type of terms capture the idiolectic constraints better, different
types of terms were explored. Unigrams, bigrams, all n-grams of size 5 or less excluding
unigrams and all n-grams of size 5 or less including unigrams were used. For these type
of terms the DCF of the model is given in Table 8.3. The Detection Error Tradeoff
(DET) plots for the system using n-gram of order 1 to 5 and SVD dimension 34 is
shown in Fig. 8.2. For the same data set (Set I of NIST 2003 extended data task),
scores from the language model based speaker recognition system provided as auxillary
data is used to derive the DET curve. This curve is also plotted in Fig. 8.2. These
two systems are based on the text transcriptions of the conversations. Another system
based on AANN models [159] is trained on the acoustic features derived from the
speech signal. Speech segment pertaining to the most frequently occurring 10 words
alone are used to train the AANN models. The speaker recognition scores obtained
from this system for set I of the data is also plotted in Fig. 8.2. We observe that the
Equal Error Rate (EER) for the large span constraint based system and the LM based
system are about the same. The DET plots are apart when we used only bigrams or
2 to 5 grams as the terms. This is seen from Fig. 8.3.

We notice that when the large span constraint model scores are combined using the

sum rule [160], with any of the other two systems, the performance of the combined
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Table 8.2 Detection cost for unigram term types without entropy weighting. The DCF
is given for three similarity measures.

Term type/ Similarity || Detection

# background speakers/ measure cost
# Models per target speaker used

Unigrams/ Correlation 25.49
30 Bg. speakers/ Cosine 25.30
Single model Jaccard 24.00
Unigrams/ Correlation 25.37
30 Bg. speakers/ Cosine 24.93
Multiple models Jaccard 23.70
Unigrams/ Correlation 21.35
300 Bg. speakers/ Cosine 21.74
Single model Jaccard 20.89
Unigrams/ Correlation 24.28
300 Bg. speakers/ Cosine 24.27
Multiple models Jaccard 23.32
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Table 8.3 Detection cost for different term types with and without weighting by en-
tropy for three similarity measures. Single model per speaker and 300 background
speakers are used.

Similarity Detection cost
Term type measure | With entropy | No entropy
used weighing weighing
Correlation 24.32 21.35
Unigrams Cosine 24.27 21.74
Jaccard 23.32 20.89
Correlation 49.31 30.99
Bigrams Cosine 48.43 32.62
Jaccard 49.98 31.00
Correlation 28.12 32.34
2 to 5 gram Cosine 30.39 32.46
Jaccard 29.11 31.07
Correlation 19.34 19.09
1 to 5 gram Cosine 19.68 19.66
Jaccard 19.02 19.02
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Fig. 8.2 DET plots for the large span constraint (LSC), AANN and Language mod-
elling based systems.

system improves, as seen in Fig. 8.4. The performance is better than any of the
individual systems. When the scores from all the three systems are combined then
we obtain the best performance. The EER reduces to about 12.0. This suggests that
there is significant complementary information that can be derived from the large span
constraint based speaker recognition system which would help improve the speaker

recognition performance.

8.6 SUMMARY

In this chapter the principles derived from the authorship studies, idiolectic speaker
recognition and latent semantic analysis were extended to derive large span constraint
models for speaker recognition. A speaker’s conversation was represented as a column
vector containing the terms (n-gram) spoken. A set of background speakers, not part
of the training data, was used to develop a background model. We projected this set of

conversation vectors onto a reduced dimensional space using SVD, and this formed our
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Fig. 8.3 DET plots for the LSC and Language modelling based systems using only
bigrams (top) or 2 to 5 grams (bottom) as terms.
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Fig. 8.4 DET plots for combined systems (LSC+LM+AANN).

speaker model. The claimant conversation was also projected on the reduced dimen-
sional space. The similarity between the claimant conversation and the conversation
of the target speaker was used to hypothesise the validity of the claim. Different sim-
ilarity measures and representations of the terms were examined. We found that the
model performed as well as other speaker recognition models based on the language
modelling principles. This large span constraint model provides complementary infor-
mation such that when the scores from this model were combined with scores from
other systems the performance of the combined system improves. This is despite the
fact that the quality of the transcripts are poor (~ 30% WER). The issues discussed
in this chapter are summarised in Table 8.4. In the next chapter, we summarise the
studies carried out in this thesis, list the major contributions of this work and propose

directions for future work in this area.
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Table 8.4 Summary of approach to model the idiolectic characteristics
for speaker recognition.

Idiolectic characteristics are speaker specific, and are spread over the entire conversation

(large spans). They can be used for the speaker recognition task.

Previous approaches used the n-gram language modelling principles to model the idiosyn-

crasies.

The approach proposed in this chapter extended the use of the LSA concept, to develop

large span constraint models for the speaker recognition task.

The performance of the proposed approach was similar to other approaches that are based
on the language modelling principles. The model provides complementary information.

When the model is combined with other models, the overall performance improves.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

9.1 SUMMARY OF THE WORK

In this thesis, we addressed the issues pertaining to the development of large span
constraint models for use in speech systems. In most speech systems, the use of higher
level knowledge (constraints) improves the performance of the system. Some of the
higher level constraints in speech are the syntax and semantics associated with the
language spoken. Conventionally, language models are used to capture the syntactic
constraints. The large span semantic constraints can be captured using the framework
of Latent Semantic Analysis (LSA). These language models have always been derived
from large text corpora. For many languages, especially non-literary languages, such
text corpora do not exist. For such languages, it is easy to record speech data in large
volumes with minimal effort. In this work we had described approaches to derive the
large span constraints directly from the speech signal using the framework of latent
semantic analysis.

With the speech recognizer as a possible application, language models capturing
large span constraints were developed. The framework of latent semantic analysis
requires the construction of a matrix (W) of co-occurrences of words in documents
(here spoken documents) to capture the semantic constraints. This matrix was derived
directly from the speech signal using simple matching techniques like Dynamic Time
Warping (DTW) and template matching. In the dynamic time warping approach, the
speech segment corresponding to a word in the training document was matched with

each reference word segment corresponding to the words in the vocabulary. Based on
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the dissimilarity measure, a set of closest matching words were found. The values in
the corresponding locations of these words in W were incremented. This procedure
was carried out for all the words in the training document, and for all the documents
in the corpus. This matrix, derived from the speech signal is similar to the matrix
of co-occurrences derived from a text corpus. It formed the basis for the LSA-based
model. The model captured the large span constraints that exist among the words.
We showed that when such a model is combined with a bigram language model, the
performance of the combined bi-LSA model is better than the bigram model.

In the above approach, DTW has to be performed between each word segment in
the training corpus and each reference word segment in the vocabulary. For a medium
sized vocabulary and a large training corpus, the approach would be time consuming.
Hence as an alternative, a template-based approach was proposed. In this approach
a word is represented by a fixed dimensional pattern vector derived from the speech
signal by concatenating the feature vectors corresponding to selected frames of the word
segment. This large dimensional vector was compressed to a smaller dimension using
Autoassociative Neural Network (AANN). This reduced dimensional pattern vector
represents a word segment. The similarity between a reduced dimensional pattern
vector in the training data and reference word pattern vector was used to obtain the
closest matching words. The rest of the procedure in constructing W and the bi-LSA
model is same as that in the DTW approach. We showed that the performance of
the the speech-based large span constraint model using the template-based approach
is similar to the performance of the model derived using the DTW approach.

The large span constraint models were also derived at the syllable level using both
the text and speech corpus. It was shown that there exist large span constraints at the

syllable level also. The syllable level large span constraint model was combined with
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the syllable-based bigram language model to give the bi-LSA model. The performance
of the speech-based bi-LSA model was shown to be better than the bigram language
model both at the word and syllable level. The performance was better than the
equivalent text-based large span constraint models, at the word level and about the
same at the syllable level.

One of the main issues while developing a speech-based large span constraint model
is the possibility of occurrence of errors in the recognition/matching stage. In speech
recognition the common errors that occur are the insertion, deletion and substitution
errors. Usually a combination of all the three errors occur. The effect of these speech
recognition errors were simulated on the word-based matrix W derived from the text
corpora. It was found that the performance of the large span constraint language
model was not significantly affected for errors (either individual or in combination) in
the transcription up to 20%.

Language models are predominantly used in speech recognizers. The first step
in the development of a speech recognizer is to identify the subword unit to model.
From an information theoretic perspective it was shown that syllables have a higher
redundancy when compared to conventionally used subword units like phonemes, bi-
phones and triphones. A unit with higher redundancy captures the local constraints
better, and is more suitable for recovery from errors. Thus syllables are appropriate
as subword units for speech recognition. Their use is also appropriate from the speech
production and perception point of view. To develop syllable models for the speech
recognizer, statistical characteristics of the syllables that occur in the II'TM speech
corpus were studied. The studies suggested that modelling a small subset comprising
of the most frequently occurring syllables in the syllable vocabulary is likely to cover

most of the syllable occurrences (about 88%) in the corpus. The studies were used to
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arrive at some of the parameters useful for developing syllable models using the HMM
framework.

A syllable-based recognizer was developed for two Indian languages, Tamil and
Telugu. To improve the recognition rate of the syllables, neural network-based pre-
classifiers were developed to classify the syllables into groups (equivalent classes). A
conventional HMM-based syllable recognizer was then used to hypothesize the syllable
within the group. This reduced the search space and improved the recognition rate of
the syllables.

In conversational speech, certain idiolectic characteristics specific to a speaker
can be identified. These idiolectic characteristics are spread over large spans (entire
conversation). It is possible to use these characteristics to identify a speaker. The
large span constraint model was extended to the speaker recognition task. The latent
idiolectic characteristics of a speaker were captured using this model. This large span
constraint speaker recognition system performed as well as other speaker recognition
systems that are based on language modelling principles. The system also provided
complementary information. Hence when the scores from the large span constraint
based speaker recognition system were combined with the scores of other speaker

recognition systems, the performance of the combined system improved.

9.2 MAJOR CONTRIBUTIONS OF THE WORK

1. Large span constraint language models were derived directly from the speech

signal for the first time.

2. Approaches based on simple matching techniques were proposed to derive the

speech-based large span constraint language model.

3. It was shown that large span constraints exist at the syllable level also. An
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9.3

approach was proposed to construct a large span constraint model at the syllable

level.

. The performance of the speech-based bi-LSA model was shown to be better than

the bigram language model both at the word and syllable level. The performance
was better than the equivalent text-based large span constraint models, at the

word level and about the same at the syllable level.

. The latent idiolectic characteristics of a speaker was captured using large span

constraint models. This approach was extended the use of the LSA concept for

the speaker recognition task.

. A support vector machine-based preclassifier was proposed to reduce the search

space in the speech recognizer and to improve its performance.

. From an information theoretic perspective, it was shown that the syllable was

an appropriate subword unit for speech recognition.

DIRECTIONS FOR FUTURE WORK

. Build a complete syllable-based speech recognition system: In this work we

develop a syllable recognizer. The vocabulary of the recognizer is a small subset
of the syllables in the language. Methods of developing acoustic models for all
the syllables in the language needs to be addressed. As most of the syllables
are infrequent, it may involve tying the states and mixtures of the HMM model.
Decision tree clustering approach to tie the states and pool the data may be
adopted. However the decision making questions for the procedure are not
readily available for any Indian language. A larger database for training is also

required. It should be preferably segmented in terms of syllables.

. Derive the bigram language models directly from the speech data: In the ap-
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proach adopted to develop the bi-LSA model, the bigram model was developed
from a text corpus. Approaches to deriving the bigram models directly from the
speech signal need to be developed. This would result in a better integration of

the bigram model with the speech-based LSA model.

. Incorporate the speech-based bi-LSA model into the speech recognizer: Lan-
guage models are primarily used in a speech systems. The speech-based bi-LSA
model has to be integrated into a speech recognizer. As a complete speech
recognizer is not available for any Indian language, this integration is not yet
carried out. As the language model is of large span, one approach to complete
the integration is as follows. Word lattices along with the acoustic and language
model scores can be derived from the speech recognizer. The lattice can be
rescored with the large span language modelling probabilities. The best scoring

1-best hypothesis can then be derived.
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