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ABSTRACT 

There are many situations where it is necessary to reconstruct images of objects 

from data collected by an array of sensors. In these sensor array imaging (SAI)  

situations, the collected data is sparse and noisy, and hence the images 

reconstructed from the data are poor in quality. This thesis addresses the issues 

in the reconstruction of images from sparse and noisy data. The objective of the 

thesis is to develop algorithms for the reconstruction of images with improved 

quality by using the sensor array data together with the available knowledge about 

the imaging situation. 

Mathematically, the reconstruction of an image from sparse data is a 

problem of solving a set of underdetermined equations. Many solutions exists for 

this type of problem, as this is an ill-posed problem. However, knowledge about 

the imaging situation and additional data in the form of multiple frames of sensor 

array data, can be used to solve this problem. The additional knowledge can be 

used as constraints in the reconstruction process to obtain images with significantly 

improved resolution. Algorithms were developed for image reconstruction for the 

following cases: ( i)  single frame of data, (ii) multiple frames of data collected in 

a static imaging situation and (iii) nzultiple frames of data collected in a dynanlic 

scene situation. 

Algorithms were developed based on the methods of Projection Onto Convex 

Sets (POCS), Tikhonov-Miller (TKM) regularization and TKM-POCS to 

incorporate known constraints into the solution to extract the best possible image 

from a single frame of duta. These methods require precise knowledge of the 

constraints about the object, which may not be available always. Therefore, a 

method based on an artificial neural network (ANN) model, using the principles 

of bidirectional associative memory, is proposed. This model reduces the 

importance of these constraints in the reconstruction process. Images 

reconstructed using the ANN model were found to be significantly better in quality 

than the images reconstructed using other methods mentioned above, even though 



very little knowledge about the object is used as constraints in the reconstruction 

process. 

In practice several frames of sparse data may be available from a given 

experimental setup. In such a case, the quality of the reconstructed image can be 

improved significantly, even when there is noise in the data. Algorithms based the 

methods of POCS, TKM regularization and a cascaded ANN model were proposed 

to combine the multiframe data. In this case too, the quality of the images 

reconstructed using the ANN model is significantly better the images reconstructed 

using other methods. 

In many situations, multiple frames of sensor array data may be available 

as a sequence of frames as in a dynamic scene situation. In these c u e s  each 

frame may contain information about the image, but with some unknown motion 

information superimposed. Reconstruction algorithms are developed for two 

situations: (a)  kttown motion parameters and (6) unknown motion parameters, 

but object motioi7 restricted to a small region in successive frames. The quality of 

the reconstructed image improved as more frames of data in the sequence were 

used for reconstruction. 

Performance of these ntethod~ is measured using (a) clussification accuracy 

of a traitted neural network aitd (b) the method of SVD. 

xvi 



INTRODUCTION 

1 .I Objective of the thesis 

There are many situations where it is necessary to reconstruct images of 

objects from the data collected by a set of sensors. In these sensor array 

imaging (SAI) situations, the collected data is sparse and noisy, and hence 

the images reconstructed from the data are poor in quality. This thesis 

addresses the issues of sparsity and noise in the data on the resoll;iion 

and quality of the reconstructed images. We develop algorithms for the 

reconstruction of images with improved quality by using the sensor array 

data together with available knowledge about the imaging situation. 

1.2 Sensor array imaging 

A simplified simulated SAI setup shown in Fig.l.1 is used in the present 

study. In this setup, the object and the receiver surfaces are assumed to 

be parallel planes. Each point (s,t) on the object plane is assumed to be a 

radiating source with appropriate intensity f(s,t) contributing to the field 

g(x,y) at each point (x,y) on the receiver plane. The data received by the 

receiver array is given by 



Reflected wave 

- - - - - - - - - -  
. Incident wave 

z 
plane 

F i g 1 1  A typical SAI setup. The object and receiver planes consists of the same number of 
points. z is the distance between the object and the receiver. A is the wavelength of 
the transmitted wave. The reflected pattern is captured at the receiver plane. 

where h(x,y;s,t) is the impulse response function given by 

-2 ikT5y+L , L is the distance between the object and the h(x,y) = ,p 

27c 
receiver planes, k = -* is the wave number, and I is the wavelength of the 

transmitted plane wave. The process of obtaining the image, given g(x,y) 

and h(x,y;s,t) is known as image reconstruction or imaging. If g(x,y) and 

h(x,y;s,t) are known at all the points and the object and receiver planes 

have the same number of points, then a simple inversion will generate the 

exact intensity values f(s,t) on the object plane from the field data g(x,y) on 

the receiver plane. 

The receiver data, besides being sparse, is also noisy. Therefore the 

received data is modeled as 

where n(x,y) is the Gaussian noise with zero mean. If the impulse response 

function is stationary, then (1.2) is identified as convolution and is rewritten 

as, 



where * is used to, denote 2-D convolution. In a simulation setup, we restrict 

the number of points on the object and the receiver planes to a finite 

n ~ ~ m b e r  (MxM) and replace the integration in (1.2) by a summation. The 

functions with continuous arguments h(x,y;s,t), f(x,y) and g(x,y) are replaced 

by arrays of M x M  samples taken on 2-D rectangular lattices at equispaced 

points. The discrete equivalent of SAI model is 

In a SAI situation the number of receiver elements (sensors) are much fewer 

than the number of points needed on the object plane for proper resolution 

of the object. The ratio of the required number of points (M" = W X x q ,  

/@ and are the number of points along the x-axis and y-axis, respectively) 

on the object plane to the actual number of points ( A f  = M L x q ,  

M: and Mi are the number of points along the x-axis and y-axis, respectively) 

on the receiver plane is defined as sparsity (K = M"/M'). The ratio K is always 

greater than one as I'& > M'. This is because we assume a certain high 

value for M(', say 128x128 to represent the image of an object clearly, 

whereas the number of sensor array elements, N', at the receiver plane will 

be significantly smaller, say 16x16 due to physical limitations in realizing a 

sensor array system. Hence the images reconstructed from the sparse data 

will have poor quality. The aim is therefore to appropriately fill in the missing 

information in g(ij) and thereby reconstruct an image with improved quality. 

In SAI, the image is reconstructed using the following procedure. Using 

the convolution theorem, the convolution in (1.3) can be written as, 



where G(u,v),F(u,vj and H(u,v) are the 2-0 Fourier transforms (FT) of 

g(x,y), f(s,t) and h(x,y), respectively. N(u,v) is the 2-0 F i  of n(x,y). We assume 

that the image and the receiver planes have the same number of points. 

The image f(x,y) is obtained by deconvolution. Multiplying bcth sides of (1.5) 

with H-l(u,v) and taking inverse FT (IFT), we obtain the image f(x,y). 

where W 1 ( u , v )  is given by [Sutton 791, 

-- 7----7 [ I - 1 - for 1 - ( A ~ ) ~ - ( j " v ) ~  > 0 
H-'(u,v) = 1, 0. otherwise 

In this study, the sparse data is collected under the following 

conditions: (a) The object and the receiver planes are parallel. (b) All the 

receiver elements are aligned in a single plane. (c) There are no 

disturbances in the medium. (d) The system model is stationary. 

Both sparsity and noise contribute to the poor quality of :he 
F 

reconstructed images. B ~ i t  in practice, in bddition to this, received data majl 

also be corrupted due to several other reasons. 

Transmission of data over a noisy communication channel 

may corrupt the aata. Image formation mechanism must take 

care of the medium characteristics [Goutsias 871. 

Receiver and the object planes may not be parallel to each 

other. 

All the sensors in the receiver plane may not be in the same 

plane. 



Failure of some receivers will further increase sparsity 

(K > 1). 

Measurement and quantization errors may corrupt the data. 

The image reconstructed from data corrupted by one or more of the 

above will have a poor quality, even when K = 1. 

1.3 Solutions to sparse data problem 

Since the K > 1 in a SAI setup, the number of equations for g(i j) 's in (1.4) 

are less than the number of unknowns (f(ij)). Therefore, this is a problem 

of underdetermined set of equations. Many solutions exist for such 

problems [Giordano 851. This is an ill-posed problem, since the uniqueness 

of a solution is not satisfied. 

Since many solutions exist for underdetermined set of equations, a 

unique solution can be obtained by selecting the one with minimum norm 

using pseudoinverse [Giordano 851. Most often, all the reconstrl~cted 

images including the minimum norm give images with poor resolution. 

There are number of solutions for a sparse data problem satisfying 

the given set of equations. Ill-posed problems of this type can be solved 

by incorporating knowledge about the object as constraints in the 

reconstruction algorithm. Each piece of additional knowledge about the 

object reduces the solution space and the ignorance about the object being 

imaged. As a result, resolution of the reconstructed image increases. As 

more and more constraints are incorporated, the acceptable solution space 

will be reduced significantly, resulting in an image with improved quality. 



1.4 Additional knowledge about the object 

In practice, besides the sensor array data, one may have additional 

knowledge about the object. In this section, we describe four types of 

knowledge about the object which may be included in the reconstruction 

process as constraints. 

'The pixels of an image exist in some interrelated fashion rather than 

in a random order. Except for the pixels near the edges of an image, almost 

every pixel will have neighbours. This knowledge about the object is related 

to the smoothness of the surface of the object and this is the first type of 

constraint. This can be incorporated as a smoothness constraint in the 

reconstri~ction algorithm. 

A second type of knowledge about the object is related to the extent 

of the object in the image, namely the finite support of the object. The 

region which encloses the object in an image is known as the support 

region. The region beyond the support region is assumed to be a non-object 

region. This knowledge about the object can be incorporated as a finite 

support constraint in the reconstruction algorithm. 

A third type of knowledge is related to the intensity value of each of 

the pixel in the reconstructed image. Due to the presence of noise in the 

sparse data, some of the reconstructed pixels in the image may have 

negative values, which is not realistic. This knowledge about the image can 

be incorporated as a positivity constraint in the reconstruction by 

suppressing the negative values. 

In addition to these constraints, for a given experimental setup, it may 

be possible to obtain sparse sensor array data for several parameter 

6 



settings, like the distance between 'the object and the receiver or the 

frequency of the radiating wave. This is cailed multiple frame data. It may 

also be possible to obtain multiple frames of data as a sequence of sensor 

array data for different positions/orientations of the object relative to the 

receiver, as in a dynamic scene situation. The aim of this thesis is to 

illcorporate all known constraints and combine multiple frzmes of sparse 

and noisy data to reconstruct images for visual observation of the objects. 

1.5 Types of images 

The quality of the reconstructed image depends not only on the 

reconstruction algorithm but also on the nature of the objects being imaged. 

A 2-D planar object in a real world can be broadly classified into four types. 

Fig.l.2 shows four types of binary irnages illustrating different levels cf 

ccmplexity of the object being imaged from reconstruction point of view. 

Fig.l.2a is an image with several pixels together, thus representing a class 

of smooth images. Fig.l.2b is an image consisting of smooth regions as 

well as regions with single pixel widih as in the letters of CYCI-ING. This 

image is definitely more complex than the image in Fig.l.2a. F i g . l . 2 ~  is an 

image with smooth lines of single pixe! width. Here smoothness is confined 

Fig.l.2. Four different types of binary images. (a) A smooth image. (b) An image with smooth 
regions and smooth lines. (c) An image with smooth lines. (d) An image with isolated 
pixels. 

CYCLING 

(a) (b) (4 (d) 

49 <--5 . . . . . . . . . . .  . . .  
. : : : : : : : : : : : : : :  . . . . . .  . . . . . . . . . . . . . .  . . .  :.::::: 

. . . . . . . . . .  .. . . . . . . . . . . .  . . .  .. 



to only along lines. Fig.1.2d is an image with isolated pixels, and hence is 

the most difficult of all the four types for reconstruction from sparse data. 

From the above discussion, it is clear that the quality of the 

reconstructed image depends not only on the sparsity ratio K and noise: 

but also on the type of the object. For example, the image reconstruction 

is difficult when the desired image is of the type given in Fig.1.2d to 

generate sparse data. In our studies, image reconstruction algorithms are 

tested for various K values, for two different types of images (Fig.1.22 and 

1.2b), and for various SNR values. 

The data corresponding to Fig.1.2a is used to study the effect of the 

known constraints on the quality of the reconstructed image. In order to 

study the effectiveness of combining multiframe data, we consider the more 

complex image (Fig.1.2b) for simulation of sparse data. Apart from these 

images, several images representing olympic symbol set shown in Fig. 1.3 

are also used for testing the algorithms. 

1.6 Quality of reconstruction 

The quality of the reconstructed image depends on the purpose for which 

it is intended. Any type of degradation in a TV image for example, is 

objectionable for normal viewing. In SAI situations the reconstructed images 

are poorly resolved and noisy. It may not be possible to identify visually 

some objects in the reconstructed images. Therefore the quality of the 

reconstructed images is assessed based on a different criterion. We use 

the classification accuracy of a trained neural network as a measure of 

quality of the reconstructed image. We also propose a new quality measure 

based on the method of singular value decomposition (SVD). 

8 



Fig.1.3. Images of some olympic game symbols. 



1.7 Sensor array imaging and image processing 

Let us assume that there are as many sensors as there are points on 

the object plane. This is a holographic imaging model where each sensor 

in the receiver plane receives a weighted sum of all the points on the object 

plane. Therefore the data is in a transformed domain. Since image 

reconstruction is a reverse process of data generation, contribution from 

every sensor is very important to obtain the image at each pixel. As 

K > 1, there will be no contribution from the missing sensors. As a result 

all pixels in the reconstructed image are affected. Image processing 

techniques like histogram equalization, edge enhancement, meanlmedian 

filtering and morphological filtering [Yegnanarayana 90a] are not suitable to 

process the reconstructed image. Therefore, methods are propcsed to 

incorporate constraints during reconstruction and also combine multiple 

frames of sparse data to improve the quality. 

1.8 Organization of the thesis 

The thesis is organized as follows: In Chapter 2, we review solutions to 

ill-posed problems, namely reconstruction with a single frame of data with 

known constraints and methods of combining multiple frames of data. We 

also review literature related to image reconstruction using artificial neural 

network models. 

In Chapter 3, we discuss methods to incorporate various constraints 

into the solution and extract maximum information from a single frame of 

sparse and noisy data. In particular, we propose algorithms based on 

Tikhonov-Miller (TKM) regularization, the method of Projection Onto Convex 

Sets (POCS), and a method based on both TKM regularization and POCS 
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for image reconstruction. We discuss a quality measure for the 

reconstructed image based on the classification accuracy of a trained neural 

network. 

In practice several frames of sparse data may be available from a given 

experimental set up. In such a case, the quality of the reconstructed image 

can be improved significantly by combining the multiple frames of data, 

even when the data is sparse and noisy data. In Chapter 4,  we discuss 

methods of image reconstruction from multiple frames of sparse and noisy 

data. 

Methods based on POCS and TKM regularization require precise 

knowledge of the constraints about the object, which may not be available 

always. In Chapter 5, we propose a method based on artificiai neura! 

network (ANN) model for reconstruction of an iniage from a single frame 

of sparse and noisy data. This method reduces the importance of the 

constraints. An ANN model is also proposed for image reconstruction from 

multiple frames of sparse and noisy data. We also discuss a new quaiity 

measure based on the method of SVD. 

In Chapter 6, a dynamic scene situation is considered for collecting a 

sequence of multiple frames of sparse data. In these cases each frame may 

contain information about the image, but with the unknown motion 

information superimposed in each frame. Reconstruction algorithms are 

developed for two situations: (a) known motion parameters and (b) unknown 

motion parameters. In the latter case, methods are discussed for the case 

when the object motion is restricted to a small region in successive frames 

and for the case when the object motion is unrestricted. The last chapter 

gives a summary of this thesis. 
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A REVIEW OF 

IMAGE RECONSTRUCTION METHODS 

In this Chapter, we review some existing solutions to ill-posed problems 

within the framework established in Chapter 1. Conventional image 

restoration is a well studied problem and large amount of literature exists 

on this topic. On the other hand, not many attempts have been made for 

image reconstruction from sparse data. Since both the problems belong to 

the class of ill-posed problems, we discuss methods used for restoration 

of images. We restrict our review to general methods and algorithms which 

have a direct bearing on the problem of image reconstruction from sparse 

data. 

2.1 Methods of solutions from a single frame of data 

We consider first image reconstruction using inverse filtering. If the imaging 

model is known accurately, the noiseless case with the sparsity ratio 

A- = I ,  inverse filtering is the best method for image reconstruction. ti the 

model is unknown, then inverse filtering method fails to provide an 

acceptable result. To illustrate the effect of noise on inverse filtering, we 

assume that the data is corrupted by noise. From (1.5), the image f can 

be reconstructed as follows: 

G N F = - - -  G N 
H H '  

f = IFT F = IFT - - - 0 [ H  H )  



The indices are dropped for convenience. 'The term N/H will be quite large 

for low SNR data, and the reconstructed image will be dominated by noise. 

Undesirable results may also occur due to very small (near zero) values at 

certain spatial frequencies of H. 

In order to reduce the effect of noise, it is reasonable to define 

constraints and to incorporate them in the minimization of error [Phillips 

621. One way to avoid the large fluctuations in the solution is to find an 

image ? in such a way that 1 1  ?- fl l 2  is minimized where 1 1 .  I is the I, 

norm. In other words, ?is found such that I I ?- fl l 2  r I IN1 1'. Minimization 

is done based on the assumption that the total energy of the noise signal 

I IN1 l 2  is known. Wiener .filter [Gonzalez 87, Wahl 871 is used to minimize 

I ( ?- fl 1'. The solution to the ill-posed problem in this case is given by 

where p i s  the FT of ? ,  H* is the complex conjugate of H,  P, is the power 

spectrum of the noise and P, is the power spectrum of the image. This 

reduces to inverse filtering in the noise-free case. Pratt and Davarian [Prait 

771 presents a fast computational techniques for Wiener image restoration. 

Singular vaiue decomposition (SVD) is another noniterative 

reconstruction method for spatially invariant systems [Andrews 74, Huang 

75b. Shim 811. The trade off between the amount of noise and the signal 

quality is obtained by restricting the number of singular values used for 

reconstruction. Here, it is assumed that the undesirable effects in the 

ill-posed problem are due to the eigenvectors corresponding to smaller 

singular values. These vectors are not used in the image reconstruction 



process. The optimum value for the number of terms is chosen manually 

by reducing the number of smaller singular values and it is stopped when 

a good quality image is reconstructed. 

Another approach to overcome the ill-posed nature of the early vision 

problems is based on Baysean estimation and Markov random field (MRF) 

models. In this approach, the a priori knowledge about the object is 

represented in terms of an appropriate probability distribution. This distributior; 

together with a probabilistic description of the noise allows cne to compute 

the posterior distribution P,,,, which represents the likelihood of a solution 
A 

f given the observations g. In this way, one can solve the reconstruction 

problem by finding the estimate that either maximizes this a posterior 

(MAP) probability distribution or minimizes the expected value (with respect 

to P,,,) of an appropriate error function [Marroquin 871. 

A major issue in the optimization methods described above is the 

choice of suitable objective function. These formulations guarantee a single 

solution. An unrealistic objective function may lead to unacceptable 

solutions, as they may incorporate erroneous information about the object. 

As there are uncertainties surrounding these problems, it is more realistic 

to provide a region of acceptable solution space rather than a single 

solution [Combette 931. The most straightforward approach to obtain 

acceptable solutions is to incorporate all available knowledge about the 

object in the problem formulation. In this formulation, each piece of 

knowledge about the object is represented by a set in the solution space 

and the intersection of such sets constitutes a feasible solution set. A 

solution is called a feasible solution, if it satisfies all the constraints imposed 

on the solution [Trussel 841. If each set is a convex set, then the method 



of Projection Onto Convex Sets (POCS) can be used to obtain a solution 

from the feasible solution set [Youla 821. 

2.2 Solutions from multiple trames of data 

Hunt and Kubler [Hunt 841 have formulated a multichannel image restoration 

filter in which the mean square error between the ideal and the restored 

image is minimized. Here the multichannel images refer to the red, green 

and blue channel (color) images. The restoration method uses both the 

within channel and between channels correlations. This method is based 

on the assumption that the covariance matrix formed by the image vector 

is separable into spatial and spectral components. This separability 

assumption enables the decorrelation of the charlnels based on the 

Karhuenen-Loeve transformation. In other words, this transformation makes 

the information from all the channels orthogonal. They have shown that 

multichannel restoration of the transformed signal under this assurrlption is 

equivalent to the independent restoration of individual channels. 

Galatsanos and Chin [Galatsanos 891 have proposed a Wiener based 

solution that utilizes the advantage of the special structure of the correlation 

matrix of the multichannel image. The Wiener based filter does not require 

the spectral and the spatial separability assumption as in [Hunt 841. 

Ozkan et al [Ozkan 921 have discussed multiframe Wiener filtering 

algorithms which account for both spatial and temporal correlations for 

restoring image sequences degraded by both blur and noise. A motion 

compensated multiframe Wiener filter, where the motion parameters have 

been estimated from a motion detection algorithm, has also been 

suggested. 
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Approaches based on Wiener filtering require that all the multiframe 

data be present at the same time for computation. The dimensionality of 

the correlation matrices significantly increases when the number of frames 

increase. Moreover, if some of the frames of data do not correlate well with 

the other frames, multiframe image reconstruction scheme may not result 

in a good quality image. In the worst case, the.reconstructed image may 

not be better than the image reconstructed using any of the single frame 

methods. In such a case, it is necessary to  devise a mechanism to discard 

frames that do not correlate well with the existing ones. 

Multiframe approaches discussed above depend critically on the 

accurate estimation of the cross correlation of the multiband images. Sezan 

and Trussel [Sezan 891 have shown that the multispectral Wiener solution 

that takes into account the cross correlations between image channels may 

be very sensitive to the estimates of the cross correlations. 'The use of a 

priori information and its effect on rnultiband image restoration was 

considered. A set-theoretic framework for incorporating a number of 

convex-type constraints was suggested for simultaneous use of a priori 

within-band and between-band properties of the images. The multiband 

restoration was carried out using the Projections Onto Convex Sets (POCS). 

Katsaggelos and Paik [Katsaggelos 881 have proposed iterative 

techniques for restoring color images. The inter-channel correlation was 

incorporated into the restoration algorithm by using the result of the first 

channel restoration as the initial estimate for the other two channels. The 

iterative restoration algorithms were based on the regularization technique 

where the solution vector satisfied the smoothness constraint and was also 

consistent with the data. 



Galatsanos et al [Galatsar?os 911 have suggested a least squares filter 

for multichannel images. Two approaches based on constrained 

optimization and set ,theoretic methods have been used to derive restoration 

filters. This is an extension of the method proposed by Katsaggelos et al 

[Katsaggelos 911. Knowledge about the image restricts the solutior! to lie 

in an ellipsoid. The resultant solution was found from the intersection of all 

such sets obtained from multiframes of data along with another ellipsoid 

defined by the smoothness constraint. 

Galatsanos and Chin [Galatsanos 911 have developed a Kalman filter 

for optimal restoration of multichannel images. 'The filter was derived using 

a semicausal image model that included between-channel correlation. 

Multichannel filters for stationary and nonstationary image models were 

developed. 

Kim et al [Kim 901 have proposed a method to reconstruct high 

resolution images from m~~lt iple frames of low resolution images. Using the 

aliasing relationship between the undersampled frames and the reference 

frame, a weighted recursive least-squares algorithm was developed. 

lrani and Peleg [Irani 901 have developed an iterative algorithm to 

improve the resolution of an image in an image sequence. The approach 

is similar to back-projection used in tomography. Knowledge about the 

imaging process and the relative displacement of images were used to 

reconstruct a high resolution image. 

Mariadassou and Yegnanarayana [Mariadassou 901 have developed 

methods based on POCS and Projection Onto Nonlntersection Convex Sets 

(PONICS) to reconstruct images from multiple frequency sparse data. They 



developed a method of applying the operators in parallel and showed that, 

if the constraints were consistent and the convex sets had nonempty 

intersection, then both serial and parallel methods gave the same set of 

fixed points. They have shown that PONICS method could be used even 

when the intersection of the convex sets was empty. 

Burl [Burl 931 has proposed an extended Kalman filter to reduce the 

noise in sequential images and to estimate ,the velocity of a moving object. 

A nonlinear state space model describing the evolution of a sequence of 

images containing a moving object has been proposed. The state of this 

system consists of both the image and the velocity of the moving object. 

Parallel extended Kalman filter algorithm has been proposed. 

Integration of images from different sensing modalities can produce 

information that cannot be obtained by viewing the sensor output separately 

and consecutively. Toet et al [Toet 911 had introduced a hierarchical image 

merging scheme based on a multiresolution contrast decomposition. The 

method assumed that the images obtained from thermal and visual images 

could be registered exactly. 

2.3 Artificial neural networks for ill-posed problems 

Many attempts have been made to develop ANN models to solve inverse 

problems in computer vision. For most of the ANN models, their learning 

or restoration capabilities are expressed in terms of minimization of some 

cost functional. An approach based on Hopfield neural network has been 

proposed for restoration of gray level images distorted by a shift-invariant 

blur function and additive noise [Zhou 881. The restoration procedure 

consists of two stages: estimation of the parameters of the neural network 
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and restoration of images. The parameters of the neural network are 

obtained by comparing the energy functions of the neural network and the 

irnaging model. Nonlinear restoration procedure is carried out in the second 

stage to minimize the energy function. 

A modified Hopfield network has been suggested for regularized image 

restoration [Paik 921. This model was used in developing algorithms with 

sequentia!, n-simultaneous and partially asynchronous modes of updates. 

Convergence analysis was provided for all the cases. Faster computational 

times were claimed over the algorithm developed by Zhou et al [Zhou 1988i. 

Abiss et al [Abiss 911 have proposed a method based on Hopfield 

neural network model for superresolution problem. In this method also, ;hs 

parameters of the ANN were established by mapping the energy function 

of the neural network with the imaging model. 

The models proposed by Zhou et al [Zhou 881, Abiss et al [Abiss 911 

and Paik [Paik 921 solve the image restoration by using the Hopfield model 

as an optimization tool. The interconnections strengths and the input to the 

network are determined in terms of the energy function of the neural 

network. They use the energy minimization property of the ANN and 

minimize the energy function using some constraints. 

Poggio and Girosi [Poggio 901 have suggested networks to solve the 

problem of hypersurface reconstruction. They have regarded learning (an 

input-output mapping from a set of examples) as a problem of synthesizing 

an associative memory, and approached the problem of learning in the 

neural network from the point of view of approximation theory. A theoretical 

framework has been suggested based on regularization technique which 



led to the class of three-layer networks. They are called regularization 

networks. These networks have feedforward, multilayer architecture. It was 

shown that these networks were capable of approximating any multivariate 

functions. 

Kulkarni [Kulkarni 911 has proposed an ANN architecture based on 

SVD for estimation of an object function from indirect measurements. 'The 

ANN model is a feedforward network with six layers. The weights in this 

model encode the impulse response function. The weights were initialized 

based SVD of the impulse response function. The estimated autocorrelation 

function was compared with the known autocorrelation function to calculate 

the error. The weights were updated iteratively to minimize the error. The 

weights were learnt in such a way that the error due to small singular values 

were reduced. 

Farhat and Bai [Farhat 891 have suggested an ANN for echo inversion 

and target shape estimation from incomplete frequency data. The ANN 

accomplished inversion and estimation of the object function by minirr~izing 

a cost functional based on the measured data. An iterative algorithm has 

been proposed to minimize the energy function to give the desired image 

as its neural state outputs. 

Hurlbert [Hurlbert 88,921 has proposed approaches for the 

implementation of color constancy for machine vision. An algorithm for 

lightness problem to recover reflectance from image irradiance has been 

proposed. The regularization operator was synthesized by associative 

learning from a set of examples. They showed that the regularization 

operator might be synthesized if sufficient set of correct input-output pair 

was made available to the system. 



In this chapter, we have reviewed methods for solving ill-posed 

problems. Most of the methods were used for restoring blurred images. In 

the next chapter, we develop algorithms based on the method of POCS 

and the method of TKM regularization method to incorporate smoothness, 

positivity and finite support constraints to reconstruct images with improved 

quality from noisy sparse data. In chapter 4 ,  we propose new algorithms 

to combine multiple frames and incorporate knowledge about the object to 

improve the quality of the reconstructed significantly. 'These algorithms 

incorporate inter-frame correlations indirectly and do not impose any 

constraint on the number of multiple frames to be used for reconstruction 

process. In chapter 5, we propose ANN models similar to bidirectional 

associative memory (BAM) in which the bidirectional process of data 

generation and image reconstruction is simulated. The interconnection 

strengths are directly encoded using the impulse response function of the 

SAI model [Yegnanarayana 931 and not based on the estimation methods 

used by Zhou et al [Zhou 881, Paik et al [Paik 921, and Abbiss et al [Abiss 

91j. 



IMAGE RECONSTRUCTION FROM 

SINGLE FRAME DATA 

Having stated that the problem of image reconstruction from sparse dsta 

is an ill-posed problem and that it can be solved by incorporating known 

constraints in the reconstruction process, we now investigate the influence 

of constraints on the quality of the reconstructed images. We propose 

algorithms based on the methods of POCS and TKM regularization to 

incorporate knowledge about objects as constraints ir? the irrlage 

reconstruction process. The quality of the reconstructed images is 

compared with the images obtained by Inverse filtering, the method of POCS 

and the method of TKM regularizatioc using the classification accuracy cf 

a trained neural network. 

A shorthand notation of (1.4) is obtained by stacking the image f( i, j ,), 

the data g ( i j )  and the noise term n j i j )  in a vector form (called as 

lexicographic ordering, see Appendix). 

Here g, f, and n are arranged in the lexicographically ordered vectors of size 

M2x1, where M x M  is the size of the image, data and the noise term. If 

circular convolution is assumed, the matrix H (of size M2xM2) has a 

block-circulant structure (see Appendix). Here g refers to the data 

corresponding to K = 1. When K > 1, the data is represented by g,. The 

operator H is a block-Toeplitz matrix which is constructed from the impulse 



response function h(i j ;k, l ) .  The image reconstruction problem is viewed as 

that of obtaining an estimate of f from the sparse data a. 

3.1 Tikhonov-Miller regularization 

In this section, we present the method of TKM regularization. This method 

has been l ~ s e d  widely in applications related to restoration of blurred 

images. In this chapter, we discuss its relevance to the problem of image 

reconstruction from sparse data. 

The main idea of this method is to define a criterion to find an 

approximate solution from a set of solutions. The class of solutions are 

defined based on the model given in (3.1) and is described by 

where ?is the reconstructed image. The bound A is related to sparsity and 

noise in the observed data. The set of solutions which satisfies the condition 

in (3.2) is a feasible solution set. In order to reduce this set further, 

knowledge about the object can be incorporated. A regularized solution is 

one which mininiizes a stabilizing functional on the set of feasible solutions 

[Bertero 88, Demoment 89, Karayiannis 90, Nashed 81, Tikhonov 77, 

Tikhonov 87, Sarkar 811. The stabilizing functional is written as follows: 

Here C is a real valued matrix of size M2xM2 and is restricted to have a 

block circulant form. In general C is known as the regularization operator. 

The properties and the values of C will be discussed later. Equation (3.3) 

measures the extent to which the reconstructed image conforms to the 



smoothness constraint. In another approach [Miller 701, the minimization of 

q2( f )  is done as follows: 

Here A is a bound which is related to the smoothness of the image. Now, 
A 

it is required to find a f that minimizes both ql(?) and ( )  In 

Tikhonov-Miller approach, the two constraints (3.2) and (3.3) are combined 

quadratically into the constraint 

1 I &  - H? 1 l 2  + (;12) (c? I l 2  5 2~~ (multiplying both sides by A2 ) 

I (g, - H? 1 12+pI IC? I  l 2  5 2A2 

2 
Here E =  1 lg, - H?l f, S =  I lC?l f and p = (;) . The parameter p is 

known as the regularization parameter. The regularized solution is obtained 

by minimising the objective function (3.5) with respect to ? A vector ?that 

minimizes Y(?) becomes the reconstructed image. If such a minimizing 

solution exists, then the first derivative of Y(?) must vanish, i.e., 

If I I & - H ?(  ( - 0, the term S loses its importance in minimising Y(?). 

The contribution from S can be neglected by setting p to zero. As the data 

is sparse, the term I I g, - H ? I  I does not approach zero and therefore, it 

is required to find an optimum p which minimizes the function Y(?). The 



regularization parameter p is chosen in such a way that it strikes a balance 

between the degree of reg~~larization and the closeness of the estimated 

data to the original data. The degree of reguiarization depends on the 

amplitude of the regularization parameter p. If the value of the regularization 

parameter is too large, the reconstructed image would be a blurred one 

and error due to regularization dominates the reconstructed image. On the 

other hand, if the regularization parameter is too small, noise due to the 

first term would dominate. The value of the regularization parameter is often 

adjusted by visually inspecting the resulting image. Methods for estimating 

this parameter are discussed in the literature [Dinten 91, Galatsanos 92, 

Kay 91, Reeves 90, Titterrington 911. 

Selection of the operator C is also crucial in obtaining an optimum' 

solution [Katsaggelos 91, Lagendijk 881. Properties of this operator is bzsed 

on the properties of H. If H is a low-pass filter, C is chosen to be a high-pass 

filter. In general, the regularizing operator complements the properties of 

H. Usually Laplacian operator of the type given below is used for 

constructing the regularization operator C [Lagendijk 911. 

If f and g are of size M2x1,  then the matrix C has M2 partitions and each 

partition consists of M x M  elements. The matrix C is constructed as follows: 



where each submatrix Ci is a matrix of size M x M  and is constructed from 

the jth row of the extended matrix L. C, is constructed as follows: 

where L(j7i)  is the element (jth row and ith column) of L. 

3.1.1 ForrriJation of the algorithm 

A solution :o (3.5) is equivalent to the solution of the matrix equation which 

satisfies tP,e conditions given in (3.2) and (3.4). Rewriting (3.6), we get 

(g, - Hi)(-HT) +pcTci' = 0 (3.1 1) 

The solutis- is given by 

Note that if C is a null operator (i.e., no constraint is imposed on the image), 

then the sc ~lt ion reduces to the classical least squares solution [Dines 77, 

Pratt 911. As the sizes of both C and H are large, the direct inversion is not 

convenient. Therefore we opt for an iterative solution [Huang 75a, Hunt 73, 

Katsaggelcs 91, Kawata 80a, Kawata 80b]. Conjugate gradient method can 
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be used to minimize the function P(?) iteratively [Angel 78, Kawata 80, 

Press 92, Schaffer 811. If the solution after k iterations is denoted by K, 
then after k + 1 iterations we have [Giordano 851, 

This equation refers to the descent direction from x to x+,. The descent 

is achieved by minimizing along the line from $ in the direction of the 

downhill gradient - 
av 
31 i . The parameter dictates how far to move in the 

downhill gradient direction. In other words, it controls the convergence of 

av 
the iterations. The gradient -F is obtained by differentiating (3.5) with a r 
respect to ? Now, 

Using (3.15), now (3.14) is written as follows: 

where 3 = [HTgS - (HTH + p ~ T ~ ) K ] .  The structure of the matrix 8 is same 

as the structures of H and C. As the matrices H and C have block-Toeplitz 

structure, 3 also has the same structure. A block-Toeplitz matrix can be 

approximated by a block-circulant matrix because these two types of 

matrices are closely related (see Appendix). Operations involving 



block-circulant matrix can be efficiently evaluated using 2-D FT [Gonzalez 

571. Therefore, 3 can be evaluated clsing the 2-D FT. 

Algorithms based on the TKM regularization have the following 

advantages: they are iterative and lead to a feasible solution. The 

disadvantages are due to its formulation. Reconstruction algorithms 

depends on the image characteristics. They need to be tuned for different 

types of images. The rate of convergence of these algorithms is generally 

slow, and there is no good criterion to terminate the iterations in tile 

algorithms [Wolberg 901. This algorithm is stopped by visually checking the 

quality of the reconstructed image after each iteration. 

There are other known constraints which cannot be expressed in an 

analytical form as in (3.3). These constraints however can be incorpcratcd 

as deterministic constraints in the reconstruction algorithm. !n the next 

section, we discuss a method based on POCS to obtain a solution set 

which satisfies several deterministic constraints simultaneously. We show 

that the iterative method described in this section can be combined with 

the method of POCS [Youla 82,871. 

3.1.2 The method of POCS 

A set of functions or images { i = I 2 3  . N }  is a convex set if; for any 

two elements < and $ in the set, all the linearly interpolated combinations 

are also in the same set. Many of the deterministic constraints that one 

might want to impose on the solution ?define convex sets. Some of them 



are (a) positivity, (b) finite support and (c) known bounds for a specific 

function (e.g., the image intensity lies between 20 and 100). To generalize, 

we assume that there are rn such constraints and therefore there are rn 

convex sets ( K, i = 1,2,3,. . . ,m). 

A solution set is obtained by the intersection of all such sets: 

X = ni K, , i = 1,2,3,. . . ,rn. Let us call this set K as the feasible solution 

set. Any point (image) in K is called as the set theoretic estimate and is 

acceptable. This estimate is consistent provided K+ 9. 

Once the solution set is defined, the next task is to compute the set 

theoretic estimate, i.e., the problem of finding a point in the feasible solution 

set. The method of POCS can be used to select a solution. This method 

requires that all the knowledge about the object belong to some known 

convex set. 

Let K, denote any convex set belonging to the Hilbert space 2, and 
A 

let f i  E 5. The element p i t  obtained by projecting f onto X, by the 

projection operator Pi is the element in K, closest to <. Since K, is a convex 

set, Pi $ exists and is uniquely determined by 

A A min A 

I I f i - - P i f i  0 = ~ E s I I ~ ~ - Y  I 1  (3.19) 

A 

The rule which assigns to every fi E E its nearest neighbour in K, defines 

the nonlinear projection operator Pi : E -+ K, without ambiguity. If the 

projection of f onto K, leaves f unaltered, i.e., Pi f = % then ? is a fixed 

point belonging to K,. 



As mentioned earlier, in this method a set of solutions is obtained 

rather than a single solution. Therefore, the problem here is to find at least 

one member belonging to feasible set K. If a projection operator P onto the 

convex set K is available, then a direct application of this operator will result 

in the required solution. Realizing P in practice is very difficult. Therefore, 

this is solved by applying recursively the individual projection operators Pi 

onto K,. Every point of K, is a fixed point for each of projection operator 

Pi.  Also every point in K is a fixed point for the operatcr 

P = Pm Pm-, Pm-, Pm-,...PI such that P i :  = C. A solution is obtained by the 

following recursive procedure: 

A 

where to is any arbitrary point belonging to 5. It has been shown that 

converges towards a point in K [Twomey 631. 

The iterations converge to a solution in K for any initial estimate t, 
provided K #  p. If K is empty, then the iterations do not converge. Properties 

of the limiting solution i'. depend on the initial estimate [Trussel 83, Trussel 

841. Convergence of the iterations is slow near the intersection region of 

the convex sets. This is illustrated geometrically in Fig.3.la. In order to 

speedup the iterative procedure, the projection is extended beyond the 

boundaries as follows: 
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where T ( = T, T m-,... T,) is a composite operator composed of relaxed 

operators { Ti }. Ti's are given by, 

Ti = I + ti(Pi - I), i = 1,2,3,..m (3.22) 

where t i 's are the relaxation parameters that control the rate of 

convergence, Pi's are the projection operators and I is the identity operator. 

The value of each relaxation parameter ti is set between 0 and 2 [Youla 

821. This relaxation extends the projection beyond the contour of the convex 

sets. t i 's can be adjusted for rapid convergence. This is illustrated 

geometrically in Fig.3.1 b for a relaxed projection operator. If ti is set to 

unity, then (3.22) reduces to (3.21). It is shown that Ti's are generally not 

projection operators but have the same fixed points as the Pi's. Every fixed 

point of Ti is a feasible solution, i.e., a point in the intersection of the closed 

convex sets as shown in Fig.3.1. 

Knowledge about the finite support of the object in the image plane 

and positivity are used as constraints in this thesis. Application of these 

constraints is equivalent to indirectly projectirlg the initial estimate onto the 

convex sets formed by these constraints. Though this method c f  POCS 

appears to be complicated, it is easy to implement it in practice. On 

application of positivity and finite support constraints, (3.17) becomes, 

A 

f,(x,y), for x,y E l- and t(x,y) t 0 
otherwise 

where l- is the support region, and 



An image reconstructed using this method would have satisfied the 

requirement of smoothness, finite support and positivity constraints. 

Hereafter, we call the iteration in (3.24) as the method of TKM-POCS. 

3.2 Convergence ot the iterative regularized algorithm 

In order to prove the convergence of this ' algorithm, propsrties of 

contraction and nonexpansive mappings can be used [Tom 81, Trussel 831. 

We define some basic notations and terminology related to these mappings. 

The distance measure used in the following sections refer to the following 

metric: 

Let us now define the concept of fixed points. Let a mapping Z from a 

subset of a metric space X onto X be represented as Z : A C X -. X. A fixed 

point of this mapping is a point x' E A which is invariant under the mapping 

Z i.e., Zx* = x*. This fixed point is iteratively obtained as follows: 

where x, is the kth approximation to x* and xo is some initial estimate. This 

iteration converges to a fixed point only if the mapping Z is a contraction 

mapping. 

Let A be a subset of a metric space X, and let Z be a mapping which 

maps A onto itself. 'Then Z is said to be a contraction mapping if there is 

a constant a (0 5 a < 1 ), such that for all x,y E A, d(Zx,Zy) 5 ad(x,y). 

If Z is a contraction mapping on a closed subset A of a corr~plete 

metric space, then there is a unique fixed point for any initial estimate 
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x E A. In many cases Z is not a contraction mapping but a nonexpansive 

mapping. 

A mapping Z :  AC X + X  is said to be nonexpansive if 

d(Zx,Zy) s d(x,y), for all x,y E A i.e., a = 1. Unlike contraction, these 

mappings do not have a unique fixed point. The projection operator 

described in Section 3.1.2 is a nonexpansive mapping [Youla 821. 

In order to show that the iteration (3.24) converges to a fixed point, 

it is necessary to show that 5(?) is a contraction [Lagendijk 911, where, 

We now find the distance measure between two images < and $ using the 

metric defined in (3.25). 

where v = I I I - p ( H ~ H  + pcTc) I I .  In order to prove that 5 is a contraction 

mapping, it is required to show that 0 s v < 1. Since ( H ~ H  + pcTc) is a 

symmetric positive definite matrix, its eigenvalues oij9s are real positive 

valued. Therefore, the following inequality holds good, if /? < 1: 



This method converges when /? is small, in particular satisfying 

L O<p<  (3.31) 
maximum eigenvalue of I I I - B ( H ~ H  + p ~ T ~ )  I I ' 

There exists schemes for finding optimal values for /3 [Biemond 881. Hence 

3(?) is a contraction mapping. Therefore the iteration (3.24) converges. In 

the following sections, we explore the suitability of this algorithm for image 

reconstruction from sparse data. 

3.3 Image reconstruction from sparse data 

The SAI setup used for simulation studies consists of an object plane of 

128x128 points and a receiver plane of 128x128 points. Throughout the 

studies the frequency used for imaging operation corresponds to a 

wavelength ;l of 0.25 units. The spacing between adjacent receiver elements 

is fixed at 0.5 units. The distance between the object and the receiver plane 

is kept at 2000 units. The receiver size in terms of the number of sensor 

elements is varied by selecting the points appropriately on the receiver 

array. 

The sparse data is generated for different array sizes. The sparse data 

corresponding to K = 4,16, and 64 are considered. The field data 

corresponding to the initial estimate of the image is generated. In order to 

improve the accuracy of the estimate, a method similar to the one described 

in the literature [Gerchberg 751 is used, where the known receiver data 

samples replace the corresponding estimated receiver data samples 

repeatedly in each iteration. The results obtained using the inverse filter, 



the method of POCS, the method of TKM and the method of TKM-POCS 

are presented in the following sections. All the experiments assume that 

the original image function f is known 

3.3.1 Inverse filtering 

In this experiment, we use the inverse filtering for image reconstruction from 

sparse data. In inverse filtering, an image is reconstructed as follows: 

where G.) ,  G,(.) and H(.) are the 2-D FTs of the reconstructed image, the 

sparse data and the point spread function, respectively. ?is obtained by 

A 

f (x,y) = IFT 

Throughout this chapter we consider the smooth image shown in 

Fig.l.2a for simulation studies. Fig.3.2 shows the reconstructed images 

using inverse filtering. Figs.3.2a, 3.2b and 3 . 2 ~  show, respectively, the 

reconstructed images when sparse data corresponding to K = 4,16, and 64 

are used. Reconstructed images using this method are poorly resolved and 

noisy. Note that as the sparsity ratio increases, the quality of the 

reconstructed images become poorer. 

3.3.2 Image reconstruction using the method of POCS 

In order to improve the quality of the reconstructed image, knowledge about 

the finite support and positivity is incorporated in the reconstr~~ction process 

using the method of POCS. Imposing these constraints onto the solution 
A 

is equivalent to projecting an initial estimate f, alternatively onto the convex 



Fig.3.2. Image reconstruction using inverse filtering. This figure shows the images reconstructed 
using sparse data corresponding to (a) K = 4, (b) K = 16, and (c) K = 64. Note the 
degradations in the reconstructed images as K increases. 

sets formed by theni. At each iteration known values of the sparse data 

(g,) replace the corresponding estimated receiver data values. The 

algorithm for image reconstruction from single frame of data using the 

method of POCS is given in Algorithm 3.1. 

We now demonstrate the influence of these constraints on the qu~ l i t y  

of the reconstructed image. For sparse data corresponding to K = 4, 

Figs.3.3a, 3.3b, and 3.32 represent images reconstructed using positivity 

constraint, finite support constraint, and both positivity and finite support 

constraints, respectively. It is interesting to note that incorporation of any 

one of the constraints has not improved the quality of the reconstructed 

image (see Figs.3.3a and 3.3b). But when both finite and positivily 

constraints were incorporated into the reconstruction algorithm, the quality 

of the reconstructed image has improved significantly. This is illustrated by 

the plot in Fig.3.3d. It is evident from the plot that error decreases rapidly 

as more constraints are incorporated into the reconstruction algorithm. This 

clearly indicates that knowledge about the object is essential in solving 

ill-posed problems. Fig.3.3e represents the image reconstructed using 

sparse data ( K =  16) by incorporating finite support and positivity 
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Fig.3.2. Image reconstruction using inverse filtering. This figure shows the images reconstructed 
using sparse data corresponding to (a) K = 4, (b) K = 16, and (c) K = 64. Note the 
degradations in the reconstructed images as K increases. 

sets formed by them. At each iteration known values of the sparse data 

(g,) replace the corresponding estimated receiver data values. The 

algorithm for image reconstruction from single frame of data using the 

method of POCS is given in Algorithm 3.1. 

We now demonstrate the influence of these constraints on the qu~l i ty  

of the reconstructed image. For sparse data corresponding to K = 4, 

Figs.3.3a, 3.3b, and 3 . 3 ~  represent images reconstructed using positivity 

constraint, finite support constraint, and both positivity and finite support 

constraints, respectively. It is interesting to note that incorporation of any 

one of the constraints has not improved the quality of the reconstructed 

image (see Figs.3.3a and 3.3b). But when both finite and positivity 

constraints were incorporated into the reconstruction algorithm, the quality 

of the reconstructed image has improved significantly. This is illustrated by 

the plot in Fig.3.3d. It is evident from the plot that error decreases rapidly 

as more constraints are incorporated into the reconstruction algorithm. This 

clearly indicates that knowledge about the object is essential in solving 

ill-posed problems. Fig.3.3e represents the image reconstructed using 

sparse data (K = 16) by incorporating finite support and positivity 
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ALGORITHM 3.1 Image reconstruction from a single frame of data 1 
using the method of POCS. 

I 1 I. Set i = 1. Let g, be the measured sparse data. Let f be the initial image. 
I 

I 
A 1 

2. Generate the field data corresponding to fi. g = IFTIHFi], where I 

H and Fi are the FTs of h and t, respectively. 
I 

I 

I I 
1 3. Replace the calculated g with the measured field data g, at known points i I 
I to obtain the new g,,,. 

I 
I 

I 

4. Reconstruct the image using deconvolution followed by the method of 1 

POCS. I 

(a) G = FT[gn,wI 
I 

(b) f = IFT[H-'GI. This image has 728x728 points. 

(c) c, = I + r [ P t  - I ] ,  where P is the projection onto the convex set ~ 
formed by the finite support and positivity constraints, I is the identity 

I 
operator and t = 0.8. I 

Here, P fi = 
fi, for $ E  rand  t >  0 
0, otherwise 

' 6 .  Repeat step 2 through step 5 until an acceptable image is reconstructed. , i 
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Fig.3.3. Illustration of the use of various constraints in the reconstruction process. This figure 
shows the images reconstructed using (a) positivity constraint, (b) finite support 
constraint, and (c) both finite support and positivity constraints. Sparse data 
corresponding to a = 4 was used for image reconstruction. Note the improvement in 
the quality when finite support and positivity constraints are incorporated into the 
reconstruction algorithm. (d) Illustration of the importance of constraints in improving 
the quality of the reconstructed image. (e) Image reconstruction using positivity and 
finite support constraint for a = 16. 
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Fig.3.3. Illustration of the use of various constraints in the reconstruction process. This figure 
shows the images reconstructed using (a) positivity constraint, (b) finite support 
constraint, and (c) both finite support and positivity constraints. Sparse data 
corresponding to K = 4 was used for image reconstruction. Note the improvement in 
the quality when finite support and positivity constraints are incorporated into the 
reconstruction algorithm. (d) Illustration of the importance of constraints in improving 
the quality of the reconstructed image. (e) Image reconstruction using positivity and 
finite support constraint for K = 16. 



constraints. The quality of the image is poor in spite of incorporating 

knowledge about the object. It demonstrates that as the sparsity ratio 

increases, positivity and finite support constraints are not sufficient to 

improve the quality of the reco~structed image. In the following section, we 

develop an algorithm based on the method of TKM regularization to 

demonstrate the importance of smoothness constraint in improving the 

quality of the reconstructed image. 

3.3.3 lmage reconstruction using the method of Tikhonov-Miller regularization 

The knowledge of smoothness of the image is incorporated into the 

reconstruction algorithm as a constraint. An image is reconstructed 

iteratively using (3.17). lmage reconstruction procedure is terminated when 

an acceptable quality image is obtained. The algorithm for irnage 

reconstruction using the method of TKM regularization is given in 

Algorithm 3.2. 

It has been stated earlier that the regularization parameter p controls 

,the smoothness of the reconstructed image. We now study the effect of 

p on the reconstructed image. In all the experiments P < 1. Sparse data 

corresponding to K = 4,16 and 64 are generated. Regularization parameter 

is varied from 0.0001 to 100. For every p value, the error 1 If - ? 1 1 is 

calculated. The error as a function of the regularization parameter is plotted 

and is shown in Fig.3.4. The plots in Figs.3.4a, 3.4b, and 3 . 4 ~  represent 

the influence of p on the reconstructed image for sparse data corresponding 

to K = 4, K = 16, and K = 64, respectively. Note that in each of the plots the 

error decreases initially, reaches a minimum and then increases. It indicates 

that minimization of (3.5) depends on the value of p. Minimum of the function 

in (3.5) is obtained only for one value of p. Optimum value of the 



Algorithm 3.2 Image reconstruction from sparse data using TKM 
regularization method 

I .  Set i = 1. Let g, be the measured sparse data. Let { be the initial image. 

2. Generate the field data g corresponding to {. g = IFTIHFi], where 

H and Fi are the FTs of h and respectively. 

3. Replace the calculated g with the measured field data g, at known points 

to obtain the new g,,,. 

4. Reconstruct the image using TKM regularization 
A A 

f i + , =  f i + p [ ~ T g n e w - ( ~ T ~ + p ~ T ~ ) { ] ,  ~ = o . I .  

6. Repeat step 2 through step 5 until an acceptable image is reconstructed. 



2.4 -- I 
! 

c r , k  

i 
L O  

- - 2 -  
<c I 

I 
I 1  

I 
-.I 8 1 - 

I 
1 b l l  I I I I I I 1 

!4- ' 1 1 - i  

0 2 4 0 & 10 13 4 It i B  58:: 
Regularizarion parameter p 

Regularizarion parameter p 

Regularizarion parameter p 

- Fig.3.4. Selec$on of optimum regularization parameter p. These plots show the error 
I ( f  - f ( ( in the reconstruction as a iunction of the regularization parameter p for 
various sparsity ratios (a) K = 4 and popt = 2.5, (b) a = 16 and popt = 9.0 and (c) 
a = 64 and popt = 70.0. 



regularization parameter is selected when I If - ? I I is minimum. Optimum 

regularization parameter values for various sparsity ratios are given in 

Table 3.1. The value of the optimum p @,,J increases as the sparsity 

increases. 

Table 3.1. Optimum regularization parameter values for various 
sparsity ratios 

Now we demonstrate the influence of the regularization parameter on 

the quality of the reconstructed image. Sparse data corresponding to 

K = 16 is used. The image in Fig.3.5a is reconstructed using p = 0.0001. 

The reconstructed image is dominated by noise and is similar to the 

reconstructed image using inverse filtering (Fig.3.2b). This is due to 

negligible smoothing. The image in Fig.3.5b is reconstructed using 

p = 100. Blurring in the reconstructed image indicates that the image is over 

smoothed. This clearly indicates that the value of p dictates the size of the 

smoothing window. The smoothing window used for reconstructing the 

image in Fig.3.5a is small whereas it is large for the reconstructed image 

shown in Fig.3.5b. Though the noise in Fig.3.5b is suppressed, the quality 

of the iniage is poor. The edges of the image are blurred. In order to strike 

a compromise, an optimum value @ = 9.0) is used for image 

reconstruction. Fig.3.5~ represents the image reconstructed using the 

optimum p value. In this case the noise in the reconstructed iniage is 

reduced significantly and at the same time error due to regularization is 

also reduced. 
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Fig.3.5. Influence of regularization parameter on the quality of the reconstructed images. Images 
are reconstructed using the method of TKM regularization. Sparse data corresponding 
to a = 16 is used for image reconstruction. 

(a) This figure corresponds to negligible regularization (D = 0.0001). This image is similar 
to the image reconstructed using inverse filtering (See Fig. 3.2b). 

(b) This figure shows the influence of the regularization parameter on the quality of 
the reconstructed image when p = 100. Noise is almost removed but the regularization 

.error dominates the reconstructed image. Note the distortions near the edges of the 
image. 

(c) This figure corresponds to the image reconstructed using the optimum regularization 
parameter @ = 9.0). 

We now study the performance of this method for sparse data 

corresponding to various.values of sparsity ratio. Figs.3.6a, 3.6b, and 3 . 6 ~  

represent the images reconstructed for sparse data corresponding to 

K = 4,16 and 64, respectively. Optimum regularization values from Fig.3.4 

were used for image reconstruction. The q~~al i ty  of the reconstructed image 

Fig.3.6. Image reconstruction using the method of TKM regularization. Optimum regularization 
parameters from plots in Fig. 3.4 were used for image reconstruction. This figure shows 
the images reconstructed using the sparse data corresponding to (a) a = 4, (b) 
R = 16, and (c) K = 64. 



Fig.3.5. Influence of regularization parameter on the quality of the reconstructed images. Images 
are reconstructed using the method of TKM regularization. Sparse data corresponding 
to R = 16 is used for image reconstruction. 

(a) This figure corresponds to negligible regularization (a = 0.0001). This image is similar 
to the image reconstructed using inverse filtering (See Fig. 3.2b). 

(b) This figure shows the influence of the regularization parameter on the quality of 
the reconstructed image when p = 100. Noise is almost removed but the regularization 

.error dominates the reconstructed image. Note the distortions near the edges of the 
image. 

(c) This figure corresponds to the image reconstructed using the optimum regularization 
parameter @ = 9.0). 

We now study the performance of this method for sparse data 

corresponding to various.values of sparsity ratio. Figs.3.6a, 3.6b, and 3 . 6 ~  

represent the images reconstructed for sparse data corresponding to 

K = 4,16 and 64, respectively. Optimum regularization values from Fig.3.4 

were used for image reconstruction. The quality of the reconstructed image 

(a) (b) (c) 

Fig.3.6. Image reconstruction using the method of TKM regularization. Optimum regularization 
parameters from plots in Fig. 3.4 were used for image reconstruction. This figure shows 
the images reconstructed using the sparse data corresponding to (a) K = 4, (b) 
K = 16, and (c) K = 64. 



is poor for K = 6L (Fig.3.6~). Though the noise is reduced significantly there 

is also loss of irformation in the reconstructed image. This is due to the 

missing informat 3n in the receiver data. 

3.3.4 Image recwstruction using the method of TKM-POCS 

In order to ~ncorporate the smoothness, finite support and positivity 

constraints, we develop an algorithm based on (3.24). Optimum 

regularization pzrameters obtained from Fig.3.4 were used for image 

reconstruction. i i i s  algorithm is terminated after obtaining an image with 

improved quality The algorithm for image reconstruction using the method 

of TKM-POCS I S  given in Algorithm 3.3. 

We now s:~dy the performance of this method for sparse data 

corresponding ;c various values of sparsity ratio. Figs.3.7a, 3.7b, and 3 . 7 ~  

show the imacss reconstructed from sparse data corresponding to 

K = 4,16 and 64 -espectively. There is a significant irr~provement in the 

quality of the Irzges over the corresponding images shown in Fig.3.6. It 

is evident from :-e images shown in Fig.3.7 that the quality of the images 

is improved wl-zrl more number of constraints are incorporated in the 

reconstruction 2 ~orithm. The reconstruction error is plotted as a function 

of number of :erations in Fig.3.8. Note that in all the cases, the 

reconstruction €-or decreases. 

In order tc demonstrate the effectiveness of this method in obtaining 

a smooth solutici, the intensity plot corresponding to the 61st scan line of 

the images in F1;s.l . la,  3.3e and 3.7b are shown in Fig.3.9. It can be seen 

from the plot t rz t  the image reconstructed using the iterative method of 

POCS is noisy and not smooth. On the other hand, the image obtained 



Algorithm 3.3 Image reconstruction using the the method of 
TKM-POCS. 

I. Set i = 1.  Let g, be the measured sparse data. Let be the initial image. 

2. Compute the field data corresponding to g = IFT[HF,], where 

H and F, are the FT of h and respectively. 

3. Replace the calculated g with the measured field data g, at known points 

to obtain the new g,,,. 

/ 4. Reconstruct the image using TKM regularization 

1 where P is the relaxed projection operator projecting onto the convex set 
formed by the finite support constraint and positivity constraint, I is the ! identity operator and i = 0.8 ~. 

f for $ E I? and i; > 0 Here P fi = 
0 otherwise 

6. Repeat step 2 through step 5 until an acceptable quality image is 
1 reconstructed. 



Image reconstruction using the method of TKM-POCS. The optimum regularization 
parameters found using plots in Fig. 3.5 were used for image reconstruction. This figure 
shows the images reconstructed using sparse data corresponding to (aj n = 4, (b) 
n = 16, and (c) K = 64. Note the improvement in the reconstructed images over the 
corresponding images reconstructed using inverse filtering, the method of POCS and 
TKM regularization. 
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Fig.3.8. The regularization error versus the iteration number for various sparsity ratios. The 
quanti$tive improvement in the reconstructed images in terms of the error 
I I f  - f I ( as a function of number of iterations for the images in Fig.3.7 is shown. 

from the method of TKM-POCS is smoother than the images reconstructed 

using inverse filtering and the method of POCS. The resultant l - D  signal is 

closer to the original. Fig.3.10 shows the relative performance of the three 

methods. For all sparsity ratios, TKM-POCS method has the smallest error. 

In order to illustrate the error in the reconstruction, an error image is 

obtained by considering the difference between the original image shown 



Fig.3.7. Image reconstruction using the method of TKM-POCS. The optimum regularization 
parameters found using plots in Fig. 3.5 were used for image reconstruction. This figure 
shows the images reconstructed using sparse data corresponding to (a) K = 4, (b) 
K = 16, and (c) K = 64. Note the improvement in the reconstructed images over the 
corresponding images reconstructed using inverse filtering, the method of POCS and 
TKM regularization. 
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Fig.3.8. The regularization error versus the iteration number for various sparsity ratios. The 
quantigtive improvement in the reconstructed images in terms of the error 
I I f  - f I I as a function of number of iterations for the images in Fig.3.7 is shown. 

from the method of TKM-POCS is smoother than. the images reconstructed 

using inverse filtering and the method of POCS. The resultant 1-D signal is 

closer to the original. Fig.3.10 shows the relative performance of the three 

methods. For all sparsity ratios, TKM-POCS method has the smallest error. 

It? order to illustrate the error in the reconstruction, an error image is 

obtained by considering the difference between the original image shown 
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F9.3.9. Illustration of smooth reconstruction in 1 -D. This figurg show. the et'ective~ess of the 
TKM-POCS in obtaining a smooth solution. 128 values corresponding to the Gist scan 
line from images in Figs.l.2a, 3.4e and 3.7b are plotted. 

Fig.3.10. Comparison of performance of three methods of image reconstruction from sparse 
data. 
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FZ-7.3.9. Illustration of smooth reconsriuction in 1-D. This f i~u re  shows the effer,ti\~eness of the 
TKM-POCS in obtaining a.smooth solution. 128 values'corresporiding to the 61st scan 
line from images in Figs.l.2a, 3.4e and 3.7b are plotted. 

Fig.3.10. Comparison of performance of three methods of image reconstruction from sparse 
data. 



Fig.3.11. Illustration of the error in the reconstructed image .due to regularization. This figwe 
shows the difference image between the original image shown in Fig.l.2a and the image 
shown in Fig.3.7. 'This figure shows clearly that the error due to regularization is present 
near the edges and not in the smooth region of the image. 

in Fig.l.2a and the reconstructed image shown in Fig.3.7b. The error image 

in Fig,3.11 shows that the regularization error is dominant only near the 

edges of the image, while the error in the smooth region is negligible. The 

results demonstrate the importance of constraints in obtaining an improved 

quality image. 

3.4 Image reconstruction from noisy sparse data 

We have so far demonstrated the use of three methods of image 

reconstruction from noise free sparse data. Degradation in the 

reconstructed images is mainly due to the missing information in the 

receiver data. We now study the influence of noise in the sparse data, and 

compare the performance of these methods. Gaussian noise with zero mean 

is added to the sparse data. Sparse data corresponding to K = 16 is 

generated. Three frames of sensor data are obtained by adding noise with 

SNRs 5 dB, OdB and -5dB to the sparse data. Fig.3.12 shows the images 

reconstructed using inverse filtering, the method of POCS and the method 

of TKM-POCS. Inverse filtering and the method of POCS do not use any 
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Fig.3.12. Image reconstruction from sparse and noisy data. Sparse data (K = 16) is corrupted 
with Gaussian noise with zero mean. 'This figure shows the images reconstructed using 
inverse filtering, the method of POCS and the method of TKM-POCS. 

knowledge about the noise statistics. As expected the quality of the 

reconstructed images is poor for low SNRs (first two rows of Fig.3.12). On 

the other hand, the quality of the reconstructed images from TKM-POCS 

(third row) is better. This is due to the well known noise removal property 

of the TKM regularization method. We have demonstrated that TKM-POCS 

method can be used for sparse and noisy data cases as well. 
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shows the difference image between the original image shown in Fig.f.2a and the image 
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in Fig.l.2a and the reconstructed image shown in Fig.3.7b. The error image 

in Fig.3.11 shows that the regularization error is dominant only near the 

edges of the image, while the error in the smooth region is negligible. The 

results demonstrate the importance of constraints in obtaining an improved 

quality image. 

3.4 Image reconstruction from noisy sparse data 

We have so far demonstrated the use of three methods of image 

reconstruction from noise free sparse data. Degradation in the 

reconstructed images is mainly due to the missing information in the 

receiver data. We now study the influence of noise in the sparse data, and 

compare the performance of these methods. Gaussian noise with zero mean 

is added to the sparse data. Sparse data corresponding to K = 16 is 

generated. Three frames of sensor data are obtained by adding noise with 

SNRs 5 dB, OdB and -5dB to the sparse data. Fig.3.12 shows the images 

reconstructed using inverse filtering, the method of POCS and the method 

of TKM-POCS. Inverse filtering and the method of POCS do not use any 



The method 

SNR=O dB SNR=-5 dB SNR = 5  dB 

Fig.3.12. Image reconstruction from sparse and noisy data. Sparse data (x = 16) is corrupted 
with Gaussian noise with zero mean. This figure shows the images reconstructed using 
inverse filtering, the method of POCS and the method of TKM-POCS. 

knowledge about the noise statistics. As expected the quality of the 

reconstructed images is poor for low SNRs (first two rows of Fig.3.12). On 

the other hand, the quality of the reconstructed images from TKM-POCS 

(third row) is better. This is due to the well known noise removal property 

of the TKM regularization method. We have demonstrated that TKM-POCS 

method can be used for sparse and noisy data cases as well. 



3.5 Quality of image reconstruction 

'The performance of the reconstruction algorithm is usliaily measured using 

mean squared error (MSE) criterion. MSE criterion may give an improved 

SNR value for the resultant image, but the image may not be good visually 

[Zhou 881. In other words, the human visual system does not use MSE 

criterion for quality measurement. Methods using the properties of the 

human visual system have bean reported [Anderson 76, Katsaggelos 911. 

The properties of the human visual system has been included into the 

restoration algorithm to obtain visually optimum results [Katsaggelos 9'iI. 

In this section, we propose a quality measure using the recognition 

accuracy of a trained artificial neural network (ANN). A feedforward network 

trained using the backpropagation algorithm [Lippmann 871 for a given set 

of images shown in Fig.l.3 is used for object recognition. The reconstructed 

noisy images are converted to binary images and presented to the neural 

network. Table 3.2 lists the classification accuracy for various reconstruction 

algorithms. In this table recognition accuracy of the neural network is listed 

for various sparsity ratios and for various methods. The number of images 
I 1 Table 3.2 Classification accuracy of the ANN 7 

I 
Sparsity 

ratio 
K 

4 
16 
64 

Classification accuracy 
Total number of ima~es = 28 - 

Inverse Filtering 

noise-free 
data 

28 
20 
12 

noisy 
data 

28 
17 
10 

Method of POCS 

noise-free 
data 

28 
23 
19 

TKM-POCS 

noisy 
data 

28 
20 
16 

noise-free 
data 

28 
28 
22 

noisy 
data 

28 
27 
18 



trained using the network is 28. For K = 4, all the reconstructed images 

have been recognized accurately, for both noise free and noisy cases.-rhe 

number in each column gives indirectly the measure of the quality of images 

reconstructed. As the sparsity increases, the classification accuracy of the 

network decreases. From the table it is clear that the classification accuracy 

is higher for the method of TKM-POCS than the other two methods. This 

indirectly indicates that the images reconstructed using TKM-POCS are 

better in quality. 

3.6 Summary 

In this chapter we have demonstrated the use of the well known method 

of TKM regularization for image reconstruction from sparse and noisy data. 

We have demonstrated through simulation studies the effect of the 

regularization parameter on the quality of the reconstructed images. 

Optimum regularization parameter values have been found for various 

sparsity ratios. It was found that regularization parameter was proportional 

to the sparsity ratio. 

We have proposed an iterative method (TKM-POCS) based on the 

methods of TKM regularization and POCS. In this iterative method 

smoothness, finite support and positivity constraints are incorporated into 

the reconstruction algorithm. The repeated inclusion of known data and the 

knowledge about the object have improved the quality of the reconstructed 

image at each iteration. The results of the TKM- POCS method have shown 

that the quality of the reconstructe~ images is significantly better than the 

quality of the images reconstructed using inverse filtering, the iterative 



(I 

method of POCS, and TKM regularization. The quality of the reconstructed 

images are measured using a trained neural network. 

Though the proposed iterative method is useful in reducing the effect 

of noise and in extracting available information, it cannot provide new 

information if it is not originally present. The reconstructed images have 

errors near the edges of the images. The performance of this algorithm is 

poor when noise is also present in the data. In the following chapter, we 

discuss image reconstruction methods from multiple frames of sparse and 

noisy data together with the knowledge in the form of constraints on the 

object in the image. 



IMAGE RECONSTRUCTION FROM 

MULTIPLE FRAMES OF DATA 

- STATIC SITUATION 

In Chapter 3, we have investigated the effects of various types of constraints 

on the quality of the reconstructed image. We have developed algorithms 

to reconstruct images from a single frame of data by incorporating finite 

support, smoothness and positivity constraints in the reconstruction 

process. As the complexity of the problem increases in terms of sparsity, 

noise and corr~plexity of object shapes, quality of the reconstructed image 

becomes poor. The purpose of this chapter is to demonstrate that images 

with improved quality can be obtained when multiple frames of sparse data 

are available. Multiple frames of data may be obtained in a static or dynamic 

SAI situation. Throughout this chapter multiple frames of data refer to the 

data collection in a static SAI situation. In a static SAI situation, object 

remains stationary during the imaging process. 

4.1 Need for additional information 

As we have mentioned in the introductory chapter that image reconstruction 

from sparse data is an ill-posed problem because the available information 

is not sufficient to reconstruct images of acceptable quality. In this context, 

we have shown in Chapter 3 that regularization theory is a tool to extract 

available information. However, it can provide only an effective solution to 



reduce the effects of sparsity and noise, but it cannot provide new 

information if it is not available. 

In practice, one may be able to obtain several frames of sparse data 

for a given SAI setup. This additional data may be combined appropriately 

to improve the quality of the reconstructed image further [Yegnanarayana 

891. The redundant information available from multiple frames of sparse 

data may reduce the effects of errors in the measured data. It is important 

to note that in multiple frames of sparse data, each frame of data must 

provide some additional information about the object. In the following 

sections, we discuss various approaches to collect multiple frames of data, 

and discuss methods to combine them to obtain an image with improved 

quality. 

4.2 Sources of multiple frames of data 

In many practical applications, such as multispectral satellite imagery, 

medical imaging, dynamic scene situation, color imaging, etc., multiple 

frames of data of the object being imaged can be collected. Color images 

are the common source for most of the multiframe methods discussed in 

the literature. The imaging system measures the same scene using three 

different wavelengths. In multispectral satellite imagery, same scene is 

imaged using multiple spectral window. For example, LANDSAT imagery 

consists of four digital images of the same scene, two images in the visible 

region of the spectrum and the other two in the infrared region. Additional 

frames, multiples of four, can be obtained if the same scene is imaged on 

a different day. 



In SAI situations multiple frames of data can be collected by several 

ways: (a) varying the frequency of the incident radiation and collecting 

sparse data at each frequency, (b) varying the distance between the object 

and the receiver and collecting sparse data at each distance, and (c) varying 

the distance between the object and the receiver and collecting multiple 

frequency data at each location of the receiver. in multiple frequency 

approach [Mariadossou 901, a set of sensor array data collected at several 

frequencies is used for image reconstruction. In this situation, data is 

collected by transmitting the incident wave at each frequency  separate!^ 

and then measuring the reflected field at the receiver. 

In this study, we propose two other approaches to collect multiple 

frames of sparse data. In the first approach, we generate multiple frames 

of sparse data by altering the distance between the object and the receiver. 

The receiver array is moved along the axis perpendicular to the object and 

the receiver planes, and the sparse data is collected at each location of 

the receiver array. In the second approach, sparse data from multiple 

frequencies and multiple locations are combined. In this method, the 

distance between the object and the receiver is varied and for each case 

a set of multiple frequency data is collected. Our objective is to develop 

algorithms to combine all the frames of sparse data, and thus to overcome 

the limitations of sparsity and noise. 

4.3 Multiple frame image formation model 

In this section, we describe a multiframe image formation model. Let 

M = { lj, g,6 n ] represent the multiframe static imaging model with K - 

frames, K z 1. Here - H {H,, H,, H,, ..., HK} represents a set of transformation 



matrices, g, {g,,, a,, g,,, . . . ,aK) represents a set of sparse sensor array 

data vectors, - f {f,, f2, f,, ..., f,) represents a set of original image vectors and 

n {n,, n,, n,, ..., n,) represents a set of statistically independent noise - 
vectors. in a static imaging situation, all the elements in the set - t will have 

the same value, as the object remains stationary in its position during 

imaging. Each element in the sets &,I and fl is a vector and is of size 

M2x1. Each element of - H is a matrix of size M2xm2. The multiframe imaging 

system model is similar to the single frame imaging model and is given by 

where a, - f and - n are obtained by stacking K frames of data gsk, K images 

f,: and K noise vectors n, as follows: 

The matrix - H in this model is written as 

Here 0 is a matrix of size M2xM2 with all elements 0. H, is a matrix of size 

M2xM2, elements of which are generated from impulse response of the 



imaging model. 'The size of - H is KM2xKM2. As each element of - ti is 

considered to be different, all the elements in the set g, are different. 

A solution to (4.1) is similar to the solution obtained for (3.1) and it is 

given by 

where - ? is the set of solution vectors and E is the set of regularization 

operators (C,, C,, C,, . .. , C,). All the elements of C are chosen to be the 

same (C = C, = C, = C, = ... = C,), as all the frames of sparse data 

represent the same object. The inversion in (4.4) can be solved iteratively 

using the method of steepest descent as shown in Chapter 3. The iterative 

method will be similar to the one obtained for single frame imaging model 

and is given by 

The sizes of the matrices involved in this iterative method are large 

(KM2x KM2). For example if the number of frames is 10, and the size of the 

image is 128x128, then the dimension of each term in the square bracket 

is 163840x163840. In the next section, we propose another method for 

combining multiple frames of sparse data, where stacking the multiple 

frames one below the other is avoided. 

4.4 An iterative method for image reconstruction from multiple frames of 

sparse data 

The method described in the previous section is not suitable when large 

number of frames are needed to reconstruct an image. Therefore we follow 



an alternate approach in which the dimensions of the matrices do not 

increase with the increase in the number of frames used for image 

reconstruction. 

We collect multiple frames of sparse data by altering the distance 

between the object and the receiver by a known amount. The imaging sekp 

for collecting multiple frames of data is shown in Fig.4.1. We first describe 

a general method for combining multiple frames of sparse data and later 

develop specific algorithms based on the methods of POCS and TUFA-POCS. 

Object plane e- Reflected wave 

-. .- - 

I ncidenel wave 

Fig.4.1. Illustration of the movement of the receiver array along the axis 

Let us denote the sparse data measured at distance zi by g,(zi). Now 

the imaging model can be written as 



where gs(zi) is the sparse data, h(zi) is the impulse response of the system 

when the distance between the object and receiver is zi, and f is the image 

of the stationary object. Taking FT on both sides, 

where Gs(zi), H(z,), and F are the FTs of g,(zi), h(zi) and f, respectively. We 

can reconstruct the image ?by 

/, 
f = IFT [H-'(Z,)G,(~,)]. 

So far, steps (4.6 to 4.8) for image reconstruction are same as for the 

single frame image reconstruction methods. Now we compute the receiver 

data gC(zi+,) of the (i+l)th frame from < as H(zi+,) is known. 

where F^is the FT of ? The dimension of gC(zi+,) is same as the dimension 

of $ Measured values gs(q+,) replace the values of gC(zi+,) at the known 

points on the receiver. 

where J. is the replacement operation. 'The new data g,(zi+,) contains 

information not only about the ith frame but also about the ( i+l)th 

frame. Receiver data in (4.10) can now be used to reconstruct a better 

estimate of the image. This process may be continued until all the frames 

are combined. It can be iterated until an image with acceptable quality is 

reconstructed. The advantage of this method is that the size of the matrices 

used for computation remains the same irrespective of the number of frames 

used for image reconstruction. Therefore the complexity in terms of the 



computation and memory requirement does not increase as in (4.5). The 
' 

complexity of computation increases only by K times the single frame case. 

In Chapter 3, we have shown thzt the method of POCS can be used 

to find a solution from a feasible solution set. In single frame model, initial 

estimate is sequentially projected onto i l ie convex sets which ars formed 

by the constraints, and this process is iterated until an acceptable solution 

is obtained. In image reconstruction frorn multiple frames of sparse data, 

additional K convex sets are formed apart from the convex sets formed by 

the known constraints for every iteration. 

Let K, be the solution set obtained for the kth frame by the intersec'rior; 

of all corjvex sets formed by the knowri constraints. X, is zlso a convex 

set. Let g be the feasible solution set obtained by intersection of ail 

K, ( X  - = nkK, ) .  Any solution in this set is acceptable provided - % z yl. Every 

reconstructed image in this feasible solution set has not only satisfied the 

constraints posed on it but also has obtained information from all the cther 

frames, and hence it will have an improved quality. 

A set theoretic estimate can be found by the following iterative process: 

where m is the number of convex sets, P' is the projection onto the convex 

set R,, and is the initial estimate. Information content in the reconstructed 

image will be improved by combining multiple frames of data through this 

sequential projection method. An iterative algorithm based on the method 

of POCS for image reconstruction from multiple frames of sparse data is 

given in Algorithm 4.1. 



4.5 Image reconstruction from rnuttiple frames of data using TKM-POCS 

method 

If a priori knowledge about smoothness of the object is available, then it 

can also be incorporated along with the finite support and positivity 

constraints using the method of TKM-POCS discussed in Chapter 3. Let 
A 

f be the reconstructed image at (i+l)th iteration from the sparse data 

g,,, using the method of TKM-POCS. From (3.24), one can write, 

Here 77 represents either z orA. Using this reconstructed image, receiver 

data for the frame corresponding to the next frame can be computed. The 

data generation and image reconstruction process can be iterated until an 

image with acceptable quality is reconstructed. In this way, one car; 

incorporate all the three constraints (positivity, finite support and 

smoothness constraints) and combine all the frames of data. An algorithm 

based on TKM-POCS method is given in Algorithm 4.2. 

4.6 Sparse data collection by varying system model parameters( z and A ) 

In this section, we discuss another method to collect multiple frames of 

sparse dsta by varying both the object-receiver distance (z) and the 

wavelength (A) of the incident radiation. The receiver array is moved away 

from or towards the object and at each distance multiple frequency data is 

collected. The imaging model is written as: 

g(zj,Ai) = h(zjJi)*f, i = 1 ,N and j = 1 ,M. (4.13) 



Algorif hm 4.1. Image reconstruction from multiple frames of sparse 
data using the method of POCS 

I I I .  K = Number of frames, i = 0. zi is the distance between the object and I 
I 

1 the receiver. gs(zi) is the sparse data of the ith frame measured at z,. For ~ 1 muitifrequency approach, gs ( I i )  is the sparse data of the ith frame { 

measured at frequency corresponding to Ii. in order to generalize this 1 
algorithm, we use a symbol T,I to represent either z or I. Let be the initial ! 

I estimate of the image. 

2. Compute (i + 1)th receiver data 

3. Replace gC(7,+,) with known values of 

4. Compute the image as follows: 

Take FT of gnew(~i+ 1 ) -  
A 

Gnew(rli + 1 )  = H(rli+l)Fi- 

1 5. Project this estimate onto the convex sets formed by the finite support 
1 and positivity constraints. 

A 

P C + ~  = f i + l ,  for(x,y) E r, where r is the support region 
0, otherwise 

I 
1 7. Repeat step 2 through 6 until an acceptable quality image is 

reconstructed. 

1 



I 

Algorithm 4.2. Image reconstruction from multiple frames of sparse 
data using the method of TKM-POCS. I 

1 I I .  K = Number of frames, i = 0. zi is the distance between the obiect and 

1 the receiver. g,(zi) is the sparse data of the ith frame measured at z,. For 

i multifrequency approach, g,(I,) is the sparse data of the ith frame 
I 

1 measured at frequency corresponding to Ii. In order to generalize this 

i algorithm, we use a symbol 7 to represent either z or I. Let be the initial 

I estimate of the image. 
! 

1 2. Compute the (i + 1)th frame receiver data 
I I gc(qi+l) = l ~ ~ [ ( ~ ( t l i + 1 ) 6 ' ) ]  

1 

1 3. Replace gc(qi+,) with known values of gs(qi+l)  

I 

/ 4. Reconstruct the image using TKM-POCS method . 

1 where T is the relaxed projection operator projecting onto the convex set 
i 
1 formed by the finite support constraint and positivity constraint, = 0.8 

and p = 0.6. 

i A.  

A .  f , for (x,y) E r, where r is the support region 

i 0, 
otherwise 

5. i = i + 1. I f i >  K, i =  1. 

6. Repeat step 2 through 5 until an acceptable quality image is 
reconstructed. 



Here N is the number of frequencies used to collect multiple frames of data 

at each location of the receiver array. M is the number of positions where 

the receiver array is placed to collect multiple frequency data. g,(zj,Ai) is the 

sparse data collected at 5 using wavelength Ai. Algorithms based on the 

methods of POCS and TKM-POCS can be developed for this case also. 

4.7 Experimental Studies 

The SAI simulation setup used for experimental studies consists of an object 

plane with 128x1 28 points and a receiver plane of 128x128 points. The 

spacing between receiver points is fixed at 0.5 units. The frequency of the 

transmitted wave and the distance between the object and the rsceiver are 

varied. The receiver size in terms of the number of sensor elements is varied 

by selecting the points appropriately on the receiver array. Sparse data 

corresponding to K = 4,16 and 64 are generated for simulation studies. We 

consider here three approaches for collecting multiple frames of sparse 

data. 

In the first approach, multiple frames of data are collected by varying 

the frequency of the transmitted wave. In this case the value of 13, is varied 

within the range from 0.25  n nits to 0.32 units. For each receiver array size, 

the data is collected using 1,2,4, and 8 frequencies. The distance between 

the receiver and the object plane is kept at 2000 units. 

In the second approach, multiple frames of data are collected by 

varying the distance between the receiver and the object plane. The value 

of A is 0.25 units. The data is collected using different locations (1,2,4, and 

8) of the receiver array. The variation of the distance of the receiver array 

is varied between two limits (z =2000 units and z =  1900 units). For each 
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receiver array size, multiple frames of data are collected by varying the 

iocation of the receiver array. 

In the third approach, multiple frames of data are collected by varying 

both the freq~ency and the location of the receiver array. The variation of 

z is fixed between two limits as in the second case. The data at each 

location is collected for two frequencies (A = 0.25 units, and 1 = 0.32 

units). This is repeated for several receiver array sizes and locations. 

4.8 Results and discussions 

Algorithms 4.1 and 4.2 are used for image reconstructicm from multiple 

frames of sparse data. For a given computational complexity (fixed number 

of iterations), the quality of the reconstructed image improves with the 

increase in nurrlber of frequencies as seen column wise (top to bottom) in 

Fig.4.2. We also notice that as the number of receiving elements is 

decreased, the quality degrades as seen row wise (left to right). As the 

number of frames used for reconstruction is increased, there is an 

irrlprovement in the reconstructed image (along the column). These results 

suggest that whenever it is possible to collect multiple frequency data, the 

receiver complexity in terms of the number of receiver elements can be 

significantly reduced. 

When there is a possibility of collecting data at different known 

locations by the same array, the quality of the reconstructed image can be 

improved by using the multiple frames of data. The methods of POCS and 

TKM-POCS are used to combine multiple frames of sparse data. The results 

are shown in Figs.4.3 and 4.4 for a single frequency. Here also as the 

number of frames increases, the quality of the reconstructed image 
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Fig.4.2. Image reconstruction from multiple frames of sparse data using the method of POCS. 
This figure represents the images reconstructed from multiple frames of sparse data 
collected at various frequencies. 

The label f-4-2 corresponds to K = 4 and data collection at two frequencies. 



Fig.4.2. Image reconstruction from multiple frames of sparse data using the method of POCS. 
This figure represents the images reconstructed from multiple frames of sparse data 
collected at various frequencies. 

The label 1-4-2 corresponds to K = 4 and data collection at two frequencies. 



Fig.4.3. Image reconstruction from multiple frames of data using the method of POCS. This 
figure represents the images reconstructed from multiple frames of sparse data collected 
at various locations of the receiver array. 

The label 2-42 corresponds to K = 4 and data collection at two locations of the receiver 
array. 



Fig.4.3. Image reconstruction from multiple frames of data using the method of POCS. This 
figure represents the images reconstructed from multiple frames of sparse data collected 
at various locations of the receiver array. 

The label 2-42 corresponds to K = 4 and data collection at two locations of the receiver 
array. 



Fig.4.4. Image reconstruction from multiple frames of sparse data using the method of 
TKM-POCS. This figure represents the images reconstructed from multiple frames of 
sparse data collected at various locations of the receiver array. 

The label 2-4-2 corresponds to K = 4 and data collection at two locations of the receiver 
array. 



Fig.4.4. Image reconstruction from multiple frames of sparse data using the method of 
TKM-POCS. This figure represents the images reconstructed from multiple frames of 
sparse data collected at various locations of the receiver array. 

The label 2-4-2 corresponds to it = 4 and data collection at two locations of the receiver 
array. 



improves (column wise, top to bottom in Figs.4.3 and 4.4). As expected 

the quality of the image. degrades as the size of the array is decreased 

(row wise,left to right in Figs.4.3 arid 4.4). These results show that the 

quality of the reconstructed image improves as the number of frames of 

data is increased irrespective of how the data is collected (either by varying 

the frequency or by varying the distance). 

Fig.4.5 shows the images reconstructed from multiple frames of data 

collected by varying both frequency and distance. The conclusions are 

similar to the earlier cases. Note that for each image in Fig.4.5, twice the 

number of frames are used compared to the corresponding images In 

Figs.4.2, 4.3, and 4.4. In general, there is an improvement ir; quality of the 

reconstructed image when multiple frames of data are combined. This is 

significant in view of the fact that it is desirable to have a smaller receiver 

array to reduce complexity and increase maneuverability. 

In order to test the performance of these algorithms under noisy 

conditions, multiple frames of sparse data corresponding to K = 16 are 

generated and Gaussian noise is added to all the frames of sparse data. 

The method of TKM-POCS is used to combine multiple frames of sparse 

and noisy data. Fig.4.6a, 4.6b, 4.6c, and 4.6d represent, respectively. the 

images reconstructed using IOdB, OdB, -5dB, and -10dB noisy data. It is 

evident from Fig.4.6 that it is possible to reconstruct images with improved 

quality even in the presence of noise, when multiple frames of data are 

combined. 

In this Chapter, we have addressed the problem of reconstruction of 

images from multiple frames of sparse data. The methods of POCS and 

TKM-POCS have been used to combine multiple frames of sparse data and 



Fig.4.5. Image reconstruction from multiple frames of sparse data using the method of POCS. 
This figure represents the images reconstructed from multiple frames of sparse data 
collected at various locations of the receiver and using multiple frequencies. 

The label zf-4-2 corresponds to K = 4 and data ollection at two locations of the receiver 
array. The number of frequencies used is two in all cases. 

incorporate various constraints. It has been shown that images with 

improved quality can be obtained even when a cycle image (Fig.l.2b), which 

is more complex image from the reconstruction point of view than the car 

image (Fig.l.2a), is used to generate sparse data. These algorithms are 

robust against noise. The results demqnstrate that redundant information 

from multiple frames of data has not only improved the quality of the 



:ig.4.5. Image reconstruction from multiple frames of sparse data using the method of POCS. 
This figure represents the images reconstructed from multiple frames of sparse data 
collected at various locations of the receiver and using multiple frequencies. 

The label zf-4-2 corresponds to h: = 4 and data ollection at two locations of the receiver 
array. The number of frequencies used is two in all cases. 

incorporate various constraints. It has been shown that images with 

improved quality can be obtained even when a cycle image (Fig.l.2b), which 

is more complex image from the reconstruction point of view than the car 

image (Fig.l.2a), is used to generate sparse data. These algorithms are 

robust against noise. The results dem~~nstrate that redundant information 

from multiple frames of data has not only improved the quality of the 



Fig.4.6 Image reconstruction from multiple frames of sparse and noisy data using the method 
of TKM-POCS. Eight frames of sparse and noisy data (K = 16) are used for image 
reconstruction. This figure shows the images reconstructed when (a) lOdB, (b) OdB, 
(c) 4dB, and (d) -10dB sparse and noisy data are used. 

reconstructed image but also in reducing the effects of noise in the 

reconstructed image. 



Fig.4.6 Image reconstruction from multiple frames of sparse and noisy data using the method 
of TKM-POCS. Eight frames of sparse and noisy data (K = 16) are used for image 
reconstruction. This figure shows the images reconstructed when (a) lOdB, (b) OdB, 
(c) -5dB, and (d) -1 0dB sparse and noisy data are used. 

reconstructed image but also in reducing the effects of noise in the 

reconstructed image. 



AN ARTIFICIAL NEU RAL NETWORK 

MODEL FOR IMAGE RECONSTRUCTION 

We have shown earlier that the ill-posed problem of image reconstructicn 

from sparse data can be solved by incorporating knowledge about the 

object in the solution and by using redundant information from multiple 

frames of sparse data. Algorithms based on the methods of POCS and 

TKM-POCS have been proposed to incorporate knowledge about the object 

and combine multiple frames of data. These methods require precise 

know!edge of the constraints about the object, which may not be available 

always. In this chapter, we propose ANN models for image reconstruction 

from single and multiple frames of sparse and noisy data. We show that 

these models do not require precise knowledge of constraints and yet 

reconstruct' images with significantly improved quality. 

5.1 Why ANNs for image reconstruction? 

lterat~ve methods for image reconstruction from multiple frames are effective 

in dealing with sparse data, but they are time consuming. Hence there is 

a need to speed up the algorithms. To speed up, we have to look for 

parallelism in the image reconstruction and receiver data generation steps. 

Apart from speed we are looking for a system which would perform well 

even under adverse conditions (in terms of low SNR values), and which 

have a graceful degradation. A good choice to solve such problems would 

be an ANN model. An ANN model consists of highly interconnected 



processing nodes, each of which may be a simple computing element. 

Besides speed, they are also fault tolerant since computation is performed 

by distributing it to many processors. 

In a neural network, neurons transform an unbounded input activation 

into a bounded output activation by means of an output signal function 

S(x). The function is generally known as a logistic function. A simple signal 

function is given by, 

Fig.5.1 illustrates a differentiable sigmoidal function for various values of 

c. Nonlinearity of this function increases computational richness of a neural 

network and facilitates noise suppression [Kosko 921. 

Failure of a few receiver elements does not affect the performance of this 

model. The additional advantage from an ANN model is noise suppression. 

Fig.5.1. A sigmoidal function. The function is plotted for various values of c. 



5.2 me proposed neural network model 

In the SAI set up shown in Fig.l.1, the receiver array receives a holographic 

representation of the image of the object. The image formation model of 

the SAI setup helps us to implement the bidirectional process of data 

generation and image reconstruction in the form of an ANN model. The 

proposed neural network model is based on the principles of bidirectional 

associative memory (BAM) model [Kosko 871. 

In the BAM model, information flows in forward and backwarci 

directions to produce a two-way search for stored stimulus-response 

associations. The proposed ANN model consists of two iayers of neurons. 

The first layer consists of M~ neurons /g,,g2,g,, ...,g,$\. This layer hereafter 

will be called as data layer. The second iayer also consists of td2 neurons 

{f ,,, f,,f,, ..., f,;] and will be called as the image layer. The output values on 

the neurons {fi,gi] correspond to the short-term memory. The field of 

rleurons at the data layer is obtained by lexicographically ordering the 

M x M  receiver data in a row vector form. This is done by stacking the rows 

of the original receiver data matrix one after the bther. Both the data and 

the image layers are capable of handling complex arithmetic. In order to 

perforn~ the complex arithmetic, each neuron can be replaced by a pair of 

neurons dedicating one for the real value and the other for the imaginary 

value. For the sake of simplicity, we assume that every pair of neurons is 

replaced by a single complex neuron and we will call this complex neuron 

as a neuron itself. 

The long term memory represented by the connection weight Hij, 

connects neurons fi and g,. It represents the knowledge of the system 



through transformation function of the image system model. The matrix 

mapping {H : f 4 g ] is a linear associative mernory mapping. We call this 

as the forward mapping, which will be used to create the receiver data g, 

given f. The forward mapping is fixed and is of size M2xM2. This has a 

block circulant form. The reverse mapping {H, : g  4 f is not exactly the /. 1 
inverse of the forward mapping but a regularized form (from (3.13) ) of M 

as shown below: 

This regularized form enables a smooth reconstruction of the image d ~ r i n g  

the initial stages of the network operation. During the later stages of 

processing H B + ~ - ' a s p + O .  This reduces the importance of the 

smoothness constraint during the later stages of network operation. WS 

have seen in Chapter 3 that regularization blurs the edges o i  the 

reconstructed image. The process of reducing the importance of the 

smoothness constraint will enable the network to reconstruct the edges of 

the images properly and there will not be any blurring near the edges of 

the images. Therefore the smoothness operation is used initially to reduce 

the effects of sparsity and to reconstruct a smooth image. The block 

diagram of the ANN model for image reconstruction is shown in Fig. 5.2. 

5.3 Stability of the proposed neural network model 

Stability of the neural network is defined at the equilibrium state of the 

neural network. At equilibrium, neuronal values do not change with time: 

df dH f = - = 0 , 6 = * = o , H = - = o a n d H  ~ H B  
d t dt d t 

- 0. Here g represents B=T- 

activation of all the neurons in the data layer. This implies that the pair 
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Fig.5.2. Block diagram of the proposed ANN model for image reconstruction from single frame 
o! sparse data. 

{g ,f } is stable. This occurs when the image formation at the image layer 

stabilizes and the reverse mapping approaches the inverse of the forward 

mapping, HB + H-'. The image reconstruction procedure will stop when 

stable signals across the image layer make up an image. Like most of the 

feedback systems, this system is also unstable initially and reaches a stable 8 

state when HB + H-'. The unstable condition of the neural network during 

the initial stages of operation is mainly due to the neuronal fluctuations and 

the reverse synaptic changes. Moreover, the states of the neurons in the 

data and the image layers change faster than the reverse synaptic weights. 

Achieving stability requires a delicate balance between stability and 

convergence [Kosko 901. Achieving a balance is the central problem in 

designing a feedback network. The stability-convergence dilemma arises 

due to the neuronal fluctuations and the reverse synaptic changes. Since 

the reverse synaptic weights vary slowly (due to the variation of p), the 

neurons in the image layer fluctuate, and thereby produce a change in the 

values of the neurons at the data layer. Note that the forward mapping H 



remains unaltered during the entire operation of the network. The system 

becomes bidirectionally stable aher a few iterations as p -. 0 and 

HB + H-'. 

5.4 Noise suppression 

In this model, independent Gaussian noise with zero mean is added to the 

neurons in the data layer. Noise is independent of the signal processes. 

Moreover noise is not correlated with the signal. In this model we consiaer 

that the neurons in the image layer operate between upper and lo~ver 

bounds. Vde assume that the neurons below the lower bound are 

responsible for noise in the reconstructed image. The Iqorse removal 

procedure in this ANN model can be viewed as equivalent to contrast 

enhancement [Grossberg 881. The signals supported by the data and the 

smoothing constraint quickly saturate and reach the upper bound and those 

which have the support only from the data or from the smoothing funct~on 

remain between the iower and the upper bound. A few neurons qualify to 

cross the uDper threshold during the intermediate stages of the cperation. 

Those of the neurons which do not get support from the data or from the 

smoothing function fall below the lower bound and are removed every t ~ m s  

from further processing. 

5.5 An algorithm for image reconstruction from a single frame of sparse 

data 

Initially, the observed sparse and noisy data g, is made available at the 

data layer and rest of the neurons are set to have zero activation or random 

values. As this niodel is a holographic memory model, each neuron from 

the data layer sends its output activation across each of the synaptic 



weights HBii. Each of the neuron f j  at the image layer receives the weighted 

sum CiHBi~i. The neuron fi at the image layer receives the weighted sum 

independently from all gi's and the net activation for the neuron fi is given 

by 

neq value is processed by the neuron fi using a nonlinear threshold function 

and it produces an output fp. Output of every neuron is processed 

independently. The output of the image layer is the reconstructed image. 

In order to improve the resolution of the reconstructed image, the column 

vector at the image layer is fed back through forward weights H. Now a 

new set of activations is available for the neurons at the data layer. During 

this feedback process, each neuron at the image layer sends its output 

across the network through the forward weights to produce a new set of 

activations gj9s. The known values of the g j
ls  of size Q2, Q2 < M2, are 

clamped to the input and it is synchronized with the arrival of the output 

activation from the image layer. This process replace's the calculated values 

at the data layer. Now all the neurons in the data layers have some 

activation values and this layer no longer has sparse data. The new set 

of gj's will now be used to obtain a new set of f,'s. This forward and reverse 

flow of information continues until the system settles in an equilibrium for 

the given pair (g, ?). The resulting state corresponds to the local minima of 

the energy of the system. In other words, at this state all the available 

information is used in the reconstruction process. The algorithm for image 

reconstruction is given in Algorithm 5.1. 



Algorithm 5.1. Image reconstruction from single frame of sparse and 
noisy data 

I. Initialize the forward synaptic weights using the matrix H and reverse 

synaptic weights using H ~ .  The total number of synaptic weights in the 

forward and reverse directions is M2xM'. The number of neurons in the 

image and the data layer is M2. The size of the sparse data 

is Q' (Q2 < iU2 ). Let g, be the measured data. The neurons in the deta 

layer are clamped using these Q2 values and rest of them are set to have 
zero activation. p = 0.6 

2. Propagate the data g through the reverse synaptic weight matrix H,. 

3. Calculate the net activation at the image layer. 

1 
3 

net = H,g , where net = net,.net,. .... .net,g} 

4. Use the sigmoidal function and obtain the output activation of each neuron 
at the image layer. 

[O otherwise 

5.  Send the activation of the neurons through the forward synaptic weights 
A 

and obtain a new set of gils. g,,, = H f 

'- Reduce the value of the regularization parameter p. p = e 
2' 

7. g + g,,,. Repiace Q2 vaiues of g with the measured values g,. 
g + g J. g,, where J. represents the replacement operation. 

8. Repeat 2 through 7 until the system settles into an equilibrium state. 

9. Form the image (MxM)  by taking every M elements of the column vector 
of f and stacking them one over the other as a row vector to form a 
two-dimensional image. 



5.6 Image reconstruction using sparse and noisy data - Simulation results 

The receiver data corresponding to K = 16 is simulated. Gaussian noise with 

zero mean is added to the sparse data. The receiver data corresponding 

to the initial estimate of the image is computed. In order to improve the 

accuracy of the estimate, a method similar to the one described in the 

literature [Mariadassou 901 is used, where the known receiver data samples 

replace the corresponding estimated receiver data sarnples repeatedly in 

each iteration. The results obtained using the inverse filter, the method of 

POCS, the method of TKM, and the method of TKM-POCS are compared 

with the results of the ANN model. 

The algorithm developed in Section 5.5 is used for image 

reconstruction from sparse and noisy data. Images in Fig.5.3 show the 

image reconstruction results from noise free sparse data (K = 16) generated 

using the car image shown in Fig.5.3a. To compare the performance of this 

ANN model with the other methods of image reconstruction, the images 

reconstructed using inverse filtering, the method of POCS, the method of 

TKM and the method of TKM-POCS are presented again. It hzs been 

demonstrated already in Chapter 3 that incorporation of constraints improve 

the quality of the reconstructed image. Fig.5.3f represents the reconstructed 

image in which very little knowledge about the object is used as constraints 

in the reconstruction process. This image (Fig.5.3f) is nearly noise free and 

most of the edges of the original image are preserved. 

In order to test the noise suppression property of the proposed model, 

Gaussian noise with zero mean is added to the sparse data. Sparse data 

is corrupted with noise to get an SNR = OdB, and the reconstructed images 

from this corrupted data is shown in Fig.5.4. Though very little knowledge 



Fig.5.3. lmage reconstruction using five different methods. This figure shows (a) the original 
image, and the images reconstructed using (b) inverse filtering, (c) the method of POCS, 
(d) the method of TKM-POCS, (e) the method of TKM-POCS and (f) the ANN model. 
In all the cases, noise free sparse data (K = 16) was used. 

about the object is used, the image (Fig.5.4d) reconstructed from ANN 

model is nearly noise free, and the edges are preserved. The noise level 

in the data is increased further. The sparse data is corrupted to get an 

SNR = -  10dB, and ,the images are reconstructed using all the four methods 

Fig.5.4. lmage reconstruction using sparse and noisy data. This figure shows the images 
reconstructed using (a) inverse filtering, (b) the method of POCS, (c) the method of 
TKM-POCS, and (d) the ANN model. In all the cases, the noisy sparse data (K = 16, 
SNR=OdB) was used. 



Fig.5.3. lmage reconstruction using five different methods. This figure shows (a) the original 
image, and the images reconstructed using (b) inverse filtering, (c) the method of POCS. 
(d) the method of TKM-POCS, (e) the method of TKM-POCS and (f) the ANN model. 
In all the cases, noise free sparse data (K = 16) was used. 

about the object is used, the image (Fig.5.4d) reconstructed from ANN 

model is nearly noise free, and the edges are preserved. The noise level 

in the data is increased further. The sparse data is corrupted to get an 

SNR = -  IOdB, and the images are reconstructed using all the four methods 

Fig.5.4. lmage reconstruction using sparse and noisy data. This figure shows the images 
reconstructed using (a) inverse filtering, (b) the method of POCS, (c) the method of 
TKM-POCS, and (d) the ANN model. In all the cases, the noisy sparse data (K = 16, 
SNR=OdB) was used. 



Fig.5.5. Image reconstruction using sparse and noisy data. This figure shows the images 
reconstructed using (a) inverse filtering, (b) the method of POCS, (c) the method of 
TKM-POCS, and (d) the ANN model. In all the cases, the noisy sparse data (K = 16, 
SNR = -1 0dB) was used. 

as before. The reconstructed images are shown in Fig.5.5. Though there 

is noise in the reconstructed image (Fig.5.5d) by ANN model, the image 

is still clear. Thus the proposed ANN model performs well even when low 

SNR data is used for image reconstruction. In this case also ihe 

performance of the ANN model is better than the performance of the other 

three methods. The edge preserving property of this model is demonstrated 

in Fig.5.6. The edge preserving property of ANN model is compared with 

that the method of TKM-POCS. The images shown in Fig.5.6 are obtained 

by finding the difference between the original image shown in Fig.5.3a and 

the reconstructed images. Images in the top row, Figs.5.6a, 5.6b, and 5 . 6 ~  

represent, respectively, the difference images obtained between Fig.5.3a 

and Fig.5.3e, Fig.5.3a and Fig.5.4~: and Fig.5.3a and Fig.5.5~. Note that 

the difference images are obtained from the reconstructed images (gray 

scale images) and not from the dithered images. In this case, all the edges 

of the original image are blurred. This is indicated by the continuous line 

along the edges of the car. As the noise level increases (from left to right). 

error in the reconstructed images also increases. This is indicated by the 

noise within and outside the region of the car. The second row in Fig.5.6 
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Fig.5.5. Image reconstruction using sparse and noisy data. This figure shows the images 
reconstructed using (a) inverse filtering, (b) the method of POCS, (c) the method of 
TKM-POCS, and (d) the ANN model. In all the cases, the noisy sparse data (a = 16, 
SNR = -1 0dB) was used. 

as before. The reconstructed images are shown in Fig.5.5. Though there 

is noise in the reconstructed image (Fig.5.5d) by ANN model, the image 

is still clear. Thus the proposed ANN model performs well even when low 

SNR data is used for image reconstruction. In this case also ihe 

performance of the ANN model is better than the performance of the other 

three methods. The edge preserving property of this model is demonstrated 

in Fig.5.6. The edge preserving property of ANN model is compared with 

that the method of TKM-POCS. The images shown in Fig.5.6 are obtained 

by finding the difference between the original image shown in Fig.5.3a and 

the reconstructed images. Images in the top row, Figs.5.6a, 5.6b, and 5 . 6 ~  

represent, respectively, the difference images obtained between Fig.5.3a 

and Fig.5.3e, Fig.5.3a and Fig.5.4c, and Fig.5.3a and Fig.5.5~. Note that 

the difference images are obtained from the reconstructed images (gray 

scale images) and not from the dithered images. In this case, all the edges 

of the original image are blurred. This is indicated by the continuous line 

along the edges of the car. As the noise level increases (from left to right), 

error in the reconstructed images also increases. This is indicated by the 

noise within and outside the region of the car. The second row in Fig.5.6 
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Fig.5.6. Illustration of the image reconstruction accuracy of the proposed method. The images 
in this figure show the difference images obtained between the original image in Fig.l.22 
and the image in (a) Fig.5.3c, (b) Fig.5.4~ (c) Fig.5.5c, (d) Fig.5.3d, (e) Fig.5.4d, (f) 
Fig.5.5d. The images in the bottorn row (reconstructed using the ANN model) have a 
few errors when compared with the images in the top row (reconstructed using the 
TKM-POCS method). 

represents, respectively, the difference images obtained between Fig.5.3a 

and Fig.5.3f, Fig.5.3a and Fig.5.4d, and Fig.5.3a and Fig.5.5d. Most of the 

edges of the original image are preserved. This is indicated by the 

discontinuous lines near the edges of the image. As the noise level in the 

data increases, degradation in the reconstructed image increases but the 

edges are still preserved. 

Images in Fig.5.7 show the image reconstruction results from noise 

free sparse data (A. = 16) generated using the cycle image shown in 

Fig.5.7b. The performance of the ANN model is compared with the other 

methods of image reconstruction. Figs.5.7b, 5.7c, 5.7d,5.7e and 5.7f 

represent the images reconstructed using inverse filtering, the method of 

POCS, the method of TKM, the method of TKM-POCS and the ANN model, 

84 



. p a ~ ~ a s a ~ d  ~l ! ls  aJe sa6pa 

aql lnq s a s e a ~ ~ u !  a6ew! pa~3n~lsuo3a~ ayl u! uo!lepe~6ap 'sasea~au! elep 

aql u! IaAal as!ou ay1 sv  .a6ew! ayi 40 sa6pa ayl Jeau sauy snonu!luoDs!p 

aql hq paleD!pu! s! s !q l  . p a ~ ~ a s a ~ d  ale a6ew! leu!6!~0 ay l  40 sa6pa 

aql 40 lsow .ps.sm6! j pue ec'sa6! j pue 'ppms-6! j pue ec-sa6! j ' 4 ~ * ~ ; - 6 !  j pue 

e c s - 6 ! j  uaawaq pau!elqo sa6ew! a ~ u a ~ a ~ g p  ayl 'Ala~!g3adsa~ 's luasa~da~ 

' (~oqlau S30d-WNl 
341 6upn papn~isuoaa~) MOJ do1 aql U! saBeur! aqi 4 1 ! ~  p a ~ e d u o ~  uaqM sJoJJa Ma) 
e aheq (lapow NNV aqa Gu!sn papn~asuo3a~) MOJ u ~ o ~ o q  aql u! sa6m1 a q l  .pg.g.6! j 
( I )  'w-s'6!4 (a) ' P C ' S - ~ ! ~  (p) '3%9.6!4 (3) '~v.s-6! j  (q) '3~'9.6!j (e) u! a6ew! aqi p u ~  
BZ. 1.6!j U! abeu! ( ~ u ! ~ ! J o  aqi uaamaq pau!elqo saBeu! a3uaJag!p aqi ~ o q s  a~nB!j s!qi u! 
sa6eur! a q l  poqaau pasodo~d aqi jo A3e~n3ae uo!pn~isuo3a~ abeur! aqi jo uo!ieJisnlll - g . ~ . B ! j  



Fig.5.7. Image reconstruciion using five different methods. This figure shows (a) the original 
image and the images reconstructed using (b) inverse filtering, (c) the method of POCS, 
(d) the method of TKM, (e) the method of 'TKM-POCS and (f) the ANN model. In all 
the cases, noise free sparse data (K = 16) was used. 

respectively. In this case also, the quality of the image reconstructed using 

the ANN model is better than the quality of the images reconstructed using 

the other three methods. 

It is clear from the simulation studies that the proposed method 

performs well even under adverse conditions. When the complexity of the 

problem increases, in terms of noise in the data and complex shape of the 

object, the performance of the ANN model degrades gracefully. In order to 

handle the noise, sparsity and complexity of the shape of the object, we 

propose a cascaded ANN model to reconstruct images from multiple frame 

data. In the next section, we compare the performance of the reconstruction 

methods using a new quality measure based on the method of Singular 

Value Decomposition (SVD). 



Fig.5.7. Image reconstruciion using five different methods. This figure shows (a) the original 
image and the images reconstructed using (b) inverse filtering, (c) the method of POCS, 
(d) the method of TKM, (e) the method of TKM-POCS and (9 the ANN model. In all 
the cases, noise free sparse data (K = 16) was used. 

respectively. In this case also, the quality of the image reconstructed using 

the ANN model is better than the quality of the images reconstructed using 

the other three methods. 

It is clear from the simulation studies that the proposed method 

performs well even under adverse conditions. When the complexity of the 

problem increases, in terms of noise in the data and complex shape of the 

object, the performance of the ANN model degrades gracefully. In order to 

handle the noise, sparsity and complexity of the shape of the object, we 

propose a cascaded ANN model to reconstruct images from multiple frame 

data. In the next section, we compare the performance of the reconstruction 

methods using a new quality measure based on the method of Singular 

Value Decomposition (SVD). 



5.7 Quality measure based on singular value decomposition 

If the pixel valuesof the image are spatially unrelated to one another, the 

singular values tend to be uniformly distributed in amplitude. The distribution 

of singular values can be used as a description of the structure in the pixels 

of the image [Ashjari 821. 

We make use of this property to measure *the quality of the image. 

Here the distribution of singular values of an image is compared with that 

of the original. The distribution of the singular values of the reconstructed 

image with a better quality will follow closely that of the original image. 

In SVD, an M x M  image is treated as an M x M  matrix. The image matrix 

is decomposed into a sum of a weighted set of unit matrices U and V [Pratt 

911. 

where A" is the set of singular values. It is also possible to express the 

matrix decomposition in the form of a series as follows: 

where r is the rank of the F, q andv, are the column vectors of U andV, 

respectively, and A;' is the ith singular value of F. U, V and F are M x  M  

matrices. It is assumed that A, > A, > A, ... > A,. Ais are given by 



If the same image is corrupted with noise, then the number of singular 

v a l ~ ~ e s  will be more than r. 

The plot in Fig.5.8 gives the logarithm of the singular values (logn,) of 

the images shown in Fig.5.3. Singular value distribution of the original image 

is shown as the thick line in the plot. As the image reconstructed using the 

inverse filtering is noisy, the singular values are nearly uniformly distributed 

in amplitude. When the finite support is applied to the reconstructed image, 

the distribution of the singular values is different from the earlier case. When 

the finite support and positivity constraints are incorporated into the 

reconstruction algorithm using the method of POCS, the distribution of the 

5 -- 

i - 1  

0 2 0 40 6 0 80 100 120 1 -?O 

Singular value index 

Fig.5.8 Comparison of performance of four methods of image reconstruction using SVD for 
the car image. 



singular values is nearly the same as the earlier case. It is clear from these 

iwo cases that the number of singular values depends on the finite support. 

For the image reconstructed using the method of TKM, the distribution of 

the singular values is quite different from that of the inverse filtered case, 

as smoothing constraint was used in the reconstruction process. In the 

case of the image reconstructed using the method of TKM-POCS also, the 

distribution of the singular values does not quite follow the original due to 

the incorporation of the smoothness constraint along with the finite support 

and the positivity constraints. The smoothness constraint forces unnatural 

correlation among the pixels of the image which is undesirable. The singular 

values obtained from the image reconstructed from the ANN model closely 

follow that of the original even though the reconstruction process did not 

use the finite support constraint, and the smoothness constraint was used 

only during the initial stages of the network operation. 

The singular values for the images shown in Fig.5.7 are plotted on a 

logarithmic scale in Fig.5.9. The distribution of the singular values for the 

original image is shown as a thick line in the plot. As the reconstructed 

image using the inverse filtering is noisy, the distribution of the singular 

values is nearly uniform. The distribution of the singular values for the image 

reconstructed using the method of POCS is nearly the same as that of the 

inverse filtered case. For the image reconstructed using the method of TKM, 

the distribution of the sing~~lar values is quite different from that of the 

inverse filtered case, as smoothing constraint was used in the reconstruction 

process. The distribution of the singular values obtained from the image 

reconstructed using the method of TKM-POCS did not deviate much from 

that of the image reconstructed using the method of POCS. This small 

deviation reflects the fact that smoothing effect was negligible in the 
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Fig.5.9 Comparison of performance of four methods of image reconstruction using SVD for 
the cycle image. 

reconstruction process. The singular values obtained from the image 

reconstructed from the ANN model closely follow that of the original, even 

though the reconstruction process did not use the finite support constraint 

and the smoothness constraint was used only during the initial stages of 

the network operation. This quality measure based on the distribution of 

the singular values demonstrates clearly that the images reconstructed 

using the ANN model have significantly improved quality. 

5.8 Algorithm for image reconstruction from multiframe data 

In this section, we develop an algorithm to reconstruct high resolution image 

from multiple frames of data. Let {g,,, p,, g,,, ... p,) be K frames of data 

collected by using the multifrequency method [Mariadossou 901 or using 

the multiframe method discussed in [Yegnanarayana 891. We follow the 

approach [Yegnanarayana 891 to collect multiple frames of sparse data. 

The architecture of this model consists of a cascade of the ANNs described 
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in Section 5.2. The block diagram of this model is shown in Fig.5.10. This 

biock diagram represents a cascaded msdel where. four frames of sparse 

data can be combined. This can be extended to any number of frames by 

cascading the single frame ANN model one below the other. Since the 

sparse data depends on the object-receiver distance (z)  and the impulse 

response is a function of z, the forward and the reverse synaptic weights 

connecting the data and image layers have to be initialized appropriately. 

The output of each block is connected to the input of the next block through 

appropriate forward synaptic weights. If we assume K frames of sparse 

Fig.5.10 Block diagram of a cascaded ANN model for multiframe image reconstruction. 



data, then K such blocks are required. Then there will be K forward 

{H,, H,, H ,  ... ,H,\ and K reverse {H,,, He,, H,,, ... ,H,,} synaptic weights. The 
J 

output of the Kth block is fed back to the (K - l)th block. This model can 

be simplified by considering only a single block with appropriate change of 

weights during every cycle of the network operation. The sparse data a i  

each data layer has to be synchronized with the incoming signals which 

arrive at the data layer through the forward synaptic weights from the 

previous block. 

5.8.1 Stabil~ty of the cascaded ANN model 

This cascaded network was found to be stable even though the forward 

ar,d the reverse weights change during every cycle due to the change of 

image formstion model parameter z. Due to the redundant information that 

is niade available through the multiple frames of sparse data, the 

reconstructed image settles quickly and becomes consisient with all the 

available aata. Morecver, the value of p is kept very low, and p -+ 0 quickly 

and to obtain HB - H-'. Therefore the neuronai activation at the image and 

data layer settle quickly and the network becorr~es stable. 'The stability of 

this network is also attributed to the fact that the synaptic weights are not 

random weights but represent the reconstruction arid data generation 

process. 

5.8.2 Operation of the cascaded ANN model 

The operation of this network is similar to the one described in Section 5.2. 

The reverse weights are initialized using the transformation function H,,, 

where HB, refers to the reverse synaptic weights for the first frame. The net 

activation at the image layer is calculated as before. In order to incorporate 
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the next frame data, the column vector at the image layer is fed to the next 

block through forward weights H,, which is the corresponding matrix of 

synaptic weights for the second frame. In other words, feeding the output 

of the neurons in the image layer through the synaptic weights H, simulate 

the receiver data for the second frame. This output is fed to the neurons 

in the data layer of the second block. A new set of activations are available 

for the neurons at the data layer. The measured sparse data values of the 

second frame clamp the values of the corresponding neurons in the data 

layer. Nel~rons in this data layer not only contain the measured value but 

also have some additional information obtained from the first frame. Now 

all the neurons in the data layer have some activation values and the data 

in this layer is no longer a sparse data. The new set of values for the 

neurons in the data layer is used to produce a new set of values in the 

image layer through the reverse synaptic weights H,,. The sequential flow 

of information through all the blocks is continued. The output of the last 

block is fed back to the (K - 1)th block through the forward synaptic weights 

HK-,. 'This forward flow of information and the cyclic feedback are continued 

until the system settles in an equilibrium for the given pair (g, ?). This state 

corresponds to the local minima of the energy of the system. In other words, 

all the available information from multiple frames of sparse data is used in 

the reconstruction process. This cascaded model reaches the equilibrium 

in a short time due to the redundant information that is made available. 

Stable images are formed at each image layer very quickly, and they are 

consistent with the available sparse data. The algorithm for image 

reconstruction is given in Algorithm 5.2. 



I. Number of frames = K. Let i = 1. Let {a1, a2, a ,  ... gsK} be the 
measured sparse data. Initialize all the connections befween the data 
and the image layers appropriately using the forward synaptic weights 
and reverse synaptic weights. The total number of synaptic weights in 

the forwardlreverse direction: is : M2 x M2. Number of neurons in each 

of the image and in the data layer is M2. The size of the sparse data is 

Q2 (Q2 < M2 ). Let a, represent the measured data of the ith frame. The 

, 

1 neurons in the first data layer are clamped using d values and rest of 

1 them are initialized to zero activation. p = 0.6. 

Algorithm 5.2. Image reconstruction from multiple frames of sparse 

I 2. Propagate the data gi through the reverse synaptic weight matrix HBi. 

and noisy data I 
I 

3.  Calculate the net activation at the image layer. out = HBigi, 

1 4. Use the sigmoidal function and obtain the output activation of each 

1 neuron at the image layer. 

I 

I 10 otherwise 

1 5. Send the activation of the neurons through the forward synaptic weights 

1 and obtain a new set of g,,'s. 

1 pew = Hkl $ where Hkl is appropriately selected based on the direction 

' of the reconstruction cycle i 
1 6. Reduce the value of the regularization parameter p. p = p/2. 
I 

8. g, + g,,,. Replace Q2 values of gi with the measured values gsi. 

si + si 4 Ssi 
9. Repeat 2 through 8 until the system settles into an equilibrium state. 

l o .  Form the image by taking every M elements of the column vector of ? 
stacking them one over the other as a row vector. 



5.8.3 Simulation results 

In this simulation. study, four frames of sparse data corresponding to 

K = 16 are generated. In order to test the performance of the cascaded 

ANN model, we have chosen the image given in Fig.l.2b. The algorithm 

developed in the last section was used for image reconstruction from 

multiple frames of sparse and noisy data. Figs.5.1 l a ,  5.1 1 b and 5.1 1c 

represent the reconstructed images using the method of POCS, the method 

of TKM-POCS, and the cascaded ANN model, respectively. The first row of 

Fig.5.11 represents the images reconstructed using four frames of noise 

free data. The image reconstructed (Fig.5.11) using the cascaded ANN 

model is significantly better in quality even though vary little knowledge 

about the object is used as constraints in the reconstruction process. It is 

noise free and close to the original image. 

In order to test the noise suppression property of the proposed model, 

additive noise (Gaussian noise with zero mean) is added to all the frames 

of data. The same noise level is added to all the frames of sparse data. 

Images are reconstructed using the method of POCS, the method of 

TKM-POCS, and the cascaded ANN model. The first, second, and the third 

column represent, respectively, the images reconstructed using the method 

of POCS, the method of TKM-POCS and the cascaded ANN model from 

four frames of sparse and noisy data. The results of the simulation study 

are shown in Figs.5.l ld to 5.111. The second, third, and the fourth row, 

respectively, represent images reconstructed from four frames of sparse 

data with noise levels of OdB, -lOdB and -20dB. It is evident from this figure 

that as the noise level increases in the sparse data, there is a degradation 

in the quality of the reconstructed images (column- wise). The images in 

the last column, reconstructed using the cascaded ANN model, are 
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POCS TKM-POCS ANN 

No noise 

Fig.5.11. Image reconstruction using the cascaded ANN model from multiple frames of sparse 
data. This figure shows the images reconstructed using the methods of POCS, 
TKM-POCS and cascaded ANN model. 'The first row refers images reconstructed using 
noise free sparse data. The second, third and the fourth rows represent, respectively, 
the images reconstructed from sparse data (K = 16) with noise levels of OdB, -10dB 
and -20dB. The first, second and third columns refer to the images reconstructed using 
the method of POCS, the method of TKM-POCS and the cascaded ANN model, 
respectively. 
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Fig.5.11. image reconstruction using the cascaded ANN model from multiple frames of sparse 
data. This figure shows the images reconstructed using the methods of POCS, 
TKM-POCS and cascaded ANN model. The first row refers images reconstructed using 
noise free sparse data. The second, third and the fourth rows represent, respectively, 
the images reconstructed from sparse data (K = 16) with noise levels of OdB, -10dB 
and -20dB. The first, second and third columns refer to the images reconstructed using 
the method of POCS, the method of TKM-POCS and the cascaded ANN model, 
respectively. 
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significantly better in quality even though very little knowledge about the 

object is used as constraints in the reconstruction process. This shcws 

that the cascaded ANN model performs well even when the complexity of 

the problem increases in terms of noise and the object shape. 

5.9 Summary 

We have proposed two ANN niodels for image reconstr~~ction from 

sparse and noisy data. The holographic image formation model helped us 

to propose an implementation of the bidirectional process of data simulation 

and image reconstruction. The synaptic weights are directly encoded using 

the transformation function of the image formation model. The neurons in 

the data layers represent the hologram, and the neurons in the image layer 

represent the reconstructed iniage. Unlike the other methods, these ANN 

models make very little assumptions about the image. The results from 

these studies show that images with significantly better quality are obtained 

even when very little knowledge of the constraints about the object is used 

in the reconstruction process. The edge preserving property of this model 

is also demonstrated. It is clear from the simulation studies that the 

proposed ANN models handle effectively the difficult situations such as 

sparsity, noise and complex shapes of objects. A new quality measure 

based on the method of SVD is suggested. 



IMAGE RECONSTRUCTION 

IN A DYNAMIC SCENE SITUATION 

In Chapters 4 and 5, we have considered a static imaging situation to collect 

multiple frames of sparse data and proposed algorithms to combine them. 

In many situations, multiple frames of sensor array data may be available 

as a sequence of frames as in a dynamic scene situation. In this case, 

each frame of data may contain information about the image but with an 

unknown motion information superimposed in each frame. In this chapter 

we propose methods for three situations: (a) known motion parameters, (b) 

unknown motion parameters, but the object motion restricted to small region 

in successive frames, and (c) general case of unknown parameters. 

6.1 Dynamic scene analysis 

Dynamic scene analysis is concerned with the processing of sequence of 

images. The aim of this analysis is to assimilate information from a sequence 

as a whole. Most of the literature related to dynamic image analysis deal 

with the problem of determining the motion of the object from a seqgence 

of images. The motion estimation methods can be classified into four 

categories: (a) cross-correlation methods, (b) pixel-based methods, (c) 

feature-based methods, and (d) region-based methods. 



The cross-correlation between two images can be used to estimate 

the motion parameters [Pratt 911. In this method, shift is associated with 

the maximum of the correlation function. 

In pixel-based methods [Brown 92, Horn 81, Huang 81, Schalkoff 891. 

the motion parameters for each pixel is estimated based on the assumption 

that the gray level structure of the image remain the same before and after 

motion. The motion is estimated based on the relationship between time 

and spatial differences between two consecutive frames. For each pixel, a 

displacement vector is found. The field of such vectors constitute the optical 

flow. 

In feature-based methods [Aggarwal 75, Chow 89, Martin 791, 

correspondence of the extracted features between two consecutive frames 

is established using rigid ,body motion constraint to estimate motion 

parameters. 

In region-based methods, central projection of the moving object is 

ased as a feature [Kalivas-91 j. Feature extraction is performed by an object 

boundary estimation algorithm. The motion parameters are estimated by 

relating an energy function with that of the mismatched region of the 

consecutive frames. Motion parameters are estimated iteratively by 

minimizing the area of the mismatched region. 

These methods, especially, cross-correlation, pixel-based, and 

feature-based methods, perform well in the absence of noise. For low SNR 

images, cross-correlation method is not expected to estimate the motion 

parameters accurately. Pixel-based methods are very sensitive to noise as 

they require calculation of derivatives. They assume small motion and 



smooth motion. In feature-based methods, noise will affect the extraction 

of features which in turn affect the establishment of ccrrespondence of 

features in the consecutive frames. 

Region-based methods depend on the segmentation of the object in 

the image and is shown to perform better than the other methods under 

noisy situations. It is difficult to segment objects from the irnages 

reconstructed from sensor array data and hence this method is also cot 

suited for images reconstructed from sensor array data. 

In a SAI setup, only a sequence of frames of sparse data is available. 

The images in the sequence have to be reconstructed from every frame of 

sparse data. It has been shown earlier that an image reconstructed frorn a 

single frame of sensor array data has a low resolution. Hence from a 

sequence of noisy and low resolution reconstructed images, it is difficult to 

estimate motion pararrleters using any of the known methods. 

In a dynamic SAI situation, the aim is to improve the quality of the 

reconstructed images by combining a sequence of multiple frames of sparse 

data. In order to combine a sequence of frames, the motion pararneters 

are needed to compensate for motion. In order to estimate motion 

parameters, high resolution image sequence is required and in order to 

reconstruct high resolution images, exact motion parameters are required. 

It is evident from the earlier studies that it is not possible to have either of 

the requirements satisfied. Therefore we have a dual problem of motion 

estimation and image reconstruction. 



In the next section, we consider a situation where the motion 

parameters are assumed to be known and propose an algorithm to combine 

sequence of sensor array data. 

6.2 Image reconstruction - known motion parameters 

In a dynan-~ic SAI setup one would obtain multiple frames of data naturaliy 

when, (i) the object is moving while the sensor array is stationary, (ii) the 

sensor array is moving while the object is stationary and (iii) both the object 

and the sensor array are moving. 

In our approach, the data is collected for the case of a moving object, 

while the sensor array remains stationary. We also assume the following: 

moving object remains within the image, and only one object is moving. 

Let f(x,y) be the image, and let fi(x,y), i = 1,2,3,..M, be the spatially 

shifted versions of f(x,y). Then 

where 6xi and 6yi are known shifts of f(x,y) along x and y coordinates, 

respectively. In this study. we consider an image sequence shown in Fig.6.1 

for generating multiple frames of sparse data. Fig.6.1 is used as the 

reference image. Each image in the sequence is obtained by shifting the 

image in Fig.6.la with a known shift value. For each image in the sequence 

in Fig.6.1, the shift values with respect to the previous frame is given in 

Table 6.1. Each pair of shift values in the Table 6.1 represents motion 

parameters. 



I 1 Table 6.1. Shift values used in the image reconstruction algorithm. 1 

When the motion between frames can be compensated exactiy,  he 

reconstruction process is same as for the multiple frames of data discussed 

in Chapters 4 and 5. A sequence of multiple frames are generated for data 

corresponding to sparse and noisy data (K = 16and SNR =-lOdB) for all 

the images shown in Fig.6.1. The sequence of multiple frames of data are 

combined using the method of POCS [Ramaseshan 931 or using the 

cascaded ANN model discussed in Chapter 5. Here, an image is 

reconstructed using the first frame of sparse and noisy data. Using the shift 

values given in Table 6.1, the second image in the sequence is obtained. 

In order to combine the sparse data of the second frame, the receiver 

data from the image just obtained is generated, and then the known values 

of the second frame data replace the calculated values. This in turn is used 

to reconstruct the image. The process of receiver data generation, shifting, 

image reconstruction continues until all the frames of data are combined 
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Fig.6.1. Simulated sequence of images (128x128 poinis) obtained iron? a dynamic scene 
situation. Fig.6.la is used as the reference image. The images in Figs.6.lb-6.lj are 
obtained using the shift values given in Table 6.1. 
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and an acceptable image is reconstructed. Algorithms based on the method 

of POCS, method of TKM-POCS or ANN model can be modified to combine 

a sequence of multiple frames of sparse and noisy data. We demonstrate 

that images with improved quality can be obtained using the cascaded ANN 

model. Fig.6.2 shows the images recorlstructed using the cascaded ANN 

rnodel. Figs.6.2a, 6.2b, 6.2c, and 6.2d represent the images reconstructed 

Fig.6.2 Images reconstruction using multiple frames of sparse and data (K = 16, SNR = -10dB) 
obtained from a simulated dynamic scene situation using the cascaded ANN model. 
Multiple frames of data are collected for every image shown in Fig.6.1. This figure 
shows the Image reconstructed by combining (a) the first and the second frames of 
data, (b) the first four frames of data, (c) the first eight frames of data, and (d) all the 
ten frames of data. 
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using two, four, eight, and ten frames of sparse and noisv data, respectively. 

The results show that the quality of the reconstructed image improves as 

more and more frames of data in the sequence are used for reconstruction. 

6.3 lmage reconstruction with unknown but restricted motion parameters 

In the last section we have combined multiple frames of sparse data 

obtained from a sequence assuming that the shift information is available 

a priori. A more realistic situation however is one where the motion 

parameters are not known a priori. Since reconstruction from any single 

frame of sparse data is only a poor quality image, it is difficult to estimate 

the motion parameters from a sequence of reconstructed images. VJe now 

propose a method based on 'TKM-POCS to reconstruct images with 

unknown motion parameters but motion restricted to within a region of a 

few pixels. The reconstruction algorithm given in Section 3.3.4 is used for 

combining a sequence of ten frames of sparse data. Sequence of multiple 

frames of data are combined as if the object remained static during the 

imaging process. In other words motion is not compensated. Figs.6.3a-6.3d 

Fig.6.3. lmage reconstruction from multiple frames of data with dx = 0 and dy = 0 for all the 
frames. Multiple frames of sparse data (K = 16) are collected for every image shown in 
Fig.6.1. Gaussian noise with zero mean is added to every frame of data. The method 
of TKM-POCS is used for image reconstruction. This figure shows the image 
reconstructed by combining (a) the first and the second frames of data, (b) the first 
four frames of data, (c) the first eight frames of data, and (d) all the ten frames of data. 



using two, four, eight, and ten frames of sparse and noisy data, respectively. 

The results show that the quality of the reconstructed imzge improves as 

more and more frames of data in the sequence are used for reconstruction. 

6.3 lmage reconstruction with unknown but restricted moti~n parameters 

In the last section we have combined multiple frames of sparse data 

obtained from a sequence assuming that the shift information is available 

a priori. A more realistic situation however is one where the motion 

parameters are not known a priori. Since reconstruction from any single 

frame of sparse data is only a poor quality image, it is difficult to estimate 

the motion parameters from a sequence of reconstructed images. Vde now 

propose a method based on TKM-POCS to reconstruct images with 

unknown motion parameters but motion restricted to within a region of a 

few pixels. The reconstruction algorithm given in Section 3.3.4 is used for 

combining a sequence of ten frames of sparse data. Sequence of multiple 

frames of data are combined as if the object remained static during the 

imaging process. In other words motion is not compensated. Figs.6.3a-6.3d 

Fig.6.3. lmage reconstruction from multiple frames of data with dx = 0 and by = 0 for all the 
frames. Multiple frames of sparse data (K = 16) are collected for every image shown in 
Fig.6.1. Gaussian noise with zero mean is added to every frame of data. The method 
of TKM-POCS is used for image reconstruction. This figure shows the image 
reconstructed by combining (a) the first and the second frames of data, (b) the first 
four frames of data, (c) the first eight frames of data, and (d) all the ten frames of data. 



represent reconstructed images using two, four, eight, and ten frames of 

sparse and noisy data (K  = 16 and SNR = -10dB), respectively. From the 

images in Fig.6.3, it is clear from this study that images with improved 

quality can be obtained when the motion between any two consecutive 

frames is within 1 or 2 pixels. Note in this figure that all the images are 

blurred. 

6.4 Image reconstruction for a general dynamic scene situation 

In the last two sections, we have discussed methods to reconstruct images 

from a sequence of multiple frames of data obtained from a restricted 

dynamic scene situation. But in a more realistic case, the motion parameters 

are not known and the motion is not restricted to a few pixels only. The 

method of TKM-POCS is not useful in such cases. In this section, we 

consider a general situation where the motion is not restricted, but only 

translatory motion is considered. 

We discuss a method where motion parameters are estimated first 

from the reconstructed images and later multiple frames of data are 

combined using the estimated motion parameters. Motion parameters are 

estimated using the cross-correlation method. It is a similarity measure 

which gives a measure of similarity between an image and its template. 

Given a template fT and the image f, where fT is small compared to f. 

The normalized cross-correlation between two images are given by, 



Fig.6.4. Another sequence of images obtained from a dynamic scene situation. 

Cross-correlation is calculated for all possible translations. If the 

template matches exactly a translation (6x,6y ), the cross-correlation will 

have its peak at C(dx,dy). 

We consider a sequence of images shown in Fig.6.4 for generating 

sparse data. This shift values between the images are not known. In this 

image sequence, each image is arbitrarily shifted by a sparse and noisy 

data (IC = 64 andSNR = OdB) is generated for each frame. ANN model 

discussed in Chapter 5 is used to reconstruct images. Shift values are 

estimated using the cross-correlation method. As each image in the 

reconstructed image sequence is noisy, the motion estimation is only an 

approximation of the original one. Using this shift information, multiple 

frames were combined. Fig.6.5a, 6.5b, 6.5c, 6.5d and 6.5e represent the 

images reconstructed using one, two, three, four and five frames of sparse 

Fig.6.5 Image reconstruction from multiple frames of sparse and noisy data from a dynamic 
scene situation. ANN model is used for image reconstruction. This figure shows the 
image reconstructed by combining (a) the first, (b) the first and the second frames of 
data, (c) the first three frames of data, (d) the first four frames of data, and (e) all the 
five frames of data. 



and noisy data, respectively. As the number of frames included in the 

reconstruction process is increased, the resolution increases. 

This method is suited for situation where there is only a translation of 

a rigid object. As the complexity of the problem increases in terms of 

sparsity, noise or complex shape of the object, motion estimation using 

cross-correlation will be poor. In such cases, some knowledge in the form 

of constraints on the motion is needed to reconstruct images from sparse 

and noisy data. 

In this chapter, we have proposed methods to combine a sequence 

of frames of sparse data obtained from a dynamic scene situation. It has 

heen shown that it is possible to reconstruct images with improved quality 

when a sequence of sparse sensor array data is combined. We have shown 

that images can be reconstructed when the motion is compensated. We 

have aiso shown that the method of TKM-POCS reconstructs images with 

improved quality where the motion information is not available. A correlation 

based method was suggested to estimate the motion information for use 

in the general situation. 



SUMMARY AND CONCLUSIONS 

In this thesis, we have addressed the problem of image reconstruction from 

sparse data obtained from SAI situations. The data is sparse and noisy, 

and hence the quality of the reconstructed images is poor. This is an 

ill-posed problem, as there is no 1,lnique solution. Problems of this kind can 

be solved using the knowledge about the solution. In this thesis, we have 

explored the possibility of incorporating knowledge about the object in the 

reconstruction algorithm and the possibility of combining multiple frames of 

sparse data obtained from (a) a static situation and (b) a dynamic scene 

situation. We have proposed methods to reconstruct images from sparse 

data with acceptable quality for the following cases: 

(i) single frame of data (Chapter 3 and 5) 

(ii) multiple frames of data collected in a static imaging situation 

(Chapter 4 and 5) 

(iii) multiple frames of data collected in a dynamic scene situation 

(Chapter 6) 

7.1 Image reconstruction from single frame of data 

We present here the results obtained by incorporating known constraints 

into the solution to extract maximum information from a single frame of 

data. Knowledge about the extent of the object (finite support constraint), 
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knowledge about the intensity of the image (positivity constraint) have been 

incorporated in the algorithm (ALGORITHM 3.1) to reconstruct an improved 

quality image. An algorithm (ALGORITHM 3.3) based on the method of 

TKM-POCS has been developed to include the knowledge about the 

smoothness of the object together with the knowledge about the extent of 

the object and the knowledge about the intensity of the image. We have 

shown in Chapter 3 that incorporation of knowledge about the object using 

the methods of POCS and TKM-POCS has improved the quality of the 

reconstructed images. We have also used neural network based 

classification accuracy as a measure of quality of the reconstructed images. 

In many situations, where the type of the object being imaged is 

unknown. It is also not possible to know the extent of the object in the 

image or the smoothness of the object. It is shown that images 

reconstructed using very little knowledge about the object is similar to 

reconstructing images using inverse filtering. In Chapter 5, we have 

proposed a method based on an ANN model to handle a situation where 

only approximate knowledge is available. In this model, knowledge about 

the smoothness of the object is used only during the initial stages of the 

network operation. Knowledge about the extent of the object in the image 

is not used in the reconstruction process. Reconstructed images using the 

ANN niodel have been found to be better in quality than the images 

reconstructed using the methods of POCS and TKM-POCS, even though 

very little knowledge about the object is used in the reconstruction process. 



7.2 Image reconstruction from multiple frames of data - static situation 

As the complexity of the problem increases in terms of n ~ i s e ,  sparsity, and 

complex shape of the object, single frame methods fail to provide 

acceptable results in terms of the quality of the reconstructed image. 

Moreover, there is no guarantee that the single frame measurements are 

error-free. In order to handle these situations and improve the quaiity of 

the reconstructed image, we have proposed methods to combine multiple 

frames of sparse data in Chapters 4, 5, and 6. 

Algorithms have been developed to combine (a) a set of multiple 

frames of data obtained from a static situation (Chapters 4 and 5) and (b) 

a sequence of multiple frames of data obtained from a dynamic scene 

situation (Chapter 6). In Chapters 4, we have developed a!gorithms to 

combine multiple frames of data based on the methods of POCS and 

TKM-POCS. In Chapter 5, we have proposed a cascaded ANN model to 

combine multiple frames of data. The quality of the reconstructed images 

have improved significantly when multiple frames of data are combined. In 

this situation too, the quality of the images reconstructed using the 

cascaded ANN niodel was found to be better. 

7.3 Image reconstruction from multiple frames of data dynamic scene 

situation 

When the niotion between frames can be compensated exactly, the 

reconstruction process is same as the one discussed for a static imaging 

situation. The results show that the quality of the images improved by 

combining a sequence of multiple frames of data. We have also considered 

a situation where the motion parameters are ur~known but restricted to 



within a region of a few pixels. The method of TKM-POCS was used to 

combine m~~lt ip le frames of sparse and noisy data. The general case of 

unknown motion parameter has been discussed and a method to 

reconstruct images has also been discussed. 

In this thesis we have explored the possibility of using the redundancy 

in the image of an object for reconstruction from sparse data. We have 

exploited this redundancy using neural network models to reconstruct high 

resolution images. However, it is a challenging problem to exploit the 

redundant information across a sequence of frames in a dynamic scene 

situation without explicitly deriving the motion information. It appears that 

models based on neural networks may help in overcoming this problem of 

image reconstruction from a sequence of frames of sparse data in such 

situations. 



APPENDIX 

In this Appendix we describe some of the tools used in the image 

reconstruction, such as lexicographic ordering, block-circulant matrices, and 

block-Toeplitz matrices. 

A.l Lexicographic ordering 

Let f(ij), ( I 5 i 5 M and I 5 j s M) be a 2-D array of pixels representing 

an image f. This image of size M x M  can be converted into a vector f of 

size M*X 1 as follows: 

The ordering of the image f in the vector form as shown in (A . l )  is known 

as lexicographic ordering. 

A.2 Block-Toeplitz and block-circulant matrices 

If we lexicographically order the matrices f(ij), g(i j ) ,  andn(ij) as f, g, and n, 

then the matrix H in (3.1) will be of size MxM.  In order to perform the linear 

convolution operation, the matrix H would require a block-Toeplitz structure. 

The matrix H will have M* partitions and each partition will be of size 

M x M. Each partition will have Toeplitz structure. 



where Hj 

In order to handle the huge matrix multiplication in (3.11, one has to 

find a short-cut. A (block-)Toeplitz matrix can be approximately written as 

a (block-) circulant matrix. These two matrices are closely related in 

structure. Operations involving (block-)circulant matrices can be evaluated 

using FT. The block- circulant approximation of (A.2) is given below: 

The circ~~lant approximation of the matrix Hi is given by: 



The introduction of terms at the end of the diagonal introduces error near 

the edges of the image. Conversion of (block-)Toeplitz matrix to 

(block-)circulant matrix makes the convolution a circular one. 
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