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ABSTRACT

The speech from a skin vibration transducer, called the throat microphone, is intel-
ligible, but sounds unnatural. The Throat Microphone (TM) picks up speech that is
transmitted from the pharynx region, and the ‘buzz tone’ of the larynx. The main
objective of this thesis is to improve the naturalness of the TM speech.

A study of the acoustic characteristics of various sound units in the TM and Nor-
mal Microphone (NM) speech shows that the TM and NM signals differ in the vocal
tract characteristics as well as in the characteristics of the excitation source for dif-
ferent sound units. However, though there are acoustical differences, there exist some
common features (for example, pitch and location of formants) in the simultaneously
recorded TM and NM speech of a speaker. This speaker-specific correlation can be
exploited to learn a mapping between the features of the TM and NM speech, so as
to improve the perceptual quality of the TM speech.

MultiLayered FeedForward Neural Network (MLFFNN) is used to obtain a smooth
mapping of the TM spectrum onto the NM spectrum for each frame, without ‘spectral
jumps’ between adjacent frames. The all-pole filter derived from the spectral mapping
is guaranteed to be stable, because the LP coefficients are obtained using the auto-
correlation coeflicients derived from the mapped cepstral coefficients. The excitation
source information in the TM and NM speech differ in the relative strengths of the

instants in the voiced sound units. While in the NM residual the strength of the in-



stants is comparatively high for vowels and low for voiced stops, in the TM residual
the strengths are comparable for all the voiced sounds. Hence modification of the TM
residual involves mapping features, that discriminate at least among the broad voiced
sound categories, from the TM speech onto the NM speech. The parameters derived
from the mapping are used to emphasize the strength of the instants in the vowel
regions and deemphasize the instants in the voiced consonant regions. The modified
TM residual is used to excite the all-pole synthesis filter derived from the spectral
mapping to obtain the enhanced speech.

One of the advantages of using a throat microphone is that it provides a high Signal-
to-Noise Ratio (SNR) over a large part (from 0 to 3500 Hz) of the audio frequency
range. This thesis explores the presence of speech, speaker and language characteristics
in the TM speech for developing speech systems. An HMM based syllable recognizer
is developed using the TM speech to recognize the 145 consonant-vowel units of Hindi.
There exist many situations which require robust speech systems whose performance
does not degrade due to ambient noise. For example, restricted entry into high security
enclosures, and handling calls from non-native speakers in noisy environments. As the
TM speech is relatively immune to noise, the TM speech is used to build robust speaker
recognition and language identification systems.

In recent years, there has been considerable interest in improving the perceptual
quality of the narrowband (300-3400 Hz) telephone speech. The approach used to
improve the naturalness of the TM speech is extended for bandwidth extension of the

narrowband telephone speech and loudness enhancement of soft voices.
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CHAPTER 1

PROCESSING THROAT MICROPHONE SPEECH: AN

INTRODUCTION

1.1 OBJECTIVES OF THE THESIS

Speech signal recorded from a skin vibration transducer placed near the larynx, called
the throat microphone, is intelligible, but sounds unnatural. As humans are accus-
tomed to speech that radiates from the mouth (as recorded by a normal microphone),
they are not comfortable when subjected to prolonged hearing of speech from a throat
microphone. The main objective of this thesis is to improve the perceptual quality of
the throat microphone speech, so as to make it sound natural.

One of the advantages of a throat microphone is that it provides a good Signal-to-
Noise Ratio (SNR) over a large part (from 0 to 3500 Hz) of the audio frequency range,
which is required for good intelligibility. This thesis explores the presence of speech,
speaker and language characteristics in the throat microphone speech for developing
speech systems which may be useful in situations where normal microphones cannot
be used.

There has been considerable interest in providing high quality speech to subscribers
of the telephone channel. The telephone speech is band-limited (300-3400 Hz), and

hence its perceptual quality is reduced compared to the speech from a normal mi-



crophone. The technique used for improving the perceptual quality of the throat
microphone speech is extended to improve the bandwidth of the telephone speech, and

enhance the loudness of soft voices.

1.2 SPEECH PRODUCTION

Speech is produced as a result of time-varying excitation of a time-varying vocal tract
system. The air expelled from the lungs causes the vocal cords to vibrate. This
vibration at the glottis causes quasi-periodic pulses of airflow into the region above
the glottis (supraglottal region). The supraglottal region consists of three main areas:
the pharynx, the oral cavity and the nasal cavity. The pharynx consists of the area
above the larynx and below the uvula (the flesh blob that hangs down in the back of
the throat), as shown in Fig. 1.1. The quasi-periodic pulses of airflow are modified by
the articulators (like tongue, teeth, lips etc.) as they pass through the pharynx and
the oral cavity. The airflow is also modified through the path of the naso-pharynx,
when the velum is lowered, and through the nostrils. The sound waves radiated at the
lips and the nostrils are the result of the modifications imposed on the pulses of air
flow by this entire resonating system.

Voiced sounds are produced when the source of excitation is the vibrating vocal
folds. Unvoiced sounds are produced when air is forced to flow through a narrow
constriction in the vocal tract, giving rise to a turbulence. The turbulence results in
random movement of air particles in contrast to the quasi-periodic flow of air in the
voiced sounds. The noise source for the unvoiced sounds may be located at different

places in the vocal tract corresponding to the place of articulation of the sound. The
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Figure 1.1: The supraglottal region of the speech production mechanism:

1-glottis, 2-pharynx, 3-uvula, 4-velum, 5-oral cavity, 6-nasal cavity, 7-tongue,

8-alveolar ridge, 9-teeth, 10-lips.
location of the noise generator affects the dimensions of the section of the vocal tract.
The sections of the vocal tract, both behind and in front of the constriction, play their
part in determining how the noise will be modified by the system. The noticeable effect
of the vocal tract is the drastic reduction in the amplitude of noise energy over certain
frequency bands (filtering effect of the vocal tract system). This can be observed
in the case of fricative sounds. In the case of stop consonants, the sudden release
after the closure results in a very short burst of noise. This is again modified by the
vocal tract filter depending on the place of articulation of the sounds. The speech
production mechanism is capable of infinite modifications owing to the flexibility of
the articulators.

The speech radiated through the lips and nostrils is picked up by the conventional

microphone (referred to as the normal microphone in this thesis) placed in front of the



mouth. The significance of the speech recorded using a normal microphone is that it
contains the entire frequency spectrum of the various speech components. Due to high
intelligibility and perceptual quality of the signal, the normal microphone is widely
used to record speech signals.

Speech signals are not only radiated through the lips and nostrils, but are also
propagated through the vibrations of the body tissue. These vibrations are picked up
by alternate speech sensors. The pick-up of intelligible speech sounds from anatomical
vibrations is not limited in location. Some of the locations are the throat skin, the
facial skin (cheek), the underside of the chin and the skull bone behind the ear. The
sensors are placed in contact with the skin or bone to pick-up the vibrations. The

throat microphone is one such skin vibration transducer.

1.3 THROAT MICROPHONE

The throat microphone device used in this study comprises of a pair of moulded hous-
ings mounted on a neckband. One housing is fitted with a microphone transducer,
while the other is a dummy unit (refer Fig. 1.2). The twin housings are located on
each side of the throat. Soft leather pads are provided to give low contact pressure. As
a result, wearer comfort is maintained during long periods of use. A moving member
or ‘button’ transmits the throat vibration mechanically to an outer diaphragm. The
vibrations of the outer diaphragm are transmitted acoustically to an inner diaphragm
coupled to the transducer. The transducer is a high quality moving iron magnetic type
[1].

The throat microphone is placed in contact with the skin slightly above the larynx



Figure 1.2: (left) A throat microphone, and (right) a person wearing the
throat microphone.

such that it does not restrict the head motion of the person wearing it (refer Fig. 1.2).
It picks up intelligible speech sounds transmitted from the pharynx through the throat
tissue. Due to proximity to the larynx, the buzz tone of the larynx is also picked up
by the throat microphone, but is overbalanced by the speech sounds. Most of the
voiced sounds are easily understood, as the source of excitation of these sounds is the
larynx. However, unlike the Normal Microphone (NM) speech which results from the
modification in the oral and nasal cavities, the Throat Microphone (TM) speech may
not pick up the finer articulatory modifications in the oral cavity. Additionally, the
damping effect of the nasal cavity may not be well represented in the TM speech. In the
case of unvoiced sounds like fricatives, the throat microphone picks up the noise-like
signal from the cavity behind the constriction, unlike the normal microphone which
picks up the signal after it passes through the oral cavity in front of the constriction.

The effect of the back cavity on the TM speech is to filter out most of the higher
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Figure 1.3: The wideband spectrograms of a speech signal from a male speaker

recorded simultaneously from (a) a throat microphone, and (b) a normal mi-
crophone, for the sentence don’t ask me to carry an oily rag like that.

frequency bands in the fricatives. In the case of voiced stops, the TM captures the
voicing activity during the closure phase as well as the modifications of the air flow
in the oral segment behind the closure. In contrast, the NM picks up only the low
frequency vibrations of the throat since the NM is located in front of the closure.
Fig. 1.3 shows the spectrograms of a segment of speech simultaneously recorded
using a throat microphone and a normal microphone. It is seen from the figure that
some of the higher frequencies are missing (e.g., fricative /s/), or are of low intensity
(e.g., formants around 3500 Hz) in the TM speech. Also, additional spectral informa-

tion is seen in some sounds like /D/in the TM speech. The TM and NM are sensitive



to different aspects of the speech signal, and their spectra differ as a function of the
speaker, the placement of the sensors and as a function of the articulation of speech it-
self. However, most of the information in the speech components (up to 3000-3500Hz)
in the audio frequency band is well preserved in the TM speech, which is required for
intelligibility of the speech. Subjective tests on the intelligibility of the TM speech is

discussed in the following subsection.

1.3.1 Intelligibility of TM speech

Intelligibility refers to the percentage of the message in the speech that is successfully
transmitted from the speaker to the listener. Intelligibility is one important aspect of

the overall speech quality [2]. The intelligibility of the TM speech is tested to measure

e the intelligibility of consonant phonemes
e the intelligibility of vowels

e contextual intelligibility

The test utterances of five speakers are evaluated by 10 listeners (different from the
speakers).

The intelligibility of consonant phonemes is measured using the Diagnostic Rhyme
Test (DRT). In the DRT, a closed set response test, each test is restricted to a pairwise
comparison [2,3]. Each pair of rhyming words differ only in the leading consonant
phoneme. The listeners have to indicate which of the two words they heard. Six
intelligibility attributes are utilized by the DRT, namely, voicing, nasality, sustention,

sibilance, graveness and compactness. A total of 192 words (16 word pairs in each of



the 6 categories) are recorded using the throat microphone from five speakers. The
speech data for each category comprises of words spoken by all the speakers.

In the voicing category (phonemes produced by the vibration of the vocal folds,
e.g., Dint vs. Tint), all the phonemes are correctly identified by the listeners. This
indicates that all the voiced oral sounds are picked up well by the throat microphone.
In the nasality category (phonemes produced through the nasal radiation, e.g., News
vs. Dues) too, the words are generally correctly identified, though misidentification
occurs when there is a confusion between /m/ and /b/, both having the same place of
articulation (bilabial sounds). This indicates that though the damping in the nostrils
is not well picked up by the TM, generally the nasal sounds are identified. This
could be because the TM captures the modifications in the naso-pharyngeal tube.
Misidentification occurs in the sustention category (phonemes produced by a partial
closure of the vocal tract such as /sh/ or /u/ as against the phonemes produced by
complete closure of the vocal tract, e.g., Sheet vs. Cheat). This could be because the
throat microphone is not able to capture the difference in the turbulence generated in
the oral cavity during the articulation of a fricative or the release of an unvoiced stop.
In the sibilance category (affricated phonemes e.g., Jaws vs. Gauze), misidentification
occurs due to confusion between /c¢/ and /k/, and /j/ and /g/. However, the words
are generally correctly identified. In the graveness category (bilabial sounds as against
alveolar or dental sounds e.g., Pool vs. Tool ) and compactness category (velar and
palatal sounds as against other sounds e.g., Key vs. Tea), the words are generally

correctly identified, though misidentification occurs due to confusion between /s/ and

/sh/.



Though the consonants are generally identified correctly, misidentification occurs
as the turbulence due to the articulation of fricatives and release of stop sounds is not
well differentiated in the TM speech. The overall DRT score (refer Table 1.1) obtained

by the correct percentage of the response, is given by

DRT% = w x 100, (1.1)

t

where N, is the number of correct responses, NN; is the number of incorrect responses,
and /V; is the number of tests conducted.

The intelligibility of vowels in the TM speech is measured using the “sustained
vowel list” [3]. Each of the three lists in the test consists of 14 Consonant-Vowel-
Consonant (CVC) words, such that each of the fourteen vowel phonemes of general
American English is represented in the medial vowel of each of the words in each list.
This test is useful for isolating the vowel sounds as opposed to the consonant sounds as
a measure of intelligibility. The words are correctly identified by most of the speakers
(refer Table 1.1). This shows that the vowels are intelligible in the TM speech.

The contextual intelligibility of the TM speech is measured using the Sentence List
Tests. The Harvard Psychoacoustic Sentences, which are phonetically balanced, are
used for this test. There are 72 sets of 10 meaningful sentences each. Two sets have
been used in this test. The result of the intelligibility tests (shown in Table 1.1) shows
that the contextual intelligibility is high in the TM speech.

Humans are trained to listen to speech radiated from the lips and the nostrils.
Hence, though the TM speech is intelligible, it is perceived as unnatural. Humans

are uncomfortable when subjected to prolonged hearing of speech from a throat mi-



Table 1.1: The scores (in %) of the intelligibility tests per-
formed on the TM speech recorded in a clean environment

Speaker || Word list | Sustained | Sentence list
DRT test | vowel list | Har. Psyc. test
1 93 98 96
2 83 91 90
3 89 93 88
4 80 87 86
5 83 90 87

crophone. It becomes necessary to improve the perceptual quality of the TM speech
to alleviate the discomfort of the listeners. From the discussions in this section, it is
seen that though there are acoustic differences between the TM and NM speech for
various sound units, there exists correlation in the simultaneously recorded TM and
NM speech signals of a speaker. This is because the information about the vocal cord
activity (e.g., pitch) and the dimensions of the vocal tract (e.g., location of formants)
of a speaker remain similar in both the TM and NM speech. This speaker-specific
correlation can be exploited to learn a mapping between the features of the TM and

NM speech. This could improve the perceptual quality of the TM speech.

1.3.2 Robustness of TM speech

The throat microphone is a preferred choice for use in situations that demand an

intelligible speech with a high SNR in noisy ambience, and where physical comfort
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and convenience of the user is essential to ensure that his/her freedom of action is not
limited. They are also used when operational constraints prevent the use of a normal
microphone.

Typical applications, where high noise causes communication difficulties, include
helicopters or fixed wing aircraft, armoured vehicles, naval vessels and severe industrial
conditions. Throat microphones are also useful where mechanical compatibility with
respirator masks or military helmets prevents the use of normal microphones. Hence,
it is worn by safety personnel in extreme conditions like raging forest fires or driving
in hurricanes and by security personnel in the midst of gunfire. It can also be used
in chaotic places like railway stations, and by cellphone users. Fig. 1.4 shows the
spectrograms of speech simultaneously recorded using a TM and an NM in (simulated)
noisy environment. It is seen that the TM speech has a high SNR, while the NM speech
has a low SNR.

There exist many situations which require robust speech systems whose perfor-
mance does not degrade due to the ambient noise. Restricted entry into high security
enclosures, access control, and command and control are some of the typical applica-
tions. The presence of speech, speaker and language characteristics in the robust TM
speech can be explored for developing reliable speech systems, especially in adverse

conditions.

1.4 BANDWIDTH EXTENSION OF TELEPHONE SPEECH

In recent years, significant efforts have been made to improve the quality of telephone

speech signals. The speech signals from the analog telephone channels are band-limited
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Figure 1.4: The wideband spectrograms of a speech signal from a male speaker

recorded under simulated noisy condition, simultaneously from (a) a throat

microphone, and (b) a normal microphone.
between 300 Hz and 3400 Hz. This limitation in the audio frequency range is caused by
the introduction of band-limiting filters within amplifiers used to keep a certain signal
level in long local loops [4]. These filters have a passband from approximately 300 Hz
up to 3400 Hz, and are applied to reduce crosstalk between different channels. As the
higher frequencies are missing in the narrowband telephone speech, sounds that have
predominant energy in the higher frequencies (as in fricatives) are weak. Also, some of
the stop consonants are not easily distinguishable. These are some of the reasons that

reduce the perceptual quality of the telephone speech, though it is intelligible. The

efforts to improve the perceptual quality of the telephone speech involve estimating
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the speech signal components above 3400 Hz, and complementing the signal in the
idle frequency bands with this estimate. The estimation of the higher frequency bands
exploits the redundant information in the lower frequency bands of the narrowband
telephone speech and the wideband normal speech (0 to 8000 Hz). The approach to
enhance the TM speech, which exploits the redundant information in the TM and NM
speech (refer Section 1.3.1), can be used to increase the bandwidth of the telephone
speech.

Techniques used in this work for enhancing the TM speech are extended for two
applications, (1) bandwidth extension of telephone speech, and (2) loudness enhance-

ment of soft voices.

1.5 SCOPE OF THE PRESENT WORK

The primary problem addressed in the thesis is to improve the naturalness of the TM
speech, close to that of the speech recorded from a normal microphone. There exists
correlation in the TM and NM speech of a speaker. The activity of the vocal folds
and the dimensions of the vocal tract are specific to a speaker. So, in general, the
locations of instants of significant excitation and the lower formant locations would
be similar in the simultaneously recorded TM and NM speech from a speaker. This
thesis exploits the correlation to learn a speaker-specific mapping from the features of
the TM speech to the features of the NM speech. The estimated features of the NM
speech are used to reconstruct the enhanced speech. The recordings for learning the
mapping and testing are done in laboratory conditions.

In building speech systems using TM speech in noisy environments, the perfor-
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mance of the speech systems depends critically on the effect of the environmental
conditions on the parameters and features extracted from the speech signal [5]. The
quality of the TM speech is not affected in the presence of noise such as running of
engines, reverberation and competing speaker. However, in the presence of severe vi-
bratory noise, the SNR of the TM speech reduces. This is because the TM picks up
the vibrations in the throat skin due to the vibratory noise. In this thesis, the noisy
environment is simulated in the laboratory using the radio statics (refer to Fig. 1.4).

This noise does not affect the quality of the TM speech.

1.6 ORGANISATION OF THE THESIS

The focus of the work presented in this thesis is on processing the TM speech for (a)
improving the naturalness and (b) building robust speech systems in noisy conditions.
Techniques for improving the naturalness of the TM speech have been extended to
improve the perceptual quality of the narrowband telephone speech. The evolution of
ideas presented in this thesis is given briefly in Table 1.2.

The contents of the thesis are organised as follows:

Chapter 2 reviews some of the alternate speech sensors and the methods used to
process the signals recorded from them. Methods to improve the quality of telephone
speech are also discussed.

In Chapter 3, a study of the acoustic characteristics of various sound units in the
TM speech in comparison with the characteristics of the sound units in the NM speech
is presented. The sound units studied are vowels, nasal consonants, stop consonants,

fricatives and semivowels.
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The methods to enhance the naturalness of the TM speech are presented in Chap-
ters 4 and 5. The spectral based enhancement is presented in Chapter 4, while the
excitation based enhancement is presented in Chapter 5.

In Chapter 6, speech recognition studies using the TM speech are presented. A
syllable recognizer is developed for isolated utterances in an Indian language, Hindi,
using the TM speech in clean conditions.

In Chapter 7, two robust speech systems using TM speech recorded in (simulated)
noisy conditions are presented. The speaker recognition and language identification
systems perform reliably in clean as well as noisy conditions.

In Chapter 8, the techniques to improve the naturalness of the TM speech have
been used to improve the quality of the narrowband telephone speech. A similar
technique is shown to be useful in enhancing the perceptual loudness of any soft voices
that are recorded using a normal microphone.

Chapter 9 summarises the work presented in this thesis. The contributions of this

research are highlighted and some directions for future work are given.

¢
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Table 1.2: Evolution of ideas presented in the thesis.

e The TM speech is perceptually unnatural compared to the NM speech

— Acoustic analysis of various sound units shows TM and NM speech differ in spectral
content and excitation source characteristics of voiced sounds.

e Approaches to improve perceptual quality of TM speech

— Mapping TM spectra onto NM spectra using neural networks

*x Continuous mapping to ensure synthesized speech does not suffer from spectral
discontinuities

*x Method to guarantee stability of the synthesis filter
— Modifying TM residual

*x Mapping features that distinguish between voiced segments in TM speech and
NM speech

* Emphasizing strength of instants in vowels, and deemphasizing instants in voiced
consonants using mapped features

e Throat microphone is preferred in adverse situations since the speech is intelligible

— HMM based syllable recognizer developed using TM speech recorded in clean condi-
tions

— Robust speaker recognition and language identification systems developed using TM

speech recorded in (simulated) noisy conditions

e Significant efforts made in recent years to improve perceptual quality of narrowband tele-
phone speech

— Spectral mapping technique and residual modification technique used for bandwidth
extension of narrowband telephone speech and loudness enhancement of soft voices
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CHAPTER 2

REVIEW OF APPROACHES TO PROCESS SIGNALS
FROM ALTERNATE SPEECH SENSORS

In this chapter, a review of the methods for processing speech signals from various
sensors is presented. The chapter is organized as follows. Section 2.1 gives an overview
of processing speech signals from a standard microphone. Section 2.2 reviews the
methods to process signals from alternate speech sensors, especially for improving the
performance of different speech systems. Section 2.3 gives an overview of the methods
to improve the perceptual quality of the narrowband telephone speech. Section 2.4

presents an overview of the thesis. Section 2.5 summarizes the reviewed work.

2.1 PROCESSING SPEECH SIGNALS

Speech signals recorded from a normal microphone (placed in front of the speaker’s
mouth) contain a wide range of audio frequencies. Hence, this speech sounds percep-
tually natural. This Normal Microphone (NM) speech signal carries information about
the speech, speaker and the language spoken, among others. Features containing this
information are extracted from the NM speech for several applications such as auto-
matic speech recognition, speaker recognition/verification and language identification.
The features are obtained by processing the NM speech signal to estimate the time-
varying vocal tract system characteristics and the excitation source characteristics of

the speech production mechanism [5-11].
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However, in adverse situations like high ambient noise, the speech degrades and
hence the performance of the speech systems. These NM speech based systems suffer
from limitations such as requiring estimates of the speech spectrum and speech activ-
ity detection from a noisy acoustic waveform. Approaches to improve the performance
of these speech systems by enhancing the degraded speech as a preprocessing step
have been attempted. Alternate approaches to improve the performance of the speech
systems have emerged that capitalize on recent developments in alternate speech sen-
sors. These sensors are relatively immune to the acoustic background noise, and thus
provide the potential for robust measurement of speech characteristics. Some of the
alternate speech sensors and the approaches that use these sensors for improving the

performance of speech systems are discussed in the following section.

2.2 PROCESSING SPEECH SIGNALS FROM ALTERNATE SPEECH
SENSORS

Alternate speech sensors including skin vibration, bone conduction, and microwave
radar sensors have recently been applied to the problem of measuring speech signals
in the presence of strong background noise. Some sensors record speech from anatom-
ical vibrations. Some of the sensors provide measurements of functions of the glottal
excitation, and of the vocal tract articulator movements that are relatively immune to
the acoustic disturbances, and can supplement the acoustic speech waveform. These
sensors have been historically used almost exclusively in clinical environments for ap-
plications such as pitch determination [12]. However, recent research has begun to
consider this potential for improving speech quality in highly noisy environments. Sen-

sors that typically measure some information about the speech generation process are
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commonly used in conjunction with a normal microphone and addition signal process-
ing, to augment the acoustic speech signal and to improve the resulting speech quality.
Some of the alternate speech sensors that have been used for speech applications are

discussed in the following section.

2.2.1 Alternate speech sensors and measurements

The ElectroGlottoGram (EGG) is a device designed to measure the glottal activity
(contact between the vocal folds). The EGG nominally measures the vocal fold contact
area (VFCA). The electrodes are placed on the subject’s neck at the level of the thyroid
cartilage. The VFCA is measured by observing the variation in electrical impedance
over time. However, EGG does not sense the events during the open phase of the
glottis [13].

The Glottal Electromagnetic Micropower Sensor (GEMS) is a device based upon
transmitting ElectroMagnetic (EM) waves into the glottal region [14]. A small antenna
is placed on or near the throat at the level of the glottis. This antenna transmits a 2.3 to
2.4 GHz low power EM wave. The reflected signal depends on the tissue movement in
the speech production anatomy, such as the tracheal wall, the vocal folds, or the vocal
tract wall. The GEMS sensor is able to detect the transition boundaries between voiced
and unvoiced or no speech. It measures quasi-periodic signals during the production
of vowels, nasals and voiced stops (during closure phase).

The Tuned Electromagnetic Resonator Collar (TREC) sensor is designed to mea-
sure glottal activity like the EGG and the GEMS sensors. In measures changes to the

relative permittivity of the larynx as a proxy for measuring movement of the glottis (as
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well as movement of tissue in the subglottal and supraglottal systems). The relative
permittivity is measured by placing capacitors on a collar worn around the speaker’s
neck, without making contact to the skin [3,12].

The Physiological microphone (P-mic) is typically placed in the throat area below
the glottis. It is composed of a gel-filled chamber and piezo-electric sensor behind the
chamber. The sensor converts the vibrations permeating the chamber into electrical
signals. When placed below the larynx, it measures the vocal fold vibrations. When
strapped to a facial location (forehead) it gives information about the vocal tract such
as the noise component of unvoiced speech, but the SNR, of the signal reduces [13]. In
contrast, the throat microphone gives significant vocal tract information when placed
at the level of the throat, as discussed in Chapter 1.

The bone-conduction microphone is a sensor that touches the side of a person’s
face directly in front of the ear. It receives vibrations that are conducted from the
rear of the vocal tract through the flesh and bone of the face when a person speaks.
Like the P-mic, the bone-conduction microphone comprises a piezo-electric material.
When placed at the skull location, the bone-conduction microphone is found to provide
strong voicing, as well as significant vocal tract information in the low frequency range
(less than 3 kHz) [15-17].

The silicon Non-Audible Murmur (NAM) microphone is a sensor that is attached
behind the speaker’s ear [18]. It is able to capture speech which is uttered very quietly
(non-audible murmur), through the body tissue. It is used in situations when privacy
in communication is preferable.

Approaches to process the signals from the above mentioned sensors for various
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speech applications are discussed in the following sections.

2.2.2 Approaches to speech enhancement using multiple sensors

In [13], an approach to enhance the degraded acoustic speech used three alternate sen-
sors, the GEMS, P-mic and EGG, along with an acoustic sensor (NM). The alternate
sensors were used according to their capacity to represent specific characteristics of
speech in different frequency bands. Speech activity detection was performed using
the GEMS sensor to detect the voiced speech components. A P-mic (placed on the
forehead) was then used to detect the unvoiced speech. The enhancement was achieved
by estimating the magnitude and phase components of the short-time Fourier trans-
form of the acoustic and alternate speech signals. Improvement in the quality and
intelligibility of the acoustic speech was reported from informal listenings. However,
the use of more than one sensor at the throat region may not be suitable for situations
where convenience of the user is of primary importance.

In [15,19], the bone-conduction microphone was combined with the normal mi-
crophone for detection and enhancement of the target speaker’s speech from a normal
microphone signal in the presence of background speech. Speech detection was based
on a histogram of the energy in the bone channel. The enhancement of the noisy
speech involved learning the speaker-dependent mapping from the bone sensor sig-
nal to the clean (target) speech using the SPICE algorithm [20] based on a piecewise
linear representation [7]. Then, the bone sensor signal and the noisy signal were com-
bined to estimate the clean speech using the Wiener filter technique. In [16], the

clean NM speech is estimated from the combined noisy speech in the normal and bone
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sensors using expectation maximization (EM) algorithm. To avoid the prior train-
ing of a speaker-dependent model, an algorithm called direct filtering was proposed
in [21]. The clean speech was estimated by learning the transfer function from the
close-talking channel to the bone-channel from the given utterance using a maximum
likelihood framework.

The bone sensor signal is distorted due to teeth clacking (unconscious contact
of upper and lower jaw) and noise leakage [22]. The teeth clack and noise-leakage
will distort the mapping function between the air and bone channels, resulting in a
negative effect on the enhancement. These distortions were removed by making use of
the formant trajectories which were estimated from the Linear Prediction (LP) cepstra
using the adaptive Kalman filtering algorithm [23]. The speech was then synthesized
using the LP cepstra generated using the estimated formant information. The clean
close-talking speech was then estimated from a combined noisy close-talking speech and
the synthesized bone sensor speech using the maximum likelihood (ML) framework.
An improvement over this method in estimating the clean speech was claimed using a
graphical model based approach in [24]. The approach used a two-state speech model
and an estimated noise model (based on the speech detection) using the correlation
between bone and close-talking channels.

The GEMS sensor was combined with the normal microphone to suppress the
background noise from the normal microphone speech signal in [14]. The GEMS sig-
nal energy was used to obtain a reliable measure of the voiced speech boundaries. The
unvoiced speech segments were estimated using the statistics of the user’s language.

The noise in the remaining non-speech segments of the acoustic speech was suppressed
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using the Wiener filter, the Glottal WINdowing (GWIN) filter, and the Glottal COR-
relation (GCOR) filter. A similar approach using the GCOR algorithm was proposed
in [25].

A Harmonic Comb Filtering technique, that uses the GEMS signal to detect High
Signal Power (HSP) locations in the voiced speech spectrum (without harmonicity
assumptions) was used for enhancing the perceptual quality of the degraded NM speech
in noisy conditions [26]. This system was used in tandem with a Minimum Mean Square
Error (MMSE) estimator for voiced speech, while only the MMSE estimator was used
for unvoiced speech in [25,27]. The non-HSP locations were severely suppressed, while
the HSP locations were enhanced with the MMSE estimator. The unvoiced speech
frames were mildly suppressed to keep the perceptually important cues in the unvoiced
speech intact.

The GEMS and P-mic sensors were used to improve the intelligibility of noisy NM
speech in the context of a speech coder in low SNR conditions by combining two algo-
rithms, namely, perceptually motivated Constant-Q (CQ) algorithm and an enhanced
GCOR algorithm. The CQ algorithm used a perceptually inspired technique for esti-
mation of speech cues. The enhancement gains were controlled using a psychoacoustic
masking model [28]. The enhanced GCOR algorithm extracted the desired speech
signal that statistically correlated with the glottal excitation supplied by the GEMS
from the noisy mixture.

In the above mentioned approaches, the alternate speech sensors were used to
improve the perceptual quality of the noisy NM speech. In this thesis, the perceptual

quality of the TM speech is enhanced to obtain a speech which is perceptually more
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natural than the TM speech.

2.2.3 Speech recognition using alternate speech sensors

Conventional Automatic Speech Recognition (ASR) systems have a good performance
in quiet laboratory environments. The performance drops when used in noisy envi-
ronments and on large vocabularies by stressed speakers, or when used by dialectal
speakers. The error rates are too high for most applications. A typical error perfor-
mance specification of a reliable ASR system is usually in the range of 1 error in 1000
to as low as 1 in 10,000 depending on the application [29]. To reach this goal, factors
of 100 to 1000 improvement in speech recognition accuracy in noisy environments are
required.

Noise robustness is one of the key challenges to be solved for the ASR systems to
be employed in real environments. Various approaches have been proposed to improve
ASR using acoustic signals [26]. The use of acoustic signals (from a normal micro-
phone) alone for improving the efficiency of ASR systems would not yield the desired
accuracy. One major reason for this is that the acoustic signals contain insufficient
information to accurately represent all the sound units of a language [29]. The effects
of circulation, speaker variability and noise on the acoustic signal make it difficult to
achieve an ASR system that meets the demands for accuracy, cost and speed. Multi-
sensor information (for example, lip movements in addition to speech) have been used
to improve the performance of ASR systems in noisy conditions [30]. In this thesis,
the throat microphone signals are used for speech recognition studies. Hence, only the

multisensor ASR systems that utilize the information from alternate speech sensors to
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augment the NM features are discussed in this section.

In an attempt to improve the recognition accuracy of a word recognizer (TI con-
nected digit database) the use of multiple sensors was reported in [31]. The features
from accelerometers placed at the throat and nose were combined with the features
from a standard microphone, and were vector quantized using an appropriate code-
book. An improvement in recognition results using speaker-dependent isolated-word
models was reported.

The feature vectors of the TM speech and the noisy NM speech were combined to
estimate the feature vectors of the clean NM speech that are used by standard speech
recognizers [32]. A probabilistic optimum filter (piecewise linear transformation) was
used to map the temporal sequence of noisy mel cepstral features from the normal
microphone and the throat microphone, juxtaposed as an extended feature vector, to
the clean mel cepstral features from the standard microphone. This study was later
extended to take into account the reduction in SNR in the throat microphone in highly
noisy environments [33].

Recognition studies on soft whisper recorded with a throat microphone using var-
ious adaptation methods were reported in [34]. Such a system is useful when privacy
in human-machine communication is desired. A standard speech recognizer was used.
The training data (normal speech) was adapted to the testing domain (whispered
speech) for retraining. The adaptation methods included speaker-dependent maxi-
mum likelihood linear regression and feature space adaptation, and retraining with
downsampling, sigmoidal low-pass filter, and linear multivariate regression. A simi-

lar speech recognition study on non-audible murmur in clean and noisy environments
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using NAM microphones was reported in [18].

Providing acoustic-phonetic knowledge to speech processing applications would
help improve their performance. Towards achieving this, an approach to recognize
the broad phoneme classes using the fused features of a standard acoustic signal and
a GEMS signal in noisy conditions was reported in [35]. An HMM-based syllable
recognition system using the fused features (39 features from NM signal- 13 MFCC
with their 15" and 2"¢ order derivatives, and 3 features from GEMS signal - energy
and its 1" and 2™ order derivatives) was reported to perform significantly better than
the baseline recognition system that used a front end speech enhancement system. A
similar fusion approach was used to increase the performance of digit recognition at
both low and high SNR in [36]. Noise robust speech recognition using the bone sensor
along with the normal microphone to achieve enhancement of the degraded speech

prior to recognition was reported in [15].

2.2.4 Speaker recognition using alternate speech sensors

Speaker authentication is a rich area for exploration of multimodal approaches. Tra-
ditionally, visual features have been used to supplement speech recognition as well as
speaker recognition [37]. These methods supplement the speech features with the fea-
tures based on the sequence of lip movements for speaker verification. In [38], the use
of EGG, GEMS and P-mic sensors along with the standard microphone was proposed
to augment a closed-set speaker recognition system. Speaker specific features were
extracted from each of the sensor signals. Gaussian Mixture Models (GMM) and Sup-

port Vector Machines (SVM) were then used for the speaker recognition task. A late
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integration of the different classification systems was reported to significantly improve
speaker recognition in noise.

The GEMS signal, when combined with the acoustic signal from a normal micro-
phone for a speaker verification system, was reported to achieve a 10 fold reduction in
error rates under moderate noisy conditions [39]. Apart from the cepstral coefficients
derived from the acoustic signal, the GEMS signal was used to derive additional fea-
tures such as pitch, GEMS shape parameter, and Auto Regression and Moving Average
(ARMA) coefficients. This set of feature vectors was used in the dynamic time warp-
ing algorithm to calculate the performance “distance” used to make the accept/reject

decision on an identity claim.

2.2.5 Speech encoding using alternative speech sensors

The relatively immune signals from the alternate speech sensors supplement the acous-
tic speech waveform in improving the intelligibility of the speech transmitted through
low-rate coders in highly noisy conditions. The signals from the GEMS, P-mic and
bone-conduction sensors were fused with the acoustic signals to achieve better intelli-
gibility performance over the standard 2400-bps MELP coder [17]. Pitch and voicing
parameters used by MELP were estimated from the GEMS and P-mic signals rather
than the acoustic signals. The remaining parameters were obtained from the enhanced
(noise suppressed) fused signal.

The GEMS sensor was used in speech compression, where an almost 10-fold band-
width reduction was reported in comparison to a standard 2.4 kbps LPC 10 protocol

[40]. The GEMS signal was used to classify the speech into voiced, unvoiced and si-
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lence segments (during which no coding is needed). The excitation function from the
GEMS data was used to compute a short-time transfer function for using an ARMA
model. As variation in the motion of the vocal articulators is slow, the corresponding
rates of variation in the poles and zeros in the complex plane are also slow. This was
used to compact the information into a small number of bits/sec. Reduction in trans-
mission bit rate and improved intelligibility in noisy conditions was reported in [41]
using a trajectory compression technique, combined with multi-sensory inputs from
the standard microphone, EEG and GEMS sensors. The trajectory compression using
polynomial approximation exploited the inter-frame information redundancy in natu-
ral speech. The EGG and GEMS signal were used to estimate the pitch and voicing
parameters as in [17].

The application of alternate speech sensors for various speech systems were dis-
cussed in these sections. Most of the reported works dealt with the task of using
suitable features from these sensors to improve the robustness of existing speech sys-
tems in noisy conditions. In this thesis, the goal is to develop speech systems using
the throat microphone speech alone. In order to improve the perceptual quality of
the TM speech, the existence of information redundancy in the TM speech and NM
speech of a speaker is exploited.

A lot of interest has been evinced in recent years to improve the perceptual quality
of the narrowband telephone speech by extending its bandwidth. In this thesis, the ap-
proach to improve the perceptual quality of the TM speech is extended for bandwidth
extension of the telephone speech. The previous efforts towards bandwidth extension

of telephone speech are discussed in the following section.
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2.3 APPROACHES TO BANDWIDTH EXTENSION OF NARROW-
BAND TELEPHONE SPEECH

The basic idea of bandwidth extension algorithms is to extract information about
the missing speech components from the available narrowband signal (refer Section.
1.4). Most of the techniques used for this task employ the source-filter model of
speech generation. In these techniques, the reconstruction problem is divided into
two separate tasks. The first task is recreating a set of wideband Linear Prediction
(LP) coefficients, and the second task is forming the wideband residual error signal.
The correlation between the highband (4-8 kHz) and the lowband (0-4 kHz) frequency
components are exploited. Once the wideband spectral envelope has been generated,
the wideband residual is used to excite the wideband LP synthesis filter resulting in
a regenerated wideband speech signal. In the ideal case, it is desirable to recover the
speech components between 3.3 kHz and 8 kHz, as well as components in the low
(0-300 Hz) frequency band [42].

2.3.1 Techniques to regenerate wideband spectral envelopes

2.3.1.1 Linear mapping techniques

The linear mapping between the narrowband spectral vector x and the wideband

spectral vector y is given by
y = Wx, (2.1)

where the elements of transformation matrix W are determined using least squares

[43]. The matrix W is calculated as
W = (XTx)'x"Y, (2.2)
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where X and Y are the matrices comprising the narrowband and wideband spectral
vectors respectively.

In [44], Line Spectral Frequencies (LSF) were proposed for estimating the wideband
spectral envelope. The linear mapping from the narrowband LSF to the wideband LSF
was achieved using multiple matrices. The matrices corresponded to the different clus-
ters of the speech frames based on the spectral shape. In [45], the cepstral coefficients
of the narrowband (downsampled wideband) speech were mapped to the cepstral co-
efficients of the wideband (sampling frequency = 16 kHz) speech by means of a linear
predictor that was trained over generic speech files. In [46], the wideband spectral
envelope was estimated by mapping the time trajectories of the cepstral coefficients of

the narrowband and wideband speech using a filterbank technique.

2.3.1.2 Codebook mapping techniques

The wideband spectral envelope has been estimated using codebook mapping. Code-
book mapping relies on a one-to-one mapping between codebooks of narrowband and
wideband spectral envelopes to predict the wideband envelope. The wideband spectral
envelope was determined from the wideband code vector whose corresponding narrow-
band code vector is closest in shape to the spectral envelope of the frame of input
narrowband speech under analysis in [43] . Euclidean norm was used to find the best
match in the narrowband codebook. In [47], the Itakura-Saito and the Gardner-Rao
distortion measures were reported to improve the correlation between the distance
metric and human perception of difference in the reconstructed speech frames. An

optimal gain was applied to the wideband synthesis filter to ensure that the estimated
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wideband information had the appropriate energy. Instead of using LP-derived fea-
tures, MFCC were used for vector quantization in [48].

Using the codebook mapping scheme, the number of possible wideband envelopes
which can be predicted is limited to the size of the codebooks. To increase the number
of possible estimates of wideband envelopes, two schemes were implemented in [49]. In
the first scheme, N narrowband code vectors that were closest to the input narrowband
envelope were chosen. The weighted combination of the corresponding N wideband
code vectors was used as the estimated wideband envelope. In the second scheme,
two separate codebooks for voiced and unvoiced spectral envelopes were used. This
split codebook mapping was reported to produce a smaller spectral distortion than
the interpolation scheme. In [50], the following techniques were proposed to improve
the performance of codebook mapping: (a) Weighting a distance measure towards
increased phonetic classification, (b) marginal LSF interpolation, (c) codebook map-
ping with memory, and (d) codebook interpolation. The weighting for the distance
measure depended on the mutual information (1 bit) between the short time critical-
band logarithm spectral energy and phonetic classification. The memory information
was incorporated into the codebook mapping by the distance between the narrowband
LSF of the current and previous frames to interpolate the previous wideband LSF to
estimate the current wideband LSF. In [51], one scheme used the distance between the
upsampled narrowband LSF and the selected narrowband LSF code vector to estimate
the wideband LSF. Another scheme interpolated the upsampled narrowband LSF and

the mapped wideband LSF.
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2.3.1.3 Statistical mapping techniques

The statistical dependence between the narrowband and wideband speech spectra is
exploited to estimate the wideband spectra based on probabilistic measures. In [52],
spectral envelopes were modelled as combinations of signals emitted from different ran-
dom sources. Each source generated autoregressive spectral envelope parameters based
on a Gaussian distribution. The narrowband and wideband source were correlated ac-
cording to a transition probability matrix P = [p;;|, where p;; was the probability
that the wideband speech was generated by the j wideband source given that the
narrowband portion was generated by the i narrowband source.

Narrowband spectral envelope of input speech was transformed to wideband spec-
tral envelope based on the Gaussian Mixture Model (GMM) in [53]. The mapping
function for this transformation was the least squares regression estimate, obtained
from (narrowband and wideband) training data. In [54], a unified probabilistic frame-
work was created which integrated the feature denoising and bandwidth extension
process using a single shared statistical model. The GMM trained on narrowband
speech and a state-conditional affine transform in the Mel Frequency Cepstral Co-
efficients (MFCC) domain to transformed the narrowband spectral envelope into a
wideband spectral envelope. Hidden Markov Model (HMM) was exploited to indicate
the proper representatives of different speech frames to improve the performance of
LSF-based approaches by applying a minimum mean square criteria to estimate the
wideband LSF values [55,56]. In [57], equalization was combined with statistical esti-

mation for wideband spectral estimation, and an improvement was reported over the
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statistical estimation techniques.

2.3.1.4 Neural networks-based techniques

Neural network techniques to extract the missing frequency contents by a simple non-
linear mapping from narrowband to wideband speech signal [58] used a multilayer
perceptron in feedforward operation with three layers for mapping. Adaptive spline
neural networks were used for wideband estimation in [59], which was reported to
reduce the computational load of standard neural networks, and improve the general-

isation capabilities.

2.3.2 Generation of wideband excitation signal

This section briefly explains some of the widely used techniques for generation of the
wideband excitation signal. The modulation technique for wideband residual regen-
eration is to multiply the residual signal with a modulation function. The resulting
signal is filtered with a band-stop filter that is designed corresponding to the telephone
bandpass. The filtered signal is added to the original narrowband excitation signal [4].

The nonlinear processing technique applies a nonlinear transformation such as a
full-wave rectifier or a square operation to the narrowband residual. This transfor-
mation creates high frequency components that have a continuous harmonic structure
with the baseband. The resulting signal is spectrally flattened so that the excitation
does not affect the overall spectral shape [60].

The spectral folding method generates folded images of the baseband spectrum
by inserting zeros between each sample of the signal. This upsampling is applied to

the LP residual signal so that only the time structures are replicated in the highband
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[61]. A pitch synchronous analysis was used in [62] to compute the glottal closure
instants. Wideband residual regeneration was based on time-scaling the open phase
of the glottal source waveform. This transformed the open quotient, which is a time-
domain parameter of the glottal flow signal.

In the above mentioned techniques, the speech synthesized using the wideband
residual and estimated wideband spectral envelope was highpass filtered. The original
narrowband signal was upsampled by a factor of two and then lowpass filtered. The

two signals were then added to obtain the wideband speech.

2.4 OUTLINE OF THE WORK PRESENTED IN THIS THESIS

Previous work in processing speech from alternate speech sensors mainly focused on
extracting features from the alternate speech sensors to be used in tandem with the
features extracted from the NM speech for improving the performance of the existing
speech systems. In the work presented in this thesis, the focus is on processing the
speech from a throat microphone for improving its perceptual quality, and exploiting
its robustness in noise to develop speech systems based only on the TM speech. Im-
provement in the perceptual quality of the TM speech would help alleviate discomfort
of listeners of the TM speech. Building speech systems based on the TM speech is
useful in situations where normal microphones cannot be used. The approach used
for improving the perceptual quality of the TM speech is extended for bandwidth
extension of telephone speech and loudness enhancement of soft voices.

Chapter 3 analyses the vocal tract characteristics and excitation source character-

istics of the TM speech in comparison with that of the NM speech. The approaches to
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improve the perceptual quality of the TM speech are detailed in Chapters 4 and 5. The
speech applications based on TM signal are discussed in Chapters 6 and 7. Chapter 8
discusses the bandwidth extension of telephone speech and loudness enhancement of

soft voices.

2.5 SUMMARY

In this chapter, a review of the approaches used to process speech from alternate
speech sensors for various applications like speech enhancement, speech recognition,
speaker recognition and speech coding was presented. The approaches to bandwidth
extension of the narrowband telephone speech were also reviewed. The outline of the

work presented in this thesis was also given.
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CHAPTER 3

ACOUSTIC ANALYSIS OF THROAT MICROPHONE
SPEECH

3.1 INTRODUCTION

The perceptual differences in speech obtained from the Throat Microphone (TM) and
the Normal Microphone (NM) depend on the acoustic characteristics of the sound units
in the two speech signals. The acoustic characteristics of the normal microphone speech
have been extensively studied in literature [63-76]. This chapter presents studies on the
acoustic characteristics of the sound units in the TM signal in comparison with those
observed in the NM signal. The study analyses the acoustic waveforms, spectrograms,
pitch-synchronous linear prediction (LP) spectra and formant trajectories of syllables
[77] to derive inferences. As a result, some of the distinct acoustic features of the TM
speech are identified. This identification would be useful to exploit the characteristics
of the TM speech for various speech applications.

In the pitch-synchronous analysis, the segments are selected around the instants
of significant excitation of the vocal tract system. The regions around the instants
are chosen because the significant excitation of the vocal tract takes place during the
rapid closing phase of the periodic glottal vibration. The characteristics of the vocal
tract system are preserved in the signal in the closed glottis region. Analysis of the
speech signal over such an interval provides an accurate estimate of the frequency
response of the vocal tract system. A short (2-3 ms) segment to the right of the
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instant corresponds to the closed glottis region, and a short (2-3 ms) segment to the
left of the instant is considered as the open glottis region. In this chapter, the vocal
tract system characteristics of voiced sounds in the closed-glottis region are studied

using pitch-synchronous analysis.

3.2 VOWELS

Vowels are produced by exciting a fixed vocal tract shape with quasi-periodic pulses
of air flow through the vocal folds, which are vibrating at the fundamental frequency.
The cross-sectional area of the vocal tract varies for different vowels. This variation
determines the resonant frequencies of the vowels. The tongue is the primary articula-
tor whose position alters the cross-sectional area of the vocal tract, and consequently
determines the vowel that is produced. The positions of other articulators such as the
jaw and lips also influence the sound produced. Vowels are classified as front, central
or back, based on the position of the tongue hump. Vowels are also classified as high,
mid and low, based on the height of the tongue hump. The height of the tongue hump
is with reference to the roof of the mouth . The vowel is high when the tongue hump
is nearest to the roof of the tongue.

The duration of the vowels is longer compared to that of the consonants. The
vowels are well defined in the TM and the NM speech. Vowels are distinguished pri-
marily by the location of the first three formant frequencies. Though higher formants
exist, they are not necessary for the perception of vowel differences [78]. Hence, only
the first three formants are analysed here.

During the production of front vowels /i/ and /e/, the tongue is pulled forward
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towards the front of the oral cavity. This causes a large cavity in the back of the
mouth. This large body of air is the source of the low first resonant frequency (F}),
since large objects have low resonances. The cavity in front of the tongue hump is
very small. This is the source of the high second resonant frequency (F3). The low F;
and high F5 in front vowels are observed in both NM and TM speech for both /i/ and
/e/ (refer Fig. 3.1 (a) and (b)). As the tongue height reduces from /i/ to /e/, there
is a rise in Fj. This rise in F} shows that the tongue height is inversely related to Fi,
observed in both the speech signals. The decrease in F; from /i/to /e/ is due to the
increase in the cross-sectional area of the front cavity from /i/to /e/.

When the mid vowel /a/ (as in ‘part’) is produced, the tongue hump is low and
approximately in the center of the oral cavity to form a large oral cavity. The change
in cross-sectional area occurs near the midpoint of the oral cavity [78]. A higher F} is
observed compared to that of the front vowels, since the size of the cavity behind the
tongue hump is smaller when producing /a/ as compared to producing /e/. The Fy
is very close to Fi in the NM speech. In the TM speech, F; is not as close to F} as in
the NM speech (refer Fig. 3.1 (c)). The lowered second formant in the NM speech is
largely because of the effect of slight lip rounding (compared to the wide spread lips
during the utterance of the front vowels). Lip rounding has a lesser effect in the TM
speech. Hence Fi; and F), are farther apart.

When the back vowels /u/ and /o/ are uttered, the tongue is pulled back. The
tongue hump is high for /o/ and lower for /u/. The most important aspect associated
with the production of the back vowel is the rounding of the lips. The position of

the jaw affects the back vowels, unlike the front vowels. The lips are protruded when
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Figure 3.1: LP spectra of 11 successive closed-glottis regions of front vowels
(a) /i/, and (b) /e/, and (c) mid vowel /a/, from simultaneously recorded TM
speech and NM speech.

rounded. The protrusion increases the length of the oral cavity. This causes the
lowering of F; in the NM speech (refer Fig. 3.2) [79]. However, as mentioned earlier,
the rounding of lips does not affect F5 in the TM speech. This results in a high F5 in
the TM speech. The locations of F; and F5 are similar in the front and back vowels

in the case of TM speech (refer Figs. 3.1 and 3.2).

39



TM speech NM speech

3 lol g Y
5 100’/\/\ﬁ § 100 .
£ Mv\ £
o [
1 M 3
2] w
o W A
E 50M B 50F
=N— (a)
(= D
& /\/\’_\ @
€ £
g O : g o
— -
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Frequency (Hz) Frequency (Hz)

120 fuf

N e (b)
W b

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Frequency (Hz) Frequency (Hz)

dB
3
dB
3

Figure 3.2: LP spectra of 11 successive closed-glottis regions of back vowels
(a) /o/, and (b) /u/, from simultaneously recorded TM speech and NM speech.

3.3 STOP CONSONANTS

Stop consonants can be categorised into two classes; unvoiced and voiced. In each
class there are two categories; unaspirated and aspirated. With the stop consonants,

the sequence of events is as follows [63]:

1. There is a complete closure of the oral tract at some location (hence the name
‘stop consonants’) and build-up of air pressure behind the closure. During this
time of closure, no sound is radiated from the lips. For voiced stops, along with

the build-up of air pressure, the vocal folds also vibrate.

2. Release of air pressure and generation of turbulence over a very short time
duration, i.e., the burst source, which excites the oral cavity in front of the

constriction.
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3. Generation of aspiration (in the case of aspirated stops) due to turbulence at
the open vocal folds (before onset of vibration) as air rushes through the open

oral cavity after the burst.

4. Onset of the following vowel after the burst.

During the closure phase, unvoiced stops (e.g., /k/) are characterised acoustically
by the absence of energy in the NM signal as well as the TM signal, as seen in Fig.
3.3.

During the closure phase of voiced stop consonants (e.g., /g/) in the NM speech,
there is no radiation of sound from the lips. The vocal fold vibrations during the
closure are propagated through the walls of the throat, which are captured by the
normal microphone. These low frequency vibrations are seen as an energy band in the
0 to 500 Hz range. This is called the “voice bar”, and is similar for all the voiced stops
[79]. However, each of the stop sounds has its effect on the adjacent vowel. At the
onset of the adjacent vowel, the formants present correspond to the particular shape
of the vocal tract after the release of the closure. Figure 3.4 shows the spectrograms
of the syllables, /ga/, /ja/, /Da/, /da/ and /ba/. In all the voiced stops, the first
formant rises from a low position. This is a mark of a stop closure and does not play
a role in distinguishing one place of articulation from other.

In /ga/, F, is steady, while Fy rises from a low locus. For /ja/, both Fy and Fj
decrease from the high locus. In /Da/ and /da/ F» decreases, with the locus for /Da/
being higher than in /da/. The F3 appears to be steady in both the stops. The onset of

F, and Fj3 is lower in /ba/ than in /Da/. The F; is low in /ba/ due to the lip rounding
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taneously using a throat microphone and a normal microphone.

during closure. It rises from a low locus and moves towards the steady region. There

is only a small rise in F3.

In contrast to the voiced stops in the NM speech where the distinguishing features

are the loci of the formants of the following vowel, the voiced stops in the TM speech

are distinguished by the presence of formant-like structures in the closure phase of the

voiced stops. The vibrations of the vocal folds during the closure result in resonances

of the oral cavity behind the place of closure. As the TM is placed near the pharynx
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Figure 3.4: The spectrograms for the syllables /ga/, /ja/, /Da/, /da/, /ba/
recorded simultaneously from a throat microphone (above) and a normal mi-
crophone (below).

region, it is able to capture the resonances associated with the closure, unlike the
NM. A low frequency band like the voice bar is seen in all the voice stops, similar
to NM speech, indicating the mark of a stop closure. In addition, the consonants
/g9/ and /j/ have a second formant, while the consonants /D/, /d/ and /b/ have a
third formant as well. The F5 progressively decreases as we move from /g/ to /b/.
The F ends where the onset of the Fy of the adjacent vowel begins. The F3 in /D/
decreases towards the onset of the F3 of the adjacent vowel. The F3 appears to be
steady in both /d/and /b/, with the F3 in /d/ being at a higher location than in /b/.
These distinct formant-like structures associated with closure of the voiced stops could
serve as acoustic cues to resolve voiced stops into places of articulation classes. The

pitch-synchronous formant trajectories for the syllables /agag/, /aDaD/ and /abab/
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are shown in Fig. 3.5. It is seen that the formant frequencies are present for the entire

syllable in the TM speech, while the formant frequencies are present only in the vowel

regions in the NM speech. This clearly shows that the resonances of the vocal tract

during the closure are captured by the TM.
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Figure 3.5: The formant trajectories for the VCVC phrases /a gag/, /a DaD/
and /a bab/, recorded simultaneously using a throat microphone (shown as ’e’)
and a normal microphone (shown as 'x’).

3.4 NASAL CONSONANTS

Nasal consonants are produced with the glottal excitation, and the velum lowered to

allow the coupling of the nasal and oral tracts. There is complete closure of the oral
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tract at a location dependent on the nasal sound. The nasal consonants are radiated
through the nostrils. The oral tract acts as a side branching resonator that selectively
absorbs energy from the main tube at frequencies that are dependent on the oral
resonances [63]. The waveforms of nasals in the NM speech are characterized by low
amplitude, periodic, highly damped structure. However, for the TM speech, the nasal
waveforms have a structure similar to that of the vowels. The damping is very less
since the damping effect of the nasal cavity is not captured well by the TM. This can
be seen in the waveform segments of the vowel-consonant-vowel syllables /ama/ and

/ana/ in Fig. 3.6.

[ /a/ /m/ /al | /a/ /m/ /lal

0 0.05 0.1 0.15 0.2 0.25
Time (sec)

Figure 3.6: The waveforms for the syllables /ama/ and /ana/ recorded simul-
taneously using (left) a throat microphone, and (right) a normal microphone.

The acoustic structure of the nasal consonants is dominated primarily by the res-
onances of the nasal-pharyngeal tube and the anti-resonances of the mouth cavity.
The nasals have a formant structure similar to that of a vowel, but are in particular
frequency locations that depend on the characteristic resonances of the nasal cavities.
Also, the nasal consonants are low in energy when compared to the vowels.
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In the NM speech the nasal consonants have a very low first formant centered
at about 250 Hz (as seen in Fig. 3.7). The locations of the higher formants vary,
but generally there is a large region above the first formant with no energy. In the
TM speech, due to the location of the sensor, the oral resonances are also seen in the
spectrum of the nasal consonants. The oral resonance for /n/is at 1400 Hz, and for
/m/ is at 900 Hz. The oral resonance in both /n/ and /m/ shows some continuity

with the second formant of the adjacent vowel.
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Figure 3.7: The formant trajectories for the VCV syllables /ama/, /ana/
recorded simultaneously using a throat microphone (shown as ’e’) and a normal
microphone (shown as 'x’).

3.5 FRICATIVES

Fricatives are produced due to turbulence in the stream of air as it passes through a
narrow constriction in the oral tract. This turbulent air flow acts as a noise source
which excites the cavity in front of the narrow constriction. Fricatives are characterised
by the distribution of random energy over a wide range of frequencies. In the NM

speech, the highest frequencies (extending beyond 8 kHz) in speech occur during the
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production of fricatives. Both /s/ and /sh/ have a large acoustic intensity and hence
produce dark patterns. In the TM speech, the fricatives are characterised by the
random energy being restricted to a narrow frequency band between 1000 Hz and

3000 Hz (refer Fig. 3.8).
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Figure 3.8: The spectrograms for the syllables /sa/, /sha/, /ha/ recorded
simultaneously from a throat microphone (above) and a normal microphone
(below).

3.6 SEMIVOWELS

Acoustically, semivowels bear the closest similarity to vowels and dipthongs, and
are characterised by a formant pattern. The difference in the characteristics of the
semivowels in the TM and NM signals is that in the NM signal the acoustic inten-
sity of the semivowels is distinctively lower than that of the vowels, with an abrupt
change in intensity observed at the transition from semivowel to vowel (or vice versa).

However, in the TM signal, the semivowels have a high acoustic intensity (refer Fig.
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3.9). In the NM speech, the first formant of ///is around 250 Hz. It rises from /I/
to the vowel target. The second formant is around 1500 Hz, while the third formant
is around 2600 Hz. In the TM speech the first formant is around 700 Hz. This could
be due to the resonance of the mouth cavity behind the region of (slight) constriction
in the oral tract. For the semivowel /y/ the first and second formants are rising and
falling respectively in both the TM and NM speech. The difference is observed only
in the third formant. It is rising in the TM speech, instead of falling as in the NM

speech.
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Figure 3.9: The waveforms for the syllables /aya/, /ara/, /ala/ and /awa/,
recorded simultaneously using a throat microphone and a normal microphone.

Fig. 3.10 shows the formant trajectories of /aya/ and /ala/.
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Figure 3.10: The formant trajectories for the VCV syllables /aya/ and /ala/
recorded simultaneously using a throat microphone (shown as ’e’) and a normal
microphone (shown as 'x’).

3.7 EXCITATION SOURCE CHARACTERISTICS OF VOICED SOUNDS

The excitation source, represented by the LP residual, is characterised by the presence
of quasi-periodic impulse-like excitation for voiced sounds. The quasi-periodic impulses
correspond to the instants of significant excitation, caused by the closure of the vocal
folds. The strength of the instants, which indicates the strength of excitation, mainly
depends on the loading of the vocal tract system on the source. In the NM speech, the
loading effect is less in the case of vowels due to the unobstructed passage of airflow
through the oral tract. Hence, the strength of excitation is significant at the instants
compared to the open glottis regions, as seen in Fig. 3.11 (¢) and (d). In comparison,
the amount of loading is more for voiced consonants like nasals and voiced stops. This
is because the articulation of these sounds involves the closure of the oral tract at some
location. In the case of nasals, the strength of excitation at the instants is comparable

to the strength of the signal in the open glottis regions, as seen in Figs. 3.12 (c) and
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3.12 (d). In the case of the voiced stop consonants it is difficult even to define the

instants of glottal closure (refer Figs. 3.13 (c) and 3.13 (d)).
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Figure 3.11: (a) TM speech signal waveform for vowel /a/, (b) LP residual
for the signal in (a), (c¢) NM speech signal waveform for vowel /a/ and, (d) LP

residual for the signal in (c).
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In the TM speech, the strength of instants for the vowels is less compared to their

strength in the NM speech, as seen in Fig. 3.11 (a) and (b). The reduced strength of

the instants is because the TM picks up the vowel sounds that are transmitted through

the walls of the throat, unlike the unobstructed airflow through the mouth. In the

case of nasals, the strength of the instants is higher compared to the strength in the

NM speech (refer Fig. 3.12 (a) and (b)). In the voiced stops, low amplitude instants

are seen in the TM speech (refer Fig. 3.13 (a) and (b)), compared to the near absence

of instants in the NM speech. In the NM speech, the vowel is clearly distinguishable

from the voiced consonants based on the strength of the instants. However, in the TM

speech, the strengths of the instants are comparable in the vowel and voiced consonant
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Figure 3.12: (a) TM speech signal waveform for nasal /n/, (b) LP residual
for the signal in (a), (c) NM speech signal waveform for nasal /n/ and, (d) LP
residual for the signal in (c).

(nasal) regions.

Fig. 3.14 shows the relative strengths of the instants in the vowel and voiced
consonants in the LP residual signals of the TM and NM speech.

Some of the differences in the acoustic characteristics between the TM speech and

NM speech for various sound units are summarized in Table 3.1.

3.8 SUMMARY

In this chapter, the acoustic characteristics of various sound units of the TM speech
were analysed. This study showed that some higher frequency information is missing,
or is of low intensity in the throat microphone signal. This was seen in fricatives
and vowels. The pitch-synchronous formant trajectories brought out the differences

in the acoustic characteristics of the voiced sound units in the TM and NM speech.
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Figure 3.13: (a) TM speech signal waveform for voiced stop /b/, (b) LP

residual for the signal in (a), (¢) NM speech signal waveform for voiced stop

/b/ and, (d) LP residual for the signal in (c).
This study showed that a discrimination of voiced stop consonants is possible from the
acoustic cues present during the articulation of stops in the TM speech. The study
also showed that the excitation source characteristics of the TM and NM speech differ
in the strength of excitation of the voiced sounds. This study helps to understand
the characteristics of the TM signal, and exploit the TM speech for various speech
applications, even under adverse conditions.

In the following two chapters, the methods for enhancement of the TM speech are

explained.
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Figure 3.14: (a) TM speech signal waveform for the syllable /anb/, (b) LP
residual for the signal in (a), (c) NM speech signal waveform for the syllable
/anb/ and, (d) LP residual for the signal in (c).

Table 3.1: Differences in the characteristics of sound units in NM and TM speech.

Characteristics of sound units

NM Speech

TM Speech

Energy distribution

Entire audio frequency
range.

~ up to 3500 Hz

Formant location of back vowels

Low 2™ formant

High 2"? formant like
front vowels

Closure phase of voiced

consonants

stop

Low frequency “voice-
bar”

Formant-like structures

Aspiration phase of stop consonants

Large amplitude noise

Low amplitude noise

Signal damping in nasal consonants

Highly damped

Less damped like vowels

Intensity of formants in semivowels | Less  compared  to | Similar to vowels

and nasal consonants vowels

Formant  locations of mnasal | Depend on nasal | Higher formant loca-
consonants resonances tions depend on oral

resonances also

Strength of instants of excitation of
voiced segments

High for vowels, low for
voiced consonants

Comparable for all

voiced sounds
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CHAPTER 4

ENHANCEMENT OF THROAT MICROPHONE
SPEECH-SPECTRAL MAPPING

4.1 INTRODUCTION

Enhancement of throat microphone speech aims at improving the perceptual quality
of the unnatural speech from a Throat Microphone (TM). Though the TM speech is
intelligible even in a noisy ambience due to the placement of the sensor near the larynx,
the speech sounds unnatural unlike the speech from a normal microphone. Hence the
approach for enhancement attempts to improve the naturalness of the TM speech,
without affecting its intelligibility. The naturalness of the NM speech is exploited for
such an enhancement.

The acoustic analysis of the TM speech discussed in Chapter 3 shows that differ-
ences exist between the characteristics of the TM and NM speech signals for various
sound units. These differences exist both in the vocal tract characteristics as well
as the excitation source characteristics of the speech. The enhancement of the TM
speech would, therefore, involve two tasks: (1) Estimating the vocal tract (spectral)
characteristics of the NM speech given the TM speech spectra, and (2) estimating the
excitation source characteristics of the NM speech, from that of the TM speech. The
estimated excitation signal and spectral features are used to reconstruct the enhanced
speech. The task of estimating the spectral characteristics of the NM speech is dis-
cussed in this chapter, while the task of estimating the excitation source characteristics
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of the NM speech is discussed in the next chapter.

This chapter is organized as follows. The proposed method for enhancing the TM
speech is discussed in Section 4.2. The issue of stability of the synthesis filter, and the
mapping network used for estimation of the NM spectra are discussed in Section 4.3.
Section 4.4 discusses the behaviour of the network for different types of sound units,
and illustrates the performance of mapping during testing. The objective measure
used to assess the quality of the estimated spectra is also discussed in this section.

The work is summarized in Section 4.5.

4.2 PROPOSED APPROACH TO SPECTRAL MAPPING

Typically, the throat microphone is used in situations where normal microphones can-
not be used (refer Section 1.3.2). In such situations where only the TM speech is
available, the spectral features of the NM speech have to be estimated, given the
spectral features of the TM speech. Though differences exist in the acoustic character-
istics of the TM and NM speech for various sound units, there also exists correlation
between the corresponding time frames of the simultaneously recorded TM and NM
speech from a speaker. This correlation is speaker-specific because the information
about the vocal cord activity (e.g., pitch) and the dimensions of the vocal tract (e.g.,
location of formants) of a speaker remain similar in both the TM and NM speech.
This speaker-specific correlation can be exploited to capture the relationship between
the spectral features of the TM and NM speech of a speaker using a mapping tech-
nique. Since the information such as pitch and formant locations vary across speakers,

a speaker-independent mapping would result in distortions in the synthesized speech.

99



The spectral features of the TM speech are mapped onto the corresponding spec-
tral features of the NM speech using a neural network-based mapping technique. The
mapping involves the following stages (refer Fig. 4.1): The first stage involves training
a model to learn the mapping. For the training to be effective, speech is simultane-
ously recorded using a throat microphone and a normal microphone from a speaker.
Simultaneous recording ensures that the model learns the mapping between the cor-
responding frames of the TM and NM speech. The LP analysis is performed on the
speech signals to extract the LP coefficients, from which the weighted LP Cepstral
Coefficients (WLPCCs) are derived. For training, the wLPCCs extracted from the TM
speech are mapped onto the wLPCCs extracted from the corresponding NM speech.
That is, the wLPCCs derived from the TM data are used as input to the mapping net-
work, while the wLPCCs obtained from the NM speech form the desired output. The
mapping property of MultiLayered FeedForward Neural Network (MLFFNN) is used
to learn this mapping, as described later in Section 4.3.2. The second stage consists of
testing, where the wLPCCs derived from a test TM utterance are given as input to the
trained network. The output produced by the network are the estimated wLPCCs of
the NM speech corresponding to the test input. The LP coefficients are derived from

these estimated wLPCCs in order to synthesize the speech.

4.3 MAPPING SPECTRAL FEATURES OF TM AND NM SPEECH

The issues that are addressed in the proposed approach are: (a) Achieving an effective
mapping between the spectral features of the TM and NM speech, (b) ensuring that

the all-pole filter derived from the learnt mapping is stable, and (c) ensuring that
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Figure 4.1: Block diagram of the proposed model for capturing the relation-
ship between the spectra of the TM speech and the NM speech of a speaker.

the synthesized speech does not suffer from discontinuities due to spectral ‘jumps’
between adjacent frames. The filter for synthesis is obtained by (1) using the cepstral
coefficients from both the TM and NM speech signals for training a mapping network,
and (2) deriving an all-pole filter from the estimated cepstral coefficients from the
trained mapping network. The stability of the all-pole filter, discussed in the following

section, is essential for the synthesis of the enhanced speech.

4.3.1 Deriving features for mapping and synthesis

Cepstral coefficients are used to represent the feature vector of each frame of speech
data. The cepstral coefficients are derived from the LP coefficients as follows:

The LP spectrum for a frame of speech signal is given by
2

1
|H(k)|> = , k=0,1,2,... M-, (4.1)

p - 27
1+ Y apednmk

n=1

where {a,} is the set of LP coefficients, and M is the number of spectral values. The
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inverse Discrete Fourier Transform (DFT) of the log LP spectrum gives the set of

cepstral coefficients {c, }. Let

S(k) = loglH (k). (4.2)

Then

M—
1 j 2m
= 22 SKFTE n=0,1,2,... ML (4.3)

k=0

[y

Only the first q cepstral coefficients are chosen to represent the LP spectrum. Normally,
q is chosen to be much larger than the LP order p in order to represent the LP spectrum
adequately.

Linearly weighted cepstral coefficients, nc,, n =1,2,... ,q, are chosen features to
represent a frame of the speech signal. The weighted linear prediction cepstral coeffi-
cients (WLPCC) are derived for each frame of TM speech and for the corresponding
frame of the NM speech. These pairs of wLPCC vectors are used as the input-output
pairs to train a neural network model to capture the implicit mapping.

The output of the trained network for each frame of TM data of a test utterance
gives an estimate of the wLPCC of the corresponding frame of NM speech. From these
estimated wLPCCs, é,, n = 1,2,...,q, the estimated log LP spectrum is obtained
by using DFT. Let S’(k), k=0,1,2,...,M-1 be the estimated log spectrum. The

estimated spectrum P(k) is obtained as
Pk) = S®, k=01,2,..., M. (4.4)

From the spectrum P(k), the autocorrelation function R(n) is obtained using inverse
DFT of P(k). The first p+1 values of R(n) are used in the Levinson-Durbin algorithm
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to derive the LP coefficients [80]. These LP coefficients for each frame are used to
obtain the time-varying synthesis filter. The enhanced speech is obtained by exciting
this time varying filter with the modified LP residual (discussed in the next chapter)
of the TM speech.

The all-pole synthesis filter derived from these LP coefficients is stable, and is
explained as follows. The stability of the all-pole filter (of the form ﬁ) is determined
entirely by the roots of the denominator polynomial A(z) when the filter coefficients
are constant [81]. If any root lies outside the unit circle (|z| = 1), the filter is said to
be unstable, in the sense that it will have an exponentially increasing oscillation for a
unit sample input. If a particular analysis frame results in an inverse filter A(z) with
roots lying outside the unit circle, a perceptually noticeable effect may be obtained in
the synthesized speech, even if other analysis frames have roots within the circle [81].

The LP coefficients are recursively related to the LPCCs by [80]

M-1 o
p = Cp— (—) Crln_r, 1< n<p. (4.5)
n
k=1

However, the LP coefficients derived from this recursive relation cannot be used for
synthesizing speech as the coefficients do not guarantee stability of the filter. This is
because the ¢ wLPCCs (typically, truncated to 1.5 times p for computational purposes)
used for mapping, though sufficient to represent the LP spectrum, are not sufficient
to reconstruct the LP spectrum. The reconstruction of the LP spectrum requires ¢ to
be very large (ideally infinite).

The autocorrelation method, used in this work, to derive LP coefficients from the
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Figure 4.2: (a) The spectrum and (b) the autocorrelation function of a frame
of the NM speech derived from (left) the speech signal, and (right) from the
wLPCCs of the corresponding frame.

estimated wLPCCs guarantees stability of the filter. This is because the coefficients
R; are positive definite [82]. The solution of the autocorrelation equation, given by
zpjl anR(i —n) = —R(i),l < i < p, would then give predictor parameters which
n=

guarantee that all the poles of the filter lie inside the unit circle. The ability of
linear prediction to model the speech spectrum is explained by the exact match of the
autocorrelation function of the all-pole filter and the autocorrelation of the input signal
between the indices 0 and p [83]. As seen in Fig. 4.2, such a similarity is observed
between the autocorrelation function (R(n) in figure) derived from the wLPCCs and

the autocorrelation (Rs(n) in figure) of the NM speech. The mapping approach is

discussed in detail in the following section.

4.3.2 Neural network model for mapping spectral features

The task of capturing the functional relationship between the spectra of the TM speech

and NM speech of a speaker is a pattern mapping problem. A neural network approach
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is proposed to address the mapping problem. In the pattern mapping problem, given
a set of input-output pattern pairs, the objective is to capture the implied mapping
between the input and output vectors. Once the system behavior is captured by
the neural network, the network would produce a possible output pattern for a new
input pattern not used in the training set. The possible output pattern would be
an interpolated version of the output patterns corresponding to the input training
patterns which is closest to the given test input pattern [84,85]. The network is said
to generalize well when the input-output mapping computed by the network is (nearly)
correct for the test data that is different from (but close to) the examples used to train
the network [86].

Let f denote the spectral mapping learnt by the network.

If {(a;,b1), (A, ba), ..., (ar,byr)} is the set of input-output training pattern pairs
for which {b’l, b’2, ey b'L} is the set of actual output vectors produced by the mapping

network, then f minimizes the mean square error given by

L
1 '
E = 23 lIbi=b | (4.6)
=1

An MLFFNN with at least two intermediate layers in addition to the input and
output layers can perform a pattern mapping task [84,87-91]. The additional layers
are called the hidden layers. The neurons in these layers, called the hidden neurons,
enable the network to learn complex tasks by extracting progressively more meaningful
features from the input pattern vectors [86]. The input and output neurons for this

task are linear units, while the hidden neurons are nonlinear units. The number of
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units in the input and output layers is equal. Number of units in the hidden layers are
more than the number of units in the input/output layers. For the mapping network,

the mapping function f can be separated into f; and f, [92], so that

f() = f2(f1('))a (4-7)

where,
f1 is the transformation in the mapping network from the input layer to the

dimension expanding hidden layer, and

fo is the transformation from the dimension expanding hidden layer to the
outer layer.
If the number of units in the input layer is n, and the number of units in the dimension
expanding hidden layer is m (where m > n), f; transforms vectors in space R™ onto

the space R™. That is,

B pm. (4.8)

Similarly, fy transforms the higher dimensional space R™ back to the space R™ at

the output.

B™ L2y pn (4.9)

Since m > n, fi is a dimension expansion process and fs is a dimension reduction
process.
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Dimension expansion is achieved by mapping the vectors in the input space onto
a hypersurface captured by the set of weights in the network part of f;. Dimension
reduction is achieved by projecting the vectors in the hypersurface onto a subspace in
the lower dimensional output space. The subspace is captured by the set of weights
in the network part of fo. The hypersurface and subspace are in general nonlinear,
because of the nonlinear units in the hidden layers. Nonlinearity of the hidden neurons
is necessary to provide generalization capability for the network. The number of hidden
neurons must be large enough to form a complex decision region, but not so large
enough that the weights cannot be reliably estimated from the available training data
[93].

4.3.2.1 Structure of MLFFNN

The structure of the mapping network used in this work is 12L 24N 24N 12L, where
L refers to a linear unit and /N to a nonlinear unit, the numbers represent the number
of nodes in a layer (refer Fig. 4.3). The MLFFNN used for mapping consists of two
hidden layers, because such a network can generate arbitrarily complex decision regions
[84,93]. When two hidden layers are used, the approximation improves compared to
that when a single hidden layer is used [86]. The improvement in approximation
is because the first hidden layer extracts the local features in the training data by
partitioning the input space into regions. The second hidden layer then extracts the
global features. A neuron in this layer combines the output of the neurons in the first
hidden layer operating on a particular region of the input space, and thereby learns

the global features for that region [86].
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Input layer Output layer

Figure 4.3: A 4 layer mapping neural network of size 12L 24N 24N 12L where L
refers to a linear unit and N to a nonlinear unit, the numbers represent the number
of nodes in a layer.

4.3.2.2 Training the MLFFNN model

The mapping between the training pattern pairs involves iteratively determining the
weights {w;;} of the network, such that b, is equal (or nearly equal) to by for all the
given L pattern pairs. The weights are determined by using the criterion that the
total mean squared error between the desired output and the actual output is to be
minimized.

To arrive at an optimum set of weights to capture the mapping implicit in the
set of input-output pattern pairs, the conjugate gradient method [84] is preferred over
the gradient descent method [84] in this work. This is because the conjugate gradient
method converges much faster than the gradient descent method (refer Fig. 4.4).

In the conjugate gradient method, the increment in weight at the (m+1)%" iteration

is given by
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Figure 4.4: Training error curves for the gradient descent method and the
conjugate descent method.

Aw = n(m)d(m), (4.10)

where 7 is the learning rate parameter. The direction of increment d(m) in the weight
is a linear combination of the current gradient vector and the previous direction of the

increment in the weight [84]. That is,

d(m) = —g(m)+a(m—1)d(m—1), (4.11)

where g(m)=22. The value of a(m) is obtained in terms of the gradient using the

Fletcher-Reeves formula [84] given by

gl'(m+1)g(m+1) .

am = = T m)g(m)

(4.12)

The objective is to determine the value of 1 for which the error E[w(m) + d(m)] is
minimized for the given values of w(m) and d(m). Generally, the conjugate gradient
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method converges much faster than the gradient descent method (refer Fig. 4.4), and
hence is used in this work.

4.4 EXPERIMENTAL RESULTS

4.4.1 Training and testing the mapping network

The training and testing data are obtained from the same speaker because the mapping
is speaker-dependent. The training data of each of the 10 speakers is of 5 minutes du-
ration, and the testing utterances are of 20 sec duration. The simultaneously recorded
speech signals from a throat microphone and a normal microphone are sampled at a
rate of 8 kHz. LP analysis is performed on Hamming windowed speech frames, each
of 20 msec duration. The overlap between adjacent frames is 5 msec. An LP order of
p = 8 and the number of wLPCCs ¢ = 12 are chosen empirically.

The wLPCCs of the TM speech and the NM speech form the input-output training
pairs of the mapping network. Each training pattern is preprocessed so that its mean
value, averaged over the entire training set, is close to zero. Each pattern (vector) is
normalized so that the component values fall within the range [—1, 1]. This accelerates
the training process of the network [86]. The training pattern pairs are presented to
the network in the batch mode. The network is trained for 50 epochs. During testing,
the wLPCCs of the TM speech are given as input to the mapping network. The
network produces an output which are the estimated wLPCCs of the corresponding
NM speech. The LP coefficients derived from these estimated wLPCCs (refer Section

4.3.1) are used to construct the all-pole synthesis filter.
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4.4.2 Effect of mapping on various sound units

The effectiveness of the MLFFNN based mapping approach to map the TM spectra
onto the NM spectra is analysed in this section. The LP spectra of the TM speech, the
corresponding (desired) NM speech, and the estimated LP spectra for various sound
units are shown in Fig. 4.5. It is clearly seen that the higher formants have a steep
roll-off in the case of TM speech. In contrast, the spectral roll off in the enhanced
speech is comparatively small. This shows that higher formants are emphasized in
the enhanced speech. The LP spectra of the enhanced speech follows that of the NM
speech for various sound units. For example, as seen in the figure, the LP spectra of the
TM speech for the voiced stop consonants /g/ and /d/ resemble that of a vowel. This
is due to the presence of formant-like structures during the closure phase. However, in
the NM speech spectra, no such well-defined peaks are visible. In the enhanced speech
too the LP spectra have no well-defined peaks. Further, the spectra of the enhanced
speech and the NM speech appear similar. However, it is observed that the mapping
is not learnt well in the case of fricatives. This is because of the random noise-like
signal characteristic of fricatives. The LP spectra for a sequence of frames of the TM
speech, the enhanced speech and the NM speech are shown in Fig. 4.6. It is seen that
the spectra of the enhanced speech and the NM speech are similar. It is also seen that
there are no spectral discontinuities in the spectra of the enhanced speech, indicating

the effectiveness of the mapping approach.
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4.4.3 Objective evaluation

The performance of this mapping technique is evaluated using the Itakura distance
measure as the objective criterion. The Itakura distance is computed between two
LP vectors. Since the LP vectors are related to the short-term spectra of the speech
frames, this distance between the LP vectors indicates how similar the corresponding

spectra are. The Itakura distance between two LP vectors, say a; and by, is given by

[2]:

bIR, by
delag, by] = —e 4.13
blak, b] 2R, a0 (4.13)
al’R, ay
dpalag, by] = —22% 4.14
ba|ak, bi] bIR, by (4.14)

where dy, and dp, are the asymmetric distances from a; to b, and vice versa, respec-
tively. Rsa and flsb are the autocorrelation functions of the speech frames correspond-
ing to a; and by, respectively.

The Itakura measure is heavily influenced by spectral dissimilarity due to mismatch
in formant locations, whereas errors in matching spectral valleys do not contribute
heavily to the distance [2]. This is desirable, since the auditory system is more sensitive
to the errors in formant locations and bandwidths than to the spectral valleys between
peaks. Itakura distance is not a metric because it does not have the required property of
symmetry. In order to achieve symmetry, d,, and dy, are combined as d=0.5(dgp+ dpq)-
This measure, in addition to symmetry, also has the property that if a; and b, are
identical, the resulting distance is zero. Alternative spectral distortion metrics like
the unweighted Euclidean distance are not appropriate here because the individual LP
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coefficients in the vectors are highly correlated. The Euclidean distance is appropriate
only when the representation of a vector is based upon an orthonormal basis set [2].
A weighted Euclidean distance, though appropriate, depends on finding a suitable
decorrelating weighting matrix. Hence, the Itakura distance is used here.

The Itakura distance between the TM and the estimated LP coefficients, and the
NM and estimated LP coefficients are computed for each frame. Fig. 4.7 shows the
Itakura distance plots for two different utterances. It can be observed that the distance
between the NM spectra and estimated spectra is very small when compared to the
distance between the TM spectra and the estimated spectra. This shows that the
estimated spectra are very close to the NM spectra. Thus the mapping network is able

to capture the spectral correlation between the TM and the NM speech of a speaker.

4.5 SUMMARY

In this chapter, a method to capture the speaker-dependent functional relationship
between the TM spectra and the NM spectra for achieving enhancement of the TM
speech was proposed. The mapping of the spectra was modelled using a feedforward
neural network. The stability of the all-pole synthesis filter was ensured by using
the autocorrelation method to derive the LP coefficients from the estimated wLPCCs.
The mapping performance was evaluated using the Itakura distance metric, as the
[takura measure is heavily influenced by spectral dissimilarity due to mismatch in
formant locations. The advantage of this method was that, distortion due to spectral
discontinuities between adjacent frames was not perceived in the enhanced speech,

as discussed in the subjective studies in the next chapter (refer Section 5.7). This
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chapter discussed the estimation of the spectral features of the NM speech, given the
corresponding spectral features of the TM speech. The excitation source features are

dealt with in the next chapter.
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Figure 4.5: The LP spectra of the TM speech (shown as dotted line), the NM
speech (shown as bold line), and the estimated LP spectra (shown as dashed
line), for a frame of speech data for the sound units /a/, /e/, /g9/, /d/, /m/,

and /s/.
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Figure 4.6: The LP spectra of the TM speech, the estimated LP spectra, and
the LP spectra of the NM speech for a sequence of speech frames.
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CHAPTER 5

ENHANCEMENT OF THROAT MICROPHONE
SPEECH-RESIDUAL MODIFICATION

5.1 INTRODUCTION

The focus of the previous chapter has been on the first task in enhancing the TM
speech, i.e., estimating the vocal tract characteristics of the NM speech. This involved
mapping the spectral characteristics of the TM speech to the spectral characteristics of
the NM speech. This chapter focuses on the second task in enhancing the TM speech,
which involves estimating the excitation source characteristics of the NM speech. The
LP residual of the TM speech varies from the LP residual of the NM speech for some of
the voiced sounds like vowels, nasals and voiced stops (refer Section 3.7). To obtain an
estimate of the NM residual signal, this variation needs to be compensated by suitably
modifying the different voiced segments of the TM residual signal. The modified TM
residual signal would be similar to the NM residual signal, which can then be used to
excite the synthesis filter that is constructed using the estimated LP coefficients (refer
Section 4.4) to obtain the enhanced speech.

This Chapter is organized as follows. The differences in the voiced segments of the
LP residual of the TM and NM speech are discussed in Section 5.2. The features that
help to distinguish between the voiced segments are discussed in Section 5.3. Mapping
of these features of the TM and NM speech is discussed in Section 5.4. Section 5.5
explains the procedure to modify the TM residual to obtain an estimate of the NM
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residual. The experimental results are discussed in Section 5.6, followed by a discussion
on the subjective evaluation studies in Section 5.7. The work is summarized in Section

2.8.

5.2 TM RESIDUAL SIGNAL OF VOICED SEGMENTS

Differences exist in the LP residual signals of the voiced segments of the TM speech
and the NM speech (refer Fig. 3.14). In the NM residual signal, the strength of
the instants is comparatively high for the vowels and low for the voiced consonants.
This relative emphasis of the vowel segments and deemphasis of the voiced consonant
segments is referred to as modulation (of the strength of the instants) throughout this
chapter. In the TM residual signal, such a modulation of the instants is not seen. The
strength of the instants in the vowel segments is comparable to the strength of the
instants in the voiced consonant segments.

The TM residual signal needs to be modified so as to achieve the modulation
in the strength of the instants similar to that present in the NM residual signal. A
simple scaling of the strength of the instants would not achieve the desired modulation
because scaling would uniformly emphasize (or deemphasize) all the voiced segments.
The modification should involve an emphasis of the strength of the instants in the
vowel segments and a deemphasis of the instants in the voiced consonant segments.
Such a modification would further improve the perceptual quality of the enhanced
speech.

To modify the residual signal of the voiced segments of the TM speech, the broad

phoneme category (e.g., vowels, nasals) of the speech segments needs to be identified.
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A broad categorization is sufficient because the excitation source characteristics de-
rived from the speech may be similar for the phonemes in each of the broad phoneme
categories. For example, in the case of nasals, the effect of nasal coupling and loading
of the vocal tract on the strength of the instants of excitation would be similar for
different nasals. Once the broad phoneme categories are identified, the TM residual
signal can then be suitably modified for each category of the voiced sounds. One ap-
proach to identify the broad categories of the voiced segments would involve building
a speech recognizer (discussed in Section 6.3.2). This would require a large amount of
speech data. The effectiveness of such an approach would depend on the performance
of the recognizer.

An alternative approach to obtain an estimate of the NM residual signal would
be to map the TM residual onto the NM residual. This approach will not yield the
desired result because of the following reasons: The patterns used for mapping would
be windowed (quasi-periodic) blocks of samples of the LP residual. It is known that the
LP residual is sensitive to the position of the window. For example, if the windowing
is done at regular intervals, then the variation in the positions of the instants among
blocks would be large. This would result in a large variation in the training patterns.
This variation in the positions of the instants and the variation in the dynamic range of
the amplitude values of the samples of the LP residual will result in a poor mapping.
Hence, in the mapped (estimated) NM residual signal, the periodicity of the pitch
may not be maintained in adjacent frames of a voiced segment. This is because the
positions of instants in a frame may not have co-located instants (otherwise present

due to quasi-stationarity of pitch periodicity) in the succeeding frame belonging to
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the same voiced sound. This would produce distortion in the synthesized speech. To
reduce the variability in the training patterns, small blocks of the LP residual signal
around the instants of voiced segments can be considered for mapping. However, this
approach too will not produce the desired result since the open glottis regions are
ignored in mapping. Hence, mapping the samples of the LP residual signal directly
would not be effective for synthesis of speech.

As an alternative, the following method is used in this chapter. The aim is to
modify the TM residual signal in order to approximate the envelope of the voiced
segments of the NM residual signal. Hence, features that help to distinguish between
the voiced segments in the speech signal are identified, as explained in the following
section. These features derived from the TM signal are mapped onto the corresponding
features derived from the NM signal using the mapping property of neural networks.
The mapped features of the NM signal are used to suitably modify the TM residual

signal of various voiced regions.

5.3 FEATURES FOR RESIDUAL MAPPING

An ideal feature for mapping would be the strength of the instants of the voiced
segments. However, although the strength of the instants is visible in the time domain,
deriving a robust parameter that represents the same is not easy. Hence, the following

features are considered for mapping:

e Ratio of residual energy and signal energy

e Gross spectral features

e Log frame energy
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These features derived from each analysis window of the speech signal are described

in this section.

5.3.1 Ratio of residual energy and signal energy

The ratio of the residual energy and the signal energy, known as the normalized error
(n), is related to the spectral dynamic range of the speech components. It decreases as
the spectral dynamic range increases. Thus, in the NM speech, the normalized error,
Nm, is small for vowels which have a large dynamic range, whereas it is large for the
voiced consonants like nasals and voiced stops (refer Figs. 5.1 and 5.2, respectively)
which have a comparatively lesser dynamic range. The normalized error is larger for
unvoiced consonants like fricatives (than for voiced consonants), and silence regions.
In the TM speech, the normalized error, 7, is generally (slightly) higher compared
t0 N (refer the vowel segments in Figs. 5.1 and 5.2). This is because, the absence
of some of the higher formants reduces the spectral dynamic range for vowels. For
the voiced consonants, n; is small, unlike 7,,. This is because, for nasals the presence
of oral resonances and the reduced effect of damping of the nasal cavity cause 7; to
be small. For the voiced stops too, 7; is small, as the dynamic range is large due to
the well-defined formant-like structures associated with the closure phase (refer Fig.
3.4). Thus, differences exist in 7; and 7, for the vowel segments as well as the voiced
consonant segments. A parameter that can represent this difference is the ratio of 7,

and 7,,, given by

R, = (5.1)
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Figure 5.1: (a) TM speech and (b) its LP residual, (¢) NM speech and (d) its

LP residual, and (e) n; (solid line) and 7,, (dashed line), for the syllable /ana/

The difference between the values of I, for the vowels and voiced consonants is
illustrated in Fig. 5.3. It is seen from Fig. 5.3 (f) that, mostly, R, < 1 for the voiced
consonants (/m/ and /b/), and R, > 1 for vowels. This shows that R, could be used
as a parameter to distinguish different types of voiced segments in the TM speech.
Since only the TM speech and hence 7; is available, 7, can be estimated from the

mapping, in order to compute R,,.

5.3.2 Gross spectra of voiced sound categories

Spectral features vary for different voiced sound units. The spectral variation among

the sound units within each broad phoneme category is high, when a higher order LP

79



/al /D/ /al

0.5F ]
e e BN
-0.5¢ I I | | I ]
0.5 0.6 0.7 0.8 0.9
O-5k T T T T T ]
0 L oo oo b (b)
-0.5¢ I I | | I ]
0.5 0.6 0.7 0.8 0.9
0.5F T T T T T a
OoF Al ‘ (c)
-0.5¢ I I | | I il
0.5 0.6 0.7 0.8 0.9
0.5F T T T T T a
LLLLLLMHHHHLLL“HLLLL LHLHLHHHHHLMuL d
0 ML L i » fpihinfiingpifiidhipio i sshon + ot ()
-0.5¢ I I | | I ]
(e)

0.5 0.6 ~ 07 0.8 0.9
Time (sec)

Figure 5.2: (a) TM speech and (b) its LP residual, (¢) NM speech and (d)
its LP residual, and (e) 7, (solid line) and 7,, (dashed line), for the syllable

/aDa/
analysis is used. As the number of formants is determined by the order of the LP
analysis (one complex pole pair accounts for one formant), a higher order LP analysis
results in more number of formants. The locations of the formants vary among the
sound units within each broad phoneme category depending on the place of articulation
of that sound. When a lower order LP analysis is used, there is a smoothing of the
spectrum as the resonant bandwidths are broadened and closely spaced resonances are
smeared. As the finer spectral differences are lost, the lower order spectral envelopes
tend to represent the broad category of a sound unit. If a higher order LP spectrum is

used for mapping, then the spectrum may dominate the mapping, which is undesirable.
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Figure 5.3: (a) TM speech and (b) its LP residual, (¢) NM speech and (d) its
LP residual, (e) n, (solid line) and 7, (dashed line), and (f) R, for the syllable

/mbi/.

In contrast, if a lower order LP spectrum is used, the mapping of the broad phoneme
categories is expected to be effective.

In Figs. 5.4 and 5.5, the spectra of various voiced sounds of the TM speech
obtained using a lower order LP analysis (p = 3) are compared with the corresponding
spectra obtained using a higher order LP analysis (p = 8). The higher order spectral
envelopes show the finer details in the resonant structure of the vocal tract system
that distinguish each of the sounds within a category. In contrast, in the lower order

spectral envelopes the finer details in the resonant structures are lost. Hence, a lower
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order LP spectrum is sufficient to represent the broad category of the voiced segment.
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Figure 5.4: A comparison of the LP spectra derived from LP analysis with orders 8
and 3 for the vowels (a) /a/, (b) /e/, and (c) /i/ in the TM speech.

5.3.3 Log frame energy

The log frame energy (G) of the speech signal s, which is a measure of the intensity of
the signal, differs in the TM and NM speech for various sound units. The log frame
energy is computed for each window of N samples as G = log% g:lsf, where s; is
i=
the i"* sample in the window. Figs. 5.6 and 5.7 show the TM and NM speech signal
waveform and log frame energy contours for two segments of speech. The log frame
energy, GG,,, of the NM speech signal is comparatively high for the vowel segments,
and low for voiced consonants. However, in the TM speech, the log frame energy,

G, is comparable in the vowel and voiced consonant segments. The log frame energy

82



20 1 20

m 10 1 10 (a)
©
0 1 0

-10 -10

0 2000 4000 0 2000 4000
Frequency (Hz) Frequency (Hz)
10 1 10 1
m
-10 -10 '
0 2000 4000 0 2000 4000
Frequench (Hz) Frequency (Hz)

Figure 5.5: A comparison of the LP spectra derived from LP analysis with orders 8
and 3 for the nasals (a) /n/, and (b) /m/in the TM speech.

of the NM speech that is estimated from the mapping could be used to control the
gain in the speech that is synthesized using the modified residual. Prior to mapping,
G is smoothed to reduce fluctuations. The logarithm of the frame energy is used as
it compresses the dynamic range of the energy values, and makes the mapping less

sensitive to the small variations in the input.

5.4 RESIDUAL MAPPING USING MLFFNN

The features for mapping are extracted from analysis windows (or frames) of 20 ms
each, with an overlap of 1 ms between adjacent frames. The feature vector of the
i frame is 11-dimensional, comprising of (a) 5-dimensional wLPCCs {c;} (derived
using an LP analysis of order 3), (b) the normalized error of that frame (7;) and the
adjacent frames (7;_1 and 7;;1), and (c) the log frame energies of that frame (G;) and
the adjacent frames (G;_; and G;1). The normalized errors and the log frame energies

of the adjacent frames are used along with that of the current frame so as to capture
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Figure 5.6: The TM and NM speech ((a) and (c), respectively), and their
corresponding log frame energy contours ((b) and (d), respectively) for the
syllable ambide, which is part of the word ambidextrous.

the constraint in the temporal sequence in mapping.

The mapping neural network consists of two hidden layers, apart from the input
and output layers. The size of the network is 11L — 22N — 22N — 11L. The network
is trained using the features derived from 5 minutes of speech data recorded simulta-
neously using the throat microphone and the normal microphone. The features from
the TM data ({cg }, {m_1» s> Wi - {Gtioy s Gt G, }) form the input, and the corre-
sponding features from the NM data ({Cm,}; {%mi s Mmis Mmiss b {Gmi 1> Gmi> Gy })
form the target output for training. The speaker-specific mapping uses the conjugate
gradient method for learning (as explained in Section 4.3.2.2). Speaker-specific map-
ping is preferred to speaker-independent mapping so as to overcome the differences

that may exist in the values of R, and G among speakers. The differences may result

84

(a)

(b)

(©)

(d)



/c/ /al /'n/ /b/ i/ /lal /n/

0.2 : :
0 i I (a)
—0-24 0.1 0.2 0.3 0.4 0.5
_oF T T T T ]
S _4t | (b)
0 0.1 0.2 0.3 0.4 0.5
0.5 T T T T
OB passsssssmnso ARl ()
-0.5 ! ! ! !
0 0.1 0.2 0.3 0.4 0.5
_2k T T T T ]
IS
© _4M (d)
0 0.1 0. 0.3 0.4 0.5

Time (sec)

Figure 5.7: The TM and NM speech ((a) and (c), respectively), and their
corresponding log frame energy contours ((b) and (d), respectively) for the
utterance can be an.

in undue emphasis or deemphasis of the speech segments in the TM residual signal,
causing perceivable distortion in the synthesized speech. The estimate of the normal-
ized error, 7, and log frame energy, G of the NM speech are used to modify the TM

residual signal, as explained in the next section.

5.5 MODIFICATION OF TM RESIDUAL SIGNAL USING MAPPED
FEATURES

In order to modify the strengths of the instants of the voiced segments of the TM
residual signal, the instants of glottal closure have to be identified. The instants of
glottal closure are not identified directly from the LP residual, though the LP residual
contains information pertaining to the excitation. This is because of the following

reasons [94]: The LP analysis of the speech signal assumes an all-pole model. The all-
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pole model implicitly assumes a minimum-phase characteristic for the speech signal.
If this assumption is invalid, then the phase response of the vocal tract system is not
compensated exactly by the inverse filter. The effect of the uncompensated phase on
the LP residual is not known. Also, the inverse filter does not compensate for the
zeros which may be introduced due to the finite duration of the glottal pulse or nasal
coupling. These factors cause multiple peaks of either polarity to occur around the
instants of glottal closure in the LP residual. This makes it difficult to estimate the
instants from the LP residual.

Instants of glottal closure could be better estimated if impulse-like signals could
be obtained at the instants of significant excitation. The Hilbert envelope of the LP
residual is a close approximation to obtain such impulse-like signals around the instants
[94,95]. The Hilbert envelope of the LP residual signal is a positive function, giving
the envelope of the signal [96]. The Hilbert envelope h(n) of the LP residual r(n) is

given by [95, 96]

= VP?(0) + (o), (5.2

where r,(n) is the Hilbert transform of r(n), and is given by

r(n) = IDFT[Ry(w)], (5.3)

where
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—jR(w), 0<w<m
Rp(w) = (5.4)
JjR(w), - <w <0,
where IDFT is the inverse discrete Fourier transform, and R(w) is the discrete Fourier
transform of 7(n). The peaks in the Hilbert envelope indicate the locations of the
instants (refer Fig. 5.8). Using the Hilbert envelope resolves the ambiguities in identi-

fying the instants directly from the residual signal. Hence the Hilbert envelope of the

TM residual signal is used for residual modification as explained below.

0.2
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Figure 5.8: (a) A speech signal, (b) its LP residual, and (c) Hilbert envelope of the
LP residual for a segment of vowel /a/. The quasi-periodic peaks indicate the instants
of excitation.

The Hilbert envelope, hy(n) of the LP residual of the TM speech (s;(n)) to be

enhanced is scaled using the running mean to normalize the signal, and is given by
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hr(n) = Ty (5.5)
LY b

z:n—7

where N is the length of a small window (typically 5 ms) around hy(n). The strength

of the instants of hp(n) is modulated by scaling hr(n) with the estimated parameter

Rn(n)-
hm(n) = hyp(n)F@, (5.6)
where
5 Ur
R, = . (5.7)

The modulated Hilbert envelope lAzm(n) is an estimate of the corresponding Hilbert
envelope (h,,(n)) of the NM residual signal. The modified residual signal, #,,(n), is
obtained using izm(n) and the cosine of the phase of the analytic signal corresponding
to the TM residual signal as follows.

The analytic signal r,(n) corresponding to the LP residual signal r(n) is given by

ro(n) = r(n)+jra(n). (5-8)

The magnitude of the analytic signal, |r,(n)|, is the Hilbert envelope of r(n). The

cosine of the phase of the analytic signal is given by

_ Re(ra(n)) _ r(n)
cos(f(n)) = )| :
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The estimated LP residual of the NM speech, 7,,(n), is given by

~

Tm(n) = hy(n)cos(0i(n)). (5.10)

The estimated LP residual, #,,(n), is used to excite the all-pole synthesis filter,
H(z) = —*——, to obtain the enhanced speech signal s(n). Here {ag, a1, ,a,}
1-> @271
i=1
are the LP coefficients derived from the estimated wLPCCs (refer Section 4.3.1). The

gain in the speech signal s(n) is modified using the estimated log frame energy, G,,(n),

to obtain the enhanced speech as

ém(n) = s(n)eSm®), (5.11)

5.6 EXPERIMENTAL RESULTS

Fig. 5.9 shows the modification sequence of the Hilbert envelope (h¢(n)) of the TM
residual signal, for the utterance ambidezr (in the word ambidextrous). The strength
of hy(n) (refer Fig. 5.9 (a)) is comparable in the vowel (/a/) and voiced consonant
(/m/ and /b/) segments. The removal of the trend in h;(n) results in an increase in
the strength of the signal (h7(n)) in most of the voiced (vowel and voiced consonants)
segments, as seen in Fig 5.9 (b). The signal hy(n) is modified using the parameter
R, (n), which is shown in Fig. 5.9 (c). It is seen that the estimate R, (n) is a close
approximate of R,(n) for most of the sound units. The modified Hilbert envelope,
By(n) is shown in Fig. 5.9 (d). It is seen that the vowel (/a/ and /e/) regions are

emphasized relative to the voiced consonant (/m/, /b/ and /D/) regions. Also, the
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Figure 5.9: The mapping-based modification of the Hilbert envelope of the
TM residual signal. (a) hi(n), (b) hr(n), (¢) R,(n) (dashed line) and R,(n)
(solid line), (d) A (n), and (e) Ay, for the speech segment /ambidez/ in the

word ambidextrous.

modulation of the strength of the instants in h,,(n) is comparable with that of hn,(n),

shown in Fig. 5.9 (e).

The estimated LP residual signal, 7,,(n), is shown in Fig. 5.10 (b). The LP residual

signals of the TM and NM speech are shown in Figs. 5.10 (a) and 5.10 (c), respectively.
It is seen that the strength of the TM residual signal (r4(n)) is similar for most of the
voiced segments. In contrast, the strength of 7,,(n) is relatively large in the vowel
segments, compared to the voiced consonant segments. This relative difference in the

strength between the vowel and voiced consonant segments is similar to the difference

in the NM residual signal (r,(n)).
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Figure 5.10: LP residual signal (a) derived from TM speech, r;(n), (b) esti-
mated, 7,,(n), and (c) derived from NM speech, r,,(n) for the speech segment
/ambidez/ in the word ambidextrous.

The speech signal, s(n), synthesized using 7,,(n) is shown in Fig. 5.11 (b). The
estimated gain parameter G, (n) is shown in Fig. 5.11 (c). The gain in s(n) is modified
using Gyn(n) to obtain 3, (n), as shown in Fig. 5.11 (d). The overall envelope of the
enhanced speech signal §,,(n) is similar to the signal envelope of s,,(n) (NM speech
shown in Fig. 5.11 (e)).

The gain modification using G, (n) is seen to compensate for the large emphasis/
deemphasis caused by R,(n), as illustrated in Figs. 5.12 through 5.14. Fig. 5.12
shows the modification sequence of hi(n) for the utterance can be an. The modified
Hilbert envelope signal, /i, (n), in Fig. 5.12 (d) shows a large deemphasis of the voiced
segment /bi/, and a large emphasis of the silence region (following the last phoneme
(/n/) of the utterance). The undue emphasis of the silence region is because R, (n) is

more appropriate for the voiced segments than for the unvoiced segments. This large

deemphasis/emphasis is also observed in #,,(n) and s(n) (refer Figs. 5.13 and 5.14,
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Figure 5.11: (a) TM speech, s;(n), (b) speech s(n) synthesized using 7,,(n),
(c) log frame energy, G, (n) (dashed line) and G,, (solid line), (d) gain-modified
speech, $,(n), and (e¢) NM speech, s,,(n) for the speech segment /ambidex/
in the word ambideztrous.

respectively).

When the gain in s(n) is modified using G,,(n) (shown in Fig. 5.14 (c)), the
resulting enhanced speech, §,,(n) (refer Fig. 5.14 (d)), shows an increase in the am-
plitude of the signal in the segment /bi/. Similarly, in the silence segment the gain
modification suppresses the emphasis caused by R, (n). This is because G,,(n) is low
for the unvoiced/silence regions.

In general, the parameter Rn(n) emphasizes the instants in the vowel regions, and

deemphasizes the instants in the voiced consonant regions. The gain parameter G, (n)
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Figure 5.12: The mapping-based modification of the Hilbert envelope of the

N

TM residual signal. (a) hi(n), (b) hr(n), (¢) R,(n) (dashed line) and R,(n)
(solid line), (d) A, (n), and (e) A, for the speech segment can be an.

A

compensates for the large emphasis/deemphasis caused by R,(n), both in the voiced
as well as unvoiced/silence regions. This modification of the TM residual results in
obtaining a close approximate of the envelope of the NM residual signal. However,

the results show that a further deemphasis of the nasal segments is desired in order to

achieve a better estimate of the envelope of the NM residual signal.

5.7 SUBJECTIVE EVALUATION

In order to evaluate the subjective quality of the enhanced signal, the Comparison

Mean Opinion Score (CMOS) test is executed [4]. The CMOS subjective test is chosen
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Figure 5.13: LP residual signal (a) derived from TM speech, r;(n), (b) esti-
mated, 7,,(n), and (c) derived from NM speech, 7,(n) for the speech segment
can be an.

since it is of interest to compare the perceptual quality of the enhanced speech with
that of the TM speech to assess the improvement in naturalness provided by the
enhancement technique.

The listeners for this test consist of 20 graduate students who volunteered for the
task. Listeners are presented with a pair of speech samples on each trial. The pair
consists of an unprocessed speech sample and the corresponding processed sample. The
order of the samples presented for each trial is chosen at random. Listeners judge the
quality of the second sample relative to the first using a 7-point scale given in Table 5.1.
Prior to the evaluation, listeners are familiarized with the TM and enhanced speech
signals different from those used for evaluation. The CMOS is computed for the
(unprocessed, processed) order of presentation of speech.

The results of the evaluation are shown in Fig. 5.15 in the form of histograms.

A comparison of the TM and NM speech shows a clear preference for the NM speech
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Figure 5.14: (a) TM speech, s;(n), (b) speech s(n) synthesized using 7,,,(n),

(c) log frame energy, G, (n) (dashed line) and G, (solid line), (d) gain-modified

speech, §,,(n), and (e) NM speech, s,,(n) for the speech segment can be an.
(CMOS = 2). To evaluate the progress in the enhancement technique, the TM
speech (s;(n)) is compared with the speech (s;(n)) synthesized with the estimated LP
coefficients and the unmodified TM residual. The partially enhanced speech, s;(n), has
a higher rating compared to the TM speech (CMOS = 1.14, between sightly better
and better than the TM speech). The effect of modifying the TM residual signal is
assessed by comparing s;(n) with the speech (5,,(n)) synthesized using the estimated

LP coefficients and the modified TM residual. The §,,(n) has only a marginally higher

rating compared to s;(n) (CMOS = 0.32). A few listeners have rated §,,(n) as ’slightly
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Table 5.1: A 7-point rating used in the Comparison Mean Opinion Score
(CMOS) test to judge the quality of the second speech sample relative to that
of the first speech sample.

Rating || Speech Quality

3 Much Better
2 Better
1 Slightly Better

0 About the Same

-1 Slightly Worse

-2 Worse

-3 Much Worse

degraded’ compared to s;(n). This is because the modification of the TM residual
causes undue deemphasis of a few voiced segments. A comparison of §,,(n) with the
NM speech (s,,(n)) shows the preference for the NM speech (CMOS = —1.1). This
indicates that the existing technique needs to be explored further to achieve better
results. The speech signals are available for listening at the site http://speech.cs.

iitm.ernet.in/Main/result/MappingThroatToNormalSpeech/.

5.8 SUMMARY

In this chapter, the residual of the voiced segments of the TM speech was modified to
approximate the envelope of the residual of the voiced segments of the NM speech. The

ratio of the normalized error of the TM speech and the estimated normalized error of
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Figure 5.15: Histogram showing the frequency distribution of the CMOS
scores comparing the quality of (a) TM speech and NM speech, (b) TM speech
and the speech synthesized using mapped LP coefficients and unmodified TM
residual, s;(n), (¢) s;(n) and the speech synthesized using mapped LP coeffi-
cients and modified TM residual, §,,(n), and (d) NM speech and §,,(n).

A

the NM speech (R, (n)) emphasized the instants in the vowel regions, and deemphasized
the instants in the voiced consonant regions. Any undue emphasis/deemphasis caused
by Rn(n), both in the voiced as well as unvoiced/silence regions was compensated by
the gain parameter Gm(n) However, the results showed that a further deemphasis
of the nasal segments is desired in order to obtain a better estimate of the envelope
of the NM residual signal. The subjective evaluation showed that spectral mapping
enhanced the perceptual quality of the TM speech. Residual modification resulted in a
small improvement (compared to the spectral mapping) in the rating of the processed

signal. It was shown that this technique, which involved spectral mapping and residual

modification of voiced segments of the TM residual, improved the perceptual quality
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of the TM speech. The advantage of this technique (spectral mapping and residual
modification of voiced segments) is that it does not contribute any annoying artifact
to the enhanced speech. The technique for residual modification needs to be improved
further to achieve better results.

The TM speech is intelligible, and robust to the surrounding noise. This advantage
of the TM speech is utilised for developing robust speech systems, as discussed in the

following two chapters.
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CHAPTER 6

RECOGNITION OF SOUND UNITS USING THROAT
MICROPHONE SPEECH

There is a need to develop Automatic Speech Recognition (ASR) systems that per-
form reliably in adverse situations where normal microphones cannot be used. One
example could be a small vocabulary, command-and-control ASR system in stealth
operations. The acoustic analysis of the TM speech (refer Chapter 3) shows that there
are distinguishing features in some of the sound units in the TM speech, such as the
voiced stop consonants. It is possible to exploit the presence of such features to de-
velop ASR systems using the TM speech. In this chapter, the feasibility of using the
TM speech for speech recognition is studied. Previous studies (as explained in Section
2.2.3) used a multi-sensor approach, where features from the alternate speech sensors
as well as the standard microphone were used to improve the performance of existing
ASR systems. In contrast, this study evaluates the performance of ASR systems based
on TM speech data. The performance of such a system is compared with that of an
ASR system based on NM speech. This study would be useful to understand both the
efficacy as well as the limitation of the TM speech for developing ASR systems.

This chapter is organised as follows. Section 6.1 briefly explains the choice of
syllable as the recognition unit. Section 6.2 discusses the performance of an NM speech
based syllable recognizer when tested with TM speech data as well as the estimated
(using spectral mapping) NM speech data. Section 6.3 explains the performance of
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the syllable recognizer developed using TM speech. The performance for syllable

classification as well as for isolated utterances is discussed in this section.

6.1 SYLLABLE AS A SUBWORD RECOGNITION UNIT

This chapter focuses on Hidden Markov Model (HMM) based recognition of the 145
Consonant-Vowel (CV) units in an Indian language, Hindi. These 145 CV units (listed
in Table 6.1) correspond to the combinations of the 29 consonants and 5 vowels in
Hindi. These syllables are common to many of the Indian languages. Syllable is
chosen as the sound unit for recognition because it is a subword unit motivated from
the speech production and perception point of view [97,98]. Other subword units like
phonemes and triphones are unable to sufficiently model the coarticulation effects [99].
The syllables are inherently capable of capturing the coarticulation effects better than
the phonemes and triphones. A syllable has a core vowel, and preceded or succeeded by
one or more consonants. The structure of a syllable is C""VC™, m,n > 0. Recognition
systems using syllables as basic units were shown to perform better than those using
monophones as basic units for English [6] and Greek [100] languages. In [101-106],
studies on modelling the syllabic units for the Indian languages were reported.

The number of syllabic units in a language is very large. The confusability among
several CV units is high because of the similarities in their speech production mech-
anism. Since the syllabic units are larger in size compared to the phonemes, the
frequency of occurrence of these units in continuous speech in usually low. Thus the
number of training examples available to develop a model is limited. Consequently,

developing robust models of these CV units for recognition is a difficult task.
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Table 6.1: List of 145 CV units and their phonetic description features.

Manner Of Place Of Vowel
Articulation (MOA) || Articulation (POA) | /a/ /i) /u/ e/ Jo/
UnVoiced Velar ka ki ku ke ko
UnAspirated Palatal ca ci cu ce co
(UVUA) Alveolar Ta Ti Tu Te To
Dental ta ti tu te to
Bilabial pa pi pu pe po
UnVoiced Velar kha khi khu khe kho
Aspirated Palatal cha chi chu che cho
(UVA) Alveolar Tha Thi Thu The Tho
Dental tha thi thu the tho
Bilabial pha phi phu phe pho
Voiced Velar ga gi gu ge go
UnAspirated Palatal ja ji ju je jo
(VUA) Alveolar Da Di Du De Do
Dental da di du de do
Bilabial ba bi bu  be bo
Voiced Velar gha ghi ghu ghe gho
Aspirated Palatal jha  jhi  jhu jhe jho
(VA) Alveolar Dha Dhi Dhu Dhe Dho
Dental dha dhi dhu dhe dho
Bilabial bha bhi bhu bhe bho
Nasals Dental na ni nu ne no
Bilabial ma mi mu me mo
Palatal ya yi yu ye yo
Semivowels Alveolar ra ri ru re ro
Dental la li lu le lo
Bilabial va, vi vu ve VO
Velar ha hi hu he ho
Fricatives Alveolar sha shi shu she sho
Dental sa si su se SO

In the following section, the recognition performance of the standard HMM model
based on the NM speech, when tested with the TM speech data as well as estimated

NM speech data, is discussed.
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6.2 RECOGNITION OF SYLLABIC UNITS OF TM SPEECH AND ES-
TIMATED NM SPEECH USING NM SPEECH BASED SYLLABLE
RECOGNIZER

The performance of an existing isolated syllable recognizer, developed using the NM
speech, for recognizing the CV utterances recorded using a throat microphone is stud-
ied. The recognizer is a left-to-right, no skip, HMM model with 5 emitting states
developed for each of the 145 syllables. The recognition performance for the TM
speech data is poor compared to that for the NM speech data (refer Table 6.2). This
poor performance is due to the spectral mismatch in the TM and NM speech data
for various sound units, as seen in Chapter 3. So, the HMM trained using the NM
(wLPCCs) features performs poorly when tested with the TM (wLPCCs) features.
To improve the recognition performance, the estimated NM (wLPCCs) features
(obtained by spectral mapping) are used for recognition. The performance of the rec-
ognizer improves with the estimated NM features, but is still not comparable to that
of the NM features. In certain situations where normal microphones cannot be used,
it is desirable to obtain a recognition performance that is close to the performance ob-
tained when NM features are used. To realise such a recognition, a syllable recognizer

is trained using the TM speech data.

6.3 SYLLABLE RECOGNIZER TRAINED USING TM SPEECH DATA

In this section, the performance of the TM speech based recognizer is studied in com-
parison to the NM speech based recognizer. The database for this study is comprised
of isolated utterances of CV units of an Indian language, Hindi. Isolated utterances of

CV units are chosen, instead of continuous speech data, to discount the effect of coar-

102



Table 6.2: Performance of the NM speech based syllable rec-
ognizer for the test data from NM, TM and estimated NM
speech.

Test Features N-best Recognition accuracy(%)

N=1 | N=2 | N=3 | N=4 | N=5

NM 39.03 | 55.07 | 63.83 | 69.03 | 73.72

™ 9.1 | 17.61 | 23.18 | 31.92 | 39.03

Estimated NM || 18.7 | 29.41 | 37.16 | 46.83 | 51.28

ticulation and pronunciation variations. The speech data for 15 isolated utterances of
each of the 145 CV units is collected from 5 male speakers. There are 75 utterances
of each CV unit. The speech data is recorded using a sampling rate of 16 kHz, si-
multaneously using a throat microphone and a normal microphone. The recording is
done in laboratory environment. A noise-free environment is chosen so as to study the
feasibility of using the throat microphone for the speech recognition task. Among the
75 utterances for each CV unit, 11 examples from each speaker are used for training
and 4 for testing. There are a total of 145 x 11 x 5 = 7975 utterances for training
and 145 x 4 x 5 = 2900 utterances for testing, for the throat microphone and for the
normal microphone. The speech data is processed to extract 13-dimensional wLPCC

for every 15 msec frame, shifted by 5 msec.

6.3.1 Recognition of isolated utterances of CV units

As mentioned in Section 6.2, a standard left-to right, no skip HMM model with 5

emitting states is developed for each of the 145 units using the TM speech. A similar
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Table 6.3: Performance of the isolated syllable recognizer
based on the TM speech and the NM speech.

Microphone || N-best Recognition accuracy(%)

N=1 | N=2 | N=3 | N=4 | N=5

™ 31.84 | 45.03 | 52.15 | 57.15 | 61.77

NM 39.03 | 55.07 | 63.83 | 69.03 | 73.72

model is built, for comparison, using the simultaneously recorded NM speech. During
testing, each utterance is tested in isolation and a syllable is hypothesised as one among
the 145 CV units. Recognition of the CV units is tougher than the recognition of the
E-set of English alphabet [104]. Though the recognition rate is not high due to the
nature of the task, we observe that the performance of the recognizer based on the TM
speech is comparable to that of the recognizer based on the normal microphone speech.
The recognition performance of the TM speech based system is given in Table 6.3. The
recognition performance of the NM speech based system, as in the first row of Table
6.2, is reproduced here for the purpose of comparison. The NM speech based system
performs better than the TM speech based system. The difference in performance of

the two systems is explained in the next section.

6.3.2 Classification of groups in different categories of CV units

A broad phoneme classification of the sound units is useful for some applications. For
example, recognition of the broad phoneme classes may help in enhancing each sound
class based on its acoustic-phonetic properties. Also, in some ASR applications it may

be useful to group the syllables into broad classes as a preclassification step before
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recognition of the syllable.

The CV units can be broadly classified into groups as shown in Table 6.1. A
total of six systems are developed to categorise the speech data in each of the three
categories, Place of Articulation (POA), Manner of Articulation (MOA) and vowel,
for both the TM and the NM speech. Data pertaining to each group in a category is
pooled together to develop an HMM for that group. The five POA groups are: velar,
palatal, alveolar, dental and bilabial. The POA group recognizer would determine
the group for a given test utterance. Likewise, the seven MOA groups are: unvoiced
unaspirated (UVUA), unvoiced aspirated (UVA), voiced unaspirated (VUA), voiced
aspirated (VA), nasals, semivowels and fricatives. The five vowel groups are: /a/, /e/,
/i/, /o/ and /u/ in the syllable is also trained. The N-best recognition performance
of each of the three group recognizers for the TM and NM speech based systems is
given in Tables 6.4, 6.5 and 6.6. The performance of the group recognition systems
for different groups in a category is given in Table 6.7. The confusion matrices for the
POA, MOA and vowel groups for the TM and NM speech based systems are given in
Tables 6.8 through 6.13.

The performance of the TM speech based group recognizers is similar to that of
the NM speech based group recognizers for the case of N=1 (refer Tables 6.4 and 6.5).
However, as N increases, the NM speech based system has a higher recognition rate
for the POA category, while the TM speech based system has a higher recognition
rate for the MOA category. This can be explained as follows. The acoustic cues
for POA of the unvoiced sounds are not well picked up by the TM speech. This

is because the articulation of these sounds involves a turbulence or a burst at some
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location in the oral cavity, which the throat microphone cannot pick up as well as the
normal microphone. Hence recognition of the POA group is poorer in the TM speech
based system compared to the NM speech based system. In contrast, the MOA group
recognition is better in the TM speech based system because the TM picks up the oral
resonances behind the location of constriction (refer Section 3.3). These resonances,
characterising the different MOA groups, are not picked up by the NM as it is placed
in front of the constriction.

Within the POA category (refer Tables 6.8 and 6.9), the recognition of the velar
group is better in the TM speech based system. This could be due to the proximity of
the POA of these sounds to the location of the TM. The TM speech based recognition
of the palatal and dental groups, and to a lesser extent the bilabial group is comparable
to the NM speech based recognition. However, the recognition accuracy drops signifi-
cantly for the alveolar group in the TM speech based system. This drop in recognition
accuracy could probably be due to the burst and the succeeding transitional phase of
the CV unit being better transmitted from the dental (dental sounds) and lip regions
(bilabial sounds) to the throat region through the lower jaw, than from the alveolar
ridge (alveolar sounds) (refer Fig. 1.1).

Within the MOA category, (refer Tables 6.10 and 6.11), the unaspirated (both
unvoiced and voiced) groups are recognised much better in the TM speech based
system than in the NM speech based system. Voiced stops are recognized better in
the TM speech based system due to the presence of distinct formant-like structures
during the closure phase of their articulation (refer Fig. 3.4). In contrast, all the voiced

stops in the NM speech are characterised by the presence of a low frequency voice bar.
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Table 6.4: Performance of the POA group recognizer based
on the TM speech and the NM speech.

Microphone || N-best recognition accuracy (%)

N=1 | N=2 N=3
™ 41.22 | 63.19 80.14
NM 41.49 | 66.11 83.06

Table 6.5: Performance of the MOA group recognizer based
on the TM speech and the NM speech.

Microphone || N-best recognition accuracy (%)

™ 46.63 | 70.10 82.08
NM 46.04 | 66.84 78.89

Table 6.6: Performance of the vowel group recognizer based
on the TM speech and the NM speech.

Microphone || N-best recognition accuracy(%)

™ 72.05 | 91.53 97.22
NM 87.88 | 99.41 99.76
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Table 6.7: Performance of the group recognizers for different groups based on
the TM speech and NM speech

POA Recognition MOA Recognition | Vowel | Recognition
group | accuracy (%) group accuracy (%) | group | accuracy (%)
NM ™ NM ™ NM ™
Alveolar | 20.9 | 13.9 UVUA | 49.2 | 64.4 Ja/ | 965 | 83.8
Bilabial | 52.7 | 41.4 UVA 474 | 28.9 /e/ | 88.6 | 76.8
Dental | 33.6 | 50.6 VUA 48.4 | 66.7 /i/ 190.8 | 61.5
Palatal |55.7 | 51.5 VA 361 243 Jo/ | 763 80.8
Velar | 38.8 | 50.3 Nasal 60.1 | 56.1 Ju/ | 873 | 57.3
Semi-vowel | 39.9 | 38.2
Fricative | 50.0 | 55.7

Table 6.8: Confusion matrix (%) for the POA group classifier
based on the TM speech.

Group || Alveolar | Bilabial | Dental | Palatal | Velar
Alveolar 14 9 28 23 26
Bilabial 3 41 15 14 27
Dental 8 9 51 12 20
Palatal 16 6 15 o1 12

Velar 8 17 12 13 50

108




Table 6.9: Confusion matrix (%) for the POA group classifier
based on the NM speech.

Group || Alveolar | Bilabial | Dental | Palatal | Velar
Alveolar 30 24 10 24 12
Bilabial 7 53 8 15 17

Dental 10 23 34 18 15

Palatal 27 6 8 26 3

Velar 10 22 7 22 39

However, the recognition of aspirated (both unvoiced and voiced) stops is poorer in
the TM speech based system. They are confused with the unaspirated stop sounds.
That is, unvoiced aspirated stops ( e.g., /kha/) are confused with unvoiced unaspirated
stops ( e.g., /ka/), and unvoiced aspirated stops ( e.g., /gha/) are confused with voiced
unaspirated stops ( e.g., /ga/). This is because the turbulence in the oral cavity during
the aspiration phase following the release of the closure is not well captured by the TM
(refer Fig. 3.3). The recognition performance for nasals and semivowels is comparable
in the two systems. However the confusion between the nasals/semivowels and voiced
unaspirated stops is higher in the TM speech based system than in the NM speech
based system. This could be because the TM better captures the oral resonances
behind the closure/constriction in these sounds. So the spectral features representing
these sounds (i.e., nasals/semivowels vs. voiced unaspirated stops) in the TM speech

are some times not distinguishable, especially if they have the same POA (e.g., /na/
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Table 6.10: Confusion matrix (%) for the MOA group classifier based on
the TM speech.

Group UVUA | UVA | VUA | VA | Nasal | Semi-vowel | Fricative
UVUA 64 7 13 1 4 1 10
UVA 31 29 16 0 7 3 14
VUA 7 0 70 | 10 9 0 4
VA 2 3 40 | 24 19 7 5
Nasal 12 0 21 3 56 7 1
Semi-vowel 15 1 30 2 13 38 1
Fricative 7 8 11 1 7 10 56

and /dha/). In the case of fricatives, the performance of the TM speech based system
is comparable to that of the NM speech based system. This shows that the missing
higher frequencies in fricatives in the TM speech do not affect its recognition.

In the vowel category (refer Tables 6.12 and 6.13), generally the performance drops
for most of the vowels in the TM speech based system, compared to the NM speech
based system. In the NM speech based system the front vowels /i/ and /e/ are
confused. Similarly, the back vowels /u/and /o/ are confused. That is, the confusion
is in the tongue height of the vowel for a given position of the tongue hump. In the TM
speech based system, the vowels are confused not only based on the tongue height, but
also based on the position of the tongue hump. For example, vowel /i/is confused not

only with /e/, but also with /u/. Similarly, vowel /u/ is confused with /o/ as well as
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Table 6.11: Confusion matrix (%) for the MOA group classifier based on
the NM speech.

Group UVUA | UVA | VUA | VA | Nasal | Semi-vowel | Fricative
UVUA 49 18 3 4 5 10 11
UVA 11 47 1 6 6 6 23
VUA 8 1 48 | 14 7 18 4
VA 8 8 21 | 36 8 8 11
Nasal 15 2 8 5 60 7 3
Semi-vowel 13 5 16 | 12 9 40 5
Fricative 11 22 0 6 4 7 50

Table 6.12: Confusion matrix (%) for the vowel
group classifier based on the TM speech.

Group a e i 0 u
a 84 3 1 10 2
e 2 7 13 2 6
1 0 21 62 2 15
0 3 4 2 81 10
u 1 6 17 19 57
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Table 6.13: Confusion matrix (%) for the vowel
group classifier based on the NM speech.

Group a e i 0 u
a 97 0 0 3 0
e 0 89 11 0 0
i 0 9 91 0 0
0 1 0 0 76 23
u 1 0 0 12 87

/i/. Among the vowels recognized by the TM speech based system, the recognition is
better for the lower vowels (/a/, /e/ and /o/) compared to the higher vowels (/i/ and
/u/). In general, the performance of the TM speech based system in recognising the
broad sound classes is comparable to the NM speech based system, with an improved
performance in some of the classes which contain discriminating spectral features in

the TM speech.

6.4 SUMMARY

In this chapter, a TM speech based syllable recognizer is developed, as it is desirable
to have a speech recognition system in conditions where it may not be possible to
use a normal microphone. When TM speech was tested against the existing NM
speech based HMM syllable recognizer, the recognition rate was poor. Though the
performance improved when tested with the estimated NM features, it is desirable to

obtain a performance similar to that obtained when tested with NM features. As the
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TM signal contains significant information about speech, HMM models were built and
tested against TM speech. The performance of the TM speech based syllable recognizer
was comparable to the performance of the NM speech based recognizer. For certain
sounds, where the throat microphone captured additional spectral information, the
recognition was higher.

The main advantage of the throat microphone speech is that it is robust to the
ambient noise. In the next chapter, the TM speech has been used to develop robust

speech systems in noisy conditions.
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CHAPTER 7

ROBUST SPEECH SYSTEMS USING THROAT
MICROPHONE SPEECH

7.1 INTRODUCTION

Robust speech systems are required for applications such as entry into high-security
enclosures and access control in noisy environments that involve a reliable person
identification. Telephone companies that handle calls from non-native speakers in noisy
environments require reliable language identification. The performance of standard
speech systems (using normal microphone speech data) degrades in noisy conditions.
Approaches to improve the reliability of such systems have been reported (for example,
[107,108]). As mentioned in Section 1.3.2, in noisy conditions, a person’s voice is less
affected when recorded using a throat microphone than when recorded using a normal
microphone. In this chapter, the throat microphone speech has been used to develop
speech systems that are robust to noise. Two systems chosen to demonstrate this are:
speaker recognition system and spoken Language IDentification (LID) system. Text-
independent speaker recognition and LID systems are developed based on features
extracted from the speech recorded using a throat microphone, and their performance
is compared with that of systems based on normal microphone speech.

The differences in the dimensions and vibrations of the vocal folds among speakers
play a major role in identifying the speaker [5,79,109]. Also, no two vocal tracts
are of the same size and shape [109]. Hence, features that represent the excitation
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source and vocal tract characteristics that are extracted from the normal microphone
speech have been used for building speaker recognition systems [8,9,85,110-115]. As
the throat microphone is placed in proximity to the vocal folds, the speaker-specific
excitation source characteristics may be captured by the throat microphone. Also, the
TM speech contains significant information about the vocal tract characteristics, as
seen in Chapter 3, which is expected to contain speaker-specific information.

While speaking, the shape of the vocal tract is associated with the phoneme that
is articulated, and hence the language spoken. Even among languages with common
phonemes, the pronunciation may vary. These pronunciation variations in phonemes
among languages may be present in the vocal tract characteristics as well as the ex-
citation source characteristics of the TM speech. In this chapter, the presence of
speaker-specific and language-specific features in the vocal tract and excitation source
characteristics of the TM speech is studied.

This Chapter is organized as follows. The speaker recognition studies are presented
in Section 7.2. Section 7.3 describes the LID studies. The work on speaker recognition

and LID is summarized in Section 7.4.

7.2 SPEAKER RECOGNITION USING TM SPEECH

Speaker recognition is the task of person identification using speech as the biometric
feature [8,110]. A person’s voice, like other biometrics (finger prints, retinal patterns
or genetic structure), cannot be forgotten or misplaced unlike the use of artifacts for
identification by artificial means such as keys or memorized passwords [9] [111]. Hence,

speaker recognition is more reliable than other artifacts for person identification. The
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task of speaker recognition is to classify a spoken phrase as belonging to one among a

set of reference speakers.

7.2.1 Speaker-specific features in TM speech

Parameters that represent the speaker-specific information in the vocal tract and ex-
citation source characteristics are obtained using LP analysis. Typically, the vocal
tract shape and size for different speakers could vary more at a finer level than at
a gross level. So, parameters that can distinguish these finer variations may contain
the speaker-specific information. The finer variations are dependent on the order of
the LP analysis, which determines the number of peaks in the spectrum of an all-pole
system. Each complex pole-pair accounts for one resonance peak, and the real poles
account for the roll-off of the spectrum. A low (6') order of LP analysis captures the
gross features of the envelope of the speech spectrum. In contrast, a higher (> 12%")
order LP analysis captures the finer details along with the gross details of the envelope
of the speech spectrum. Thus, speaker-specific features are captured by a higher order
LP analysis [85]. The finer variations among speakers are observed more at higher
frequencies, than at lower frequencies. In the context of vowels, it is mentioned in
[79] that the exact positions of the higher formants vary a great deal from speaker to
speaker. Though the formant positions are not uniformly determined for each speaker,
they are certainly indicative of a person’s voice. In the TM speech, since some of the
higher frequencies have a low intensity, double differencing is done to emphasize the
higher frequencies. A high order LP analysis will then provide speaker-specific infor-

mation in the TM speech. The wLPCCs derived from higher order LP analysis are
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used to represent the speaker-specific vocal tract characteristics in this study.

The movement of the vocal folds during vibration vary from one individual to
another [114]. The variation could be in the extent of closure, and also in the manner
and rate of closure [116]. For certain speakers, the vocal folds close completely, while
for others the vocal folds never close completely. The vocal folds may close in a zipper-
like fashion, or may close along the length of the vocal folds at approximately the same
time. The rate of closure is faster in females compared to males. These speaker-specific
variations in the vocal fold vibrations are assumed to be well captured by the throat
microphone due to the proximity of its placement to the vocal folds.

The LP residual signal contains significant information about the excitation source
characteristics of the speech signal. The voiced segments of the LP residual signal
approximate the quasi-periodic vibrations of the vocal folds associated with the vibra-
tions of the voiced sounds. As the variation among the speakers are associated with
the vibrations of the vocal folds, the voiced segments of the LP residual segments are
considered to contain speaker-specific information. In order to effectively capture the
speaker-specific information from the voiced segments of the LP residual, it is neces-
sary to minimize the presence of vocal tract characteristics in the LP residual signal.
The LP analysis extracts the second order statistical features through the autocorre-
lation matrix. Since the second order statistics corresponds to the vocal tract system,
the LP residual is assumed to preserve the source features in some nonlinear (higher
order) relation among its samples. When the LP analysis order is low (say, 3), the LP
spectrum picks up only the prominent peaks (refer Fig. 5.4). Hence the LP residual

would have a large amount of vocal tract characteristics. If a very large LP order (say,
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30) is used, then the LP residual may be affected by the spurious nulls in the spectrum
of the inverse filter. An LP order of 12 — 14 seems to be appropriate for a speech signal
sampled at 8 kHz [116]. It is not clear as to which specific set of parameters needs
to be extracted from the LP residual signal to represent the speaker-specific excita-
tion source information. Hence, the LP residual signal itself is used to represent the
excitation source information [116].

The feature vectors derived from the speech signal will form clusters in the feature
space, and will have a certain distribution in the feature space. As the feature vectors
represent the vocal tract and excitation source characteristics specific to a speaker,
their distribution is expected to be different for different speakers.

The feature vectors representing the speech data have a complex distribution in
the multi-dimensional feature space, and the surface representing this distribution may
be highly nonlinear. The potential of artificial neural networks as nonlinear models
is exploited to capture the characteristics of the vectors unique to a speaker from the
given training data [84,86]. Specifically, the autoassociative neural network models,
which are feedforward neural networks that perform the task of autoassociation are

used [117].

7.2.2 Speaker models using autoassociative neural networks

The task of autoassociation is to associate a given pattern with itself during training,
and then recall the associated pattern when an approximate version of the same pattern

is given during testing [84]. A five layer Autoassociative Neural Network (AANN),

comprising of three nonlinear hidden layers, is capable of modelling any arbitrary
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distribution of the feature vectors [112,117,118]. The number of units in the input
and output layers is equal to the dimension of the input feature vector. The middle
hidden layer, which comprises of lesser number of units than the input/output layer,
is a dimension compressing layer. The training error surface relates to the distribution
of the given feature vectors [118]. As the 5-layer AANN is capable of modelling any
arbitrary distribution, it is able to capture the distribution even when raw data like
the LP residual is given [116]. Typical structure of a five layer AANN used in this

study is shown in Figure 7.1.

i
Input layer } Output layel
Compression

layer

Figure 7.1: Five layer AANN model.

7.2.3 Speaker recognition - experimental study

7.2.3.1 Database for the study

The database for this study comprises of recordings done in the laboratory under clean
and noisy conditions. Noisy environment is simulated using radio statics. Speech from
volunteers is acquired simultaneously using the throat and normal microphones. Text-
independent speech is used in this study. Two minutes of speech data obtained from

each of the 40 speakers is used to train a speaker model. Each test utterance is of
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20 seconds duration. The recordings for training and testing the speaker models are
carried out in separate sessions. The 240 test utterances obtained from the 40 speakers

under clean and noisy conditions are tested against each of the 40 speaker models.

7.2.3.2 Training the speaker models

Two separate models are built for each speaker, one that captures the distribution
of the vocal tract system characteristics (system model) specific to the speaker, and
the other that captures the distribution of the excitation source characteristics (source
model) of the speaker. The vocal tract characteristics are represented by a 19-dimensional
vector of wLPCCs, and the excitation source characteristics are represented by the LP
residual.

The structure of the neural network used to model the system features is 19L 38N
4N 38N 19L, where L refers to a linear unit, NV to a nonlinear unit, and the numbers
represent the number of nodes in a layer. The 19-dimensional vectors of wLPCCs
obtained for each speaker are given to the AANN in a randomized fashion. Each
AANN is trained for 200 epochs.

The LP residual is down-sampled to 4 kHz sampling frequency to emphasize only
those regions with a high signal-to-noise ratio. Blocks of 20 samples (5 msec) of the
normalized LP residual, with a shift of one sample, are applied in succession. The
structure of the AANN used is 20L 4ON 10N 40N 20L. The model is trained for 200

epochs.
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7.2.3.3 Testing the speaker models

Test utterances from clean and noisy environments, each of 20 seconds duration, are
used to test the source and system based speaker models trained using the clean
speech. The noisy test utterances are used to test the speaker models trained using
the noisy speech. Both the source and system features are extracted using a 12 order
LP analysis. The 19 dimensional vectors of wLPCCs and blocks of 20 samples of the
LP residual shifted by one sample form the input to the system and source models,
respectively [112]. The deviation of the output of each model from its input is used to
compute the squared error E; for the i** frame or block. This error is used to compute
the confidence score for that frame or block, which is used as a performance measure
for the speaker recognition system. The confidence score C; of the i** frame or block
is expressed as C; = exp(—AE;) where the constant A is set to 1 in this study. This
confidence value is higher if the error is lower, when the frame or block of the test
utterance of a speaker matches with the corresponding model. When the frame or
block of the test utterance does not match with the corresponding model, the error is
high, and this lowers the confidence score of that frame or block. A test utterance is
given as input to each speaker model to obtain the average confidence score C', which
is expressed as C' = + Zf\il C;, where N is the total number of frames/blocks. The
average confidence scores of the test utterance against all the models are compared,
and the model which gives the highest value of C' corresponds to the hypothesized

speaker.
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7.2.3.4 Performance evaluation

Performance of the speaker recognition systems based on the system and source fea-
tures derived from the clean speech obtained from throat and normal microphones is
given in Table 7.1. The performance is evaluated in terms of percentage of the number
of test utterances accepted out of the total test utterances used for this study. It can
be seen that the performance of the speaker recognition system using the TM speech
is similar to that using the NM speech for both the system features as well as the
source features. As the scores obtained for both the system and source feature based
models are from independent sources of evidence, the two scores can be combined. The
combination logic is addition of the two scores. The block diagram of the proposed
speaker recognition system using the combined evidence is shown in Fig. 7.2. The
speaker recognition system based on the combined scores performs relatively better in
the case of TM speech than for the NM speech. This may be due to the presence of
significant speaker-specific information in the excitation source characteristics derived
from the TM speech.

Table 7.2 shows the performance of the speaker recognition systems using the
speaker models trained and tested with the noisy utterances (to ensure that the speaker
characteristics are the same during training and testing). The performance of the
TM speech based speaker recognition systems is similar under the clean and noisy
conditions (refer Table 7.2). But, the performance of the NM speech based speaker
recognition systems is poor in noisy conditions. This is due to degradation in the

NM speech. The performance of NM speech based systems in noisy conditions can
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Figure 7.2: Block diagram of the speaker recognition system using the com-

bined evidence.

be improved by enhancing the noisy NM speech prior to recognition. The improve-
ment in performance will depend on the type of noise and the enhancement technique

used. This study shows that the TM speech can be used for recognition without any

preprocessing in noisy conditions.

7.3 LANGUAGE IDENTIFICATION USING TM SPEECH

Languages differ in the inventory of phonemes used to produce words, the frequency of
occurrence of these units, and the order in which they occur in words [10]. Languages

also differ in the duration of phonemes, speech rate, intonation, phonotactics (rules
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Table 7.1: Performance (%) of the speaker recognition systems
based on the source and system features obtained from simultane-
ously recorded speech signals using throat and normal microphones.
Models are trained and tested using speech in clean environment.

Microphone || System | Source | Combined

features | features score
™ 84.3 73.0 94.3
NM 84.3 70.0 88.6

Table 7.2: Performance (%) of the speaker recognition systems
based on the source and system features obtained from simultane-
ously recorded speech signals using throat and normal microphones.
Models are trained and tested using speech in noisy environment.

Microphone | System | Source | Combined

features | features score
™ 83.3 75.0 93.3
NM 19.42 25.0 25.0
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that govern the combination of different phonemes in a language), and vocabulary.
The information related to these differences among the languages is present in the
speech signal.

Automatic language identification (LID) is the task of identifying the language
from a spoken utterance. Language identification systems have many applications like
helping telephone companies in handling foreign language calls, serving as a front-end
device for a multi-lingual speech recognizer, and a multi-language speech translation
systems among others [11]. Various approaches have been proposed in the literature to
discriminate between languages based on the differences present in the speech signal
[10,119-121]. Generally, language identification studies use a database comprising of
uncorrupted NM speech or telephone speech [122]. In noisy environments, the LID
systems may not perform well, as the input speech to the system is corrupted by noise.
A few approaches to improve the performance of LID systems in noisy conditions have
been proposed [108,123]. In this section, the clean speech from the throat microphone
is used to obtain a reliable LID system in noisy conditions. The presence of language-
specific features in the vocal tract and excitation source characteristics of the TM

speech are explored.

7.3.1 Language-specific features

The inventory of phonemes is not unique for a language. There is considerable overlap
in the phonemes and syllables of various languages. But there are differences in the
way the same phoneme or syllable is pronounced in different languages. This vari-

ation in pronunciation between languages may be reflected in the slight variation in
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the articulatory configurations of the vocal tract associated with these phonemes (or
syllables). Such variation in the vocal tract configurations can be represented using
the short-term spectrum. The excitation source corresponding to the articulation of
the sound units is also expected to contain information related to the language [124].
The presence of language-specific features in the vocal tract and excitation source
characteristics of the speech are explored in this study.

The features extracted from the speech signal contain information pertaining not
only to the language, but also the speaker and the sounds spoken. It is necessary to
extract features that are more language-specific, rather than speaker-specific. This is
achieved as follows. A higher order (> 12) LP analysis better captures the speaker-
specific characteristics, as seen in Section 7.2.1. A lower order (say, 8) captures less
of the speaker characteristics, and more of the sounds spoken and the language. To
better capture the language characteristics, the feature vectors are derived from a
concatenation of speech from an equal number of native male and female speakers
of the language. This concatenation helps to capture the variability in speakers of a
language. Also, the legal sound units of the language are expected to be captured. The
distribution of the feature vectors is expected to be different for different languages.
However, the distribution may be complex due to the similarity of the phonemes across

languages. The AANN model is used to capture this complex distribution.

7.3.2 LID - experimental study

The language identification study compares the performance of the LID sytems based

on the TM speech and the NM speech both in the clean and noisy conditions.
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7.3.2.1 Multi-language speech corpus

The corpus comprises of recordings from 80 native speakers in four Indian languages,
namely, Hindi, Kannada, Telugu and Tamil. All the languages belong to the same
family of languages and share a common set of phonemes. The confusability among
them is likely to be high. The recordings are carried out in the laboratory under clean
and simulated noisy conditions. The noisy conditions are simulated using radio static.
Speech from the volunteers is collected simultaneously using a normal microphone and
a throat microphone. Text-independent speech is used in the study. The speech is
sampled at 8 kHz. Features are extracted using an 8 order LP analysis performed
on overlapping Hamming windowed speech frames of 20 msec duration taken with a

frame shift of 5 msec duration.

7.3.2.2 Language identification using system features

In this study, the AANN model is used to capture the distribution of language-specific
spectral and source feature vectors. The n feature vectors given as input to train each
language model are derived from a concatenation of speech obtained from 6 speakers, 3
male and 3 female, such that n/6 feature vectors are derived from each speaker’s data.
Around 30 seconds of speech data from each speaker is used for training. The structure
of the neural network used to capture the distribution of vocal tract system feature
vectors in the feature space is 12L 38N 4N 38N 12L. The 12-dimension system features
(wLPCCs) obtained for each speaker are given to the AANN in a randomized fashion.
Each AANN is trained for 200 epochs. Two separate models for each language are

obtained by training two AANN models using WLPCCs derived from the clean and
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noisy speech. If a system is to perform accurately under the noisy conditions, it needs
to be trained on speech recorded under these conditions. Hence, noisy speech models
are used. During testing, features derived from utterances of 20 secs duration, are used
to compute confidence scores (as explained in Section 7.2.3.3) against models of each
language and to identify the language of that utterance. The test speech utterances

are different from those used for training.

7.3.2.3 Language identification using source features

The structure of the AANN used is 20L 4ON 10N 40N 20L. The LP residual, that
represents the excitation source features is down-sampled to 4 kHz sampling frequency
to emphasize only those regions with high signal-to-noise ratio are used. Blocks of 20
samples (5 msec) of the normalized LP residual, with a shift of one sample, are applied
in succession to train the model. A model is trained for 500 epochs. Two models for
each language are obtained using the LP residual derived from the clean and noisy
speech.

During testing, the error between the output of the AANN and the input is used
to compute the confidence score C; for the 7** frame. The average confidence scores of
the test utterance against all the models are compared to evaluate the performance of
the LID systems. The performance is evaluated in terms of percentage of the number
of test utterances accepted out of the total number of test utterances used for this

study.
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7.3.2.4 Results and discussion

The performance of the LID systems based on the system and source features derived
from the clean speech obtained from throat and normal microphones is given in Tables
7.3 and 7.4 respectively. It is seen that the performance of the LID system using the
TM speech is similar to that using the NM speech for both the system features as well
as the source features. As the scores obtained for both the system and source feature-
based models form independent sources of evidence, the two scores are combined (by
addition of the two scores) to improve the performance of the LID system. The block

diagram depicting the LID system is shown in Figure. 7.3.
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Figure 7.3: Block diagram of the language identification system using com-
bined evidence.
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Tables 7.5 and 7.6 show the performance of the LID systems, where the language
models trained and tested using noisy speech. The performance of the TM speech
based LID systems are similar in clean and noisy conditions (refer Table 7.3 and 7.5).
But, the performance of the NM speech based LID systems degrades. This is due
to the presence of significant noise levels in the speech. As mentioned in Section
7.2.3.4, the performance of the NM speech based LID system in noisy conditions can
be improved by enhancing the NM speech prior to identification. The increase in
performance will depend on the level of degradation and the enhancement technique
used. But, this study shows that the TM speech based LID system does not require
such preprocessing.

The studies show that the vocal tract system and excitation source features ex-
tracted from the TM speech contains significant information to distinguish languages.
The performance of the language identification systems using TM and NM speech
signals, when the signals are recorded under noise-free conditions is almost the same.
However, under noisy conditions, the performance of the LID system using the TM
speech is similar to that under noise-free conditions, while that using the unprocessed

NM speech degrades.

7.4 SUMMARY

From the studies conducted, it was seen that the vocal tract system and excitation
source characteristics derived from the TM speech indeed contains significant infor-
mation about the speaker as well as the language. The performance of the speaker

recognition and LID systems based on the TM and NM speech was almost similar
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Table 7.3: Performance (%) of the language identification sys-
tems based on source and system features obtained from the speech
recorded using a throat microphone in a clean environment.

Language || System | Source | Combined
features | features score
Hindi 90 69 92
Tamil 95 74 95
Telugu 92 70 96
Kannada 95 72.5 95

Table 7.4: Performance (%) of the language identification sys-
tems based on source and system features obtained from the speech
recorded using a normal microphone in a clean environment.

Language || System | Source | Combined
features | features score
Hindi 87 71 91.5
Tamil 90 67 93
Telugu 96 77.5 100
Kannada 100 72 100
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Table 7.5: Performance (%) of the language identification sys-
tems based on source and system features obtained from the speech
recorded using a throat microphone under noisy conditions.

Language || System | Source | Combined
features | features score
Hindi 89 67.5 91
Tamil 90 76.5 94
Telugu 85 69 93.5
Kannada 92 75 92.5

Table 7.6: Performance (%) of the language identification sys-
tems based on source and system features obtained from the speech
recorded using a normal microphone under noisy conditions.

Language || System | Source | Combined
features | features score
Hindi 57 56.5 57.5
Tamil 61 59 61
Telugu 45 52.5 51
Kannada 66.5 62 71.5
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when the speech signals were recorded under noise-free conditions. The performance
of the TM speech based speaker recognition system improved when the evidences from
the system and source models were combined. This could be due to the presence of
significant speaker-specific characteristics in the TM speech residual signal. Under
noisy conditions, it was seen that the performance of the TM speech based systems
was similar to the performance under noise-free conditions. However, the performance
of the NM speech based systems reduced due to degradation in the NM speech. The
performance of the NM speech based system would improve in noisy conditions if the
noisy NM speech is enhanced prior to recognition. This study showed that the TM
speech can be used for speech applications in noisy conditions without any need for
enhancing the speech.

The techniques used to improve the perceptual quality of the TM speech can be

extended for other applications, as discussed in the following chapter.
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CHAPTER 8

BANDWIDTH EXTENSION OF TELEPHONE SPEECH
AND LOUDNESS ENHANCEMENT

8.1 INTRODUCTION

In Chapters 4 and 5, techniques were proposed to improve the perceptual quality of
the throat microphone speech. These techniques, which included mapping the spectral
features of TM and NM speech, and modifying the LP residual of the voiced segments
of the TM speech, can be extended for other applications. Speech from an analog
telephone channel has a limited bandwidth (300 Hz to 3400 Hz). There is a need to
improve its perceptual quality, so as to provide the subscribers of the analog telephone
system a high quality speech, similar to the normal wideband speech. The spectral
mapping approach and the residual modification of voiced segments can be extended
for this task. Increasing the loudness of soft voices would be a practical consideration
for power-limiting devices such as cell phones or hearing aids with high audio output
requirements. The residual modification technique can be extended to enhance the
loudness of soft voices. This chapter is organized as follows. Section 8.2 explains the
approach for improving the perceptual quality of the narrowband telephone speech.
The loudness enhancement of soft voices is discussed in Section 8.3. The work is

summarized in Section 8.4.
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8.2 BANDWIDTH EXTENSION OF NARROWBAND TELEPHONE
SPEECH

Speech has perceptually significant energy in the 100-8000 Hz range. However, when
this signal is passed through the analog telephone channel, it gets band-limited between
300-3400 Hz (refer Section 1.4). Digital networks such as Integrated Service Digital
Network (ISDN) and Global System for Mobile communication (GSM) [4] are able to
transmit higher quality speech, since the signal components below 300 Hz as well as
components between 3400 Hz and 4000 Hz can also be transmitted. However, this is
true if the entire call (in terms of routing) remains in these networks. When the signal
leaves the digital network into an analog telephone network, the speech signal is once
again band-limited.

Improvement in the perceptual quality of the telephone speech is done at the
receiver side, without modifying the existing telephone network. The basic idea of
enhancement is to estimate the speech signal components above 3400 Hz, and comple-
ment the signal in the idle frequency bands with this estimate. Most of the current
bandwidth extension schemes use the source-filter model of speech production. Here,
the bandwidth extension is divided into two separate tasks. One task is the recovery
of the wideband spectral envelope, and the other is the regeneration of the wideband
residual signal, as shown in Fig. 8.1. The wideband residual is then passed through the
wideband LP synthesis filter to produce the wideband speech signal. The various ap-
proaches to recover the wideband spectral envelope and regeneration of the wideband
residual signal are detailed in Section 2.3.

In this work too, the source-filter model is used. The recovery of the wideband
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Figure 8.1: Schematic representation of the approach for bandwidth extension
of telephone speech. Here, S refers to the wideband speech, S,; refers to the
narrowband speech, and S,,;, refers to the estimated wideband speech.

spectral envelope involves a mapping of the band-limited spectral features onto the
wideband (0-8000 Hz) spectral features. The mapping exploits the nonlinear mapping
property of MLFFNN;, as used to map the TM and NM spectra (refer Chapter 4). To
regenerate the wideband residual, the narrowband residual is first preprocessed so as
to reduce the distortion that would be otherwise present in the reconstructed speech.
The distortion is caused due to the large linear prediction error of the telephone speech.

The preprocessing involves modifying the voiced segments of the narrowband residual

to reduce the distortion.
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8.2.1 Recovery of wideband spectral envelope - mapping narrowband spec-
tra to wideband spectra

The data for this study comprises of speech simultaneously recorded from a nor-
mal microphone at the transmitting end, and a telephone at the receiving end. A
speaker speaks simultaneously into the microphone and the telephone. The data that
is recorded by the normal microphone forms the wideband data. The data that is
collected at the receiver end forms the narrowband data. Speech data for a duration
of 5 minutes from each speaker is used to obtain the speaker-dependent models. The
remaining sentences of the speaker are used to test the model. All the recorded speech
signals are sampled at 16 kHz.

The LP analysis is performed on both the narrowband and wideband signals.
The LP analysis window is 20 msec long, with a 10 msec overlap between successive
windows. The LP order for the analysis of the narrowband data is 12, and the LP order
for the analysis of the wideband data is 16. The LP coefficients are used to derive 20
dimensional wLPCCs. The wLPCCs derived from the narrowband telephone speech
are mapped onto the wLPCCs derived from the wideband speech. The mapping is
performed using the procedure described in Chapter 4. To accelerate the training
process of the network, each training pattern is preprocessed so that the input-output
pattern pairs will have zero mean and unity standard deviation [86]. They are then
scaled so that they always fall within the range [—1,1]. This ensures that the different
synaptic weights of the network learn at approximately the same speed. These zero
mean, scaled wLPCCs derived from the band-limited signal and the wideband signal

form the input-output training pairs, respectively, for the mapping network.
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The structure of the MLFFNN used in this study is 20L30N30/N20L. The batch
mode of training is used here. The weight updation is done using the conjugate gradient
method, as explained in Section 4.3.2.2. The network has been trained for 50 epochs.

During testing, wLPCCs of the test narrowband data are given to the mapping
network. The network produces an output which are the estimated wLPCCs of the
corresponding wideband data. The estimated wideband LP coefficients derived from
these wLPCCs (as mentioned in Section 4.3.1) are used to construct the wideband LP
synthesis filter.

Fig. 8.2 shows that the estimated LP spectrum is a close approximate of the LP
spectrum of the wideband speech. This shows that the mapping network has efficiently
captured the nonlinear mapping in the frequency domain between the narrowband and

wideband speech.

8.2.2 Regeneration of wideband LP residual

Inverse filtering of the narrowband telephone speech emphasizes the higher frequencies
in the LP residual signal. This is because the spectral roll-off is steep in the telephone
speech compared to the wideband speech, as some of the higher frequencies are miss-
ing in the telephone speech. If this residual signal is used directly for regenerating
the wideband residual, the reconstructed speech would sound slightly noisy. So it is
necessary to modify the LP residual of the telephone speech to reduce the noise due to

the emphasis of the higher frequencies, prior to regeneration of the wideband residual.
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Figure 8.2: The estimated wideband LP spectra (dashed line), and the LP
spectra of the narrowband telephone speech (dotted line) and wideband normal
speech (solid line) for four segments of speech.

8.2.2.1 Deemphasis of noisy regions in LP residual of telephone speech

In the LP residual signal, the closed glottis portions correspond to high SNR regions,
and the open glottis portions correspond to low SNR regions within each glottal cycle.
The emphasis of the high frequency content in the narrowband residual signal affects
the open glottis regions more than the closed glottis regions. This can be seen in
Fig. 8.3. While in the wideband signal the open glottis regions are deemphasized

relative to the closed glottis regions, in the narrowband telephone signal such a relative
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deemphasis of the open glottis regions is not seen. In order to compensate for this,
the signal in the open glottis regions needs to be deemphasized relative to the closed
glottis regions. Human perception is based on capturing some features from the high
SNR regions of speech, and extrapolating the features of the low SNR regions [5]. By
performing a relative emphasis of the high SNR regions over the low SNR regions of
the residual signal, the perceptual cues present in the speech could be emphasized. As
correlation between the samples of the residual signal is low, this modification would
not produce noticeable distortion in the reconstructed speech. This modification of
the narrowband residual needs to performed on all voiced segments, irrespective of the
type of sound, whereas the modification of the residual of the voiced segments of the
TM speech was based on the broad phoneme category to which the voiced segment

belonged (refer Section 5.2).

o 004 006 008 01 012 014 016

Time (sec)
Figure 8.3: The Hilbert Envelope of the residual signal of the telephone speech
(dashed line) and the wideband speech (solid line) of a speech utterance. The

open glottis regions (2-3 ms before the instants) appear noisy in the telephone
signal, compared to the wideband signal.

In order to perform a deemphasis of the open glottis regions relative to the closed
glottis regions, the instants of glottal closure have to be identified. These instants of

glottal closure are not identified directly from the LP residual, though the LP residual

140



contains information pertaining to the excitation (refer Section 5.5). The Hilbert
envelope of the LP residual gives a better estimate of the instants of glottal closure.

Once the instants have been located, a region of 2 to 3 msec following an instant is
chosen as the closed glottis region. A region of 2 to 3 ms prior to the instant is chosen
as the open glottis region. A weight function is used to deemphasize the excitation in
the open glottis regions relative to the closed glottis regions as explained below.

The Hilbert envelope of the LP residual is smoothed using a window which is
selected to taper down the excitation in the open glottis region, and raise the excitation

around the glottal closure (GC) instant. This window is given by

2
w(n) = 0.54— 0.46cosM7T(n +M/2), 0<n< M2, (8.1)

where M/2 is size of the window. Here, w(n) corresponds to the second half of a
Hamming window. The smoothing operation produces weights which depend on the
strengths of the peaks in the Hilbert envelope signal. In order to normalize the weights,
the smoothed signal is scaled by the running mean of the signal to obtain the normal-
ized signal C'(n). The signal C'(n) is mapped using a nonlinear sigmoidal mapping

function to obtain a weight function W (n) given by [125]

(8.2)

Wn) = G:§@>wmmﬂam—@»+ciﬁ@).

2

The parameter (,,;, is used to reduce the excitation signal in the open glottis
regions. The parameter « is used to taper the weight function smoothly from the
closed glottis region to the open phase region to avoid distortion. The parameter (j is
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the threshold value that determines the weight values to be emphasized or suppressed.
The weight values are adjusted such that the closed glottis segment is given a higher
weightage, while the excitation in the open phase region is reduced (refer Fig. 8.4).
The LP residual of the narrowband telephone speech is multiplied with this weight

function to obtain the modified LP residual.
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Figure 8.4: The Hilbert Envelope of the residual signal of the telephone speech
(dashed line) and the modified narrowband residual (solid line) of a speech

utterance. The open glottis regions are deemphasized in the modified signal,
compared to the narrowband signal.

8.2.2.2 Regeneration of wideband residual using spectral folding

The modified narrowband LP residual is used to regenerate the wideband LP residual.
This regeneration is based on duplication of the baseband spectrum [61]. The LP
residual has a flat line spectrum at multiples of the fundamental frequency. Such a
spectral structure is periodic and repetitive. The high frequency structure is the same
as the low frequencies. The spectrum of unvoiced excitation is however continuous and
has a random spectrum with a flat envelope. The details of the unvoiced spectrum
are not as perceptually important as the details of the voiced spectrum. Therefore
the unvoiced spectrum can be considered repetitive also. To perform spectral folding,
zero - valued samples are inserted between samples of the narrowband modified LP
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residual. This process is merely that of upsampling which produces spectral folding.
This is a simple technique. Other sophisticated regeneration methods could also be
used.

The regenerated wideband residual is passed through the LP synthesis filter to
obtain the wideband speech signal. This is passed through a high pass filter and then
added to the band-limited signal in order to preserve the frequency components in the

lower frequency bands to produce the wideband signal.

8.2.2.3 Experimental results

The spectrograms for the original wideband speech, the band-limited speech and the
enhanced speech for a segment of speech are shown in Fig. 8.5. It can seen the spectral
information present in the higher frequency range (above 4000 Hz as in fricatives) in the
original wideband speech is also present in the enhanced speech. The lower frequency

information is also preserved in the enhanced signal.

8.2.2.4 Subjective evaluation

The perceptual quality of the enhanced speech is assessed using the CMOS test. The
CMOS test is explained in Section 5.7. The results of the evaluation are shown in Fig.
8.6 in the form of histograms. The listeners rated the wideband speech with a CMOS
of 1.8 (between slightly better and better) over the narrowband telephone speech. The
enhanced speech, obtained using the approach described in the previous sections, is
rated with a CMOS of 0.78 (between ‘about the same’ and ‘slightly better’) over the
telephone speech. This shows that the technique used to extend the bandwidth of the

narrowband telephone speech provides an improvement in the perceptual quality of the
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Figure 8.5: Spectrograms of the (a) wideband speech signal, (b) band-limited speech
signal, and (c) the estimated wideband speech signal for a speech segment.

speech. The technique used for bandwidth extension does not contribute any annoying
artifact to the enhanced speech, as in the enhancement of the throat microphone

speech.

8.3 LOUDNESS ENHANCEMENT OF SOFT VOICES

Enhancing the loudness of soft voices is a topic of interest for the manufacturers of
cell phones and other devices with high audio output such as hearing aids. Design of
devices with a low cost and limited consumption of power is a major issue. Limiting
the consumption of power would improve the battery life of these devices. Generally,

approaches to improve the battery life focus on improving the speaker design and the
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Figure 8.6: Histogram showing the frequency distribution of the CMOS scores

comparing the quality of (a) narrowband telephone speech and wideband

speech, and (b) narrowband telephone speech and estimated wideband speech.
efficiency of power amplifiers to reduce the current drain. The loudness enhancement is
also of interest for situations that involve large gatherings such as auditoriums, where
the concern is to make the speaker’s voice audible to all the listeners in the gathering.

Loudness is the human perception of intensity, and is a function of the sound
intensity, frequency and quality [126]. Intensity is the amount of energy flowing across
a unit area surface in a second. The loudness of voices can also be enhanced by directly
processing the speech signal [127]. This approach would help conserve the energy, and
save power. Authors of [127] proposed a method to increase the perceived loudness
without increasing the signal energy. A warped filter was used to apply a nonlinear
bandwidth expansion to the formant regions of vowels on a critical band scale. As an
alternative to the warped filter approach, the work proposed in this chapter exploits
the excitation source characteristics of speakers which are associated with the loudness
in their voice. Specifically, the voiced segments of the excitation source characteristics
of soft voices are processed for enhancing the perceived loudness.

The rate of closure of the vocal folds during the quasi-periodic vibrations (associ-
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ated with the articulation of voiced sounds) plays a significant role in determining the
perceived loudness of a person’s voice. The more rapidly the vocal folds come together,
the louder the voice sounds. The steepness of the roll-off of the glottal closure instants
in the LP residual signal corresponds to the rate of closure of the vocal folds. Soft
voices have a gradual roll-off, while loud voices have a steep roll-off.

In order to enhance the loudness of soft voices, the LP residual signal, r5(n), of the
soft voice is modified to achieve a rapid roll-off at the glottal closure instants. This is

achieved by modifying the Hilbert envelope, hs(n), of r5(n) as

hi(n) = hs(n)a("), (8.3)

where h;(n) is the corresponding Hilbert envelope of the LP residual of the loudness

enhanced speech, and «(n) is given by

;

0.5 (1 + coS(%)w) D Ui < he(n) < Ymas
a(n) = 1, hs(n) < "/Jmm (84)

0’ hS(n) > Q/Jmama

\

where 9., and 1., are constants that determine the steepness of the roll-off, and are
suitably adjusted to improve the perceived loudness while minimizing the distortion

in the resulting speech. The modified LP residual, r;(n), is given by

ri(n) = rs(n)hy(n). (8.5)

The loudness enhanced speech is synthesized using ;(n). Fig. 8.7 shows waveforms
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of two segments of the soft voice and the corresponding loudness enhanced voice. The
roll-off of the glottal closure instants is steeper in the loudness enhanced voice compared
to the soft voice, which is desired. The enhanced voice sounds louder compared to the

soft voice, with minimal perceivable distortions.
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Figure 8.7: The acoustic waveforms of two different segments of soft voice
(dashed line) and the loudness enhanced voice (solid line).

The improvement in the perceived loudness is evaluated using the CMOS listening
test, as explained in Section 5.7. Here, the comparative rating is based on evaluating
how much louder one sound is perceived compared to the other. The results of the
evaluation are shown in Fig. 8.8 in the form of histograms. The listeners also con-
sidered the distortion (due to processing) in the enhanced speech during evaluation.
The results show that the listeners preferred the enhanced speech over the soft voice,
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with a CMOS of 1.82. Further investigation is needed to reduce the mild (but, not

annoying) distortions in the enhanced speech.
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Figure 8.8: Histogram showing the frequency distribution of the CMOS

score comparing the quality of the soft voice and the corresponding loud-
ness-enhanced voice.

8.4 SUMMARY

In this chapter, the techniques used to improve the perceptual quality of the throat
microphone speech was extended for two applications, namely, bandwidth extension
of the narrowband telephone speech and loudness enhancement of soft voices. The
bandwidth extension of the narrowband telephone speech involved the recovery of
the wideband spectral envelope and the regeneration of the wideband residual signal.
Spectral mapping technique was used for the recovery of the wideband spectral enve-
lope, and the voiced segments of the narrowband residual were modified (to reduce
distortion) prior to regeneration of the wideband residual signal. Subjective evaluation
showed that the approach slightly improves the perceptual quality of the narrowband
speech. For the loudness enhancement of soft voices, a technique that enhanced the
loudness by modifying the LP residual (especially around the instants of significant

excitation) was proposed. The enhanced speech was rated as perceptually louder com-
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pared to the soft voice. A perceivable, but not annoying, distortion was present in the
enhanced speech. Improvement in the technique is required for better results. The
advantage of the technique, both for bandwidth extension and loudness enhancement,

is that it does not contribute any annoying artifact to the enhanced speech.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

9.1 SUMMARY

In this thesis, the focus was on processing the speech signals obtained from the throat
microphone (TM) for improving its perceptual quality and using it for developing
automatic speech systems. The perceived lack of naturalness in the TM speech was
reduced by exploiting the characteristics of the high quality normal microphone (NM)
speech. The intelligibility of the TM speech in noisy ambience was exploited for speech
applications in noisy conditions. Techniques used to improve the perceptual quality
of the TM speech were extended for two applications: (1) bandwidth extension of the
narrowband speech, and (2) loudness enhancement of soft voices.

The throat microphone is a skin vibration transducer that is placed close to the
vocal folds. It is a preferred choice for use in adverse conditions as it is relatively
insusceptible to the noisy ambience. It records speech that is intelligible even in noisy
conditions. However, the speech from a throat microphone sounds unnatural, unlike
the high quality speech recorded from a normal microphone. Improving the perceptual
quality of the TM speech would help alleviate the discomfort that may arise due to
prolonged listening of the TM speech.

The perceptual quality of a speech signal depends on the acoustic characteristics
[79]. Hence, the differences in the perceptual quality of the speech signals from the
throat microphone and the normal microphone depend on the differences in the acous-
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tic characteristics of the two speech signals. The acoustic characteristics of various
sound units in the TM and NM speech were studied. This study showed that acoustic
differences between the TM and NM speech exist both in the vocal tract characteristics
and the excitation source characteristics for different sound units.

Some of the spectral characteristics that distinguish the TM speech from the NM
speech are: (1) The absence of some of the higher frequencies, clearly seen in the voiced
sounds and fricatives, (2) the presence of distinct formant-like structures during the
closure-phase of voiced stop consonants (unlike the low frequency voice bar which is
similar for all voiced stops in the case of NM speech), and (3) the presence of oral
resonances in the nasal consonants. The excitation source characteristics derived from
the TM and NM speech differ in the modifications imposed by the vocal tract system
on the strength of the instants of significant excitation for voiced sounds. In the NM
speech, the strength of the instants is comparatively high for vowels and low for voiced
consonants. In contrast, in the T'M speech, the strength of the instants is comparable
for the vowels and the voiced consonants.

The task of enhancing the TM speech exploited the characteristics of the high
perceptual quality of the NM speech. To compensate for the acoustic differences, the
task was divided into two subtasks: (1) estimating the spectral features of the NM
speech, given that of the TM speech, and (2) modifying the TM residual so as to obtain
the necessary modification in the strength of the instants, similar to the modifications
present in the strength of the instants in the NM residual. The first subtask involved
mapping of the spectral features (wWLPCC) of the TM speech onto the spectral features

of the NM speech. The nonlinear mapping property of the MultiLayered Feed Forward
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Neural Network (MLFFNN) was used for the spectral mapping. The proposed auto-
correlation method to derive LP coefficients from wLPCCs guarantees the stability of
the all-pole synthesis filter, which is essential for distortion free speech. The mapping
was effective for most of the sound units, with the exception of the unvoiced fricatives.

The second subtask of modifying the voiced segments of the TM residual involved
the emphasis of the instants in the vowel segments, and deemphasis of the instants in
the voiced consonant segments. The modification required the automatic identifica-
tion of the broad phoneme category of each of the voiced sounds. This identification
followed by modification was done by (a) mapping the parameters (normalized error,
gross spectral features and log frame energy, which help to distinguish between the
voiced segments, derived from each frame are concatenated to form the feature vector)
of the TM speech onto the corresponding parameters of the NM speech, and (b) using
the estimated NM features for suitable modification of the TM residual. The desired
modification of the strength of instants was achieved for most of the voiced sounds.
The modified residual was used to excite the synthesis filter constructed using the
estimated LP coefficients to obtain the enhanced speech.

Intelligibility of the TM speech was exploited for developing an automatic syllable
recognizer. Performance of the TM speech based syllable recognizer was comparable
to that of the NM-based syllable recognizer for most of the sound units. In general, the
performance of the TM speech based system was poorer for vowels due to confusability
between the front and back vowels, but better for stop consonants due to the distinct
spectral features associated with the closure phase of these consonants. The robustness

of the TM speech to noise was exploited to develop speaker recognition and language
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identifications systems. The performance of the TM speech based systems under noisy
conditions was similar to the performance under clean conditions.

The techniques used to enhance the perceptual quality of the TM speech was ex-
tended for two other applications, namely, bandwidth extension of telephone speech
and loudness enhancement of soft voices. The telephone speech is band-limited be-
tween 300 Hz and 3400 Hz. The task of improving the perceptual quality of the
narrowband telephone speech involved (1) mapping the narrowband spectra to the
wideband spectra using the MLFFNN, and (2) modifying the voiced segments of the
narrowband residual to reduce distortion, followed by regeneration of wideband resid-
ual using spectral folding. Loudness enhancement of soft voices relied on manipulating

the roll-off of the instants of significant excitation of the LP residual of soft voices.

9.2 MAJOR CONTRIBUTIONS OF THE WORK

The significant contribution reported in this thesis is the attempt to improve the per-
ceptual quality of the throat microphone speech. The TM speech and the NM speech
differ, both in the vocal tract characteristics and the excitation source characteristics.
Therefore, the improvement involves compensating the differences in these character-
istics.

Major contributions of this thesis are:

e A detailed acoustic analysis of the sound units in the TM speech.

e A method to effectively map the spectral features of the TM speech onto the

spectral features of the NM speech.

e An approach that uses the autocorrelation method to derive LP coefficients from
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9.3

wLPCCs. This approach guarantees the stability of the synthesis filter.

A method that modifies the strength of the instants of voiced segments (empha-
sizing those of vowels and deemphasizing those of voiced consonants) of the TM
residual to obtain an estimate of the modification of the strengths of instants
seen in the NM residual. This involves an automatic discrimination among the

voiced sounds using minimal speech data.

An HMM based syllable recognizer using only the TM speech for isolated syllable

recognition and group classification.

Robust speaker recognition and language identification systems whose perfor-

mance does not degrade in noisy conditions.

An effective mapping of the narrowband telephone speech onto the wideband
normal speech. The distortions in the telephone speech are reduced by per-
forming a relative emphasis of the high SNR segments of the LP residual with

respect to the low SNR segments.

A method to enhance the loudness of soft voices which manipulates the LP
residual around the instants of glottal closure, without distorting the enhance

speech.

DIRECTIONS FOR FUTURE RESEARCH

The spectral mapping network is unable to effectively map the spectra of the
fricatives due to random energy (noise-like) distribution in these sounds. Hence

an approach to suitably map the fricatives is necessary.
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e The spectral mapping technique described in Chapter 4 is speaker-specific. In
a speaker specific mapping, the formant locations and bandwidth will be the
same in both the TM speech spectra and the NM speech spectra. If however,
a speaker-independent mapping is used, then the estimated NM speech spectra
may not represent the vocal tract characteristics of the target speaker. Differ-
ences in the formant locations may cause distortion in the synthesized speech.
Hence, approaches to achieve a speaker independent mapping need to be ex-

plored.

e In the process of modifying the TM residual, the ratio of the normalized errors
of the TM and NM speech is used to emphasize/deemphasize the strength of
the instants in the vowels/voiced consonant segments. A robust feature that
represents the strength of the instants can be explored to achieve a more effective
modification. The characteristics of the nasal sounds of the NM speech are not
effectively estimated, both in spectral mapping as well as residual modification.
The spectral mapping is less effective for nasals than for other voiced sounds.
This is because the all-pole source filter model (LP) used does not compensate
for the zeros which may be introduced due to nasal coupling. In the residual
modification too, some of the nasal segments are not sufficiently deemphasized.
Hence, an approach to effectively estimate the characteristics of the sounds in

the NM speech is necessary.

e The TM speech was used for developing a syllable-recognizer. This could be

used for command-and-control applications. The study could be extended for
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recognizing continuous speech, especially in noisy conditions. The robustness
of the TM speech to noise was exploited for speaker recognition and language
identification applications. However the TM speech based systems may degrade
if the surrounding noise is highly vibratory in nature. Hence, approaches for
processing the TM speech in such conditions need to be explored. The feasibility

of using the TM speech for speech encoding can also be explored.
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