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Abstract

The primary mode of excitation of the vocal-tract systemimyispeech production is
due to the vibration of the vocal folds. For voiced speect most significant excitation
takes place around the instant of glottal closure, callecegfoch The objective of this

work is to extract the epoch locations and estimate theiita&imn strengths from the
speech signal. Conventional methods for extracting thé&agian source features rely
on modeling the response of the vocal-tract as parameteas afl-pole filter, and then

inverse filtering the speech signal to estimate the soufoenration. Accuracy of these
methods depends critically on our ability to model the tivaeying response of the vocal-
tract system. In this work, we propose methods to extradethiires of excitation source
using the impulse-like nature of excitation. The proposexthmds do not depend on

modeling the response of the vocal-tract system.

The dfect of an impulse is spread uniformly across the frequenecyaiio including
at zero-frequency. Around the zero-frequency, the regpohshe vocal-tract system is
significantly low compared to the response of the impulke-&ixcitation. In this work,
the impulse-like nature of excitation is exploited by fiitgy the speech signal at zero-
frequency to extract the epoch locations and their stresgftexcitation. Using the epoch
locations as anchor points within each glottal cycle, a metto estimate the instanta-
neous fundamental frequency of voiced speech is propodeel sffengths of excitation
at the epochs are used to detect the regions of vocal foletalor, which is referred to
as glottal activity. Using the robustness of relative spgdietween the epochs in speech
signals collected over a pair of microphones, methods ftohpxtraction in reverberant
environment and multispeaker environment are proposee. pftposed method of ex-

tracting the glottal activity together with linear predat analysis is used to study the

\Y



role of excitation source in the analysis of manner of aléiton of stop consonants. Ro-
bustness of the proposed epoch extraction and fundamesdqakincy estimation methods

has been studied and compared with the state-of-the-ahiotet

Keywords: Epoch extraction, glottal closure instant, instantanedesjuency, pitch,
strength of excitation, multimicrophone processing, nearof articulation, stop conso-

nants, zero-frequency resonator.
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Chapter 1

Introduction

Speech signal can be considered as the output of a lineansyet which neither the
excitation nor the system response is known. In particutaced speech is the output of
a quasistationary vocal-tract system excited with quasige puts of air produced due
to vibration of vocal folds. Although the vibration of vodalds produces a sequence of
glottal pulses, the significant excitation to the vocattisystem within each glottal cycle
can be considered to occur around the instant of glottaucéyscalledepoch Epoch
location marks the start of the closed glottis region dunvigch there is little or no
airflow through the glottis. Accurate identification of abokglottis region allows the blind
deconvolution of the vocal-tract and excitation sourceat@hterization of the excitation
source features has great potential for use in speech @)aysthesis, coding, speaker

recognition, and diagnosis of voice disorders.

During speech production, the vocal-tract responses aesaive glottal pulses over-
lap forming a composite signal. Extracting the excitatimiormation from speech signals
is a challenging task, as it isflcult to suppress the response of the time-varying vocal-
tract system in the speech signal. The existing methodsftoaaing the excitation infor-
mation from the speech signal are based on glottal invetseiid) [1,[2,[B]. These meth-
ods assume that the speech signal is produced as the regganbpear time-invariant
system to an excitation signal having a flat spectrum. QGlotterse filtering involves

the estimation of the characteristics of vocal-tract aysiteterms of the parameters of a



linear filter. For instance, linear prediction (LP) anatyf}] is the standard method used
to estimate the parameters of the filter under the assumfftairthe vocal-tract can be
modeled as an all-pole filter. Théfectiveness of the LP analysis in characterizing the
excitation information depends on the accuracy of the aléjodel, and the nature and
quality of the speech signal. Moreover, accurate estimaticthe vocal-tract response
and excitation source are interdependent problems, astheate estimation of one de-
pends on the accurate estimation of the other. Reliableadjioverse filtering requires
accurate estimation of the parameters of the all-pole fifipresenting the vocal-tract sys-
tem, which in turn depends on the accurate identificationefdosed glottis region. It

is desirable to characterize the excitation informati@mfispeech signals independent of

the influence of the vocal-tract system.

1.1 Objective and scope of the work

The objective of this work is to extract important featuréshe source of excitation
from the speech signal independent of the influence of thalwoact. The features of
the excitation source considered in this work include tleations of the epochs and their
strengths of excitation. The locations of the epochs aloitigtiveir strengths of excitation
can be used in several speech analysis situations. Funt&rfregquency of the voiced
speech can be accurately estimated using epoch as the qoehbin each glottal cycle.
The strengths of excitation of the epochs can be used to tditeaegions of glottal
activity. Locations of the epochs along with their stresgtian be used to analyze the

manner of articulation of the stop consonants.

This work is based on the assumption that the excitationdwdcal-tract system can
be approximated by a sequence of impulses of varying stiengtence, the methods pro-
posed in this work are not likely to work well when the degtaates produce additional
impulse-like sequences in the collected speech signalthe icase of reverberation. The

methods may also not work well when there is interferenc@eésh from other speakers.

2



1.2 Organization of the thesis

The evolution of ideas presented in this thesis is listedabld[I.1. The contents of the

thesis are organized as follows:

In Chapter 2, we highlight the significance of epochs in speech analgsid,review
the existing methods for epoch extraction. In this chapteralso review methods for
characterizing the strengths of excitation of epochs,alieig glottal activity and estimat-

ing fundamental frequency of voiced speech.

In Chapter 3, we propose a novel approach to epoch extraction from spsgohls,
by confining the analysis to a narrow-band of frequenciesrada@ero-frequency. The
performance of the proposed approach is evaluated andghksrare compared with the

state-of-the-art methods for epoch extraction.

In Chapter 4, a method for determining the strength of excitation of theah from
speech signals is proposed. The proposed measure of stodmyicitation has a close lin-
ear relationship with the negative peak amplitude of titiecentiated glottal flow. Since
the diterentiated glottal flow is almost zero in unvoiced regione, present a method
for glottal activity (voicing) detection based on the ested strengths of excitation. The
strengths of excitation and the regions of glottal actidérived from the speech signal

are compared with simultaneous recordings of EGG signals.

In Chapter 5, we highlight the need for determining the instantaneousi&mental
frequency as compared to the “average pitch” obtained bgdheentional block process-
ing methods. Then, we propose a method for estimating tharteeous fundamental
frequency of voiced speech segments using the epoch asrapoimb in each glottal
pulse. The performance of the proposed method is evalumted;ompared with existing

technigues under fierent noisy environments at varying levels of degradation.

In Chapter 6, we propose methods based on epoch extraction to procesminrd-
phone data in order to overcome the issues involved in pgtimation in reverberant en-
vironment and multispeaker environment. A method for esting time-delay of arrival

between a pair of spatially separated microphones usingxitieation source information

3



Table 1.1: Evolution of ideas presented in the thesis

¢ In voiced speech, the primary acoustic excitation normadigurs at the instant gf
glottal closure (epoch), and is impulse-like.

e The dfect due to the impulse-like excitation is reflected unifgrratross all the
frequencies, irrespective of the state of the vocal-trgstesn.

e The impulse-like excitations reflect as discontinuitieghie time domain, which
can be highlighted by computing the instantaneous frequehthe speech signal
filtered through a narrow-band filter. The center frequerid¢h® narrow-band filtel
depends critically on the vocal-tract response.

e The contribution of the vocal-tract response at zero-feagy is significantly less
compared to the contribution of the response of the implikeeexcitation. A
method based on zero-frequency resonator is proposed doextnaction of the
epochs and their strengths of excitation.

\°}

e The detected epoch is used as anchor point in each glottkd ty@stimate the
instantaneous fundamental frequency of speech signalse $is method does not
depend on correlation of the speech segments in adjacehtjitles, the method
is robust even for diplophony and creaky voices.

e Using the robustness of relative spacing between the epodmeech signals co
lected over a pair of microphones, methods for pitch extvagh reverberant envit
ronment and multispeaker environment are proposed.

e The excitation information derived from proposed methamhglwith the LP anal{
ysis is used to study the nature of excitation in the stop @oasts.

is discussed.

In Chapter 7, we apply the excitation features derived using the eposkdyanethod
proposed in this thesis, along with the LP analysis for stuglthe production character-

istics of stop consonants, specifically the manner of detmn.

In Chapter 8, we summarize the contributions of the present work, ancudssome
issues which prompt further investigation for extractixgigtion features from speech

signals collected in practical environments.



Chapter 2

Extraction of Excitation Information -

A Review

This chapter reviews some of the existing methods for etitrg@and processing exci-
tation source information and highlights the issues inedlv In particular, we review
specific methods for extraction of the epochs, their sttehghd fundamental frequency.
In Section[Z]L, we explain the significance of epochs in dpeealysis. In Sectiop 3.2,
we illustrate the important features of glottal flow as meadiby the electroglottograph
signal. Sectiof 2] 3 reviews the existing methods for epatiaetion from speech signals.
In Section 2}4, we highlight the significance of negativekp@aplitude of diferentiated
glottal flow, which we refer to as strength of excitation, mice source analysis and re-
view approaches to estimate it. In Sectjor] 2.5, we reviewethisting approaches for
pitch estimation from speech signals. In Secfioh 2.6, wevemethods to process mul-
timicrophone speech data for time-delay estimation andispaaker speech processing.
Section2.J7 reviews existing methods for analysis of manharticulation of stop conso-
nants and estimating the voicing onset times. Finally 8a@@$ summarizes the review

and highlights the important issues addressed in thisghesi



2.1 Significance of epochs in speech analysis

Voiced speech analysis consists of determining the fregjuessponse of the vocal-tract
system and the glottal pulses representing the excitatiarce. Although the source of
excitation for voiced speech is a sequence of glottal puteesignificant excitation of the
vocal-tract system within a glottal pulse, can be consdiem@ccur at the instant of glottal
closure (GCI), called thepoch Many speech analysis situations depend on accurate
estimation of the location of the epoch within a glottal gul$or example, knowledge
of the epoch locations is useful for accurate estimationhef fundamental frequency
(fo). Often the glottal airflow is zero soon after the glottalstlee. As a result, the
supralaryngeal vocal-tract is acoustically decoupledhftbe trachea. Hence the speech
signal in the closed glottis region represents free resmewaf the supralaryngeal vocal-
tract system. Analysis of speech signals in the closedigi@gions provides an accurate
estimate of the frequency response of the supralaryngeal-act systen{]5,|6]. With
the knowledge of the epochs, it may be possible to deternmi@eharacteristics of the
voice source by a careful analysis of the signal within atglgiulse. The epochs can
be used as pitch markers for prosody manipulation, whictséul in applications like
text-to-speech synthesis, voice conversion and speeeltoaversion[]7,]8]. Knowledge
of the epoch locations may be used for estimating the tink@ydeetween speech signals
collected over a pair of spatially separated microphofpfs The segmental signal-to-
noise ratio (SNR) of the speech signal is high in the regioosrad the epochs, and hence
it is possible to enhance the speech by exploiting the ctexrtatics of speech signals
around the epochs$ [[LO]. It has been shown that the excitédamnres derived from the
regions around the epoch locations provide complemenfegier-specific information
to the existing spectral featurds [11] 12, 13].

As a result of significant excitation at the epochs, the megjia the speech signal that
immediately follow them are relatively more robust to (ertd) degradations than other
regions. The instants of significant excitation play an inguat role in human perception
also. Itis because of the epochs in speech that human beiagste be able to perceive
speech even at a distance (e.g. 10 feet or more) from theesawen though the spectral

components of the direct signalfier an attenuation of over 40 dB. For example, we
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may not be able to get the message in whispered speech byrigte it at a distance of
10 feet or more due to absence of regular epochs. The neucabmism of human beings
seems to have the ability of processing selectively thesbimgions around the epochs
for extracting the acoustic cues even under degraded ¢omslitt is the ability of human
beings to focus on these microlevel events that may be reggerior perceiving speech
information even under severe degradation such as nowgperation, presence of other

speakers and channel variations.

2.2 Extraction of excitation source information from elec-

troglottography

Electroglottography is a noninvasive method of measuttiregvibcal fold contact during
voicing without dfecting speech production. The electroglottograph (EGGasmees
the variation in impedance to a very small electrical curtetween a pair of electrodes
placed across the neck as the area of contact of the vocal ¢éblahges during voicing.
The demodulated impedance signal is referred to as EGGIsiQoang voiced speech,
the EGG signal exhibits quasiperiodicity according to ttegfiency of vocal fold vibra-

tion.

Fig. shows a few stylized glottal cycles of the EGG signala voiced speech
segment. The glottal cycle of the EGG signal can be dividéd fiour distinct phases:
closing phase, closed phase corresponding to the regioraginmam contact, opening
phase and open phase. This relation between the EGG sigh#hamrea of contact of
the vocal folds has been verified using high-speed larynxqgunaphy and X-ray flashing
imaging [I#]. As long as the glottis is open, the impedancasuee across the larynx is
maximum and almost flat (region - 4 in F{g.]2.1). When the gdatloses, the laryngeal
impedance decreases, and the EGG signal shows a steep duolsioge (region - 1 in
Fig.[2.]). The opening of the glottis, on the other hand, lkaspnuch more gradually
(region - 3in Fig[Z]1). Note that some authors invert the EXBfaal from that shown in

Fig.[2.1.



Impedance

Time (s)

Fig. 2.1: EGG signal for a segment of voiced speech taken from a continuous
utterance. Four distinct phases of a glottal cycle in the EGG signal can be iden-
tified as (1) closing phase, (2) closed phase with maximum contact, (3) opening
phase and (4) open phase.

According to the theory of voice excitatiop J1p]]16], thestant of glottal closure is
the point of maximum excitation to the vocal-tract systend @ is justified to define it to
be the starting point of a pitch period. Although the instainglottal closure is the most
abrupt event, it nevertheless needs a finite amount of tirhe.dEfinition of the starting
point of the period, however, requires identification of aque point in time, that is less
subjected to errors. Though identifying a unique pointatlyefrom the speech waveform
is not possible, such a feature is well manifested in the E@®@as [[[]]. Moreover,
since the EGG signal measures directly the laryngeal inmpeajat is not &ected by the
ambient noise. The point of inflection during the steep fallhe EGG signal, i.e., the
instant of maximum change of the laryngeal impedance icalyi selected to represent
the instant of glottal closurd JlL8]. Hess and Indefrey defina epoch to occur at the
maximum of the time-derivative of the smoothed EGG signairdya glottal cycle[I9].
Huckvale developed an algorithm that identifies epoch lonatas the positive-going

zero-crossings in the smoothed time-derivative of the E@6as [20].

Fig.[2.2 shows a segment of voiced speech, its EGG signalrenditerenced EGG
signal. The locations of sharp negative peaks in tikeinced EGG signal denote the
instants of glottal closure. The negative peak amplitudthefditferenced EGG signal
denotes the maximum flow declination rate, which can be hgsized to be the strength
of excitation around the epoch. Notice that, in contrasth® speech signal, the EGG

signal is hardly ffected by the time-varying vocal-tract system, and the ceaimgshape
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Fig. 2.2: Extraction of epoch locations from differenced EGG signal. (a) A seg-
ment of voiced speech taken from a continuous utterance, (b) EGG signal and (c)
differenced EGG signal. Locations of the negative peaks in the differenced EGG
signal correspond to the instants of glottal closure.

and amplitude are relatively small. Hence, the epoch lonatand their strengths can
be accurately determined from the EGG signal even in the rdi;aegions where the

vocal-tract system is not stationary.

Since every glottal cycle is represented by a single puteeEGG signal can be used
for accurate determination of instantaneous fundamerggquency of the voiced speech
segments. In addition, the EGG signal provides the basis flmod voiced-unvoiced dis-
crimination, since the dlierenced EGG signal is almost zero during unvoiced segments
where the glottis is always open. F{g.]2.3(a) and Fig. 2.8tmw a segment of speech
signal and simultaneously recorded EGG signal, respégtidetice that the dierenced
EGG signal shown in Fig. 3.3(c) is almost zero in the unvoieggions. Hence the voiced
regions, i.e., the regions of glottal activity, can easi¢ydetected from the fierenced
EGG signals. The regions of glottal activity for the speeigimal shown in Fig[ 2]3(a)
are marked with dashed lines in Fg.]2.3(b) using tiBedenced EGG signal. Finally, the
instantaneous fundamental frequency computed from titeevals between the negative

peaks of diferenced EGG signal is shown in Fjg.]2.3(d). The finer cycleyide varia-
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Fig. 2.3: Glottal activity detection and pitch estimation from EGG signal. (a) A
segment of speech signal taken from a continuous utterance, (b) EGG signal, (c)
differenced EGG signal, and (d) pitch contour obtained by taking the reciprocal of
time intervals between locations of successive negative peaks in the differenced
EGG signal. The regions of glottal activity are marked with dashed lines.

tions reflected in the pitch contour (Fig.]2.3(d)) are crufdaincorporating naturalness

in the synthesized speech signals.

The EGG signal can beffectively used for characterizing the important features of
excitation source of the speech signal. The EGG signal caséefor (a) accurate identi-
fication of epoch locations, (b) reliable estimation of ttresgths of excitation of epochs,
(c) glottal activity detection and (d) estimation of indi@meous fundamental frequency of
the voiced segments that provides finer cycle-to-cycleatians in pitch. Since the EGG
signal is not normally available in practice, there existsrgg motivation to develop tech-
niques for extracting these features from the speech saoa. Several such techniques
have been presented in the literature to address these isslependently. The follow-

ing sections review the techniques for extracting the almogetioned excitation features
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directly from the speech signal.

2.3 Overview of epoch extraction methods

Several methods have been proposed for estimating theiastithe glottal closure from
a speech signal without the use of the EGG signal. For coexeri we categorize these
methods as follows: (a) Methods based on short-time endrdiyeospeech signal; (b)
Methods based on the predictability of an all-pole lineaductor; and (c) Methods based
on the properties of group-delay, i.e., the negative goarg-zrossings of a group delay
measure derived from the speech signal. Notice that theadstblaced in one category

could also belong to another, given another interpretaifadhe method.

2.3.1 Epoch extraction from linear prediction

Many methods for epoch extraction rely on the discontiesiin a linear model of speech
production. An early approach used a predictability measwidetect epochs by finding
the maximum of the determinant of the autocovariance mafrtke speech signal [p1,
P2]. Consider a sequence of observation vectors consisfisggments of the speech
signal obtained by advancing a rectangular window of leqythl samples, one sample
further successively. The following data matrix can be fednrom the samplegn] of

the speech signal:

s1]  §2] - sp] sip+1]
s2]  S8] -+ dp+1]  Hp+2]

s=| ' ' ' ' . (2.1)
sm sm+1] --- gp+m-1] sp+m

Let s denote théth column vector of matriS. In the absence of excitation, the linear

filter model of orderp imposes a linear dependence between the vestoss - - - , Sp.1.
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Consequently, the determinant of the ma®h& as a function of time increases sharply
when the speech segment covered by the data m&toantains an excitation, and it
decreases when the speech segment is excitation free. fGiteetiee determinant value
can be used to detect the location of epochs in the speechlsighis is, in essence,
Strube’s method for detection of the epochg [22], which isiea]ent to computing the
product of all squared singular values of the ma8ixThis method, however, does not
work well for some vowel sounds, particularly when many palsccur in the determinant
computed around the instant of closure. Furthermore, ibmputationally expensive.
The Cholesky factorization d8'S provides, however, anflicient recursive scheme to

perform this computatior [22].

The error signal obtained in the LP analysis, referred tha& P residual, is known to
contain information pertaining to epochs. A large valuehef ILP residual within a pitch
period is supposed to indicate the epoch locatjop [23]. Hewepoch identification di-
rectly from the LP residual is not recommendgd [22], becdhed P residual contains
peaks of random polarity around the epochs. Further, shmedigital inverse filter does
not compensate the phase response of the vocal-tract seststly, there is an uncer-
tainty in the estimated epoch locations. This makes unamobig identification of the
epochs from the LP residualfficult. Fig.[Z.4(b) shows the LP residual derived through a
101 order LP analysis of the speech segment shown in[Fip. 2.%te.epoch locations
can not be unambiguously identified from the LP residual shiovig.[2.4(b) because of
the occurrence of multiple peaks of either polarity aroun&9g s to 0.6 s) the reference
epoch locations shown by thefitirenced EGG signal in Fig. 2.4(d). A detailed study
was made on the determination of the epochs from the LP rald@}, by considering the
effect of following factors: (a) the shape of the glottal pul9&3 inaccurate estimation
of formants and bandwidths, (c) phase response of resosafdke vocal-tract system
at the instants of significant excitation, and (d) zeros ewbcal-tract system. By taking
these factors into account, a method for unambiguous fitEtton of epochs from the
LP residual was proposed ifi [2]. In this work, the amplitudeetope of the analytic
signal of the LP residual, referred to as the Hilbert envelopthe LP residual, is used
for epoch extraction. Computation of the Hilbert enveloperoomes theféect due to

inaccurate phase compensation during inverse filterirg.[Z#(c) shows the Hilbert en-
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Fig. 2.4: Hilbert envelope of LP residual of the speech signal for epoch extraction.
(a) A segment of voiced speech signal taken from a continuous utterance, its (b)
LP residual, (c) Hilbert envelope of the LP residual. (d) Differenced EGG signal
for observing the reference epoch locations

velope of the LP residual signal shown in Fig.]2.4(b). Unlike LP residual, the Hilbert
envelope shows sharp unambiguous peaks which are in closenagnt with the refer-
ence epoch locations as shown by th@edtenced EGG signal in Fif. 2.4(d). Though this
method works well on clean signals, the performance of thhotedegrades under noisy

conditions due to the sensitivity of LP analysis to noiséhia signal.

Wong, et al., used covariance analysis in the least squppesach for accurately per-
forming the glottal inverse filtering from the acoustic sgeavaveform [iL]. In this work,
epochs were detected based on a measure derived from thenttgy of the LP residual
derived over a sliding window. To ensure that the result®ate function of the absolute
system gain (such as recording or voice level), the normdlerror which is the ratio of

the energy of the LP residual to the energy of the speech Isigggused as a measure
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of goodness. The glottal closure instant is identified inheglottal cycle as the begin-
ning of the period over which the normalized error stays nfdlis method was further
enhanced by Plumpe, et a[.,][12] using the observation kieafarmant modulations are

slower in the closed phase region than in the open phaserggib

One of the dfficulties in using the prediction error for epoch extracti®thiat it often
contains &ects due to resonances of the vocal-tract system, as theedenverse filter
does not completely suppress the formant frequencies. Asudtythe excitation peaks
become less prominent in the residual signal, and hence higaous detection of the
epoch locations becomes harder. In an attempt to overcamkntiitation, Cheng, et al.,
proposed a method based on maximum likelihood theory foclepetermination[[25].
In this method, the speech signal was processed to get thenunaxlikelihood epoch
detection (MLED) signal. The strongest positive pulse & MLED signal indicates the
epoch location within a pitch period. The MLED signal cresat®t only a strong and
sharp epoch pulse, but also a set of weaker pulses that egprbe suboptimal epoch
candidates within a pitch period. Hence a selection funatias derived using the speech
signal and its Hilbert transform, that emphasized the estioetween the epoch and the
suboptimal pulses. Using the MLED signal and the selectignas with an appropriate
threshold, the epochs were detected. The limitation ofriteshod is the choice of the
window for deriving the selection function, and also the asthreshold for deciding the

epochs.

Kalman filtering has been applied to detect the closed pleggens in voiced speech ]26].
The boundary of the closed phase, i.e., the instant of gldtdaure and the instant of glot-
tal opening are detected using the logarithm of the detexmiof the error covariance
matrix of the Kalman filter. This measure assesses the padulity of the speech signal,

and is able to detect the glottal closure instants, but thag accuracy is poor.

2.3.2 Epoch extraction from short-time energy of speech sl

Glottal closure instants can be detected from the energispeavaveforms derived di-

rectly from the speech signdl']2[7,] 28] or from the featuregsnime-frequency repre-
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sentation [[29[ 30]. In[[31], a method based on the compogjteasdecomposition was
proposed for epoch extraction of voiced speech. A supediposif nearly identical wave-
forms was referred to as a composite signal. The epoch filbgrgsed in this work, com-
putes the Hilbert envelope of the highpass filtered compasgnal to locate the epoch
instants. It was shown that the instants of excitation ofvital-tract could be identified
precisely even for continuous speech. However, this mathsditable for analyzing only

clean speech.

The Frobenius normfters a short-term energy estimate of the speech signal. The
Frobenius norm computed using a sliding window gives ameg# of energy value at
every speech sample. The locations of peaks in the energglsiglicate glottal closure
instants. A Frobenius norm approach for detecting the epu@s proposed if [27]. In
this work, a new approach based on singular value deconmpo$iVD) was proposed.
The SVD method calculates the Frobenius norms of signalicesatrand is therefore,
computationally &icient. The method was shown to work only for vowel segments. N
attempt was made to detect epochs ifficlilt cases like nasals, voiced consonants and

semivowels.

The energy peaks can also be detected in a time-frequen@sepation of the speech
signal. Wavelet transform has been used to represent tieelsp@ad to detect the glottal
closure instant4[30]. Lines of amplitude maxima in the tifreguency plane were iden-
tified, and the epochs were determined to correspond torbechrrying the maximum
accumulated amplitude within each pitch period. Altewelyi, a Cohen’s class time-
frequency representation of speech was constructed andtaisketect the epochp J29].
The epochs were detected as peaks in a spectral densitiatoriderived from the time-

frequency representation.

2.3.3 Epoch extraction from group-delay measures

A method for detecting the epochs in a speech signal usingritygerties of minimum
phase signals and group-delay function was propos€d irTf8.method is based on the

fact that the average value of the group-delay function agaed within an analysis frame
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corresponds to the location of the significant excitatiom. idaproved method based on
the computation of the group-delay function directly frdme speech signal was proposed
in [B2]. Robustness of the group-delay based method agadttitive noise and chan-
nel distortions was studied if [[33]. Four measures of groelay (average group-delay,
zero frequency group-delay, energy weighted group-detalyenergy weighted phase)
and their use for epoch detection were investigated ih [J4je dfect of the length of
the analysis window, the trad#detween the detection rate and the timing error, and the
computational cost of evaluating the measures were alsuierd in detail. It was shown
that the energy weighted measures performed better thasthibetwo measures. A dy-
namic programming projected phase-slope algorithm (DYHPBAautomatic estimation
of glottal closure instants in voiced speech was presentfHi, [3¢]. The candidates for
GCI were obtained from the zero-crossings of the phasesdiapction derived from the
energy weighted group-delay, and were refined by employidgreamic programming

algorithm. It was shown that DYPSA performed better thanetkisting methods.

Epoch s aninstant property. However, in most of the methiaizissed above (except
the group-delay based methods), the epochs are detecteddbyyeng block processing
approaches, which result in ambiguity about the precisatioc of the epochs. Most
of the existing methods rely on the LP residual signal derilsg inverse filtering the
speech signal. Though these methods work well in most cte®sneed to deal with the
following issues: (a) Selection of parameters (order of h&sis, length of the window)
for deriving the error signal; (b) Dependence of these nugtum the energy of the error
signal, which in turn depends on the energy of the signalf & accuracy with which the
epochs can be resolved decreases as a result of block prag€sly Setting a threshold
value to take a decision on the presence of an epoch; (e) Titaton impulses need not
be periodic, though some of these methods exploit periydior accurate estimation of
epoch locations. In general, it isflicult to detect the epochs in the case of low voiced

consonants, nasals and semivowels, breathy voices antefepeakers.
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2.4 Estimation of strength of excitation of the epoch

We refer to the amplitude of the significant excitation towbeal-tract system as strength
of excitation of the epoch. During the production of voic@aach, the excitation to the
vocal-tract system can be considered to be tlfiedintiated glottal flow (also called the
effective driving function)[[lL]. A negative impulse-like pedkminates the waveform of
the diferentiated glottal flow, at least for normal and loud pharati[3}]. This peak
occurs at the instant of glottal closure, and serves asfgignt excitation to the vocal-

tract system.

The amplitude of negative peak of theffdrentiated glottal flow is one of the most
important parameters of the excitation source. Severatatian source analysis situa-
tions require estimation of the negative peak amplitudénefdiferentiated glottal flow.
The negative peak amplitude of theffdrentiated glottal flow is closely related to the
vocal intensity. Gafiin and Sundberg observed that there is a strong linear coorela
between the negative peak amplitude of théedentiated glottal flow and sound pressure
level [B8]. Alku, et al., defined a parameter called ampktubmain quotient as ratio
of the maximum amplitude of the glottal flow and the negatieakpamplitude of the
differentiated glottal flow{[39]. This parameter was used tordisnate between diier-
ent phonation typeg [#0]. Normalized amplitude quotieefjried as amplitude quotient
normalized by the period of vibratiop [41], was observeddordase with an increase in
vocal intensity [4R]. It was shown that the normalized aruoplé quotient is more accu-
rate, consistent and robust measure, for parameterizaftigiottal flow, compared to the

closing quotient which indicates the portion of a period vehie glottis is closing[43].

In the above mentioned methods, the glottal flow was estunaseng inverse filter-
ing of the speech signa[l][$, 4#,]45, 38], where the vocakisgstem is modeled as an
all-pole filter [4,[46]. The negative peak amplitude of th&eatientiated glottal flow was
computed from the first derivative of the glottal flow. The mexd negative peak am-
plitudes of the dterentiated glottal flow over a few consecutive glottal cgalas used
in the studies[[43, 37]. But, as mentioned in earlier sestidime glottal inverse filtering

requires modeling of time-varying supralaryngeal vocatt system. Errors may occur
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whenever the mathematical model assumed for the suprgleayaocal-tract system does
not accurately reflect the actual acoustic characterishesce, it is desirable to extract
the negative peak amplitude of theffdrentiated glottal flow without characterizing the

vocal-tract system.

2.5 Overview of pitch estimation methods

Accurate estimation of the fundamental frequency of voispedech plays an important
role in speech analysis and processing applications. Thatiea in the fundamental

frequency with time contributes to the speech prosody.ntzton of accurate prosody
is useful in various applications such as in speaker retiogni47, [48], language iden-

tification [49], and even speech recogniti¢n|[60, 51]. Pdysalso reflects the emotion
characteristics of a speakér][52]. Prosody is essentigifmiucing high quality speech
synthesis, and also for voice conversion. Prosody featuees exploited for hypothesiz-

ing sentence boundarigs 53], for speech segmentatiorfpastbry parsing[[34].

There are several algorithms proposed in the literaturesomating the fundamental
frequency from speech signals]$5] B8, 57]. Depending otythesof processing involved,
the algorithms may be classified into three broad catego(@salgorithms using time
domain properties; (b) algorithms using frequency domaaperties; and (c) algorithms

using statistical methods to aid in the decision making.

2.5.1 Time domain methods

Algorithms based on the properties in the time domain opetaéctly on the speech sig-
nal to estimate the fundamental frequency. Depending ositieeof the segment used for
processing, the time domain methods can be further catsgbimtoblock-basedneth-
ods ancevent-basedhethods. In the block-based methods, an estimate of thafnental
frequency is obtained for each segment of speech, wheragsismed that the pitch is
constant over the segment consisting of several pitch gerim this case, variation of the

fundamental frequency within the segment is not captureagnEbased pitch detectors
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locate unique anchor points in each glottal cycle of the cpeeaveform and the time
interval between two successive anchor points is hypatbdsas the fundamental pe-
riod. For event-based pitch detectors, the measuremdets wlade are: peak and valley

measurements, zero-crossing measurements, epoch tecatipitch markings.

Among the time domain block-based methods, the autoctiorlapproaches are
popular for their simplicity. A correlation function is a m&ure of the degree of simi-
larity between two signalg [b8]. The autocorrelation measinow well the input signal
matches with a time-shifted version of itself. The autoelation sequencesdr] of a
speech segmesin] is given by

N-1—|7|

red7] = Z gnlsn+7, t=0,+1,+2,...,+N-1, (2.2)
n=0

where is the time shift. For a periodic signal, its autocorrelatfanction is also pe-
riodic. Due to periodic nature of the voiced speech, the fiestk (also called the pitch
peak) after the center peak in the autocorrelation fundhdicates the fundamental pe-
riod (To) of the signal. The reciprocddy = T—lo is the fundamental frequency. There are
several reasons for the success of the autocorrelationosiefior pitch detection T$9].
The autocorrelation computation is made directly on theespesignal, and involves a
straightforward computation. Although high processinig ia required, the autocorre-
lation computation is amenable to digital hardware impletagon, generally requiring
only a single multiplier and an accumulator as computatiefeanents. Finally, the au-
tocorrelation computation is largely phase insensitiveugd it is a good method to use
to detect the pitch of speech which has been transmittedeotedephone channel, or has

sufered some degree of phase distortion during transmission.

Although the autocorrelation-based pitch detector hasesmiwantages, there are sev-
eral problems associated with the use of this method. Atthdbe autocorrelation func-
tion of a segment of voiced speech generally displays a/fardminent peak at the pitch
period, peaks due to formant structure of the signal are @fiem present. Thus, one
problem is to decide which of the several peaks in the autetairon function corre-

sponds to the pitch period. Another problem with the aut@tation computation is the
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required use of a window for computing the short-time autcdation function. The use
of a window for analysis leads to somdfttiulties. First, there is the problem of choosing
an appropriate window. Second, there is the problem thatpatber which window is
selected, theféect of the window is to taper the autocorrelation functiortresautocor-
relation index increases. Thiffect tends to compound thefliiculties mentioned above
in which the formant peaks in the autocorrelation functihi¢h occur at lower indices
than the pitch period peak) tend to be of greater magnituaie titie peak due to the pitch
period. A final dificulty with the autocorrelation computation is the probleiolmosing
an appropriate analysis frame (window) size. The idealyamaframe should contain
at least 2 to 3 complete pitch periods. Thus, for high pitabakers the analysis frame
should be short (5-20 ms), whereas for low pitched speaksh®uld be long (20-50 ms).

A wide variety of preprocessing techniques have been pexposthe literature to
address the above mentioned issues. To partially elimihatefects of the higher for-
mant structure on the autocorrelation function, most miéthese a sharp cutdow-pass
filter with cutoff around 1000 Hz. This will, in general, preserve #isient number of
pitch harmonics for accurate pitch detection, but elimesahe second and higher for-
mants. In addition to linear filtering to remove the formaimusture, a wide variety of
methods have been proposed for directly or indirectly fiatig the short-time spectrum
of the speech signal to remove theets of the first formanf[60, b[L,62]. Included among
these techniques are center clipping and spectral eqtiafizay filter bank method$ [61],
inverse filtering using linear prediction methols|[62], apeéctral flattening by a combi-
nation of center and peak clipping methofdg [63]. Rabinesgmted an investigation of
the properties of a class of nonlinearities applied to theesp signal prior to autocorre-
lation analysis with the purpose of spectrally flattening signal [5P]. A solution to the
problem of choosing an analysis frame size which adaptsa@stimated average pitch

of the speaker is also presented[in [59] .

In the computation of the autocorrelation function, fewemgples are included as the
lag increases. Thidkect can be seen as the rofFof the autocorrelation values for higher
lags. The values of the autocorrelation function at highgslare important, especially

for low-pitched male voices. For a 50 Hz pitch, the lag betwsgccessive pitch pulses is
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200 samples at a sampling frequency of 10 kHz. To overcomsotheff caused by the

windowing, Boersma suggested dividing the autocorratasiequence of the windowed
signal with the autocorrelation sequence of the windpw.[6Pfis correction does not
let the resulting correlation sequence taper to zero asatpéncreases, which helps in

accurate identification of the peak corresponding to thednmental period.

To overcome this limitation of the autocorrelation funatia crosscorrelation function
which operates on two fierent data windows is also proposéd [65]. Direct computatio
of the crosscorrelation function is influenced by the enerfghe speech segments. Rapid
changes in energy is common at voicing onsets and voicingi@adin order to make the
crosscorrelation function independent of the energy osgleech segments, the crosscor-
relation values are compensated based on the energy indmgsindow. The resulting

normalized crosscorrelation function is given by

N-1
2, Snjgn+7]

1] = —=

N-1 N-1
\/Z [n] 3 [N+ 7]
n=0 n=0

As the number of samples involved in the computatior[ef is constant, this estimate
is unbiased, and has lower variance than that of the auelation. Unlike the auto-
correlation method, the window length could be lower thamfich period, so that the
assumption of stationarity is more valid, which results @ttér time resolution. While
the pitch trackers based on the normalized crosscorralgtmcally perform better than

those based on the autocorrelation, they also require noon@atation.

One drawback of the correlation-based methods is the needuliplication, which
is relatively expensive for implementation, especiallythiwse processors with limited
functionality. To overcome this problem, the average miagia diterence function (AMDF)

was proposed [66]. This function is defined by

-1

MZ

d[7] = In] -sn-7]l, t=0+1+2 .. . +N-1 (2.4)

1
N

1]
o

n

For short segments of voiced speech, it is reasonable tocexipat d[7] is small for

21



T =0,+To, £2Ty, ..., With Ty being the fundamental period of the signal. Thus by com-
puting the AMDF for the lag range of interest, the fundamepésiod can be estimated
by locating the lag index associated with the minimum magiatdiference. Notice that

multiplication operation is not involved in implementatiof the AMDF method.

The methods discussed so far can only find integer valuechfuedtal periods. That
is, the resultant fundamental period values are multipfas® sampling period. For a
speech signal sampled at 8 kHz, the fundamental period clgnbencomputed with a
precision of multiples of 0.125 ms. In many applicationgh@r resolution is necessary
to achieve good performance. In fact, the fundamental dexidhe original continuous-
time (before sampling) signal is a real number. Thus, intpgeiods are only approxi-
mations, and may introduce errors that might have negatiact on the performance
of the system. Multirate signal processing techniques euoded to improve the reso-
lution beyond the limits set by the fixed sampling rate. Ipbéation, for instance, is a
widely used method where the actual sampling rate is ineckadedan, et al., proposed

a super-resolution pitch determination algorithm whicbhased on a linear interpolation
technique [6]7].

2.5.2 Event-based Methods

The basic assumption behind the event-based methods jsftaajuasiperiodic speech
signal is suitably processed to minimize theets of the formant structure and highlight
certain anchor point in each glottal cycle, then simple toloenain measurements provide
a good estimate of the period. Gold and Rabiner proposedch pitection method
using parallel processing of events derived from the spsiggtal [68]. In this approach,
the speech signal is first low-pass filtered to a bandwidthOff dz. Then a series of
measurements are made on the peaks and valleys of the IewiHp@®d signal to give
six separate functions. Each of these six pitch functiongaegessed by an elementary
pitch period estimator, giving six separate estimates efgitich period. The six pitch
estimates are then combined by a sophisticated decisionithign which determines the

pitch period. As a byproduct of this algorithm, a voiced-oieed decision is obtained
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based on the degree of agreement among the six pitch detector

Miller proposed a data reduction pitch detector which pdaggch markers directly
on a low-pass filtered (0-900 Hz) speech signal, and thus isch-pynchronous pitch
detector[6P]. To obtain appropriate pitch markers, tha daduction method first detects
excursion cycles in the waveform based on intervals betweaor zero-crossings. The
remainder of the algorithm tries to isolate and identifynpipal excursion cycles, i.e.,
those which correspond to true pitch periods. This is acdisimgd through a series of
steps using energy measurements, and logic based on petengsch periods and an-
ticipated syllabic rate changes of pitch. Finally, an egoarection procedure is used to

provide a reasonable measure of continuity in the pitch erark

Wavelet transforms have been used to determine the pitabdpley locating the in-
stants at which glottis closes (called events), and thersure® the time interval between
two such event§ 70, VL, 72,1 13] 74]. [n][70], wavelet tranmsfoare used for pitch period
estimation based on the assumption that the glottal closawses sharp discontinuities
in the derivative of the airflow. The transients in the spegigmal caused by the glot-
tal closure result in maxima in the scales of the waveletsfiam around the instant of
discontinuity. In this method, one needs to detect the aige maxima across these
scales by heuristic algorithms, which is often prone toregspecially in the case of noisy
signals. To overcome this, an optimization scheme is pregosthe wavelet framework
using a multipulse excitation model for the speech sigmal the pitch period is estimated

as a result of this optimizatiofi [[75].

2.5.3 Frequency domain methods

Algorithms based on the properties in the frequency domssarae that if the signal is
periodic in the time domain, then the frequency spectrurh@tignal contains a sequence
of impulses at the fundamental frequency and its harmoiiileen simple measurements
can be made on the frequency spectrum of the signal, or on lenearly transformed
version of it (as in the cepstral pitch detector] [76]) torestie the fundamental frequency

of the signal.
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The cepstrum method for extraction of pitch utilizes theérency domain properties
of speech signald ¥4, [77]. In the short-time spectrum ofvargioiced frame, the in-
formation about the vocal-tract system appears as a sloavlying component, and the
information of the excitation source is in rapidly varyingneponent. These two compo-
nents may be separated by considering the logarithm of thetrgpn, and then applying
the inverse Fourier transform to obtain the cepstrum. Thesation transforms the infor-
mation in the frequency domain to the cepstral domain, whia$ a strong peak at the

average fundamental period of the voiced speech segmeg aealyzed.

Subharmonic summation (SHS), proposed by Hermés [77]opas pitch analysis
based on a spectral compression model. Several methodsbkaweproposed for es-
timating the harmonic frequencies based on the instantenffequency of the speech
signal [78,[7P[80]. In this approach, the speech signal éemigposed into the harmonic
components using a set of bandpass filters, each of whoser dezfjuencies changes
with time in such a way that it tracks the instantaneous feeqgy of its output[[78]. As
a result, the outputs of the band-pass filters become thedmcrasomponents, and the
instantaneous frequencies of the harmonics are accurdéiyated. The pitch extrac-
tion is accomplished by selecting the correct fundamenggjuiency out of the harmonic

frequencies.

Nakatani and Irino proposed a method for fundamental frequestimation by se-
lecting the dominant harmonic components of the speectak[gd, [82]. In this work,
degree of dominance and dominance spectrum are defined badadtantaneous fre-
quencies. The degree of dominance allows to evaluate thaitndgs of the individual
harmonic components of the speech signal relative to backgr noise. The selection
of the dominant harmonic components results in reducingritieence of spectral dis-
tortion. The fundamental frequency is more accuratelyvestted from reliable harmonic

components which are easy to select given the dominanc&apec
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2.5.4 Statistical methods

The problem of automatic estimation of fundamental fregyeran be considered, in
some sense, a statistical one. Each input frame is classifiecbne of a number of
groups, representing the fundamental frequency estinoatbe signal. Wise, et al., pro-
posed a method for estimating the fundamental period ofebspeech sounds based on
a maximum likelihood formulatio{[$3, Bf,185]. In this wottke problem is formulated
as that of estimating an unknown periodic signal in white €3&an noise of unknown
intensity. An objective function based on the probabilitgttthe signal is periodic with a
period of Ty was derived, and was maximized overto estimate the fundamental period
of the signal. This method is capable of providing finer resoh than one sampling

period, and is shown to perform better in the presence otrtbhen the cepstrum method.

Joseph, et al., proposed a statistical method for pitclkimgcassuming a harmonic
model of the speech sign@l[86]. The harmonic model couleganded as special case of
a sinusoidal speech model, where all sinusoidal comporeatassumed to be harmon-
ically related, i.e., the frequencies of the sinusoids aiatager multiples of the funda-
mental frequency. This assumption reduces the number afrgers in the model and
achieves more accurate estimates of pitch than the siralsomdel. Assuming Marko-
vian dynamics, maximura-posterioriprobability tracking of the time-varying harmonic

signal is performed without prior knowledge of noise vacan

Most of the existing methods for extraction of the fundamaéftequency assume
periodicity in successive glottal cycles, and thus theykwwell for clean speech. The
performance of these methods is severdtgaed if the speech signal is degraded due
to the noise or due to other distortions. This is becauseithk peak in the autocorre-
lation function or cepstrum may not be prominent or unambiggu In fact, during the
production of voiced speech, the vocal-tract system isteady a sequence of impulse-
like signals caused by the rapid closure of the glottis irheacle. There is no guarantee
that the physical system, especially due to the time-varywcal-tract shape, produces
similar speech signals for each excitation. Moreover,ghgmlso no guarantee that the

impulses occur in the sequence with any strict regularityviéw of this, it is better to
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extract the interval between successive impulses, andtiekeeciprocal of that interval

as the instantaneous fundamental frequency.

2.6 Processing multimicrophone data

2.6.1 Time-delay estimation

The problem of time-delay estimation has been handledtioadily by exploiting spec-
tral characteristics of speech signdls| [B7, 88]. Three dsieategies are used in these
studies [8P]: (a) Steered response power of a beamformeHi@h resolution spectrum

estimation; and (c) Time tference of arrival estimation.

In the steered beamformer, the microphone array is steergdrious locations to
search for a peak in the output power. The delay and sum bearafeshifts the array
signals in time to compensate for propagation delays in tingahof the source signal at
each microphone. In this case, the signals are time-alignddummed together to form
a single output signal. Sophisticated beamformers apphrifig to the array signals
before time alignment and summing. These beamformers depethe spectral content
of the source signal. A priori knowledge of the independekiground noise is used to

improve the performanc¢ [PO].

The second category of time-delay estimators based on bggiution spectrum es-
timation use spatio-spectral correlation matrix derivieaht the signals received at the
microphones. This matrix is derived using an ensemble geeo& signals over the in-
tervals in which noise and speakers are assumed to be siati@nd their estimation
parameters are assumed to be fifedl [91]. In the case of sghesh,assumptions are not
valid. These high resolution methods are designed for néxaind stationary signals, and

hence it is dificult to apply them for wideband nonstationary signals lijgeech.

Methods based on estimation of timéfdrences of arrival (TDOA) are more suitable
for time-delay estimation than the previous two approa¢f8p For accurate estimation

of time-delays, weighted generalized crosscorrelatioB@Emethod is often use [92].
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The method relies on the spectral characteristics of theatigince the spectral charac-
teristics of the received signal are modified by the mulhgaopagation in a room, the
GCC is made more robust by deemphasizing the frequency depeweightings[[93].
Phase transform is one approach where the magnitude speistilattened. However,
low SNR portions of the spectrum are given equal emphasibasetof the high SNR
portions. Cepstral prefiltering, used to reduce tlieas of reverberation, is alsofficult

to apply for speech signals due to the nonstationary nafutreecsignal [93[95]. More-
over, this approach is not suitable for estimation of tineéagls from short (50-100 ms)

segments, which is essential for tracking a moving speaker.

Most of the methods for time-delay estimation rely on s@atharacteristics of the
speech signal, and the knowledge of degrading noise antbemvéent. The spectrum of
the received signal depends on how the waveform gets modifiedo distance, noise and
reverberation. Therefore, the performance of a time-dettiynation method depends on

how the éfect of the degrading components is minimized.

2.6.2 Multispeaker speech processing

In a multispeaker environment like meetings and discussieaveral speakers will be
speaking simultaneously. The signal collected by a mioosophin such conditions is a
mixture of speech from several speakers. Several methogsbeen proposed for en-
hancement of speech in a multispeaker environnjieh{[96,RB®V[I0P]. These methods
may be broadly classified into two categories, namely, sicbannel and multichannel
cases. The single channel method is commonly termed asmmoehspeaker separation.
The implicit assumption in cochannel speaker separatitraisthere are only two speak-
ers, and between them one is the desired speaker. In thehanltiel case, signals from
multiple microphones are processed to enhance speech déired speaker. This ap-
proach is inspired by the binaural processing of humansdmtultichannel case, speech

of two or more speakers may be enhanced using signals froipheuhicrophones.

Several pitch-based algorithms have been proposed foracoeth speaker separa-

tion [07,08[9P]. The assumption made in these studies iptted of the desired speaker
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and that of the interfering speaker are quite distinct, &editch contours are resolvable.
The speech energy of a particular speaker is concentratad/la¢r pitch harmonic fre-
guencies. If the spectrum is sampled at the pitch harmoritsealesired speaker, most
of the energy of the spectral samples would correspond tcsfieker. After obtaining
the harmonic amplitudes, the time-domain waveform is répced using the synthesis al-
gorithm. Harmonic magnitude suppression technique foedpseparation was proposed
in [L03]. Enhancement of speech of the desired speaker vigsvad by estimating the
interfering speech spectra and subtracting the same frencdmbined speech spectra
by spectral subtraction approach. Lee and Childers prapbasainimum cross entropy
spectral analysis (MCESA) approach for cochannel speaigaration. The MCESA
is an information theoretic method that simultaneouslinestes the power spectrum of
one or more independent signals, when a prior estimate ¢f isaavailable. Quatieri
and Danisewicz have proposed a method based on sinusoidalingof speecH 102].
A least squares estimate algorithm was used to determingribeoidal components of
each of the speakers, and the speech of the desired speakeyntihesized using the cor-
responding sinusoidal components. Morgan, et al., hayegsex a method for cochannel
speaker separation, termed as harmonic enhancement gnéssipn[[99]. The pitch of
the stronger speaker was estimated first, and it was thenfaisescovering higher har-
monics and formants. The weaker speaker information wasraat after suppressing the

harmonics and formants information of the stronger spefa&ear the cochannel signal.

A method for enhancing speech of a speaker, while attergiafieech from other
speakers using an array of microphones was proposéd]in A/9éass of nonlinear pro-
cesses using a microphone array was proposed, which emphdbe wanted speech
signal relative to the unwanted signals from other locatiorhe unwanted signals were
attenuated and distorted, while the wanted speech sigralnafected. When the un-
wanted signal is speech, the distortion makes it less igiielk. The problem of multi-
speaker speech enhancement in a multichannel case is atssdtas blind source sepa-
ration (BSS). The BSS consists of retrieving the sourceadggnithout using any a priori
information about mixing of the signals. It exploits onlyetinformation carried by the
received signals themselves, hence the telimd. Neural network models and learning

algorithms for blind separation and deconvolution of slgrae discussed irf [I03]. A
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method for multichannel signal separation using a dynamézurrent network is pro-
posed in [IOA[I05] . Estimation of speech embedded in revanb environment with
multiple sources of noised is proposed [n J1P0,] 106], . Thieailve of this work is to
make a specific speech signal more intelligible than thdava microphone signals. An
attempt is made to enhance the signal nearest to the mianephahich is the signal
with high energy. This is achieved by mimicking the inner, garough the use of a bank
of self-adaptive band-pass wavelet filters, tracking offtmelamental frequency and by

masking some parts of the speech signal with low energy.

In most of the existing methods, the knowledge of pitch isduse deriving the in-
formation related to each speaker. However, reliable ediim of pitch in multispeaker

environment is a diicult task.

2.7 Manner of articulation of stop consonants

In Indian languages, there are stop consonants articidagediven point in the vocal-tract
that are minimally distinguished from one another by theireabf the excitation source,
referred to as manner of articulation. The manner of adiboh of stop consonants is
described by the voiced or unvoiced nature of the closuratewnd the presence or
absence of the aspiration event, leading to fodifedent manners of articulation. The
manner of articulation is mainly dictated by the relativaitigs of onset of vocal fold

vibration and instant of closure release. For unvoiced pinged stop consonants, the
vocal fold vibration begins almost immediately after thestlre release. Whereas, for
voiced unaspirated stop consonants the vocal fold vibrabegins during the closure
duration. For unvoiced aspirated stop consonants, thet ofis@cal fold vibration is

delayed after the instant of closure release to producesspi.

Voice onset time (VOT)[[1Q7], defined as the interval betwteninstant of closure
release to the onset of vocal fold vibration, is one of theargmt features used to analyze
the manner of articulation of stop consonants. Most of thraroonly used methods for
measuring the voice onset time are based on the onset ofl@tyan the acoustic wave-

form, possibly supplemented by spectrographic analy§g§][@r direct measurements of
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airflow [09]. Peterson and Lehiste identified the onset adimg as the point at which
stable striations first become visible in the frequencyaegdf first formant of a wide-
band spectrogranf JI110]. In contrast, Klatt made the measemés of voicing onset at
the onset of visible energy in higher formants on the grouhdsvoicing onset may not
always be visible in the first formant region [111]. Liskadakbramson determined the
onset of voicing according to the time of the first verticalegtons visible in a wideband
spectrogram, presumably irrespective of the frequencydionant) at which they first
appeared[[112]. In addition to these spectrographic measiiris also possible to mea-
sure the onset of voicing as the onset of energy visible ivtiee-bar i.e., the region of
lowest frequency energy in a wide-band spectrogram cooreipg to the fundamental
frequency, typically found below the first formafnt]]13].eberman and Blumstein mea-
sured the voicing onset directly from the acoustic wavefiself, in terms of onset of the

first clearly seen periodic pattern in the acoustic signaf]1

One of the issues in spectrographic methods is the choiceafstic landmark for
measuring the VOT. The vertical striations due to voicingeirdo not reflect across all
the formants at the same instant of time. For instance, tBetasf voicing in aspirated
sounds appears earlier at the higher formants than at théofingant. The &ect of block
processing in the spectrogrphic analysis may limit the {iesolution of observation of
these features. Since the manner of articulation of stopartemts depends on nature of

excitation source, features derived from excitation seunay provide a better analysis.

2.8 Summary

In this chapter, we have reviewed some existing methodsxiwa&ting and processing
the excitation source information in the speech signal. drtigular, algorithms for ex-
traction of epochs and estimation of pitch from speech $sgaee reviewed. Extraction
of excitation source information requires suppressingtual-tract information from the
speech signals. Most of the epoch extraction methods rehlyamteling the vocal-tract re-
sponse using LP analysis, and then inverse filtering thecbpggnal obtain LP residual.

The performance of these methods depends critically ondberacy of LP analysis in
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modeling the vocal-tract response, order of the LP anglgsid nature and quality of the
speech signal. Because of the time-varying nature of thalutogct, the existing methods
for epoch extraction, invariably, employ block procesdingt introduces féects of win-

dowing. These factors may result in ambiguity about theipedocation of the epochs.

The goal of this thesis to demonstrate the significance ofilagplike nature of ex-
citation in extracting the epochs, their strengths of eximh and fundamental frequency
of voiced speech. In contrast to the existing approachesmigthods proposed in this
work enhance the source information by exploiting the irsptllke nature of excitation
rather than attempting to model the vocal-tract responsgetiaan suppressing it. Since
the proposed methods do not depend on modeling the vocalresponse, they can be

applied on speech data of any length without using blockgssiag.
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Chapter 3

Epoch Extraction

In this chapter, we present a new method for epoch extratttatns based on the assump-
tion that the major source of excitation of the vocal-tractem is due to a sequence of
impulse-like events in the glottal vibration. The impulseigtion to the system results
in a discontinuity in the output signal. We propose a noveraach to detect the location
of the discontinuity in the output signal by confining the lgses to a narrowband around
a single frequency. In Sectipn B.1, we discuss the basiciptaof the proposed method,
and illustrate the principle for a few representative cagesynthetic excitation signals.
In Section 3]2, we discuss the issues involved in applyiegtiethod directly on speech
data. In Sectio 33, we propose a method to extract epochstiie speech signal. In
Section 34, the performance of the proposed method in tefriadentification accuracy
is given, and the results are compared with three existintpocks for epoch extraction.
In Section3J5, the performance of the proposed method isi@eal for diferent types
of degradations, and the results are compared with soménegximethods. Finally, in
Section[36 we summarize the contributions of this chapted,discuss some limitations

of the proposed method which prompt further investigation.
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3.1 Basis for the proposed method of epoch extraction

Speech is produced by exciting the time-varying vocalttegstem by one or more of
the following three types of excitation: (a) glottal vibaat, (b) frication, and (c) burst.
The primary mode of excitation is due to glottal vibrationhN& the excitation is present
throughout the production process, it is considered sigantfi (especially during glottal
vibration) only when there is large energy in short-timeraal, i.e., when it is impulse-
like. This impulse-like characteristic is usually exhdadtaround the instant of glottal
closure during each glottal cycle. The presence of implikeeeharacteristic suggests
that the excitation can be approximated as a sequence ofgegurhis assumption on
the excitation of the vocal-tract system suggests a newoaghrfor processing the speech

signal as discussed in this section.

All physical systems are inertial in nature. The inertisdtgyns respond when excited
by an external source. The excitation to an inertial systamlge any of the following

four types:

(a) Excitation impulse is not in the observed interval of thenalg Sinusoidal gener-
ator: Output signal is the response of a passive inertial systemrfampulse, and

the impulses themselves are not present in the observedatgef the signal.

(b) Sinusoidal excitationSinusoidal excitation can be viewed as impulse excitation i
the frequency domain. Hence, a sinusoidal excitation taartial system selects
the corresponding frequency component from the transfastion of the system.
Though sinusoidal excitation is widely used to analyze lsgtit systems, it is not

commonly found in physical systems.

(c) Random excitationRandom excitation can be interpreted as impulse excitation
arbitrary amplitude at every instant of time. Since impudgeitations are present
over all the instants of time, it is flicult to observe them from the output of the
system. Random excitation does not possess impulse-ltkeenaither in the time-

domain or in the frequency-domain, and hence the impulsasotdoe perceived.

(d) Sequence of impulses as excitatidn: this case, the signals are generated by a
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Excitation System Output Signal
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Fig. 3.1: Aninertial system excited with a sequence of impulses.

passive inertial system with a fixed sequence of (periodigomperiodic) impulses
as excitation. The time instants of impulses may not be @bseirom the output
of the system, but they can be perceived. If the sequencepmilges is periodic
in the time-domain, then it corresponds to a periodic secgi@f impulses in the

frequency-domain as well.

Consider a physical system excited by a sequence of impois@sying strengths, as
shown in Fig[3]1. One of the challenges in the field of sigmatessing is to detect the
time instants{,) of the impulses and their corresponding strength$ from the output
signal. In a natural scenario like speech production, treattteristics of the system
vary with time, and are unknown. Hence the signal processinoglem can be viewed
as a blind deconvolution, where neither the system responisthe excitation source is
known. In this work, we attempt to detect the time instantexafitation (epochs) of the

vocal-tract system.

Consider a unit impulse in the time domain. It has all the destcies equally well
represented in the frequency domain. When an inertial sysexcited by an impulse-
like excitation, the ffect of the excitation spreads uniformly in the frequency diom
and is modulated by the time-varying transfer function & system. The information
about the time instants of occurrence of the excitation isgsireflects as discontinuities
in the time domain. It may be filicult to observe these discontinuities directly from the
signal because of the time-varying response of the systdma.efect of the discontinu-
ities can be highlighted by filtering the output signal ttgbwa narrowband filter centered
around a frequency. The output of the narrowband filter preédantly contains a single
frequency component, and as a result, the discontinuitiestal the excitation impulses

will get manifested as a deviation from the center frequentye time instants of the
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discontinuities can be derived by computing the instardasdrequency of the filtered
output [ITI}]. A tutorial review on the instantaneous fregyeand its interpretation is
given in [II§]. It has been previously observed that isolatarrow spikes in the instan-
taneous frequency of the bandpass filtered oufpuf [117]tarbuded to either the valleys
in the amplitude envelope or the onset of a new pitch pulseveder, no previous work

explored the feasibility of this type of observation for ep@xtraction.

3.1.1 Computation of instantaneous frequency

The instantaneous frequency of a real sigs{glis defined as the time derivative of the
unwrapped phase of the complex analytic signal derived fs@n[[I5]. The complex

analytic signal corresponding to a real sigge@) is given by

Sa(t) = S(t) + jsn(t) (3.1)
wheres,(t) is the Hilbert transform of the real signs(t), and is given by

Sn(t) = IFT(Sh(w)), (3.2)

where IFT denotes the inverse Fourier transform, &g(d) is given by

+JS(w), w<0
-jS(w), w > 0.

The analytic signal thus derived contains only positivgiiency components. The ana-

lytic signal s,(t) can be rewritten as
Sa(t) = Isa(t)1€0, (3.4)

where

ISa(B) = /S*(D) + () (3.5)
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is called the amplitude envelope, and

_ Sn(t)
o) = arctar(%) (3.6)

is called the instantaneous phase. Direct computationeoptfases(t) from (B.6) suf-
fers from the problem of phase wrapping, i1.¢(t) is constrained to an intervatf, ]
or [0, 2n). Hence, the instantaneous frequency can not be computerdhgit differen-
tiation of phasep(t) without first performing the complex task of unwrapping titease
in time. The instantaneous frequency can be computed Wifeoin the signal, without
going through the process of phase unwrapping, by exptpitia Fourier transform rela-
tions. Taking logarithm on both sides ¢f (3.4), anffelientiating with respect to time

we have

logsi(t) = loglsa(O)l + jé(t)
=0 = gloslsI+ i 37

where the superscriptdenotes the derivative operator, agift) is the instantaneous fre-
quency. That is

ot)=-3 (%) (3.8)

whereJ(.) denotes the imaginary pa,(t) can be computed by using the Fourier trans-
form relations. The analytic signal(t) can be synthesized from its frequency domain

representation through the inverse Fourier transform lésafs:

Sa(t) = % fo ) Sa(w)e“'dw, (3.9)

whereS,(w) is the Fourier transform of the analytic sigrs{t), and is zero for negative

frequencies. Oferentiating both sides of (3.9) with respect to timee have

Si()

1 r~ :
jowt (i
— [} Sa(w)e“ (jw)dw

= J(% f;m(wsa(w))ej“’tdw)
= JIFT (wSa(w)). (3.10)
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The instantaneous frequengi(t) can be obtained fronj (3.7) and (3.10) as

(3.11)

S =R ( IFT(wSa(w)))

IFT(Sa(w))

whereR(.) denotes the real part. Computation of the instantane@ggiéncy given in

(B:11) is implemented in the discrete domain as follows:

(3.12)

o % %(IDFT(kSa[k])).

IDFT(Sa[K])

Here IDFT denotes the inverse discrete Fourier transfomd Mis the total number of

samples in the signal.

The instantaneous frequency may be interpreted as theefinegwf a sinusoid which
locally fits the signal under analysis. However, it has a pafsnterpretation only for
monocomponent signals, where there is only one frequen@y rmarrow range of fre-
quencies varying as a function of time. In this case, theamsahneous frequency can be
interpreted as deviation of frequency of the signal fromrttenotone at every instant of
time. The notion of a single-valued instantaneous frequdé®comes meaningless for
multicomponent (multiple frequency sinusoids) signalbe Thulticomponent signal has

to be dispersed into its components for further analysis.

We propose to use a resonator to filter out from a signal a nmnponent centered
around a single frequency for further analysis. A resonaa second-order infinite
impulse response (lIR) filter with a pair of complex conjugpbles in the-plane [5B].

The impulse response of a resonator is givenbly [58]

r"sin[(n + 1)wo]

ANl = —Gin e

u[n] (3.13)

wherew, determines the normalized center frequency (in radian#)efilter, radius
determines the bandwidth angin] is the unit step function. A small value of(r <<
1) corresponds to a wider bandwidth, allowing a large rarffgeeguencies, whereas a
value ofr = 1 corresponds to zero bandwidth. A valuerah the range 0.98 to 1 can

be used for implementing a narrowband filter. An IIR filter wasferred over a finite
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impulse response (FIR) filter, because an FIR filter requaeger filter length to realize
the narrowband. Since an ideal excitation impulse is a goiperty in the time domain,
the FIR filter smears the characteristic of the impulse, anal r@esult it becomes fiiicult

to accurately extract the instant of the excitation impuléence a resonator with narrow
bandwidth (corresponding to a radius= 0.999) was chosen to realize the narrowband

filter. Ideal resonatorr(= 1) was not used in order to avoid saturation of the filter outpu

3.1.2 lllustration of instantaneous frequency for syntheic signals

When a multicomponent signal is filtered through a resor@ntered around a frequency
(wo), the output signal predominantly contains thgfrequency component. Any devi-
ation fromwg in frequency of the filtered output can be attributed to theuiee-like

characteristics present in the multicomponent signal.elmegal, the analytic signal cor-

responding to the filtered output can be expressed as
Sa(t) = |Sa(t)|€/@ot+9O), (3.14)

Hence the instantaneous phase of the filtered output (prie@dotty monocomponent) is
given by
#(t) = wot + O(1). (3.15)

wherewqt is the linear phase of the resonator, & is the time-varying phase induced
in the filtered output by the multicomponent signal. Theansaneous frequency of the

filtered output is given by the time derivative of the instargous phase, as follows:

¢ (1) = wo + 0 (1). (3.16)

When a resonator is excited with a single impulse, it followsugh its natural oscil-
lations resulting in a signal with linear phasgt (Fig.[3.2(a), Fig[ 3]2(b) and Fif. 3.2(c)).
For this casé(t) will be zero. On the other hand, when the resonator is exdtese-
guence of impulses, the response of the resonator due t@atsciimpulses at dierent

time instants gets superposed to form a composite signah@sn in Fig.[3R2(d). The
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Fig. 3.2: lllustration of superposition of responses of a resonator for impulse excitations
at different time instants. (a), (b) and (c) shows response of the resonator for individual
impulses and (d) shows the superposed response.

composite signal deviates from the natural oscillationthefresonator at the instants of
excitation impulses. The deviations from the natural ¢etodns reflect in the phase of the
signal as deviatio#(t) from the linear phasegt. The deviations from the linear phase can
be better observed from the instantaneous frequenity,= wo + ¢'(t). Fig.[3.3(a) shows

a multicomponent signal in the form of a periodic impulseusate. The signal filtered
by 500 Hz resonator, and the instantaneous frequency dithe diltered signal are also
given in Fig.[3.B(b) and Fig. 3.3(c), respectively. At thetants of impulse locations,
the instantaneous frequency deviates significantly froemtbrmalized center frequency
wo = 2rf /{5, wheref is the frequency of the resonator, afiids the sampling frequency.
For a resonator frequendy= 500 Hz and sampling frequendy=8000, the instantaneous

frequency (aroundy = 0.3927) shows sharp peaks at the instants of excitation. Kate t
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Fig. 3.3: Instantaneous frequency computed on the response of a 500 Hz resonator
excited with a periodic sequence of impulses. (a) Periodic sequence of excitation im-
pulses. (b) Output of the resonator. (c) Instantaneous frequency of the resonator output.

in the computation of the instantaneous frequency, we a@rexploiting the fact that the

excitation instants are periodic.

The discontinuity information can be derived from the fitéoutput even if the im-
pulses are not regularly spaced, and are of arbitrary gtiengig [3.4 shows a multicom-
ponent signal in the form of a sequence of aperiodic impulg#s arbitrary strengths,
the filtered signal and the instantaneous frequency of ttezdd signal. It is dficult to
observe any discontinuity or locate the instants of exoitatrom the amplitude of the
filtered signal. However, the instantaneous frequency@eéifrom phase) clearly shows
sharp peaks at the instants of the excitation. The ampbtotithe peaks in the instanta-
neous frequency depend not only on the strengths of the sapubut also on the phases
at which the sinusoids originated at these impulses aredaafdibe instants. This in turn

depends on the locations of the impulses and the frequernityeainusoid.

If the impulse sequence is replaced by white noise, the sporeding filtered out-
put and the instantaneous frequency plots do not contairsigmyficant discontinuities,

as shown in Fig[ 3]5. The white noise does not contain anatsdlimpulse-like dis-
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Fig. 3.4: Instantaneous frequency computed on the response of a 500 Hz res-
onator excited with an aperiodic sequence of impulses. (a) Aperiodic sequence of
impulses with arbitrary strengths. (b) Output of the resonator. (c) Instantaneous
frequency of the resonator output.

continuities. As a result, the filtered output will be a slpwhrying amplitude envelope
modulated by a sinusoid without any significant discontiesiin the phase. Hence the
instantaneous frequency of the filtered white noise doesmo any significant peaks,
unlike in the case of Fid. 3.4(c). This highlights the sigrfice of the isolated disconti-

nuities in the impulse sequence.

Consider a situation where a synthetic speech signal isefiltthrough a resonator.
The synthetic speech signal is generated by exciting a vangng all-pole system by a
sequence of impulses at known locations. When such a sigffittered through a res-
onator, the frequency response of the all-pole system gelispired with the frequency
response of the resonator. Hence, the frequency respotiseaif-pole system around the
center frequency of the resonator gets selected. The @éltargput carries the information
about the discontinuities that are reflected in the narrequency band of the resonator.
The instants of excitation impulses can be extracted franfiltered output using the in-

stantaneous frequency. F[g.]3.6(b) shows a synthetic bstgual, obtained by exciting
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Fig. 3.5: White noise filtered through a 500 Hz resonator. (a) Segment of white
noise. (b) Output of the resonator. (c) Instantaneous frequency of the resonator
output.

a time-varying all-pole system with a sequence of impul$esve in Fig.[3.p(a). The
instantaneous frequency (F[g.]3.6(d)) of the filtered ougpig. [3.6(c)) shows discontinu-
ities at the instants of excitation of the all-pole systere Tocations of the discontinuities

are in close agreement with the original excitation impstse

3.2 lllustration of instantaneous frequency for speech dat

Speech signal can be considered as the result of convolotitre time-varying vocal-
tract transfer function and the epoch sequence due to th&ateo source. The epochs
are the time instants where significant excitation is dedideto the vocal-tract system.
The information about the locations of the epochs is emba:ddéhe coupling between
the source and the system, though it is not evident from teedpwaveform directly. It
is difficult to accurately locate the time instants of excitatiopuitses directly from the
speech waveform, because of the time-varying resonandée ebcal-tract system. To

highlight the €fect due to the instants of significant excitation, the spsegphal is filtered
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Fig. 3.6: Epoch extraction from synthetic speech signal with known epoch loca-
tions using instantaneous frequency computed around 500 Hz. (a) Sequence of
excitation impulses. (b) Synthetic speech signal obtained by exciting an all-pole
system with the excitation impulses. (c) Output of filtering the synthetic speech
signal through a 500 Hz resonator. (d) Instantaneous frequency of the resonator
output.

through a resonator centered around a chosen frequ&ndyhe significant deviations of
the filtered output from the natural oscillations of the resor can be attributed to the
excitation impulses. Fig. 3.7 shows a 100 ms segment of #@peech signal sampled
at 8 kHz, and the output of the resonator at 500 Hz. The ireteoius frequency of the
filtered output shows sharp peaks at the epoch locationsoaesn Fig [3]7(c). In order
to determine the accuracy of the estimated epoch locatibesliferenced electroglotto-
graph (EGG) signal is also given in F{g.]3.7(d). The peak&éninstantaneous frequency
of the filtered output match well with the actual epoch lomasi given by the dierenced
EGG signal, illustrating the potential of the proposed rodth

In the case of speech signal, instantaneous frequency diftdred output also con-
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Fig. 3.7: Epoch extraction from real speech segment using instantaneous
frequency. (a) A 100 ms segment of speech waveform. (b) Output of filter-
ing the speech segment through a resonator at 500 Hz. (c) Instantaneous
frequency of the resonator output. (d) Differenced EGG signal to observe
the reference epoch locations.

tains the time-varying frequency changes associated héthiacal-tract transfer function,
which is undesirable. As a result, though the peaks in thamianeous frequency of the
filtered output indicate the epoch locations accuratelyttiersegment shown in Fig. B.7,
it may not be useful to extract the epoch locations unamhiglydor any chosen center
frequency (o). Thus the method of epoch extraction using the instantsgequency of

the filtered output depends critically on the choice of cefiegjuency of the filter. A sin-

gle center frequency may not be suitable for extracting ffluelk locations of an arbitrary
segment of speech. The center frequency has to be chosehdrae characteristics of
the speech segment under analysis. The choice of the ceagiehcy also depends on
the distribution of energy of the speech segment in the Baqudomain. To illustrate the

significance of choice of the center frequency of the filteg, instantaneous frequencies
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computed around four fferent center frequencies are shown in Figl 3.8. The spectro-
gram, the speech signal and th&elienced EGG signal are also shown for reference. The
spectrogram in Fig. 3.8(a) shows a band of energy around 500THe instantaneous
frequency computed around 500 Hz (Hig.] 3.8(d)) indicatemmlriguous peakgalleys
that are in close agreement with the actual epochs shownebgifterenced EGG signal
(Fig. B-8(c)). In the instantaneous frequencies computedral 1000 Hz and 2000 Hz,
shown in Fig[3]8(e) and Fif. 3.8(f), respectively, the éplocations can not be identified
easily. This is because the energy of the signal in thoseémrey bands is very low. Since
the spectrogram shows large energy in the band around 250thélmstantaneous fre-
guency computed around 2500 Hz shows sharp pealkesys around the epoch locations.
But, the instantaneous frequency plot in Fig] 3.8(g) sh@ss hmbiguous pegkalleys

in the time interval 570 ms to 620 ms, than those in the timerual 520 ms to 570 ms.
This is because the intensity of the 2500 Hz frequency banklgrtime interval 570 ms

to 620 ms is greater than the intensity of the band in the titegval 520 ms to 570 ms.

Notice that the instantaneous frequencies computed artQ@@IHz and 2000 Hz also
contain all the peakgalleys corresponding to the epoch locations, but they caba lo-
cated easily due to fluctuations in the neighborhood. Thizesause the instantaneous
frequency captures not only the discontinuities due to #ugtaion impulses, but also
the fluctuations due to the time-varying vocal-tract systel@nce it is dificult to extract
the instants of excitation from the instantaneous frequenmputed around an arbitrary
center frequency. The center frequency has to be chosenhirasuay that the discontinu-
ities due to the excitation impulses dominate over the fatobns due to the time-varying

vocal-tract system.

3.3 Epoch extraction using zero-frequency resonator

The discontinuity due to an impulse excitation reflects amifly across all the frequen-
cies including the zero-frequency. Thatis, even the oudpatresonator at zero-frequency
(0 Hz) should have the information of the discontinuitieg do impulse-like excitation.

The advantage of choosing the zero-frequency resonatbaighe characteristics of the
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Fig. 3.8: lllustration of criticality of choice of center frequency of the resonator for
epoch extraction using instantaneous frequency. (a) Spectrogram of the speech
segment. (b) Speech waveform. (c) Differenced EGG signal. Instantaneous
frequency plots computed around (d) 500 Hz, (e) 1000 Hz, (f) 2000 Hz, and
(g) 2500 Hz.
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Fig. 3.9: Dotted line indicates the magnitude response of an ideal (discrete) zero-
frequency resonator. Solid line indicates the magnitude response of a cascade of
two ideal (discrete) zero-frequency resonators.

time-varying vocal-tract system will notffact the characteristics of the discontinuities
in the resonator output. This is because the vocal-tratesysas resonances at much
higher frequencies than at zero-frequency. Therefore wpgse that the characteristics
of the discontinuities due to excitation impulses can beaexéd by passing the speech
signal twice through a zero-frequency resonator. The @m&@d passing the speech sig-
nal twice is to reduce theftects of all (high frequency) resonances. A cascade of two
zero-frequency resonators provides a sharper fotampared to a single zero-frequency
resonator, as shown in Fig. B.9. Since the output of the frecpency resonator is equiv-
alent to double integration of the signal, passing the dpsgmal twice through the filter

is equivalent to four times successive integration. Thisnesult in a filtered output that
growgdecays as a polynomial function of time. Fig. 3.10 shows aeeq of speech sig-
nal, and its filtered output. Thetect of discontinuities due to impulse sequences will be
overridden by those large values of the filtered output. ldenis difficult to compute the
instantaneous frequency (deviation from zero-frequeasyn the conventional manner

of computing the analytic signal of the filtered output.
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Fig. 3.10: Epoch extraction using zero-frequency resonator. A 50 ms segment
of (a) Speech signal, (b) output of cascade of two O Hz resonators, (c) mean
subtracted signal or filtered signal (d) differenced EGG signal. The arrows in (a)
and (d) indicate epoch locations detected from the positive zero-crossings of the
filtered signal.

We attempt to compute the deviation of the filtered outpunftbe local mean to ex-
tract the characteristics of the discontinuities due touls@ excitation. The local mean
computed over an average pitch period is subtracted frorfilthieed output to highlight
the characteristics of the discontinuities. The resultimgpn subtracted signal obtained
from the filtered output in Fid. 3:10(b) is shown in Fig. 3.40(The mean subtracted sig-
nal is called theero-frequency filtered signal merely thdiltered signal The following
steps are involved in processing the speech signal to de#reveero-frequency filtered

signal:

(a) Difference the speech sigrgih] (to remove any time-varying low frequency bias
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in the signal)

x[n] = §n] — §n - 1] (3.17)

(b) Pass the dlierenced speech signdin] twice through an ideal resonator at zero-

frequency. Thatis

2
yilnl = = ) ayaln - Kl + X[, (3.18a)
k=1
and ,
yolrl = = ) aaln - Kl +yaln, (3.180)
k=1

wherea; = -2, anda, = 1. This is equivalent to successive integration by four

times. But we prefer to call the process as filtering at zeegtfency.

(c) Remove the trend ip[Nn] by subtracting the local mean computed over an average

pitch period, at each sample. The resulting signal

yln] = yo[n] - 2N1+ T Z yo[n + m] (3.19)
m=—N

is called the zero-frequency filtered signal, or simply thiered signal. Hereld+1
corresponds to the number of samples in the interval cooretipg to the average

pitch period.

It was observed that the sharper zero-crossings of thesfiltg&ignal closely align with
the epoch locations obtained from negative peaks fiéinced EGG signals. So, the
time instants of sharper zero-crossings of the filteredaigan be hypothesized as epoch
locations. In Fig[3.70(c), positive-going zero-crossiage sharper than negative-going
zero-crossings, and hence indicate the epoch locations. |odations of the positive-
going zero-crossings of the filtered signal in Fig. B.10@hcide with the locations of the
negative peaks in the fierenced EGG signal as shown in Hig. 3.10(d). The sharper zero
crossings of the filtered signal may either be positive-g@ero-crossings or negative-
going zero-crossings, depending on the polarity of thedigtypically introduced by
recording devices). The polarity of the sharper zero cngsstan be automatically de-

termined by comparing the slopes of the filtered signal asldhe positive-going and the
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negative-going zero-crossings over the entire duratiatheiutterance. Throughout this
work, we automatically detect the polarity of the signal aothpensate for the polarity
so that the positive-going zero-crossings coincide withagpoch locations. In the rest of
the thesis, we associate positive-going zero-crossingiseofiltered signal with the hy-

pothesized epochs. We refer to the positive-going zerssongs as simply the positive

Zero-crossings.

Fig. B.1] illustrates the performance of the proposed epattaction method on a
creaky voice segment taken from Voqual-03 databfase [11@jcélthat the waveform of
the speech signal (Fi§. 3]11(a)) in successive glottaksyisl not periodic, making it dif-
ficult to locate the epoch locations directly from the spesghal, especially around 1.34
sto 1.36 sand 1.39 s to 1.41 s. However, the filtered signavsimFig.[3.11(b) clearly
shows sharp positive zero-crossings around the epochdasatvhich match closely with
the negative peak locations of theéfdrenced EGG signal shown in Fjg. 3.11(c). Itis inter-
esting to note that even for an aperiodic sequence of impikis@xcitations, the positive
zero-crossings of the filtered signal correspond to thetimea of the epochs. There is no
such relation between the excitation and the filtered sifgmaéhe random noise excitation
of the time-varying all-pole system. Also, the filtered sifhas significantly lower values
for the random noise excitation compared to the impulseesrpiexcitation. Fig. 3.]12(b)
shows the filtered signal for a speech signal consisting wieeband unvoiced segments.
The unvoiced segments correspond to the random noise xeitd the vocal-tract sys-
tem. The diferenced EGG signal (Fif. 3]12(c)) is also given in the figaneléntify the

voiced and unvoiced segments.

Another important feature of the proposed approach is titaigs not depend on the
response of the vocal-tract system, and it does not assuasgstationarity of the vocal-
tract system, unlike the conventional block processingthapproaches. Since there is no
assumption on quasistationarity, the proposed approashrtut require block processing,
and it can be applied on data segments of any length. When plg #ps method on
longer segments (say 0.1 s to 50 s), it is necessary to applyrehd removal operation
in 3.19), successively, more than once due to rapid groletay of the output of the

zero-frequency resonatoygn]. By applying the trend removal operation several times,
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Fig. 3.11: lllustration of proposed epoch extraction method on a creaky voiced segment taken
from Voqual-03 database [[[1§]. (a) Speech waveform of a creaky voiced segment, (b) filtered
signal, and (c) differenced EGG signal. The arrows in (c) indicate the epoch locations detected
from the positive zero-crossings of the filtered signal.
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Fig. 3.12: Characteristics of filtered signal in voiced and unvoiced regions. (a) A segment of
speech signal, (b) filtered signal, and (c) differenced EGG signal. The filtered output shows

significantly lower values in the regions where there is no glottal activity.
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the zero-crossing information does not change. Fig] 3.b8/shhe &ect of successive
trend removal operations on the output of the zero-frequeesonators. Notice that the
information in Fig[3.13(e), the signal obtained after thseecessive trend removals, is
also present in Fid. 3.]L3(d), the signal obtained after tmazsssive trend removals. But
the fluctuations in Fig._3.13(d) are overridden by a DC treimdfact, these fluctuations
are present in the output of the zero-frequency resonatsos(kig. [3.1B(b)), but they
are not evident because of the large DC trend arising duet¢oirfiy at zero-frequency.

Throughout this thesis, the trend removal operation isiagphrice to extract the epochs.

3.3.1 Selection of window length for mean subtraction

To remove the trend in the output of the zero-frequency ramwna suitable window
length needs to be chosen to compute the local mean. Thdlehtite window depends
on the growtjidecay of the output, and also on the overriding fluctuatiorthé output.
The growthidecay in turn depends on the nature of the signal. The desifednation

of the overriding fluctuations depends on the intervals betwimpulses. If the window
length is too small relative to the average duration (pitehiqul) between impulses, then
spurious zero-crossings may occur in the filtered sigmigdcting the locations of the gen-
uine zero-crossings. If the window length is too large redstio the average pitch period,
then also the genuine zero-crossings diiecied in the filtered signal. Fif. 3|14 illustrates
the d@tfect of window length on the filtered signal for speech segrfrent a male speaker
having an average pitch period of 7 ms. The filtered signaFiin [3.1#4(b), obtained
using a window length of 4 ms contains spurious (minor) zgassings in between the
zero-crossings corresponding to the epochs. The filteggtals obtained using window
lengths of 8 ms (Fid. 3.14(c)), 12 ms (F[g. 3.14(d)), and 1§Rig. [3.I%(e)) do not con-
tain spurious zero-crossings. The locations of the zevssings across the three plots
are consistent and coincide with the epoch locations. Tholg filtered signal obtained
using a window length of 30 ms(Fify. 3]14(f)) does not consginrious zero-crossings,
the locations of the zero-crossings are shifted arbiyrdréicause of the improper trend

removal due to large window length. Hence, the choice of timelow length for comput-
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Fig. 3.13: Effect of successive trend removals from the output of the zero-frequency res-
onators. (a) A segment of speech signal, (b) output of the cascade of two ideal zero-frequency
resonators. (c) output after first trend removal, (d) output after second trend removal, and (e)
output after third trend removal, i.e., the filtered signal. The filtered signal is normalized be-
tween +1 and -1.
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Fig. 3.14: Effect of window length for trend removal on the filtered signal. (a) A segment of
speech signal. Filtered signal obtained using a window length of (b) 4 ms, (c) 8 ms, (d) 12 ms,
(e) 16 ms, and (f) 30 ms,
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ing the local mean is not very critical, as long as it is in thege of about 1 to 2 times the

average pitch period.

The average pitch period information can be derived in s¢wgays. One way is
to use the autocorrelation function of short (30 ms) segmehdifferenced speech, and
determine the pitch period from the locations of the strehgeak in the interval 2 ms
to 15 ms (normal range of pitch period). The histogram of titehpperiods is plotted.
The pitch period value corresponding to the peak in the giatm can be chosen as the

window length.

The average pitch period can be estimated using the histograthod even from
degraded speech as shown in Hig. B.15 for a male speech amdaéefepeech at two
different SNRs. The location of the peak does not change sigmtiffaaven under noisy
conditions. Hence the average pitch period can be estimeliadlly. Fig.[3.1p shows the
speech waveform, the filtered signal and the derived epazdtitms and the éierenced
EGG signals for an utterance of a female voice. The epochitotacoincide with the
locations of the large negative peaks in théatenced EGG signal (Fif. 3]16(c)). Similar

illustration for a male voice is given in Fif. 3]17.
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Fig. 3.15: Histogram of the locations of the pitch peak in the autocorrelation
function for (a) clean speech signal from a male speaker, (b) speech signal from
the same male speaker at 0 dB SNR, (c) clean speech signal from a female
speaker, and (d) speech signal from the same female speaker at 0 dB SNR. Note
that the location of the peak in the histogram plot is not affected by white noise.
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Fig. 3.16: lllustration of the proposed method of epoch extraction for female speaker.
(a) Speech signal, (b) filtered signal, and (c) differenced EGG signal. Arrows in (c)
indicate the detected epochs. Note that the filtered output brings out even the epochs
not picked up by the EGG signal (in the interval 360 ms to 375 ms).
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Fig. 3.17: lllustration of the proposed method of epoch extraction for male speaker.
(a) Speech signal, (b) filtered signal, and (c) differenced EGG signal. Arrows in (c)
indicate the detected epochs.
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3.4 Comparison of proposed epoch extraction with other

methods

In this section the proposed method of epoch extractionngpawed with three existing
methods in terms of identification accuracy and in terms bfistness against degrada-
tion. The three methods chosen for comparison are the Hébgelope based (HE-based)
method [1I9], the group-delay based (GD-based) metfodi@}lae DYPSA algorithm
[B4]. Initially, the performance of the algorithms was exated on the clean data. Sub-
sequently, we have evaluated robustness of the proposdobdhand the three existing
methods at dferent levels of degradations. A brief discussion on the amantation

details of the three chosen methods for comparison is gietwb

3.4.1 Description of existing epoch extraction methods

Hilbert envelope based method[[I19]During voicing, the strength of excitation at the
epoch is large and impulse-like. Though this can be obseinema the LP residual, it
can not be extracted unambiguously because of multiplespgfaiandom polarity around
the instant of excitation. Ideally, it is desirable to deran impulse-like signal around
the instant of significant excitation. A close approximatto this is possible by using
the Hilbert envelope of the LP residual. Even though the aedlimaginary parts of an
analytic signal have positive and negative samples, thieeitilenvelope of a signal is a
positive function, giving the envelope of the signal. Foamyple, the HE of a unit sample
sequence or its derivative has a peak at the same instans. thi@yroperties of the HE
can be exploited to derive approximate epoch locations.eVitence for epoch locations
can be obtained by convolving the HE with a Gabor filter (matkd Gaussian pulse), as
suggested inJ119]. In the present work, the evidence foclepacations is obtained by
convolving the HE with a modulated Gaussian pulse,

n=212...,N,

g[n] = w exp(_w) ,

\2no 2072
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Fig. 3.18: lllustration of Hilbert envelope based method for epoch extrac-

tion [fl19]. (a) Speech signal, (b) LP residual, (c) Hilbert envelope of LP resid-
ual, (d) epoch evidence plot, and (e) differenced EGG signal. The pulses in (e)
indicate the detected epoch locations.

whereo defines the spatial spread of the Gaussian,Muglthe length of the filter. For
this evaluation, the values of = 10, andN = 80 (number of samples equivalent to a
duration of 10 ms, at 8 kHz sampling frequency) are used. TileeH envelope of the
LP residual is convolved with the modulated Gaussian polsbtain the epoch evidence
plot shown in Fig[3.78(d). The instants of positive zerossings in the epoch evidence

plot correspond approximately to the locations of the imstaf significant excitation.

Group delay based method[[B]:This method is based on the global phase characteristics
of minimum phase signals. The average slope of the unwrapipaske of the short-time

Fourier transform of LP residual is computed as a functiotiro€. The average slope
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Fig. 3.19: lllustration of group-delay based method for epoch extraction []. (a)
Speech signal, (b) LP residual, (c) phase-slope function, and (d) differenced EGG
signal. The pulses in (d) indicate the detected epoch locations.

obtained as a function of time is termed as phase-slopeiftumdhstants where the phase-
slope function makes a positive zero-crossing are idedtifgeepochs. Fid. 319 shows a
speech utterance, its LP residual, the phase-slope furatid the extracted instants. For
this evaluation, we have used dAorder LP analysis to derive the LP residual, and an 8

ms window for computing the phase-slope function.

The DYPSA algorithm [Bg]: The DYPSA algorithm is an automatic technique for esti-
mating the epochs in voiced speech from the speech signa.althere are three com-
ponents in the algorithm. The first component generatesidaiedepochs using zero-
crossings of the phase-slope function. The energy weightedp-delay was used as
a measure to derive the phase-slope function. The secondocmnt employs a novel

phase-slope projection technique to recover candidatesticch the phase-slope func-
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tion does not include a zero-crossing. These two compormsEtéext almost all the true
epochs, but they also generate a large number of false alarhesthird component of
the algorithm uses dynamic programming to identify the #pechs from the set of hy-
pothesized candidates by minimizing a cost function. Fatuating this technique, the
MATLAB implementation of the DYPSA available if [1P0] waseads

3.4.2 Database for evaluation of epoch extraction methods

The CMU-Arctic databas¢ [TRI][I22] was used to evaluat@tbposed method of epoch
extraction, and to compare the results with the existindwst. The Arctic database con-
sists of 1132 phonetically balanced English sentencesspoktwo male and one female
speakers. The duration of each utterance is approximatlywBich makes the duration
of the entire database to be around 2 hours 40 minutes. Théals was collected in
a sound proof booth, and digitized at a sampling frequenc§2okHz. In addition to
the speech signals, the Arctic database contains simoligrecordings of EGG signals
collected using an electroglottograph. The speech and E@fals were time-aligned to
compensate for the larynx-to-microphone delay, deterchinde approximately 0.7 ms.
Reference locations of the epochs were extracted from tledsegments of the EGG
signals by finding peaks in theftkrenced EGG signal. The performance of the algo-
rithms was evaluated only in the voiced segments (detected EGG signal) between
the reference epoch locations and the estimated epochdosal he database contains a

total of 792249 epochs in the voiced regions.

3.4.3 Performance evaluation

The performance of the epoch detection methods was evdluateg the measures de-
fined in [36]. Fig.[3.20 shows the characterization of epostimeates showing each of
the possible decisions from the epoch detection algoritfre following measures were

defined to evaluate the performance of the epoch detectjmmitims:
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(a) Larynx cycle:The range of sampleX(,_; + I;) < n < 3(I; + l;41), given an epoch
reference at sample with preceding and succeeding epoch references at samples

l,_, andl,,,, respectively.

(b) Identification rate(IDR): The percentage of larynx cycles for which exactly one

epoch is detected.
(c) Miss rate(MR): The percentage of larynx cycles for which no epoch teded.

(d) False alarm rateg(FAR): The percentage of larynx cycles for which more thaa on

epoch is detected.

(e) Identification error: The timing error between the reference epoch location and

the detected epoch location in larynx cycles for which dyamte epoch is detected.

() Identification accuracy (IDA): The standard deviation of the identification error

Z. Small values ofr indicate high accuracy of identification.

Table[3]L shows the performance results on Arctic datab@seléntification rate,
miss rate, false alarm rate, and identification accuracthi®three existing methods, HE-
based, GD-based and DYPSA algorithm, as well as for the pegpmethod. Fid. 3.P1
shows the histograms of the timing errdrsn detecting the epoch locations, averaged
over the entire Arctic database. The spread of the timingreffor the proposed method
is relatively less compared to the exiting methods. FromeélgHl, it can be concluded
that the DYPSA algorithm performed best among the thrediagisechniques, with an
identification rate of 96.66%. The proposed method of epattaetion gives even better

identification rate as well as identification accuracy, caneg to the DYPSA algorithm.
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Fig. 3.20: Characterization of epoch estimates showing 3 larynx cycles with ex-
amples of each possible outcome from epoch extraction [B§]. Identification accu-
racy is measured as standard deviation of £.

Table 3.1: Performance comparison of epoch extraction methods on CMU-Arctic
database. IDA - Identification rate, MR - Miss rate, FAR - False alarm rate, IDA -

Identification accuracy.

Method | IDR (%) | MR (%) | FAR (%) | IDA (ms)
HE-based, 89.86 1.43 8.71 0.58
GD-based 92.80 4.01 3.18 0.67
DYPSA 96.66 1.76 1.58 0.59
Proposed| 99.04 0.18 0.77 0.36
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3.5 Hfectof noise on performance of the proposed method

of epoch extraction

In this section we study theffect of (moderate levels of) noise on the accuracy of the
epoch detection methods. The existing methods and the pedpoethod are evaluated
on artificially generated noisy speech data. Several noigeanments at varying signal-
to-noise ratio (SNR) were simulated to evaluate the rolmsstrof the epoch detection
methods. The noise samples were taken from NOISEX-92 dsedfidB]. The database
consists of white, babble, high frequency (HF) channel, @gtucle noise. The noise
samples from the NOISEX-92 database were added to the gbestls utterances from
Arctic database to generate noisy speech dataffaret levels of degradation. The ut-
terances are appended with silence so that the total amébgitence in each utterance
is constrained to be about 60% of data, including the pausteiutterances. Including
different noise environments and SNRs, the database cons&d$oflirs of noisy speech

data.

Table[3.R shows the comparative performance of epoch ¢ixinamethods for dfer-
ent types of degradations at varying SNRs. Fig.]3.22 shoevditribution of the timing
errors/ in detecting the epoch locations, for white noise environia an SNR of 10
dB. The proposed method consistently performs better thaexisting techniques even
under degradation. The improved performance of the praposthod may be attributed
to the following reasons: (a) There is no block processinglired in this method. Hence
there are noféects of the size and the shape of the window. The entire spegohl is
processed at once to obtain the filtered signal. (b) The megpmethod is not dependent
on the energy of the signal. This method detects the epoetidos even in weakly voiced
regions like voice-bar. (c) There is only one parameterlweain the proposed method,
i.e., the length of the window for removing the trend from theéput of zero-frequency
resonator, the choice of which is not very critical. (d) Tédare no critical thresholds or

costs involved in identifying the epoch locations.
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Table 3.2: Performance comparison for epoch detection methods for various SNRs and noise
environments. IDR - Identification rate, MR - Miss rate, FAR - False alarm rate, IDA - ldentifi-
cation accuracy

Environment HE Based GD Based

Noise SNR || IDR | MR | FAR | IDA IDR | MR | FAR | IDA
dB) | (%) | (%) | (%) | (ms) || (%) | (%) | (%) | (ms)
White 20dB || 84.56| 1.58| 13.86| 0.686|| 87.34| 3.82| 8.85 | 0.812
White 15dB| 82.26| 1.9 | 15.85| 0.761| 84.65| 4.15| 11.2 | 0.891
White 10dB| 79.45| 2.39| 18.16| 0.864| 81.07| 4.79| 14.14| 0.907

Babble | 20dB| 86.73| 1.54| 11.73| 0.674| 89.45| 3.99| 6.56 | 0.782
Babble 15dB || 84.88| 1.77| 13.35| 0.743|| 87.27| 4.28| 8.45 | 0.855
Babble 10dB | 82.51| 2.17| 15.32| 0.842| 84.32| 4.77| 10.91| 0.956

HF Channell 20 dB || 84.23| 1.87| 13.91| 0.738| 86.54| 4.36| 9.10 | 0.849
HF Channell 15dB || 82.04| 2.26| 15.69| 0.822| 83.87| 4.84| 11.29| 0.934
HF Channell 10dB || 79.24| 2.85| 17.91| 0.927| 80.13| 5.53| 14.34| 1.040

Vehicle | 20dB| 89.75| 1.40| 8.85 | 0.584| 92.67| 3.95| 3.38 | 0.674

Vehicle | 15dB| 89.58| 1.39| 9.03 | 0.585| 92.49| 3.92| 3.59 | 0.679
Vehicle | 10dB| 89.25| 1.37| 9.38 | 0.591| 92.18| 3.88| 3.95 | 0.689

Environment DYPSA Proposed Method

Noise SNR || IDR | MR | FAR | IDA || IDR | MR | FAR | IDA
@dB) | (%) | (%) | (%) | (ms) || (%) | (%) | (%) | (ms)
White 20dB || 92.12| 1.41| 6.47 | 0.738| 99.04| 0.19| 0.77 | 0.363
White 15dB | 85.33| 1.24| 13.43| 0.841|| 99.06| 0.19| 0.75 | 0.365
White 10dB | 75.95| 1.09| 22.96| 0.957|| 99.05| 0.23| 0.72 | 0.371

Babble |20dB| 96.42| 1.8 | 1.79 | 0.621| 99.02| 0.19| 0.79 | 0.366
Babble |15dB| 96.14| 1.82| 2.05 | 0.647| 98.99| 0.21| 0.80 | 0.374
Babble |10dB| 95.48| 1.78| 2.74 | 0.69 | 98.83| 0.30| 0.87 | 0.405

HF Channell 20dB || 95.89| 1.77| 2.33 | 0.654| 99.04| 0.19| 0.77 | 0.363
HF Channell 15dB | 94.99| 1.66| 3.35 | 0.702] 99.05| 0.19| 0.76 | 0.363
HF Channell 10dB | 92.4 | 1.56| 6.01 | 0.775] 99.06| 0.21| 0.73 | 0.368
Vehicle | 20dB| 96.67| 1.76| 1.57 | 0.589| 99.06| 0.20| 0.73 | 0.372
Vehicle 15dB| 96.6 | 1.78| 1.62 | 0.596| 98.93| 0.37| 0.70 | 0.397
Vehicle 10dB || 96.64| 1.76| 1.61 | 0.597| 97.83| 1.53| 0.64 | 0.460
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3.6 Summary

In this chapter we proposed a method for epoch extractiandibes not depend on the
characteristics of the vocal-tract system. The methodaitepthe impulse-like exci-

tation of the vocal-tract system. The method uses the outpspeech from a zero-
frequency resonator. The positive zero-crossings of therdill signal correspond to
epochs. The identification rate and identification accueaeyevaluated using the CMU-
Arctic database, where the speech signal and the corresgaBGG signals are available.
The epoch information derived from the EGG signals is usefesence. The perfor-
mance of the proposed method is compared with the results fihe DYPSA and two

other methods. The proposed method gives a significanttgiggérformance in terms of
identification rate and identification accuracy. It is alsteresting to note that the pro-
posed method is robust against degradations such as wists babble, high frequency

channel and vehicle noise.

There are many novel features in the proposed method of egxichaction. The
method does not use any block processing as most other gigpadssing methods do.
The performance of the method does not depend on the enetlyg ségment of speech
signal, and hence the method works equally well for all typlegoiced sound units. In
addition, there are no parameters to control, and no arpitneesholding in the identifi-

cation of epochs.

The method performs well for speech collected with closeakpg microphone, even
with the addition of degradations. But the method is notljike work well when the
degradations produce additional impulse-like sequentdisa collected speech data as
in the case of reverberation. The method is also not likelwook well when there is
interference of speech from other speakers. Some of thesessre addressed in Chap-
ter 6 using speech signals collected over a pair of spasajharated microphones. The
proposed method of epoch extraction may not work well on @pelata collected over
telephone channels and high pass filtered speech signate Wiedow frequency compo-

nents are deliberately attenuated.
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Chapter 4

Characterization of Glottal Activity

The primary mode of excitation of the vocal-tract systemyispeech production is due
to vibration of vocal folds (glottal activity) at the glasti The strength of excitation during
the glottal activity is determined mostly by the rate of ciasof the vocal folds in each
glottal cycle. Detecting the regions of glottal activitydathe strength of excitation in
each glottal cycle from the speech signal is a challengisig t@s it is dificult to suppress
the response of the time-varying vocal-tract system in pleesh signal. Several methods
have been suggested in the literature, which involve esimgéhe characteristics of the
time-varying vocal-tract system, followed by some formmiferse filtering of speech to
highlight the characteristics of the excitation soufde Llihear prediction (LP) analysis
is one such method in which the LP dbeients are used to inverse filter the speech
signal to derive the LP residudl [4]. The LP residual hasewilse characteristics in the
regions of nonglottal activity. In the regions of glottatiaity, corresponding to the vocal
fold vibration, the LP residual shows regions of large atople at regular intervals. The
large energy region corresponds mostly to the closing pbasach glottal cycle. The
effectiveness of detecting glottal activity from the LP resilddepends on the accuracy of

the LP model, and also on the nature and quality (degradatidhe speech signal.

In this chapter, we propose a method based on the zero-fiegdidtered signal to
detect the regions of glottal activity, and to estimate ttiength of excitation in each

glottal cycle. In Sectiof 4.1, we present a method to esértiad strength of excitation at
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epoch locations from the speech signals. Sedtign 4.2 disstssmethod to automatically
detect the regions of glottal activity, and its performarealuation. In Sectiof 4.3 we

summarize the contributions of this chapter.

4.1 Estimation of strength of excitation

The manner in which vocal folds vibrate influences the gla@idlow that serves as an
excitation source for the vocal-tract filter. Vocal intdgsnay be increased by sharply
truncating the expiratory airflow (sharper closure of thealdolds), and thereby increas-
ing the rate of glottal airflow[[I24]. Some of these features manifested well in the
EGG signals. The negative peak amplitude in théedenced EGG signal indicates the
rate of glottal closure. However, the vocal-tract is knowrabsorb a variable amount
of acoustic energy, and the degree of mouth openfferts the acoustic pressure level
detected at the microphone J125]. Hence, the acousticyme$svel as picked up by the
microphone does not provide a reliable cue for the strenigglt@tation or rate of glottal

closure.

In this study, we exploit the narrowband nature of the zeegtiency resonator to
measure the strength of excitation at each instant. Sireefibct due to an impulse is
spread uniformly across the frequency range, the relatieagths of impulses can be de-
rived from a narrowband around any frequency, includingzér®-frequency. Hence, the
information about the strength of excitation can also bévddrfrom the zero-frequency
resonator. It is observed that the slope of the zero-frequétered signal around the
zero-crossings corresponding to the epoch locations givegasure of the strength of
excitation. Fig[4]1(a) and Fif. 4.1(b) show a sequencerafamly spaced impulses with
arbitrary strengths, and the zero-frequency filtered $jgaspectively. The filtered signal
(Fig.[4.1(b)) shows sharper zero-crossings at the impolsations, and the slopes of fil-
tered signal around those zero-crossings are proportioriak actual impulse strengths
as shown in Fig._4}1(c). The scatter plot between the stsrgitimpulses and the slopes
of the filtered signal shown in Fig. 4.2 clearly shows a linand, indicating that the

estimated strengths are proportional to the actual impiteagths.
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Fig. 4.1: Estimation of strength of randomly spaced impulses using zero-
frequency resonator. (a) Sequence of randomly spaced impulses, (b) Zero fre-
quency filtered signal. (c) Slope of signal around the positive (sharper) zero-
crossings. Arrows in (a) indicate detected impulse locations.
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This method of quantifying the strengths of impulses isd/alien for speech signals.
In the case of speech signals, the significant contributicihea zero-frequency is due
to the impulse-like excitation. The vocal-tract system hesonances at much higher
frequencies than at zero-frequency. Hence the contribuifathe time-varying vocal-
tract system at zero-frequency is significantly low comgaoethe contribution due to the
impulse-like excitation. Hence the slope of the filterechaigaround the epoch location
reflects predominantly the strength of excitation. Fig(d)3hows the estimated strengths
of excitation at the epoch locations for the speech sigrabshin Fig.[4.8(a). Notice that
the amplitude of the speech signal (Hig]4.3(a)) around @s3@w, though the strength
of the excitation as reflected in thefidgirenced EGG signal (Fid. 4.3(b)) is high. The
strength of excitation derived from the filtered signal afsph shows similar trend as that
of the diferenced EGG signal. Fif. 4.4(a) shows a scatter plot betiveestrength of
excitation derived from the fferenced EGG signal and the absolute maximum amplitude
of the speech signal around the epoch location. [Figl. 4.4()s a scatter plot between
the strength of dferenced EGG signal and the strength of excitation estinfedetthe
filtered signal of speech. The scatter plot in Fig] 4.4(bysha better linear orientation
indicating that the estimated strength of excitation ispprtional to the actual strength
of excitation observed from EGG signal. This behavior is pasent in Fig[ 4]4(a),
indicating that the strength of excitation can not be diyeobserved from the speech

signal.

4.2 Glottal activity detection (GAD)

The strength of excitation of the vocal-tract system can desicered to be significant
in the regions of the vocal fold vibration (glottal activityln the absence of vocal fold
vibration, the vocal-tract system can be considered to begeskby random noise, as in
the case of frication. The energy of the random noise exaitas distributed both in time
and frequency domains. While the energy of an impulse isikdiged uniformly in the

frequency domain, it is highly concentrated in the time-dom As a result, the filtered

signal exhibits significantly lower amplitude for randomige excitation compared to
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Fig. 4.3: Estimation of the strengths of excitation of the epochs from speech
signal. (a) A segment of speech signal. (b) Differenced EGG signal. (c) Filtered
signal. (d) Slopes of the filtered signal around detected epoch locations (sharper
zero-crossings). The slopes are plotted as negative in order to compare with the
differenced EGG signal.

the impulse-like excitation. Hence the filtered signal carubed to detect the regions of
glottal activity (vocal fold vibration) as illustrated ind= &.3. Fig.[4.p(a) shows a segment
of speech signal with regions of glottal activity, markeddwjted lines, obtained from the
differenced EGG signal in Fif. #.5(b). The filtered signal of sheshown in Fig[ 4]5(c)
clearly indicates the regions of glottal activity, and thegtch well with those obtained
from the diferenced EGG signal in Fif. #.5(b). Notice that the unvoiegglons around
0.6 s and 1.2 s in the speech signal (ffig] 4.5(a)) have venatloplitude in the filtered
signal (Fig[4.p(c)). Hence the short term energy of therélfesignal computer over 20ms
frames, shown in Fig. 4.5(d), can be used for glottal agtigétection (GAD). The short

term energy of the filtered signal shows a clear indicatiogloftal activity even in noisy
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Fig. 4.4: Scatter plot of (a) negative peak amplitude of differenced EGG vs. absolute maxi-
mum amplitude of speech signal around the epoch location and (b) negative peak amplitude
of differenced EGG vs. slope of the filtered signal at the epoch location.

speech signals. Fil. 4.6 shows a segment of speech signmadéegoy babble noise at 5
dB SNR. It is dificult to identify the glottal activity around 0.4 s and 1.1 sedily from
the degraded speech signal. However, the filtered signalrsimFig.[4.6(c) enhances
the regions of glottal activity over the unvoiced and nosgions. The short term energy
of the filtered signal shown in Fig. 4.6(d) clearly shows &rgnplitude in the regions
of glottal activity marked with dashed lines. The referenegions of glottal activity are

manually marked by observing theff@renced EGG signal shown in F[g.]4.6(b).

4.2.1 Performance evaluation of the proposed GAD

The proposed GAD method was evaluated undfeint noisy environments at varying
levels of degradation. A subset of CMU-Arctic databdse[[1@ihsisting of 100 ran-
domly selected sentences from each of the 3 speakers wasousemluate the proposed
GAD method. The entire dataset was samplewise labeled @raghctivity using the
simultaneously recorded EGG signals available with thalkge. All the signals were

downsampled to 8 kHz.
To study the fect of noise on the proposed method for GAD, the method wds eva
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Fig. 4.5: Glottal activity detection from the filtered signal. (a) Speech signal.
(b) Differenced EGG signal. (c¢) Filtered signal. (d) Energy computed over 20 ms
segments of the filtered signal. Regions marked with GA in (b) indicate regions
of glottal activity.

uated on artificially generated noisy speech data. Severs¢ environments at varying
levels of degradation were simulated by adding noise taken Noisex-92 database [123].
The utterances were appended with silence so that totafioli@t silence in each utter-
ance is restricted to be about 60% of the data including [gausthe utterances. The
database consists of speech signals under white, babbleeshiae noise environments
at signal-to-noise ratio (SNR) ranging from 20 dB to O dB. Bpeech signals were pro-
cessed using the proposed zero-frequency resonator ton db&filtered signal. The
energy of the filtered signal for every frame of 20 ms with 10sh#t is used to detect

the glottal activity.

The performance of the proposed GAD method was evaluated tis¢ detection er-

ror tradedf (DET) curves[126], which show the tradébetween false alarm rate (FAR)
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Fig. 4.6: Glottal activity detection under degraded conditions. (a) A segment
of speech signal degraded by babble noise at 5 dB SNR. (b) Differenced EGG
signal. (c) Filtered signal. (d) Energy of the filtered signal.

and false rejection rate (FRR). The FAR represents the p&ge of nonglottal activity
frames that were detected as glottal activity, and FRR sgprts the percentage of glottal
activity frames that were detected as nonglottal activitye performance of the system is
expressed in terms of equal error rate (EER), the point atlWRAR and FRR are equal.
The lower the EER value, the higher is the accuracy of the GAfthod. Fig[4]7 shows
the DET curves obtained for the proposed GAD algorithm uwd&erent noise environ-
ments at an SNR of 0 dB. The performance of GAD at varying kewéldegradation is
listed in Tableg[4]1 using the reference derived from the E@Gads.

The proposed method achieved an EER of 3.54% on the cleanatataexhibits a
gradual degradation under noisy conditions. The perfoomari the method under bab-

ble noise and vehicle noise is inferior to that under whits@abecause the babble noise
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Fig. 4.7: DET curves indicating the performance of proposed
GAD method under different noise environments.

Table 4.1: Performance of GAD in EER (%) under different noise
environments at varying levels of degradation. Reference is derived
from EGG signals.

Noise Type 20dB 15dB 10dB 5dB 0dB

White 356 356 3.60 3.78 5.24
Babble 356 364 462 795 15.10
Vehicle 356 358 4.09 6.28 10.83

contains impulse-like excitations arising from epochs thieo speakers, and the vehicle
noise introduces high degradations in low frequency regidre errors on clean speech
may be attributed to the errors in the reference which arsutref inability of the EGG
signals in capturing the weak voiced regions. [Fig] 4.8(a)Rig.[4.8(b) show a segment
of weak voiced region and the correspondinfieienced EGG signal, respectively. The
differenced EGG signal in Fify. 4.8(b) does not show prominerkgs@a@und the epoch lo-
cations in the region from 1.26 s to 1.32 s, whereas the filtsignal in Fig[4.8(c) clearly
shows the glottal activity in that region, and the positigeazcrossings approximately co-
incide with the epoch locations. Similar observations camiade from the weak voiced

segment from a female speaker shown in Fig. 4.9. Hence tipopea method can be
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Fig. 4.8: lllustration of potential of proposed method in identifying weak voiced
regions for a male speaker. (a) A segment of speech signal. (b) Differenced
EGG signal. (c) Filtered signal. Arrows in (a) and (b) indicate the detected epoch
locations.

Table 4.2: Performance of GAD in EER (%) under different noise
environments at varying levels of degradation. Reference is derived
from clean speech signals.

Noise Type 20dB 15dB 10dB 5dB 0dB

White 0 0 0.003 041 2.77
Babble 0 0.23 181 6.13 14.14
Vehicle 0 0.006 1.08 4.22 9.66

effectively used to detect the glottal activity even in the wealced regions. The per-
formance of the proposed GAD undeffdrent noisy environments is evaluated with the
reference derived from the clean speech. Thble 4.2 givgsetiermance of the proposed
GAD at varying levels of degradation using the referencévddrfrom the clean speech
data. The results show that the performance of the proposgiloch for GAD is robust

against diferent types of degradation.
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Fig. 4.9: lllustration of potential of proposed method in identifying weak voiced
regions for a female speaker. (a) A segment of speech signal. (b) Differenced
EGG signal. (c) Filtered signal. Arrows in (a) and (b) indicate the detected epoch
locations.

4.3 Summary

In this chapter, we have proposed a method for detectingeiiienms of glottal activity
and estimating the strength of excitation within each glatycle. The methods proposed
in this chapter exploit the impulse-like characteristidlod excitation which is extracted
using the zero-frequency resonator. The proposed methagsfonating strength of ex-
citation does not depend on estimating the vocal-tractoesg. Unlike conventional
voicing detection methods, the proposed method for GAD doéassume periodicity of
speech waveform in successive glottal cycles. The epoctiitotalong with its strength
of excitation form important features of a glottal pulse. e$é features may be useful
in representing the excitation information in speech difpraspeech coding and speech
synthesis. The estimated strength of excitation may bauliseflefining shimmer which

is known to be a speaker-specific characteristic.
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Chapter 5

Instantaneous Fundamental Frequency

Estimation

Voiced sounds are produced from the time-varying vocaittsgstem excited by a se-
guence of events caused by vocal fold vibrations. The vdmatof the vocal folds result
in a sequence of glottal pulses with major excitation takptare around the instant of
glottal closure (GCI). The rate of vibration of the vocaldsldetermines the fundamen-
tal frequency o), and contributes to the perceived pitch of the sound preduny the
vocal-tract system. Though the usage of the term “rate ohtitin” gives an impression
that the vibrations of the vocal folds are periodic, in pi@cthe vocal fold vibrations at
the glottis may or may not be periodic. Even a periodic vibraof the vocal folds at the
glottis may produce a speech signal that is less correlatsticcessive cycles because
of the time-varying vocal-tract system that filters the glbpulses. Sometimes, the vo-
cal fold vibrations at the glottis themselves may show ajukei behavior, as in the case
of changes in the shape of the glottal flow waveform (for examime changes in the
duty cycles of opeftlosed phases), or the intervals where the vocal fold vidmmaeflects
several superposed periodicities (diplophomy) [60], oewehglottal pulses occur without
obvious regularity in the time (glottalization, vocal fry@eaky voice)[I37]. In practice,
the rate of vibration of the vocal folds changes from onetglatycle to the next cycle.
Hence, it is more appropriate to define instantaneous fuedtahfrequency of excitation

source for every glottal cycle. In this work, we propose aent\based approach to ac-

81



curately estimate the instantaneous fundamental frequenim speech signals. Epochs
derived using zero-frequency resonator are used as ancims pvithin each glottal cycle

for pitch estimation.

This chapter is organized as follows: In Secfjiorn 5.1, théslfasthe proposed method
of fundamental frequency estimation is discussed. In 8efi2, a method for pitch
extraction from the speech signals is developed. In Sefiigrnhe proposed method is
compared with some standard methods for pitch extractiostandard databases, for
which the ground truth is available in the form of electragdgraph (EGG) waveforms.
The performance of the proposed method is also evaluatelifferent cases of simulated
degradations in speech. Finally in Sect[on 5.4, a summatiyeoideas presented in this
chapter is given along with some issues that need to be addtreshile dealing with

speech signals in practical environments.

5.1 Basis for the proposed method of pitch estimation

As mentioned earlier, voiced speech is the output of the-tiarging vocal-tract filter ex-

cited by a sequence of glottal pulses caused by vocal foldtrdns. The vocal-tract sys-
tem modulates the excitation source by formant frequeneaibh depend on the sound
unit being generated. The formant frequencies togethér thié fundamental frequency
form important features of the voiced speech. There is arortapt distinction in the

production of a formant frequency and in the production &f fimdamental frequency.
Formant frequencies are due to resonances of the vocalsyaiem. The frequency of
the resulting damped sinusoids are controlled by the sidetashape of the vocal-tract
through the movement of the articulators. Because of thessidal nature of the reso-
nance, the formant frequency appears as a single impulke fnequency domain. How-
ever, the fundamental frequency or pitch is produced asudt refsvibration of the vocal

folds, producing a sequence of regularly spaced impulsesssinort intervals of time. Pe-
riodic sequence of impulses in the time domain results ir@@ie sequence of impulses
in the frequency domain also. Hence, unlike the formantfeagy, the information about

the fundamental frequency is spread across the frequengg rd his redundancy of in-
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formation about the fundamental frequency in the frequedmyain makes it a robust
feature for speech analysis. For example, this redundaglpg lus in perceiving the pitch
even when the fundamental frequency is not present in thechmagnal (as in the case of

telephone speech).

Speech production mechanism is designed in such a way #ghantrgy in the higher
(> 300 Hz) frequencies is produced in the form of formants, wasithe perception of
low (< 300 Hz) frequencies is due to the sequence of glottal cyblese that it is phys-
ically impossible for a human being to produce a resonaremufncy of 200 Hz or less
because of the limited length of the vocal-tract. In facg plerception of low frequency
(< 200 Hz) is felt more due to the intervals between the impuladeer the presence of
any low frequency components in the form of sinusoids. Irepthords, it is the strong
discontinuities at these impulse locations in the sequémateis producing the low fre-
guency &ect in perception. Moreover, the information about the aliginuities is spread
across all the frequencies including the zero-frequentyhis work, we use the method
based on the zero-frequency resonator to derive the inteymabout the impulse-like
discontinuity in each glottal cycle. The derived sequerfdmpulse locations is used for

estimating the fundamental frequency for each glottaleycl

5.2 Fundamental frequency estimation from epochs

Fundamental period is the time elapsed between two suveeghkittal cycles, the re-
ciprocal of which is referred to as fundamental frequencgaburement of fundamental
period requires identification of a well specified point witkeach glottal cycle to mark
the starting point of the cycle. Since the instant of glattabure is the most abrupt event
in a glottal cycle, it is the most commonly used anchor paanttheasuring fundamental
period [19]. In this work, we use the instants of glottal cies(epochs) extracted from
the zero-frequency filtering, discussed in Chapter 3, ab@mnuoints for measuring fun-
damental period. The fundamental period is measured asledriterval between two
successive epochs, and its reciprocal is used as funddrfregi@ency. The proposed ap-

proach is based only on the point property of the epoch anoki diot involve any block
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processing. As a result, the proposed approach can medmufimér period-to-period
variation in the fundamental frequency, which is an impatrigource of naturalness in
speech synthesis and voice conversion systems. Hence Wbecaleasured quantity as
instantaneous fundamental frequency as opposed to ‘méar pstimated by conven-

tional periodicity-based block processing methods.

Fundamental frequency estimation methods are often atedcivith a voicing de-
cision that is used to eliminate the unvoiced regions. Ia thethod, the glottal activity
detection discussed in Chapter 4 is used to detect the iegfmocal fold vibration. Since
the glottal activity detection is based on the strength aftaton in each glottal cycle,
accurate end-points of the voiced regions can be obtaingdi®ynethod. Fig[ 51 illus-
trates the proposed method for fundamental frequency astimon a Mandarin utterance
(collected from a female speaker) with fast pitch variagiomhe speech signal is passed
through a cascade of two ideal zero-frequency resonatoedsthee local mean computed
over the average pitch period is subtracted from the resowatput. Fig[5]1(b) shows
the resulting filtered signal for the speech signal shownignfk=1(a). The positive zero-
crossings of the filtered signal indicate the epochs, argkslof the filtered signal around
the epochs give their strengths of excitation. The locatmiithe epochs along with their
strengths are shown as pulses in Fig] 5.1(c). Notice thastilemgths of the excitation
are significantly high compared to the slopes of the spurzeus-crossings occurring in
the unvoiced regions. Hence the strengths of the excitatierused to detect the voiced
regions, and the time-interval between two successivetepocthe voiced regions is
used to measure the fundamental frequency.[Fip. 5.1(d)stimfundamental frequency
measured from the epoch locations in the voiced regions. pftigosed method is able
to measure the fast varying changes in the fundamentaldrexyuaccurately. The finer
variations are due to cycle-to-cycle variations in pitcjetr may be a speaker-specific

characteristic.
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Fig. 5.1: lllustration of proposed method of fundamental frequency estimation on a Mandarin utterance with fast pitch variations. (a) Speech signal.
(b) Filtered signal. (c) Epoch locations and their strengths of excitation. (d) Fundamental frequency measured from epoch locations. The unvoiced
regions are eliminated using the GAD method discussed in Chapter 4.



5.2.1 Validation of Fy estimates using Hilbert envelope

In the process of measuring the instantaneous fundamestialdgrom the intervals of
successive positive zero-crossings of the filtered sighaie could be errors due to spuri-
ous zero-crossings which occur mainly if there is anothguise in between two glottal
closure instants. To reduce theets due to spurious zero-crossings, the knowledge that
the strength of the impulse is the strongest at the epoclcimgattal cycle may be used.

In order to exploit the strength of impulses in the excitafior reducing the fects due to
spurious zero-crossings, the Hilbert envelope of speapiakis computed. The Hilbert

envelopeh[n] is computed from the speech sigrsah] as follows:

h[n] = /Sn] + <2[nl, (5.1)

wheres,[n] is the Hilbert transform o§[n], and is given by

sh[n] = IDFT[Sh(w)], (5.2)
where
Si(w) = { +j‘S(w), w<0 (5.3)
-jS(w), w > 0,
and
S(w) = DFT[Y[N]]. (5.4)

Here DFT and IDFT refer to the discrete Fourier transform iamdrse discrete Fourier

transform, respectively.

The Hilbert envelope contains a sequence of strong impatsesd the glottal closure
instants, and may also contain some spurious impulses et pidices due to the formant
structure of the vocal-tract, and the secondary excitatiorthe glottal cycles. But, the
amplitude of the impulses around the glottal closure irtstdominate over those of the
spurious impulses in the computation of the filtered sigHahce, the filtered signal of the
Hilbert envelope mainly contains the zero-crossings addhba instants of glottal closure.

However, the zero-crossings derived from the filtered dighalilbert envelope deviate
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slightly (around 0.5 ms to 1 ms) from the actual locationsefihstants of glottal closure.
In other words, the zero-crossings derived from the filtesigghal of Hilbert envelope

are not as accurate as those derived from the filtered sigrse®ch signal. Hence,
the accuracy of the zero-crossings derived from the filtesigdal of speech, and the
robustness of the zero-crossings derived from the Hilbbertlepe are used in conjunction

to obtain an accurate and robust estimate of the instantarfandamental frequency.

The instantaneous pitch frequency contour obtained franfiltiered signal of speech
is used as the primary pitch contour, and the errors in théocomre corrected using the
pitch contour derived from the Hilbert envelope of the spesgnal. The pitch frequency
contours are obtained from the zero-crossings of the fdteignals for every 10 ms. The
value of 10 ms is chosen for comparison with the results frémeromethods. Leps[m]
and p,[m] be the pitch frequency contours derived, respectivetynfthe speech signal
and the Hilbert envelope of the speech signal. The follovaggc is used to correct the
errors inps[m:

] { . it pum > 15pi(m) 5
ps[m], otherwise
wherem s the frame index for every 10 ms apfin| is the corrected pitch contour. The
factor 1.5 is used mainly to reduce the pitch doubling erimorps[m] due to spurious

zero-crossings. Any value between 1.3 to 1.8 is adequaterform this correction.

The significance of using the pitch contgoy{m| to correct the errors in the contour
ps[m] is illustrated in Fig[5]2. The filtered signal shown in Hg2(c) is obtained from
the speech segment shown in Fig] 5.2(a). It contains spaze-crossings around 0.1 s
to 0.2 s due to small values of the strength of excitationisrigion. On the other hand,
the pitch derived from the Hilbert envelope gives the cdresro-crossings. The main
idea of this logic is to correct the errors due to spuriou®ZE0ssings occurring in the
filtered signal derived from the speech signal. Steps irmeblm measuring instantaneous

fundamental frequency from speech signals are given irefafl.
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Fig. 5.2: Correcting the pitch contour obtained from speech signal using the pitch contour obtained
from Hilbert envelope. (a) Speech signal. (b) Hilbert envelope of the speech signal. Zero-frequency
filtered signal derived from (c) speech signal, and (d) Hilbert envelope. Fundamental frequency
derived from (e) filtered speech signal, (f) filtered Hilbert envelope, (g) correction suggested in (5.9).

The dashed lines in the figures indicate the ground truth given by the EGG signals.

88



Table 5.1: Steps in computation of instantaneous fundamental frequency from speech signals

(a) Compute the dierenced speech signgh].

(b) Compute the average pitch period using the histograrheopitch pe-
riods estimated from autocorrelation of 30 ms speech setgmen

(c) Compute the outpu[n] of the cascade of two zero-frequency res-
onators.

(d) Compute the filtered signgln] from y,[n] using a window length cort
responding to the average pitch period.

(e) Compute the instantaneous fundamental (pitch) freguémom the
positive zero-crossings of the filtered signal.

(f) Obtain the pitch contoupg[m] for every 10 ms from the instantaneous
pitch frequency.

(g) Compute the Hilbert envelopgn] of speech signad[n].
(h) Compute the pitch contous,[n] from the filtered signal oh[n].

() Replace the value ips[m] with p,[m] wheneverpgm] > 1.5p,[m].

5.3 Performance evaluation and comparison with other

pitch extraction methods

In this section, the proposed method of extracting the mateeous fundamental fre-
guency from the speech signals is compared with four egjstiethods in terms of ac-
curacy in estimation and in terms of robustness againstadegjon. The four methods
chosen for comparison are Praat’s autocorrelation mefbdjl ¢rosscorrelation method
[L28], subharmonic summatiop]77], and a fundamental feegy estimator (YIN)[127].
Initially the fundamental frequency estimation algorithiare evaluated on clean data.
Subsequently, the robustness of the proposed method ariduthexisting methods are
evaluated at dierent levels of degradation by white noise, babble noisevahitle noise.

A brief description of the implementation details of the fowethods chosen for compar-
ison is given below. The software program codes for impleingrthese methods are

available at the respective websites, and are used in tidy &r evaluation.
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5.3.1 Existing methods for fundamental frequency estimatin

Praat’s autocorrelation method (AC) [64]: The Praat’s algorithm performs an acoustic
periodicity detection on the basis of an accurate autotadroa method. This method is
more accurate and robust than the cepstrum-based methddsigimal autocorrelation-
based method Jp4]. It was pointed out that sampling and witpthe data cause prob-
lems in determining the peak corresponding to the fundaah@etiod in the autocorre-
lation function. In this method, the autocorrelation of treginal signal segment[7] is
computed by dividing the autocorrelation of the windoweghsi r ;[ 7] with the autocor-

relation of the window,[7]. That is,

ra[7]

rwltl’

rl7] = (5.6)

This correction does not let the autocorrelation functigr] taper to zero as the lag
increases, which helps in identification of the peak cowadmg to the fundamental
period. To overcome the artifacts due to sampling, the @lgaremploys asincinter-

polation around the local maxima. The interpolation pregién estimation of the fun-

damental period. The software code for implementation igfdlgorithm is available at

http://www. fon.hum.uva.nl/praat/ [[29].

Crosscorrelation method (CC) [IZ8]: In the computation of the autocorrelation
function, fewer samples are included as the lag increases. dfect can be seen as the
roll-off of the autocorrelation values for the higher lags. The \&abf¢he autocorrelation
function at higher lags are important, especially for loieiped male voices. For a 50 Hz
pitch, the lag between successive pitch pulses is 200 sarapbesampling frequency of
10 kHz. To overcome this limitation in the computation of tngocorrelation function,
a crosscorrelation function that operates on twidedent data windows is used. Each
value of the crosscorrelation function is computed oversime number of samples. A

software implementation of this algorithm is availablelwtite Praat systerp [129].

Subharmonic summation (SHS)[[7[7/]:Subharmonic summation performs pitch anal-
ysis based on a spectral compression model. Since a congoressa linear scale cor-

responds to a shift on a logarithmic scale, the spectral cesspn along the linear fre-
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quency abscissa can be substituted by shifts along theitlogée frequency abscissa.
This model is equivalent to the concept that each spectraponent activates not only
those elements of the central pitch processor, but als@telesnents that have a lower
harmonic relation with this component. For this reasors thethod is referred to as the
subharmonic summation method. The contributions of varmamponents add up, and
the activation is the highest for the frequency sensitieengint that is most activated by
its harmonics. Hence, the maximum of the resulting sum specgives an estimate of
the fundamental frequency. A software implementation isfétgorithm is available with

the Praat systeni [129].

The fundamental frequency estimator, YIN [IZT]: The fundamental frequency esti-
mator, YIN [127], was developed by Alain de Cheveigne andelickawahara, is named
after the oriental yin-yang philosophical principle of &ate. In this algorithm, the au-
thors attempt to balance between the pitch peak in the autdaton function and cancel-
lation of the secondary peaks due to harmonics. ThHedity with autocorrelation-based
methods is that the peaks occur at multiples of the fundaah@etriod also, and it is
sometimes diicult to determine which peak corresponds to the true fundéahperiod.
The YIN method attempts to solve these problems in severgwi is based on a dif-
ference function, that attempts to minimize th&etience between the waveform and its
delayed duplicate, instead of maximizing the product asito@rrelation. The dierence

function is given by

N
d[r] = > (s[n] - s[n + 7])? (5.7)

In order to reduce the occurrence of subharmonic errors,erigloys a cumulative mean
function which deemphasizes higher period valleys in tifiedince function. The cumu-

lative mean function is given by

A , =0
di7] = (5.8)

d[7] ;
ST otherwise

The YIN method also employs a parabolic interpolation oflteal minima, which has
the dtect of reducing the errors when the estimated pitch periatbtsa factor of the

window length. The Matlab code for implementation of thigalthm is available at
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http://www.auditory.org/postings/2002/26.html] [[30].

5.3.2 Databases for evaluation

Keele database: The Keele pitch extraction reference databgse][L3T][182]sed to
evaluate the proposed method, and to compare with the rxistethods. The database
includes speech data from five male and five female spealaais speaking a short story
of about 35 s duration. All the speech signals were sampledrate of 20 kHz. This
database provides a reference pitch for every 10 ms, whigbt&ned from a simultane-
ously recorded EGG signal, and is used asgitweind truth Pitch values are provided at
a frame rate of 100 Hz using a 25.6 ms window. Unvoiced framegwicated with zero

pitch values, and negative values are used for uncertaimesa

CSTR database: The CSTR databasg [133] [134] consists of fifty sentences) ea
read by one adult male and one adult female, both with nohegbagical voices. The
database contains approximately five minutes of speechsféech is recorded simulta-
neously with a close-talking microphone and a electrogtptiph in an anechoic chamber.
The database is biased towards utterances containingMoicatives, nasals, liquids and
glides. Since some of these phones are aperiodic in coropans/owels, standard pitch
estimation methods find themfficult to analyze. In this database, the reference pitch

values are provided at the instants of glottal closure.

5.3.3 Evaluation procedure

The performance of the existing as well as the proposed psgtimation algorithms is

evaluated on both Keele database and CSTR database. Algttessare downsampled
to 8 kHz for this evaluation. All the methods are evaluatadgia search range of 40 Hz to
600 Hz (typical pitch frequency range of human beings). Tost4processing and voicing
detection mechanisms of the existing algorithms are deshfptherever applicable) in this

evaluation.
The accuracy of pitch estimation methods is measured aogptd the following
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criteria [60]:

e Gross error (GE):lt is percentage of voiced frames with an estimdtgdalue that

deviates from the reference value by more than 20%.

¢ Mean absolute error (M)It is the mean of the absolute value of thé&elience be-
tween the estimated and the reference pitch values. Gnass are not considered

in this calculation.

e Standard deviation (SD)t is the standard deviation of theftérence between es-
timated and reference pitch values. Gross errors are ngidemed in this calcula-

tion.

The reference estimates as provided in the databases atdansevaluating the pitch
estimation algorithms. The reference estimates are timfeed and aligned with the esti-
mates of each of the methods. The best alignment is detedrbinéaking the minimum
error, over a range of time-shifts, between the estimatasetkfrom the speech signal
and the ground trut [IP7]. This compensation for timetshifequired due to acoustic
propagation delay from glottis to microphone, grddue to the dferences in the imple-

mentations of the algorithms.

The gross estimation errors, the mean absolute errors anstdhdard deviation of
errors of diferent algorithms for fundamental frequency estimatiorgaren in Tablg 5]2.
In the table, the performances of pitch contours deriveohfpg[m], pn[m] and p[m] are
also given. Most of the time, the percentage gross errorthiproposed method are
significantly lower than the percentage gross errors foematiethods. The results clearly
demonstrate thefiectiveness of the proposed method over other methods. Naté¢he
proposed method is based on the strength of the impulseXi&iation, and it does not
depend on the periodicity of the signal in successive dlojteles. The method does not
use any averaging or smoothing of the estimated values deagar segment consisting

of several glottal cycles.

The potential of the proposed method in estimating the mateous fundamental

frequency from the speech signals is illustrated in Figl 5.3’he segment of voiced
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Fig. 5.3: Potential of the proposed method in estimating the instantaneous fundamental fre-
quency. (a) Speech signal. (b) Zero frequency filtered signal. (c) Differenced EGG signal.
Arrows indicate the positive zero-crossings of the zero-frequency filtered signal. Fundamen-
tal frequency derived from (d) proposed method, (e) Praat’s autocorrelation method, (f) cross
correlation method, (g) subhormonic summation, and (h) YIN method. The dashed lines in

the figures correspond to the reference pitch contour (i.e., ground truth).
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Table 5.2: Performance of algorithms for fundamental frequency estimation on clean
data. ps[m] denotes the pitch contour derived from filtered speech signal. pn[m] denotes
the pitch contour derived from filtered Hilbert envelope. p[m] denotes the pitch contour
obtained by combining evidence from ps[m] and py[m] (5.5).

Keele Database CSTR Database
Method | GE (%) | M (Hz) | SD (Hz) || GE (%) | M (Hz) | SD (Hz)
AC 5.345 | 2.656 | 3.694 5.238 | 4.777 | 6.820
CC 6.891 | 2.201 | 3.371 6.818 | 5.108 | 6.730
YIN 3.219 | 2.165 | 2.906 3.073 | 4922 | 6.584
SHS | 10.774| 1.868 | 2.398 8.938 | 4.108 | 5.864
psml | 2.935 | 3.198 | 4.555 || 3.394 | 5.459 | 6.974
pi[m | 5.647 | 4562 | 6.381 | 4.157 | 5.699 | 6.886
pm] | 2.603 | 3.207 | 4.473 | 1.943 | 5.367 | 6.801

speech in Fig. 53(a) is not periodic. The signal shows mionédagity between alternate
periods, than between adjacent periods. It is only throbghanalysis of the éfierenced
EGG signal (Fig[5]3(c)), the actual pitch periods could beesved. The correlation-
based methods fail to estimate the actual fundamental érexyuof the speech segment
in these cases. On the other hand, the positive zero-cgsssirthe filtered signal clearly

show the actual glottal closure instants.

5.3.4 Evaluation under noisy conditions

In this section we study thetect of noise on the accuracy of pitch estimation algorithms.
The existing methods and the proposed method were evaloated artificially gener-
ated noisy speech database. The noisy environment camslitiere simulated by adding
noise to the original speech signal affeient signal-to-noise ratios (SNRs). The noise
signals were taken from Noisex-92 databdse][123]. Thresenamvironments, namely,
white Gaussian noise, babble noise and vehicle noise, wasdered in this study. The
utterances were appended with silence so that the total@trobsilence in each utterance
is constrained to be about 60% of data, including the pausteiutterances. The result-

ing data consist of about 40% speech samples, which is them@mbdspeech activity in
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a typical telephone conversation. The noise from Noisexi®2base is added to both
Keele database and CSTR database to create the noisy ddN&dée®ls ranging from
20 dB to -5 dB.

Table[5.B shows the gross estimation errors feiedeént pitch estimation algorithms on
the Keele database and CSTR database at varying levels @ddggn by white noise.
The performance of the correlation-based methods is gina@ted is reasonable at low
noise levels (upto an SNR of 10 dB). But for higher levels aofrdeation, the estima-
tion errors increase dramatically for all the systems, piéer the proposed method,
where the degradation in performance is somewhat gradwdlugness of the proposed
method to noise can be attributed to the impulse-like naititiee glottal closure instants
in the speech signal. The energy of white noise is distribbteh in time and frequency
domains. While the energy of an impulse is distributed actbs frequency range, it
is highly concentrated in the time domain. Therefore th@-z®ossing due to an im-
pulse is unffected in the output of the zero-frequency resonator eveneiptesence of
high levels of noise. Fig. 5.4 illustrates the robustnesthefproposed method in esti-
mating the instantaneous fundamental frequency undey woisditions. Fig[ 5]4(a) and
Fig.[5.4(b) show the waveforms of a weakly voiced sound uetiam and degraded (by
white noise at 0 dB SNR) conditions, respectively. [Fig] &.4nd Fig.[5.4(d) show the
zero-frequency filtered signals derived from the clean.(5id(a)) and the noisy signals
(Fig.[5.4(b)), respectively. Though the individual pesazhn be observed from the clean
signal in Fig.[5.(a), it is diicult to observe any periodicity in the noisy signal shown in
Fig.[5.4(b). But the zero-crossings of the filtered signaivéel from the noisy waveform,
remain almost the same as those derived from the clean siliunstrating the robustness

of the proposed method.

Fig. [5.5 illustrates the performance of the proposed methmter noisy conditions,
compared to the performance of the other methods. A segrspéech signal, degraded
by white noise, at 0 dB SNR is shown in F[g.]5.5(a). The esguhaitch contour from
the proposed method is given in F[g.]5.5(d), where the estidnealues match well with
the reference pitch values or ground truth (shown by dashedes). The errors in the

estimated pitch (deviation from the ground truth) can bexséearly in all the other four
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Fig. 5.4: Comparison of filtered signals derived from clean and degraded speech
signals. (a) Speech signal of a weakly voiced sound. (b) Speech signal degraded
by white noise at 0 dB SNR. (c) Filtered signal derived from clean signal in (a).
(d) Filtered signal derived from noisy signal in (b).

methods used for comparison . Since the other methods depesttl on the periodicity
of the signal in successive glottal cycles, the periodiftihe signal waveform isféected
by noise and hence the accuracy. Even for clean signal, thayebe regions where the
signal is far from periodic in successive glottal cycleg ence there are more errors in
comparison to the proposed method as can be seen in[TapIBl&e that the proposed
method does not use any knowledge of the periodicity of tleeslp signal, nor assumes
regularity of the glottal cycles. Therefore there is scapef@irther improvement in the
accuracy of the pitch estimation by combining the proposethod with methods based

on autocorrelation.

Table[5.# and Tablg §.5 show the performance of all the fieh@stimation methods

under speech-like degradation as in babble noise and layudrecy degradation as in
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Fig. 5.5: Robustness of fundamental frequency estimation algorithms under noisy conditions.
(a) Speech signal degraded by white noise at 0 dB SNR, (b) Zero frequency filtered signal,
(c) Differenced EGG signal, arrows indicate the positive zero-crossings of the filtered signal
in (b). Fo derived from (d) Proposed method, (e) Praat’s autocorrelation method, (f) crosscor-
relation method, (g) Subharmonic summation and (h) YIN method. The dashed lines in the
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figures correspond to the reference pitch contour.
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Table 5.3: Gross estimation errors (in %) for different pitch estimation algorithms at varying
levels of degradation by white noise.

Keele Database CSTR Database

SNR AC CcC YIN SHS | Proposed| AC CcC YIN SHS | Proposed
Clean| 5.345 | 6.891 | 3.219 | 10.774| 2.603 5.238 | 6.818 | 3.073 | 8.938 1.943
20dB| 5.580 | 7.012 | 3.352 | 11.366| 2.832 5.319 | 6.900 | 3.081 | 9.432 | 1.959
15dB| 5.756 | 7.320 | 3.400 | 12.085| 3.116 5.626 | 7.131 | 3.139 | 9.981 2.211
10dB| 6.655 | 9.065 | 4.058 | 14.313| 3.346 5.972 | 8.100 | 3.366 | 11.462| 2.256
5dB | 9.173 | 13.462| 5.955 | 19.562| 3.907 6.249 | 12.287| 4.933 | 14.868| 3.069
0dB | 15.340| 21.85 | 12.876| 30.994| 5.768 14.505| 21.191| 12.885| 22.820| 5.019
-5dB | 28.373| 36.043| 26.223| 50.115| 10.188 | 26.809| 34.876| 28.582| 40.691| 10.530

vehicle noise. The performance of the proposed method igpaable to or better than

the other methods even for these two types of degradation.

The performance of the proposed method under babble nadde(b.14) and vehicle
noise (Tablg 5]5) is inferior to its performance under whitése (Tablg 5]3). This is be-
cause theféect of degradation due to white noise is uniformly distréalin the frequency
domain, and does not introduce any impulse-like discoittesin the time domain. The
degradation due to vehicle noise is mostly concentratedardw frequency region (0—
300 Hz), from which the epoch information is derived using pnoposed method. Hence
the vehicle noiseféects the locations of zero-crossings in the filtered sigeallting in a
performance degradation. In the case of babble noise, thels®-like degradations due
to epochs of the background speakers introduces spurioascressings in the filtered

signal. The spurious zero-crossings lead to high grosssimdghe proposed method.

5.4 Summary

In this chapter, we have proposed a method for extractingngtantaneous fundamental
frequency from the speech signal. The proposed method iexgihe impulse-like char-

acteristic of excitation in the glottal vibrations for prazing voiced speech. Since an
impulse sequence has energy at all frequencies, the zmadncy resonator proposed

in Chapter 3 was used to derive the instant of significanttation in each glottal cycle.
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Table 5.4: Gross estimation errors (in %) for different pitch estimation algorithms at varying
levels of degradation by babble noise.

Keele Database CSTR Database

SNR AC CcC YIN SHS | Proposed| AC CcC YIN SHS | Proposed
Clean| 5.345 | 6.891 | 3.219 | 10.774| 2.603 5.238 | 6.818 | 3.073 | 8.938 1.943
20dB | 5.635 | 7.501 | 3.624 | 12.061| 3.147 5,597 | 7.238 | 3.233 | 10.026| 2.268
15dB| 6.613 | 8.860 | 4.705 | 13.921| 3.781 6.653 | 8.938 | 3.629 | 11.713| 2.640
10dB | 9.246 | 12.900| 7.356 | 17.895| 5.158 10.513| 14.438| 7.007 | 15.330| 3.720
5dB | 16.155| 21.579| 15.745| 26.35 8.618 19.438| 24.400| 18.947| 24.177| 7.205
0dB | 29.086| 35.795| 31.852| 42.559| 16.149 | 36.072| 41.879| 41.788| 41.232| 15.038
-5dB | 45.114| 50.211| 48.714| 62.840| 28.530 | 54.854| 60.430| 63.685| 62.307| 30.141

Table 5.5: Gross estimation errors (in %) for different pitch estimation algorithms at varying
levels of degradation by vehicle noise.

Keele Database CSTR Database

SNR AC CcC YIN SHS | Proposed| AC CcC YIN SHS | Proposed
Clean| 5.345 | 6.891 | 3.219 | 10.774| 2.603 5.238 | 6.818 | 3.073 | 8.938 1.943
20dB | 5.333 | 6.891 | 3.358 | 11.215| 2.941 5.040 | 6.607 | 3.060 | 9.169 2.046
15dB| 5.550 | 7.428 | 3.708 | 12.067| 3.104 5.069 | 6.372 | 3.184 | 9.701 2.281
10dB | 6.504 | 8.763 | 4.457 | 14.102| 3.920 5.164 | 6.479 | 3.514 | 11.099| 3.007
5dB | 9.886 | 13.196| 7.893 | 18.227| 6.081 6.756 | 8.191 | 5.576 | 14.147| 5.551
0dB | 17.689| 21.669| 14.246| 25.583| 10.509 | 10.695| 13.091| 10.867| 20.770| 10.884
-5dB | 32.564| 35.934| 27.956| 39.950| 20.304 || 19.904| 23.431| 23.909| 34.402| 18.89

The method does not depend on the periodicity of glottalesjahor does it rely on the

correlation of the speech signal in successive pitch psridbdus the method extracts the

instantaneous fundamental frequency given by the recbaithe interval between suc-

cessive glottal closure instants. Errors occur when thength of excitation around the

instant of glottal closure is not high. To correct these rsrthe pitch period information

derived from the zero-frequency resonator output is matlib@sed on the pitch period
information derived from the Hilbert envelope of the spesinal using the proposed

method. The method gives a better accuracy in comparisdnstandard algorithms for

pitch estimation. Moreover, the method was shown to be tauesn under low signal-to-

noise ratio conditions.
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The proposed method depends only on the impulse-like eixgitan each glottal cy-
cle, and hence the intervals between successive glottEgce obtained without using
the periodicity property in the time domain, or the harmastiticture in the frequency
domain. Since the correlation of the speech signal in ssoeeglottal cycles is not used,
the method is robust even when there are rapid changes iuticessive periods of ex-
citation, and also when there are rapid changes in the voaetlsystem, as in dynamic
sounds. It may be possible to improve the performance of tbpgsed method by ex-
ploiting additionally the periodicity and correlation perties of the glottal cycles and

speech signals, respectively.
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Chapter 6

Processing Multimicrophone Data

Using Excitation Source Information

In many modern (hands-free) communication applicatiopsgsh signals are obtained
in enclosed spaces such as meeting rooms with talkersesitaat distance from micro-
phone. Moreover, in a meeting room scenario there is a pbgsdd more than one talker

speaking at the same time. In these conditions, the obsepaetch signal is degraded
by room reverberation, background noise and speech of tihgeting speakers. Rever-
beration degrades the speech sighal][135], acting adyesseinany speech processing

applications including speech analysis, speech recogratnd speaker recognition.

In the presence of room reverberation, a microphone signlaéimixture of the source
speech signal and its delayattenuated copies. As a result, the microphone signal con-
tains spurious impulse-like excitations due to reflecteshponents of the actual source
signal. Moreover, the amplitude of the direct componemdfis low as the microphone
is located at a distance from the source. Because of thesgdathe speech signal col-
lected in reverberant environment igfdrent from the speech signal recorded through a
close speaking microphone. F[g.]6.1 illustrates tfieat of reverberation on the speech
signal collected by a microphone placed at a distance frenspleaker. Fig. §.1(a) shows
the speech signals collected by a close speaking microplamaeFig.[6.]1(b) shows the

speech signal collected by a microphone placed at a dis@nZen from the speaker.
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Fig. 6.1: lllustration of effect of reverberation on speech signal collected at a
distance. Segment of speech signal collected by (a) close speaking microphone,
and (b) microphone placed at a distance of 2 m from the speaker.

Both the signals are recorded simultaneously, and are dligaed by compensating for
the delay due to acoustic propagation. The amplitude of lkencspeech signal in the
closed glottis region is significantly high compared to itgditude in open glottis region.

Hence, the individual pitch periods can clearly be obsefi@u the clean speech signal
in Fig. [6.3(a). On the other hand, these observations arevidé¢nt from the reverberant
speech signal shown in Fig. p.1(b), because of the followgagons: (a) The amplitude
of the direct component is low because of the attenuatifiersd along the acoustic path.
(b) The reflected components of the high amplitude signaldsexl glottis region spread
into the open glottis region making itfiicult to unambiguously detect the individual
pitch periods. As a result, the performance of the algorittion epoch extraction and

pitch determination, inevitably, degrades in the pres@ficeverberation.

In the meeting room scenario, in addition to tHeeet of reverberation, often more
than one talker speak at the same time. In such a case, tha s@lected at the mi-
crophone is a mixture of convolution of source signals with impulse responses of
the acoustic paths. As a result, the multispeaker speedalsigntains epochs due to
all the speakers (and their reflected components), whicleméklificult to observe the

individual pitch periods.

The issues involved in both reverberant environment andispelaker environment

can be addressed when the speech signals collected fronpleuaticrophones are avail-
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able for processing. Microphone arrays are known to be usefeverberant environ-
ments [I36] due to spatial diversity of the room transfercfion. Recent developments
in speech analysis have made use of microphone arrays fohepraction [137] 138]
and pitch detectior[ [I39, 74P, 139] from reverberant spesuig a delay-and-sum beam-

former.

In this chapter, we discuss methods for pitch extractiomfspeech signals collected
in reverberant environment, and in multispeaker envirammen both the cases, the
speech signals are collected from a pair of spatially séparaicrophones in a real room
environment. Spatial separation of microphones resublssfixed time-delay of arrival of
speech signals from a given speaker at the pair of microghdbeept for the time-delay,
the relative locations of the instants of significant exaitaof the vocal-tract system re-
main unchanged in the direct components of the speech sigh#tie microphones. The
time-delay of arrival between the pair of microphones isnested using the excitation
source characteristics of the speech signal. By compegdati the estimated time-delay
of arrival, the speech signals from the pair of microphornescaherently processed to
emphasize the epoch information, while minimizing tifieet due to reverberation. In a
multispeaker case, theftBrences in the time-delays forfidirent speakers are exploited
to separate the epochs due to individual speakers. Thiderhiaprganized as follows:
A method for estimation of the time-delay using the Hilbaerteope of the LP residual
is presented in Sectidn §.1. In Section] 6.2, we discuss aaudtr pitch estimation in
reverberant environment using multimicrophone data. Ahoetfor multipitch estima-
tion from multispeaker multimicrophone data is presente@eéction[6J3. Sectioh 6.4

summarizes the contributions discussed in this chapter.

6.1 Time-delay estimation

In a multispeaker multimicrophone scenario, assuming ttatspeakers are stationary
with respect to the microphones, there exists a fixed timaydaf arrival of the speech
signals (between every pair of microphones) from a givealsge The time-delays cor-

responding to dierent speakers can be estimated using the crosscorrefatiormon of

105



the multispeaker signals. Positions of dominant peaks enctiosscorrelation function
should ideally correspond to the time-delays due to all reakers at the pair of micro-
phones. However, the crosscorrelation function of the ispgtaker signals does not show
prominent peaks at the time-delays. This is mainly becatifeeadamped-sinusoid-like
components in the speech signal due to resonances of thetkaxta and also because
of the dfects of reverberation and noise. Theffe@s can be reduced by exploiting the

characteristics of the excitation source of spe¢ch|[141].

The impulse-like excitations during the production of \waspeech occur at the epoch
locations. In the vicinity of these impulses, the speechaligxhibits a high SNR relative
to the other regions. In order to highlight the high SNR regian the speech signal,
LP residual is derived from the speech signal using the amelation method[J4]. The
LP residual reduces the second order correlations amongptheles of the signal, and
produces large amplitude fluctuations around the instanggyaificant excitation. The
LP residual corresponds to an estimate of the excitatiorceaf the speech signal. Note
that the LP analysis of a multispeaker speech signal alstupes uncorrelated samplesin
the LP residual, where large amplitude residual samplesoappately correspond to the
excitation part in the multispeaker signal. The crossdatian function of the LP residual
signals from the two microphone multispeaker speech ssgaaiot likely to yield strong
peaks because of the large amplitude fluctuations of randaarify around the epoch
locations, as shown in Fif. 6.2(b). The high SNR regionsmadbe epoch locations can
be highlighted by computing the Hilbert envelope of the LBidaal [2]. The Hilbert
envelopeh[n] of the LP residual is computed as the amplitude envelopé®fanalytic
signal derived from the LP residual, as discussed in Seftidrd. The Hilbert envelope
of the LP residual in Fig. 6}2(b) is shown in F[g.]6.2(c).

The crosscorrelation function of the Hilbert envelope @ ttP residual signals de-
rived from the multispeaker signals is used to estimateithe-tlelays[[0]. Apart from
the large amplitudes around the instants of significantation, the Hilbert envelope con-
tains a large number of smaller positive values also, whiely nesult in spurious peaks
in the crosscorrelation function. Therefore, the regiamsiad the instants of significant

excitation can be further emphasized by dividing the sqoaeach sample of the Hilbert
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Fig. 6.2: Highlighting the high SNR regions around the epoch locations. (a) A
200 ms segment of multispeaker speech signal, (b) its LP residual, (c) Hilbert
envelope of LP residual, (d) Hilbert envelope after emphasizing the epochs. The
plots in (c) and (d) are normalized with their respective maximum values.

envelope by the moving average of the Hilbert envelope caetpbaver a short window
(about 4 ms, i.e., less than the average pitch period) arthensample. The computation

of the preprocessed Hilbert envelope is as follows][141]:

h’[n]

ai[n] = , i=12 (6.1)

1 n+M
S X y hi[m]

m=n—

whereh;[n] is the Hilbert envelope of the LP residual of the multisperadignal collected
at theith microphoneg;[n] is the corresponding preprocessed Hilbert envelope Ml

the number of samples corresponding to the duration of 2 Bisdfnples at 8 kHz). The
effect of emphasizing the regions around the instants of sogmifiexcitation is shown in

Fig. [6-2(d) for the Hilbert envelope shown in F[g.]6.2(c).€eT¢rosscorrelation function
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r12[l] between the preprocessed Hilbert envelopégs] andg,[n] is computed ag141]

N—|k|-1
> Gu[nlg[n—1]
riofl] = e ., 1=0,+1,+2,..., <L, (6.2)
N—|k|-1 N—-lk|-1
> gilnl gln-1]
n=z n=z

wherez = I,k = 0, forl > 0, andz = 0,k = I, for| < 0, andN is the length of the
segments of the Hilbert envelope. Here, both the vectorsi@malized to unit magni-
tude for every sample shift before computing the crosstairom. The crosscorrelation
function is computed over an interval oL 2 1 lags, where R + 1 corresponds to an
interval greater than the largest expected time-delay.|digest expected time-delay can
be estimated from the approximate positions of the spealeidhe microphones. The
locations of the peaks with respect to the origin (zero ldghe crosscorrelation function
correspond to the time-delays between the microphonelsifmaall the speakers. The
number of prominent peaks should correspond to the numbgpexdkers. However, in
practice, this is not always true because of the followigons: (a) All the speakers may
not contribute to voiced sounds in the segments used for gongpthe crosscorrelation
function. (b) There could be spurious peaks in the crosstairon function, which may
not correspond to the time-delay due to a speaker. Hencelyvery on the delay due to
the most prominent peak in the crosscorrelation functidms @elay is computed from the
crosscorrelation function of successive frames of 50 matdur shifted by 5 ms. Since
different regions of the speech signal may provide evidencé&éde¢lays corresponding
to different speakers, the number of frames corresponding to eday id accumulated
over the entire data. This helps in determining the numbespebkers as well as their
respective delays. Thus by collecting the number of franoesesponding to each de-
lay over the entire data, there will be a large evidence ferddlays corresponding to the
individual speakers. Fif. 8.3 shows the percentage of &mads for each delay, for single-
speaker recordings. Similarly, Fig. .4 shows the percentdithe frames for each delay,
for two-speakers recordings. The histogram plots obtabyedsing the crosscorrelation
of speech signals are also shown for comparison. The plateample Fig[ 6]4(b) and

Fig.[6.4(f)) show that emphasizing the regions around theificant excitation using the
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Hilbert envelope gives better estimation of the time-dglayhe locations of the peaks in
the histogram indicate the time-delays due teitent speaker§ [I41]. Thus the number
of prominent peaks in the histogram indicates the numbepeélsers in the conversa-
tion. The estimation of time-delays is based on the assomptiat each speaker speaks
at least for reasonable percentage of time. The minor peakdee to random peaks in

the correlation functions, and their occurrence is usiusathall (< 5%).

The accuracy of the time-delay estimation is evaluatedgufia speech signals col-
lected from a single-speaker and from two speakers. Spesahnds collected simulta-
neously using a pair of microphones separated by about 1 naimoaatory environment
with an average (over the frequency) reverberation timéotia0.5 s. All the recordings

for this study were made under the following practical ctinds:

(a) The speakers were seated at an average distance of 1dsmthie microphones.
The speakers were seated such that their heads and the hanespwere approxi-

mately in the same plane.

(b) While collecting the two-speakers data, the speakers masitioned in such a way
that the time delay is flierent for diferent speakers. In fact, any arbitrary placement

of the speakers with respect to the microphones satisfigsauirement.

(c) Itis assumed that the level of the direct component oéspdérom each speaker at
the microphones is significantly high relative to the noiseé eeverberation compo-

nents in the room.

(d) While recording the two-speakers data, both the spsaitere stationary and they
spoke simultaneously during the entire duration of reecagydiesulting in significant

overlap.

The speech signals were sampled at 8 kHz. During each regprtie distances of the
speakers from both the microphones were measured. Thd tctaadelayr of arrival of
the speech signals Mic-1 andMic-2 located at distanced; andd,, respectively, from a

speaker is given by

d, —d
T= (—02) (63)
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Table 6.1: Comparison of estimated time-delays 7 with reference
time-delays t for four single-speaker recordings. Reference values
are computed from the measured distances d; and d,.

S. No. d]_ d2 T T

(m | (m | (ms) | (ms)

122 | 1.64 | -1.27 | -1.25
1.20 | 0.99 | 0.636 | 0.625
1.33 | 1.43 | -0.303| -0.25
1.75 | 1.40 | 1.060 1

AW |IN|PF

wherec s the speed of sound in air. A negative time-delay (leadyates that the speaker

is nearer tdMlic-1 relative toMic-2.

The multimicrophone signals were processed using the pezgpmethod to obtain
the time-delays. A 18 order LP analysis was used for deriving the LP residual. The
crosscorrelation function of the preprocessed Hilbertetpes of the LP residuals of
the multimicrophone signals was used to estimate the tiel@yd. The percentage of
frames for each delay (in ms) for single-speaker cases andpaakers cases are shown
in Fig. and Fig[ 64, respectively. The locations of eiakthe time-delay histogram
correspond to the time-delays due tdfelient speakers. Tabfe .1 lists the actual time-
delayr obtained from the measured distancesand d,, and the estimated time-delay
obtained from the histogram for four single-speaker reogsl Similar comparison of
time-delays for four two-speakers recordings is providedable[6.R. The actual and
the estimated time-delays are in close agreement, thusaitialg the &ectiveness of the
method in determining the time-delay of arrival from mulitnophone data. Minor devi-
ations between the actual and estimated time-delays ceudtibuted to the following:
(a) Errors in measuring the actual distances, (b) the tiesetution that can be achieved
at the sampling frequency of 8 kHz (multiples of 0.125 ms)] &) movement of the

speakers during a recording session.
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Fig. 6.3: Time-delay histograms for four single-speaker recordings. The plots in the first
column are obtained from the preprocessed Hilbert envelope, and those in second column
are obtained directly from the speech signal. Each row of plots corresponds to an entry in
Table .7, in that order.
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Fig. 6.4: Time-delay histograms for four two-speakers recordings. The plots in the first col-
umn are obtained from the preprocessed Hilbert envelope, and those in second column are
obtained directly from the speech signal. Each row of plots corresponds to an entry in Ta-
ble 6.3, in that order.
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Table 6.2: Comparison of estimated time-delays T with reference
time-delays t for four two-speakers recordings. Reference values
are computed from the measured distances d; and d,.

S.No| Spkrj | dy O 7| 7|

(m) | (m) | (ms) | (ms)

1 Spkr-1 | 0.85 | 110 |-0.757| -0.75
Spkr-2 | 1.27 | 1.07 | 0.61 | 0.625

2 Spkr-1 | 1.24 | 1.38 | -0.424| -0.5
Spkr-2 | 1.20 | 0.94 | 0.787 | 0.75

3 Spkr-1 | 1.10 | 1.43 -1 -1
Spkr-2 | 1.50 | 1.16 | 1.030 1

4 Spkr-1 | 1.16 | 1.29 | -0.393| -0.375
Sprk-2 | 1.52 | 0.90 | 1.878 | 1.875

6.2 Pitch estimation in reverberant environment

When the speech signal is collected in an acoustical envieoi like a meeting room, it
will be degraded by background noise and reverberation spbech signal collected at a

distance from the microphone may be expressed as

saln] = sl + > assln — 7] + v{nl, (6.4)
i=1

wheresy[n] is the degraded signa${n] is the source signal angn] is the background
noise componenty; is the amplitude of the reflected component arriving afteelaylof

7; samples andl is the number of reflections. The background noise compas@mde-
pendent of speech, whereas, the reflected component isatpem the previous speech
signal. The &ect of the reflected components on the speech signal is nditpable. The
reflected components of the speech signal arriving at arlgittme-delays get superposed
with the direct component causing discontinuities in bemvthe actual epoch locations.
Because of the spurious discontinuities resulting fronréfiected components, the pitch

estimation algorithm presented in Chapter 5 can not beegbdirectly on the reverberant
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Fig. 6.5: Effect of reverberation on the filtered signal. (a) Speech signal collected
at a distance of 1.8 m from the speaker, and (b) its filtered signal.(c) Speech
signal collected at a distance of 1.5 m from the speaker, and (d) its filtered signal.

speech signal. The discontinuities caused by the reflectegbanents introduce spurious
zero-crossings in zero-frequency filtered speech signdlitas difficult to distinguish the
zero-crossings due to the epochs. Fig. 6.5(a) and F]g.)&bev a segment of speech sig-
nal collected by a pair of microphones placed at distand&snland 1.5 m, respectively,
from the speaker. The zero-frequency filtered signals nbthirom the speech signals are
shown in Fig[6.6(b) and Fif. 6.5(d). The zero-frequencegri@t signals contains several
spurious zero-crossings that aréidult to distinguish from the zero-crossings due to the
actual epochs. Though the individual evidences from therétt signals of speech col-
lected using a pair of microphones do not provide true zenssings, and thereby pitch,
both the speech signals can be processed coherently tcagstine pitch in reverberant

conditions.
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6.2.1 Emphasizing epochs over reverberant components

The excitation source of voiced speech segments consistamflse-like excitations
around the epoch locations. The impulse-like excitaticaaratteristics are captured using
preprocessed Hilbert envelope of LP residual of voiced dpe€&he impulse-like excita-
tion is robust in the sense that the relative spacing of tleelegpdue to direct component
remains unchanged atfférent microphone locations. That is, the epochs correspgond
to the direct components will beoherentat different microphone positions. This can be
observed from Fig[ 6.6, where the Hilbert envelopes of Lidtess of speech signals
collected from a pair of microphones are time-aligned aisgldiyed. The voiced speech
segments chosen for this illustration are the same as tlseskin Fig[6]5. Fid. §.6(d) and
Fig.[6.6(e) show the Hilbert envelopes of LP residuals ot&dispeech segments shown
in Fig.[6.6(a) and Fid. 6].6(b), respectively. The Hilben&npes contain several spurious
peaks along with the peaks at the epoch locations. But tlaitots of the spurious peaks
are not in coherence, whereas, the locations of the peak®dymchs are in coherence.
Hence, by coherently adding Hilbert envelopes of both theré$tduals, the coherent
epochs can be enhanced over the incoherent spurious pesiisvais in Fig[6J6(f). The
coherently added Hilbert envelope shows significantly gssious peaks as compared
to the individual Hilbert envelopes. Notice that the pit@ripd information is observed
more clearly in Fig[ 6]6(f), compared to the signal shownig [B.6(c), which is obtained

by coherent addition of speech signals.

The coherently added Hilbert envelope obtained from thedpsignals collected us-
ing a pair of microphones is used for pitch estimation in reeeant environment. The
interval between two successive significant peaks in thereotlly added Hilbert en-
velope corresponds to the pitch period. But peak detectimm the coherently added
Hilbert envelope is not a trivial task. As the amplitudeste peaks have a large dynamic
range, it is not possible to set a fixed threshold to detechthia this work, the peaks
are detected using the zero-frequency filtered signal afoherently added Hilbert enve-
lope. The zero-frequency filtered signal of the cohererdlyeal Hilbert envelope exhibits
sharper zero-crossings at the peak locations [Fip. 6.fsthe zero-frequency filtered

signal of the coherently added Hilbert envelope shown in Eig(a). The positive zero-
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Fig. 6.6: Effectiveness of coherent addition of Hilbert envelopes for emphasizing
peaks due to epochs over the peaks due to reflected components. (a) Speech
signal collected at Mic-1, (b) speech signal collected at Mic-2, (c) coherently
added speech signals, (d) Hilbert envelope of LP residual of speech signal in
(a), (e) Hilbert envelope of LP residual of speech signal in (b), and (f) coherently
added Hilbert envelopes.
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Fig. 6.7: lllustration of zero-frequency filtering on coherently added Hilbert en-
velope. (a) Coherently added Hilbert envelope and its (b) zero-frequency filtered
signal. (c) Coherently added speech signal and its (d) zero-frequency filtered
signal. The arrows in (a) indicate the epoch locations obtained from positive
zero-crossings of zero-frequency filtered signal.

crossings of the filtered signal are in close agreement \Wwihdcations of the peaks of
the coherently added Hilbert envelope. Fig] 6.7(d) showdittered signal of the coher-
ently added speech signal shown in Fig] 6.7(c). As menti@aelier the filtered signal
of the coherently added speech signals contains spurisasceassings, as thetect of

reverberation is not minimized.

The pitch frequency is measured as the reciprocal of the itmeeval between two
successive positive zero-crossings of the filtered sightthe coherently added Hilbert
envelope. Fig. 6]8(a) and Fig. 6.8(b) show speech signéicoed using a pair of micro-
phones, and Fig. §.8(c) shows the coherently added Hilbeeglepe derived from them.

The arrow marks in Fig. 6.8(c) indicate the positive zemssings of the filtered signal
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(Fig.[6-8(d)) of the coherently added Hilbert envelope. Plieh contours for the voiced
segments are obtained from the positive zero-crossingseofiltered Hilbert envelope.
The unvoiced segments are indicated by zero pitch values.vdlting decision is ob-
tained from the filtered Hilbert envelope shown in Hig] 6)8(tNotice that the voiced
regions can be clearly observed from the filtered signalctvig not evident from the

speech signals because of tikeets of reverberation and background noise.
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Fig. 6.8: lllustration of pitch estimation from multimicrophone speech signals in reverberant environment. Speech signal collected at
(a) microphone-1, (b) microphone-2, (c) coherently added Hilbert envelope, its (d) zero-frequency filtered Hilbert envelope and (e) pitch contour
derived from successive positive zero-crossings of filtered Hilbert envelope.



6.2.2 Performance evaluation

Performance of the proposed pitch estimation method uswigpte microphones was
evaluated on the speech data collected in a laboratoryaemaent. Fifteen randomly
selected TIMIT utterances were recorded from three malaksgs. The speech data was
simultaneously recorded using three microphones - a clzesaking microphone and two
distant microphones located at 1.8 m and 1.5 m from the spgalédl the recordings
are done at a sampling frequency of 8 kHz. Close speakingopticme recordings are
used to create the reference pitch values using the pitahagin method presented in

Chapter 5. Distant microphone recordings are used to eedllne proposed method.

The gross error (GE), the mean absolute error (M), and thelatd deviation error
(SD),defined in Chapter 5, are used to evaluate the pitcimatds obtained from the pro-
posed method. The reference pitch values are obtained fiensgeech data recorded
using the close speaking microphone. The performance girthigosed method is com-
pared with the performance of Praat’s autocorrelation ogt@ind the pitch estimation
method proposed in Chapter 5, on the speech signals callatiedividual microphones.
Table[6.B gives a performance comparison of proposed mahiphone pitch estimation
with the existing methods applied on individual microphataa. AC-Micl and AC-
Mic2 denote the Praat’s autocorrelation method appliedpmesh signals collected at
Mic-1 andMic-2, respectively. ZFR-Micl and ZFR-Mic2 denote the zero-fiengy res-
onator method, proposed in Chapter 5, applied on speechlsigallected aMic-1 and
Mic-2, respectively. The performance of Praat's autocorrafati@thod is better than the
performance of the method proposed in Chapter 5 on indiVidiophone data. This is
because of the spurious zero-crossings in the filtered Isiyeato reflected components.
When the epochs are emphasized by coherent addition ofrdédbeelopes, the resulting
performance is better than the performance of the existiathaads on any one of the
individual signals. The smaller GE for the proposed metmalicates that the number of
frames, for which the estimated fundamental frequency It 20% of the reference
values, is large. As a result, the computation of mean abs@uor for the proposed
method includes low SNR frames. Hence the mean absoluteasrdostandard deviation

are slightly higher for the proposed method compared tcetamsthe AC method.
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Table 6.3: Performance of pitch estimation algorithms on reverberant speech
data. AC-Micl and AC-Mic2 denote Praat’s autocorrelation method applied on
speech signals collected at Mic-1 and Mic-2, respectively. ZFR-Micl and ZFR-
Mic2 denote the zero-frequency resonator method, proposed in Chapter 5, ap-
plied on speech signals collected at Mic-1 and Mic-2, respectively.

Method GE (%) | M (Hz) | SD (Hz)
AC-Micl 26.50 3.62 5.20
AC-Mic2 22.71 3.37 4.80
ZFS-Micl 34.38 9.46 7.37
ZFS-Mic2 28.04 8.09 6.77

Coherent Addition| 16.43 | 4.07 4.82

6.3 Multipitch extraction

The signal collected by a microphone in a multispeaker envirent is a mixture of
speech signals from several speakers. Pitch extractiom finaltispeaker speech signals
is a challenging task, as the pitch periods from all the spesadverlap, making it dicult

to even observe the individual pitch periods. Fig] 6.9(a) Big.[6.9(b) show the speech
signals collected by a pair of microphones when two persons (nale and one female)
are speaking simultaneously. It igitult to observe the pitch periods corresponding to
the speakers from any of the two signals. Even the autoedioalof a frame (30 ms) of
the two-speaker signal is not likely to yield two unambigsi@eaks corresponding to the
pitch periods of both the speakers. In this work, the muttadqer signals from the pair of
microphones are processed together to emphasize the egoohation of the individual

speakers.

6.3.1 Emphasizing epochs of individual speakers

The characteristics of excitation around the epochs, aaddhustness of the relative
spacing of the epochs in the speech signals collected at afpaicrophones can be ex-
ploited for identifying the epoch locations correspondiog given speaker. Lej;[n]

andg,[n] be the preprocessed Hilbert envelopes of the LP residdidtespeech signals
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collected atMic-1 andMic-2, respectively, as given ifi (6.1). By aligning the Hilbert en
velopesy,[n] andg,[n] after compensating for the estimated time-delay ¢orrespond-
ing to Spkr-1, the epochs corresponding to that speaker will be in coleeranhereas the
epochs corresponding &pkr-2will be incoherent. By considering the minimum of the
Hilbert envelopes);[n] andg,[n — 74], only the Hilbert envelopes around the epochs cor-
responding tc&spkr-lare retained. Note that this operation of retaining mininansures
that the Hilbert envelope peaks at the epochs of the otheikepe are suppressed. The
resulting signal is referred as the Hilbert envelope spemfSpkr-1 In a similar manner,
the signal that retains the Hilbert envelope around thelepoorresponding t8pkr-2can

be derived. Let

hsj[n] = min(@.[n], g2[n - 7]), =12 (6.5)

wherehg[n] and hy[n] are the signals in which the Hilbert envelopes around tlexlep

corresponding t&pkr-landSpkr-2 respectively, are retained.

Fig. 6.9 illustrates the extraction of speaker-specifichétit envelopes from two-
speaker speech signals collected using a pair of microghdtig.[6.P(c) and Fig. §.9(d)
show the Hilbert envelopes of the LP residuals of the twakpespeech signals shown
in Fig. [6.9(a) and Fig._6]9(b), respectively. The Hilben@&opes consist of the impulse-
like excitations due to the epochs of both the speakersdiffisult to separate the peaks
due to epochs of the individual speakers from any one of tH&umthe speaker-specific
Hilbert envelopes (Fid. §.9(e) and F[g.]6.9(f)), obtaingdbmputing the minimum of the

delay-compensated Hilbert envelopes, clearly show epiwédo individual speakers.

The proposed method of obtaining speaker-specific Hilbevelepes also aids in
identifying the regions specific to the individual speakensd the overlapped regions.
Fig.[6-10(a) and Fid. 6.]L0(b) show speech signals collectad two male speakers using
a pair of microphones. The regions of speech signal speoifibe individual speakers
are marked by dashed lines in Fig. 6.10(a), and are labeheti@top. The labels '1’
and '2’ indicate the regions specific ®pkr-1only andSpkr-2only, respectively. The
label '1&2’ indicates the region where there is an overlapated speech from both the
speakers. The regions are marked and labelled manuallgtepning to the two-speaker
data. Neither the speech signals (ffig. .10(a) and Fig(I6))L0or the Hilbert envelopes
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Fig. 6.9: lllustration of extracting speaker-specific Hilbert envelopes from two-
speaker data collected using a pair of microphones. Speech signal collected at
(a) Mic-1 and (b) Mic-2. Hilbert envelope of LP residual of (c) Mic-1 signal, and
(d) Mic-2 signal. Speaker-specific Hilbert envelopes of (e) Spkr-1and (f) Spkr-2
The time-delays of arrival due to Spkr-1and Spkr-2are 0.5 ms and -0.625 ms,
respectively.
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Fig. 6.10: lllustration of extracting speaker-specific regions from multispeaker
speech signals. Speech signal collected at (a) Mic-1 and (b) Mic-2. Hilbert en-
velope of LP residual of (c) Mic-1 signal, and (d) Mic-2 signal. Speaker-specific
Hilbert envelopes of (e) Spkr-land (f) Spkr-2
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of their LP residuals (Figl 6.10(c) and Fig. §.10(d)) givey atue for identifying the
regions of individual speaker activity. However, the spadpecific Hilbert envelopes
shown in Fig[6.7]0(e) and Fif). 6]10(f) clearly separate #ggons corresponding to indi-
vidual speakers. For example, the region from 0.75 s to G@se toSpkr-1only, which

is reflected as impulse-like sequence in [fig.]6.10(e), amdhi®st zero in Fig[ 6.10(f).
Likewise, the region from 1.1 s to 1.5 s is dueSpkr-2only, which is reflected clearly in
Fig.[6-ID(f). In the overlapped region from 0.1 s to 0.7 shi¥&y.[6.1P(e) and Fid. 6.1L0(f)
show activity, and contains the epochs corresponding toabggective speakers as illus-
trated in Fig[6.J9. Hence, the speaker-specific Hilbert lapes can be used to detect the

regions of individual speaker activity, and to estimatertimelividual pitch.

6.3.2 Multipitch extraction using zero-frequency resonabr

The speaker-specific Hilbert envelopes predominantlyaioninpulse-like excitations at
the epoch locations of the respective speakers. The pitobdpef a given speaker can be
estimated by measuring the interval between two succegsks in the speaker-specific
Hilbert envelope of that speaker. This requires detectiegkp from speaker-specific
Hilbert envelope, that contains large variation among teakpamplitudes. In order to
avoid the dificult task of peak detection, the zero-frequency filteringrapch proposed
in Chapter 3 is employed to detect the impulse-like exatetiin the speaker-specific
Hilbert envelope. The positive zero-crossings of the #iteHilbert envelope closely
match with the peaks in the speaker-specific Hilbert enelap shown in Figl 6.]11.
Fig.[6.I1(a) and Fig. 6.11(b) show the speaker-specificadilbnvelope oSpkr-land
its filtered signal, respectively. Even the low amplitudalmearound 90 ms to 120 ms are
correctly detected, while the spurious peaks around 50 6§ tms are rightly ignored.
Similar observations can be made from [fig. b.11(c) andEidl (@), which show speaker-
specific Hilbert envelope ddpkr-2and its filtered signal. Hence the zero-crossings of the
filtered signal of the speaker-specific Hilbert envelopesumed to estimate the pitch of

the individual speakers.
Performance of the proposed multipitch detection methdlisgrated in Fig[6.12 for

125



(b)

0 25 50 75 100 125 150

TR R T TR T T

0.5r | I : 1 (c)
5 100 125 15

0 25 50 7 0
1 T T T T T
0 , - ! (d)
-1 I I I I I
0 25 50 75 100 125 150

Time (ms)

Fig. 6.11: lllustration of epoch extraction from speaker-specific Hilbert envelope
using zero-frequency resonator. (a) Speaker-specific Hilbert envelope of Spkr-1
and its (b) zero-frequency filtered signal. (c) Speaker-specific Hilbert envelope of
Spkr-2and its (d) zero-frequency filtered signal. The arrow marks in (a) and (c)
indicate the epoch locations detected from zero-crossings of filtered signals in (b)
and (d), respectively.

artificially mixed signals whose source signals are knowig. f-12(a) and Fid. 6.12(b)
show the speaker-specific Hilbert envelopeSpkr-1(male) and its filtered signal, re-
spectively. The solid line in Fig. 6.]L.2(c) shows the pitchtour derived from the positive
zero-crossings of the filtered signal in Fig. 6.12(b). Theetbline indicates the reference
pitch contour derived from the source signal. The pitch conterived from the multi-
speaker signal using the proposed method closely folloesdference pitch contour. A
few gross errors occur because of the errors in detectingptb@ker-specific regions from
the Hilbert envelopes. Fif). 6]12(d), F|g. §.12(e) and Fi1§I2€) show the speaker-specific

Hilbert envelope oSpkr-2 its filtered signal, and the pitch contour derived from the fi
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tered signal, respectively. The deviation of the estimpttxh contour from the reference
may be attributed to spurious peaks occurring due to relataminance of the speak-
ers. In this case, an informal listening of the mixed speéghats suggests th&pkr-1

is relatively more dominant thaBpkr-2 In general, it was observed that the proposed
multipitch estimation provides better estimates for theng@nt speaker compared to the

background speaker.

6.4 Summary

In this chapter, we proposed methods to process multimiaoop data for pitch extrac-
tion in reverberant environment and multispeaker enviremmA method is discussed for
estimating the time-delays (due to multiple speakers) fspeech signals collected over
a pair of spatially separated microphones. The method hecknowledge of the exci-
tation source, unlike the commonly used spectrum-baseldadst The Hilbert envelope
of the LP residual signal derived from speech is used to semtethe excitation source
information. The time-delays are estimated from the cragselation function of short
segments (50 ms) of Hilbert envelopes. Since the time-dalay be estimated accurately
even from short segments of Hilbert envelope, it may be ptessd develop an algorithm

to track a moving speaker.

Using the knowledge of time-delay, the Hilbert enveloped.Bfresiduals of indi-
vidual microphone signals are coherently added. The callgradded Hilbert envelope
emphasizes the peaks due to epochs while deemphasizinguhels peaks due to rever-
berant components. In order to avoidfdiult task of peak detection of coherently added
Hilbert envelope, we proposed to use the zero-frequeneyifity (proposed in Chapter 3)
on coherently added Hilbert envelope to detect impulse-dikcitations. The time inter-
vals between successive positive zero-crossings of teediitsignal of coherently added

Hilbert envelope are used to measure the pitch in reverbersironment.

Multipitch extraction is achieved by exploiting thefldirences in time-delays corre-
sponding to dierent speakers. When the Hilbert envelopes are comperisatbéd time-

delay due to one of the speakers, then the epochs of thatespsalkbe coherent, while
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Fig. 6.12: lllustration of performance of proposed method of multipitch extraction.
(a) Speaker-specific Hilbert envelope of Spkr-1, (b) its filtered signal, and (c) pitch
contour derived from zero-crossings of the filtered signal. (d) Speaker-specific
Hilbert envelope of Spkr-2 (e) its filtered signal, and (f) pitch contour derived from
zero-crossings of the filtered signal. The dashed lines in (c) and (f) indicate the
reference pitch contours derived from source signals.
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the epochs due to the other speaker will be incoherent. Hémeeninimum of the delay
compensated Hilbert envelopes emphasizes epochs duespeaieer, while deemphasiz-

ing epochs due to the other speaker. The speaker-specifierb@nvelopes, thus derived,

are used for multipitch extraction.
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Chapter 7

Analysis of Manner of Articulation of

Stop Consonants

Stop consonants are a class of speech sounds whose chatiadiesiture is an interval
during which the airflow is completely blocked within the bcavity. With the nasal
cavity closed by velum, the air pressure built up behind tta¢ dosure is released more
or less impulsively as the vocal-tract moves towards a cardigpn appropriate for the
following vowel. Depending on the place of closure in the eewity, different linguistic
contrasts of the stop consonants can be produced. A stopramisis said to be voiced
(in a phonetic sense) if there is an audible laryngeal polsaturing the closure phase,
and unvoiced if it is absent. Another phonetic feature tradally attributed to the stop
consonants is aspiration. If a stop consonant has noisgivgloelease, it is said to be

aspirated; if not, it is unaspirated.

Stop consonants of consonant-vowel type form an importabset of alphabet in
most Indian languages. Taljle]7.1 lists the stop consonatitdtve vowel endingg/ for
Indian languages. The stop consonants have clear mannarsiaflation besides the
distinct places of articulation. The acoustic-phonetisaition of the consonants in
each of these syllables is precise, and is expressed in térwvogced (V), unvoiced (uV),
aspirated (A) and unaspirated (UA) categories. That isafgiven place of articulation

there exists a four way contrast, among the stop consondepending on the manner
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of articulation. While the information about the place di@rlation is characterized by
dynamics of the vocal-tract system, the manner of articardais primarily dictated by

the excitation source. One of the challenging tasks in $pasalysis is to determine the
acoustic correlates of the articulatory events during tieepction of the stop consonants,

that are dificult to extract even from clearly articulated speech siginal

The objective of this work is to study the role of source feasuin the analysis of
manner of articulation of stop consonants. Note that soateffes of the excitation source
may be too short as in the case of burst, or too random as inage af aspiration. As
a result, mere spectral description of these characteregions may not provide unique
and clear features. Moreover, thffeets of block processing may limit the visibility
of these features in the spectrogram. Hence, we proposeetthasexcitation source

information derived from the speech signal for analyzirgystop consonants.

This chapter is organized as follows: Sect[or] 7.1 highghe importance of exci-
tation source information for analysis of manner of ar@éian of stop consonants. In
Section[ 72, we describe the excitation source featuresechto study the stop conso-
nants. In Sectiop 7.3, we illustrate the potential of thepps®d excitation source features
in distinguishing voiced, unvoiced, aspirated and unaspd stop sounds. Finally, Sec-

tion[7.4 summarizes the results presented in this chapter.

Table 7.1: Stop consonants in Indian languages.

uVUA | UVA | VUA | VA
Velar ke | /K'd | /ga | /oY
Post-alveolar /ta | /t"a | /dg | /d"e
Dental /el | /e | /g | /dy
Labial /pd | /p"g | /by | /by
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7.1 Significance of glottal activity in stop consonant anal-

ySIs

During speech production, the articulators in the vocatitare briefly coupled in a func-
tional manner to produce the acoustic characteristics@éapsounds. For example, the
production of bilabial unvoiced stop consongntrequires the following set of actions.
The lips are closed by the joint activity of the jaw and thesliprhe velum is elevated
to seal df the entrance into the nasal cavity. The glottis is widenatithe longitudinal
tension of the vocal folds is often increased to preventgloibrations. All these artic-
ulatory actions contribute to the period of silence in theustic signal, and the increase
in oral air pressure that is associated with an unvoiced stmgonant. At some point
during the phonation of consonant-vowp¥, the speaker closes down the glottis, and,
given a suitable balance of airflow and muscular tensionydieal folds begin to vibrate.
This shift in the mode of glottal activity occurs more or ledguptly with a change in
supralaryngeal articulation, from the closure phase ofstbe (p/) to the progressively
more open oral configuration of the following vowgd/j. The acoustic consequences of
this combination of glottal and oral activities depend vemych on their relative timing.
For example, during the phonation of bilabial voiced stiog, the vocal fold vibration
starts during the closure itself, yielding a low-frequeteynd during the closure leading
to a full formant pattern after the release of the stop. Theal4fold vibration during the
oral closure is commonly referred to esice-bar On the other hand, during the phona-
tion of bilabial unvoiced aspirated stg'a/, the onset of vocal fold vibration is delayed
until some time after the release. There is an interval betvtiee closure release and vo-
cal fold vibration, when the relatively unimpeded air rughthrough the glottis provides
the turbulent excitation commonly callegpiration This aspiration phase is character-
ized by considerable attenuation of the first formant, fiacé that can be attributed to
the presence of the trachea below the open glottis. Theuattiem of the first formant
and the accompanying band limited noise may extend intorémsition region and be-
yond. Finally, the intensity of the burst, that is, the plesexcitation of the oral cavity

upon release of the stop, may kféeated by the glottal closure. Thus, it is reasonable to
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suppose that all these acoustic features can be related gidttal activity. More impor-
tantly, the timing of glottal activity with respect to theabactivity is an important clue for
discriminating diferent manners of articulation for a given place of articakatFig.[7.1
illustrates the relative placement of the important eventse production of various stop

consonants.

Burst-release Voicing Burst-release  Voicing

\ Frication ‘ %catm
\¥ Aspiration

(a) Unvoiced unaspirated (b) Unvoiced aspirated
Voicing Burst-release Voicing Burst-release
Aspiration
kﬂ e
Frication Frication
(c) Voiced unaspirated (d) Voiced aspirated

Fig. 7.1: Schematic representation of the important events in the stop consonants

7.1.1 \oice onset time

The instant of onset of vocal fold vibration relative to tlederase of closure (burst) is
the commonly used feature to analyze the manner of artionl& production of stop
consonants. The interval between the time of burst releatieettime of onset of vocal
fold vibration is defined as voice onset time (VO[) [L07].slimportant to note that VOT
is merely one of the large set of interrelated acoustic aqunseces of variation in relative
time of oral and glottal activities. Abramson and Liskerdifiee measure of VOT mainly
because the onset of glottal pulses seen as vertical stigaitn wide-band spectrograms

is a clear sign that glottis has shifted from the fully opeatesto the vibratory statg [142].

Accurate determination of VOT from acoustic signals is imaot both theoretically

and clinically. From a clinical perspective, the VOT cohd#s an important clue for as-
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sessment of speech production of hearing impaired spefl€3% From a theoretical
perspective, the VOT of stop consonants often serves asdicigt acoustic correlate
to discriminate voiced from unvoiced, and aspirated froragmirated stop consonants.
The unvoiced unaspirated stop consonants typically havetal positive VOTs, mean-
ing that the voicing of the following vowel begins near thetamt of closure release. The
unvoiced aspirated stop consonants followed by a vowel bightly higher VOTs than
their unaspirated counterparts, as the burst is followetheyaspiration noise. The dura-
tion of the VOT in such cases is a practical measure of agmirafhe longer the VOT,
the stronger is the aspiration. On the other hand, voicqu&asonants have a negative

VOT, meaning that the vocal folds start vibrating beforegtap is released.

Since the voicing onset is a characteristic of glottal agtithe VOT can be accurately
determined from the EGG signal along with speech waveformmelimes even with
EGG waveform it may be flicult to mark the voicing onset due to ‘subcritical’ vocal
fold vibration in breathy voicing condition$ [14#, 145]. Mmver, EGG signals are not
commonly available in practice. Therefore it is necessargdrive the voicing onset

information from the acoustic speech signal itself.

Most commonly used methods for measuring the onset of \wiane based on the
onset of periodicity in the acoustic waveform, possiblygemented by spectrographic
analysis [I08], especially the onset of visible energy mfirst formant [II0] or higher
formants [11]1]. One of the issues in using spectrograptarnmation for determining
onset of voicing is that there are obviouffeiences between the latency of voicing onset
at different frequencies. For example, vertical striations dueotaing typically appear
later in higher formants compared to the first formant. Meezpin the case of aspirated
stops the attenuation of the first formant during aspiratiay extend into the follow-
ing vowel making it dificult to accurately locate the voicing onset. Hence, ch@pain
unique landmark in the spectrogram as voicing onset is novialttask. Comparative
study of accuracy and variability of five acoustley( F1, F2, F3 and periodicity) mea-
sures of the voicing onset showed that measurements baseal/eform provide the best
results [144].

The ideal acoustic measurement of the voicing onset is atddhoth accurate and
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relatively consistent. The main problem with the above no@eid acoustic measures is
that the desired information of the glottal activity is inery low frequency region (within
theF;), where the energy of the acoustic signal is low comparede@mplitude at other
frequencies. In spectrographic analysis, tifeas of block processing sometimes limit
the visibility of formant features. The presence of noisd anicing in the aspirated
(breathy) regiong[146], and the low amplitude of the vdiee-in voiced stops make the
direct measurements from the waveforrflidult. Thus the analysis of stop sounds, espe-
cially the voiced aspirated stops, to extract informatibaw the voicing onset remains a

challenge.

Since the glottal activity is primarily due to the excitatisource of the vocal tract
system, itis likely that if the analysis is focused on theieimn component in the speech
signal, it may provide new insights into the phonation chemastics present in the signal.
It is also desirable to avoid spectral analysis, as it magriably use block processing,
resulting in blurring the details of voicing onset infornaat. In the following section, we
propose nonspectral features of the speech signal to dtedyle of excitation source in

the production of stop consonants.

7.2 Excitation-based nonspectral analysis of stop conso-

nants

The primary and most important mode of excitation is due éotttivity at the glottis. In
normal voiced excitation (called modal voicing), therelwé vibrations of the vocal folds
resulting in glottal opening, followed normally by an abrajosure of the vocal folds, and
then a closing phase of the glottis, before the glottis imepegain for the next cycle due
to build up of pressure from the lungs. Other aspects ofalatttivity include vibration
with large opening for production of breathy voice, a conglgpening for the production
of unvoiced sounds, a partial closure of the vocal folds fodpction of creaky voice, and
finally a complete closure of the vocal folds such as for glattops. Fig.7]2 illustrates the

continuum of phonation types as proposed by Gardon and bgddfI14p]. We focus on
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extraction of the excitation due to glottal activity, ang to derive the acoustic correlates

of stop consonants from this excitation information.

Most open —= > Most closed

Phonation type: Voiceless Breathy Modal Creaky Glottal closure

Fig. 7.2: Phonation types [fL46]

The source of excitation to the vocal-tract system durirgpfoduction of stop con-
sonants can occur in any of the following two modes: (a) Tlygores where the vocal-
tract is excited by vocal fold vibration. (b) The regions whéhe vocal-tract is excited
by unimpeded airflow rushing through open glottis (burst asgiration). The regions
of vocal-fold vibration can be extracted from zero-frequefiltered signal proposed in
Chapter 3. Using the zero-frequency resonator, the infoaamabout vocal fold vibration
can be extracted irrespective of the vocal-tract dynamies,the place of articulation of
the stop consonant and the nature of the following vowel. ddethe excitation infor-
mation as reflected in the filtered signal can be used to d#teatgions of vocal fold

vibration and the precise instant of voicing onset.

During release of the closure and the aspiration regiores vtital-tract system is
excited by a rush of air through open glottis with irregularcal fold vibrations. This
region reflects in the spectrogram as band-limited noiseear prediction analysis is
employed to analyze the noisy component of the excitatiomcgo The linear prediction
residual, derived by inverse filtering the speech signalsed as an approximation to the
excitation component in the speech signal. The choice of-Bherder, the frame size
and the frame rate used for the LP analysis are not critioahis work, a 18 order LP
analysis is performed on frames of width 20 ms shifted by 10The ratio of the energy
of the LP residual and the speech signal for every block ofrdmme size and for every

sample shift is computed. The normalized error for each $asipft is computed as

n+N/2
> €[n+m)
m=n-N/2
n+N/2
> X[n+m
m=n—-N/2

nln] =

, (7.1)
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whereN + 1 is the total number of samples in each frame. The resultiogip called
the normalized error as function of the sample index, and used to distinguish the
excitation information due to noisy voiced segments andrcimiced segments. Note that
the spectral information in LPCs is ignored here, by consigeonly the residual. Though
block processing is used to derive the LP residual, ffexts of blocking are insignificant

for the analysis of the acoustic correlates of the stop cwansts under consideration.

The filtered signal[n] and the normalized erroj{n] are used to represent the exci-
tation information derived from the speech signal. Thiginfation, together with the
speech signal and its wideband spectrogram are plottedfoed aspirated syllabjga/
in Fig.[7.3, to study the acoustic correlates, especialiging onset, burst release and as-
piration. The waveform and the spectrogram are given onlydference. Their features
are not used to derive the acoustic correlates of the stopooamts. From the filtered
output in Fig.[7B(c), it is easy to determine the onset oftglactivity (marked as V)
and the ending of the glottal activity. In the initial voigimegion (voice-bar) the filtered
output is relatively high compared to the amplitude of tlgmal in that region. The value
of the normalized error in this region is low. At the releaseh@ burst (marked as B)
of the stop sound there is a significant increase in norndhkzeor shown in Fig. 7] 3(d).
The burst duration (region from B to A) cannot be seen eitheéhé waveform or in the
filtered output. During aspiration (region from A to M) thediled output is large indicat-
ing significant glottal activity, and is irregular (from &.% to 0.22 s) due to noisy plosive
release. But the filtered output alone is noffisient to distinguish the glottal activity
during aspiration and the following modal voicing (regidtea M), as it appears nearly
periodic in the transition region. The evidence from thenmalized error can also be ex-
ploited to distinguish aspiration region from the modalcwog region. The normalized
error is significantly high in the aspirated region compadcetthat in the modal voicing re-
gion. Hence the filtered output together with the normalieedr can be used to analyze

different manners of articulation of stop consonants.
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Fig. 7.3: lllustration of excitation source features for voiced aspirated stop conso-
nant /g"a/. (a) Wideband spectrogram, (b) speech signal, (c) filtered output, and
(d) normalized error. The wideband spectrogram and waveform are used only for
reference.

7.3 Analysis of manner of articulation for stop consonants

Isolated utterances of the CV units listed in Taplg 7.1 aedus this study. The ut-
terances are produced by three male speakers. Each udesampeated 5 times. The
speech signal is sampled at 8 kHz. The data is collected fediiferent vowel endings
(/a/,/1/,/u/,/e/, and/o/) for the 16 stop consonants. All the data was collected irbark
tory environment using a close-speaking microphone. Theislata can be considered as

clearly articulated clean data.

Fig. [7.4 shows the waveform, filtered output and the norredliarror plots for the

four velar stopgka/, /k"a/, /gg and/g"g/. The plots of the filtered outputs in each case
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clearly show the regions of glottal activity. The followimfpservations can be made to

distinguish the four categories:

(a) Unvoiced unaspirated: There is sudden increase in tiraatized error at the re-
lease of the burst. The normalized error is large in the dhowrt region relative to

the modal voicing region.

(b) Unvoiced aspirated: There is sudden increase in thealaed error at the release
of the burst. The largg[n] is extended over the aspirated region due to the presence
of breathy noise. Thg[n] is low in the modal voicing region. The filtered output is

somewhat less periodin the aspirated region.

(c) Voiced unaspirated: There is relatively large outputha filtered signal due to
initial voicing compared to the relatively small amplituttethe waveform. There

is increase in thg[n] during the short burst region.

(d) Voiced aspirated: The filtered output is large duringithtal voicing region, and
then in the aspirated and modal voicing regions. There ip andhe filtered output
at the burst release. But thyn] has an abrupt raise at the burst release, followed

by largen[n] in the aspirated region due to breathy noise.

Similar features are observed in stop consonants produaetex places of articulation.
The acoustic correlates derived from post-alveolar, denibilabial stop consonants are
shown in Fig[7}], Fid. 7.6 and Fig. .7, respectively. Thesbrelease instant (marked as
B) is determined as the instant where there is a large inelieagn]. The starting instant
of the glottal activity (marked as V) is derived from the fited output. In all the cases
the burst release instant (B) and voicing onset (V) canasilidentified. The interval

between these two instants is used as VOT in this study.
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Fig. 7.4: The speech signal, filtered output, and the normalized error for four different velar stop sound units
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Fig. 7.6: The speech signal, filtered output, and the normalized error for four different dental stop sound units
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Fig. 7.7: The speech signal, filtered output, and the normalized error for four different bilabial stop sound units



All the above observations are valid for stop consonants ditterent vowel endings.
Table[7.P shows the average durations of VOT fdifedent categories of CV units ending
with the vowel/g/. All the VOTSs are obtained manually from the filtered outpad dhe
normalized error as shown by the markers in Fig. 7.4. Forgedstops, the burst release
(B) takes place before the onset (V) of the glottal activitige interval between these two
is the VOT, and is also the burst duration in this case. The Y&Jenerally larger for
velar stops compared to the other three categories. Thitvedyasmaller volume of the
cavity behind the point of constriction in velar stops causgreater pressure, which will
take longer time to fall and allow an adequate transglottesgure for the initiation of
the vocal folds vibration[147]. The extent of articulat@yntact area in dental and velar
stops is more, resulting in a slower release because of theoBl effect pulling the
articulators togethef [I#7]. As the articulators come apare slowly, there is a longer
time before an appropriate transglottal pressure is predlué\s a result, the durations
of VOT for /ka/ and/tg/ are longer than those fgre/ and/pg. The VOT durations for
aspirated stop consonants are consistently longer thanuthespirated counterparts, as
the aspiration region follows the closure release in casespirated stops. The precise
duration of aspiration is flicult to measure from the plot of the normalized error, as the

effect of aspiration extends into the following vowel.

In the voiced stop consonants, the voicing onset (V) duedgtbttal activity occurs
before the closure release (B), resulting in a negative VQrattbn. The VOT durations
for different voiced stop consonants are given in Table 7.2. Ndtagthere is no clear
distinction between the unaspirated stop consonants amdatbpirated counterparts. In
fact, Abramson had pointed that, VOT may distinguish the&diaspirated stop conso-
nants from unvoiced stop consonants, in the context of midiaguages, but certainly not

from the voiced unaspirated stops [[L42].

In the case of voiced stop consonants, the burst duratiaffeseht from VOT. In our
study, itis observed that the burst durations provide sonueace regarding the presence
of aspiration in voiced stop consonants. The burst duratfon different voiced stop
consonants are given in Taljle]7.3. The burst durations éovdiced aspirated sounds are

consistently longer compared to their unaspirated copatts. In some cases, the voicing
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during the closure (voice-bar) continues to the followihg vowel, and the burst release
due to the closure release comes during the voicing itsélé Beginning and end of the
burst can be seen clearly in normalized error, while the Banaous glottal activity can

be observed from the filtered signal, especially for voicedspirated stops. For voiced
aspirated stops, the burst duration is sometimégcdit to identify as the breathiness
during aspiration and the burst duration may overlap. Thenabzed error may remain

large throughout the aspiration region, even though tredasure release during that

period.

Table 7.2: The average (across three speakers) durations of
VOT in stop consonants (in ms)

Unvoiced ka Ra ta tha ta fa pa pa

Duraton 32 36 16 20 23 29 12 15

Voiced ga da da d"a da da ba Ba
Duration -82 -65 -81 -86 -74 -73 -60 -52

Table 7.3: The duration of burst in voiced stop consonants (in ms)

Wiced ga da da d"a da da ba Ba
Duration 19 23 9 16 12 17 7 13

7.4 Summary

In this work, we have attempted to make a case for nonspeungtiods for analysis of
stop consonants. The methods are intended to focus on xeitdaracteristics during
the production of stop consonants. We have proposed thef usgmfrequency filtered
signal to extract the region of glottal activity, and thematized error from LP residual to
determine the noise regions of excitation during bursiasdeand during aspiration. The
onset of voicing can be detected from the filtered signal &edristant of burst release
can be detected from the normalized error. Voicing onset fon all the stop consonants

are measured using these two features together.
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Chapter 8

Summary and Conclusions

8.1 Summary of the work

During the production of voiced speech, impulse-like extaiin is delivered to the vocal-
tract system at the instant of glottal closure. The inst&gfi@ttal closure referred to as
epoch, and the rate of glottal closure referred to as stineoigéxcitation (at the epoch)
form important features of the excitation source. In thissih, we proposed a novel
method to extract the epoch locations and their strengths pfoposed approach does not
depend on the characteristics of the vocal-tract systenst Bitthe existing methods for
epoch extraction rely on modeling the vocal-tract systemla®ear filter, and then inverse
filtering the speech signal to extract the excitation souf@e the contrary, the proposed
approaches exploit the impulse-like nature of excitatiothe sequence of glottal cycles

to extract the epoch locations and to estimate their sthsngt

The impulse-like excitation to the vocal-tract system esua discontinuity in the
speech signal whosdfect spreads uniformly across the frequency domain. The-time
instants of these discontinuities may not be evident froersfieech signal because of the
time-varying response of the vocal-tract system. In thidgywye attempted to confine the
analysis to a narrow band of frequencies, to highlight tfecédue to the discontinuity, by
filtering the speech signal through a resonator with a nabawdwidth. We demonstrated

that the instantaneous frequency computed around a dgrehdsen center frequency
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gives locations of the discontinuities. In this approadte thoice of center frequency

critically depends on the vocal-tract configuration.

The discontinuity due to the impulse-like excitation iseeted uniformly in the fre-
quency domain, including at the zero-frequency. The infieenf the vocal-tract system
is relatively less at the zero-frequency, as the vocal-sgstem has resonances at much
higher frequencies. Hence, we use a zero-frequency resdoatxtract the epoch loca-
tions and their strengths. The method involves passingaech signal through a cascade
of two ideal resonators located at the zero-frequency. Tteedd signal is derived from
the output of the resonators by subtracting the local mearpoted over an interval cor-
responding to the average pitch period. The sharper zessitigs in the filtered signal

are shown to coincide with the instants of significant exigtawithin each glottal cycle.

The contribution of the vocal-tract system around the Zexquency is significantly
less compared to the contribution due to the impulse-lil@tation. Hence, the narrow-
band nature of the zero-frequency resonator is exploiteg$timating the strength of
excitation at the epoch from the speech signal. It is obskitvat the slopes of the filtered
signal around epoch locations closely follow the amplitidethe negative peaks in the
differenced EGG signal. The strength of excitation is significathe regions of vocal
fold vibration where the vocal-tract system is excited byiutse-like excitation. In the
unvoiced regions, the filtered signal is close to zero dué¢oaibsence of impulse-like
excitation. A method is proposed using the energy of the-feuency resonator to

identify the regions of vocal fold vibration from speechrsg

Using the epoch locations as anchor points within eachalloytcle, a method to es-
timate the instantaneous fundamental frequency of voipedah segments is proposed.
The fundamental frequency is estimated as the recipro¢bkahterval between two suc-
cessive epoch locations, derived from filtered speech ki@iace the proposed method
is based on the point property of epoch and does not involyeb&tk processing, it
provides cycle-to-cycle variations in pitch during voigirHence we call the resulting es-
timate as instantaneous fundamental frequency as opposedan pitch’ derived from
conventional block processing applications. Errors dusptarious zero-crossings in the

weak voiced regions are corrected using the filtered sigh&lilbert envelope of the
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speech signal.

Since the proposed method of pitch estimation exploits tijguise-like excitation
characteristic, the method does not work if there are amthtiimpulses due to echoes
or reverberation or overlapping speech from competingksgysaThe zero-frequency fil-
tered signal of a reverberant speech signal contains $esmraous zero-crossings due
to discontinuities introduced by the reflected componéntghis work, a method is pro-
posed for pitch estimation in reverberant environment fspmech signals collected using
a pair of spatially separated microphones. The spatialragpa of microphones results
in a fixed time-delay of arrival of speech signals at the paim@rophones. A method
based on excitation source is discussed for time-delagnastn. The crosscorrelation
of segments of Hilbert envelopes of the LP residuals fromeemicrophone signals is
used for time-delay estimation. The delay compensateceHilnvelopes are coherently
added to emphasize the regions around the epochs whileingdhe dtect of reverbera-
tion. The pitch is estimated from the zero-crossings of tkeréd signal of the coherently

added Hilbert envelope.

In this work, a method is proposed for multipitch extractfoom speech signals col-
lected using a pair of microphones. One important point tadited in the multispeaker
environment is that, as the speakers are spatially diséthwnique time-delay is asso-
ciated with each speaker. In this work, thdéfeliences in the time-delays forfidirent
speakers are exploited to emphasize the epochs due todndhspeakers. It is observed
that the minimum of the delay compensated Hilbert envelepgshasizes the epochs due
to a given speaker, and deemphasizes the epochs due to énsptiaker. The individual
pitch tracks are estimated from the zero-crossings of therdil signal of the speaker-

specific Hilbert envelopes.

Finally, we made an attempt to study the usefulness of dimitaource information
to analyze the manner of articulation of stop consonantso measures of excitation
source investigated in this study are the filtered speectakand the normalized error.
The filtered speech signal is used to characterize the ércitaformation during vocal-
fold vibration. The normalized error derived from LP anadyis used to highlight the

regions of noisy excitation caused by a rush of air througénoglottis during closure
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release and aspiration. It is observed that these two &sjamtly highlight important
events, like onset of voicing and instant of closure relggsthe stop consonants. Using
the two excitation source features, the voice onset timethadurst durations of stop

consonants in Indian languages were measured.

8.2 Major contributions of the work

The important contribution of the research work reportethia thesis is the extraction
and processing of excitation source information of speEgkraction of excitation source
information requires suppressing the vocal-tract respdrmsn the speech signal, which
is not a trivial task. In this work, we proposed methods taamttthe epoch locations
and their strengths by confining the analysis to a narrow laaodnd the zero-frequency
where the &ect of vocal-tract system is significantly low compared te tfmpulse-like

excitation. The major contributions of this thesis are:

e Studies on suitability of instantaneous frequency for ép@draction

e Epoch extraction from speech signals using zero-frequessxynator

e Estimation of the strengths of excitation at epochs fronespesignals.
¢ Glottal activity detection from speech signals

¢ Estimation of instantaneous fundamental frequency ofecbgpeech

e Estimation of time-delay from multimicrophone data usingitation source infor-

mation
¢ Pitch extraction in reverberant environment from multimmhone data
e Multipitch extraction from multimicrophone data

e Analysis of manner of articulation of stop consonants usixgtation source infor-

mation
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8.3 Directions for future work

e The proposed zero-frequency based method for epoch aatraay not work well
on speech data collected over telephone channels, and &sgHiftered speech sig-
nals, where the low frequency components are deliberatedypuated. In these
cases, the epochs may be extracted by confining the anabykiglier frequen-
cies than at zero-frequency. Instantaneous frequencyea$piech signal filtered
around a carefully chosen center frequency is shown to aeliapproximate loca-
tions of the epochs. The choice of the center frequencycaliyi depends on the
time-varying response of the vocal-tract system. Methal®ho be explored to
adaptively choose the center frequency of the resonatar the speech segment
under consideration. It was observed that there exist ptaeltenter frequencies
which can be used for epoch extraction. The evidences frdfarent center fre-

quencies can be combined to obtain a robust and accurath Epations.

e The strengths of the excitation can be used to estimate thnersdr which is known

to be a speaker-specific characteristic.

e The fundamental frequency estimation proposed in this wookides the period to
period variations in pitch during the production of voicgeech. These finer vari-

ations can be used to estimate the jitter which is a speglaaifec characteristic.

e The glottal activity detection approach presented in thaskywuses the energy of
the filtered signal. The performance of the method may beorgat by using the
knowledge of the intervals between successive zero-crgssiRegularity of the

zero-crossings observed in the voiced regions will be abeehe noisy regions.

e The proposed methods for processing multimicrophone das e speech signals
collected over two microphones only. The performance o$¢hmethods may be
improved by collecting speech signal using more number ofophones, and then

selecting the set of microphones closer to individual spesator processing.

¢ In the proposed approach for stop consonant analysis, tleeygmnset time and

burst durations are measured manually by observing thesfiltgignal and the nor-
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malized error. Methods have to be developed to detect thet afis/oicing and

instant of burst release automatically using the propogeitia¢ion source features.

e The proposed excitation source features may be useful iarthlysis of consonant-
vowel units. The proposed method of glottal activity may Iseful in accurate
detection of vowel-onset point, the instant at which traosifrom consonant to

vowel occurs, in a consonant-vowel unit.
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