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Abstract

The primary mode of excitation of the vocal-tract system during speech production is

due to the vibration of the vocal folds. For voiced speech, the most significant excitation

takes place around the instant of glottal closure, called the epoch. The objective of this

work is to extract the epoch locations and estimate their excitation strengths from the

speech signal. Conventional methods for extracting the excitation source features rely

on modeling the response of the vocal-tract as parameters ofan all-pole filter, and then

inverse filtering the speech signal to estimate the source information. Accuracy of these

methods depends critically on our ability to model the time-varying response of the vocal-

tract system. In this work, we propose methods to extract thefeatures of excitation source

using the impulse-like nature of excitation. The proposed methods do not depend on

modeling the response of the vocal-tract system.

The effect of an impulse is spread uniformly across the frequency domain including

at zero-frequency. Around the zero-frequency, the response of the vocal-tract system is

significantly low compared to the response of the impulse-like excitation. In this work,

the impulse-like nature of excitation is exploited by filtering the speech signal at zero-

frequency to extract the epoch locations and their strengths of excitation. Using the epoch

locations as anchor points within each glottal cycle, a method to estimate the instanta-

neous fundamental frequency of voiced speech is proposed. The strengths of excitation

at the epochs are used to detect the regions of vocal fold vibration, which is referred to

as glottal activity. Using the robustness of relative spacing between the epochs in speech

signals collected over a pair of microphones, methods for pitch extraction in reverberant

environment and multispeaker environment are proposed. The proposed method of ex-

tracting the glottal activity together with linear prediction analysis is used to study the
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role of excitation source in the analysis of manner of articulation of stop consonants. Ro-

bustness of the proposed epoch extraction and fundamental frequency estimation methods

has been studied and compared with the state-of-the-art methods.

Keywords: Epoch extraction, glottal closure instant, instantaneousfrequency, pitch,

strength of excitation, multimicrophone processing, manner of articulation, stop conso-

nants, zero-frequency resonator.
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Chapter 1

Introduction

Speech signal can be considered as the output of a linear system for which neither the

excitation nor the system response is known. In particular,voiced speech is the output of

a quasistationary vocal-tract system excited with quasiperiodic puffs of air produced due

to vibration of vocal folds. Although the vibration of vocalfolds produces a sequence of

glottal pulses, the significant excitation to the vocal-tract system within each glottal cycle

can be considered to occur around the instant of glottal closure, calledepoch. Epoch

location marks the start of the closed glottis region duringwhich there is little or no

airflow through the glottis. Accurate identification of closed glottis region allows the blind

deconvolution of the vocal-tract and excitation source. Characterization of the excitation

source features has great potential for use in speech analysis, synthesis, coding, speaker

recognition, and diagnosis of voice disorders.

During speech production, the vocal-tract responses at successive glottal pulses over-

lap forming a composite signal. Extracting the excitation information from speech signals

is a challenging task, as it is difficult to suppress the response of the time-varying vocal-

tract system in the speech signal. The existing methods for extracting the excitation infor-

mation from the speech signal are based on glottal inverse filtering [1, 2, 3]. These meth-

ods assume that the speech signal is produced as the responseof a linear time-invariant

system to an excitation signal having a flat spectrum. Glottal inverse filtering involves

the estimation of the characteristics of vocal-tract system in terms of the parameters of a
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linear filter. For instance, linear prediction (LP) analysis [4] is the standard method used

to estimate the parameters of the filter under the assumptionthat the vocal-tract can be

modeled as an all-pole filter. The effectiveness of the LP analysis in characterizing the

excitation information depends on the accuracy of the all-pole model, and the nature and

quality of the speech signal. Moreover, accurate estimation of the vocal-tract response

and excitation source are interdependent problems, as the accurate estimation of one de-

pends on the accurate estimation of the other. Reliable glottal inverse filtering requires

accurate estimation of the parameters of the all-pole filterrepresenting the vocal-tract sys-

tem, which in turn depends on the accurate identification of the closed glottis region. It

is desirable to characterize the excitation information from speech signals independent of

the influence of the vocal-tract system.

1.1 Objective and scope of the work

The objective of this work is to extract important features of the source of excitation

from the speech signal independent of the influence of the vocal-tract. The features of

the excitation source considered in this work include the locations of the epochs and their

strengths of excitation. The locations of the epochs along with their strengths of excitation

can be used in several speech analysis situations. Fundamental frequency of the voiced

speech can be accurately estimated using epoch as the anchorpoint in each glottal cycle.

The strengths of excitation of the epochs can be used to detect the regions of glottal

activity. Locations of the epochs along with their strengths can be used to analyze the

manner of articulation of the stop consonants.

This work is based on the assumption that the excitation to the vocal-tract system can

be approximated by a sequence of impulses of varying strengths. Hence, the methods pro-

posed in this work are not likely to work well when the degradations produce additional

impulse-like sequences in the collected speech signal as inthe case of reverberation. The

methods may also not work well when there is interference of speech from other speakers.
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1.2 Organization of the thesis

The evolution of ideas presented in this thesis is listed in Table 1.1. The contents of the

thesis are organized as follows:

In Chapter 2, we highlight the significance of epochs in speech analysis,and review

the existing methods for epoch extraction. In this chapter,we also review methods for

characterizing the strengths of excitation of epochs, detecting glottal activity and estimat-

ing fundamental frequency of voiced speech.

In Chapter 3, we propose a novel approach to epoch extraction from speechsignals,

by confining the analysis to a narrow-band of frequencies around zero-frequency. The

performance of the proposed approach is evaluated and the results are compared with the

state-of-the-art methods for epoch extraction.

In Chapter 4, a method for determining the strength of excitation of the epoch from

speech signals is proposed. The proposed measure of strength of excitation has a close lin-

ear relationship with the negative peak amplitude of the differentiated glottal flow. Since

the differentiated glottal flow is almost zero in unvoiced regions, we present a method

for glottal activity (voicing) detection based on the estimated strengths of excitation. The

strengths of excitation and the regions of glottal activityderived from the speech signal

are compared with simultaneous recordings of EGG signals.

In Chapter 5, we highlight the need for determining the instantaneous fundamental

frequency as compared to the “average pitch” obtained by theconventional block process-

ing methods. Then, we propose a method for estimating the instantaneous fundamental

frequency of voiced speech segments using the epoch as anchor point in each glottal

pulse. The performance of the proposed method is evaluated,and compared with existing

techniques under different noisy environments at varying levels of degradation.

In Chapter 6, we propose methods based on epoch extraction to process multimicro-

phone data in order to overcome the issues involved in pitch estimation in reverberant en-

vironment and multispeaker environment. A method for estimating time-delay of arrival

between a pair of spatially separated microphones using theexcitation source information

3



Table 1.1: Evolution of ideas presented in the thesis

• In voiced speech, the primary acoustic excitation normallyoccurs at the instant of
glottal closure (epoch), and is impulse-like.

• The effect due to the impulse-like excitation is reflected uniformly across all the
frequencies, irrespective of the state of the vocal-tract system.

• The impulse-like excitations reflect as discontinuities inthe time domain, which
can be highlighted by computing the instantaneous frequency of the speech signal
filtered through a narrow-band filter. The center frequency of the narrow-band filter
depends critically on the vocal-tract response.

• The contribution of the vocal-tract response at zero-frequency is significantly less
compared to the contribution of the response of the impulse-like excitation. A
method based on zero-frequency resonator is proposed for the extraction of the
epochs and their strengths of excitation.

• The detected epoch is used as anchor point in each glottal cycle to estimate the
instantaneous fundamental frequency of speech signals. Since this method does not
depend on correlation of the speech segments in adjacent pitch cycles, the method
is robust even for diplophony and creaky voices.

• Using the robustness of relative spacing between the epochsin speech signals col-
lected over a pair of microphones, methods for pitch extraction in reverberant envi-
ronment and multispeaker environment are proposed.

• The excitation information derived from proposed method along with the LP anal-
ysis is used to study the nature of excitation in the stop consonants.

is discussed.

In Chapter 7, we apply the excitation features derived using the epoch based method

proposed in this thesis, along with the LP analysis for studying the production character-

istics of stop consonants, specifically the manner of articulation.

In Chapter 8, we summarize the contributions of the present work, and discuss some

issues which prompt further investigation for extracting excitation features from speech

signals collected in practical environments.
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Chapter 2

Extraction of Excitation Information -

A Review

This chapter reviews some of the existing methods for extracting and processing exci-

tation source information and highlights the issues involved. In particular, we review

specific methods for extraction of the epochs, their strengths and fundamental frequency.

In Section 2.1, we explain the significance of epochs in speech analysis. In Section 2.2,

we illustrate the important features of glottal flow as measured by the electroglottograph

signal. Section 2.3 reviews the existing methods for epoch extraction from speech signals.

In Section 2.4, we highlight the significance of negative peak amplitude of differentiated

glottal flow, which we refer to as strength of excitation, in voice source analysis and re-

view approaches to estimate it. In Section 2.5, we review theexisting approaches for

pitch estimation from speech signals. In Section 2.6, we review methods to process mul-

timicrophone speech data for time-delay estimation and multispeaker speech processing.

Section 2.7 reviews existing methods for analysis of mannerof articulation of stop conso-

nants and estimating the voicing onset times. Finally Section 2.8 summarizes the review

and highlights the important issues addressed in this thesis.
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2.1 Significance of epochs in speech analysis

Voiced speech analysis consists of determining the frequency response of the vocal-tract

system and the glottal pulses representing the excitation source. Although the source of

excitation for voiced speech is a sequence of glottal pulses, the significant excitation of the

vocal-tract system within a glottal pulse, can be considered to occur at the instant of glottal

closure (GCI), called theepoch. Many speech analysis situations depend on accurate

estimation of the location of the epoch within a glottal pulse. For example, knowledge

of the epoch locations is useful for accurate estimation of the fundamental frequency

( f0). Often the glottal airflow is zero soon after the glottal closure. As a result, the

supralaryngeal vocal-tract is acoustically decoupled from the trachea. Hence the speech

signal in the closed glottis region represents free resonances of the supralaryngeal vocal-

tract system. Analysis of speech signals in the closed glottis regions provides an accurate

estimate of the frequency response of the supralaryngeal vocal-tract system [5, 6]. With

the knowledge of the epochs, it may be possible to determine the characteristics of the

voice source by a careful analysis of the signal within a glottal pulse. The epochs can

be used as pitch markers for prosody manipulation, which is useful in applications like

text-to-speech synthesis, voice conversion and speech rate conversion [7, 8]. Knowledge

of the epoch locations may be used for estimating the time-delay between speech signals

collected over a pair of spatially separated microphones [9]. The segmental signal-to-

noise ratio (SNR) of the speech signal is high in the regions around the epochs, and hence

it is possible to enhance the speech by exploiting the characteristics of speech signals

around the epochs [10]. It has been shown that the excitationfeatures derived from the

regions around the epoch locations provide complementary speaker-specific information

to the existing spectral features [11, 12, 13].

As a result of significant excitation at the epochs, the regions in the speech signal that

immediately follow them are relatively more robust to (external) degradations than other

regions. The instants of significant excitation play an important role in human perception

also. It is because of the epochs in speech that human beings seem to be able to perceive

speech even at a distance (e.g. 10 feet or more) from the source, even though the spectral

components of the direct signal suffer an attenuation of over 40 dB. For example, we
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may not be able to get the message in whispered speech by listening to it at a distance of

10 feet or more due to absence of regular epochs. The neural mechanism of human beings

seems to have the ability of processing selectively the robust regions around the epochs

for extracting the acoustic cues even under degraded conditions. It is the ability of human

beings to focus on these microlevel events that may be responsible for perceiving speech

information even under severe degradation such as noise, reverberation, presence of other

speakers and channel variations.

2.2 Extraction of excitation source information from elec-

troglottography

Electroglottography is a noninvasive method of measuring the vocal fold contact during

voicing without affecting speech production. The electroglottograph (EGG) measures

the variation in impedance to a very small electrical current between a pair of electrodes

placed across the neck as the area of contact of the vocal folds changes during voicing.

The demodulated impedance signal is referred to as EGG signal. During voiced speech,

the EGG signal exhibits quasiperiodicity according to the frequency of vocal fold vibra-

tion.

Fig. 2.1 shows a few stylized glottal cycles of the EGG signalfor a voiced speech

segment. The glottal cycle of the EGG signal can be divided into four distinct phases:

closing phase, closed phase corresponding to the region of maximum contact, opening

phase and open phase. This relation between the EGG signal and the area of contact of

the vocal folds has been verified using high-speed larynx photography and X-ray flashing

imaging [14]. As long as the glottis is open, the impedance measure across the larynx is

maximum and almost flat (region - 4 in Fig. 2.1). When the glottis closes, the laryngeal

impedance decreases, and the EGG signal shows a steep downward slope (region - 1 in

Fig. 2.1). The opening of the glottis, on the other hand, happens much more gradually

(region - 3 in Fig. 2.1). Note that some authors invert the EGGsignal from that shown in

Fig. 2.1.

7



Time (s)

Im
pe

da
nc

e

1 3

4

2

Fig. 2.1: EGG signal for a segment of voiced speech taken from a continuous
utterance. Four distinct phases of a glottal cycle in the EGG signal can be iden-
tified as (1) closing phase, (2) closed phase with maximum contact, (3) opening
phase and (4) open phase.

According to the theory of voice excitation [15][16], the instant of glottal closure is

the point of maximum excitation to the vocal-tract system, and it is justified to define it to

be the starting point of a pitch period. Although the instantof glottal closure is the most

abrupt event, it nevertheless needs a finite amount of time. The definition of the starting

point of the period, however, requires identification of a unique point in time, that is less

subjected to errors. Though identifying a unique point directly from the speech waveform

is not possible, such a feature is well manifested in the EGG signal [17]. Moreover,

since the EGG signal measures directly the laryngeal impedance, it is not affected by the

ambient noise. The point of inflection during the steep fall of the EGG signal, i.e., the

instant of maximum change of the laryngeal impedance is typically selected to represent

the instant of glottal closure [18]. Hess and Indefrey defined an epoch to occur at the

maximum of the time-derivative of the smoothed EGG signal during a glottal cycle [19].

Huckvale developed an algorithm that identifies epoch locations as the positive-going

zero-crossings in the smoothed time-derivative of the EGG signal [20].

Fig. 2.2 shows a segment of voiced speech, its EGG signal and the differenced EGG

signal. The locations of sharp negative peaks in the differenced EGG signal denote the

instants of glottal closure. The negative peak amplitude ofthe differenced EGG signal

denotes the maximum flow declination rate, which can be hypothesized to be the strength

of excitation around the epoch. Notice that, in contrast to the speech signal, the EGG

signal is hardly affected by the time-varying vocal-tract system, and the changes in shape
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Fig. 2.2: Extraction of epoch locations from differenced EGG signal. (a) A seg-
ment of voiced speech taken from a continuous utterance, (b) EGG signal and (c)
differenced EGG signal. Locations of the negative peaks in the differenced EGG
signal correspond to the instants of glottal closure.

and amplitude are relatively small. Hence, the epoch locations and their strengths can

be accurately determined from the EGG signal even in the dynamic regions where the

vocal-tract system is not stationary.

Since every glottal cycle is represented by a single pulse, the EGG signal can be used

for accurate determination of instantaneous fundamental frequency of the voiced speech

segments. In addition, the EGG signal provides the basis fora good voiced-unvoiced dis-

crimination, since the differenced EGG signal is almost zero during unvoiced segments

where the glottis is always open. Fig. 2.3(a) and Fig. 2.3(b)show a segment of speech

signal and simultaneously recorded EGG signal, respectively. Notice that the differenced

EGG signal shown in Fig. 2.3(c) is almost zero in the unvoicedregions. Hence the voiced

regions, i.e., the regions of glottal activity, can easily be detected from the differenced

EGG signals. The regions of glottal activity for the speech signal shown in Fig. 2.3(a)

are marked with dashed lines in Fig. 2.3(b) using the differenced EGG signal. Finally, the

instantaneous fundamental frequency computed from time intervals between the negative

peaks of differenced EGG signal is shown in Fig. 2.3(d). The finer cycle-to-cycle varia-
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Fig. 2.3: Glottal activity detection and pitch estimation from EGG signal. (a) A
segment of speech signal taken from a continuous utterance, (b) EGG signal, (c)
differenced EGG signal, and (d) pitch contour obtained by taking the reciprocal of
time intervals between locations of successive negative peaks in the differenced
EGG signal. The regions of glottal activity are marked with dashed lines.

tions reflected in the pitch contour (Fig. 2.3(d)) are crucial for incorporating naturalness

in the synthesized speech signals.

The EGG signal can be effectively used for characterizing the important features of

excitation source of the speech signal. The EGG signal can beused for (a) accurate identi-

fication of epoch locations, (b) reliable estimation of the strengths of excitation of epochs,

(c) glottal activity detection and (d) estimation of instantaneous fundamental frequency of

the voiced segments that provides finer cycle-to-cycle variations in pitch. Since the EGG

signal is not normally available in practice, there exists strong motivation to develop tech-

niques for extracting these features from the speech signalalone. Several such techniques

have been presented in the literature to address these issues independently. The follow-

ing sections review the techniques for extracting the abovementioned excitation features
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directly from the speech signal.

2.3 Overview of epoch extraction methods

Several methods have been proposed for estimating the instants of the glottal closure from

a speech signal without the use of the EGG signal. For convenience, we categorize these

methods as follows: (a) Methods based on short-time energy of the speech signal; (b)

Methods based on the predictability of an all-pole linear predictor; and (c) Methods based

on the properties of group-delay, i.e., the negative going zero-crossings of a group delay

measure derived from the speech signal. Notice that the methods placed in one category

could also belong to another, given another interpretationof the method.

2.3.1 Epoch extraction from linear prediction

Many methods for epoch extraction rely on the discontinuities in a linear model of speech

production. An early approach used a predictability measure to detect epochs by finding

the maximum of the determinant of the autocovariance matrixof the speech signal [21,

22]. Consider a sequence of observation vectors consistingof segments of the speech

signal obtained by advancing a rectangular window of lengthp+ 1 samples, one sample

further successively. The following data matrix can be formed from the sampless[n] of

the speech signal:

S=



















































































s[1] s[2] · · · s[p] s[p+ 1]

s[2] s[3] · · · s[p+ 1] s[p+ 2]

. . . . .

. . . . .

. . . . .

s[m] s[m+ 1] · · · s[p+m− 1] s[p+m]



















































































. (2.1)

Let si denote theith column vector of matrixS. In the absence of excitation, the linear

filter model of orderp imposes a linear dependence between the vectorss1, s2, · · · , sp+1.
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Consequently, the determinant of the matrixSTS as a function of time increases sharply

when the speech segment covered by the data matrixS contains an excitation, and it

decreases when the speech segment is excitation free. Therefore the determinant value

can be used to detect the location of epochs in the speech signal. This is, in essence,

Strube’s method for detection of the epochs [22], which is equivalent to computing the

product of all squared singular values of the matrixS. This method, however, does not

work well for some vowel sounds, particularly when many pulses occur in the determinant

computed around the instant of closure. Furthermore, it is computationally expensive.

The Cholesky factorization ofSTS provides, however, an efficient recursive scheme to

perform this computation [22].

The error signal obtained in the LP analysis, referred to as the LP residual, is known to

contain information pertaining to epochs. A large value of the LP residual within a pitch

period is supposed to indicate the epoch location [23]. However, epoch identification di-

rectly from the LP residual is not recommended [22], becausethe LP residual contains

peaks of random polarity around the epochs. Further, since the digital inverse filter does

not compensate the phase response of the vocal-tract systemexactly, there is an uncer-

tainty in the estimated epoch locations. This makes unambiguous identification of the

epochs from the LP residual difficult. Fig. 2.4(b) shows the LP residual derived through a

10th order LP analysis of the speech segment shown in Fig. 2.4(a).The epoch locations

can not be unambiguously identified from the LP residual shown in Fig. 2.4(b) because of

the occurrence of multiple peaks of either polarity around (0.59 s to 0.6 s) the reference

epoch locations shown by the differenced EGG signal in Fig. 2.4(d). A detailed study

was made on the determination of the epochs from the LP residual [2], by considering the

effect of following factors: (a) the shape of the glottal pulses, (b) inaccurate estimation

of formants and bandwidths, (c) phase response of resonances of the vocal-tract system

at the instants of significant excitation, and (d) zeros in the vocal-tract system. By taking

these factors into account, a method for unambiguous identification of epochs from the

LP residual was proposed in [2]. In this work, the amplitude envelope of the analytic

signal of the LP residual, referred to as the Hilbert envelope of the LP residual, is used

for epoch extraction. Computation of the Hilbert envelope overcomes the effect due to

inaccurate phase compensation during inverse filtering. Fig. 2.4(c) shows the Hilbert en-
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Fig. 2.4: Hilbert envelope of LP residual of the speech signal for epoch extraction.
(a) A segment of voiced speech signal taken from a continuous utterance, its (b)
LP residual, (c) Hilbert envelope of the LP residual. (d) Differenced EGG signal
for observing the reference epoch locations

velope of the LP residual signal shown in Fig. 2.4(b). Unlikethe LP residual, the Hilbert

envelope shows sharp unambiguous peaks which are in close agreement with the refer-

ence epoch locations as shown by the differenced EGG signal in Fig. 2.4(d). Though this

method works well on clean signals, the performance of the method degrades under noisy

conditions due to the sensitivity of LP analysis to noise in the signal.

Wong, et al., used covariance analysis in the least squares approach for accurately per-

forming the glottal inverse filtering from the acoustic speech waveform [1]. In this work,

epochs were detected based on a measure derived from the total energy of the LP residual

derived over a sliding window. To ensure that the results arenot a function of the absolute

system gain (such as recording or voice level), the normalized error which is the ratio of

the energy of the LP residual to the energy of the speech signal was used as a measure
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of goodness. The glottal closure instant is identified in each glottal cycle as the begin-

ning of the period over which the normalized error stays small. This method was further

enhanced by Plumpe, et al., [12] using the observation that the formant modulations are

slower in the closed phase region than in the open phase region [24].

One of the difficulties in using the prediction error for epoch extraction is that it often

contains effects due to resonances of the vocal-tract system, as the derived inverse filter

does not completely suppress the formant frequencies. As a result, the excitation peaks

become less prominent in the residual signal, and hence unambiguous detection of the

epoch locations becomes harder. In an attempt to overcome this limitation, Cheng, et al.,

proposed a method based on maximum likelihood theory for epoch determination [25].

In this method, the speech signal was processed to get the maximum-likelihood epoch

detection (MLED) signal. The strongest positive pulse in the MLED signal indicates the

epoch location within a pitch period. The MLED signal creates not only a strong and

sharp epoch pulse, but also a set of weaker pulses that represent the suboptimal epoch

candidates within a pitch period. Hence a selection function was derived using the speech

signal and its Hilbert transform, that emphasized the contrast between the epoch and the

suboptimal pulses. Using the MLED signal and the selection signal with an appropriate

threshold, the epochs were detected. The limitation of thismethod is the choice of the

window for deriving the selection function, and also the useof threshold for deciding the

epochs.

Kalman filtering has been applied to detect the closed phase regions in voiced speech [26].

The boundary of the closed phase, i.e., the instant of glottal closure and the instant of glot-

tal opening are detected using the logarithm of the determinant of the error covariance

matrix of the Kalman filter. This measure assesses the predictability of the speech signal,

and is able to detect the glottal closure instants, but the timing accuracy is poor.

2.3.2 Epoch extraction from short-time energy of speech signal

Glottal closure instants can be detected from the energy peaks in waveforms derived di-

rectly from the speech signal [27, 28] or from the features inits time-frequency repre-
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sentation [29, 30]. In [31], a method based on the composite signal decomposition was

proposed for epoch extraction of voiced speech. A superposition of nearly identical wave-

forms was referred to as a composite signal. The epoch filter proposed in this work, com-

putes the Hilbert envelope of the highpass filtered composite signal to locate the epoch

instants. It was shown that the instants of excitation of thevocal-tract could be identified

precisely even for continuous speech. However, this methodis suitable for analyzing only

clean speech.

The Frobenius norm offers a short-term energy estimate of the speech signal. The

Frobenius norm computed using a sliding window gives an estimate of energy value at

every speech sample. The locations of peaks in the energy signal indicate glottal closure

instants. A Frobenius norm approach for detecting the epochs was proposed in [27]. In

this work, a new approach based on singular value decomposition (SVD) was proposed.

The SVD method calculates the Frobenius norms of signal matrices, and is therefore,

computationally efficient. The method was shown to work only for vowel segments. No

attempt was made to detect epochs in difficult cases like nasals, voiced consonants and

semivowels.

The energy peaks can also be detected in a time-frequency representation of the speech

signal. Wavelet transform has been used to represent the speech and to detect the glottal

closure instants [30]. Lines of amplitude maxima in the time-frequency plane were iden-

tified, and the epochs were determined to correspond to the line carrying the maximum

accumulated amplitude within each pitch period. Alternatively, a Cohen’s class time-

frequency representation of speech was constructed and used to detect the epochs [29].

The epochs were detected as peaks in a spectral density correlator derived from the time-

frequency representation.

2.3.3 Epoch extraction from group-delay measures

A method for detecting the epochs in a speech signal using theproperties of minimum

phase signals and group-delay function was proposed in [3].The method is based on the

fact that the average value of the group-delay function of a signal within an analysis frame
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corresponds to the location of the significant excitation. An improved method based on

the computation of the group-delay function directly from the speech signal was proposed

in [32]. Robustness of the group-delay based method againstadditive noise and chan-

nel distortions was studied in [33]. Four measures of group-delay (average group-delay,

zero frequency group-delay, energy weighted group-delay and energy weighted phase)

and their use for epoch detection were investigated in [34].The effect of the length of

the analysis window, the tradeoff between the detection rate and the timing error, and the

computational cost of evaluating the measures were also examined in detail. It was shown

that the energy weighted measures performed better than theother two measures. A dy-

namic programming projected phase-slope algorithm (DYPSA) for automatic estimation

of glottal closure instants in voiced speech was presented in [35, 36]. The candidates for

GCI were obtained from the zero-crossings of the phase-slope function derived from the

energy weighted group-delay, and were refined by employing adynamic programming

algorithm. It was shown that DYPSA performed better than theexisting methods.

Epoch is an instant property. However, in most of the methodsdiscussed above (except

the group-delay based methods), the epochs are detected by employing block processing

approaches, which result in ambiguity about the precise location of the epochs. Most

of the existing methods rely on the LP residual signal derived by inverse filtering the

speech signal. Though these methods work well in most cases,they need to deal with the

following issues: (a) Selection of parameters (order of LP analysis, length of the window)

for deriving the error signal; (b) Dependence of these methods on the energy of the error

signal, which in turn depends on the energy of the signal; (c)The accuracy with which the

epochs can be resolved decreases as a result of block processing; (d) Setting a threshold

value to take a decision on the presence of an epoch; (e) The excitation impulses need not

be periodic, though some of these methods exploit periodicity for accurate estimation of

epoch locations. In general, it is difficult to detect the epochs in the case of low voiced

consonants, nasals and semivowels, breathy voices and female speakers.
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2.4 Estimation of strength of excitation of the epoch

We refer to the amplitude of the significant excitation to thevocal-tract system as strength

of excitation of the epoch. During the production of voiced speech, the excitation to the

vocal-tract system can be considered to be the differentiated glottal flow (also called the

effective driving function) [1]. A negative impulse-like peakdominates the waveform of

the differentiated glottal flow, at least for normal and loud phonations [37]. This peak

occurs at the instant of glottal closure, and serves as significant excitation to the vocal-

tract system.

The amplitude of negative peak of the differentiated glottal flow is one of the most

important parameters of the excitation source. Several excitation source analysis situa-

tions require estimation of the negative peak amplitude of the differentiated glottal flow.

The negative peak amplitude of the differentiated glottal flow is closely related to the

vocal intensity. Gauffin and Sundberg observed that there is a strong linear correlation

between the negative peak amplitude of the differentiated glottal flow and sound pressure

level [38]. Alku, et al., defined a parameter called amplitude domain quotient as ratio

of the maximum amplitude of the glottal flow and the negative peak amplitude of the

differentiated glottal flow [39]. This parameter was used to discriminate between differ-

ent phonation types [40]. Normalized amplitude quotient, defined as amplitude quotient

normalized by the period of vibration [41], was observed to decrease with an increase in

vocal intensity [42]. It was shown that the normalized amplitude quotient is more accu-

rate, consistent and robust measure, for parameterizationof glottal flow, compared to the

closing quotient which indicates the portion of a period where the glottis is closing [43].

In the above mentioned methods, the glottal flow was estimated using inverse filter-

ing of the speech signal [5, 44, 45, 38], where the vocal-tract system is modeled as an

all-pole filter [4, 46]. The negative peak amplitude of the differentiated glottal flow was

computed from the first derivative of the glottal flow. The mean of negative peak am-

plitudes of the differentiated glottal flow over a few consecutive glottal cycles was used

in the studies [43, 37]. But, as mentioned in earlier sections, the glottal inverse filtering

requires modeling of time-varying supralaryngeal vocal-tract system. Errors may occur
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whenever the mathematical model assumed for the supralaryngeal vocal-tract system does

not accurately reflect the actual acoustic characteristics. Hence, it is desirable to extract

the negative peak amplitude of the differentiated glottal flow without characterizing the

vocal-tract system.

2.5 Overview of pitch estimation methods

Accurate estimation of the fundamental frequency of voicedspeech plays an important

role in speech analysis and processing applications. The variation in the fundamental

frequency with time contributes to the speech prosody. Estimation of accurate prosody

is useful in various applications such as in speaker recognition [47, 48], language iden-

tification [49], and even speech recognition [50, 51]. Prosody also reflects the emotion

characteristics of a speaker [52]. Prosody is essential forproducing high quality speech

synthesis, and also for voice conversion. Prosody featureswere exploited for hypothesiz-

ing sentence boundaries [53], for speech segmentation, andfor story parsing [54].

There are several algorithms proposed in the literature forestimating the fundamental

frequency from speech signals [55, 56, 57]. Depending on thetype of processing involved,

the algorithms may be classified into three broad categories: (a) algorithms using time

domain properties; (b) algorithms using frequency domain properties; and (c) algorithms

using statistical methods to aid in the decision making.

2.5.1 Time domain methods

Algorithms based on the properties in the time domain operate directly on the speech sig-

nal to estimate the fundamental frequency. Depending on thesize of the segment used for

processing, the time domain methods can be further categorized intoblock-basedmeth-

ods andevent-basedmethods. In the block-based methods, an estimate of the fundamental

frequency is obtained for each segment of speech, where it isassumed that the pitch is

constant over the segment consisting of several pitch periods. In this case, variation of the

fundamental frequency within the segment is not captured. Event-based pitch detectors
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locate unique anchor points in each glottal cycle of the speech waveform and the time

interval between two successive anchor points is hypothesized as the fundamental pe-

riod. For event-based pitch detectors, the measurements often made are: peak and valley

measurements, zero-crossing measurements, epoch locations or pitch markings.

Among the time domain block-based methods, the autocorrelation approaches are

popular for their simplicity. A correlation function is a measure of the degree of simi-

larity between two signals [58]. The autocorrelation measures how well the input signal

matches with a time-shifted version of itself. The autocorrelation sequencerss[τ] of a

speech segments[n] is given by

rss[τ] =
N−1−|τ|
∑

n=0

s[n]s[n+ τ], τ = 0,±1,±2, . . . ,±N − 1, (2.2)

whereτ is the time shift. For a periodic signal, its autocorrelation function is also pe-

riodic. Due to periodic nature of the voiced speech, the firstpeak (also called the pitch

peak) after the center peak in the autocorrelation functionindicates the fundamental pe-

riod (T0) of the signal. The reciprocalF0 =
1
T0

is the fundamental frequency. There are

several reasons for the success of the autocorrelation methods for pitch detection [59].

The autocorrelation computation is made directly on the speech signal, and involves a

straightforward computation. Although high processing rate is required, the autocorre-

lation computation is amenable to digital hardware implementation, generally requiring

only a single multiplier and an accumulator as computational elements. Finally, the au-

tocorrelation computation is largely phase insensitive. Thus, it is a good method to use

to detect the pitch of speech which has been transmitted overa telephone channel, or has

suffered some degree of phase distortion during transmission.

Although the autocorrelation-based pitch detector has some advantages, there are sev-

eral problems associated with the use of this method. Although the autocorrelation func-

tion of a segment of voiced speech generally displays a fairly prominent peak at the pitch

period, peaks due to formant structure of the signal are alsooften present. Thus, one

problem is to decide which of the several peaks in the autocorrelation function corre-

sponds to the pitch period. Another problem with the autocorrelation computation is the
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required use of a window for computing the short-time autocorrelation function. The use

of a window for analysis leads to some difficulties. First, there is the problem of choosing

an appropriate window. Second, there is the problem that, nomatter which window is

selected, the effect of the window is to taper the autocorrelation function asthe autocor-

relation index increases. This effect tends to compound the difficulties mentioned above

in which the formant peaks in the autocorrelation function (which occur at lower indices

than the pitch period peak) tend to be of greater magnitude than the peak due to the pitch

period. A final difficulty with the autocorrelation computation is the problem of choosing

an appropriate analysis frame (window) size. The ideal analysis frame should contain

at least 2 to 3 complete pitch periods. Thus, for high pitch speakers the analysis frame

should be short (5-20 ms), whereas for low pitched speakers it should be long (20-50 ms).

A wide variety of preprocessing techniques have been proposed in the literature to

address the above mentioned issues. To partially eliminatethe effects of the higher for-

mant structure on the autocorrelation function, most methods use a sharp cutoff low-pass

filter with cutoff around 1000 Hz. This will, in general, preserve a sufficient number of

pitch harmonics for accurate pitch detection, but eliminates the second and higher for-

mants. In addition to linear filtering to remove the formant structure, a wide variety of

methods have been proposed for directly or indirectly flattening the short-time spectrum

of the speech signal to remove the effects of the first formant [60, 61, 62]. Included among

these techniques are center clipping and spectral equalization by filter bank methods [61],

inverse filtering using linear prediction methods [62], andspectral flattening by a combi-

nation of center and peak clipping methods [63]. Rabiner presented an investigation of

the properties of a class of nonlinearities applied to the speech signal prior to autocorre-

lation analysis with the purpose of spectrally flattening the signal [59]. A solution to the

problem of choosing an analysis frame size which adapts to the estimated average pitch

of the speaker is also presented in [59] .

In the computation of the autocorrelation function, fewer samples are included as the

lag increases. This effect can be seen as the roll-off of the autocorrelation values for higher

lags. The values of the autocorrelation function at higher lags are important, especially

for low-pitched male voices. For a 50 Hz pitch, the lag between successive pitch pulses is
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200 samples at a sampling frequency of 10 kHz. To overcome theroll-off caused by the

windowing, Boersma suggested dividing the autocorrelation sequence of the windowed

signal with the autocorrelation sequence of the window [64]. This correction does not

let the resulting correlation sequence taper to zero as the lag increases, which helps in

accurate identification of the peak corresponding to the fundamental period.

To overcome this limitation of the autocorrelation function, a crosscorrelation function

which operates on two different data windows is also proposed [65]. Direct computation

of the crosscorrelation function is influenced by the energyof the speech segments. Rapid

changes in energy is common at voicing onsets and voicing endings. In order to make the

crosscorrelation function independent of the energy of thespeech segments, the crosscor-

relation values are compensated based on the energy in the sliding window. The resulting

normalized crosscorrelation function is given by

c[τ] =

N−1
∑

n=0
s[n]s[n+ τ]

√

N−1
∑

n=0
s2[n]

N−1
∑

n=0
s2[n+ τ]

τ = 0,±1,±2, . . . ,±N − 1. (2.3)

As the number of samples involved in the computation ofc[τ] is constant, this estimate

is unbiased, and has lower variance than that of the autocorrelation. Unlike the auto-

correlation method, the window length could be lower than the pitch period, so that the

assumption of stationarity is more valid, which results in better time resolution. While

the pitch trackers based on the normalized crosscorrelation typically perform better than

those based on the autocorrelation, they also require more computation.

One drawback of the correlation-based methods is the need for multiplication, which

is relatively expensive for implementation, especially inthose processors with limited

functionality. To overcome this problem, the average magnitude difference function (AMDF)

was proposed [66]. This function is defined by

d[τ] =
1
N

N−1
∑

n=0

|s[n] − s[n− τ]|, τ = 0,±1,±2, . . . ± N − 1. (2.4)

For short segments of voiced speech, it is reasonable to expect that d[τ] is small for
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τ = 0,±T0,±2T0, . . . , with T0 being the fundamental period of the signal. Thus by com-

puting the AMDF for the lag range of interest, the fundamental period can be estimated

by locating the lag index associated with the minimum magnitude difference. Notice that

multiplication operation is not involved in implementation of the AMDF method.

The methods discussed so far can only find integer valued fundamental periods. That

is, the resultant fundamental period values are multiples of the sampling period. For a

speech signal sampled at 8 kHz, the fundamental period can only be computed with a

precision of multiples of 0.125 ms. In many applications, higher resolution is necessary

to achieve good performance. In fact, the fundamental period of the original continuous-

time (before sampling) signal is a real number. Thus, integer periods are only approxi-

mations, and may introduce errors that might have negative impact on the performance

of the system. Multirate signal processing techniques can be used to improve the reso-

lution beyond the limits set by the fixed sampling rate. Interpolation, for instance, is a

widely used method where the actual sampling rate is increased. Medan, et al., proposed

a super-resolution pitch determination algorithm which isbased on a linear interpolation

technique [67].

2.5.2 Event-based Methods

The basic assumption behind the event-based methods is that, if a quasiperiodic speech

signal is suitably processed to minimize the effects of the formant structure and highlight

certain anchor point in each glottal cycle, then simple time-domain measurements provide

a good estimate of the period. Gold and Rabiner proposed a pitch detection method

using parallel processing of events derived from the speechsignal [68]. In this approach,

the speech signal is first low-pass filtered to a bandwidth of 900 Hz. Then a series of

measurements are made on the peaks and valleys of the low-pass filtered signal to give

six separate functions. Each of these six pitch functions isprocessed by an elementary

pitch period estimator, giving six separate estimates of the pitch period. The six pitch

estimates are then combined by a sophisticated decision algorithm which determines the

pitch period. As a byproduct of this algorithm, a voiced-unvoiced decision is obtained
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based on the degree of agreement among the six pitch detectors.

Miller proposed a data reduction pitch detector which places pitch markers directly

on a low-pass filtered (0-900 Hz) speech signal, and thus is a pitch-synchronous pitch

detector [69]. To obtain appropriate pitch markers, the data reduction method first detects

excursion cycles in the waveform based on intervals betweenmajor zero-crossings. The

remainder of the algorithm tries to isolate and identify principal excursion cycles, i.e.,

those which correspond to true pitch periods. This is accomplished through a series of

steps using energy measurements, and logic based on permissible pitch periods and an-

ticipated syllabic rate changes of pitch. Finally, an errorcorrection procedure is used to

provide a reasonable measure of continuity in the pitch markers.

Wavelet transforms have been used to determine the pitch period by locating the in-

stants at which glottis closes (called events), and then measuring the time interval between

two such events [70, 71, 72, 73, 74]. In [70], wavelet transforms are used for pitch period

estimation based on the assumption that the glottal closurecauses sharp discontinuities

in the derivative of the airflow. The transients in the speechsignal caused by the glot-

tal closure result in maxima in the scales of the wavelet transform around the instant of

discontinuity. In this method, one needs to detect the correlated maxima across these

scales by heuristic algorithms, which is often prone to error especially in the case of noisy

signals. To overcome this, an optimization scheme is proposed in the wavelet framework

using a multipulse excitation model for the speech signal, and the pitch period is estimated

as a result of this optimization [75].

2.5.3 Frequency domain methods

Algorithms based on the properties in the frequency domain assume that if the signal is

periodic in the time domain, then the frequency spectrum of the signal contains a sequence

of impulses at the fundamental frequency and its harmonics.Then simple measurements

can be made on the frequency spectrum of the signal, or on a nonlinearly transformed

version of it (as in the cepstral pitch detector [76]) to estimate the fundamental frequency

of the signal.
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The cepstrum method for extraction of pitch utilizes the frequency domain properties

of speech signals [76, 77]. In the short-time spectrum of a given voiced frame, the in-

formation about the vocal-tract system appears as a slowly varying component, and the

information of the excitation source is in rapidly varying component. These two compo-

nents may be separated by considering the logarithm of the spectrum, and then applying

the inverse Fourier transform to obtain the cepstrum. This operation transforms the infor-

mation in the frequency domain to the cepstral domain, whichhas a strong peak at the

average fundamental period of the voiced speech segment being analyzed.

Subharmonic summation (SHS), proposed by Hermes [77], performs pitch analysis

based on a spectral compression model. Several methods havebeen proposed for es-

timating the harmonic frequencies based on the instantaneous frequency of the speech

signal [78, 79, 80]. In this approach, the speech signal is decomposed into the harmonic

components using a set of bandpass filters, each of whose center frequencies changes

with time in such a way that it tracks the instantaneous frequency of its output [78]. As

a result, the outputs of the band-pass filters become the harmonic components, and the

instantaneous frequencies of the harmonics are accuratelyestimated. The pitch extrac-

tion is accomplished by selecting the correct fundamental frequency out of the harmonic

frequencies.

Nakatani and Irino proposed a method for fundamental frequency estimation by se-

lecting the dominant harmonic components of the speech signal [81, 82]. In this work,

degree of dominance and dominance spectrum are defined basedon instantaneous fre-

quencies. The degree of dominance allows to evaluate the magnitudes of the individual

harmonic components of the speech signal relative to background noise. The selection

of the dominant harmonic components results in reducing theinfluence of spectral dis-

tortion. The fundamental frequency is more accurately estimated from reliable harmonic

components which are easy to select given the dominance spectra.
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2.5.4 Statistical methods

The problem of automatic estimation of fundamental frequency can be considered, in

some sense, a statistical one. Each input frame is classifiedinto one of a number of

groups, representing the fundamental frequency estimatorof the signal. Wise, et al., pro-

posed a method for estimating the fundamental period of voiced speech sounds based on

a maximum likelihood formulation [83, 84, 85]. In this work,the problem is formulated

as that of estimating an unknown periodic signal in white Gaussian noise of unknown

intensity. An objective function based on the probability that the signal is periodic with a

period ofT0 was derived, and was maximized overT0 to estimate the fundamental period

of the signal. This method is capable of providing finer resolution than one sampling

period, and is shown to perform better in the presence of noise than the cepstrum method.

Joseph, et al., proposed a statistical method for pitch tracking, assuming a harmonic

model of the speech signal [86]. The harmonic model could be regarded as special case of

a sinusoidal speech model, where all sinusoidal componentsare assumed to be harmon-

ically related, i.e., the frequencies of the sinusoids are at integer multiples of the funda-

mental frequency. This assumption reduces the number of parameters in the model and

achieves more accurate estimates of pitch than the sinusoidal model. Assuming Marko-

vian dynamics, maximuma-posterioriprobability tracking of the time-varying harmonic

signal is performed without prior knowledge of noise variance.

Most of the existing methods for extraction of the fundamental frequency assume

periodicity in successive glottal cycles, and thus they work well for clean speech. The

performance of these methods is severely affected if the speech signal is degraded due

to the noise or due to other distortions. This is because the pitch peak in the autocorre-

lation function or cepstrum may not be prominent or unambiguous. In fact, during the

production of voiced speech, the vocal-tract system is excited by a sequence of impulse-

like signals caused by the rapid closure of the glottis in each cycle. There is no guarantee

that the physical system, especially due to the time-varying vocal-tract shape, produces

similar speech signals for each excitation. Moreover, there is also no guarantee that the

impulses occur in the sequence with any strict regularity. In view of this, it is better to
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extract the interval between successive impulses, and takethe reciprocal of that interval

as the instantaneous fundamental frequency.

2.6 Processing multimicrophone data

2.6.1 Time-delay estimation

The problem of time-delay estimation has been handled traditionally by exploiting spec-

tral characteristics of speech signals [87, 88]. Three broad strategies are used in these

studies [89]: (a) Steered response power of a beamformer; (b) High resolution spectrum

estimation; and (c) Time difference of arrival estimation.

In the steered beamformer, the microphone array is steered to various locations to

search for a peak in the output power. The delay and sum beamformer shifts the array

signals in time to compensate for propagation delays in the arrival of the source signal at

each microphone. In this case, the signals are time-alignedand summed together to form

a single output signal. Sophisticated beamformers apply filtering to the array signals

before time alignment and summing. These beamformers depend on the spectral content

of the source signal. A priori knowledge of the independent background noise is used to

improve the performance [90].

The second category of time-delay estimators based on high resolution spectrum es-

timation use spatio-spectral correlation matrix derived from the signals received at the

microphones. This matrix is derived using an ensemble average of signals over the in-

tervals in which noise and speakers are assumed to be stationary, and their estimation

parameters are assumed to be fixed [91]. In the case of speech,these assumptions are not

valid. These high resolution methods are designed for narrowband stationary signals, and

hence it is difficult to apply them for wideband nonstationary signals like speech.

Methods based on estimation of time differences of arrival (TDOA) are more suitable

for time-delay estimation than the previous two approaches[89]. For accurate estimation

of time-delays, weighted generalized crosscorrelation (GCC) method is often used [92].
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The method relies on the spectral characteristics of the signal. Since the spectral charac-

teristics of the received signal are modified by the multipath propagation in a room, the

GCC is made more robust by deemphasizing the frequency dependent weightings [93].

Phase transform is one approach where the magnitude spectrum is flattened. However,

low SNR portions of the spectrum are given equal emphasis as those of the high SNR

portions. Cepstral prefiltering, used to reduce the effects of reverberation, is also difficult

to apply for speech signals due to the nonstationary nature of the signal [94, 95]. More-

over, this approach is not suitable for estimation of time-delays from short (50-100 ms)

segments, which is essential for tracking a moving speaker.

Most of the methods for time-delay estimation rely on spectral characteristics of the

speech signal, and the knowledge of degrading noise and environment. The spectrum of

the received signal depends on how the waveform gets modifieddue to distance, noise and

reverberation. Therefore, the performance of a time-delayestimation method depends on

how the effect of the degrading components is minimized.

2.6.2 Multispeaker speech processing

In a multispeaker environment like meetings and discussions, several speakers will be

speaking simultaneously. The signal collected by a microphone in such conditions is a

mixture of speech from several speakers. Several methods have been proposed for en-

hancement of speech in a multispeaker environment [96, 97, 98, 99, 100]. These methods

may be broadly classified into two categories, namely, single channel and multichannel

cases. The single channel method is commonly termed as cochannel speaker separation.

The implicit assumption in cochannel speaker separation isthat there are only two speak-

ers, and between them one is the desired speaker. In the multichannel case, signals from

multiple microphones are processed to enhance speech of thedesired speaker. This ap-

proach is inspired by the binaural processing of humans. In the multichannel case, speech

of two or more speakers may be enhanced using signals from multiple microphones.

Several pitch-based algorithms have been proposed for cochannel speaker separa-

tion [97, 98, 99]. The assumption made in these studies is that pitch of the desired speaker
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and that of the interfering speaker are quite distinct, and the pitch contours are resolvable.

The speech energy of a particular speaker is concentrated athis/her pitch harmonic fre-

quencies. If the spectrum is sampled at the pitch harmonics of the desired speaker, most

of the energy of the spectral samples would correspond to that speaker. After obtaining

the harmonic amplitudes, the time-domain waveform is reproduced using the synthesis al-

gorithm. Harmonic magnitude suppression technique for speech separation was proposed

in [101]. Enhancement of speech of the desired speaker was achieved by estimating the

interfering speech spectra and subtracting the same from the combined speech spectra

by spectral subtraction approach. Lee and Childers proposed a minimum cross entropy

spectral analysis (MCESA) approach for cochannel speaker separation. The MCESA

is an information theoretic method that simultaneously estimates the power spectrum of

one or more independent signals, when a prior estimate of each is available. Quatieri

and Danisewicz have proposed a method based on sinusoidal modeling of speech [102].

A least squares estimate algorithm was used to determine thesinusoidal components of

each of the speakers, and the speech of the desired speaker was synthesized using the cor-

responding sinusoidal components. Morgan, et al., have proposed a method for cochannel

speaker separation, termed as harmonic enhancement and suppression [99]. The pitch of

the stronger speaker was estimated first, and it was then usedfor recovering his/her har-

monics and formants. The weaker speaker information was obtained after suppressing the

harmonics and formants information of the stronger speakerfrom the cochannel signal.

A method for enhancing speech of a speaker, while attenuating speech from other

speakers using an array of microphones was proposed in [96].A class of nonlinear pro-

cesses using a microphone array was proposed, which emphasizes the wanted speech

signal relative to the unwanted signals from other locations. The unwanted signals were

attenuated and distorted, while the wanted speech signal was unaffected. When the un-

wanted signal is speech, the distortion makes it less intelligible. The problem of multi-

speaker speech enhancement in a multichannel case is also termed as blind source sepa-

ration (BSS). The BSS consists of retrieving the source signals without using any a priori

information about mixing of the signals. It exploits only the information carried by the

received signals themselves, hence the termblind. Neural network models and learning

algorithms for blind separation and deconvolution of signals are discussed in [103]. A
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method for multichannel signal separation using a dynamical recurrent network is pro-

posed in [104, 105] . Estimation of speech embedded in reverberant environment with

multiple sources of noised is proposed in [100, 106], . The objective of this work is to

make a specific speech signal more intelligible than the available microphone signals. An

attempt is made to enhance the signal nearest to the microphones, which is the signal

with high energy. This is achieved by mimicking the inner ear, through the use of a bank

of self-adaptive band-pass wavelet filters, tracking of thefundamental frequency and by

masking some parts of the speech signal with low energy.

In most of the existing methods, the knowledge of pitch is used for deriving the in-

formation related to each speaker. However, reliable estimation of pitch in multispeaker

environment is a difficult task.

2.7 Manner of articulation of stop consonants

In Indian languages, there are stop consonants articulatedat a given point in the vocal-tract

that are minimally distinguished from one another by the nature of the excitation source,

referred to as manner of articulation. The manner of articulation of stop consonants is

described by the voiced or unvoiced nature of the closure event, and the presence or

absence of the aspiration event, leading to four different manners of articulation. The

manner of articulation is mainly dictated by the relative timings of onset of vocal fold

vibration and instant of closure release. For unvoiced unaspirated stop consonants, the

vocal fold vibration begins almost immediately after the closure release. Whereas, for

voiced unaspirated stop consonants the vocal fold vibration begins during the closure

duration. For unvoiced aspirated stop consonants, the onset of vocal fold vibration is

delayed after the instant of closure release to produce aspiration.

Voice onset time (VOT) [107], defined as the interval betweenthe instant of closure

release to the onset of vocal fold vibration, is one of the important features used to analyze

the manner of articulation of stop consonants. Most of the commonly used methods for

measuring the voice onset time are based on the onset of periodicity in the acoustic wave-

form, possibly supplemented by spectrographic analysis [108] or direct measurements of
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airflow [109]. Peterson and Lehiste identified the onset of voicing as the point at which

stable striations first become visible in the frequency region of first formant of a wide-

band spectrogram [110]. In contrast, Klatt made the measurements of voicing onset at

the onset of visible energy in higher formants on the groundsthat voicing onset may not

always be visible in the first formant region [111]. Liskar and Abramson determined the

onset of voicing according to the time of the first vertical striations visible in a wideband

spectrogram, presumably irrespective of the frequency (orformant) at which they first

appeared [112]. In addition to these spectrographic measures, it is also possible to mea-

sure the onset of voicing as the onset of energy visible in thevoice-bar, i.e., the region of

lowest frequency energy in a wide-band spectrogram corresponding to the fundamental

frequency, typically found below the first formant [113]. Lieberman and Blumstein mea-

sured the voicing onset directly from the acoustic waveformitself, in terms of onset of the

first clearly seen periodic pattern in the acoustic signal [114].

One of the issues in spectrographic methods is the choice of acoustic landmark for

measuring the VOT. The vertical striations due to voicing onset do not reflect across all

the formants at the same instant of time. For instance, the onset of voicing in aspirated

sounds appears earlier at the higher formants than at the first formant. The effect of block

processing in the spectrogrphic analysis may limit the time-resolution of observation of

these features. Since the manner of articulation of stop consonants depends on nature of

excitation source, features derived from excitation source may provide a better analysis.

2.8 Summary

In this chapter, we have reviewed some existing methods for extracting and processing

the excitation source information in the speech signal. In particular, algorithms for ex-

traction of epochs and estimation of pitch from speech signals are reviewed. Extraction

of excitation source information requires suppressing thevocal-tract information from the

speech signals. Most of the epoch extraction methods rely onmodeling the vocal-tract re-

sponse using LP analysis, and then inverse filtering the speech signal obtain LP residual.

The performance of these methods depends critically on the accuracy of LP analysis in
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modeling the vocal-tract response, order of the LP analysis, and nature and quality of the

speech signal. Because of the time-varying nature of the vocal-tract, the existing methods

for epoch extraction, invariably, employ block processingthat introduces effects of win-

dowing. These factors may result in ambiguity about the precise location of the epochs.

The goal of this thesis to demonstrate the significance of impulse-like nature of ex-

citation in extracting the epochs, their strengths of excitation and fundamental frequency

of voiced speech. In contrast to the existing approaches, the methods proposed in this

work enhance the source information by exploiting the impulse-like nature of excitation

rather than attempting to model the vocal-tract response and then suppressing it. Since

the proposed methods do not depend on modeling the vocal-tract response, they can be

applied on speech data of any length without using block processing.
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Chapter 3

Epoch Extraction

In this chapter, we present a new method for epoch extractionthat is based on the assump-

tion that the major source of excitation of the vocal-tract system is due to a sequence of

impulse-like events in the glottal vibration. The impulse excitation to the system results

in a discontinuity in the output signal. We propose a novel approach to detect the location

of the discontinuity in the output signal by confining the analysis to a narrowband around

a single frequency. In Section 3.1, we discuss the basic principle of the proposed method,

and illustrate the principle for a few representative casesof synthetic excitation signals.

In Section 3.2, we discuss the issues involved in applying the method directly on speech

data. In Section 3.3, we propose a method to extract epochs from the speech signal. In

Section 3.4, the performance of the proposed method in termsof identification accuracy

is given, and the results are compared with three existing methods for epoch extraction.

In Section 3.5, the performance of the proposed method is evaluated for different types

of degradations, and the results are compared with some existing methods. Finally, in

Section 3.6 we summarize the contributions of this chapter,and discuss some limitations

of the proposed method which prompt further investigation.
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3.1 Basis for the proposed method of epoch extraction

Speech is produced by exciting the time-varying vocal-tract system by one or more of

the following three types of excitation: (a) glottal vibration, (b) frication, and (c) burst.

The primary mode of excitation is due to glottal vibration. While the excitation is present

throughout the production process, it is considered significant (especially during glottal

vibration) only when there is large energy in short-time interval, i.e., when it is impulse-

like. This impulse-like characteristic is usually exhibited around the instant of glottal

closure during each glottal cycle. The presence of impulse-like characteristic suggests

that the excitation can be approximated as a sequence of impulses. This assumption on

the excitation of the vocal-tract system suggests a new approach for processing the speech

signal as discussed in this section.

All physical systems are inertial in nature. The inertial systems respond when excited

by an external source. The excitation to an inertial system can be any of the following

four types:

(a) Excitation impulse is not in the observed interval of the signal - Sinusoidal gener-

ator: Output signal is the response of a passive inertial system for an impulse, and

the impulses themselves are not present in the observed intervals of the signal.

(b) Sinusoidal excitation:Sinusoidal excitation can be viewed as impulse excitation in

the frequency domain. Hence, a sinusoidal excitation to an inertial system selects

the corresponding frequency component from the transfer function of the system.

Though sinusoidal excitation is widely used to analyze synthetic systems, it is not

commonly found in physical systems.

(c) Random excitation:Random excitation can be interpreted as impulse excitationof

arbitrary amplitude at every instant of time. Since impulseexcitations are present

over all the instants of time, it is difficult to observe them from the output of the

system. Random excitation does not possess impulse-like nature either in the time-

domain or in the frequency-domain, and hence the impulses cannot be perceived.

(d) Sequence of impulses as excitation:In this case, the signals are generated by a
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Fig. 3.1: An inertial system excited with a sequence of impulses.

passive inertial system with a fixed sequence of (periodic and/or aperiodic) impulses

as excitation. The time instants of impulses may not be observed from the output

of the system, but they can be perceived. If the sequence of impulses is periodic

in the time-domain, then it corresponds to a periodic sequence of impulses in the

frequency-domain as well.

Consider a physical system excited by a sequence of impulsesof varying strengths, as

shown in Fig. 3.1. One of the challenges in the field of signal processing is to detect the

time instants (τk) of the impulses and their corresponding strengths (αk) from the output

signal. In a natural scenario like speech production, the characteristics of the system

vary with time, and are unknown. Hence the signal processingproblem can be viewed

as a blind deconvolution, where neither the system responsenor the excitation source is

known. In this work, we attempt to detect the time instants ofexcitation (epochs) of the

vocal-tract system.

Consider a unit impulse in the time domain. It has all the frequencies equally well

represented in the frequency domain. When an inertial system is excited by an impulse-

like excitation, the effect of the excitation spreads uniformly in the frequency domain,

and is modulated by the time-varying transfer function of the system. The information

about the time instants of occurrence of the excitation impulses reflects as discontinuities

in the time domain. It may be difficult to observe these discontinuities directly from the

signal because of the time-varying response of the system. The effect of the discontinu-

ities can be highlighted by filtering the output signal through a narrowband filter centered

around a frequency. The output of the narrowband filter predominantly contains a single

frequency component, and as a result, the discontinuities due to the excitation impulses

will get manifested as a deviation from the center frequency. The time instants of the
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discontinuities can be derived by computing the instantaneous frequency of the filtered

output [115]. A tutorial review on the instantaneous frequency and its interpretation is

given in [116]. It has been previously observed that isolated narrow spikes in the instan-

taneous frequency of the bandpass filtered output [117] are attributed to either the valleys

in the amplitude envelope or the onset of a new pitch pulse. However, no previous work

explored the feasibility of this type of observation for epoch extraction.

3.1.1 Computation of instantaneous frequency

The instantaneous frequency of a real signals(t) is defined as the time derivative of the

unwrapped phase of the complex analytic signal derived froms(t) [115]. The complex

analytic signal corresponding to a real signals(t) is given by

sa(t) = s(t) + jsh(t) (3.1)

wheresh(t) is the Hilbert transform of the real signals(t), and is given by

sh(t) = IFT(Sh(ω)), (3.2)

where IFT denotes the inverse Fourier transform, andSh(ω) is given by

Sh(ω) =



















+ jS(ω), ω < 0

− jS(ω), ω > 0.
(3.3)

The analytic signal thus derived contains only positive frequency components. The ana-

lytic signalsa(t) can be rewritten as

sa(t) = |sa(t)|ejφ(t), (3.4)

where

|sa(t)| =
√

s2(t) + s2
h(t) (3.5)
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is called the amplitude envelope, and

φ(t) = arctan

(

sh(t)
s(t)

)

(3.6)

is called the instantaneous phase. Direct computation of the phaseφ(t) from (3.6) suf-

fers from the problem of phase wrapping, i.e.,φ(t) is constrained to an interval (−π, π]
or [0, 2π). Hence, the instantaneous frequency can not be computed byexplicit differen-

tiation of phaseφ(t) without first performing the complex task of unwrapping thephase

in time. The instantaneous frequency can be computed directly from the signal, without

going through the process of phase unwrapping, by exploiting the Fourier transform rela-

tions. Taking logarithm on both sides of (3.4), and differentiating with respect to timet,

we have

log sa(t) = log |sa(t)| + jφ(t)
s′a(t)

sa(t)
=

d
dt

log |sa(t)| + jφ′(t) (3.7)

where the superscript′ denotes the derivative operator, andφ′(t) is the instantaneous fre-

quency. That is

φ′(t) = −ℑ
(

s′a(t)
sa(t)

)

, (3.8)

whereℑ(.) denotes the imaginary part.s′a(t) can be computed by using the Fourier trans-

form relations. The analytic signalsa(t) can be synthesized from its frequency domain

representation through the inverse Fourier transform as follows:

sa(t) =
1
2π

∫ ∞

0
Sa(ω)ejωtdω, (3.9)

whereSa(ω) is the Fourier transform of the analytic signalsa(t), and is zero for negative

frequencies. Differentiating both sides of (3.9) with respect to timet, we have

s′a(t) =
1
2π

∫ ∞

0
Sa(ω)ejωt( jω)dω

= j

(

1
2π

∫ ∞

0
(ωSa(ω))ejωtdω

)

= jIFT (ωSa(ω)) . (3.10)
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The instantaneous frequencyφ′(t) can be obtained from (3.7) and (3.10) as

φ′(t) = ℜ
(

IFT(ωSa(ω))
IFT(Sa(ω))

)

, (3.11)

whereℜ(.) denotes the real part. Computation of the instantaneous frequency given in

(3.11) is implemented in the discrete domain as follows:

φ′[n] =
2π
N
ℜ

(

IDFT(kSa[k])
IDFT(Sa[k])

)

. (3.12)

Here IDFT denotes the inverse discrete Fourier transform, and N is the total number of

samples in the signal.

The instantaneous frequency may be interpreted as the frequency of a sinusoid which

locally fits the signal under analysis. However, it has a physical interpretation only for

monocomponent signals, where there is only one frequency ora narrow range of fre-

quencies varying as a function of time. In this case, the instantaneous frequency can be

interpreted as deviation of frequency of the signal from themonotone at every instant of

time. The notion of a single-valued instantaneous frequency becomes meaningless for

multicomponent (multiple frequency sinusoids) signals. The multicomponent signal has

to be dispersed into its components for further analysis.

We propose to use a resonator to filter out from a signal a monocomponent centered

around a single frequency for further analysis. A resonatoris a second-order infinite

impulse response (IIR) filter with a pair of complex conjugate poles in thez-plane [58].

The impulse response of a resonator is given by [58]

h[n] =
rn sin[(n+ 1)ω0]

sin(ω0)
u[n] (3.13)

whereω0 determines the normalized center frequency (in radians) ofthe filter, radiusr

determines the bandwidth andu[n] is the unit step function. A small value ofr (r <<

1) corresponds to a wider bandwidth, allowing a large range of frequencies, whereas a

value ofr = 1 corresponds to zero bandwidth. A value ofr in the range 0.98 to 1 can

be used for implementing a narrowband filter. An IIR filter waspreferred over a finite
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impulse response (FIR) filter, because an FIR filter requireslonger filter length to realize

the narrowband. Since an ideal excitation impulse is a pointproperty in the time domain,

the FIR filter smears the characteristic of the impulse, and as a result it becomes difficult

to accurately extract the instant of the excitation impulse. Hence a resonator with narrow

bandwidth (corresponding to a radiusr = 0.999) was chosen to realize the narrowband

filter. Ideal resonator (r = 1) was not used in order to avoid saturation of the filter output.

3.1.2 Illustration of instantaneous frequency for synthetic signals

When a multicomponent signal is filtered through a resonatorcentered around a frequency

(ω0), the output signal predominantly contains theω0 frequency component. Any devi-

ation fromω0 in frequency of the filtered output can be attributed to the impulse-like

characteristics present in the multicomponent signal. In general, the analytic signal cor-

responding to the filtered output can be expressed as

sa(t) = |sa(t)|ej(ω0t+θ(t)). (3.14)

Hence the instantaneous phase of the filtered output (predominantly monocomponent) is

given by

φ(t) = ω0t + θ(t). (3.15)

whereω0t is the linear phase of the resonator, andθ(t) is the time-varying phase induced

in the filtered output by the multicomponent signal. The instantaneous frequency of the

filtered output is given by the time derivative of the instantaneous phase, as follows:

φ′(t) = ω0 + θ
′(t). (3.16)

When a resonator is excited with a single impulse, it followsthrough its natural oscil-

lations resulting in a signal with linear phaseω0t (Fig. 3.2(a), Fig. 3.2(b) and Fig. 3.2(c)).

For this caseθ(t) will be zero. On the other hand, when the resonator is excited by se-

quence of impulses, the response of the resonator due to excitation impulses at different

time instants gets superposed to form a composite signal, asshown in Fig. 3.2(d). The
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Fig. 3.2: Illustration of superposition of responses of a resonator for impulse excitations
at different time instants. (a), (b) and (c) shows response of the resonator for individual
impulses and (d) shows the superposed response.

composite signal deviates from the natural oscillations ofthe resonator at the instants of

excitation impulses. The deviations from the natural oscillations reflect in the phase of the

signal as deviationθ(t) from the linear phaseω0t. The deviations from the linear phase can

be better observed from the instantaneous frequency,φ′(t) = ω0 + θ
′(t). Fig. 3.3(a) shows

a multicomponent signal in the form of a periodic impulse sequence. The signal filtered

by 500 Hz resonator, and the instantaneous frequency plots of the filtered signal are also

given in Fig. 3.3(b) and Fig. 3.3(c), respectively. At the instants of impulse locations,

the instantaneous frequency deviates significantly from the normalized center frequency

ω0 = 2π f / fs, where f is the frequency of the resonator, andfs is the sampling frequency.

For a resonator frequencyf= 500 Hz and sampling frequencyfs=8000, the instantaneous

frequency (aroundω0 = 0.3927) shows sharp peaks at the instants of excitation. Note that
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Fig. 3.3: Instantaneous frequency computed on the response of a 500 Hz resonator
excited with a periodic sequence of impulses. (a) Periodic sequence of excitation im-
pulses. (b) Output of the resonator. (c) Instantaneous frequency of the resonator output.

in the computation of the instantaneous frequency, we are not exploiting the fact that the

excitation instants are periodic.

The discontinuity information can be derived from the filtered output even if the im-

pulses are not regularly spaced, and are of arbitrary strengths. Fig. 3.4 shows a multicom-

ponent signal in the form of a sequence of aperiodic impulseswith arbitrary strengths,

the filtered signal and the instantaneous frequency of the filtered signal. It is difficult to

observe any discontinuity or locate the instants of excitation from the amplitude of the

filtered signal. However, the instantaneous frequency (derived from phase) clearly shows

sharp peaks at the instants of the excitation. The amplitudes of the peaks in the instanta-

neous frequency depend not only on the strengths of the impulses, but also on the phases

at which the sinusoids originated at these impulses are added at the instants. This in turn

depends on the locations of the impulses and the frequency ofthe sinusoid.

If the impulse sequence is replaced by white noise, the corresponding filtered out-

put and the instantaneous frequency plots do not contain anysignificant discontinuities,

as shown in Fig. 3.5. The white noise does not contain any isolated impulse-like dis-
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Fig. 3.4: Instantaneous frequency computed on the response of a 500 Hz res-
onator excited with an aperiodic sequence of impulses. (a) Aperiodic sequence of
impulses with arbitrary strengths. (b) Output of the resonator. (c) Instantaneous
frequency of the resonator output.

continuities. As a result, the filtered output will be a slowly varying amplitude envelope

modulated by a sinusoid without any significant discontinuities in the phase. Hence the

instantaneous frequency of the filtered white noise does notshow any significant peaks,

unlike in the case of Fig. 3.4(c). This highlights the significance of the isolated disconti-

nuities in the impulse sequence.

Consider a situation where a synthetic speech signal is filtered through a resonator.

The synthetic speech signal is generated by exciting a time-varying all-pole system by a

sequence of impulses at known locations. When such a signal is filtered through a res-

onator, the frequency response of the all-pole system gets multiplied with the frequency

response of the resonator. Hence, the frequency response ofthe all-pole system around the

center frequency of the resonator gets selected. The filtered output carries the information

about the discontinuities that are reflected in the narrow frequency band of the resonator.

The instants of excitation impulses can be extracted from the filtered output using the in-

stantaneous frequency. Fig. 3.6(b) shows a synthetic speech signal, obtained by exciting
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Fig. 3.5: White noise filtered through a 500 Hz resonator. (a) Segment of white
noise. (b) Output of the resonator. (c) Instantaneous frequency of the resonator
output.

a time-varying all-pole system with a sequence of impulses shown in Fig. 3.6(a). The

instantaneous frequency (Fig. 3.6(d)) of the filtered output (Fig. 3.6(c)) shows discontinu-

ities at the instants of excitation of the all-pole system. The locations of the discontinuities

are in close agreement with the original excitation impulses.

3.2 Illustration of instantaneous frequency for speech data

Speech signal can be considered as the result of convolutionof the time-varying vocal-

tract transfer function and the epoch sequence due to the excitation source. The epochs

are the time instants where significant excitation is delivered to the vocal-tract system.

The information about the locations of the epochs is embedded in the coupling between

the source and the system, though it is not evident from the speech waveform directly. It

is difficult to accurately locate the time instants of excitation impulses directly from the

speech waveform, because of the time-varying resonances ofthe vocal-tract system. To

highlight the effect due to the instants of significant excitation, the speechsignal is filtered
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Fig. 3.6: Epoch extraction from synthetic speech signal with known epoch loca-
tions using instantaneous frequency computed around 500 Hz. (a) Sequence of
excitation impulses. (b) Synthetic speech signal obtained by exciting an all-pole
system with the excitation impulses. (c) Output of filtering the synthetic speech
signal through a 500 Hz resonator. (d) Instantaneous frequency of the resonator
output.

through a resonator centered around a chosen frequencyω0. The significant deviations of

the filtered output from the natural oscillations of the resonator can be attributed to the

excitation impulses. Fig. 3.7 shows a 100 ms segment of voiced speech signal sampled

at 8 kHz, and the output of the resonator at 500 Hz. The instantaneous frequency of the

filtered output shows sharp peaks at the epoch locations, as shown in Fig. 3.7(c). In order

to determine the accuracy of the estimated epoch locations,the differenced electroglotto-

graph (EGG) signal is also given in Fig. 3.7(d). The peaks in the instantaneous frequency

of the filtered output match well with the actual epoch locations given by the differenced

EGG signal, illustrating the potential of the proposed method.

In the case of speech signal, instantaneous frequency of thefiltered output also con-
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Fig. 3.7: Epoch extraction from real speech segment using instantaneous
frequency. (a) A 100 ms segment of speech waveform. (b) Output of filter-
ing the speech segment through a resonator at 500 Hz. (c) Instantaneous
frequency of the resonator output. (d) Differenced EGG signal to observe
the reference epoch locations.

tains the time-varying frequency changes associated with the vocal-tract transfer function,

which is undesirable. As a result, though the peaks in the instantaneous frequency of the

filtered output indicate the epoch locations accurately forthe segment shown in Fig. 3.7,

it may not be useful to extract the epoch locations unambiguously for any chosen center

frequency (ω0). Thus the method of epoch extraction using the instantaneous frequency of

the filtered output depends critically on the choice of center frequency of the filter. A sin-

gle center frequency may not be suitable for extracting the epoch locations of an arbitrary

segment of speech. The center frequency has to be chosen based on the characteristics of

the speech segment under analysis. The choice of the center frequency also depends on

the distribution of energy of the speech segment in the frequency domain. To illustrate the

significance of choice of the center frequency of the filter, the instantaneous frequencies
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computed around four different center frequencies are shown in Fig. 3.8. The spectro-

gram, the speech signal and the differenced EGG signal are also shown for reference. The

spectrogram in Fig. 3.8(a) shows a band of energy around 500 Hz. The instantaneous

frequency computed around 500 Hz (Fig. 3.8(d)) indicates unambiguous peaks/valleys

that are in close agreement with the actual epochs shown by the differenced EGG signal

(Fig. 3.8(c)). In the instantaneous frequencies computed around 1000 Hz and 2000 Hz,

shown in Fig. 3.8(e) and Fig. 3.8(f), respectively, the epoch locations can not be identified

easily. This is because the energy of the signal in those frequency bands is very low. Since

the spectrogram shows large energy in the band around 2500 Hz, the instantaneous fre-

quency computed around 2500 Hz shows sharp peaks/valleys around the epoch locations.

But, the instantaneous frequency plot in Fig. 3.8(g) shows less ambiguous peaks/valleys

in the time interval 570 ms to 620 ms, than those in the time interval 520 ms to 570 ms.

This is because the intensity of the 2500 Hz frequency band inthe time interval 570 ms

to 620 ms is greater than the intensity of the band in the time interval 520 ms to 570 ms.

Notice that the instantaneous frequencies computed around1000 Hz and 2000 Hz also

contain all the peaks/valleys corresponding to the epoch locations, but they can not be lo-

cated easily due to fluctuations in the neighborhood. This isbecause the instantaneous

frequency captures not only the discontinuities due to the excitation impulses, but also

the fluctuations due to the time-varying vocal-tract system. Hence it is difficult to extract

the instants of excitation from the instantaneous frequency computed around an arbitrary

center frequency. The center frequency has to be chosen in such a way that the discontinu-

ities due to the excitation impulses dominate over the fluctuations due to the time-varying

vocal-tract system.

3.3 Epoch extraction using zero-frequency resonator

The discontinuity due to an impulse excitation reflects uniformly across all the frequen-

cies including the zero-frequency. That is, even the outputof a resonator at zero-frequency

(0 Hz) should have the information of the discontinuities due to impulse-like excitation.

The advantage of choosing the zero-frequency resonator is that the characteristics of the
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Fig. 3.8: Illustration of criticality of choice of center frequency of the resonator for
epoch extraction using instantaneous frequency. (a) Spectrogram of the speech
segment. (b) Speech waveform. (c) Differenced EGG signal. Instantaneous
frequency plots computed around (d) 500 Hz, (e) 1000 Hz, (f) 2000 Hz, and
(g) 2500 Hz.
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Fig. 3.9: Dotted line indicates the magnitude response of an ideal (discrete) zero-
frequency resonator. Solid line indicates the magnitude response of a cascade of
two ideal (discrete) zero-frequency resonators.

time-varying vocal-tract system will not affect the characteristics of the discontinuities

in the resonator output. This is because the vocal-tract system has resonances at much

higher frequencies than at zero-frequency. Therefore we propose that the characteristics

of the discontinuities due to excitation impulses can be extracted by passing the speech

signal twice through a zero-frequency resonator. The purpose of passing the speech sig-

nal twice is to reduce the effects of all (high frequency) resonances. A cascade of two

zero-frequency resonators provides a sharper roll-off compared to a single zero-frequency

resonator, as shown in Fig. 3.9. Since the output of the zero-frequency resonator is equiv-

alent to double integration of the signal, passing the speech signal twice through the filter

is equivalent to four times successive integration. This will result in a filtered output that

grows/decays as a polynomial function of time. Fig. 3.10 shows a segment of speech sig-

nal, and its filtered output. The effect of discontinuities due to impulse sequences will be

overridden by those large values of the filtered output. Hence it is difficult to compute the

instantaneous frequency (deviation from zero-frequency)as in the conventional manner

of computing the analytic signal of the filtered output.
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Fig. 3.10: Epoch extraction using zero-frequency resonator. A 50 ms segment
of (a) Speech signal, (b) output of cascade of two 0 Hz resonators, (c) mean
subtracted signal or filtered signal (d) differenced EGG signal. The arrows in (a)
and (d) indicate epoch locations detected from the positive zero-crossings of the
filtered signal.

We attempt to compute the deviation of the filtered output from the local mean to ex-

tract the characteristics of the discontinuities due to impulse excitation. The local mean

computed over an average pitch period is subtracted from thefiltered output to highlight

the characteristics of the discontinuities. The resultingmean subtracted signal obtained

from the filtered output in Fig. 3.10(b) is shown in Fig. 3.10(c). The mean subtracted sig-

nal is called thezero-frequency filtered signalor merely thefiltered signal. The following

steps are involved in processing the speech signal to derivethe zero-frequency filtered

signal:

(a) Difference the speech signals[n] (to remove any time-varying low frequency bias
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in the signal)

x[n] = s[n] − s[n− 1] (3.17)

(b) Pass the differenced speech signalx[n] twice through an ideal resonator at zero-

frequency. That is

y1[n] = −
2

∑

k=1

aky1[n− k] + x[n], (3.18a)

and

y2[n] = −
2

∑

k=1

aky2[n− k] + y1[n], (3.18b)

wherea1 = −2, anda2 = 1. This is equivalent to successive integration by four

times. But we prefer to call the process as filtering at zero-frequency.

(c) Remove the trend iny2[n] by subtracting the local mean computed over an average

pitch period, at each sample. The resulting signal

y[n] = y2[n] − 1
2N + 1

N
∑

m=−N

y2[n+m] (3.19)

is called the zero-frequency filtered signal, or simply the filtered signal. Here 2N+1

corresponds to the number of samples in the interval corresponding to the average

pitch period.

It was observed that the sharper zero-crossings of the filtered signal closely align with

the epoch locations obtained from negative peaks of differenced EGG signals. So, the

time instants of sharper zero-crossings of the filtered signal can be hypothesized as epoch

locations. In Fig. 3.10(c), positive-going zero-crossings are sharper than negative-going

zero-crossings, and hence indicate the epoch locations. The locations of the positive-

going zero-crossings of the filtered signal in Fig. 3.10(c) coincide with the locations of the

negative peaks in the differenced EGG signal as shown in Fig. 3.10(d). The sharper zero

crossings of the filtered signal may either be positive-going zero-crossings or negative-

going zero-crossings, depending on the polarity of the signal (typically introduced by

recording devices). The polarity of the sharper zero crossings can be automatically de-

termined by comparing the slopes of the filtered signal around the positive-going and the
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negative-going zero-crossings over the entire duration ofthe utterance. Throughout this

work, we automatically detect the polarity of the signal andcompensate for the polarity

so that the positive-going zero-crossings coincide with the epoch locations. In the rest of

the thesis, we associate positive-going zero-crossings ofthe filtered signal with the hy-

pothesized epochs. We refer to the positive-going zero-crossings as simply the positive

zero-crossings.

Fig. 3.11 illustrates the performance of the proposed epochextraction method on a

creaky voice segment taken from Voqual-03 database [118]. Notice that the waveform of

the speech signal (Fig. 3.11(a)) in successive glottal cycles is not periodic, making it dif-

ficult to locate the epoch locations directly from the speechsignal, especially around 1.34

s to 1.36 s and 1.39 s to 1.41 s. However, the filtered signal shown in Fig. 3.11(b) clearly

shows sharp positive zero-crossings around the epoch locations, which match closely with

the negative peak locations of the differenced EGG signal shown in Fig. 3.11(c). It is inter-

esting to note that even for an aperiodic sequence of impulse-like excitations, the positive

zero-crossings of the filtered signal correspond to the locations of the epochs. There is no

such relation between the excitation and the filtered signalfor the random noise excitation

of the time-varying all-pole system. Also, the filtered signal has significantly lower values

for the random noise excitation compared to the impulse sequence excitation. Fig. 3.12(b)

shows the filtered signal for a speech signal consisting of voiced and unvoiced segments.

The unvoiced segments correspond to the random noise excitation of the vocal-tract sys-

tem. The differenced EGG signal (Fig. 3.12(c)) is also given in the figure to identify the

voiced and unvoiced segments.

Another important feature of the proposed approach is that it does not depend on the

response of the vocal-tract system, and it does not assume quasistationarity of the vocal-

tract system, unlike the conventional block processing based approaches. Since there is no

assumption on quasistationarity, the proposed approach does not require block processing,

and it can be applied on data segments of any length. When we apply this method on

longer segments (say 0.1 s to 50 s), it is necessary to apply the trend removal operation

in (3.19), successively, more than once due to rapid growth/decay of the output of the

zero-frequency resonatorsy2[n]. By applying the trend removal operation several times,
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Fig. 3.11: Illustration of proposed epoch extraction method on a creaky voiced segment taken
from Voqual-03 database [118]. (a) Speech waveform of a creaky voiced segment, (b) filtered
signal, and (c) differenced EGG signal. The arrows in (c) indicate the epoch locations detected
from the positive zero-crossings of the filtered signal.
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Fig. 3.12: Characteristics of filtered signal in voiced and unvoiced regions. (a) A segment of
speech signal, (b) filtered signal, and (c) differenced EGG signal. The filtered output shows
significantly lower values in the regions where there is no glottal activity.
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the zero-crossing information does not change. Fig. 3.13 shows the effect of successive

trend removal operations on the output of the zero-frequency resonators. Notice that the

information in Fig 3.13(e), the signal obtained after threesuccessive trend removals, is

also present in Fig. 3.13(d), the signal obtained after two successive trend removals. But

the fluctuations in Fig. 3.13(d) are overridden by a DC trend.In fact, these fluctuations

are present in the output of the zero-frequency resonators also (Fig. 3.13(b)), but they

are not evident because of the large DC trend arising due to filtering at zero-frequency.

Throughout this thesis, the trend removal operation is applied thrice to extract the epochs.

3.3.1 Selection of window length for mean subtraction

To remove the trend in the output of the zero-frequency resonator, a suitable window

length needs to be chosen to compute the local mean. The length of the window depends

on the growth/decay of the output, and also on the overriding fluctuations in the output.

The growth/decay in turn depends on the nature of the signal. The desiredinformation

of the overriding fluctuations depends on the intervals between impulses. If the window

length is too small relative to the average duration (pitch period) between impulses, then

spurious zero-crossings may occur in the filtered signal, affecting the locations of the gen-

uine zero-crossings. If the window length is too large relative to the average pitch period,

then also the genuine zero-crossings are affected in the filtered signal. Fig. 3.14 illustrates

the effect of window length on the filtered signal for speech segmentfrom a male speaker

having an average pitch period of 7 ms. The filtered signal, inFig. 3.14(b), obtained

using a window length of 4 ms contains spurious (minor) zero-crossings in between the

zero-crossings corresponding to the epochs. The filtered signals obtained using window

lengths of 8 ms (Fig. 3.14(c)), 12 ms (Fig. 3.14(d)), and 16 ms(Fig. 3.14(e)) do not con-

tain spurious zero-crossings. The locations of the zero-crossings across the three plots

are consistent and coincide with the epoch locations. Though the filtered signal obtained

using a window length of 30 ms(Fig. 3.14(f)) does not containspurious zero-crossings,

the locations of the zero-crossings are shifted arbitrarily because of the improper trend

removal due to large window length. Hence, the choice of the window length for comput-
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Fig. 3.13: Effect of successive trend removals from the output of the zero-frequency res-
onators. (a) A segment of speech signal, (b) output of the cascade of two ideal zero-frequency
resonators. (c) output after first trend removal, (d) output after second trend removal, and (e)
output after third trend removal, i.e., the filtered signal. The filtered signal is normalized be-
tween +1 and -1.
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Fig. 3.14: Effect of window length for trend removal on the filtered signal. (a) A segment of
speech signal. Filtered signal obtained using a window length of (b) 4 ms, (c) 8 ms, (d) 12 ms,
(e) 16 ms, and (f) 30 ms,

55



ing the local mean is not very critical, as long as it is in the range of about 1 to 2 times the

average pitch period.

The average pitch period information can be derived in several ways. One way is

to use the autocorrelation function of short (30 ms) segments of differenced speech, and

determine the pitch period from the locations of the strongest peak in the interval 2 ms

to 15 ms (normal range of pitch period). The histogram of the pitch periods is plotted.

The pitch period value corresponding to the peak in the histogram can be chosen as the

window length.

The average pitch period can be estimated using the histogram method even from

degraded speech as shown in Fig. 3.15 for a male speech and a female speech at two

different SNRs. The location of the peak does not change significantly even under noisy

conditions. Hence the average pitch period can be estimatedreliably. Fig. 3.16 shows the

speech waveform, the filtered signal and the derived epoch locations and the differenced

EGG signals for an utterance of a female voice. The epoch locations coincide with the

locations of the large negative peaks in the differenced EGG signal (Fig. 3.16(c)). Similar

illustration for a male voice is given in Fig. 3.17.
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(c) Female Speaker (Clean)
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Fig. 3.15: Histogram of the locations of the pitch peak in the autocorrelation
function for (a) clean speech signal from a male speaker, (b) speech signal from
the same male speaker at 0 dB SNR, (c) clean speech signal from a female
speaker, and (d) speech signal from the same female speaker at 0 dB SNR. Note
that the location of the peak in the histogram plot is not affected by white noise.
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Fig. 3.16: Illustration of the proposed method of epoch extraction for female speaker.
(a) Speech signal, (b) filtered signal, and (c) differenced EGG signal. Arrows in (c)
indicate the detected epochs. Note that the filtered output brings out even the epochs
not picked up by the EGG signal (in the interval 360 ms to 375 ms).
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Fig. 3.17: Illustration of the proposed method of epoch extraction for male speaker.
(a) Speech signal, (b) filtered signal, and (c) differenced EGG signal. Arrows in (c)
indicate the detected epochs.
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3.4 Comparison of proposed epoch extraction with other

methods

In this section the proposed method of epoch extraction is compared with three existing

methods in terms of identification accuracy and in terms of robustness against degrada-

tion. The three methods chosen for comparison are the Hilbert envelope based (HE-based)

method [119], the group-delay based (GD-based) method [3] and the DYPSA algorithm

[36]. Initially, the performance of the algorithms was evaluated on the clean data. Sub-

sequently, we have evaluated robustness of the proposed method and the three existing

methods at different levels of degradations. A brief discussion on the implementation

details of the three chosen methods for comparison is given below.

3.4.1 Description of existing epoch extraction methods

Hilbert envelope based method [119]:During voicing, the strength of excitation at the

epoch is large and impulse-like. Though this can be observedfrom the LP residual, it

can not be extracted unambiguously because of multiple peaks of random polarity around

the instant of excitation. Ideally, it is desirable to derive an impulse-like signal around

the instant of significant excitation. A close approximation to this is possible by using

the Hilbert envelope of the LP residual. Even though the realand imaginary parts of an

analytic signal have positive and negative samples, the Hilbert envelope of a signal is a

positive function, giving the envelope of the signal. For example, the HE of a unit sample

sequence or its derivative has a peak at the same instant. Thus the properties of the HE

can be exploited to derive approximate epoch locations. Theevidence for epoch locations

can be obtained by convolving the HE with a Gabor filter (modulated Gaussian pulse), as

suggested in [119]. In the present work, the evidence for epoch locations is obtained by

convolving the HE with a modulated Gaussian pulse,

g[n] =
(n− N/2)√

2πσ
exp

(

−(n− N/2)2

2σ2

)

, n = 1, 2, . . . ,N,
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Fig. 3.18: Illustration of Hilbert envelope based method for epoch extrac-
tion [119]. (a) Speech signal, (b) LP residual, (c) Hilbert envelope of LP resid-
ual, (d) epoch evidence plot, and (e) differenced EGG signal. The pulses in (e)
indicate the detected epoch locations.

whereσ defines the spatial spread of the Gaussian, andN is the length of the filter. For

this evaluation, the values ofσ = 10, andN = 80 (number of samples equivalent to a

duration of 10 ms, at 8 kHz sampling frequency) are used. The Hilbert envelope of the

LP residual is convolved with the modulated Gaussian pulse to obtain the epoch evidence

plot shown in Fig. 3.18(d). The instants of positive zero-crossings in the epoch evidence

plot correspond approximately to the locations of the instants of significant excitation.

Group delay based method [3]:This method is based on the global phase characteristics

of minimum phase signals. The average slope of the unwrappedphase of the short-time

Fourier transform of LP residual is computed as a function oftime. The average slope
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Fig. 3.19: Illustration of group-delay based method for epoch extraction [3]. (a)
Speech signal, (b) LP residual, (c) phase-slope function, and (d) differenced EGG
signal. The pulses in (d) indicate the detected epoch locations.

obtained as a function of time is termed as phase-slope function. Instants where the phase-

slope function makes a positive zero-crossing are identified as epochs. Fig. 3.19 shows a

speech utterance, its LP residual, the phase-slope function and the extracted instants. For

this evaluation, we have used a 10th order LP analysis to derive the LP residual, and an 8

ms window for computing the phase-slope function.

The DYPSA algorithm [36]: The DYPSA algorithm is an automatic technique for esti-

mating the epochs in voiced speech from the speech signal alone. There are three com-

ponents in the algorithm. The first component generates candidate epochs using zero-

crossings of the phase-slope function. The energy weightedgroup-delay was used as

a measure to derive the phase-slope function. The second component employs a novel

phase-slope projection technique to recover candidates for which the phase-slope func-
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tion does not include a zero-crossing. These two componentsdetect almost all the true

epochs, but they also generate a large number of false alarms. The third component of

the algorithm uses dynamic programming to identify the trueepochs from the set of hy-

pothesized candidates by minimizing a cost function. For evaluating this technique, the

MATLAB implementation of the DYPSA available in [120] was used.

3.4.2 Database for evaluation of epoch extraction methods

The CMU-Arctic database [121][122] was used to evaluate theproposed method of epoch

extraction, and to compare the results with the existing methods. The Arctic database con-

sists of 1132 phonetically balanced English sentences spoken by two male and one female

speakers. The duration of each utterance is approximately 3s, which makes the duration

of the entire database to be around 2 hours 40 minutes. The database was collected in

a sound proof booth, and digitized at a sampling frequency of32 kHz. In addition to

the speech signals, the Arctic database contains simultaneous recordings of EGG signals

collected using an electroglottograph. The speech and EGG signals were time-aligned to

compensate for the larynx-to-microphone delay, determined to be approximately 0.7 ms.

Reference locations of the epochs were extracted from the voiced segments of the EGG

signals by finding peaks in the differenced EGG signal. The performance of the algo-

rithms was evaluated only in the voiced segments (detected from EGG signal) between

the reference epoch locations and the estimated epoch locations. The database contains a

total of 792249 epochs in the voiced regions.

3.4.3 Performance evaluation

The performance of the epoch detection methods was evaluated using the measures de-

fined in [36]. Fig. 3.20 shows the characterization of epoch estimates showing each of

the possible decisions from the epoch detection algorithms. The following measures were

defined to evaluate the performance of the epoch detection algorithms:
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(a) Larynx cycle:The range of samples12(lr−1 + lr) ≤ n ≤ 1
2(lr + lr+1), given an epoch

reference at samplelr with preceding and succeeding epoch references at samples

lr−1 andlr+1, respectively.

(b) Identification rate(IDR): The percentage of larynx cycles for which exactly one

epoch is detected.

(c) Miss rate(MR): The percentage of larynx cycles for which no epoch is detected.

(d) False alarm rate(FAR): The percentage of larynx cycles for which more than one

epoch is detected.

(e) Identification errorζ: The timing error between the reference epoch location and

the detected epoch location in larynx cycles for which exactly one epoch is detected.

(f) Identification accuracyσ (IDA): The standard deviation of the identification error

ζ. Small values ofσ indicate high accuracy of identification.

Table 3.1 shows the performance results on Arctic database for identification rate,

miss rate, false alarm rate, and identification accuracy forthe three existing methods, HE-

based, GD-based and DYPSA algorithm, as well as for the proposed method. Fig. 3.21

shows the histograms of the timing errorsζ in detecting the epoch locations, averaged

over the entire Arctic database. The spread of the timing errors for the proposed method

is relatively less compared to the exiting methods. From Table 3.1, it can be concluded

that the DYPSA algorithm performed best among the three existing techniques, with an

identification rate of 96.66%. The proposed method of epoch extraction gives even better

identification rate as well as identification accuracy, compared to the DYPSA algorithm.
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Fig. 3.20: Characterization of epoch estimates showing 3 larynx cycles with ex-
amples of each possible outcome from epoch extraction [36]. Identification accu-
racy is measured as standard deviation of ζ.

Table 3.1: Performance comparison of epoch extraction methods on CMU-Arctic
database. IDA - Identification rate, MR - Miss rate, FAR - False alarm rate, IDA -
Identification accuracy.

Method IDR (%) MR (%) FAR (%) IDA (ms)

HE-based 89.86 1.43 8.71 0.58

GD-based 92.80 4.01 3.18 0.67

DYPSA 96.66 1.76 1.58 0.59

Proposed 99.04 0.18 0.77 0.36
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Fig. 3.21: Histogram of the epoch timing errors for clean speech. (a) HE-based method, (b) GD-based method, (c) DYPSA algorithm and (d)
proposed method.
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Fig. 3.22: Histogram of the epoch timing errors for speech signals, degraded by white noise, at an SNR of 10 dB. (a) HE-based method, (b)
GD-based method, (c) DYPSA algorithm and (d) proposed method.
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3.5 Effect of noise on performance of the proposed method

of epoch extraction

In this section we study the effect of (moderate levels of) noise on the accuracy of the

epoch detection methods. The existing methods and the proposed method are evaluated

on artificially generated noisy speech data. Several noise environments at varying signal-

to-noise ratio (SNR) were simulated to evaluate the robustness of the epoch detection

methods. The noise samples were taken from NOISEX-92 database [123]. The database

consists of white, babble, high frequency (HF) channel, andvehicle noise. The noise

samples from the NOISEX-92 database were added to the clean speech utterances from

Arctic database to generate noisy speech data at different levels of degradation. The ut-

terances are appended with silence so that the total amount of silence in each utterance

is constrained to be about 60% of data, including the pauses in the utterances. Including

different noise environments and SNRs, the database consists of33 hours of noisy speech

data.

Table 3.2 shows the comparative performance of epoch extraction methods for differ-

ent types of degradations at varying SNRs. Fig. 3.22 shows the distribution of the timing

errorsζ in detecting the epoch locations, for white noise environment at an SNR of 10

dB. The proposed method consistently performs better than the existing techniques even

under degradation. The improved performance of the proposed method may be attributed

to the following reasons: (a) There is no block processing involved in this method. Hence

there are no effects of the size and the shape of the window. The entire speechsignal is

processed at once to obtain the filtered signal. (b) The proposed method is not dependent

on the energy of the signal. This method detects the epoch locations even in weakly voiced

regions like voice-bar. (c) There is only one parameter involved in the proposed method,

i.e., the length of the window for removing the trend from theoutput of zero-frequency

resonator, the choice of which is not very critical. (d) There are no critical thresholds or

costs involved in identifying the epoch locations.
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Table 3.2: Performance comparison for epoch detection methods for various SNRs and noise
environments. IDR - Identification rate, MR - Miss rate, FAR - False alarm rate, IDA - Identifi-
cation accuracy

Environment HE Based GD Based

Noise SNR IDR MR FAR IDA IDR MR FAR IDA

(dB) (%) (%) (%) (ms) (%) (%) (%) (ms)

White 20 dB 84.56 1.58 13.86 0.686 87.34 3.82 8.85 0.812

White 15 dB 82.26 1.9 15.85 0.761 84.65 4.15 11.2 0.891

White 10 dB 79.45 2.39 18.16 0.864 81.07 4.79 14.14 0.907

Babble 20 dB 86.73 1.54 11.73 0.674 89.45 3.99 6.56 0.782

Babble 15 dB 84.88 1.77 13.35 0.743 87.27 4.28 8.45 0.855

Babble 10 dB 82.51 2.17 15.32 0.842 84.32 4.77 10.91 0.956

HF Channel 20 dB 84.23 1.87 13.91 0.738 86.54 4.36 9.10 0.849

HF Channel 15 dB 82.04 2.26 15.69 0.822 83.87 4.84 11.29 0.934

HF Channel 10 dB 79.24 2.85 17.91 0.927 80.13 5.53 14.34 1.040

Vehicle 20 dB 89.75 1.40 8.85 0.584 92.67 3.95 3.38 0.674

Vehicle 15 dB 89.58 1.39 9.03 0.585 92.49 3.92 3.59 0.679

Vehicle 10 dB 89.25 1.37 9.38 0.591 92.18 3.88 3.95 0.689

Environment DYPSA Proposed Method

Noise SNR IDR MR FAR IDA IDR MR FAR IDA

(dB) (%) (%) (%) (ms) (%) (%) (%) (ms)

White 20 dB 92.12 1.41 6.47 0.738 99.04 0.19 0.77 0.363

White 15 dB 85.33 1.24 13.43 0.841 99.06 0.19 0.75 0.365

White 10 dB 75.95 1.09 22.96 0.957 99.05 0.23 0.72 0.371

Babble 20 dB 96.42 1.8 1.79 0.621 99.02 0.19 0.79 0.366

Babble 15 dB 96.14 1.82 2.05 0.647 98.99 0.21 0.80 0.374

Babble 10 dB 95.48 1.78 2.74 0.69 98.83 0.30 0.87 0.405

HF Channel 20 dB 95.89 1.77 2.33 0.654 99.04 0.19 0.77 0.363

HF Channel 15 dB 94.99 1.66 3.35 0.702 99.05 0.19 0.76 0.363

HF Channel 10 dB 92.4 1.56 6.01 0.775 99.06 0.21 0.73 0.368

Vehicle 20 dB 96.67 1.76 1.57 0.589 99.06 0.20 0.73 0.372

Vehicle 15 dB 96.6 1.78 1.62 0.596 98.93 0.37 0.70 0.397

Vehicle 10 dB 96.64 1.76 1.61 0.597 97.83 1.53 0.64 0.460
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3.6 Summary

In this chapter we proposed a method for epoch extraction that does not depend on the

characteristics of the vocal-tract system. The method exploits the impulse-like exci-

tation of the vocal-tract system. The method uses the outputof speech from a zero-

frequency resonator. The positive zero-crossings of the filtered signal correspond to

epochs. The identification rate and identification accuracyare evaluated using the CMU-

Arctic database, where the speech signal and the corresponding EGG signals are available.

The epoch information derived from the EGG signals is used asreference. The perfor-

mance of the proposed method is compared with the results from the DYPSA and two

other methods. The proposed method gives a significantly better performance in terms of

identification rate and identification accuracy. It is also interesting to note that the pro-

posed method is robust against degradations such as white noise, babble, high frequency

channel and vehicle noise.

There are many novel features in the proposed method of epochextraction. The

method does not use any block processing as most other signalprocessing methods do.

The performance of the method does not depend on the energy ofthe segment of speech

signal, and hence the method works equally well for all typesof voiced sound units. In

addition, there are no parameters to control, and no arbitrary thresholding in the identifi-

cation of epochs.

The method performs well for speech collected with close-speaking microphone, even

with the addition of degradations. But the method is not likely to work well when the

degradations produce additional impulse-like sequences in the collected speech data as

in the case of reverberation. The method is also not likely towork well when there is

interference of speech from other speakers. Some of these issues are addressed in Chap-

ter 6 using speech signals collected over a pair of spatiallyseparated microphones. The

proposed method of epoch extraction may not work well on speech data collected over

telephone channels and high pass filtered speech signals where the low frequency compo-

nents are deliberately attenuated.
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Chapter 4

Characterization of Glottal Activity

The primary mode of excitation of the vocal-tract system during speech production is due

to vibration of vocal folds (glottal activity) at the glottis. The strength of excitation during

the glottal activity is determined mostly by the rate of closure of the vocal folds in each

glottal cycle. Detecting the regions of glottal activity and the strength of excitation in

each glottal cycle from the speech signal is a challenging task, as it is difficult to suppress

the response of the time-varying vocal-tract system in the speech signal. Several methods

have been suggested in the literature, which involve estimating the characteristics of the

time-varying vocal-tract system, followed by some form of inverse filtering of speech to

highlight the characteristics of the excitation source [1]. Linear prediction (LP) analysis

is one such method in which the LP coefficients are used to inverse filter the speech

signal to derive the LP residual [4]. The LP residual has noise-like characteristics in the

regions of nonglottal activity. In the regions of glottal activity, corresponding to the vocal

fold vibration, the LP residual shows regions of large amplitude at regular intervals. The

large energy region corresponds mostly to the closing phaseof each glottal cycle. The

effectiveness of detecting glottal activity from the LP residual depends on the accuracy of

the LP model, and also on the nature and quality (degradation) of the speech signal.

In this chapter, we propose a method based on the zero-frequency filtered signal to

detect the regions of glottal activity, and to estimate the strength of excitation in each

glottal cycle. In Section 4.1, we present a method to estimate the strength of excitation at
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epoch locations from the speech signals. Section 4.2 discusses a method to automatically

detect the regions of glottal activity, and its performanceevaluation. In Section 4.3 we

summarize the contributions of this chapter.

4.1 Estimation of strength of excitation

The manner in which vocal folds vibrate influences the glottal airflow that serves as an

excitation source for the vocal-tract filter. Vocal intensity may be increased by sharply

truncating the expiratory airflow (sharper closure of the vocal folds), and thereby increas-

ing the rate of glottal airflow [124]. Some of these features are manifested well in the

EGG signals. The negative peak amplitude in the differenced EGG signal indicates the

rate of glottal closure. However, the vocal-tract is known to absorb a variable amount

of acoustic energy, and the degree of mouth opening affects the acoustic pressure level

detected at the microphone [125]. Hence, the acoustic pressure level as picked up by the

microphone does not provide a reliable cue for the strength of excitation or rate of glottal

closure.

In this study, we exploit the narrowband nature of the zero-frequency resonator to

measure the strength of excitation at each instant. Since the effect due to an impulse is

spread uniformly across the frequency range, the relative strengths of impulses can be de-

rived from a narrowband around any frequency, including thezero-frequency. Hence, the

information about the strength of excitation can also be derived from the zero-frequency

resonator. It is observed that the slope of the zero-frequency filtered signal around the

zero-crossings corresponding to the epoch locations givesa measure of the strength of

excitation. Fig. 4.1(a) and Fig. 4.1(b) show a sequence of randomly spaced impulses with

arbitrary strengths, and the zero-frequency filtered signal, respectively. The filtered signal

(Fig. 4.1(b)) shows sharper zero-crossings at the impulse locations, and the slopes of fil-

tered signal around those zero-crossings are proportionalto the actual impulse strengths

as shown in Fig. 4.1(c). The scatter plot between the strengths of impulses and the slopes

of the filtered signal shown in Fig. 4.2 clearly shows a lineartrend, indicating that the

estimated strengths are proportional to the actual impulsestrengths.
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Fig. 4.1: Estimation of strength of randomly spaced impulses using zero-
frequency resonator. (a) Sequence of randomly spaced impulses, (b) Zero fre-
quency filtered signal. (c) Slope of signal around the positive (sharper) zero-
crossings. Arrows in (a) indicate detected impulse locations.
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This method of quantifying the strengths of impulses is valid even for speech signals.

In the case of speech signals, the significant contribution at the zero-frequency is due

to the impulse-like excitation. The vocal-tract system hasresonances at much higher

frequencies than at zero-frequency. Hence the contribution of the time-varying vocal-

tract system at zero-frequency is significantly low compared to the contribution due to the

impulse-like excitation. Hence the slope of the filtered signal around the epoch location

reflects predominantly the strength of excitation. Fig. 4.3(d) shows the estimated strengths

of excitation at the epoch locations for the speech signal shown in Fig. 4.3(a). Notice that

the amplitude of the speech signal (Fig. 4.3(a)) around 0.5 sis low, though the strength

of the excitation as reflected in the differenced EGG signal (Fig. 4.3(b)) is high. The

strength of excitation derived from the filtered signal of speech shows similar trend as that

of the differenced EGG signal. Fig. 4.4(a) shows a scatter plot betweenthe strength of

excitation derived from the differenced EGG signal and the absolute maximum amplitude

of the speech signal around the epoch location. Fig. 4.4(b) shows a scatter plot between

the strength of differenced EGG signal and the strength of excitation estimatedfrom the

filtered signal of speech. The scatter plot in Fig. 4.4(b) shows a better linear orientation

indicating that the estimated strength of excitation is proportional to the actual strength

of excitation observed from EGG signal. This behavior is notpresent in Fig. 4.4(a),

indicating that the strength of excitation can not be directly observed from the speech

signal.

4.2 Glottal activity detection (GAD)

The strength of excitation of the vocal-tract system can be considered to be significant

in the regions of the vocal fold vibration (glottal activity). In the absence of vocal fold

vibration, the vocal-tract system can be considered to be excited by random noise, as in

the case of frication. The energy of the random noise excitation is distributed both in time

and frequency domains. While the energy of an impulse is distributed uniformly in the

frequency domain, it is highly concentrated in the time-domain. As a result, the filtered

signal exhibits significantly lower amplitude for random noise excitation compared to
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Fig. 4.3: Estimation of the strengths of excitation of the epochs from speech
signal. (a) A segment of speech signal. (b) Differenced EGG signal. (c) Filtered
signal. (d) Slopes of the filtered signal around detected epoch locations (sharper
zero-crossings). The slopes are plotted as negative in order to compare with the
differenced EGG signal.

the impulse-like excitation. Hence the filtered signal can be used to detect the regions of

glottal activity (vocal fold vibration) as illustrated in Fig. 4.5. Fig. 4.5(a) shows a segment

of speech signal with regions of glottal activity, marked bydotted lines, obtained from the

differenced EGG signal in Fig. 4.5(b). The filtered signal of speech shown in Fig. 4.5(c)

clearly indicates the regions of glottal activity, and theymatch well with those obtained

from the differenced EGG signal in Fig. 4.5(b). Notice that the unvoiced regions around

0.6 s and 1.2 s in the speech signal (Fig. 4.5(a)) have very lowamplitude in the filtered

signal (Fig. 4.5(c)). Hence the short term energy of the filtered signal computer over 20ms

frames, shown in Fig. 4.5(d), can be used for glottal activity detection (GAD). The short

term energy of the filtered signal shows a clear indication ofglottal activity even in noisy
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Fig. 4.4: Scatter plot of (a) negative peak amplitude of differenced EGG vs. absolute maxi-
mum amplitude of speech signal around the epoch location and (b) negative peak amplitude
of differenced EGG vs. slope of the filtered signal at the epoch location.

speech signals. Fig. 4.6 shows a segment of speech signal degraded by babble noise at 5

dB SNR. It is difficult to identify the glottal activity around 0.4 s and 1.1 s directly from

the degraded speech signal. However, the filtered signal shown in Fig. 4.6(c) enhances

the regions of glottal activity over the unvoiced and noise regions. The short term energy

of the filtered signal shown in Fig. 4.6(d) clearly shows large amplitude in the regions

of glottal activity marked with dashed lines. The referenceregions of glottal activity are

manually marked by observing the differenced EGG signal shown in Fig. 4.6(b).

4.2.1 Performance evaluation of the proposed GAD

The proposed GAD method was evaluated under different noisy environments at varying

levels of degradation. A subset of CMU-Arctic database [121] consisting of 100 ran-

domly selected sentences from each of the 3 speakers was usedto evaluate the proposed

GAD method. The entire dataset was samplewise labeled for glottal activity using the

simultaneously recorded EGG signals available with the database. All the signals were

downsampled to 8 kHz.

To study the effect of noise on the proposed method for GAD, the method was eval-

74



0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.5

0

0.5

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

(b)

GA GA GA GA GA GA

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.5

0

0.5

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

(d)

Time (s)

Fig. 4.5: Glottal activity detection from the filtered signal. (a) Speech signal.
(b) Differenced EGG signal. (c) Filtered signal. (d) Energy computed over 20 ms
segments of the filtered signal. Regions marked with GA in (b) indicate regions
of glottal activity.

uated on artificially generated noisy speech data. Several noise environments at varying

levels of degradation were simulated by adding noise taken from Noisex-92 database [123].

The utterances were appended with silence so that total duration of silence in each utter-

ance is restricted to be about 60% of the data including pauses in the utterances. The

database consists of speech signals under white, babble andvehicle noise environments

at signal-to-noise ratio (SNR) ranging from 20 dB to 0 dB. Thespeech signals were pro-

cessed using the proposed zero-frequency resonator to obtain the filtered signal. The

energy of the filtered signal for every frame of 20 ms with 10 msshift is used to detect

the glottal activity.

The performance of the proposed GAD method was evaluated using the detection er-

ror tradeoff (DET) curves [126], which show the tradeoff between false alarm rate (FAR)
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Fig. 4.6: Glottal activity detection under degraded conditions. (a) A segment
of speech signal degraded by babble noise at 5 dB SNR. (b) Differenced EGG
signal. (c) Filtered signal. (d) Energy of the filtered signal.

and false rejection rate (FRR). The FAR represents the percentage of nonglottal activity

frames that were detected as glottal activity, and FRR represents the percentage of glottal

activity frames that were detected as nonglottal activity.The performance of the system is

expressed in terms of equal error rate (EER), the point at which FAR and FRR are equal.

The lower the EER value, the higher is the accuracy of the GAD method. Fig. 4.7 shows

the DET curves obtained for the proposed GAD algorithm underdifferent noise environ-

ments at an SNR of 0 dB. The performance of GAD at varying levels of degradation is

listed in Table 4.1 using the reference derived from the EGG signals.

The proposed method achieved an EER of 3.54% on the clean data, and exhibits a

gradual degradation under noisy conditions. The performance of the method under bab-

ble noise and vehicle noise is inferior to that under white noise, because the babble noise
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Fig. 4.7: DET curves indicating the performance of proposed
GAD method under different noise environments.

Table 4.1: Performance of GAD in EER (%) under different noise
environments at varying levels of degradation. Reference is derived
from EGG signals.

Noise Type 20 dB 15 dB 10 dB 5 dB 0 dB

White 3.56 3.56 3.60 3.78 5.24

Babble 3.56 3.64 4.62 7.95 15.10

Vehicle 3.56 3.58 4.09 6.28 10.83

contains impulse-like excitations arising from epochs of other speakers, and the vehicle

noise introduces high degradations in low frequency region. The errors on clean speech

may be attributed to the errors in the reference which are a result of inability of the EGG

signals in capturing the weak voiced regions. Fig. 4.8(a) and Fig. 4.8(b) show a segment

of weak voiced region and the corresponding differenced EGG signal, respectively. The

differenced EGG signal in Fig. 4.8(b) does not show prominent peaks around the epoch lo-

cations in the region from 1.26 s to 1.32 s, whereas the filtered signal in Fig. 4.8(c) clearly

shows the glottal activity in that region, and the positive zero-crossings approximately co-

incide with the epoch locations. Similar observations can be made from the weak voiced

segment from a female speaker shown in Fig. 4.9. Hence the proposed method can be
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Fig. 4.8: Illustration of potential of proposed method in identifying weak voiced
regions for a male speaker. (a) A segment of speech signal. (b) Differenced
EGG signal. (c) Filtered signal. Arrows in (a) and (b) indicate the detected epoch
locations.

Table 4.2: Performance of GAD in EER (%) under different noise
environments at varying levels of degradation. Reference is derived
from clean speech signals.

Noise Type 20 dB 15 dB 10 dB 5 dB 0 dB

White 0 0 0.003 0.41 2.77

Babble 0 0.23 1.81 6.13 14.14

Vehicle 0 0.006 1.08 4.22 9.66

effectively used to detect the glottal activity even in the weakvoiced regions. The per-

formance of the proposed GAD under different noisy environments is evaluated with the

reference derived from the clean speech. Table 4.2 gives theperformance of the proposed

GAD at varying levels of degradation using the reference derived from the clean speech

data. The results show that the performance of the proposed method for GAD is robust

against different types of degradation.
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Fig. 4.9: Illustration of potential of proposed method in identifying weak voiced
regions for a female speaker. (a) A segment of speech signal. (b) Differenced
EGG signal. (c) Filtered signal. Arrows in (a) and (b) indicate the detected epoch
locations.

4.3 Summary

In this chapter, we have proposed a method for detecting the regions of glottal activity

and estimating the strength of excitation within each glottal cycle. The methods proposed

in this chapter exploit the impulse-like characteristic ofthe excitation which is extracted

using the zero-frequency resonator. The proposed method for estimating strength of ex-

citation does not depend on estimating the vocal-tract response. Unlike conventional

voicing detection methods, the proposed method for GAD doesnot assume periodicity of

speech waveform in successive glottal cycles. The epoch location along with its strength

of excitation form important features of a glottal pulse. These features may be useful

in representing the excitation information in speech signal for speech coding and speech

synthesis. The estimated strength of excitation may be useful in defining shimmer which

is known to be a speaker-specific characteristic.
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Chapter 5

Instantaneous Fundamental Frequency

Estimation

Voiced sounds are produced from the time-varying vocal-tract system excited by a se-

quence of events caused by vocal fold vibrations. The vibrations of the vocal folds result

in a sequence of glottal pulses with major excitation takingplace around the instant of

glottal closure (GCI). The rate of vibration of the vocal folds determines the fundamen-

tal frequency (F0), and contributes to the perceived pitch of the sound produced by the

vocal-tract system. Though the usage of the term “rate of vibration” gives an impression

that the vibrations of the vocal folds are periodic, in practice the vocal fold vibrations at

the glottis may or may not be periodic. Even a periodic vibration of the vocal folds at the

glottis may produce a speech signal that is less correlated in successive cycles because

of the time-varying vocal-tract system that filters the glottal pulses. Sometimes, the vo-

cal fold vibrations at the glottis themselves may show aperiodic behavior, as in the case

of changes in the shape of the glottal flow waveform (for example, the changes in the

duty cycles of open/closed phases), or the intervals where the vocal fold vibration reflects

several superposed periodicities (diplophony) [60], or where glottal pulses occur without

obvious regularity in the time (glottalization, vocal fry or creaky voice) [127]. In practice,

the rate of vibration of the vocal folds changes from one glottal cycle to the next cycle.

Hence, it is more appropriate to define instantaneous fundamental frequency of excitation

source for every glottal cycle. In this work, we propose an event-based approach to ac-
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curately estimate the instantaneous fundamental frequency from speech signals. Epochs

derived using zero-frequency resonator are used as anchor points within each glottal cycle

for pitch estimation.

This chapter is organized as follows: In Section 5.1, the basis for the proposed method

of fundamental frequency estimation is discussed. In Section 5.2, a method for pitch

extraction from the speech signals is developed. In Section5.3 the proposed method is

compared with some standard methods for pitch extraction onstandard databases, for

which the ground truth is available in the form of electroglottograph (EGG) waveforms.

The performance of the proposed method is also evaluated fordifferent cases of simulated

degradations in speech. Finally in Section 5.4, a summary ofthe ideas presented in this

chapter is given along with some issues that need to be addressed while dealing with

speech signals in practical environments.

5.1 Basis for the proposed method of pitch estimation

As mentioned earlier, voiced speech is the output of the time-varying vocal-tract filter ex-

cited by a sequence of glottal pulses caused by vocal fold vibrations. The vocal-tract sys-

tem modulates the excitation source by formant frequencies, which depend on the sound

unit being generated. The formant frequencies together with the fundamental frequency

form important features of the voiced speech. There is an important distinction in the

production of a formant frequency and in the production of the fundamental frequency.

Formant frequencies are due to resonances of the vocal-tract system. The frequency of

the resulting damped sinusoids are controlled by the size and the shape of the vocal-tract

through the movement of the articulators. Because of the sinusoidal nature of the reso-

nance, the formant frequency appears as a single impulse in the frequency domain. How-

ever, the fundamental frequency or pitch is produced as a result of vibration of the vocal

folds, producing a sequence of regularly spaced impulses over short intervals of time. Pe-

riodic sequence of impulses in the time domain results in a periodic sequence of impulses

in the frequency domain also. Hence, unlike the formant frequency, the information about

the fundamental frequency is spread across the frequency range. This redundancy of in-
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formation about the fundamental frequency in the frequencydomain makes it a robust

feature for speech analysis. For example, this redundancy helps us in perceiving the pitch

even when the fundamental frequency is not present in the speech signal (as in the case of

telephone speech).

Speech production mechanism is designed in such a way that the energy in the higher

(> 300 Hz) frequencies is produced in the form of formants, whereas the perception of

low (< 300 Hz) frequencies is due to the sequence of glottal cycles.Note that it is phys-

ically impossible for a human being to produce a resonance frequency of 200 Hz or less

because of the limited length of the vocal-tract. In fact, the perception of low frequency

(< 200 Hz) is felt more due to the intervals between the impulsesrather the presence of

any low frequency components in the form of sinusoids. In other words, it is the strong

discontinuities at these impulse locations in the sequencethat is producing the low fre-

quency effect in perception. Moreover, the information about the discontinuities is spread

across all the frequencies including the zero-frequency. In this work, we use the method

based on the zero-frequency resonator to derive the information about the impulse-like

discontinuity in each glottal cycle. The derived sequence of impulse locations is used for

estimating the fundamental frequency for each glottal cycle.

5.2 Fundamental frequency estimation from epochs

Fundamental period is the time elapsed between two successive glottal cycles, the re-

ciprocal of which is referred to as fundamental frequency. Measurement of fundamental

period requires identification of a well specified point within each glottal cycle to mark

the starting point of the cycle. Since the instant of glottalclosure is the most abrupt event

in a glottal cycle, it is the most commonly used anchor point for measuring fundamental

period [19]. In this work, we use the instants of glottal closure (epochs) extracted from

the zero-frequency filtering, discussed in Chapter 3, as anchor points for measuring fun-

damental period. The fundamental period is measured as the time interval between two

successive epochs, and its reciprocal is used as fundamental frequency. The proposed ap-

proach is based only on the point property of the epoch and it does not involve any block
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processing. As a result, the proposed approach can measure the finer period-to-period

variation in the fundamental frequency, which is an important source of naturalness in

speech synthesis and voice conversion systems. Hence we call the measured quantity as

instantaneous fundamental frequency as opposed to ‘mean pitch’ estimated by conven-

tional periodicity-based block processing methods.

Fundamental frequency estimation methods are often associated with a voicing de-

cision that is used to eliminate the unvoiced regions. In this method, the glottal activity

detection discussed in Chapter 4 is used to detect the regions of vocal fold vibration. Since

the glottal activity detection is based on the strength of excitation in each glottal cycle,

accurate end-points of the voiced regions can be obtained bythis method. Fig. 5.1 illus-

trates the proposed method for fundamental frequency estimation on a Mandarin utterance

(collected from a female speaker) with fast pitch variations. The speech signal is passed

through a cascade of two ideal zero-frequency resonators, and the local mean computed

over the average pitch period is subtracted from the resonator output. Fig. 5.1(b) shows

the resulting filtered signal for the speech signal shown in Fig. 5.1(a). The positive zero-

crossings of the filtered signal indicate the epochs, and slopes of the filtered signal around

the epochs give their strengths of excitation. The locations of the epochs along with their

strengths are shown as pulses in Fig. 5.1(c). Notice that thestrengths of the excitation

are significantly high compared to the slopes of the spuriouszero-crossings occurring in

the unvoiced regions. Hence the strengths of the excitationare used to detect the voiced

regions, and the time-interval between two successive epochs in the voiced regions is

used to measure the fundamental frequency. Fig. 5.1(d) shows the fundamental frequency

measured from the epoch locations in the voiced regions. Theproposed method is able

to measure the fast varying changes in the fundamental frequency accurately. The finer

variations are due to cycle-to-cycle variations in pitch, which may be a speaker-specific

characteristic.
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Fig. 5.1: Illustration of proposed method of fundamental frequency estimation on a Mandarin utterance with fast pitch variations. (a) Speech signal.
(b) Filtered signal. (c) Epoch locations and their strengths of excitation. (d) Fundamental frequency measured from epoch locations. The unvoiced
regions are eliminated using the GAD method discussed in Chapter 4.
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5.2.1 Validation of F0 estimates using Hilbert envelope

In the process of measuring the instantaneous fundamental period from the intervals of

successive positive zero-crossings of the filtered signal,there could be errors due to spuri-

ous zero-crossings which occur mainly if there is another impulse in between two glottal

closure instants. To reduce the effects due to spurious zero-crossings, the knowledge that

the strength of the impulse is the strongest at the epoch in each glottal cycle may be used.

In order to exploit the strength of impulses in the excitation for reducing the effects due to

spurious zero-crossings, the Hilbert envelope of speech signal is computed. The Hilbert

envelopeh[n] is computed from the speech signals[n] as follows:

h[n] =
√

s2[n] + s2
h[n], (5.1)

wheresh[n] is the Hilbert transform ofs[n], and is given by

sh[n] = IDFT[Sh(ω)], (5.2)

where

Sh(ω) =



















+ jS(ω), ω < 0

− jS(ω), ω > 0,
(5.3)

and

S(ω) = DFT[s[n]] . (5.4)

Here DFT and IDFT refer to the discrete Fourier transform andinverse discrete Fourier

transform, respectively.

The Hilbert envelope contains a sequence of strong impulsesaround the glottal closure

instants, and may also contain some spurious impulses at other places due to the formant

structure of the vocal-tract, and the secondary excitations in the glottal cycles. But, the

amplitude of the impulses around the glottal closure instants dominate over those of the

spurious impulses in the computation of the filtered signal.Hence, the filtered signal of the

Hilbert envelope mainly contains the zero-crossings around the instants of glottal closure.

However, the zero-crossings derived from the filtered signal of Hilbert envelope deviate
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slightly (around 0.5 ms to 1 ms) from the actual locations of the instants of glottal closure.

In other words, the zero-crossings derived from the filteredsignal of Hilbert envelope

are not as accurate as those derived from the filtered signal of speech signal. Hence,

the accuracy of the zero-crossings derived from the filteredsignal of speech, and the

robustness of the zero-crossings derived from the Hilbert envelope are used in conjunction

to obtain an accurate and robust estimate of the instantaneous fundamental frequency.

The instantaneous pitch frequency contour obtained from the filtered signal of speech

is used as the primary pitch contour, and the errors in the contour are corrected using the

pitch contour derived from the Hilbert envelope of the speech signal. The pitch frequency

contours are obtained from the zero-crossings of the filtered signals for every 10 ms. The

value of 10 ms is chosen for comparison with the results from other methods. Letps[m]

and ph[m] be the pitch frequency contours derived, respectively, from the speech signal

and the Hilbert envelope of the speech signal. The followinglogic is used to correct the

errors inps[m]:

p[m] =



















ph[m], if ps[m] > 1.5ph[m]

ps[m], otherwise,
(5.5)

wherem is the frame index for every 10 ms andp[m] is the corrected pitch contour. The

factor 1.5 is used mainly to reduce the pitch doubling errorsin ps[m] due to spurious

zero-crossings. Any value between 1.3 to 1.8 is adequate to perform this correction.

The significance of using the pitch contourph[m] to correct the errors in the contour

ps[m] is illustrated in Fig. 5.2. The filtered signal shown in Fig.5.2(c) is obtained from

the speech segment shown in Fig. 5.2(a). It contains spurious zero-crossings around 0.1 s

to 0.2 s due to small values of the strength of excitation in this region. On the other hand,

the pitch derived from the Hilbert envelope gives the correct zero-crossings. The main

idea of this logic is to correct the errors due to spurious zero-crossings occurring in the

filtered signal derived from the speech signal. Steps involved in measuring instantaneous

fundamental frequency from speech signals are given in Table 5.1.
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Fig. 5.2: Correcting the pitch contour obtained from speech signal using the pitch contour obtained
from Hilbert envelope. (a) Speech signal. (b) Hilbert envelope of the speech signal. Zero-frequency
filtered signal derived from (c) speech signal, and (d) Hilbert envelope. Fundamental frequency
derived from (e) filtered speech signal, (f) filtered Hilbert envelope, (g) correction suggested in (5.5).
The dashed lines in the figures indicate the ground truth given by the EGG signals.
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Table 5.1: Steps in computation of instantaneous fundamental frequency from speech signals

(a) Compute the differenced speech signalx[n].

(b) Compute the average pitch period using the histogram of the pitch pe-
riods estimated from autocorrelation of 30 ms speech segments.

(c) Compute the outputy2[n] of the cascade of two zero-frequency res-
onators.

(d) Compute the filtered signaly[n] from y2[n] using a window length cor-
responding to the average pitch period.

(e) Compute the instantaneous fundamental (pitch) frequency from the
positive zero-crossings of the filtered signal.

(f) Obtain the pitch contourps[m] for every 10 ms from the instantaneous
pitch frequency.

(g) Compute the Hilbert envelopeh[n] of speech signals[n].

(h) Compute the pitch contourph[n] from the filtered signal ofh[n].

(i) Replace the value inps[m] with ph[m] wheneverps[m] > 1.5ph[m].

5.3 Performance evaluation and comparison with other

pitch extraction methods

In this section, the proposed method of extracting the instantaneous fundamental fre-

quency from the speech signals is compared with four existing methods in terms of ac-

curacy in estimation and in terms of robustness against degradation. The four methods

chosen for comparison are Praat’s autocorrelation method [64], crosscorrelation method

[128], subharmonic summation [77], and a fundamental frequency estimator (YIN) [127].

Initially the fundamental frequency estimation algorithms are evaluated on clean data.

Subsequently, the robustness of the proposed method and thefour existing methods are

evaluated at different levels of degradation by white noise, babble noise andvehicle noise.

A brief description of the implementation details of the four methods chosen for compar-

ison is given below. The software program codes for implementing these methods are

available at the respective websites, and are used in this study for evaluation.
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5.3.1 Existing methods for fundamental frequency estimation

Praat’s autocorrelation method (AC) [64]: The Praat’s algorithm performs an acoustic

periodicity detection on the basis of an accurate autocorrelation method. This method is

more accurate and robust than the cepstrum-based methods and original autocorrelation-

based method [64]. It was pointed out that sampling and windowing the data cause prob-

lems in determining the peak corresponding to the fundamental period in the autocorre-

lation function. In this method, the autocorrelation of theoriginal signal segmentrx[τ] is

computed by dividing the autocorrelation of the windowed signalra[τ] with the autocor-

relation of the windowrw[τ]. That is,

rx[τ] =
ra[τ]
rw[τ]

. (5.6)

This correction does not let the autocorrelation functionrx[τ] taper to zero as the lag

increases, which helps in identification of the peak corresponding to the fundamental

period. To overcome the artifacts due to sampling, the algorithm employs asinc inter-

polation around the local maxima. The interpolation provides an estimation of the fun-

damental period. The software code for implementation of this algorithm is available at

http://www.fon.hum.uva.nl/praat/ [129].

Crosscorrelation method (CC) [128]: In the computation of the autocorrelation

function, fewer samples are included as the lag increases. This effect can be seen as the

roll-off of the autocorrelation values for the higher lags. The values of the autocorrelation

function at higher lags are important, especially for low-pitched male voices. For a 50 Hz

pitch, the lag between successive pitch pulses is 200 samples at a sampling frequency of

10 kHz. To overcome this limitation in the computation of theautocorrelation function,

a crosscorrelation function that operates on two different data windows is used. Each

value of the crosscorrelation function is computed over thesame number of samples. A

software implementation of this algorithm is available with the Praat system [129].

Subharmonic summation (SHS) [77]:Subharmonic summation performs pitch anal-

ysis based on a spectral compression model. Since a compression on a linear scale cor-

responds to a shift on a logarithmic scale, the spectral compression along the linear fre-
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quency abscissa can be substituted by shifts along the logarithmic frequency abscissa.

This model is equivalent to the concept that each spectral component activates not only

those elements of the central pitch processor, but also those elements that have a lower

harmonic relation with this component. For this reason, this method is referred to as the

subharmonic summation method. The contributions of various components add up, and

the activation is the highest for the frequency sensitive element that is most activated by

its harmonics. Hence, the maximum of the resulting sum spectrum gives an estimate of

the fundamental frequency. A software implementation of this algorithm is available with

the Praat system [129].

The fundamental frequency estimator, YIN [127]:The fundamental frequency esti-

mator, YIN [127], was developed by Alain de Cheveigne and Hideki Kawahara, is named

after the oriental yin-yang philosophical principle of balance. In this algorithm, the au-

thors attempt to balance between the pitch peak in the autocorrelation function and cancel-

lation of the secondary peaks due to harmonics. The difficulty with autocorrelation-based

methods is that the peaks occur at multiples of the fundamental period also, and it is

sometimes difficult to determine which peak corresponds to the true fundamental period.

The YIN method attempts to solve these problems in several ways. It is based on a dif-

ference function, that attempts to minimize the difference between the waveform and its

delayed duplicate, instead of maximizing the product as in autocorrelation. The difference

function is given by

d[τ] =
N

∑

n=1

(s[n] − s[n+ τ])2 (5.7)

In order to reduce the occurrence of subharmonic errors, YINemploys a cumulative mean

function which deemphasizes higher period valleys in the difference function. The cumu-

lative mean function is given by

d̂[τ] =



















1, τ = 0
d[τ]

1
τ

∑τ
k=1 d[k]

, otherwise.
(5.8)

The YIN method also employs a parabolic interpolation of thelocal minima, which has

the effect of reducing the errors when the estimated pitch period isnot a factor of the

window length. The Matlab code for implementation of this algorithm is available at
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http://www.auditory.org/postings/2002/26.html [130].

5.3.2 Databases for evaluation

Keele database: The Keele pitch extraction reference database [131][132] is used to

evaluate the proposed method, and to compare with the existing methods. The database

includes speech data from five male and five female speakers, each speaking a short story

of about 35 s duration. All the speech signals were sampled ata rate of 20 kHz. This

database provides a reference pitch for every 10 ms, which isobtained from a simultane-

ously recorded EGG signal, and is used as theground truth. Pitch values are provided at

a frame rate of 100 Hz using a 25.6 ms window. Unvoiced frames are indicated with zero

pitch values, and negative values are used for uncertain frames.

CSTR database: The CSTR database [133] [134] consists of fifty sentences, each

read by one adult male and one adult female, both with non-pathological voices. The

database contains approximately five minutes of speech. Thespeech is recorded simulta-

neously with a close-talking microphone and a electroglottograph in an anechoic chamber.

The database is biased towards utterances containing voiced fricatives, nasals, liquids and

glides. Since some of these phones are aperiodic in comparison to vowels, standard pitch

estimation methods find them difficult to analyze. In this database, the reference pitch

values are provided at the instants of glottal closure.

5.3.3 Evaluation procedure

The performance of the existing as well as the proposed pitchestimation algorithms is

evaluated on both Keele database and CSTR database. All the signals are downsampled

to 8 kHz for this evaluation. All the methods are evaluated using a search range of 40 Hz to

600 Hz (typical pitch frequency range of human beings). The post-processing and voicing

detection mechanisms of the existing algorithms are disabled (wherever applicable) in this

evaluation.

The accuracy of pitch estimation methods is measured according to the following
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criteria [60]:

• Gross error (GE):It is percentage of voiced frames with an estimatedF0 value that

deviates from the reference value by more than 20%.

• Mean absolute error (M):It is the mean of the absolute value of the difference be-

tween the estimated and the reference pitch values. Gross errors are not considered

in this calculation.

• Standard deviation (SD):It is the standard deviation of the difference between es-

timated and reference pitch values. Gross errors are not considered in this calcula-

tion.

The reference estimates as provided in the databases are used for evaluating the pitch

estimation algorithms. The reference estimates are time-shifted and aligned with the esti-

mates of each of the methods. The best alignment is determined by taking the minimum

error, over a range of time-shifts, between the estimates derived from the speech signal

and the ground truth [127]. This compensation for time-shift is required due to acoustic

propagation delay from glottis to microphone, and/or due to the differences in the imple-

mentations of the algorithms.

The gross estimation errors, the mean absolute errors and the standard deviation of

errors of different algorithms for fundamental frequency estimation aregiven in Table 5.2.

In the table, the performances of pitch contours derived from ps[m], ph[m] and p[m] are

also given. Most of the time, the percentage gross errors forthe proposed method are

significantly lower than the percentage gross errors for other methods. The results clearly

demonstrate the effectiveness of the proposed method over other methods. Note that the

proposed method is based on the strength of the impulse-likeexcitation, and it does not

depend on the periodicity of the signal in successive glottal cycles. The method does not

use any averaging or smoothing of the estimated values over alonger segment consisting

of several glottal cycles.

The potential of the proposed method in estimating the instantaneous fundamental

frequency from the speech signals is illustrated in Fig. 5.3. The segment of voiced
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Fig. 5.3: Potential of the proposed method in estimating the instantaneous fundamental fre-
quency. (a) Speech signal. (b) Zero frequency filtered signal. (c) Differenced EGG signal.
Arrows indicate the positive zero-crossings of the zero-frequency filtered signal. Fundamen-
tal frequency derived from (d) proposed method, (e) Praat’s autocorrelation method, (f) cross
correlation method, (g) subhormonic summation, and (h) YIN method. The dashed lines in
the figures correspond to the reference pitch contour (i.e., ground truth).
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Table 5.2: Performance of algorithms for fundamental frequency estimation on clean
data. ps[m] denotes the pitch contour derived from filtered speech signal. ph[m] denotes
the pitch contour derived from filtered Hilbert envelope. p[m] denotes the pitch contour
obtained by combining evidence from ps[m] and ph[m] (5.5).

Keele Database CSTR Database

Method GE (%) M (Hz) SD (Hz) GE (%) M (Hz) SD (Hz)

AC 5.345 2.656 3.694 5.238 4.777 6.820

CC 6.891 2.201 3.371 6.818 5.108 6.730

YIN 3.219 2.165 2.906 3.073 4.922 6.584

SHS 10.774 1.868 2.398 8.938 4.108 5.864

ps[m] 2.935 3.198 4.555 3.394 5.459 6.974

ph[m] 5.647 4.562 6.381 4.157 5.699 6.886

p[m] 2.603 3.207 4.473 1.943 5.367 6.801

speech in Fig. 5.3(a) is not periodic. The signal shows more similarity between alternate

periods, than between adjacent periods. It is only through the analysis of the differenced

EGG signal (Fig. 5.3(c)), the actual pitch periods could be observed. The correlation-

based methods fail to estimate the actual fundamental frequency of the speech segment

in these cases. On the other hand, the positive zero-crossings of the filtered signal clearly

show the actual glottal closure instants.

5.3.4 Evaluation under noisy conditions

In this section we study the effect of noise on the accuracy of pitch estimation algorithms.

The existing methods and the proposed method were evaluatedon an artificially gener-

ated noisy speech database. The noisy environment conditions were simulated by adding

noise to the original speech signal at different signal-to-noise ratios (SNRs). The noise

signals were taken from Noisex-92 database [123]. Three noise environments, namely,

white Gaussian noise, babble noise and vehicle noise, were considered in this study. The

utterances were appended with silence so that the total amount of silence in each utterance

is constrained to be about 60% of data, including the pauses in the utterances. The result-

ing data consist of about 40% speech samples, which is the amount of speech activity in
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a typical telephone conversation. The noise from Noisex-92database is added to both

Keele database and CSTR database to create the noisy data at SNR levels ranging from

20 dB to -5 dB.

Table 5.3 shows the gross estimation errors for different pitch estimation algorithms on

the Keele database and CSTR database at varying levels of degradation by white noise.

The performance of the correlation-based methods is similar, and is reasonable at low

noise levels (upto an SNR of 10 dB). But for higher levels of degradation, the estima-

tion errors increase dramatically for all the systems, except for the proposed method,

where the degradation in performance is somewhat gradual. Robustness of the proposed

method to noise can be attributed to the impulse-like natureof the glottal closure instants

in the speech signal. The energy of white noise is distributed both in time and frequency

domains. While the energy of an impulse is distributed across the frequency range, it

is highly concentrated in the time domain. Therefore the zero-crossing due to an im-

pulse is unaffected in the output of the zero-frequency resonator even in the presence of

high levels of noise. Fig. 5.4 illustrates the robustness ofthe proposed method in esti-

mating the instantaneous fundamental frequency under noisy conditions. Fig. 5.4(a) and

Fig. 5.4(b) show the waveforms of a weakly voiced sound underclean and degraded (by

white noise at 0 dB SNR) conditions, respectively. Fig. 5.4(c) and Fig. 5.4(d) show the

zero-frequency filtered signals derived from the clean (Fig. 5.4(a)) and the noisy signals

(Fig. 5.4(b)), respectively. Though the individual periods can be observed from the clean

signal in Fig. 5.4(a), it is difficult to observe any periodicity in the noisy signal shown in

Fig. 5.4(b). But the zero-crossings of the filtered signal derived from the noisy waveform,

remain almost the same as those derived from the clean signal, illustrating the robustness

of the proposed method.

Fig. 5.5 illustrates the performance of the proposed methodunder noisy conditions,

compared to the performance of the other methods. A segment of speech signal, degraded

by white noise, at 0 dB SNR is shown in Fig. 5.5(a). The estimated pitch contour from

the proposed method is given in Fig. 5.5(d), where the estimated values match well with

the reference pitch values or ground truth (shown by dashed curves). The errors in the

estimated pitch (deviation from the ground truth) can be seen clearly in all the other four
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Fig. 5.4: Comparison of filtered signals derived from clean and degraded speech
signals. (a) Speech signal of a weakly voiced sound. (b) Speech signal degraded
by white noise at 0 dB SNR. (c) Filtered signal derived from clean signal in (a).
(d) Filtered signal derived from noisy signal in (b).

methods used for comparison . Since the other methods dependmostly on the periodicity

of the signal in successive glottal cycles, the periodicityof the signal waveform is affected

by noise and hence the accuracy. Even for clean signal, theremay be regions where the

signal is far from periodic in successive glottal cycles, and hence there are more errors in

comparison to the proposed method as can be seen in Table 5.2.Note that the proposed

method does not use any knowledge of the periodicity of the speech signal, nor assumes

regularity of the glottal cycles. Therefore there is scope for further improvement in the

accuracy of the pitch estimation by combining the proposed method with methods based

on autocorrelation.

Table 5.4 and Table 5.5 show the performance of all the five pitch estimation methods

under speech-like degradation as in babble noise and low frequency degradation as in
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Fig. 5.5: Robustness of fundamental frequency estimation algorithms under noisy conditions.
(a) Speech signal degraded by white noise at 0 dB SNR, (b) Zero frequency filtered signal,
(c) Differenced EGG signal, arrows indicate the positive zero-crossings of the filtered signal
in (b). F0 derived from (d) Proposed method, (e) Praat’s autocorrelation method, (f) crosscor-
relation method, (g) Subharmonic summation and (h) YIN method. The dashed lines in the
figures correspond to the reference pitch contour.
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Table 5.3: Gross estimation errors (in %) for different pitch estimation algorithms at varying
levels of degradation by white noise.

Keele Database CSTR Database

SNR AC CC YIN SHS Proposed AC CC YIN SHS Proposed

Clean 5.345 6.891 3.219 10.774 2.603 5.238 6.818 3.073 8.938 1.943

20 dB 5.580 7.012 3.352 11.366 2.832 5.319 6.900 3.081 9.432 1.959

15 dB 5.756 7.320 3.400 12.085 3.116 5.626 7.131 3.139 9.981 2.211

10 dB 6.655 9.065 4.058 14.313 3.346 5.972 8.100 3.366 11.462 2.256

5 dB 9.173 13.462 5.955 19.562 3.907 6.249 12.287 4.933 14.868 3.069

0 dB 15.340 21.85 12.876 30.994 5.768 14.505 21.191 12.885 22.820 5.019

-5 dB 28.373 36.043 26.223 50.115 10.188 26.809 34.876 28.582 40.691 10.530

vehicle noise. The performance of the proposed method is comparable to or better than

the other methods even for these two types of degradation.

The performance of the proposed method under babble noise (Table 5.4) and vehicle

noise (Table 5.5) is inferior to its performance under whitenoise (Table 5.3). This is be-

cause the effect of degradation due to white noise is uniformly distributed in the frequency

domain, and does not introduce any impulse-like discontinuities in the time domain. The

degradation due to vehicle noise is mostly concentrated in the low frequency region (0–

300 Hz), from which the epoch information is derived using the proposed method. Hence

the vehicle noise affects the locations of zero-crossings in the filtered signal,resulting in a

performance degradation. In the case of babble noise, the impulse-like degradations due

to epochs of the background speakers introduces spurious zero-crossings in the filtered

signal. The spurious zero-crossings lead to high gross errors in the proposed method.

5.4 Summary

In this chapter, we have proposed a method for extracting theinstantaneous fundamental

frequency from the speech signal. The proposed method exploits the impulse-like char-

acteristic of excitation in the glottal vibrations for producing voiced speech. Since an

impulse sequence has energy at all frequencies, the zero-frequency resonator proposed

in Chapter 3 was used to derive the instant of significant excitation in each glottal cycle.
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Table 5.4: Gross estimation errors (in %) for different pitch estimation algorithms at varying
levels of degradation by babble noise.

Keele Database CSTR Database

SNR AC CC YIN SHS Proposed AC CC YIN SHS Proposed

Clean 5.345 6.891 3.219 10.774 2.603 5.238 6.818 3.073 8.938 1.943

20 dB 5.635 7.501 3.624 12.061 3.147 5.597 7.238 3.233 10.026 2.268

15 dB 6.613 8.860 4.705 13.921 3.781 6.653 8.938 3.629 11.713 2.640

10 dB 9.246 12.900 7.356 17.895 5.158 10.513 14.438 7.007 15.330 3.720

5 dB 16.155 21.579 15.745 26.35 8.618 19.438 24.400 18.947 24.177 7.205

0 dB 29.086 35.795 31.852 42.559 16.149 36.072 41.879 41.788 41.232 15.038

-5 dB 45.114 50.211 48.714 62.840 28.530 54.854 60.430 63.685 62.307 30.141

Table 5.5: Gross estimation errors (in %) for different pitch estimation algorithms at varying
levels of degradation by vehicle noise.

Keele Database CSTR Database

SNR AC CC YIN SHS Proposed AC CC YIN SHS Proposed

Clean 5.345 6.891 3.219 10.774 2.603 5.238 6.818 3.073 8.938 1.943

20 dB 5.333 6.891 3.358 11.215 2.941 5.040 6.607 3.060 9.169 2.046

15 dB 5.550 7.428 3.708 12.067 3.104 5.069 6.372 3.184 9.701 2.281

10 dB 6.504 8.763 4.457 14.102 3.920 5.164 6.479 3.514 11.099 3.007

5 dB 9.886 13.196 7.893 18.227 6.081 6.756 8.191 5.576 14.147 5.551

0 dB 17.689 21.669 14.246 25.583 10.509 10.695 13.091 10.867 20.770 10.884

-5 dB 32.564 35.934 27.956 39.950 20.304 19.904 23.431 23.909 34.402 18.89

The method does not depend on the periodicity of glottal cycles, nor does it rely on the

correlation of the speech signal in successive pitch periods. Thus the method extracts the

instantaneous fundamental frequency given by the reciprocal of the interval between suc-

cessive glottal closure instants. Errors occur when the strength of excitation around the

instant of glottal closure is not high. To correct these errors, the pitch period information

derived from the zero-frequency resonator output is modified based on the pitch period

information derived from the Hilbert envelope of the speechsignal using the proposed

method. The method gives a better accuracy in comparison with standard algorithms for

pitch estimation. Moreover, the method was shown to be robust even under low signal-to-

noise ratio conditions.
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The proposed method depends only on the impulse-like excitation in each glottal cy-

cle, and hence the intervals between successive glottal cycles are obtained without using

the periodicity property in the time domain, or the harmonicstructure in the frequency

domain. Since the correlation of the speech signal in successive glottal cycles is not used,

the method is robust even when there are rapid changes in the successive periods of ex-

citation, and also when there are rapid changes in the vocal-tract system, as in dynamic

sounds. It may be possible to improve the performance of the proposed method by ex-

ploiting additionally the periodicity and correlation properties of the glottal cycles and

speech signals, respectively.
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Chapter 6

Processing Multimicrophone Data

Using Excitation Source Information

In many modern (hands-free) communication applications, speech signals are obtained

in enclosed spaces such as meeting rooms with talkers situated at a distance from micro-

phone. Moreover, in a meeting room scenario there is a possibility of more than one talker

speaking at the same time. In these conditions, the observedspeech signal is degraded

by room reverberation, background noise and speech of the competing speakers. Rever-

beration degrades the speech signal [135], acting adversely on many speech processing

applications including speech analysis, speech recognition and speaker recognition.

In the presence of room reverberation, a microphone signal is the mixture of the source

speech signal and its delayed/attenuated copies. As a result, the microphone signal con-

tains spurious impulse-like excitations due to reflected components of the actual source

signal. Moreover, the amplitude of the direct component itself is low as the microphone

is located at a distance from the source. Because of these factors, the speech signal col-

lected in reverberant environment is different from the speech signal recorded through a

close speaking microphone. Fig. 6.1 illustrates the effect of reverberation on the speech

signal collected by a microphone placed at a distance from the speaker. Fig. 6.1(a) shows

the speech signals collected by a close speaking microphone, and Fig. 6.1(b) shows the

speech signal collected by a microphone placed at a distanceof 2 m from the speaker.
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Fig. 6.1: Illustration of effect of reverberation on speech signal collected at a
distance. Segment of speech signal collected by (a) close speaking microphone,
and (b) microphone placed at a distance of 2 m from the speaker.

Both the signals are recorded simultaneously, and are time-aligned by compensating for

the delay due to acoustic propagation. The amplitude of the clean speech signal in the

closed glottis region is significantly high compared to its amplitude in open glottis region.

Hence, the individual pitch periods can clearly be observedfrom the clean speech signal

in Fig. 6.1(a). On the other hand, these observations are notevident from the reverberant

speech signal shown in Fig. 6.1(b), because of the followingreasons: (a) The amplitude

of the direct component is low because of the attenuation suffered along the acoustic path.

(b) The reflected components of the high amplitude signal in closed glottis region spread

into the open glottis region making it difficult to unambiguously detect the individual

pitch periods. As a result, the performance of the algorithms for epoch extraction and

pitch determination, inevitably, degrades in the presenceof reverberation.

In the meeting room scenario, in addition to the effect of reverberation, often more

than one talker speak at the same time. In such a case, the signal collected at the mi-

crophone is a mixture of convolution of source signals with the impulse responses of

the acoustic paths. As a result, the multispeaker speech signal contains epochs due to

all the speakers (and their reflected components), which makes it difficult to observe the

individual pitch periods.

The issues involved in both reverberant environment and multispeaker environment

can be addressed when the speech signals collected from multiple microphones are avail-
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able for processing. Microphone arrays are known to be useful in reverberant environ-

ments [136] due to spatial diversity of the room transfer function. Recent developments

in speech analysis have made use of microphone arrays for epoch extraction [137, 138]

and pitch detection [139, 140, 139] from reverberant speechusing a delay-and-sum beam-

former.

In this chapter, we discuss methods for pitch extraction from speech signals collected

in reverberant environment, and in multispeaker environment. In both the cases, the

speech signals are collected from a pair of spatially separated microphones in a real room

environment. Spatial separation of microphones results ina fixed time-delay of arrival of

speech signals from a given speaker at the pair of microphones. Except for the time-delay,

the relative locations of the instants of significant excitation of the vocal-tract system re-

main unchanged in the direct components of the speech signals at the microphones. The

time-delay of arrival between the pair of microphones is estimated using the excitation

source characteristics of the speech signal. By compensating for the estimated time-delay

of arrival, the speech signals from the pair of microphones are coherently processed to

emphasize the epoch information, while minimizing the effect due to reverberation. In a

multispeaker case, the differences in the time-delays for different speakers are exploited

to separate the epochs due to individual speakers. This chapter is organized as follows:

A method for estimation of the time-delay using the Hilbert envelope of the LP residual

is presented in Section 6.1. In Section 6.2, we discuss a method for pitch estimation in

reverberant environment using multimicrophone data. A method for multipitch estima-

tion from multispeaker multimicrophone data is presented in Section 6.3. Section 6.4

summarizes the contributions discussed in this chapter.

6.1 Time-delay estimation

In a multispeaker multimicrophone scenario, assuming thatthe speakers are stationary

with respect to the microphones, there exists a fixed time-delay of arrival of the speech

signals (between every pair of microphones) from a given speaker. The time-delays cor-

responding to different speakers can be estimated using the crosscorrelationfunction of
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the multispeaker signals. Positions of dominant peaks in the crosscorrelation function

should ideally correspond to the time-delays due to all the speakers at the pair of micro-

phones. However, the crosscorrelation function of the multispeaker signals does not show

prominent peaks at the time-delays. This is mainly because of the damped-sinusoid-like

components in the speech signal due to resonances of the vocal tract, and also because

of the effects of reverberation and noise. These effects can be reduced by exploiting the

characteristics of the excitation source of speech [141].

The impulse-like excitations during the production of voiced speech occur at the epoch

locations. In the vicinity of these impulses, the speech signal exhibits a high SNR relative

to the other regions. In order to highlight the high SNR regions in the speech signal,

LP residual is derived from the speech signal using the autocorrelation method [4]. The

LP residual reduces the second order correlations among thesamples of the signal, and

produces large amplitude fluctuations around the instants of significant excitation. The

LP residual corresponds to an estimate of the excitation source of the speech signal. Note

that the LP analysis of a multispeaker speech signal also produces uncorrelated samples in

the LP residual, where large amplitude residual samples approximately correspond to the

excitation part in the multispeaker signal. The crosscorrelation function of the LP residual

signals from the two microphone multispeaker speech signals is not likely to yield strong

peaks because of the large amplitude fluctuations of random polarity around the epoch

locations, as shown in Fig. 6.2(b). The high SNR regions around the epoch locations can

be highlighted by computing the Hilbert envelope of the LP residual [2]. The Hilbert

envelopeh[n] of the LP residual is computed as the amplitude envelope of the analytic

signal derived from the LP residual, as discussed in Section5.2.1. The Hilbert envelope

of the LP residual in Fig. 6.2(b) is shown in Fig. 6.2(c).

The crosscorrelation function of the Hilbert envelope of the LP residual signals de-

rived from the multispeaker signals is used to estimate the time-delays [9]. Apart from

the large amplitudes around the instants of significant excitation, the Hilbert envelope con-

tains a large number of smaller positive values also, which may result in spurious peaks

in the crosscorrelation function. Therefore, the regions around the instants of significant

excitation can be further emphasized by dividing the squareof each sample of the Hilbert
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Fig. 6.2: Highlighting the high SNR regions around the epoch locations. (a) A
200 ms segment of multispeaker speech signal, (b) its LP residual, (c) Hilbert
envelope of LP residual, (d) Hilbert envelope after emphasizing the epochs. The
plots in (c) and (d) are normalized with their respective maximum values.

envelope by the moving average of the Hilbert envelope computed over a short window

(about 4 ms, i.e., less than the average pitch period) aroundthe sample. The computation

of the preprocessed Hilbert envelope is as follows [141]:

gi[n] =
h2

i [n]

1
2M+1

n+M
∑

m=n−M
hi[m]

, i = 1, 2, (6.1)

wherehi[n] is the Hilbert envelope of the LP residual of the multispeaker signal collected

at theith microphone,gi[n] is the corresponding preprocessed Hilbert envelope, andM is

the number of samples corresponding to the duration of 2 ms (16 samples at 8 kHz). The

effect of emphasizing the regions around the instants of significant excitation is shown in

Fig. 6.2(d) for the Hilbert envelope shown in Fig. 6.2(c). The crosscorrelation function
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r12[l] between the preprocessed Hilbert envelopesg1[n] andg2[n] is computed as [141]

r12[l] =

N−|k|−1
∑

n=z
g1[n]g2[n− l]

√

N−|k|−1
∑

n=z
g2

1[n]
N−|k|−1
∑

n=z
g2

2[n− l]

, l = 0,±1,±2, . . .,±L, (6.2)

wherez = l, k = 0, for l ≥ 0, andz = 0, k = l, for l < 0, andN is the length of the

segments of the Hilbert envelope. Here, both the vectors arenormalized to unit magni-

tude for every sample shift before computing the crosscorrelation. The crosscorrelation

function is computed over an interval of 2L + 1 lags, where 2L + 1 corresponds to an

interval greater than the largest expected time-delay. Thelargest expected time-delay can

be estimated from the approximate positions of the speakersand the microphones. The

locations of the peaks with respect to the origin (zero lag) of the crosscorrelation function

correspond to the time-delays between the microphone signals for all the speakers. The

number of prominent peaks should correspond to the number ofspeakers. However, in

practice, this is not always true because of the following reasons: (a) All the speakers may

not contribute to voiced sounds in the segments used for computing the crosscorrelation

function. (b) There could be spurious peaks in the crosscorrelation function, which may

not correspond to the time-delay due to a speaker. Hence we rely only on the delay due to

the most prominent peak in the crosscorrelation function. This delay is computed from the

crosscorrelation function of successive frames of 50 ms duration shifted by 5 ms. Since

different regions of the speech signal may provide evidence for the delays corresponding

to different speakers, the number of frames corresponding to each delay is accumulated

over the entire data. This helps in determining the number ofspeakers as well as their

respective delays. Thus by collecting the number of frames corresponding to each de-

lay over the entire data, there will be a large evidence for the delays corresponding to the

individual speakers. Fig. 6.3 shows the percentage of the frames for each delay, for single-

speaker recordings. Similarly, Fig. 6.4 shows the percentage of the frames for each delay,

for two-speakers recordings. The histogram plots obtainedby using the crosscorrelation

of speech signals are also shown for comparison. The plots (for example Fig. 6.4(b) and

Fig. 6.4(f)) show that emphasizing the regions around the significant excitation using the
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Hilbert envelope gives better estimation of the time-delays. The locations of the peaks in

the histogram indicate the time-delays due to different speakers [141]. Thus the number

of prominent peaks in the histogram indicates the number of speakers in the conversa-

tion. The estimation of time-delays is based on the assumption that each speaker speaks

at least for reasonable percentage of time. The minor peaks are due to random peaks in

the correlation functions, and their occurrence is usuallysmall (< 5%).

The accuracy of the time-delay estimation is evaluated using the speech signals col-

lected from a single-speaker and from two speakers. Speech data was collected simulta-

neously using a pair of microphones separated by about 1 m in alaboratory environment

with an average (over the frequency) reverberation time of about 0.5 s. All the recordings

for this study were made under the following practical conditions:

(a) The speakers were seated at an average distance of 1.5 m from the microphones.

The speakers were seated such that their heads and the microphones were approxi-

mately in the same plane.

(b) While collecting the two-speakers data, the speakers were positioned in such a way

that the time delay is different for different speakers. In fact, any arbitrary placement

of the speakers with respect to the microphones satisfies this requirement.

(c) It is assumed that the level of the direct component of speech from each speaker at

the microphones is significantly high relative to the noise and reverberation compo-

nents in the room.

(d) While recording the two-speakers data, both the speakers were stationary and they

spoke simultaneously during the entire duration of recording, resulting in significant

overlap.

The speech signals were sampled at 8 kHz. During each recording, the distances of the

speakers from both the microphones were measured. The actual time-delayτ of arrival of

the speech signals atMic-1 andMic-2 located at distancesd1 andd2, respectively, from a

speaker is given by

τ =
(d1 − d2)

c
(6.3)
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Table 6.1: Comparison of estimated time-delays τ̂ with reference
time-delays τ for four single-speaker recordings. Reference values
are computed from the measured distances d1 and d2.

S. No. d1 d2 τ τ̂

(m) (m) (ms) (ms)

1 1.22 1.64 -1.27 -1.25

2 1.20 0.99 0.636 0.625

3 1.33 1.43 -0.303 -0.25

4 1.75 1.40 1.060 1

wherec is the speed of sound in air. A negative time-delay (lead) indicates that the speaker

is nearer toMic-1 relative toMic-2.

The multimicrophone signals were processed using the proposed method to obtain

the time-delays. A 10th order LP analysis was used for deriving the LP residual. The

crosscorrelation function of the preprocessed Hilbert envelopes of the LP residuals of

the multimicrophone signals was used to estimate the time-delays. The percentage of

frames for each delay (in ms) for single-speaker cases and two-speakers cases are shown

in Fig. 6.3 and Fig. 6.4, respectively. The locations of peaks in the time-delay histogram

correspond to the time-delays due to different speakers. Table 6.1 lists the actual time-

delayτ obtained from the measured distancesd1 andd2, and the estimated time-delay

obtained from the histogram for four single-speaker recordings. Similar comparison of

time-delays for four two-speakers recordings is provided in Table 6.2. The actual and

the estimated time-delays are in close agreement, thus indicating the effectiveness of the

method in determining the time-delay of arrival from multimicrophone data. Minor devi-

ations between the actual and estimated time-delays could be attributed to the following:

(a) Errors in measuring the actual distances, (b) the time-resolution that can be achieved

at the sampling frequency of 8 kHz (multiples of 0.125 ms), and (c) movement of the

speakers during a recording session.
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Fig. 6.3: Time-delay histograms for four single-speaker recordings. The plots in the first
column are obtained from the preprocessed Hilbert envelope, and those in second column
are obtained directly from the speech signal. Each row of plots corresponds to an entry in
Table 6.1, in that order.
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Fig. 6.4: Time-delay histograms for four two-speakers recordings. The plots in the first col-
umn are obtained from the preprocessed Hilbert envelope, and those in second column are
obtained directly from the speech signal. Each row of plots corresponds to an entry in Ta-
ble 6.2, in that order.
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Table 6.2: Comparison of estimated time-delays τ̂ with reference
time-delays τ for four two-speakers recordings. Reference values
are computed from the measured distances d1 and d2.

S. No Spkr-j d1 j d2 j τ j τ̂ j

(m) (m) (ms) (ms)

1 Spkr-1 0.85 110 -0.757 -0.75

Spkr-2 1.27 1.07 0.61 0.625

2 Spkr-1 1.24 1.38 -0.424 -0.5

Spkr-2 1.20 0.94 0.787 0.75

3 Spkr-1 1.10 1.43 -1 -1

Spkr-2 1.50 1.16 1.030 1

4 Spkr-1 1.16 1.29 -0.393 -0.375

Sprk-2 1.52 0.90 1.878 1.875

6.2 Pitch estimation in reverberant environment

When the speech signal is collected in an acoustical environment like a meeting room, it

will be degraded by background noise and reverberation. Thespeech signal collected at a

distance from the microphone may be expressed as

sd[n] = s[n] +
N

∑

i=1

αi s[n− τi] + v[n], (6.4)

wheresd[n] is the degraded signal,s[n] is the source signal andv[n] is the background

noise component,αi is the amplitude of the reflected component arriving after a delay of

τi samples andN is the number of reflections. The background noise componentis inde-

pendent of speech, whereas, the reflected component is dependent on the previous speech

signal. The effect of the reflected components on the speech signal is not predictable. The

reflected components of the speech signal arriving at arbitrary time-delays get superposed

with the direct component causing discontinuities in between the actual epoch locations.

Because of the spurious discontinuities resulting from thereflected components, the pitch

estimation algorithm presented in Chapter 5 can not be applied directly on the reverberant
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Fig. 6.5: Effect of reverberation on the filtered signal. (a) Speech signal collected
at a distance of 1.8 m from the speaker, and (b) its filtered signal.(c) Speech
signal collected at a distance of 1.5 m from the speaker, and (d) its filtered signal.

speech signal. The discontinuities caused by the reflected components introduce spurious

zero-crossings in zero-frequency filtered speech signal, and it is difficult to distinguish the

zero-crossings due to the epochs. Fig. 6.5(a) and Fig. 6.5(c) show a segment of speech sig-

nal collected by a pair of microphones placed at distances 1.8 m and 1.5 m, respectively,

from the speaker. The zero-frequency filtered signals obtained from the speech signals are

shown in Fig. 6.5(b) and Fig. 6.5(d). The zero-frequency filtered signals contains several

spurious zero-crossings that are difficult to distinguish from the zero-crossings due to the

actual epochs. Though the individual evidences from the filtered signals of speech col-

lected using a pair of microphones do not provide true zero-crossings, and thereby pitch,

both the speech signals can be processed coherently to estimate the pitch in reverberant

conditions.
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6.2.1 Emphasizing epochs over reverberant components

The excitation source of voiced speech segments consists ofimpulse-like excitations

around the epoch locations. The impulse-like excitation characteristics are captured using

preprocessed Hilbert envelope of LP residual of voiced speech. The impulse-like excita-

tion is robust in the sense that the relative spacing of the epochs due to direct component

remains unchanged at different microphone locations. That is, the epochs corresponding

to the direct components will becoherentat different microphone positions. This can be

observed from Fig. 6.6, where the Hilbert envelopes of LP residuals of speech signals

collected from a pair of microphones are time-aligned and displayed. The voiced speech

segments chosen for this illustration are the same as those used in Fig. 6.5. Fig. 6.6(d) and

Fig. 6.6(e) show the Hilbert envelopes of LP residuals of voiced speech segments shown

in Fig. 6.6(a) and Fig. 6.6(b), respectively. The Hilbert envelopes contain several spurious

peaks along with the peaks at the epoch locations. But the locations of the spurious peaks

are not in coherence, whereas, the locations of the peaks dueto epochs are in coherence.

Hence, by coherently adding Hilbert envelopes of both the LPresiduals, the coherent

epochs can be enhanced over the incoherent spurious peaks asshown in Fig. 6.6(f). The

coherently added Hilbert envelope shows significantly lessspurious peaks as compared

to the individual Hilbert envelopes. Notice that the pitch period information is observed

more clearly in Fig. 6.6(f), compared to the signal shown in Fig. 6.6(c), which is obtained

by coherent addition of speech signals.

The coherently added Hilbert envelope obtained from the speech signals collected us-

ing a pair of microphones is used for pitch estimation in reverberant environment. The

interval between two successive significant peaks in the coherently added Hilbert en-

velope corresponds to the pitch period. But peak detection from the coherently added

Hilbert envelope is not a trivial task. As the amplitudes of the peaks have a large dynamic

range, it is not possible to set a fixed threshold to detect them. In this work, the peaks

are detected using the zero-frequency filtered signal of thecoherently added Hilbert enve-

lope. The zero-frequency filtered signal of the coherently added Hilbert envelope exhibits

sharper zero-crossings at the peak locations. Fig. 6.7(b) shows the zero-frequency filtered

signal of the coherently added Hilbert envelope shown in Fig. 6.7(a). The positive zero-
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Fig. 6.6: Effectiveness of coherent addition of Hilbert envelopes for emphasizing
peaks due to epochs over the peaks due to reflected components. (a) Speech
signal collected at Mic-1, (b) speech signal collected at Mic-2, (c) coherently
added speech signals, (d) Hilbert envelope of LP residual of speech signal in
(a), (e) Hilbert envelope of LP residual of speech signal in (b), and (f) coherently
added Hilbert envelopes.
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Fig. 6.7: Illustration of zero-frequency filtering on coherently added Hilbert en-
velope. (a) Coherently added Hilbert envelope and its (b) zero-frequency filtered
signal. (c) Coherently added speech signal and its (d) zero-frequency filtered
signal. The arrows in (a) indicate the epoch locations obtained from positive
zero-crossings of zero-frequency filtered signal.

crossings of the filtered signal are in close agreement with the locations of the peaks of

the coherently added Hilbert envelope. Fig. 6.7(d) shows the filtered signal of the coher-

ently added speech signal shown in Fig. 6.7(c). As mentionedearlier the filtered signal

of the coherently added speech signals contains spurious zero-crossings, as the effect of

reverberation is not minimized.

The pitch frequency is measured as the reciprocal of the timeinterval between two

successive positive zero-crossings of the filtered signal of the coherently added Hilbert

envelope. Fig. 6.8(a) and Fig. 6.8(b) show speech signals collected using a pair of micro-

phones, and Fig. 6.8(c) shows the coherently added Hilbert envelope derived from them.

The arrow marks in Fig. 6.8(c) indicate the positive zero-crossings of the filtered signal
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(Fig. 6.8(d)) of the coherently added Hilbert envelope. Thepitch contours for the voiced

segments are obtained from the positive zero-crossings of the filtered Hilbert envelope.

The unvoiced segments are indicated by zero pitch values. The voicing decision is ob-

tained from the filtered Hilbert envelope shown in Fig. 6.8(d). Notice that the voiced

regions can be clearly observed from the filtered signal, which is not evident from the

speech signals because of the effects of reverberation and background noise.
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Fig. 6.8: Illustration of pitch estimation from multimicrophone speech signals in reverberant environment. Speech signal collected at
(a) microphone-1, (b) microphone-2, (c) coherently added Hilbert envelope, its (d) zero-frequency filtered Hilbert envelope and (e) pitch contour
derived from successive positive zero-crossings of filtered Hilbert envelope.
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6.2.2 Performance evaluation

Performance of the proposed pitch estimation method using multiple microphones was

evaluated on the speech data collected in a laboratory environment. Fifteen randomly

selected TIMIT utterances were recorded from three male speakers. The speech data was

simultaneously recorded using three microphones - a close speaking microphone and two

distant microphones located at 1.8 m and 1.5 m from the speakers. All the recordings

are done at a sampling frequency of 8 kHz. Close speaking microphone recordings are

used to create the reference pitch values using the pitch estimation method presented in

Chapter 5. Distant microphone recordings are used to evaluate the proposed method.

The gross error (GE), the mean absolute error (M), and the standard deviation error

(SD),defined in Chapter 5, are used to evaluate the pitch estimates obtained from the pro-

posed method. The reference pitch values are obtained from the speech data recorded

using the close speaking microphone. The performance of theproposed method is com-

pared with the performance of Praat’s autocorrelation method and the pitch estimation

method proposed in Chapter 5, on the speech signals collected at individual microphones.

Table 6.3 gives a performance comparison of proposed multimicrophone pitch estimation

with the existing methods applied on individual microphonedata. AC-Mic1 and AC-

Mic2 denote the Praat’s autocorrelation method applied on speech signals collected at

Mic-1 andMic-2, respectively. ZFR-Mic1 and ZFR-Mic2 denote the zero-frequency res-

onator method, proposed in Chapter 5, applied on speech signals collected atMic-1 and

Mic-2, respectively. The performance of Praat’s autocorrelation method is better than the

performance of the method proposed in Chapter 5 on individual microphone data. This is

because of the spurious zero-crossings in the filtered signal due to reflected components.

When the epochs are emphasized by coherent addition of Hilbert envelopes, the resulting

performance is better than the performance of the existing methods on any one of the

individual signals. The smaller GE for the proposed method indicates that the number of

frames, for which the estimated fundamental frequency lie within 20% of the reference

values, is large. As a result, the computation of mean absolute error for the proposed

method includes low SNR frames. Hence the mean absolute error and standard deviation

are slightly higher for the proposed method compared to those for the AC method.
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Table 6.3: Performance of pitch estimation algorithms on reverberant speech
data. AC-Mic1 and AC-Mic2 denote Praat’s autocorrelation method applied on
speech signals collected at Mic-1 and Mic-2, respectively. ZFR-Mic1 and ZFR-
Mic2 denote the zero-frequency resonator method, proposed in Chapter 5, ap-
plied on speech signals collected at Mic-1 and Mic-2, respectively.

Method GE (%) M (Hz) SD (Hz)

AC-Mic1 26.50 3.62 5.20

AC-Mic2 22.71 3.37 4.80

ZFS-Mic1 34.38 9.46 7.37

ZFS-Mic2 28.04 8.09 6.77

Coherent Addition 16.43 4.07 4.82

6.3 Multipitch extraction

The signal collected by a microphone in a multispeaker environment is a mixture of

speech signals from several speakers. Pitch extraction from multispeaker speech signals

is a challenging task, as the pitch periods from all the speakers overlap, making it difficult

to even observe the individual pitch periods. Fig. 6.9(a) and Fig. 6.9(b) show the speech

signals collected by a pair of microphones when two persons (one male and one female)

are speaking simultaneously. It is difficult to observe the pitch periods corresponding to

the speakers from any of the two signals. Even the autocorrelation of a frame (30 ms) of

the two-speaker signal is not likely to yield two unambiguous peaks corresponding to the

pitch periods of both the speakers. In this work, the multispeaker signals from the pair of

microphones are processed together to emphasize the epoch information of the individual

speakers.

6.3.1 Emphasizing epochs of individual speakers

The characteristics of excitation around the epochs, and the robustness of the relative

spacing of the epochs in the speech signals collected at a pair of microphones can be ex-

ploited for identifying the epoch locations correspondingto a given speaker. Letg1[n]

andg2[n] be the preprocessed Hilbert envelopes of the LP residuals of the speech signals
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collected atMic-1 andMic-2, respectively, as given in (6.1). By aligning the Hilbert en-

velopesg1[n] andg2[n] after compensating for the estimated time-delay (ˆτ1) correspond-

ing toSpkr-1, the epochs corresponding to that speaker will be in coherence, whereas the

epochs corresponding toSpkr-2will be incoherent. By considering the minimum of the

Hilbert envelopesg1[n] andg2[n− τ̂1], only the Hilbert envelopes around the epochs cor-

responding toSpkr-1are retained. Note that this operation of retaining minimumensures

that the Hilbert envelope peaks at the epochs of the other speakers are suppressed. The

resulting signal is referred as the Hilbert envelope specific toSpkr-1. In a similar manner,

the signal that retains the Hilbert envelope around the epochs corresponding toSpkr-2can

be derived. Let

hs j[n] = min(g1[n], g2[n− τ̂ j]), j = 1, 2, (6.5)

wherehs1[n] andhs2[n] are the signals in which the Hilbert envelopes around the epochs

corresponding toSpkr-1andSpkr-2, respectively, are retained.

Fig. 6.9 illustrates the extraction of speaker-specific Hilbert envelopes from two-

speaker speech signals collected using a pair of microphones. Fig. 6.9(c) and Fig. 6.9(d)

show the Hilbert envelopes of the LP residuals of the two-speaker speech signals shown

in Fig. 6.9(a) and Fig. 6.9(b), respectively. The Hilbert envelopes consist of the impulse-

like excitations due to the epochs of both the speakers. It isdifficult to separate the peaks

due to epochs of the individual speakers from any one of them.But the speaker-specific

Hilbert envelopes (Fig. 6.9(e) and Fig. 6.9(f)), obtained by computing the minimum of the

delay-compensated Hilbert envelopes, clearly show epochsdue to individual speakers.

The proposed method of obtaining speaker-specific Hilbert envelopes also aids in

identifying the regions specific to the individual speakers, and the overlapped regions.

Fig. 6.10(a) and Fig. 6.10(b) show speech signals collectedfrom two male speakers using

a pair of microphones. The regions of speech signal specific to the individual speakers

are marked by dashed lines in Fig. 6.10(a), and are labelled on the top. The labels ’1’

and ’2’ indicate the regions specific toSpkr-1only andSpkr-2only, respectively. The

label ’1&2’ indicates the region where there is an overlap ofvoiced speech from both the

speakers. The regions are marked and labelled manually by listening to the two-speaker

data. Neither the speech signals (Fig. 6.10(a) and Fig. 6.10(b)) nor the Hilbert envelopes
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Fig. 6.9: Illustration of extracting speaker-specific Hilbert envelopes from two-
speaker data collected using a pair of microphones. Speech signal collected at
(a) Mic-1 and (b) Mic-2. Hilbert envelope of LP residual of (c) Mic-1 signal, and
(d) Mic-2 signal. Speaker-specific Hilbert envelopes of (e) Spkr-1and (f) Spkr-2.
The time-delays of arrival due to Spkr-1and Spkr-2are 0.5 ms and -0.625 ms,
respectively.
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Fig. 6.10: Illustration of extracting speaker-specific regions from multispeaker
speech signals. Speech signal collected at (a) Mic-1 and (b) Mic-2. Hilbert en-
velope of LP residual of (c) Mic-1 signal, and (d) Mic-2 signal. Speaker-specific
Hilbert envelopes of (e) Spkr-1and (f) Spkr-2.
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of their LP residuals (Fig. 6.10(c) and Fig. 6.10(d)) give any clue for identifying the

regions of individual speaker activity. However, the speaker-specific Hilbert envelopes

shown in Fig. 6.10(e) and Fig. 6.10(f) clearly separate the regions corresponding to indi-

vidual speakers. For example, the region from 0.75 s to 0.9 s is due toSpkr-1only, which

is reflected as impulse-like sequence in Fig. 6.10(e), and isalmost zero in Fig. 6.10(f).

Likewise, the region from 1.1 s to 1.5 s is due toSpkr-2only, which is reflected clearly in

Fig. 6.10(f). In the overlapped region from 0.1 s to 0.7 s, both Fig. 6.10(e) and Fig. 6.10(f)

show activity, and contains the epochs corresponding to therespective speakers as illus-

trated in Fig. 6.9. Hence, the speaker-specific Hilbert envelopes can be used to detect the

regions of individual speaker activity, and to estimate their individual pitch.

6.3.2 Multipitch extraction using zero-frequency resonator

The speaker-specific Hilbert envelopes predominantly contain impulse-like excitations at

the epoch locations of the respective speakers. The pitch period of a given speaker can be

estimated by measuring the interval between two successivepeaks in the speaker-specific

Hilbert envelope of that speaker. This requires detecting peaks from speaker-specific

Hilbert envelope, that contains large variation among the peak amplitudes. In order to

avoid the difficult task of peak detection, the zero-frequency filtering approach proposed

in Chapter 3 is employed to detect the impulse-like excitations in the speaker-specific

Hilbert envelope. The positive zero-crossings of the filtered Hilbert envelope closely

match with the peaks in the speaker-specific Hilbert envelope as shown in Fig. 6.11.

Fig. 6.11(a) and Fig. 6.11(b) show the speaker-specific Hilbert envelope ofSpkr-1and

its filtered signal, respectively. Even the low amplitude peaks around 90 ms to 120 ms are

correctly detected, while the spurious peaks around 50 ms to60 ms are rightly ignored.

Similar observations can be made from Fig. 6.11(c) and Fig. 6.11(d), which show speaker-

specific Hilbert envelope ofSpkr-2and its filtered signal. Hence the zero-crossings of the

filtered signal of the speaker-specific Hilbert envelopes are used to estimate the pitch of

the individual speakers.

Performance of the proposed multipitch detection method isillustrated in Fig. 6.12 for
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Fig. 6.11: Illustration of epoch extraction from speaker-specific Hilbert envelope
using zero-frequency resonator. (a) Speaker-specific Hilbert envelope of Spkr-1
and its (b) zero-frequency filtered signal. (c) Speaker-specific Hilbert envelope of
Spkr-2and its (d) zero-frequency filtered signal. The arrow marks in (a) and (c)
indicate the epoch locations detected from zero-crossings of filtered signals in (b)
and (d), respectively.

artificially mixed signals whose source signals are known. Fig. 6.12(a) and Fig. 6.12(b)

show the speaker-specific Hilbert envelope ofSpkr-1(male) and its filtered signal, re-

spectively. The solid line in Fig. 6.12(c) shows the pitch contour derived from the positive

zero-crossings of the filtered signal in Fig. 6.12(b). The dotted line indicates the reference

pitch contour derived from the source signal. The pitch contour derived from the multi-

speaker signal using the proposed method closely follows the reference pitch contour. A

few gross errors occur because of the errors in detecting thespeaker-specific regions from

the Hilbert envelopes. Fig. 6.12(d), Fig. 6.12(e) and Fig. 6.12(f) show the speaker-specific

Hilbert envelope ofSpkr-2, its filtered signal, and the pitch contour derived from the fil-
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tered signal, respectively. The deviation of the estimatedpitch contour from the reference

may be attributed to spurious peaks occurring due to relative dominance of the speak-

ers. In this case, an informal listening of the mixed speech signals suggests thatSpkr-1

is relatively more dominant thanSpkr-2. In general, it was observed that the proposed

multipitch estimation provides better estimates for the dominant speaker compared to the

background speaker.

6.4 Summary

In this chapter, we proposed methods to process multimicrophone data for pitch extrac-

tion in reverberant environment and multispeaker environment. A method is discussed for

estimating the time-delays (due to multiple speakers) fromspeech signals collected over

a pair of spatially separated microphones. The method uses the knowledge of the exci-

tation source, unlike the commonly used spectrum-based methods. The Hilbert envelope

of the LP residual signal derived from speech is used to represent the excitation source

information. The time-delays are estimated from the crosscorrrelation function of short

segments (50 ms) of Hilbert envelopes. Since the time-delays can be estimated accurately

even from short segments of Hilbert envelope, it may be possible to develop an algorithm

to track a moving speaker.

Using the knowledge of time-delay, the Hilbert envelopes ofLP residuals of indi-

vidual microphone signals are coherently added. The coherently added Hilbert envelope

emphasizes the peaks due to epochs while deemphasizing the spurious peaks due to rever-

berant components. In order to avoid difficult task of peak detection of coherently added

Hilbert envelope, we proposed to use the zero-frequency filtering (proposed in Chapter 3)

on coherently added Hilbert envelope to detect impulse-like excitations. The time inter-

vals between successive positive zero-crossings of the filtered signal of coherently added

Hilbert envelope are used to measure the pitch in reverberant environment.

Multipitch extraction is achieved by exploiting the differences in time-delays corre-

sponding to different speakers. When the Hilbert envelopes are compensatedfor the time-

delay due to one of the speakers, then the epochs of that speaker will be coherent, while
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Fig. 6.12: Illustration of performance of proposed method of multipitch extraction.
(a) Speaker-specific Hilbert envelope of Spkr-1, (b) its filtered signal, and (c) pitch
contour derived from zero-crossings of the filtered signal. (d) Speaker-specific
Hilbert envelope of Spkr-2, (e) its filtered signal, and (f) pitch contour derived from
zero-crossings of the filtered signal. The dashed lines in (c) and (f) indicate the
reference pitch contours derived from source signals.
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the epochs due to the other speaker will be incoherent. Hence, the minimum of the delay

compensated Hilbert envelopes emphasizes epochs due to onespeaker, while deemphasiz-

ing epochs due to the other speaker. The speaker-specific Hilbert envelopes, thus derived,

are used for multipitch extraction.
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Chapter 7

Analysis of Manner of Articulation of

Stop Consonants

Stop consonants are a class of speech sounds whose characteristic feature is an interval

during which the airflow is completely blocked within the oral cavity. With the nasal

cavity closed by velum, the air pressure built up behind the oral closure is released more

or less impulsively as the vocal-tract moves towards a configuration appropriate for the

following vowel. Depending on the place of closure in the oral cavity, different linguistic

contrasts of the stop consonants can be produced. A stop consonant is said to be voiced

(in a phonetic sense) if there is an audible laryngeal pulsation during the closure phase,

and unvoiced if it is absent. Another phonetic feature traditionally attributed to the stop

consonants is aspiration. If a stop consonant has noisy, plosive release, it is said to be

aspirated; if not, it is unaspirated.

Stop consonants of consonant-vowel type form an important subset of alphabet in

most Indian languages. Table 7.1 lists the stop consonants with the vowel ending/a/ for

Indian languages. The stop consonants have clear manners ofarticulation besides the

distinct places of articulation. The acoustic-phonetic description of the consonants in

each of these syllables is precise, and is expressed in termsof voiced (V), unvoiced (uV),

aspirated (A) and unaspirated (uA) categories. That is, fora given place of articulation

there exists a four way contrast, among the stop consonants,depending on the manner
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of articulation. While the information about the place of articulation is characterized by

dynamics of the vocal-tract system, the manner of articulation is primarily dictated by

the excitation source. One of the challenging tasks in speech analysis is to determine the

acoustic correlates of the articulatory events during the production of the stop consonants,

that are difficult to extract even from clearly articulated speech signals.

The objective of this work is to study the role of source features in the analysis of

manner of articulation of stop consonants. Note that some features of the excitation source

may be too short as in the case of burst, or too random as in the case of aspiration. As

a result, mere spectral description of these characteristic regions may not provide unique

and clear features. Moreover, the effects of block processing may limit the visibility

of these features in the spectrogram. Hence, we propose to use the excitation source

information derived from the speech signal for analyzing the stop consonants.

This chapter is organized as follows: Section 7.1 highlights the importance of exci-

tation source information for analysis of manner of articulation of stop consonants. In

Section 7.2, we describe the excitation source features chosen to study the stop conso-

nants. In Section 7.3, we illustrate the potential of the proposed excitation source features

in distinguishing voiced, unvoiced, aspirated and unaspirated stop sounds. Finally, Sec-

tion 7.4 summarizes the results presented in this chapter.

Table 7.1: Stop consonants in Indian languages.

uVuA uVA VuA VA

Velar /ka/ /kha/ /ga/ /gha/

Post-alveolar /úa/ /úha/ /ãa/ /ãha/

Dental /ta/ /tha/ /da/ /dha/

Labial /pa/ /pha/ /ba/ /bha/
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7.1 Significance of glottal activity in stop consonant anal-

ysis

During speech production, the articulators in the vocal-tract are briefly coupled in a func-

tional manner to produce the acoustic characteristics of speech sounds. For example, the

production of bilabial unvoiced stop consonant/p/ requires the following set of actions.

The lips are closed by the joint activity of the jaw and the lips. The velum is elevated

to seal off the entrance into the nasal cavity. The glottis is widened and the longitudinal

tension of the vocal folds is often increased to prevent glottal vibrations. All these artic-

ulatory actions contribute to the period of silence in the acoustic signal, and the increase

in oral air pressure that is associated with an unvoiced stopconsonant. At some point

during the phonation of consonant-vowel/pa/, the speaker closes down the glottis, and,

given a suitable balance of airflow and muscular tension, thevocal folds begin to vibrate.

This shift in the mode of glottal activity occurs more or lessabruptly with a change in

supralaryngeal articulation, from the closure phase of thestop (/p/) to the progressively

more open oral configuration of the following vowel (/a/). The acoustic consequences of

this combination of glottal and oral activities depend verymuch on their relative timing.

For example, during the phonation of bilabial voiced stop/ba/, the vocal fold vibration

starts during the closure itself, yielding a low-frequencyband during the closure leading

to a full formant pattern after the release of the stop. The vocal-fold vibration during the

oral closure is commonly referred to asvoice-bar. On the other hand, during the phona-

tion of bilabial unvoiced aspirated stop/pha/, the onset of vocal fold vibration is delayed

until some time after the release. There is an interval between the closure release and vo-

cal fold vibration, when the relatively unimpeded air rushing through the glottis provides

the turbulent excitation commonly calledaspiration. This aspiration phase is character-

ized by considerable attenuation of the first formant, an effect that can be attributed to

the presence of the trachea below the open glottis. The attenuation of the first formant

and the accompanying band limited noise may extend into the transition region and be-

yond. Finally, the intensity of the burst, that is, the plosive excitation of the oral cavity

upon release of the stop, may be affected by the glottal closure. Thus, it is reasonable to
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suppose that all these acoustic features can be related to the glottal activity. More impor-

tantly, the timing of glottal activity with respect to the oral activity is an important clue for

discriminating different manners of articulation for a given place of articulation. Fig. 7.1

illustrates the relative placement of the important eventsin the production of various stop

consonants.

VoicingBurst−release

Frication

(a) Unvoiced unaspirated

Burst−release Voicing

Frication

Aspiration

(b) Unvoiced aspirated

Voicing Burst−release

Frication

(c) Voiced unaspirated

Voicing Burst−release

Aspiration

Frication

(d) Voiced aspirated

Fig. 7.1: Schematic representation of the important events in the stop consonants

7.1.1 Voice onset time

The instant of onset of vocal fold vibration relative to the release of closure (burst) is

the commonly used feature to analyze the manner of articulation in production of stop

consonants. The interval between the time of burst release to the time of onset of vocal

fold vibration is defined as voice onset time (VOT) [107]. It is important to note that VOT

is merely one of the large set of interrelated acoustic consequences of variation in relative

time of oral and glottal activities. Abramson and Lisker used the measure of VOT mainly

because the onset of glottal pulses seen as vertical striations in wide-band spectrograms

is a clear sign that glottis has shifted from the fully open state to the vibratory state [142].

Accurate determination of VOT from acoustic signals is important both theoretically

and clinically. From a clinical perspective, the VOT constitutes an important clue for as-
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sessment of speech production of hearing impaired speakers[143]. From a theoretical

perspective, the VOT of stop consonants often serves as a significant acoustic correlate

to discriminate voiced from unvoiced, and aspirated from unaspirated stop consonants.

The unvoiced unaspirated stop consonants typically have low and positive VOTs, mean-

ing that the voicing of the following vowel begins near the instant of closure release. The

unvoiced aspirated stop consonants followed by a vowel haveslightly higher VOTs than

their unaspirated counterparts, as the burst is followed bythe aspiration noise. The dura-

tion of the VOT in such cases is a practical measure of aspiration. The longer the VOT,

the stronger is the aspiration. On the other hand, voiced stop consonants have a negative

VOT, meaning that the vocal folds start vibrating before thestop is released.

Since the voicing onset is a characteristic of glottal activity, the VOT can be accurately

determined from the EGG signal along with speech waveform. Sometimes even with

EGG waveform it may be difficult to mark the voicing onset due to ‘subcritical’ vocal

fold vibration in breathy voicing conditions [144, 145]. Moreover, EGG signals are not

commonly available in practice. Therefore it is necessary to derive the voicing onset

information from the acoustic speech signal itself.

Most commonly used methods for measuring the onset of voicing are based on the

onset of periodicity in the acoustic waveform, possibly supplemented by spectrographic

analysis [108], especially the onset of visible energy in the first formant [110] or higher

formants [111]. One of the issues in using spectrographic information for determining

onset of voicing is that there are obvious differences between the latency of voicing onset

at different frequencies. For example, vertical striations due tovoicing typically appear

later in higher formants compared to the first formant. Moreover, in the case of aspirated

stops the attenuation of the first formant during aspirationmay extend into the follow-

ing vowel making it difficult to accurately locate the voicing onset. Hence, choosing a

unique landmark in the spectrogram as voicing onset is not a trivial task. Comparative

study of accuracy and variability of five acoustic (F0, F1, F2, F3 and periodicity) mea-

sures of the voicing onset showed that measurements based onwaveform provide the best

results [144].

The ideal acoustic measurement of the voicing onset is one that is both accurate and
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relatively consistent. The main problem with the above mentioned acoustic measures is

that the desired information of the glottal activity is in a very low frequency region (within

theF1), where the energy of the acoustic signal is low compared to the amplitude at other

frequencies. In spectrographic analysis, the effects of block processing sometimes limit

the visibility of formant features. The presence of noise and voicing in the aspirated

(breathy) regions [146], and the low amplitude of the voice-bar in voiced stops make the

direct measurements from the waveform difficult. Thus the analysis of stop sounds, espe-

cially the voiced aspirated stops, to extract information about the voicing onset remains a

challenge.

Since the glottal activity is primarily due to the excitation source of the vocal tract

system, it is likely that if the analysis is focused on the excitation component in the speech

signal, it may provide new insights into the phonation characteristics present in the signal.

It is also desirable to avoid spectral analysis, as it may invariably use block processing,

resulting in blurring the details of voicing onset information. In the following section, we

propose nonspectral features of the speech signal to study the role of excitation source in

the production of stop consonants.

7.2 Excitation-based nonspectral analysis of stop conso-

nants

The primary and most important mode of excitation is due to the activity at the glottis. In

normal voiced excitation (called modal voicing), there will be vibrations of the vocal folds

resulting in glottal opening, followed normally by an abrupt closure of the vocal folds, and

then a closing phase of the glottis, before the glottis is opened again for the next cycle due

to build up of pressure from the lungs. Other aspects of glottal activity include vibration

with large opening for production of breathy voice, a complete opening for the production

of unvoiced sounds, a partial closure of the vocal folds for production of creaky voice, and

finally a complete closure of the vocal folds such as for glottal stops. Fig.7.2 illustrates the

continuum of phonation types as proposed by Gardon and Ladefoged [146]. We focus on
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extraction of the excitation due to glottal activity, and try to derive the acoustic correlates

of stop consonants from this excitation information.

Most closed

Breathy Glottal closureModal 

Most open

Voiceless CreakyPhonation type:

Fig. 7.2: Phonation types [146]

The source of excitation to the vocal-tract system during the production of stop con-

sonants can occur in any of the following two modes: (a) The regions where the vocal-

tract is excited by vocal fold vibration. (b) The regions where the vocal-tract is excited

by unimpeded airflow rushing through open glottis (burst andaspiration). The regions

of vocal-fold vibration can be extracted from zero-frequency filtered signal proposed in

Chapter 3. Using the zero-frequency resonator, the information about vocal fold vibration

can be extracted irrespective of the vocal-tract dynamics,i.e., the place of articulation of

the stop consonant and the nature of the following vowel. Hence the excitation infor-

mation as reflected in the filtered signal can be used to detectthe regions of vocal fold

vibration and the precise instant of voicing onset.

During release of the closure and the aspiration regions, the vocal-tract system is

excited by a rush of air through open glottis with irregular vocal fold vibrations. This

region reflects in the spectrogram as band-limited noise. Linear prediction analysis is

employed to analyze the noisy component of the excitation source. The linear prediction

residual, derived by inverse filtering the speech signal, isused as an approximation to the

excitation component in the speech signal. The choice of theLP order, the frame size

and the frame rate used for the LP analysis are not critical. In this work, a 10th order LP

analysis is performed on frames of width 20 ms shifted by 10 ms. The ratio of the energy

of the LP residual and the speech signal for every block of theframe size and for every

sample shift is computed. The normalized error for each sample shift is computed as

η[n] =

n+N/2
∑

m=n−N/2
e2[n+m]

n+N/2
∑

m=n−N/2
x2[n+m]

, (7.1)
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whereN + 1 is the total number of samples in each frame. The resulting plot is called

the normalized error as function of the sample index, and it is used to distinguish the

excitation information due to noisy voiced segments and clean voiced segments. Note that

the spectral information in LPCs is ignored here, by considering only the residual. Though

block processing is used to derive the LP residual, the effects of blocking are insignificant

for the analysis of the acoustic correlates of the stop consonants under consideration.

The filtered signaly[n] and the normalized errorη[n] are used to represent the exci-

tation information derived from the speech signal. This information, together with the

speech signal and its wideband spectrogram are plotted for voiced aspirated syllable/gha/

in Fig. 7.3, to study the acoustic correlates, especially voicing onset, burst release and as-

piration. The waveform and the spectrogram are given only for reference. Their features

are not used to derive the acoustic correlates of the stop consonants. From the filtered

output in Fig. 7.3(c), it is easy to determine the onset of glottal activity (marked as V)

and the ending of the glottal activity. In the initial voicing region (voice-bar) the filtered

output is relatively high compared to the amplitude of the signal in that region. The value

of the normalized error in this region is low. At the release of the burst (marked as B)

of the stop sound there is a significant increase in normalized error shown in Fig. 7.3(d).

The burst duration (region from B to A) cannot be seen either in the waveform or in the

filtered output. During aspiration (region from A to M) the filtered output is large indicat-

ing significant glottal activity, and is irregular (from 0.15 s to 0.22 s) due to noisy plosive

release. But the filtered output alone is not sufficient to distinguish the glottal activity

during aspiration and the following modal voicing (region after M), as it appears nearly

periodic in the transition region. The evidence from the normalized error can also be ex-

ploited to distinguish aspiration region from the modal voicing region. The normalized

error is significantly high in the aspirated region comparedto that in the modal voicing re-

gion. Hence the filtered output together with the normalizederror can be used to analyze

different manners of articulation of stop consonants.
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Fig. 7.3: Illustration of excitation source features for voiced aspirated stop conso-
nant /gha/. (a) Wideband spectrogram, (b) speech signal, (c) filtered output, and
(d) normalized error. The wideband spectrogram and waveform are used only for
reference.

7.3 Analysis of manner of articulation for stop consonants

Isolated utterances of the CV units listed in Table 7.1 are used in this study. The ut-

terances are produced by three male speakers. Each utterance is repeated 5 times. The

speech signal is sampled at 8 kHz. The data is collected for five different vowel endings

(/a/,/i/,/u/,/e/, and/o/) for the 16 stop consonants. All the data was collected in a labora-

tory environment using a close-speaking microphone. Thus the data can be considered as

clearly articulated clean data.

Fig. 7.4 shows the waveform, filtered output and the normalized error plots for the

four velar stops/ka/, /kha/, /ga/ and /gha/. The plots of the filtered outputs in each case
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clearly show the regions of glottal activity. The followingobservations can be made to

distinguish the four categories:

(a) Unvoiced unaspirated: There is sudden increase in the normalized error at the re-

lease of the burst. The normalized error is large in the shortburst region relative to

the modal voicing region.

(b) Unvoiced aspirated: There is sudden increase in the normalized error at the release

of the burst. The largeη[n] is extended over the aspirated region due to the presence

of breathy noise. Theη[n] is low in the modal voicing region. The filtered output is

somewhat less periodicin the aspirated region.

(c) Voiced unaspirated: There is relatively large output inthe filtered signal due to

initial voicing compared to the relatively small amplitudein the waveform. There

is increase in theη[n] during the short burst region.

(d) Voiced aspirated: The filtered output is large during theinitial voicing region, and

then in the aspirated and modal voicing regions. There is a dip in the filtered output

at the burst release. But theη[n] has an abrupt raise at the burst release, followed

by largeη[n] in the aspirated region due to breathy noise.

Similar features are observed in stop consonants produced at other places of articulation.

The acoustic correlates derived from post-alveolar, dental and bilabial stop consonants are

shown in Fig. 7.5, Fig. 7.6 and Fig. 7.7, respectively. The burst release instant (marked as

B) is determined as the instant where there is a large increase inη[n]. The starting instant

of the glottal activity (marked as V) is derived from the filtered output. In all the cases

the burst release instant (B) and voicing onset (V) can easily be identified. The interval

between these two instants is used as VOT in this study.
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Fig. 7.4: The speech signal, filtered output, and the normalized error for four different velar stop sound units
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Fig. 7.5: The speech signal, filtered output, and the normalized error for four different post-alveolar stop sound units
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Fig. 7.6: The speech signal, filtered output, and the normalized error for four different dental stop sound units

1
4

3



0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 B V

/pa/ Speech signal

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 Filtered output

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1 Normalized error

Time (s)

(a) /pa/

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 B V

/pha/
Speech signal

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 Filtered output

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1 Normalized error

Time (s)

(b) /pha/

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 BV

/ba/ Speech signal

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 Filtered output

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1 Normalized error

Time (s)

(c) /ba/

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 BV

/bha/
Speech signal

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1 Filtered output

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1 Normalized error

Time (s)

(d) /bha/

Fig. 7.7: The speech signal, filtered output, and the normalized error for four different bilabial stop sound units
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All the above observations are valid for stop consonants with different vowel endings.

Table 7.2 shows the average durations of VOT for different categories of CV units ending

with the vowel/a/. All the VOTs are obtained manually from the filtered output and the

normalized error as shown by the markers in Fig. 7.4. For unvoiced stops, the burst release

(B) takes place before the onset (V) of the glottal activity.The interval between these two

is the VOT, and is also the burst duration in this case. The VOTis generally larger for

velar stops compared to the other three categories. The relatively smaller volume of the

cavity behind the point of constriction in velar stops causes a greater pressure, which will

take longer time to fall and allow an adequate transglottal pressure for the initiation of

the vocal folds vibration [147]. The extent of articulatorycontact area in dental and velar

stops is more, resulting in a slower release because of the Bernoulli effect pulling the

articulators together [147]. As the articulators come apart more slowly, there is a longer

time before an appropriate transglottal pressure is produced. As a result, the durations

of VOT for /ka/ and /ta/ are longer than those for/úa/ and /pa/. The VOT durations for

aspirated stop consonants are consistently longer than their unaspirated counterparts, as

the aspiration region follows the closure release in case ofaspirated stops. The precise

duration of aspiration is difficult to measure from the plot of the normalized error, as the

effect of aspiration extends into the following vowel.

In the voiced stop consonants, the voicing onset (V) due to the glottal activity occurs

before the closure release (B), resulting in a negative VOT duration. The VOT durations

for different voiced stop consonants are given in Table 7.2. Notice that there is no clear

distinction between the unaspirated stop consonants and their aspirated counterparts. In

fact, Abramson had pointed that, VOT may distinguish the voiced aspirated stop conso-

nants from unvoiced stop consonants, in the context of Indian languages, but certainly not

from the voiced unaspirated stops [142].

In the case of voiced stop consonants, the burst duration is different from VOT. In our

study, it is observed that the burst durations provide some evidence regarding the presence

of aspiration in voiced stop consonants. The burst durations for different voiced stop

consonants are given in Table 7.3. The burst durations for the voiced aspirated sounds are

consistently longer compared to their unaspirated counterparts. In some cases, the voicing
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during the closure (voice-bar) continues to the following the vowel, and the burst release

due to the closure release comes during the voicing itself. The beginning and end of the

burst can be seen clearly in normalized error, while the simultaneous glottal activity can

be observed from the filtered signal, especially for voiced unaspirated stops. For voiced

aspirated stops, the burst duration is sometimes difficult to identify as the breathiness

during aspiration and the burst duration may overlap. The normalized error may remain

large throughout the aspiration region, even though there is closure release during that

period.

Table 7.2: The average (across three speakers) durations of
VOT in stop consonants (in ms)

Unvoiced ka kha úa úha ta tha pa pha

Duration 32 36 16 20 23 29 12 15

Voiced ga gha ãa ãha da dha ba bha

Duration -82 -65 -81 -86 -74 -73 -60 -52

Table 7.3: The duration of burst in voiced stop consonants (in ms)

Voiced ga gha ãa ãha da dha ba bha
Duration 19 23 9 16 12 17 7 13

7.4 Summary

In this work, we have attempted to make a case for nonspectralmethods for analysis of

stop consonants. The methods are intended to focus on excitation characteristics during

the production of stop consonants. We have proposed the use of zero-frequency filtered

signal to extract the region of glottal activity, and the normalized error from LP residual to

determine the noise regions of excitation during burst release and during aspiration. The

onset of voicing can be detected from the filtered signal and the instant of burst release

can be detected from the normalized error. Voicing onset time for all the stop consonants

are measured using these two features together.
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Chapter 8

Summary and Conclusions

8.1 Summary of the work

During the production of voiced speech, impulse-like excitation is delivered to the vocal-

tract system at the instant of glottal closure. The instant of glottal closure referred to as

epoch, and the rate of glottal closure referred to as strength of excitation (at the epoch)

form important features of the excitation source. In this thesis, we proposed a novel

method to extract the epoch locations and their strengths. The proposed approach does not

depend on the characteristics of the vocal-tract system. Most of the existing methods for

epoch extraction rely on modeling the vocal-tract system asa linear filter, and then inverse

filtering the speech signal to extract the excitation source. On the contrary, the proposed

approaches exploit the impulse-like nature of excitation in the sequence of glottal cycles

to extract the epoch locations and to estimate their strengths.

The impulse-like excitation to the vocal-tract system causes a discontinuity in the

speech signal whose effect spreads uniformly across the frequency domain. The time-

instants of these discontinuities may not be evident from the speech signal because of the

time-varying response of the vocal-tract system. In this work, we attempted to confine the

analysis to a narrow band of frequencies, to highlight the effect due to the discontinuity, by

filtering the speech signal through a resonator with a narrowbandwidth. We demonstrated

that the instantaneous frequency computed around a carefully chosen center frequency
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gives locations of the discontinuities. In this approach, the choice of center frequency

critically depends on the vocal-tract configuration.

The discontinuity due to the impulse-like excitation is reflected uniformly in the fre-

quency domain, including at the zero-frequency. The influence of the vocal-tract system

is relatively less at the zero-frequency, as the vocal-tract system has resonances at much

higher frequencies. Hence, we use a zero-frequency resonator to extract the epoch loca-

tions and their strengths. The method involves passing the speech signal through a cascade

of two ideal resonators located at the zero-frequency. The filtered signal is derived from

the output of the resonators by subtracting the local mean computed over an interval cor-

responding to the average pitch period. The sharper zero-crossings in the filtered signal

are shown to coincide with the instants of significant excitation within each glottal cycle.

The contribution of the vocal-tract system around the zero-frequency is significantly

less compared to the contribution due to the impulse-like excitation. Hence, the narrow-

band nature of the zero-frequency resonator is exploited for estimating the strength of

excitation at the epoch from the speech signal. It is observed that the slopes of the filtered

signal around epoch locations closely follow the amplitudes of the negative peaks in the

differenced EGG signal. The strength of excitation is significant in the regions of vocal

fold vibration where the vocal-tract system is excited by impulse-like excitation. In the

unvoiced regions, the filtered signal is close to zero due to the absence of impulse-like

excitation. A method is proposed using the energy of the zero-frequency resonator to

identify the regions of vocal fold vibration from speech signal.

Using the epoch locations as anchor points within each glottal cycle, a method to es-

timate the instantaneous fundamental frequency of voiced speech segments is proposed.

The fundamental frequency is estimated as the reciprocal ofthe interval between two suc-

cessive epoch locations, derived from filtered speech signal. Since the proposed method

is based on the point property of epoch and does not involve any block processing, it

provides cycle-to-cycle variations in pitch during voicing. Hence we call the resulting es-

timate as instantaneous fundamental frequency as opposed to ‘mean pitch’ derived from

conventional block processing applications. Errors due tospurious zero-crossings in the

weak voiced regions are corrected using the filtered signal of Hilbert envelope of the
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speech signal.

Since the proposed method of pitch estimation exploits the impulse-like excitation

characteristic, the method does not work if there are additional impulses due to echoes

or reverberation or overlapping speech from competing speakers. The zero-frequency fil-

tered signal of a reverberant speech signal contains several spurious zero-crossings due

to discontinuities introduced by the reflected components.In this work, a method is pro-

posed for pitch estimation in reverberant environment fromspeech signals collected using

a pair of spatially separated microphones. The spatial separation of microphones results

in a fixed time-delay of arrival of speech signals at the pair of microphones. A method

based on excitation source is discussed for time-delay estimation. The crosscorrelation

of segments of Hilbert envelopes of the LP residuals from thetwo microphone signals is

used for time-delay estimation. The delay compensated Hilbert envelopes are coherently

added to emphasize the regions around the epochs while reducing the effect of reverbera-

tion. The pitch is estimated from the zero-crossings of the filtered signal of the coherently

added Hilbert envelope.

In this work, a method is proposed for multipitch extractionfrom speech signals col-

lected using a pair of microphones. One important point to benoted in the multispeaker

environment is that, as the speakers are spatially distributed, unique time-delay is asso-

ciated with each speaker. In this work, the differences in the time-delays for different

speakers are exploited to emphasize the epochs due to individual speakers. It is observed

that the minimum of the delay compensated Hilbert envelopesemphasizes the epochs due

to a given speaker, and deemphasizes the epochs due to the other speaker. The individual

pitch tracks are estimated from the zero-crossings of the filtered signal of the speaker-

specific Hilbert envelopes.

Finally, we made an attempt to study the usefulness of excitation source information

to analyze the manner of articulation of stop consonants. Two measures of excitation

source investigated in this study are the filtered speech signal and the normalized error.

The filtered speech signal is used to characterize the excitation information during vocal-

fold vibration. The normalized error derived from LP analysis is used to highlight the

regions of noisy excitation caused by a rush of air through open glottis during closure
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release and aspiration. It is observed that these two features jointly highlight important

events, like onset of voicing and instant of closure release, in the stop consonants. Using

the two excitation source features, the voice onset time andthe burst durations of stop

consonants in Indian languages were measured.

8.2 Major contributions of the work

The important contribution of the research work reported inthis thesis is the extraction

and processing of excitation source information of speech.Extraction of excitation source

information requires suppressing the vocal-tract response from the speech signal, which

is not a trivial task. In this work, we proposed methods to extract the epoch locations

and their strengths by confining the analysis to a narrow bandaround the zero-frequency

where the effect of vocal-tract system is significantly low compared to the impulse-like

excitation. The major contributions of this thesis are:

• Studies on suitability of instantaneous frequency for epoch extraction

• Epoch extraction from speech signals using zero-frequencyresonator

• Estimation of the strengths of excitation at epochs from speech signals.

• Glottal activity detection from speech signals

• Estimation of instantaneous fundamental frequency of voiced speech

• Estimation of time-delay from multimicrophone data using excitation source infor-

mation

• Pitch extraction in reverberant environment from multimicrophone data

• Multipitch extraction from multimicrophone data

• Analysis of manner of articulation of stop consonants usingexcitation source infor-

mation
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8.3 Directions for future work

• The proposed zero-frequency based method for epoch extraction may not work well

on speech data collected over telephone channels, and high pass filtered speech sig-

nals, where the low frequency components are deliberately attenuated. In these

cases, the epochs may be extracted by confining the analysis to higher frequen-

cies than at zero-frequency. Instantaneous frequency of the speech signal filtered

around a carefully chosen center frequency is shown to indicate approximate loca-

tions of the epochs. The choice of the center frequency critically depends on the

time-varying response of the vocal-tract system. Methods have to be explored to

adaptively choose the center frequency of the resonator from the speech segment

under consideration. It was observed that there exist multiple center frequencies

which can be used for epoch extraction. The evidences from different center fre-

quencies can be combined to obtain a robust and accurate epoch locations.

• The strengths of the excitation can be used to estimate the shimmer which is known

to be a speaker-specific characteristic.

• The fundamental frequency estimation proposed in this workprovides the period to

period variations in pitch during the production of voiced speech. These finer vari-

ations can be used to estimate the jitter which is a speaker-specific characteristic.

• The glottal activity detection approach presented in this work, uses the energy of

the filtered signal. The performance of the method may be improved by using the

knowledge of the intervals between successive zero-crossings. Regularity of the

zero-crossings observed in the voiced regions will be absent in the noisy regions.

• The proposed methods for processing multimicrophone data uses the speech signals

collected over two microphones only. The performance of these methods may be

improved by collecting speech signal using more number of microphones, and then

selecting the set of microphones closer to individual speakers for processing.

• In the proposed approach for stop consonant analysis, the voicing onset time and

burst durations are measured manually by observing the filtered signal and the nor-

151



malized error. Methods have to be developed to detect the onset of voicing and

instant of burst release automatically using the proposed excitation source features.

• The proposed excitation source features may be useful in theanalysis of consonant-

vowel units. The proposed method of glottal activity may be useful in accurate

detection of vowel-onset point, the instant at which transition from consonant to

vowel occurs, in a consonant-vowel unit.
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